Designing communication and remote controlling of virtual instrument network system
NASA Astrophysics Data System (ADS)
Lei, Lin; Wang, Houjun; Zhou, Xue; Zhou, Wenjian
2005-01-01
In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful.
The Study on Virtual Medical Instrument based on LabVIEW.
Chengwei, Li; Limei, Zhang; Xiaoming, Hu
2005-01-01
With the increasing performance of computer, the virtual instrument technology has greatly advanced over the years, and then virtual medical instrument technology becomes available. This paper presents the virtual medical instrument, and then as an example, an application of a signal acquisition, processing and analysis system using LabVIEW is also given.
Virtual performer: single camera 3D measuring system for interaction in virtual space
NASA Astrophysics Data System (ADS)
Sakamoto, Kunio; Taneji, Shoto
2006-10-01
The authors developed interaction media systems in the 3D virtual space. In these systems, the musician virtually plays an instrument like the theremin in the virtual space or the performer plays a show using the virtual character such as a puppet. This interactive virtual media system consists of the image capture, measuring performer's position, detecting and recognizing motions and synthesizing video image using the personal computer. In this paper, we propose some applications of interaction media systems; a virtual musical instrument and superimposing CG character. Moreover, this paper describes the measuring method of the positions of the performer, his/her head and both eyes using a single camera.
Study on virtual instrument developing system based on intelligent virtual control
NASA Astrophysics Data System (ADS)
Tang, Baoping; Cheng, Fabin; Qin, Shuren
2005-01-01
The paper introduces a non-programming developing system of a virtual instument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described.
Virtual Instrument Simulator for CERES
NASA Technical Reports Server (NTRS)
Chapman, John J.
1997-01-01
A benchtop virtual instrument simulator for CERES (Clouds and the Earth's Radiant Energy System) has been built at NASA, Langley Research Center in Hampton, VA. The CERES instruments will fly on several earth orbiting platforms notably NASDA's Tropical Rainfall Measurement Mission (TRMM) and NASA's Earth Observing System (EOS) satellites. CERES measures top of the atmosphere radiative fluxes using microprocessor controlled scanning radiometers. The CERES Virtual Instrument Simulator consists of electronic circuitry identical to the flight unit's twin microprocessors and telemetry interface to the supporting spacecraft electronics and two personal computers (PC) connected to the I/O ports that control azimuth and elevation gimbals. Software consists of the unmodified TRW developed Flight Code and Ground Support Software which serves as the instrument monitor and NASA/TRW developed engineering models of the scanners. The CERES Instrument Simulator will serve as a testbed for testing of custom instrument commands intended to solve in-flight anomalies of the instruments which could arise during the CERES mission. One of the supporting computers supports the telemetry display which monitors the simulator microprocessors during the development and testing of custom instrument commands. The CERES engineering development software models have been modified to provide a virtual instrument running on a second supporting computer linked in real time to the instrument flight microprocessor control ports. The CERES Instrument Simulator will be used to verify memory uploads by the CERES Flight Operations TEAM at NASA. Plots of the virtual scanner models match the actual instrument scan plots. A high speed logic analyzer has been used to track the performance of the flight microprocessor. The concept of using an identical but non-flight qualified microprocessor and electronics ensemble linked to a virtual instrument with identical system software affords a relatively inexpensive simulation system capable of high fidelity.
Virtual instrument: remote control and monitoring of an artificial heart driver
NASA Astrophysics Data System (ADS)
Nguyen, An H.; Farrar, David
1993-07-01
A development of a virtual instrument based on the top-down model approach for an artificial heart driver is presented. Driver parameters and status were being dynamically updated on the virtual system at the remote station. The virtual system allowed the remote operator to interact with the physical heart driver as if he/she were at the local station. Besides use as an effective training tool, the system permits an expert operator to monitor and also control the Thoratec heart driver from a distant location. We believe that the virtual instrument for biomedical devices in general and for the Thoratec heart driver in particular, not only improves system reliability but also opens up a real possibility in reducing medical cost. Utilizing the top-down scheme developed recently for telerobotics, realtime operation in both instrument display and remote communication were possible via a low bandwidth telephone medium.
ERIC Educational Resources Information Center
Tawfik, M.; Sancristobal, E.; Martin, S.; Gil, R.; Diaz, G.; Colmenar, A.; Peire, J.; Castro, M.; Nilsson, K.; Zackrisson, J.; Hakansson, L.; Gustavsson, I.
2013-01-01
This paper reports on a state-of-the-art remote laboratory project called Virtual Instrument Systems in Reality (VISIR). VISIR allows wiring and measuring of electronic circuits remotely on a virtual workbench that replicates physical circuit breadboards. The wiring mechanism is developed by means of a relay switching matrix connected to a PCI…
Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M.; Manjarrez, Elías; Tapia, Jesús A.; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A.; Herrera-May, Agustín L.
2013-01-01
We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG). PMID:24196434
Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M; Manjarrez, Elías; Tapia, Jesús A; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A; Herrera-May, Agustín L
2013-11-05
We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG).
Instrumentation to Aid in Steel Bridge Fabrication : Bridge Virtual Assembly System
DOT National Transportation Integrated Search
2018-05-01
This pool funded project developed a BRIDGE VIRTUAL ASSEMBLY SYSTEM (BRIDGE VAS) that improves manufacturing processes and enhances quality control for steel bridge fabrication. The system replaces conventional match-drilling with virtual assembly me...
Research on virtual Guzheng based on Kinect
NASA Astrophysics Data System (ADS)
Li, Shuyao; Xu, Kuangyi; Zhang, Heng
2018-05-01
There are a lot of researches on virtual instruments, but there are few on classical Chinese instruments, and the techniques used are very limited. This paper uses Unity 3D and Kinect camera combined with virtual reality technology and gesture recognition method to design a virtual playing system of Guzheng, a traditional Chinese musical instrument, with demonstration function. In this paper, the real scene obtained by Kinect camera is fused with virtual Guzheng in Unity 3D. The depth data obtained by Kinect and the Suzuki85 algorithm are used to recognize the relative position of the user's right hand and the virtual Guzheng, and the hand gesture of the user is recognized by Kinect.
Virtual Instrument for Emissions Measurement of Internal Combustion Engines
Pérez, Armando; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén
2016-01-01
The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893
Research and realization of signal simulation on virtual instrument
NASA Astrophysics Data System (ADS)
Zhao, Qi; He, Wenting; Guan, Xiumei
2010-02-01
In the engineering project, arbitrary waveform generator controlled by software interface is needed by simulation and test. This article discussed the program using the SCPI (Standard Commands For Programmable Instruments) protocol and the VISA (Virtual Instrument System Architecture) library to control the Agilent signal generator (Agilent N5182A) by instrument communication over the LAN interface. The program can conduct several signal generations such as CW (continuous wave), AM (amplitude modulation), FM (frequency modulation), ΦM (phase modulation), Sweep. As the result, the program system has good operability and portability.
Chang, Ching-I; Yan, Huey-Yeu; Sung, Wen-Hsu; Shen, Shu-Cheng; Chuang, Pao-Yu
2006-01-01
The purpose of this research was to develop a computer-aided instruction system for intra-aortic balloon pumping (IABP) skills in clinical nursing with virtual instrument (VI) concepts. Computer graphic technologies were incorporated to provide not only static clinical nursing education, but also the simulated function of operating an expensive medical instrument with VI techniques. The content of nursing knowledge was adapted from current well-accepted clinical training materials. The VI functions were developed using computer graphic technology with photos of real medical instruments taken by digital camera. We wish the system could provide beginners of nursing education important teaching assistance.
A Virtual Instrument System for Determining Sugar Degree of Honey
Wu, Qijun; Gong, Xun
2015-01-01
This study established a LabVIEW-based virtual instrument system to measure optical activity through the communication of conventional optical instrument with computer via RS232 port. This system realized the functions for automatic acquisition, real-time display, data processing, results playback, and so forth. Therefore, it improved accuracy of the measurement results by avoiding the artificial operation, cumbersome data processing, and the artificial error in optical activity measurement. The system was applied to the analysis of the batch inspection on the sugar degree of honey. The results obtained were satisfying. Moreover, it showed advantages such as friendly man-machine dialogue, simple operation, and easily expanded functions. PMID:26504615
Air-condition Control System of Weaving Workshop Based on LabVIEW
NASA Astrophysics Data System (ADS)
Song, Jian
The project of air-condition measurement and control system based on LabVIEW is put forward for the sake of controlling effectively the environmental targets in the weaving workshop. In this project, which is based on the virtual instrument technology and in which LabVIEW development platform by NI is adopted, the system is constructed on the basis of the virtual instrument technology. It is composed of the upper PC, central control nodes based on CC2530, sensor nodes, sensor modules and executive device. Fuzzy control algorithm is employed to achieve the accuracy control of the temperature and humidity. A user-friendly man-machine interaction interface is designed with virtual instrument technology at the core of the software. It is shown by experiments that the measurement and control system can run stably and reliably and meet the functional requirements for controlling the weaving workshop.
Intelligent pump test system based on virtual instrument
NASA Astrophysics Data System (ADS)
Ma, Jungong; Wang, Shifu; Wang, Zhanlin
2003-09-01
The intelligent pump system is the key component of the aircraft hydraulic system that can solve the problem, such as the temperature sharply increasing. As the performance of the intelligent pump directly determines that of the aircraft hydraulic system and seriously affects fly security and reliability. So it is important to test all kinds of performance parameters of intelligent pump during design and development, while the advanced, reliable and complete test equipments are the necessary instruments for achieving the goal. In this paper, the application of virtual instrument and computer network technology in aircraft intelligent pump test is presented. The composition of the hardware, software, hydraulic circuit in this system are designed and implemented.
Virtual Sensor Test Instrumentation
NASA Technical Reports Server (NTRS)
Wang, Roy
2011-01-01
Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of functions. The sensor data is processed in a distributed fashion across the network, providing a large pool of resources in real time to meet stringent latency requirements.
Fransson, Boel A; Chen, Chi-Ya; Noyes, Julie A; Ragle, Claude A
2016-11-01
To determine the construct and concurrent validity of instrument motion metrics for laparoscopic skills assessment in virtual reality and augmented reality simulators. Evaluation study. Veterinarian students (novice, n = 14) and veterinarians (experienced, n = 11) with no or variable laparoscopic experience. Participants' minimally invasive surgery (MIS) experience was determined by hospital records of MIS procedures performed in the Teaching Hospital. Basic laparoscopic skills were assessed by 5 tasks using a physical box trainer. Each participant completed 2 tasks for assessments in each type of simulator (virtual reality: bowel handling and cutting; augmented reality: object positioning and a pericardial window model). Motion metrics such as instrument path length, angle or drift, and economy of motion of each simulator were recorded. None of the motion metrics in a virtual reality simulator showed correlation with experience, or to the basic laparoscopic skills score. All metrics in augmented reality were significantly correlated with experience (time, instrument path, and economy of movement), except for the hand dominance metric. The basic laparoscopic skills score was correlated to all performance metrics in augmented reality. The augmented reality motion metrics differed between American College of Veterinary Surgeons diplomates and residents, whereas basic laparoscopic skills score and virtual reality metrics did not. Our results provide construct validity and concurrent validity for motion analysis metrics for an augmented reality system, whereas a virtual reality system was validated only for the time score. © Copyright 2016 by The American College of Veterinary Surgeons.
Wang, Wen-Bin; Li, Jang-Yuan; Wu, Qi-Jun
2007-01-01
A LabVIEW-based self-constructed chemical virtual instrument (VI) has been developed for determining temperatures and pressures. It can be put together easily and quickly by selecting hardware modules, such as the PCI-DAQ card or serial port method, different kinds of sensors, signal-conditioning circuits or finished chemical instruments, and software modules such as data acquisition, saving, proceeding. The VI system provides individual and extremely flexible solutions for automatic measurements in physical chemistry research.
Wang, Wen-Bin; Li, Jang-Yuan; Wu, Qi-Jun
2007-01-01
A LabVIEW-based self-constructed chemical virtual instrument (VI) has been developed for determining temperatures and pressures. It can be put together easily and quickly by selecting hardware modules, such as the PCI-DAQ card or serial port method, different kinds of sensors, signal-conditioning circuits or finished chemical instruments, and software modules such as data acquisition, saving, proceeding. The VI system provides individual and extremely flexible solutions for automatic measurements in physical chemistry research. PMID:17671611
Towards a Methodology for Managing Competencies in Virtual Teams - A Systemic Approach
NASA Astrophysics Data System (ADS)
Schumacher, Marinita; Stal-Le Cardinal, Julie; Bocquet, Jean-Claude
Virtual instruments and tools are future trends in Engineering which are a response to the growing complexity of engineering tasks, the facility of communication and strong collaborations on the international market. Outsourcing, off-shoring, and the globalization of organisations’ activities have resulted in the formation of virtual product development teams. Individuals who are working in virtual teams must be equipped with diversified competencies that provide a basis for virtual team building. Thanks to the systemic approach of the functional analysis our paper responds to the need of a methodology of competence management to build virtual teams that are active in virtual design projects in the area of New Product Development (NPD).
Determination of balloon gas mass and revised estimates of drag and virtual mass coefficients
NASA Technical Reports Server (NTRS)
Robbins, E.; Martone, M.
1993-01-01
In support of the NASA Balloon Program, small-scale balloons were flown with varying lifting gas and total system mass. Instrument packages were developed to measure and record acceleration and temperature data during these tests. Top fitting and instrument payload accelerations were measured from launch to steady state ascent and through ballast drop transients. The development of the small lightweight self-powered Stowaway Special instrument packages is discussed along with mathematical models developed to determine gas mass, drag and virtual mass coefficients.
Construction of a Virtual Scanning Electron Microscope (VSEM)
NASA Technical Reports Server (NTRS)
Fried, Glenn; Grosser, Benjamin
2004-01-01
The Imaging Technology Group (ITG) proposed to develop a Virtual SEM (VSEM) application and supporting materials as the first installed instrument in NASA s Virtual Laboratory Project. The instrument was to be a simulator modeled after an existing SEM, and was to mimic that real instrument as closely as possible. Virtual samples would be developed and provided along with the instrument, which would be written in Java.
Interfacing laboratory instruments to multiuser, virtual memory computers
NASA Technical Reports Server (NTRS)
Generazio, Edward R.; Stang, David B.; Roth, Don J.
1989-01-01
Incentives, problems and solutions associated with interfacing laboratory equipment with multiuser, virtual memory computers are presented. The major difficulty concerns how to utilize these computers effectively in a medium sized research group. This entails optimization of hardware interconnections and software to facilitate multiple instrument control, data acquisition and processing. The architecture of the system that was devised, and associated programming and subroutines are described. An example program involving computer controlled hardware for ultrasonic scan imaging is provided to illustrate the operational features.
A LabVIEW-Based Virtual Instrument System for Laser-Induced Fluorescence Spectroscopy.
Wu, Qijun; Wang, Lufei; Zu, Lily
2011-01-01
We report the design and operation of a Virtual Instrument (VI) system based on LabVIEW 2009 for laser-induced fluorescence experiments. This system achieves synchronous control of equipment and acquisition of real-time fluorescence data communicating with a single computer via GPIB, USB, RS232, and parallel ports. The reported VI system can also accomplish data display, saving, and analysis, and printing the results. The VI system performs sequences of operations automatically, and this system has been successfully applied to obtain the excitation and dispersion spectra of α-methylnaphthalene. The reported VI system opens up new possibilities for researchers and increases the efficiency and precision of experiments. The design and operation of the VI system are described in detail in this paper, and the advantages that this system can provide are highlighted.
A LabVIEW-Based Virtual Instrument System for Laser-Induced Fluorescence Spectroscopy
Wu, Qijun; Wang, Lufei; Zu, Lily
2011-01-01
We report the design and operation of a Virtual Instrument (VI) system based on LabVIEW 2009 for laser-induced fluorescence experiments. This system achieves synchronous control of equipment and acquisition of real-time fluorescence data communicating with a single computer via GPIB, USB, RS232, and parallel ports. The reported VI system can also accomplish data display, saving, and analysis, and printing the results. The VI system performs sequences of operations automatically, and this system has been successfully applied to obtain the excitation and dispersion spectra of α-methylnaphthalene. The reported VI system opens up new possibilities for researchers and increases the efficiency and precision of experiments. The design and operation of the VI system are described in detail in this paper, and the advantages that this system can provide are highlighted. PMID:22013388
[Application of virtual instrumentation technique in toxicological studies].
Moczko, Jerzy A
2005-01-01
Research investigations require frequently direct connection of measuring equipment to the computer. Virtual instrumentation technique considerably facilitates programming of sophisticated acquisition-and-analysis procedures. In standard approach these two steps are performed subsequently with separate software tools. The acquired data are transfered with export / import procedures of particular program to the another one which executes next step of analysis. The described procedure is cumbersome, time consuming and may be potential source of the errors. In 1987 National Instruments Corporation introduced LabVIEW language based on the concept of graphical programming. Contrary to conventional textual languages it allows the researcher to concentrate on the resolved problem and omit all syntactical rules. Programs developed in LabVIEW are called as virtual instruments (VI) and are portable among different computer platforms as PCs, Macintoshes, Sun SPARCstations, Concurrent PowerMAX stations, HP PA/RISK workstations. This flexibility warrants that the programs prepared for one particular platform would be also appropriate to another one. In presented paper basic principles of connection of research equipment to computer systems were described.
Thermal feedback in virtual reality and telerobotic systems
NASA Technical Reports Server (NTRS)
Zerkus, Mike; Becker, Bill; Ward, Jon; Halvorsen, Lars
1994-01-01
A new concept has been developed that allows temperature to be part of the virtual world. The Displaced Temperature Sensing System (DTSS) can 'display' temperature in a virtual reality system.The DTSS can also serve as a feedback device for telerobotics. For virtual reality applications the virtual world software would be required to have a temperature map of its world. By whatever means (magnetic tracker, ultrasound tracker, etc.) the hand and fingers, which have been instrumented with thermodes, would be tracked. The temperature associated with the current position would be transmitted to the DRSS via a serial data link. The DTSS would provide that temperature to the fingers. For telerobotic operation the function of the DTSS is to transmit a temperature from a remote location to the fingers where the temperature can be felt.
78 FR 17431 - Antitrust Division
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-21
... Production Act of 1993--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), Interchangeable Virtual Instruments Foundation, Inc. has filed... in this group research project remains open, and Interchangeable Virtual Instruments Foundation, Inc...
Multiple-User, Multitasking, Virtual-Memory Computer System
NASA Technical Reports Server (NTRS)
Generazio, Edward R.; Roth, Don J.; Stang, David B.
1993-01-01
Computer system designed and programmed to serve multiple users in research laboratory. Provides for computer control and monitoring of laboratory instruments, acquisition and anlaysis of data from those instruments, and interaction with users via remote terminals. System provides fast access to shared central processing units and associated large (from megabytes to gigabytes) memories. Underlying concept of system also applicable to monitoring and control of industrial processes.
NASA Astrophysics Data System (ADS)
Zheng, Guoyan
2007-03-01
Surgical navigation systems visualize the positions and orientations of surgical instruments and implants as graphical overlays onto a medical image of the operated anatomy on a computer monitor. The orthopaedic surgical navigation systems could be categorized according to the image modalities that are used for the visualization of surgical action. In the so-called CT-based systems or 'surgeon-defined anatomy' based systems, where a 3D volume or surface representation of the operated anatomy could be constructed from the preoperatively acquired tomographic data or through intraoperatively digitized anatomy landmarks, a photorealistic rendering of the surgical action has been identified to greatly improve usability of these navigation systems. However, this may not hold true when the virtual representation of surgical instruments and implants is superimposed onto 2D projection images in a fluoroscopy-based navigation system due to the so-called image occlusion problem. Image occlusion occurs when the field of view of the fluoroscopic image is occupied by the virtual representation of surgical implants or instruments. In these situations, the surgeon may miss part of the image details, even if transparency and/or wire-frame rendering is used. In this paper, we propose to use non-photorealistic rendering to overcome this difficulty. Laboratory testing results on foamed plastic bones during various computer-assisted fluoroscopybased surgical procedures including total hip arthroplasty and long bone fracture reduction and osteosynthesis are shown.
Hirayama, Ryuichi; Fujimoto, Yasunori; Umegaki, Masao; Kagawa, Naoki; Kinoshita, Manabu; Hashimoto, Naoya; Yoshimine, Toshiki
2013-05-01
Existing training methods for neuroendoscopic surgery have mainly emphasized the acquisition of anatomical knowledge and procedures for operating an endoscope and instruments. For laparoscopic surgery, various training systems have been developed to teach handling of an endoscope as well as the manipulation of instruments for speedy and precise endoscopic performance using both hands. In endoscopic endonasal surgery (EES), especially using a binostril approach to the skull base and intradural lesions, the learning of more meticulous manipulation of instruments is mandatory, and it may be necessary to develop another type of training method for acquiring psychomotor skills for EES. Authors of the present study developed an inexpensive, portable personal trainer using a webcam and objectively evaluated its utility. Twenty-five neurosurgeons volunteered for this study and were divided into 2 groups, a novice group (19 neurosurgeons) and an experienced group (6 neurosurgeons). Before and after the exercises of set tasks with a webcam box trainer, the basic endoscopic skills of each participant were objectively assessed using the virtual reality simulator (LapSim) while executing 2 virtual tasks: grasping and instrument navigation. Scores for the following 11 performance variables were recorded: instrument time, instrument misses, instrument path length, and instrument angular path (all of which were measured in both hands), as well as tissue damage, max damage, and finally overall score. Instrument time was indicated as movement speed; instrument path length and instrument angular path as movement efficiency; and instrument misses, tissue damage, and max damage as movement precision. In the novice group, movement speed and efficiency were significantly improved after the training. In the experienced group, significant improvement was not shown in the majority of virtual tasks. Before the training, significantly greater movement speed and efficiency were demonstrated in the experienced group, but no difference in movement precision was shown between the 2 groups. After the training, no significant differences were shown between the 2 groups in the majority of the virtual tasks. Analysis revealed that the webcam trainer improved the basic skills of the novices, increasing movement speed and efficiency without sacrificing movement precision. Novices using this unique webcam trainer showed improvement in psychomotor skills for EES. The authors believe that training in terms of basic endoscopic skills is meaningful and that the webcam training system can play a role in daily off-the-job training for EES.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-16
... Production Act of 1993--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), Interchangeable Virtual Instruments Foundation, Inc. has filed... Interchangeable Virtual Instruments Foundation, Inc. intends to file additional written notifications disclosing...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-23
... Production Act of 1993--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), Interchangeable Virtual Instruments Foundation, Inc. has filed... in this group research project remains open, and Interchangeable Virtual Instruments Foundation, Inc...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-20
... Production Act of 1993--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), Interchangeable Virtual Instruments Foundation, Inc. has filed... in this group research project remains open, and Interchangeable Virtual Instruments Foundation, Inc...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-20
... Production Act of 1993--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), Interchangeable Virtual Instruments Foundation, Inc. has filed... remains open, and Interchangeable Virtual Instruments Foundation, Inc. intends to file additional written...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... Production Act of 1993--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), Interchangeable Virtual Instruments Foundation, Inc. has filed... group research project remains open, and Interchangeable Virtual Instruments Foundation, Inc. intends to...
Highly Sophisticated Virtual Laboratory Instruments in Education
NASA Astrophysics Data System (ADS)
Gaskins, T.
2006-12-01
Many areas of Science have advanced or stalled according to the ability to see what can not normally be seen. Visual understanding has been key to many of the world's greatest breakthroughs, such as discovery of DNAs double helix. Scientists use sophisticated instruments to see what the human eye can not. Light microscopes, scanning electron microscopes (SEM), spectrometers and atomic force microscopes are employed to examine and learn the details of the extremely minute. It's rare that students prior to university have access to such instruments, or are granted full ability to probe and magnify as desired. Virtual Lab, by providing highly authentic software instruments and comprehensive imagery of real specimens, provides them this opportunity. Virtual Lab's instruments let explorers operate virtual devices on a personal computer to examine real specimens. Exhaustive sets of images systematically and robotically photographed at thousands of positions and multiple magnifications and focal points allow students to zoom in and focus on the most minute detail of each specimen. Controls on each Virtual Lab device interactively and smoothly move the viewer through these images to display the specimen as the instrument saw it. Users control position, magnification, focal length, filters and other parameters. Energy dispersion spectrometry is combined with SEM imagery to enable exploration of chemical composition at minute scale and arbitrary location. Annotation capabilities allow scientists, teachers and students to indicate important features or areas. Virtual Lab is a joint project of NASA and the Beckman Institute at the University of Illinois at Urbana- Champaign. Four instruments currently compose the Virtual Lab suite: A scanning electron microscope and companion energy dispersion spectrometer, a high-power light microscope, and a scanning probe microscope that captures surface properties to the level of atoms. Descriptions of instrument operating principles and uses are also part of Virtual Lab. The Virtual Lab software and its increasingly rich collection of specimens are free to anyone. This presentation describes Virtual Lab and its uses in formal and informal education.
Design of virtual three-dimensional instruments for sound control
NASA Astrophysics Data System (ADS)
Mulder, Axel Gezienus Elith
An environment for designing virtual instruments with 3D geometry has been prototyped and applied to real-time sound control and design. It enables a sound artist, musical performer or composer to design an instrument according to preferred or required gestural and musical constraints instead of constraints based only on physical laws as they apply to an instrument with a particular geometry. Sounds can be created, edited or performed in real-time by changing parameters like position, orientation and shape of a virtual 3D input device. The virtual instrument can only be perceived through a visualization and acoustic representation, or sonification, of the control surface. No haptic representation is available. This environment was implemented using CyberGloves, Polhemus sensors, an SGI Onyx and by extending a real- time, visual programming language called Max/FTS, which was originally designed for sound synthesis. The extension involves software objects that interface the sensors and software objects that compute human movement and virtual object features. Two pilot studies have been performed, involving virtual input devices with the behaviours of a rubber balloon and a rubber sheet for the control of sound spatialization and timbre parameters. Both manipulation and sonification methods affect the naturalness of the interaction. Informal evaluation showed that a sonification inspired by the physical world appears natural and effective. More research is required for a natural sonification of virtual input device features such as shape, taking into account possible co- articulation of these features. While both hands can be used for manipulation, left-hand-only interaction with a virtual instrument may be a useful replacement for and extension of the standard keyboard modulation wheel. More research is needed to identify and apply manipulation pragmatics and movement features, and to investigate how they are co-articulated, in the mapping of virtual object parameters. While the virtual instruments can be adapted to exploit many manipulation gestures, further work is required to reduce the need for technical expertise to realize adaptations. Better virtual object simulation techniques and faster sensor data acquisition will improve the performance of virtual instruments. The design environment which has been developed should prove useful as a (musical) instrument prototyping tool and as a tool for researching the optimal adaptation of machines to humans.
2005 TACOM APBI - Partnering to Reset, Recapitalize and Restructure the Force
2005-10-28
training. 28 Oct 05~APBI ~9~ Force Projection ~ Technology Challenges (cont.) Force Sustainment Systems Develop smart airdrop systems using Global... UART ). General Purpose Electronic Test Equipment (GPETE) Transform multiple conventional GPETE instruments into a single Virtual Instrument with a...Consists of tools and equipment to refill and repair carbon dioxide fire extinguishers. Rapid Runway Repair - Components include sand grid sections
Shader Lamps Virtual Patients: the physical manifestation of virtual patients.
Rivera-Gutierrez, Diego; Welch, Greg; Lincoln, Peter; Whitton, Mary; Cendan, Juan; Chesnutt, David A; Fuchs, Henry; Lok, Benjamin
2012-01-01
We introduce the notion of Shader Lamps Virtual Patients (SLVP) - the combination of projector-based Shader Lamps Avatars and interactive virtual humans. This paradigm uses Shader Lamps Avatars technology to give a 3D physical presence to conversational virtual humans, improving their social interactivity and enabling them to share the physical space with the user. The paradigm scales naturally to multiple viewers, allowing for scenarios where an instructor and multiple students are involved in the training. We have developed a physical-virtual patient for medical students to conduct ophthalmic exams, in an interactive training experience. In this experience, the trainee practices multiple skills simultaneously, including using a surrogate optical instrument in front of a physical head, conversing with the patient about his fears, observing realistic head motion, and practicing patient safety. Here we present a prototype system and results from a preliminary formative evaluation of the system.
A Virtual Research Environment for a Secondary Ion Mass Spectrometer (SIMS)
NASA Astrophysics Data System (ADS)
Wiedenbeck, M.; Schäfer, L.; Klump, J.; Galkin, A.
2013-12-01
Overview: This poster describes the development of a Virtual Research Environment for the Secondary Ion Mass Spectrometer (SIMS) at GFZ Potsdam. Background: Secondary Ion Mass Spectrometers (SIMS) are extremely sensitive instruments for analyzing the surfaces of solid and thin film samples. These instruments are rare, expensive and experienced operators are very highly sought after. As such, measurement time is a precious commodity, until now only accessible to small numbers of researchers. The challenge: The Virtual SIMS Project aims to set up a Virtual Research Environment for the operation of the CAMECA IMS 1280-HR instrument at the GFZ Potsdam. The objective of the VRE is to provide SIMS access not only to researchers locally present in Potsdam but also to scientists working with SIMS cooperation partners in e.g., South Africa, Brazil or India. The requirements: The system should address the complete spectrum of laboratory procedures - from online application for measurement time, to remote access for data acquisition to data archiving for the subsequent publication and for future reuse. The approach: The targeted Virtual SIMS Environment will consist of a: 1. Web Server running the Virtual SIMS website providing general information about the project, lab access proposal forms and calendar for the timing of project related tasks. 2. LIMS Server, responsible for scheduling procedures, data management and, if applicable, accounting and billing. 3. Remote SIMS Tool, devoted to the operation of the experiment within a remote control environment. 4. Publishing System, which supports the publication of results in cooperation with the GFZ Library services. 5. Training Simulator, which offers the opportunity to rehearse experiments and to prepare for possible events such as a power outages or interruptions to broadband services. First results: The SIMS Virtual Research Environment will be mainly based on open source software, the only exception being the CAMECA IMS 1280-HR SIMS operating under LabView. The Publishing System will be based on eSciDoc, which is already successfully used by the GFZ scientific library. For the LIMS Server we are currently testing various options. The challenge, however, is the successful integration of all the various components and, where necessary, the definition of useful interfaces between the modules.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Rapchun, David A.; Jones, Hollis H.
2001-01-01
The Cloud Absorption Radiometer (CAR) instrument has been the most frequently used airborne instrument built in-house at NASA Goddard Space Flight Center, having flown scientific research missions on-board various aircraft to many locations in the United States, Azores, Brazil, and Kuwait since 1983. The CAR instrument is capable of measuring scattered light by clouds in fourteen spectral bands in UV, visible and near-infrared region. This document describes the control, data acquisition, display, and file storage software for the new version of CAR. This software completely replaces the prior CAR Data System and Control Panel with a compact and robust virtual instrument computer interface. Additionally, the instrument is now usable for the first time for taking data in an off-aircraft mode. The new instrument is controlled via a LabVIEW v5. 1.1-developed software interface that utilizes, (1) serial port writes to write commands to the controller module of the instrument, and (2) serial port reads to acquire data from the controller module of the instrument. Step-by-step operational procedures are provided in this document. A suite of other software programs has been developed to complement the actual CAR virtual instrument. These programs include: (1) a simulator mode that allows pretesting of new features that might be added in the future, as well as demonstrations to CAR customers, and development at times when the instrument/hardware is off-location, and (2) a post-experiment data viewer that can be used to view all segments of individual data cycles and to locate positions where 'start' and stop' byte sequences were incorrectly formulated by the instrument controller. The CAR software described here is expected to be the basis for CAR operation for many missions and many years to come.
Virtual Machine Language Controls Remote Devices
NASA Technical Reports Server (NTRS)
2014-01-01
Kennedy Space Center worked with Blue Sun Enterprises, based in Boulder, Colorado, to enhance the company's virtual machine language (VML) to control the instruments on the Regolith and Environment Science and Oxygen and Lunar Volatiles Extraction mission. Now the NASA-improved VML is available for crewed and uncrewed spacecraft, and has potential applications on remote systems such as weather balloons, unmanned aerial vehicles, and submarines.
VirtualSpace: A vision of a machine-learned virtual space environment
NASA Astrophysics Data System (ADS)
Bortnik, J.; Sarno-Smith, L. K.; Chu, X.; Li, W.; Ma, Q.; Angelopoulos, V.; Thorne, R. M.
2017-12-01
Space borne instrumentation tends to come and go. A typical instrument will go through a phase of design and construction, be deployed on a spacecraft for several years while it collects data, and then be decommissioned and fade into obscurity. The data collected from that instrument will typically receive much attention while it is being collected, perhaps in the form of event studies, conjunctions with other instruments, or a few statistical surveys, but once the instrument or spacecraft is decommissioned, the data will be archived and receive progressively less attention with every passing year. This is the fate of all historical data, and will be the fate of data being collected by instruments even at the present time. But what if those instruments could come alive, and all be simultaneously present at any and every point in time and space? Imagine the scientific insights, and societal gains that could be achieved with a grand (virtual) heliophysical observatory that consists of every current and historical mission ever deployed? We propose that this is not just fantasy but is imminently doable with the data currently available, with the present computational resources, and with currently available algorithms. This project revitalizes existing data resources and lays the groundwork for incorporating data from every future mission to expand the scope and refine the resolution of the virtual observatory. We call this project VirtualSpace: a machine-learned virtual space environment.
Development of hybrid electric vehicle powertrain test system based on virtue instrument
NASA Astrophysics Data System (ADS)
Xu, Yanmin; Guo, Konghui; Chen, Liming
2017-05-01
Hybrid powertrain has become the standard configuration of some automobile models. The test system of hybrid vehicle powertrain was developed based on virtual instrument, using electric dynamometer to simulate the work of engines, to test the motor and control unit of the powertrain. The test conditions include starting, acceleration, and deceleration. The results show that the test system can simulate the working conditions of the hybrid electric vehicle powertrain under various conditions.
NASA employee utilizes Virtual Reality (VR) equipment
1991-10-28
S91-50404 (1 Nov 1991) --- Bebe Ly of the Information Systems Directorate's (ISD) Software Technology Branch at the Johnson Space Center (JSC) gives virtual reality a try. The stereo video goggles and head[phones allow her to see and hear in a computer-generated world and the gloves allow her to move around and grasp objects. Ly is a member of the team that developed the C Language Integrated production System (CLIPS) which has been instrumental in developing several of the systems to be demonstrated in an upcoming Software Technology Exposition at JSC.
Teaching computer interfacing with virtual instruments in an object-oriented language.
Gulotta, M
1995-01-01
LabVIEW is a graphic object-oriented computer language developed to facilitate hardware/software communication. LabVIEW is a complete computer language that can be used like Basic, FORTRAN, or C. In LabVIEW one creates virtual instruments that aesthetically look like real instruments but are controlled by sophisticated computer programs. There are several levels of data acquisition VIs that make it easy to control data flow, and many signal processing and analysis algorithms come with the software as premade VIs. In the classroom, the similarity between virtual and real instruments helps students understand how information is passed between the computer and attached instruments. The software may be used in the absence of hardware so that students can work at home as well as in the classroom. This article demonstrates how LabVIEW can be used to control data flow between computers and instruments, points out important features for signal processing and analysis, and shows how virtual instruments may be used in place of physical instrumentation. Applications of LabVIEW to the teaching laboratory are also discussed, and a plausible course outline is given. PMID:8580361
Teaching computer interfacing with virtual instruments in an object-oriented language.
Gulotta, M
1995-11-01
LabVIEW is a graphic object-oriented computer language developed to facilitate hardware/software communication. LabVIEW is a complete computer language that can be used like Basic, FORTRAN, or C. In LabVIEW one creates virtual instruments that aesthetically look like real instruments but are controlled by sophisticated computer programs. There are several levels of data acquisition VIs that make it easy to control data flow, and many signal processing and analysis algorithms come with the software as premade VIs. In the classroom, the similarity between virtual and real instruments helps students understand how information is passed between the computer and attached instruments. The software may be used in the absence of hardware so that students can work at home as well as in the classroom. This article demonstrates how LabVIEW can be used to control data flow between computers and instruments, points out important features for signal processing and analysis, and shows how virtual instruments may be used in place of physical instrumentation. Applications of LabVIEW to the teaching laboratory are also discussed, and a plausible course outline is given.
Meng, Hu; Li, Jiang-Yuan; Tang, Yong-Huai
2009-01-01
The virtual instrument system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution is developed and comprises homemade conditioning circuit, data acquiring board, and computer. It can calibrate slope, temperature, and positioning automatically. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatical processing of testing data, generating the report of results; and other functions. This method simplifies the experimental operation greatly, avoids complicated procedures of manual processing data and personal error, and improves veracity and repeatability of the experiment results.
NASA Astrophysics Data System (ADS)
Gong, X.; Wu, Q.
2017-12-01
Network virtual instrument (VI) is a new development direction in current automated test. Based on LabVIEW, the software and hardware system of VI used for emission spectrum of pulsed high-voltage direct current (DC) discharge is developed and applied to investigate pulsed high-voltage DC discharge of nitrogen. By doing so, various functions are realized including real time collection of emission spectrum of nitrogen, monitoring operation state of instruments and real time analysis and processing of data. By using shared variables and DataSocket technology in LabVIEW, the network VI system based on field VI is established. The system can acquire the emission spectrum of nitrogen in the test site, monitor operation states of field instruments, realize real time face-to-face interchange of two sites, and analyze data in the far-end from the network terminal. By employing the network VI system, the staff in the two sites acquired the same emission spectrum of nitrogen and conducted the real time communication. By comparing with the previous results, it can be seen that the experimental data obtained by using the system are highly precise. This implies that the system shows reliable network stability and safety and satisfies the requirements for studying the emission spectrum of pulsed high-voltage discharge in high-precision fields or network terminals. The proposed architecture system is described and the target group gets the useful enlightenment in many fields including engineering remote users, specifically in control- and automation-related tasks.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-02
... Production Act of 1993--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), Interchangeable Virtual Instruments Foundation, Inc. has filed... research project. Membership in this group research project remains open, and Interchangeable Virtual...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-25
... Production Act of 1993--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), Interchangeable Virtual Instruments Foundation, Inc. has filed... research project. Membership in this group research project remains open, and Interchangeable Virtual...
Virtual Instrument for Determining Rate Constant of Second-Order Reaction by pX Based on LabVIEW 8.0
Meng, Hu; Li, Jiang-Yuan; Tang, Yong-Huai
2009-01-01
The virtual instrument system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution is developed and comprises homemade conditioning circuit, data acquiring board, and computer. It can calibrate slope, temperature, and positioning automatically. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatical processing of testing data, generating the report of results; and other functions. This method simplifies the experimental operation greatly, avoids complicated procedures of manual processing data and personal error, and improves veracity and repeatability of the experiment results. PMID:19730752
Macintosh/LabVIEW based control and data acquisition system for a single photon counting fluorometer
NASA Astrophysics Data System (ADS)
Stryjewski, Wieslaw J.
1991-08-01
A flexible software system has been developed for controlling fluorescence decay measurements using the virtual instrument approach offered by LabVIEW. The time-correlated single photon counting instrument operates under computer control in both manual and automatic mode. Implementation time was short and the equipment is now easier to use, reducing the training time required for new investigators. It is not difficult to customize the front panel or adapt the program to a different instrument. We found LabVIEW much more convenient to use for this application than traditional, textual computer languages.
Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.
Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell
2011-06-01
This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.
Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery
Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell
2013-01-01
This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information. PMID:24398557
Analysing neutron scattering data using McStas virtual experiments
NASA Astrophysics Data System (ADS)
Udby, L.; Willendrup, P. K.; Knudsen, E.; Niedermayer, Ch.; Filges, U.; Christensen, N. B.; Farhi, E.; Wells, B. O.; Lefmann, K.
2011-04-01
With the intention of developing a new data analysis method using virtual experiments we have built a detailed virtual model of the cold triple-axis spectrometer RITA-II at PSI, Switzerland, using the McStas neutron ray-tracing package. The parameters characterising the virtual instrument were carefully tuned against real experiments. In the present paper we show that virtual experiments reproduce experimentally observed linewidths within 1-3% for a variety of samples. Furthermore we show that the detailed knowledge of the instrumental resolution found from virtual experiments, including sample mosaicity, can be used for quantitative estimates of linewidth broadening resulting from, e.g., finite domain sizes in single-crystal samples.
Problem-Based Learning in Instrumentation: Synergism of Real and Virtual Modular Acquisition Chains
ERIC Educational Resources Information Center
Nonclercq, A.; Biest, A. V.; De Cuyper, K.; Leroy, E.; Martinez, D. L.; Robert, F.
2010-01-01
As part of an instrumentation course, a problem-based learning framework was selected for laboratory instruction. Two acquisition chains were designed to help students carry out realistic instrumentation problems. The first tool is a virtual (simulated) modular acquisition chain that allows rapid overall understanding of the main problems in…
Virtual Laparoscopic Training System Based on VCH Model.
Tang, Jiangzhou; Xu, Lang; He, Longjun; Guan, Songluan; Ming, Xing; Liu, Qian
2017-04-01
Laparoscopy has been widely used to perform abdominal surgeries, as it is advantageous in that the patients experience lower post-surgical trauma, shorter convalescence, and less pain as compared to traditional surgery. Laparoscopic surgeries require precision; therefore, it is imperative to train surgeons to reduce the risk of operation. Laparoscopic simulators offer a highly realistic surgical environment by using virtual reality technology, and it can improve the training efficiency of laparoscopic surgery. This paper presents a virtual Laparoscopic surgery system. The proposed system utilizes the Visible Chinese Human (VCH) to construct the virtual models and simulates real-time deformation with both improved special mass-spring model and morph target animation. Meanwhile, an external device that integrates two five-degrees-of-freedom (5-DOF) manipulators was designed and made to interact with the virtual system. In addition, the proposed system provides a modular tool based on Unity3D to define the functions and features of instruments and organs, which could help users to build surgical training scenarios quickly. The proposed virtual laparoscopic training system offers two kinds of training mode, skills training and surgery training. In the skills training mode, the surgeons are mainly trained for basic operations, such as laparoscopic camera, needle, grasp, electric coagulation, and suturing. In the surgery-training mode, the surgeons can practice cholecystectomy and removal of hepatic cysts by guided or non-guided teaching.
NASA Astrophysics Data System (ADS)
Ye, Yan; Lv, Qingsong; Wu, Maocheng; Xu, Yishen; Gu, Jihua
2017-08-01
In view of some problems about the traditional photoelectric specialty experimental teaching process, such as separation of theoretical teaching and practical teaching, immobilization of experimental teaching contents, low quality of experiments and no obvious effect, we explored and practiced a new experimental teaching model of "theoretical teaching, virtual simulation and physical experiment", which combined the characteristics of photoelectric information science and engineering major and the essential requirements of engineering innovation talents cultivation. The virtual simulation experiment platform has many advantages, such as high performance-to-price ratio, easy operation and open experimental process, which makes virtual simulation combine physical experiment, complete each other with virtual for practical. After the users log into the virtual simulation experimental platform, they will first study the contents of the experiment, clarify the purpose and requirements of the experiment, master the method of using the instrument and the relevant notes, and then use the experimental instruments provided by the platform to build the corresponding experimental system. Once the experimenter's optical path is set incorrectly or the instrument parameters are set incorrectly, the error or warning message will be automatically triggered, and the reference information will be given instructing the student to complete the correct experimental operation. The results of our practice in recent years show that the teaching reform of the photoelectric specialty experiments has not only brought great convenience to the experimental teaching management, broadened the students' thinking and vision, enhanced the students' experimental skills and comprehensive qualities, but also made the students participate in the experiment with their enthusiasm. During the construction of experiment programs, the students' engineering practical ability and independent innovation awareness has been improved greatly. In the next time, based on the development trend of optoelectronic discipline and our own major characteristics, we will further perfect and enrich the construction of virtual simulation experimental platform and continuously improve the quality of experimental teaching.
Ramos, Rogelio; Zlatev, Roumen; Valdez, Benjamin; Stoytcheva, Margarita; Carrillo, Mónica; García, Juan-Francisco
2013-01-01
A virtual instrumentation (VI) system called VI localized corrosion image analyzer (LCIA) based on LabVIEW 2010 was developed allowing rapid automatic and subjective error-free determination of the pits number on large sized corroded specimens. The VI LCIA controls synchronously the digital microscope image taking and its analysis, finally resulting in a map file containing the coordinates of the detected probable pits containing zones on the investigated specimen. The pits area, traverse length, and density are also determined by the VI using binary large objects (blobs) analysis. The resulting map file can be used further by a scanning vibrating electrode technique (SVET) system for rapid (one pass) "true/false" SVET check of the probable zones only passing through the pit's centers avoiding thus the entire specimen scan. A complete SVET scan over the already proved "true" zones could determine the corrosion rate in any of the zones.
The design and application of virtual ion meter based on LABVIEW 8.0.
Meng, Hu; Li, Jiangyuan; Tang, Yonghuai
2009-08-01
The virtual ion meter is developed based on LABVIEW 8.0 by homemade adjusting circuit, data acquisition (DAQ) board, and computer. This note provides details of the structure of testing system and flow chart of DAQ program. This virtual instrument system is applied to multitask testing such as determining rate constant of second-order reaction by pX, pX potentiometric titration, determining oscillating reaction by potential, etc. The result of application indicates that this test system not only has function of real-time data acquiring, displaying, storage, but also realizes remote monitoring and controlling test-control spots through internet, automatic analyzing and processing of data, reporting of result according to the different testing task; moreover, the veracity and repeatability of data processing result are higher than the results of manual data processing.
Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dali; Yuan, Fengming; Hernandez, Benjamin
Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less
Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations
Wang, Dali; Yuan, Fengming; Hernandez, Benjamin; ...
2017-01-01
Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less
A virtual pointer to support the adoption of professional vision in laparoscopic training.
Feng, Yuanyuan; McGowan, Hannah; Semsar, Azin; Zahiri, Hamid R; George, Ivan M; Turner, Timothy; Park, Adrian; Kleinsmith, Andrea; Mentis, Helena M
2018-05-23
To assess a virtual pointer in supporting surgical trainees' development of professional vision in laparoscopic surgery. We developed a virtual pointing and telestration system utilizing the Microsoft Kinect movement sensor as an overlay for any imagine system. Training with the application was compared to a standard condition, i.e., verbal instruction with un-mediated gestures, in a laparoscopic training environment. Seven trainees performed four simulated laparoscopic tasks guided by an experienced surgeon as the trainer. Trainee performance was subjectively assessed by the trainee and trainer, and objectively measured by number of errors, time to task completion, and economy of movement. No significant differences in errors and time to task completion were obtained between virtual pointer and standard conditions. Economy of movement in the non-dominant hand was significantly improved when using virtual pointer ([Formula: see text]). The trainers perceived a significant improvement in trainee performance in virtual pointer condition ([Formula: see text]), while the trainees perceived no difference. The trainers' perception of economy of movement was similar between the two conditions in the initial three runs and became significantly improved in virtual pointer condition in the fourth run ([Formula: see text]). Results show that the virtual pointer system improves the trainer's perception of trainee's performance and this is reflected in the objective performance measures in the third and fourth training runs. The benefit of a virtual pointing and telestration system may be perceived by the trainers early on in training, but this is not evident in objective trainee performance until further mastery has been attained. In addition, the performance improvement of economy of motion specifically shows that the virtual pointer improves the adoption of professional vision- improved ability to see and use laparoscopic video results in more direct instrument movement.
A virtual data language and system for scientific workflow management in data grid environments
NASA Astrophysics Data System (ADS)
Zhao, Yong
With advances in scientific instrumentation and simulation, scientific data is growing fast in both size and analysis complexity. So-called Data Grids aim to provide high performance, distributed data analysis infrastructure for data- intensive sciences, where scientists distributed worldwide need to extract information from large collections of data, and to share both data products and the resources needed to produce and store them. However, the description, composition, and execution of even logically simple scientific workflows are often complicated by the need to deal with "messy" issues like heterogeneous storage formats and ad-hoc file system structures. We show how these difficulties can be overcome via a typed workflow notation called virtual data language, within which issues of physical representation are cleanly separated from logical typing, and by the implementation of this notation within the context of a powerful virtual data system that supports distributed execution. The resulting language and system are capable of expressing complex workflows in a simple compact form, enacting those workflows in distributed environments, monitoring and recording the execution processes, and tracing the derivation history of data products. We describe the motivation, design, implementation, and evaluation of the virtual data language and system, and the application of the virtual data paradigm in various science disciplines, including astronomy, cognitive neuroscience.
Virtual Instrumentation for a Fiber-Optics-Based Artificial Nerve
NASA Technical Reports Server (NTRS)
Lyons, Donald R.; Kyaw, Thet Mon; Griffin, DeVon (Technical Monitor)
2001-01-01
A LabView-based computer interface for fiber-optic artificial nerves has been devised as a Masters thesis project. This project involves the use of outputs from wavelength multiplexed optical fiber sensors (artificial nerves), which are capable of producing dense optical data outputs for physical measurements. The potential advantages of using optical fiber sensors for sensory function restoration is the fact that well defined WDM-modulated signals can be transmitted to and from the sensing region allowing networked units to replace low-level nerve functions for persons desirous of "intelligent artificial limbs." Various FO sensors can be designed with high sensitivity and the ability to be interfaced with a wide range of devices including miniature shielded electrical conversion units. Our Virtual Instrument (VI) interface software package was developed using LabView's "Laboratory Virtual Instrument Engineering Workbench" package. The virtual instrument has been configured to arrange and encode the data to develop an intelligent response in the form of encoded digitized signal outputs. The architectural layout of our nervous system is such that different touch stimuli from different artificial fiber-optic nerve points correspond to gratings of a distinct resonant wavelength and physical location along the optical fiber. Thus, when an automated, tunable diode laser sends scans, the wavelength spectrum of the artificial nerve, it triggers responses that are encoded with different touch stimuli by way wavelength shifts in the reflected Bragg resonances. The reflected light is detected and a resulting analog signal is fed into ADC1 board and DAQ card. Finally, the software has been written such that the experimenter is able to set the response range during data acquisition.
NASA Astrophysics Data System (ADS)
Zurweni, Wibawa, Basuki; Erwin, Tuti Nurian
2017-08-01
The framework for teaching and learning in the 21st century was prepared with 4Cs criteria. Learning providing opportunity for the development of students' optimal creative skills is by implementing collaborative learning. Learners are challenged to be able to compete, work independently to bring either individual or group excellence and master the learning material. Virtual laboratory is used for the media of Instrumental Analytical Chemistry (Vis, UV-Vis-AAS etc) lectures through simulations computer application and used as a substitution for the laboratory if the equipment and instruments are not available. This research aims to design and develop collaborative-creative learning model using virtual laboratory media for Instrumental Analytical Chemistry lectures, to know the effectiveness of this design model adapting the Dick & Carey's model and Hannafin & Peck's model. The development steps of this model are: needs analyze, design collaborative-creative learning, virtual laboratory media using macromedia flash, formative evaluation and test of learning model effectiveness. While, the development stages of collaborative-creative learning model are: apperception, exploration, collaboration, creation, evaluation, feedback. Development of collaborative-creative learning model using virtual laboratory media can be used to improve the quality learning in the classroom, overcome the limitation of lab instruments for the real instrumental analysis. Formative test results show that the Collaborative-Creative Learning Model developed meets the requirements. The effectiveness test of students' pretest and posttest proves significant at 95% confidence level, t-test higher than t-table. It can be concluded that this learning model is effective to use for Instrumental Analytical Chemistry lectures.
NASA Technical Reports Server (NTRS)
Horan, Stephen; Wang, Ru-Hai
1999-01-01
There exists a need for designers and developers to have a method to conveniently test a variety of communications parameters for an overall system design. This is no different when testing network protocols as when testing modulation formats. In this report, we discuss a means of providing a networking test device specifically designed to be used for space communications. This test device is a PC-based Virtual Instrument (VI) programmed using the LabVIEW(TM) version 5 software suite developed by National Instruments(TM)TM. This instrument was designed to be portable and usable by others without special, additional equipment. The programming was designed to replicate a VME-based hardware module developed earlier at New Mexico State University (NMSU) and to provide expanded capabilities exceeding the baseline configuration existing in that module. This report describes the design goals for the VI module in the next section and follows that with a description of the design of the VI instrument. This is followed with a description of the validation tests run on the VI. An application of the error-generating VI to networking protocols is then given.
Innovative research on the group teaching mode based on the LabVIEW virtual environment
NASA Astrophysics Data System (ADS)
Liang, Pei; Huang, Jie; Gong, Hua-ping; Dong, Qian-min; Dong, Yan-yan; Sun, Cai-xia
2017-08-01
This paper discusses the widely existing problems of increasing demand of professional engineer in electronic science major and the backward of the teaching mode at present. From one specialized course "Virtual Instrument technique and LABVIEW programming", we explore the new group-teaching mode based on the Virtual Instrument technique, and then the Specific measures and implementation procedures and effect of this teaching mode summarized in the end.
The Integrated Virtual Environment Rehabilitation Treadmill System
Feasel, Jeff; Whitton, Mary C.; Kassler, Laura; Brooks, Frederick P.; Lewek, Michael D.
2015-01-01
Slow gait speed and interlimb asymmetry are prevalent in a variety of disorders. Current approaches to locomotor retraining emphasize the need for appropriate feedback during intensive, task-specific practice. This paper describes the design and feasibility testing of the integrated virtual environment rehabilitation treadmill (IVERT) system intended to provide real-time, intuitive feedback regarding gait speed and asymmetry during training. The IVERT system integrates an instrumented, split-belt treadmill with a front-projection, immersive virtual environment. The novel adaptive control system uses only ground reaction force data from the treadmill to continuously update the speeds of the two treadmill belts independently, as well as to control the speed and heading in the virtual environment in real time. Feedback regarding gait asymmetry is presented 1) visually as walking a curved trajectory through the virtual environment and 2) proprioceptively in the form of different belt speeds on the split-belt treadmill. A feasibility study involving five individuals with asymmetric gait found that these individuals could effectively control the speed of locomotion and perceive gait asymmetry during the training session. Although minimal changes in overground gait symmetry were observed immediately following a single training session, further studies should be done to determine the IVERT’s potential as a tool for rehabilitation of asymmetric gait by providing patients with congruent visual and proprioceptive feedback. PMID:21652279
Creation of an instrument maintenance program at W. M. Keck Observatory
NASA Astrophysics Data System (ADS)
Hill, G. M.; Kwok, S. H.; Mader, J. A.; Wirth, G. D.; Dahm, S. E.; Goodrich, R. W.
2014-08-01
Until a few years ago, the W. M. Keck Observatory (WMKO) did not have a systematic program of instrument maintenance at a level appropriate for a world-leading observatory. We describe the creation of such a program within the context of WMKO's lean operations model which posed challenges but also guided the design of the system and resulted in some unique and notable capabilities. These capabilities and the flexibility of the system have led to its adoption across the Observatory for virtually all PM's. The success of the Observatory in implementing the program and its impact on instrument reliability are presented. Lessons learned are reviewed and strategic implications discussed.
[Laparoscopic technique--which developments are possible?].
Voges, U
1996-05-01
The progress of laparoscopy is influenced by both the medical and technical aspects. The development of endoscopes and various rigid instruments has increased the indication options. Nevertheless, several drawbacks remain, e.g. the limited spatial view, the missing sense of touch, and reduced mobility in the operation area. New 3D visual systems now introduce spatial view. Flexible instruments are being developed that allow thorough examination of organs. While these enhancements are now becoming available, research and development are making progress and preparing the next steps. One vision is the development of a telepresence and telemanipulation system. With it, at the patient's side we will have an endoscope guidance system and several instrument guidance systems, which will be telemanipulated from a control station. At the control station, a 3D picture from the operation scene, together with virtual reality simulation pictures will be available. Force reflection as well as palpatory sensing information will be readily available to the telesurgeon. These new developments will improve the quality of the surgery for the benefit of both the patient and surgeon. Furthermore, the training of new surgeons will be eased by the use of sophisticated simulators using virtual reality techniques. These and further technical developments will not only lead to an improvement in current laparoscopy procedures, but it can be expected that additional procedures will be developed that are not yet possible and accessible to laparoscopy.
Analysis of key technologies for virtual instruments metrology
NASA Astrophysics Data System (ADS)
Liu, Guixiong; Xu, Qingui; Gao, Furong; Guan, Qiuju; Fang, Qiang
2008-12-01
Virtual instruments (VIs) require metrological verification when applied as measuring instruments. Owing to the software-centered architecture, metrological evaluation of VIs includes two aspects: measurement functions and software characteristics. Complexity of software imposes difficulties on metrological testing of VIs. Key approaches and technologies for metrology evaluation of virtual instruments are investigated and analyzed in this paper. The principal issue is evaluation of measurement uncertainty. The nature and regularity of measurement uncertainty caused by software and algorithms can be evaluated by modeling, simulation, analysis, testing and statistics with support of powerful computing capability of PC. Another concern is evaluation of software features like correctness, reliability, stability, security and real-time of VIs. Technologies from software engineering, software testing and computer security domain can be used for these purposes. For example, a variety of black-box testing, white-box testing and modeling approaches can be used to evaluate the reliability of modules, components, applications and the whole VI software. The security of a VI can be assessed by methods like vulnerability scanning and penetration analysis. In order to facilitate metrology institutions to perform metrological verification of VIs efficiently, an automatic metrological tool for the above validation is essential. Based on technologies of numerical simulation, software testing and system benchmarking, a framework for the automatic tool is proposed in this paper. Investigation on implementation of existing automatic tools that perform calculation of measurement uncertainty, software testing and security assessment demonstrates the feasibility of the automatic framework advanced.
Tools virtualization for command and control systems
NASA Astrophysics Data System (ADS)
Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław
2017-10-01
Information management is an inseparable part of the command process. The result is that the person making decisions at the command post interacts with data providing devices in various ways. Tools virtualization process can introduce a number of significant modifications in the design of solutions for management and command. The general idea involves replacing physical devices user interface with their digital representation (so-called Virtual instruments). A more advanced level of the systems "digitalization" is to use the mixed reality environments. In solutions using Augmented reality (AR) customized HMI is displayed to the operator when he approaches to each device. Identification of device is done by image recognition of photo codes. Visualization is achieved by (optical) see-through head mounted display (HMD). Control can be done for example by means of a handheld touch panel. Using the immersive virtual environment, the command center can be digitally reconstructed. Workstation requires only VR system (HMD) and access to information network. Operator can interact with devices in such a way as it would perform in real world (for example with the virtual hands). Because of their procedures (an analysis of central vision, eye tracking) MR systems offers another useful feature of reducing requirements for system data throughput. Due to the fact that at the moment we focus on the single device. Experiments carried out using Moverio BT-200 and SteamVR systems and the results of experimental application testing clearly indicate the ability to create a fully functional information system with the use of mixed reality technology.
Ramos, Rogelio; Zlatev, Roumen; Valdez, Benjamin; Stoytcheva, Margarita; Carrillo, Mónica; García, Juan-Francisco
2013-01-01
A virtual instrumentation (VI) system called VI localized corrosion image analyzer (LCIA) based on LabVIEW 2010 was developed allowing rapid automatic and subjective error-free determination of the pits number on large sized corroded specimens. The VI LCIA controls synchronously the digital microscope image taking and its analysis, finally resulting in a map file containing the coordinates of the detected probable pits containing zones on the investigated specimen. The pits area, traverse length, and density are also determined by the VI using binary large objects (blobs) analysis. The resulting map file can be used further by a scanning vibrating electrode technique (SVET) system for rapid (one pass) “true/false” SVET check of the probable zones only passing through the pit's centers avoiding thus the entire specimen scan. A complete SVET scan over the already proved “true” zones could determine the corrosion rate in any of the zones. PMID:23691434
NASA Astrophysics Data System (ADS)
Murphy, M.; Chenaux, A.; Keenaghan, G.; GIbson, V..; Butler, J.; Pybusr, C.
2017-08-01
In this paper the recording and design for a Virtual Reality Immersive Model of Armagh Observatory is presented, which will replicate the historic buildings and landscape with distant meridian markers and position of its principal historic instruments within a model of the night sky showing the position of bright stars. The virtual reality model can be used for educational purposes allowing the instruments within the historic building model to be manipulated within 3D space to demonstrate how the position measurements of stars were made in the 18th century. A description is given of current student and researchers activities concerning on-site recording and surveying and the virtual modelling of the buildings and landscape. This is followed by a design for a Virtual Reality Immersive Model of Armagh Observatory use game engine and virtual learning platforms and concepts.
The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory
NASA Astrophysics Data System (ADS)
Gurman, J. B.; Hourclé, J. A.; Bogart, R. S.; Tian, K.; Hill, F.; Suàrez-Sola, I.; Zarro, D. M.; Davey, A. R.; Martens, P. C.; Yoshimura, K.; Reardon, K. M.
2006-12-01
The Virtual Solar Observatory (VSO) has survived its infancy and provides metadata search and data identification for measurements from 45 instrument data sets held at 12 online archives, as well as flare and coronal mass ejection (CME) event lists. Like any toddler, the VSO is good at getting into anything and everything, and is now extending its grasp to more data sets, new missions, and new access methods using its application programming interface (API). We discuss and demonstrate recent changes, including developments for STEREO and SDO, and an IDL-callable interface for the VSO API. We urge the heliophysics community to help civilize this obstreperous youngster by providing input on ways to make the VSO even more useful for system science research in its role as part of the growing cluster of Heliophysics Virtual Observatories.
A 3D visualization and guidance system for handheld optical imaging devices
NASA Astrophysics Data System (ADS)
Azar, Fred S.; de Roquemaurel, Benoit; Cerussi, Albert; Hajjioui, Nassim; Li, Ang; Tromberg, Bruce J.; Sauer, Frank
2007-03-01
We have developed a novel 3D visualization and guidance system for handheld optical imaging devices. In this paper, the system is applied to measurements of breast/cancerous tissue optical properties using a handheld diffuse optical spectroscopy (DOS) instrument. The combined guidance system/DOS instrument becomes particularly useful for monitoring neoadjuvant chemotherapy in breast cancer patients and for longitudinal studies where measurement reproducibility is critical. The system uses relatively inexpensive hardware components and comprises a 6 degrees-of-freedom (DOF) magnetic tracking device including a DC field generator, three sensors, and a PCI card running on a PC workstation. A custom-built virtual environment combined with a well-defined workflow provide the means for image-guided measurements, improved longitudinal studies of breast optical properties, 3D reconstruction of optical properties within the anatomical map, and serial data registration. The DOS instrument characterizes tissue function such as water, lipid and total hemoglobin concentration. The patient lies on her back at a 45-degrees angle. Each spectral measurement requires consistent contact with the skin, and lasts about 5-10 seconds. Therefore a limited number of positions may be studied. In a reference measurement session, the physician acquires surface points on the breast. A Delaunay-based triangulation algorithm is used to build the virtual breast surface from the acquired points. 3D locations of all DOS measurements are recorded. All subsequently acquired surfaces are automatically registered to the reference surface, thus allowing measurement reproducibility through image guidance using the reference measurements.
NASA Technical Reports Server (NTRS)
Nosek, Thomas P.
2004-01-01
NASA and NOAA earth observing satellite programs are flying a number of sophisticated scientific instruments which collect data on many phenomena and parameters of the earth's environment. The NASA Earth Observing System (EOS) Program originated the EOS Common Bus approach, which featured two spacecraft (Aqua and Aura) of virtually identical design but with completely different instruments. Significant savings were obtained by the Common Bus approach and these lessons learned are presented as information for future program requiring multiple busses for new diversified instruments with increased capabilities for acquiring earth environmental data volume, accuracy, and type.
Evaluation of Sensor Configurations for Robotic Surgical Instruments
Gómez-de-Gabriel, Jesús M.; Harwin, William
2015-01-01
Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included. PMID:26516863
Evaluation of Sensor Configurations for Robotic Surgical Instruments.
Gómez-de-Gabriel, Jesús M; Harwin, William
2015-10-27
Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included.
Temperature measurement in PV facilities on a per-panel scale.
Martínez, Miguel A; Andújar, José M; Enrique, Juan M
2014-07-24
This paper presents the design, construction and testing of an instrumentation system for temperature measurement in PV facilities on a per-panel scale (i.e., one or more temperature measurements per panel). Its main characteristics are: precision, ease of connection, immunity to noise, remote operation, easy scaling; and all of this at a very low cost. The paper discusses the advantages of temperature measurements in PV facilities on a per-panel scale. The paper presents the whole development to implementation of a real system that is being tested in an actual facility. This has enabled the authors to provide the readers with practical guidelines, which would be very difficult to achieve if the developments were implemented by just simulation or in a theoretical way. The instrumentation system is fully developed, from the temperature sensing to its presentation in a virtual instrument. The developed instrumentation system is able to work both locally and remotely connected to both wired and wireless network.
Temperature Measurement in PV Facilities on a Per-Panel Scale
Martínez, Miguel A.; Andújar, José M.; Enrique, Juan M.
2014-01-01
This paper presents the design, construction and testing of an instrumentation system for temperature measurement in PV facilities on a per-panel scale (i.e., one or more temperature measurements per panel). Its main characteristics are: precision, ease of connection, immunity to noise, remote operation, easy scaling; and all of this at a very low cost. The paper discusses the advantages of temperature measurements in PV facilities on a per-panel scale. The paper presents the whole development to implementation of a real system that is being tested in an actual facility. This has enabled the authors to provide the readers with practical guidelines, which would be very difficult to achieve if the developments were implemented by just simulation or in a theoretical way. The instrumentation system is fully developed, from the temperature sensing to its presentation in a virtual instrument. The developed instrumentation system is able to work both locally and remotely connected to both wired and wireless network. PMID:25061834
The da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery.
Ballantyne, Garth H; Moll, Fred
2003-12-01
The United States Department of Defense developed the telepresence surgery concept to meet battlefield demands. The da Vinci telerobotic surgery system evolved from these efforts. In this article, the authors describe the components of the da Vinci system and explain how the surgeon sits at a computer console, views a three-dimensional virtual operative field, and performs the operation by controlling robotic arms that hold the stereoscopic video telescope and surgical instruments that simulate hand motions with seven degrees of freedom. The three-dimensional imaging and handlike motions of the system facilitate advanced minimally invasive thoracic, cardiac, and abdominal procedures. da Vinci has recently released a second generation of telerobots with four arms and will continue to meet the evolving challenges of surgery.
Software structure for Vega/Chara instrument
NASA Astrophysics Data System (ADS)
Clausse, J.-M.
2008-07-01
VEGA (Visible spEctroGraph and polArimeter) is one of the focal instruments of the CHARA array at Mount Wilson near Los Angeles. Its control system is based on techniques developed on the GI2T interferometer (Grand Interferometre a 2 Telescopes) and on the SIRIUS fibered hyper telescope testbed at OCA (Observatoire de la Cote d'Azur). This article describes the software and electronics architecture of the instrument. It is based on local network architecture and uses also Virtual Private Network connections. The server part is based on Windows XP (VC++). The control software is on Linux (C, GTK). For the control of the science detector and the fringe tracking systems, distributed API use real-time techniques. The control software gathers all the necessary informations of the instrument. It allows an automatic management of the instrument by using an original task scheduler. This architecture intends to drive the instrument from remote sites, such as our institute in South of France.
Different Operating Modes of the Rosetta's Ion Composition Analyzer and Its Virtual Counterpart
NASA Astrophysics Data System (ADS)
Pospieszyński, R.
2009-12-01
The Ion Composition Analyzer (ICA) is a part of the Rosetta Plasma Consortium (RPC) which is on board the Rosetta space probe heading for the comet 67/P Churyumov-Gerasimenko. It is scheduled to reach the comet in year 2014. In order to reduce telemetry the ICA instrument has a number of data reduction modes (sampling modes). The effects of these different modes are investigated and a plan on how to best operate the instrument when in orbit around the comet will be prepared. In order to investigate all of the cases a virtual instrument is being prepared. The virtual instrument can be operated in different modes just as the ``real'' one. The work with sampling will be to calculate what particles are coming from each direction we are looking in, based on the ISSI Comet Model, and then see how much information we loose by too sparse sampling and incomplete spatial coverage.
A review of training research and virtual reality simulators for the da Vinci surgical system.
Liu, May; Curet, Myriam
2015-01-01
PHENOMENON: Virtual reality simulators are the subject of several recent studies of skills training for robot-assisted surgery. Yet no consensus exists regarding what a core skill set comprises or how to measure skill performance. Defining a core skill set and relevant metrics would help surgical educators evaluate different simulators. This review draws from published research to propose a core technical skill set for using the da Vinci surgeon console. Publications on three commercial simulators were used to evaluate the simulators' content addressing these skills and associated metrics. An analysis of published research suggests that a core technical skill set for operating the surgeon console includes bimanual wristed manipulation, camera control, master clutching to manage hand position, use of third instrument arm, activating energy sources, appropriate depth perception, and awareness of forces applied by instruments. Validity studies of three commercial virtual reality simulators for robot-assisted surgery suggest that all three have comparable content and metrics. However, none have comprehensive content and metrics for all core skills. INSIGHTS: Virtual reality simulation remains a promising tool to support skill training for robot-assisted surgery, yet existing commercial simulator content is inadequate for performing and assessing a comprehensive basic skill set. The results of this evaluation help identify opportunities and challenges that exist for future developments in virtual reality simulation for robot-assisted surgery. Specifically, the inclusion of educational experts in the development cycle alongside clinical and technological experts is recommended.
NASA/NSF Workshop on Antarctic Research
NASA Technical Reports Server (NTRS)
Connors, Mary M.
1990-01-01
Viewgraphs that accompanied an Ames Research Center presentation address Ames' currently-supported life sciences activities. These include crew factor issues such as human, automation, and telecommunication systems; strategic behavior and workloads; sleep, fatigue, and circadian rhythms; and virtual reality and spatial instrumentation. The need, background, and examples of pertinent research are provided.
Virtual Titrator: A Student-Oriented Instrument.
ERIC Educational Resources Information Center
Ritter, David; Johnson, Michael
1997-01-01
Describes a titrator system, constructed from a computer-interfaced pH-meter, that was designed to increase student involvement in the process. Combines automatic data collection with real-time graphical display and interactive controls to focus attention on the process rather than on bits of data. Improves understanding of concepts and…
Simulation and New Learning Technologies.
ERIC Educational Resources Information Center
Issenberg, S. Barry; Gordon, Michael S.; Gordon, David Lee; Safford, Robert E.; Hart, Ian R.
2001-01-01
In the future, virtual reality technology based initially on data from Visible Human Data sets will provide the majority of simulation-based training. Indicates that evidence-based outcomes must show these systems to be effective instruments for teaching and assessment, and medical educators must be willing to effect change in medical education to…
Software for simulation of a computed tomography imaging spectrometer using optical design software
NASA Astrophysics Data System (ADS)
Spuhler, Peter T.; Willer, Mark R.; Volin, Curtis E.; Descour, Michael R.; Dereniak, Eustace L.
2000-11-01
Our Imaging Spectrometer Simulation Software known under the name Eikon should improve and speed up the design of a Computed Tomography Imaging Spectrometer (CTIS). Eikon uses existing raytracing software to simulate a virtual instrument. Eikon enables designers to virtually run through the design, calibration and data acquisition, saving significant cost and time when designing an instrument. We anticipate that Eikon simulations will improve future designs of CTIS by allowing engineers to explore more instrument options.
NASA Astrophysics Data System (ADS)
Acero, R.; Santolaria, J.; Pueo, M.; Aguilar, J. J.; Brau, A.
2015-11-01
High-range measuring equipment like laser trackers need large dimension calibrated reference artifacts in their calibration and verification procedures. In this paper, a new verification procedure for portable coordinate measuring instruments based on the generation and evaluation of virtual distances with an indexed metrology platform is developed. This methodology enables the definition of an unlimited number of reference distances without materializing them in a physical gauge to be used as a reference. The generation of the virtual points and reference lengths derived is linked to the concept of the indexed metrology platform and the knowledge of the relative position and orientation of its upper and lower platforms with high accuracy. It is the measuring instrument together with the indexed metrology platform one that remains still, rotating the virtual mesh around them. As a first step, the virtual distances technique is applied to a laser tracker in this work. The experimental verification procedure of the laser tracker with virtual distances is simulated and further compared with the conventional verification procedure of the laser tracker with the indexed metrology platform. The results obtained in terms of volumetric performance of the laser tracker proved the suitability of the virtual distances methodology in calibration and verification procedures for portable coordinate measuring instruments, broadening and expanding the possibilities for the definition of reference distances in these procedures.
INERTIAL INSTRUMENT SYSTEM FOR AERIAL SURVEYING.
Brown, Russell H.; Chapman, William H.; Hanna, William F.; Mongan, Charles E.; Hursh, John W.
1987-01-01
The purpose of this report is to describe an inertial guidance or navigation system that will enable use of relatively light aircraft for efficient data-gathering in geologgy, hydrology, terrain mapping, and gravity-field mapping. The instrument system capitalizes not only on virtual state-of-the-art inertial guidance technology but also on similarly advanced technology for measuring distance with electromagnetic radiating devices. The distance measurement can be made with a transceiver beamed at either a cooperative taget, with a specially designed reflecting surface, or a noncooperative target, such as the Earth's surface. The instrument system features components that use both techniques. Thus, a laser tracker device, which updates the inertial guidance unit or navigator in flight, makes distance measurements to a retroreflector target mounted at a ground-control point; a laser profiler device, beamed vertically downward, makes distance measurements to the Earth's surface along a path that roughly mirrors the aircraft flight path.
A haptic device for guide wire in interventional radiology procedures.
Moix, Thomas; Ilic, Dejan; Bleuler, Hannes; Zoethout, Jurjen
2006-01-01
Interventional Radiology (IR) is a minimally invasive procedure where thin tubular instruments, guide wires and catheters, are steered through the patient's vascular system under X-ray imaging. In order to perform these procedures, a radiologist has to be trained to master hand-eye coordination, instrument manipulation and procedure protocols. The existing simulation systems all have major drawbacks: the use of modified instruments, unrealistic insertion lengths, high inertia of the haptic device that creates a noticeably degraded dynamic behavior or excessive friction that is not properly compensated for. In this paper we propose a quality training environment dedicated to IR. The system is composed of a virtual reality (VR) simulation of the patient's anatomy linked to a robotic interface providing haptic force feedback. This paper focuses on the requirements, design and prototyping of a specific haptic interface for guide wires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Fan; Wang, Yuanqing, E-mail: yqwang@nju.edu.cn; Li, Fenfang
The avalanche-photodiode-array (APD-array) laser detection and ranging (LADAR) system has been continually developed owing to its superiority of nonscanning, large field of view, high sensitivity, and high precision. However, how to achieve higher-efficient detection and better integration of the LADAR system for real-time three-dimensional (3D) imaging continues to be a problem. In this study, a novel LADAR system using four linear mode APDs (LmAPDs) is developed for high-efficient detection by adopting a modulation and multiplexing technique. Furthermore, an automatic control system for the array LADAR system is proposed and designed by applying the virtual instrumentation technique. The control system aimsmore » to achieve four functions: synchronization of laser emission and rotating platform, multi-channel synchronous data acquisition, real-time Ethernet upper monitoring, and real-time signal processing and 3D visualization. The structure and principle of the complete system are described in the paper. The experimental results demonstrate that the LADAR system is capable of achieving real-time 3D imaging on an omnidirectional rotating platform under the control of the virtual instrumentation system. The automatic imaging LADAR system utilized only 4 LmAPDs to achieve 256-pixel-per-frame detection with by employing 64-bit demodulator. Moreover, the lateral resolution is ∼15 cm and range accuracy is ∼4 cm root-mean-square error at a distance of ∼40 m.« less
CANYVAL-X: Enabling a new class of scientific instruments
NASA Astrophysics Data System (ADS)
Shah, Neerav; Calhoun, Philip C.; Park, Sang-young; Keidar, Michael
2016-05-01
Significant new discoveries in space science can be realized by replacing the traditional large monolithic space telescopes with precision formation flying spacecraft to form a “virtual telescope.” Such virtual telescopes will revolutionize occulting imaging systems, provide images of the Sun, accretion disks, and other astronomical objects with unprecedented milli-arcsecond resolution (several orders of magnitude beyond current capability).Since the days of Apollo, NASA and other organizations have been conducting formation flying in space, but not with the precision required for virtual telescopes. These efforts have focused on rendezvous and docking (e.g., crew docking, satellite servicing, etc.) and/or ground-controlled coordinated flight (e.g., EO-1, GRAIL, MMS, etc.). While the TRL of the component level technology for formation flying is high, the capability for the system-level guidance, navigation, and control (GN&C) technology required to align a virtual telescope to an inertial astronomical target with sub-arcsecond precision is not fully developed.The CANYVAL-X (CubeSat Astronomy by NASA and Yonsei using Virtual Telescope Alignment eXperiment) mission is an engineering proof of concept featuring a pair of CubeSats flying as a tandem telescope with a goal of demonstrating the system-level GN&C needed to form a virtual telescope. NASA partnered with the George Washington University and the Yonsei University to design and develop CANYVAL-X. CANYVAL-X will demonstrate key technologies for using virtual telescopes in space, including micro-propulsion using millinewton thrusters, relative position sensing, and communications control between the two spacecraft. CANYVAL-X is scheduled to launch on a Flacon-9 in summer of 2016.
Training multitasking in a virtual supermarket: a novel intervention after stroke.
Rand, Debbie; Weiss, Patrice L Tamar; Katz, Noomi
2009-01-01
To explore the potential of the VMall, a virtual supermarket running on a video-capture virtual reality system, as an intervention tool for people who have multitasking deficits after stroke. Poststroke, 4 participants received ten 60-min sessions over 3 weeks using the VMall. The intervention focused on improving multitasking while the participant was engaged in a virtual shopping task. Instruments included the Multiple Errands Test-Hospital Version (MET-HV) in a real mall and in the VMall. Participants achieved improvements ranging from 20.5% to 51.2% for most of the MET-HV measures performed in a real shopping mall and in the VMall. The data support the VMall's potential as a motivating and effective intervention tool for the rehabilitation of people poststroke who have multitasking deficits during the performance of daily tasks. However, because the sample was small, additional intervention studies with the VMall should be conducted.
Ranky, Richard G; Sivak, Mark L; Lewis, Jeffrey A; Gade, Venkata K; Deutsch, Judith E; Mavroidis, Constantinos
2014-06-05
Cycling has been used in the rehabilitation of individuals with both chronic and post-surgical conditions. Among the challenges with implementing bicycling for rehabilitation is the recruitment of both extremities, in particular when one is weaker or less coordinated. Feedback embedded in virtual reality (VR) augmented cycling may serve to address the requirement for efficacious cycling; specifically recruitment of both extremities and exercising at a high intensity. In this paper a mechatronic rehabilitation bicycling system with an interactive virtual environment, called Virtual Reality Augmented Cycling Kit (VRACK), is presented. Novel hardware components embedded with sensors were implemented on a stationary exercise bicycle to monitor physiological and biomechanical parameters of participants while immersing them in an augmented reality simulation providing the user with visual, auditory and haptic feedback. This modular and adaptable system attaches to commercially-available stationary bicycle systems and interfaces with a personal computer for simulation and data acquisition processes. The complete bicycle system includes: a) handle bars based on hydraulic pressure sensors; b) pedals that monitor pedal kinematics with an inertial measurement unit (IMU) and forces on the pedals while providing vibratory feedback; c) off the shelf electronics to monitor heart rate and d) customized software for rehabilitation. Bench testing for the handle and pedal systems is presented for calibration of the sensors detecting force and angle. The modular mechatronic kit for exercise bicycles was tested in bench testing and human tests. Bench tests performed on the sensorized handle bars and the instrumented pedals validated the measurement accuracy of these components. Rider tests with the VRACK system focused on the pedal system and successfully monitored kinetic and kinematic parameters of the rider's lower extremities. The VRACK system, a virtual reality mechatronic bicycle rehabilitation modular system was designed to convert most bicycles in virtual reality (VR) cycles. Preliminary testing of the augmented reality bicycle system was successful in demonstrating that a modular mechatronic kit can monitor and record kinetic and kinematic parameters of several riders.
Virtual reality in surgery and medicine.
Chinnock, C
1994-01-01
This report documents the state of development of enhanced and virtual reality-based systems in medicine. Virtual reality systems seek to simulate a surgical procedure in a computer-generated world in order to improve training. Enhanced reality systems seek to augment or enhance reality by providing improved imaging alternatives for specific patient data. Virtual reality represents a paradigm shift in the way we teach and evaluate the skills of medical personnel. Driving the development of virtual reality-based simulators is laparoscopic abdominal surgery, where there is a perceived need for better training techniques; within a year, systems will be fielded for second-year residency students. Further refinements over perhaps the next five years should allow surgeons to evaluate and practice new techniques in a simulator before using them on patients. Technical developments are rapidly improving the realism of these machines to an amazing degree, as well as bringing the price down to affordable levels. In the next five years, many new anatomical models, procedures, and skills are likely to become available on simulators. Enhanced reality systems are generally being developed to improve visualization of specific patient data. Three-dimensional (3-D) stereovision systems for endoscopic applications, head-mounted displays, and stereotactic image navigation systems are being fielded now, with neurosurgery and laparoscopic surgery being major driving influences. Over perhaps the next five years, enhanced and virtual reality systems are likely to merge. This will permit patient-specific images to be used on virtual reality simulators or computer-generated landscapes to be input into surgical visualization instruments. Percolating all around these activities are developments in robotics and telesurgery. An advanced information infrastructure eventually will permit remote physicians to share video, audio, medical records, and imaging data with local physicians in real time. Surgical robots are likely to be deployed for specific tasks in the operating room (OR) and to support telesurgery applications. Technical developments in robotics and motion control are key components of many virtual reality systems. Since almost all of the virtual reality and enhanced reality systems will be digitally based, they are also capable of being put "on-line" for tele-training, consulting, and even surgery. Advancements in virtual and enhanced reality systems will be driven in part by consumer applications of this technology. Many of the companies that will supply systems for medical applications are also working on commercial products. A big consumer hit can benefit the entire industry by increasing volumes and bringing down costs.(ABSTRACT TRUNCATED AT 400 WORDS)
Evaluation of glucose controllers in virtual environment: methodology and sample application.
Chassin, Ludovic J; Wilinska, Malgorzata E; Hovorka, Roman
2004-11-01
Adaptive systems to deliver medical treatment in humans are safety-critical systems and require particular care in both the testing and the evaluation phase, which are time-consuming, costly, and confounded by ethical issues. The objective of the present work is to develop a methodology to test glucose controllers of an artificial pancreas in a simulated (virtual) environment. A virtual environment comprising a model of the carbohydrate metabolism and models of the insulin pump and the glucose sensor is employed to simulate individual glucose excursions in subjects with type 1 diabetes. The performance of the control algorithm within the virtual environment is evaluated by considering treatment and operational scenarios. The developed methodology includes two dimensions: testing in relation to specific life style conditions, i.e. fasting, post-prandial, and life style (metabolic) disturbances; and testing in relation to various operating conditions, i.e. expected operating conditions, adverse operating conditions, and system failure. We define safety and efficacy criteria and describe the measures to be taken prior to clinical testing. The use of the methodology is exemplified by tuning and evaluating a model predictive glucose controller being developed for a wearable artificial pancreas focused on fasting conditions. Our methodology to test glucose controllers in a virtual environment is instrumental in anticipating the results of real clinical tests for different physiological conditions and for different operating conditions. The thorough testing in the virtual environment reduces costs and speeds up the development process.
ViDI: Virtual Diagnostics Interface. Volume 1; The Future of Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
Fleming, Gary A. (Technical Monitor); Schwartz, Richard J.
2004-01-01
The quality of data acquired in a given test facility ultimately resides within the fidelity and implementation of the instrumentation systems. Over the last decade, the emergence of robust optical techniques has vastly expanded the envelope of measurement possibilities. At the same time the capabilities for data processing, data archiving and data visualization required to extract the highest level of knowledge from these global, on and off body measurement techniques have equally expanded. Yet today, while the instrumentation has matured to the production stage, an optimized solution for gaining knowledge from the gigabytes of data acquired per test (or even per test point) is lacking. A technological void has to be filled in order to possess a mechanism for near-real time knowledge extraction during wind tunnel experiments. Under these auspices, the Virtual Diagnostics Interface, or ViDI, was developed.
Jiang, Feng; Bai, Jingfeng; Chen, Yazhu
2005-08-01
Small-scale intellectualized medical instrument has attracted great attention in the field of biomedical engineering, and LabVIEW (Laboratory Virtual Instrument Engineering Workbench) provides a convenient environment for this application due to its inherent advantages. The principle and system structure of the hyperthermia instrument are presented. Type T thermocouples are employed as thermotransducers, whose amplifier consists of two stages, providing built-in ice point compensation and thus improving work stability over temperature. Control signals produced by specially designed circuit drive the programmable counter/timer 8254 chip to generate PWM (Pulse width modulation) wave, which is used as ultrasound radiation energy control signal. Subroutine design topics such as inner-tissue real time feedback temperature control algorithm, water temperature control in the ultrasound applicator are also described. In the cancer tissue temperature control subroutine, the authors exert new improvments to PID (Proportional Integral Differential) algorithm according to the specific demands of the system and achieve strict temperature control to the target tissue region. The system design and PID algorithm improvement have experimentally proved to be reliable and excellent, meeting the requirements of the hyperthermia system.
Co-located haptic and 3D graphic interface for medical simulations.
Berkelman, Peter; Miyasaka, Muneaki; Bozlee, Sebastian
2013-01-01
We describe a system which provides high-fidelity haptic feedback in the same physical location as a 3D graphical display, in order to enable realistic physical interaction with virtual anatomical tissue during modelled procedures such as needle driving, palpation, and other interventions performed using handheld instruments. The haptic feedback is produced by the interaction between an array of coils located behind a thin flat LCD screen, and permanent magnets embedded in the instrument held by the user. The coil and magnet configuration permits arbitrary forces and torques to be generated on the instrument in real time according to the dynamics of the simulated tissue by activating the coils in combination. A rigid-body motion tracker provides position and orientation feedback of the handheld instrument to the computer simulation, and the 3D display is produced using LCD shutter glasses and a head-tracking system for the user.
NASA Astrophysics Data System (ADS)
Galkin, A.; Klump, J.; Wiedenbeck, M.
2012-04-01
Secondary Ion Mass Spectrometers (SIMS) is an highly sensitive technique for analyzing the surfaces of solids and thin film samples, but has the major drawback that such instruments are both rare and expensive. The Virtual SIMS project aims to design, develop and operate the IT infrastructure around the CAMECA IMS 1280-HR SIMS at GFZ Potsdam. The system will cover the whole spectrum of the procedures in the lab - from the online application for measurement time, to the remote access to the instrument and finally the maintenance of the data for publishing and future re-use. A virtual lab infrastructure around the IMS 1280 will enable remote access to the instrument and make measurement time available to the broadest possible user community. Envisioned is that the IT infrastructure would consist of the following: web portal, data repository, sample repository, project management software, communication arrangements between the lab staff and distant researcher and remote access to the instruments. The web portal will handle online applications for the measurement time. The data from the experiments, the monitoring sensor logs and the lab logbook entries are to be stored and archived. Researchers will be able to access their data remotely in real time, thus imposing a user rights management strucuture. Also planned is that all samples and the standards will be assigned a unique International GeoSample Number (IGSN) and that the images of the samples will be stored and made accessible in addition to any additional documents which might be uploaded by the researcher. The project management application will schedule the application process, the measurements times, notifications and alerts. A video conference capability is forseen for communication between the Potsdam staff and the remote researcher. The remote access to the instruments requires a sophisticated client-server solution. This highly sensitive instrument has to be controlled in real-time with latencies diminished to a minimum. Also, failures and shortages of the internet connection, as well as possible outages on the client side, have to be considered and safe fallbacks for such events must be provided. The level of skills of the researcher remotely operating the instrument will define the scope of control given during an operating session. An important aspect of the project is the design of the virtual lab system in collaboration with the laboratory operators and the researchers who will use the instrument and its peripherals. Different approaches for the IT solutions will be tested and evaluated, so imporved guidelines can evolve from obsperved operating performance.
GAIA virtual observatory - development and practices
NASA Astrophysics Data System (ADS)
Syrjäsuo, Mikko; Marple, Steve
2010-05-01
The Global Auroral Imaging Access, or GAIA, is a virtual observatory providing quick access to summary data from satellite and ground-based instruments that remote sense auroral precipitation (http://gaia-vxo.org). This web-based service facilitates locating data relevant to particular events by simultaneously displaying summary images from various data sets around the world. At the moment, there are GAIA server nodes in Canada, Finland, Norway and the UK. The development is an international effort and the software and metadata are freely available. The GAIA system is based on a relational database which is queried by a dedicated software suite that also creates the graphical end-user interface if such is needed. Most commonly, the virtual observatory is used interactively by using a web browser: the user provides the date and the type of data of interest. As the summary data from multiple instruments are displayed simultaneously, the user can conveniently explore the recorded data. The virtual observatory provides essentially instant access to the images originating from all major auroral instrument networks including THEMIS, NORSTAR, GLORIA and MIRACLE. The scientific, educational and outreach use is limited by creativity rather than access. The first version of the GAIA was developed at the University of Calgary (Alberta, Canada) in 2004-2005. This proof-of-concept included mainly THEMIS and MIRACLE data, which comprised of millions of summary plots and thumbnail images. However, it was soon realised that a complete re-design was necessary to increase flexibility. In the presentation, we will discuss the early history and motivation of GAIA as well as how the development continued towards the current version. The emphasis will be on practical problems and their solutions. Relevant design choices will also be highlighted.
McStas-model of the delft SESANS
NASA Astrophysics Data System (ADS)
Knudsen, E.; Udby, L.; Willendrup, P. K.; Lefmann, K.; Bouwman, W. G.
2011-06-01
We present simulation results taking first virtual data from a model of the Spin-Echo Small Angle Scattering (SESANS) instrument situated in Delft, in the framework of the McStas Monte Carlo software package. The main focus has been on making a model of the Delft SESANS instrument, and we can now present the first virtual data from it, using a refracting prism-like sample model. In consequence, polarisation instrumentation is now included natively in the McStas kernel, including options for magnetic fields and a number of utility components. This development has brought us to a point where realistic models of polarisation-enabled instrumentation can be built.
Oral and maxillofacial surgery with computer-assisted navigation system.
Kawachi, Homare; Kawachi, Yasuyuki; Ikeda, Chihaya; Takagi, Ryo; Katakura, Akira; Shibahara, Takahiko
2010-01-01
Intraoperative computer-assisted navigation has gained acceptance in maxillofacial surgery with applications in an increasing number of indications. We adapted a commercially available wireless passive marker system which allows calibration and tracking of virtually every instrument in maxillofacial surgery. Virtual computer-generated anatomical structures are displayed intraoperatively in a semi-immersive head-up display. Continuous observation of the operating field facilitated by computer assistance enables surgical navigation in accordance with the physician's preoperative plans. This case report documents the potential for augmented visualization concepts in surgical resection of tumors in the oral and maxillofacial region. We report a case of T3N2bM0 carcinoma of the maxillary gingival which was surgically resected with the assistance of the Stryker Navigation Cart System. This system was found to be useful in assisting preoperative planning and intraoperative monitoring.
Katz, Jonathan E
2017-01-01
Laboratories tend to be amenable environments for long-term reliable operation of scientific measurement equipment. Indeed, it is not uncommon to find equipment 5, 10, or even 20+ years old still being routinely used in labs. Unfortunately, the Achilles heel for many of these devices is the control/data acquisition computer. Often these computers run older operating systems (e.g., Windows XP) and, while they might only use standard network, USB or serial ports, they require proprietary software to be installed. Even if the original installation disks can be found, it is a burdensome process to reinstall and is fraught with "gotchas" that can derail the process-lost license keys, incompatible hardware, forgotten configuration settings, etc. If you have running legacy instrumentation, the computer is the ticking time bomb waiting to put a halt to your operation.In this chapter, I describe how to virtualize your currently running control computer. This virtualized computer "image" is easy to maintain, easy to back up and easy to redeploy. I have used this multiple times in my own lab to greatly improve the robustness of my legacy devices.After completing the steps in this chapter, you will have your original control computer as well as a virtual instance of that computer with all the software installed ready to control your hardware should your original computer ever be decommissioned.
A new virtual instrument for estimating punch velocity in combat sports.
Urbinati, K S; Scheeren, E; Nohama, P
2013-01-01
For improving the performance in combat sport, especially percussion, it is necessary achieving high velocity in punches and kicks. The aim of this study was to evaluate the applicability of 3D accelerometry in a Virtual Instrumentation System (VIS) designed for estimating punch velocity in combat sports. It was conducted in two phases: (1) integration of the 3D accelerometer with the communication interface and software for processing and visualization, and (2) applicability of the system. Fifteen karate athletes performed five gyaku zuki type punches (with reverse leg) using the accelerometer on the 3rd metacarpal on the back of the hand. It was performed nonparametric Mann-Whitney U-test to determine differences in the mean linear velocity among three punches performed sequentially (p <0.05). The maximum velocities measured varied in the range of 10 and 10.2 m/s and the mean velocities from 6 to 6.8 m/s. There was no difference on the mean velocity for the tested punches. The VIS demonstrated regularity and proper functionality for assessing punches in combat sport.
ERIC Educational Resources Information Center
Eike, Rachel J.; Rowell, Amy; Mihuta, Tiffani
2016-01-01
The purpose of this study was to identify key virtual-recorded interview (VIR) skills that are essential to Apparel, Design, and Textile (ADT) student performance. The virtual, computer-recording interview platform, InterviewStream, was used as the data collection instrument in this qualitative, exploratory case study. Virtual interviews have been…
Using Model-Based Reasoning for Autonomous Instrument Operation - Lessons Learned From IMAGE/LENA
NASA Technical Reports Server (NTRS)
Johnson, Michael A.; Rilee, Michael L.; Truszkowski, Walt; Bailin, Sidney C.
2001-01-01
Model-based reasoning has been applied as an autonomous control strategy on the Low Energy Neutral Atom (LENA) instrument currently flying on board the Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) spacecraft. Explicit models of instrument subsystem responses have been constructed and are used to dynamically adapt the instrument to the spacecraft's environment. These functions are cast as part of a Virtual Principal Investigator (VPI) that autonomously monitors and controls the instrument. In the VPI's current implementation, LENA's command uplink volume has been decreased significantly from its previous volume; typically, no uplinks are required for operations. This work demonstrates that a model-based approach can be used to enhance science instrument effectiveness. The components of LENA are common in space science instrumentation, and lessons learned by modeling this system may be applied to other instruments. Future work involves the extension of these methods to cover more aspects of LENA operation and the generalization to other space science instrumentation.
Source imaging of drums in the APNEA system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, D.
1995-12-31
The APNea System is a neutron assay device utilizing both a passive mode and a differential-dieaway active mode. The total detection efficiency is not spatially uniform, even for an empty chamber, and a drum matrix in the chamber can severely distort this response. In order to achieve a response which is independent of the way the source material is distributed in a drum, an imaging procedure has been developed which treats the drum as a number of virtual (sub)volumes. Since each virtual volume of source material is weighted with the appropriate instrument parameters (detection efficiency and thermal flux), the finalmore » assay result is essentially independent of the actual distribution of the source material throughout the drum and its matrix.« less
The virtual mission approach: Empowering earth and space science missions
NASA Astrophysics Data System (ADS)
Hansen, Elaine
1993-08-01
Future Earth and Space Science missions will address increasingly broad and complex scientific issues. To accomplish this task, we will need to acquire and coordinate data sets from a number of different instrumetns, to make coordinated observations of a given phenomenon, and to coordinate the operation of the many individual instruments making these observations. These instruments will need to be used together as a single ``Virtual Mission.'' This coordinated approach is complicated in that these scientific instruments will generally be on different platforms, in different orbits, from different control centers, at different institutions, and report to different user groups. Before this Virtual Mission approach can be implemented, techniques need to be developed to enable separate instruments to work together harmoniously, to execute observing sequences in a synchronized manner, and to be managed by the Virtual Mission authority during times of these coordinated activities. Enabling technologies include object-oriented designed approaches, extended operations management concepts and distributed computing techniques. Once these technologies are developed and the Virtual Mission concept is available, we believe the concept will provide NASA's Science Program with a new, ``go-as-you-pay,'' flexible, and resilient way of accomplishing its science observing program. The concept will foster the use of smaller and lower cost satellites. It will enable the fleet of scientific satellites to evolve in directions that best meet prevailing science needs. It will empower scientists by enabling them to mix and match various combinations of in-space, ground, and suborbital instruments - combinations which can be called up quickly in response to new events or discoveries. And, it will enable small groups such as universities, Space Grant colleges, and small businesses to participate significantly in the program by developing small components of this evolving scientific fleet.
Real-time mandibular angle reduction surgical simulation with haptic rendering.
Wang, Qiong; Chen, Hui; Wu, Wen; Jin, Hai-Yang; Heng, Pheng-Ann
2012-11-01
Mandibular angle reduction is a popular and efficient procedure widely used to alter the facial contour. The primary surgical instruments, the reciprocating saw and the round burr, employed in the surgery have a common feature: operating at a high-speed. Generally, inexperienced surgeons need a long-time practice to learn how to minimize the risks caused by the uncontrolled contacts and cutting motions in manipulation of instruments with high-speed reciprocation or rotation. A virtual reality-based surgical simulator for the mandibular angle reduction was designed and implemented on a CUDA-based platform in this paper. High-fidelity visual and haptic feedbacks are provided to enhance the perception in a realistic virtual surgical environment. The impulse-based haptic models were employed to simulate the contact forces and torques on the instruments. It provides convincing haptic sensation for surgeons to control the instruments under different reciprocation or rotation velocities. The real-time methods for bone removal and reconstruction during surgical procedures have been proposed to support realistic visual feedbacks. The simulated contact forces were verified by comparing against the actual force data measured through the constructed mechanical platform. An empirical study based on the patient-specific data was conducted to evaluate the ability of the proposed system in training surgeons with various experiences. The results confirm the validity of our simulator.
NASA Astrophysics Data System (ADS)
Heavner, M. J.; Fatland, D. R.; Moeller, H.; Hood, E.; Schultz, M.
2007-12-01
The University of Alaska Southeast is currently implementing a sensor web identified as the SouthEast Alaska MOnitoring Network for Science, Telecommunications, Education, and Research (SEAMONSTER). From power systems and instrumentation through data management, visualization, education, and public outreach, SEAMONSTER is designed with modularity in mind. We are utilizing virtual earth infrastructures to enhance both sensor web management and data access. We will describe how the design philosophy of using open, modular components contributes to the exploration of different virtual earth environments. We will also describe the sensor web physical implementation and how the many components have corresponding virtual earth representations. This presentation will provide an example of the integration of sensor webs into a virtual earth. We suggest that IPY sensor networks and sensor webs may integrate into virtual earth systems and provide an IPY legacy easily accessible to both scientists and the public. SEAMONSTER utilizes geobrowsers for education and public outreach, sensor web management, data dissemination, and enabling collaboration. We generate near-real-time auto-updating geobrowser files of the data. In this presentation we will describe how we have implemented these technologies to date, the lessons learned, and our efforts towards greater OGC standard implementation. A major focus will be on demonstrating how geobrowsers have made this project possible.
Clinical applications of virtual navigation bronchial intervention.
Kajiwara, Naohiro; Maehara, Sachio; Maeda, Junichi; Hagiwara, Masaru; Okano, Tetsuya; Kakihana, Masatoshi; Ohira, Tatsuo; Kawate, Norihiko; Ikeda, Norihiko
2018-01-01
In patients with bronchial tumors, we frequently consider endoscopic treatment as the first treatment of choice. All computed tomography (CT) must satisfy several conditions necessary to analyze images by Synapse Vincent. To select safer and more precise approaches for patients with bronchial tumors, we determined the indications and efficacy of virtual navigation intervention for the treatment of bronchial tumors. We examined the efficacy of virtual navigation bronchial intervention for the treatment of bronchial tumors located at a variety of sites in the tracheobronchial tree using a high-speed 3-dimensional (3D) image analysis system, Synapse Vincent. Constructed images can be utilized to decide on the simulation and interventional strategy as well as for navigation during interventional manipulation in two cases. Synapse Vincent was used to determine the optimal planning of virtual navigation bronchial intervention. Moreover, this system can detect tumor location and alsodepict surrounding tissues, quickly, accurately, and safely. The feasibility and safety of Synapse Vincent in performing useful preoperative simulation and navigation of surgical procedures can lead to safer, more precise, and less invasion for the patient, and makes it easy to construct an image, depending on the purpose, in 5-10 minutes using Synapse Vincent. Moreover, if the lesion is in the parenchyma or sub-bronchial lumen, it helps to perform simulation with virtual skeletal subtraction to estimate potential lesion movement. By using virtual navigation system for simulation, bronchial intervention was performed with no complications safely and precisely. Preoperative simulation using virtual navigation bronchial intervention reduces the surgeon's stress levels, particularly when highly skilled techniques are needed to operate on lesions. This task, including both preoperative simulation and intraoperative navigation, leads to greater safety and precision. These technological instruments are helpful for bronchial intervention procedures, and are also excellent devices for educational training.
An Overview of Evaluative Instrumentation for Virtual High Schools
ERIC Educational Resources Information Center
Black, Erik W.; Ferdig, Richard E.; DiPietro, Meredith
2008-01-01
With an increasing prevalence of virtual high school programs in the United States, a better understanding of evaluative tools available for distance educators and administrators is needed. These evaluative tools would provide opportunities for assessment and a determination of success within virtual schools. This article seeks to provide an…
NASA Astrophysics Data System (ADS)
Davis, A. J.; Kanekal, S. G.; Looper, M. D.; Mason, G. M.; Mewaldt, R. A.
2006-12-01
The SAMPEX Resident Archive is currently under construction, and will be co-hosted at Caltech with the ACE Science Center. With SAMPEX in low earth orbit, and ACE at L1, and a suite of instruments on each spacecraft, the combined data cover a very broad range in species, energy, location, and time. The data include solar wind, solar energetic particle, and galactic cosmic ray intensity and composition data, as well as solar wind and magnetic field parameters on a variety of time scales. We describe our recent efforts to provide enhanced access to these data via the emerging virtual observatory system, including work with the Space Physics Archive Search and Extract (SPASE) Consortium to ensure that the ACE and SAMPEX data can be adequately described using the SPASE data model, development of a SOAP web services interface between the ACE Science Center and the virtual observatories, and ideas for combining the ACE and SAMPEx data in useful ways.
THE VIRTUAL INSTRUMENT: SUPPORT FOR GRID-ENABLED MCELL SIMULATIONS
Casanova, Henri; Berman, Francine; Bartol, Thomas; Gokcay, Erhan; Sejnowski, Terry; Birnbaum, Adam; Dongarra, Jack; Miller, Michelle; Ellisman, Mark; Faerman, Marcio; Obertelli, Graziano; Wolski, Rich; Pomerantz, Stuart; Stiles, Joel
2010-01-01
Ensembles of widely distributed, heterogeneous resources, or Grids, have emerged as popular platforms for large-scale scientific applications. In this paper we present the Virtual Instrument project, which provides an integrated application execution environment that enables end-users to run and interact with running scientific simulations on Grids. This work is performed in the specific context of MCell, a computational biology application. While MCell provides the basis for running simulations, its capabilities are currently limited in terms of scale, ease-of-use, and interactivity. These limitations preclude usage scenarios that are critical for scientific advances. Our goal is to create a scientific “Virtual Instrument” from MCell by allowing its users to transparently access Grid resources while being able to steer running simulations. In this paper, we motivate the Virtual Instrument project and discuss a number of relevant issues and accomplishments in the area of Grid software development and application scheduling. We then describe our software design and report on the current implementation. We verify and evaluate our design via experiments with MCell on a real-world Grid testbed. PMID:20689618
ERIC Educational Resources Information Center
Karmakar, Subrata
2017-01-01
Online monitoring of high-voltage (HV) equipment is a vital tool for early detection of insulation failure. Most insulation failures are caused by partial discharges (PDs) inside the HV equipment. Because of the very high cost of establishing HV equipment facility and the limitations of electromagnetic interference-screened laboratories, only a…
Control devices and steering strategies in pathway surgery.
Fan, Chunman; Jelínek, Filip; Dodou, Dimitra; Breedveld, Paul
2015-02-01
For pathway surgery, that is, minimally invasive procedures carried out transluminally or through instrument-created pathways, handheld maneuverable instruments are being developed. As the accompanying control interfaces of such instruments have not been optimized for intuitive manipulation, we investigated the effect of control mode (1DoF or 2DoF), and control device (joystick or handgrip) on human performance in a navigation task. The experiments were conducted using the Endo-PaC (Endoscopic-Path Controller), a simulator that emulates the shaft and handle of a maneuverable instrument, combined with custom-developed software animating pathway surgical scenarios. Participants were asked to guide a virtual instrument without collisions toward a target located at the end of a virtual curved tunnel. The performance was assessed in terms of task completion time, path length traveled by the virtual instrument, motion smoothness, collision metrics, subjective workload, and personal preference. The results indicate that 2DoF control leads to faster task completion and fewer collisions with the tunnel wall combined with a strong subjective preference compared with 1DoF control. Handgrip control appeared to be more intuitive to master than joystick control. However, the participants experienced greater physical demand and had longer path lengths with handgrip than joystick control. Copyright © 2015 Elsevier Inc. All rights reserved.
Virtual targeting in three-dimensional space with sound and light interference
NASA Astrophysics Data System (ADS)
Chua, Florence B.; DeMarco, Robert M.; Bergen, Michael T.; Short, Kenneth R.; Servatius, Richard J.
2006-05-01
Law enforcement and the military are critically concerned with the targeting and firing accuracy of opponents. Stimuli which impede opponent targeting and firing accuracy can be incorporated into defense systems. An automated virtual firing range was developed to assess human targeting accuracy under conditions of sound and light interference, while avoiding dangers associated with live fire. This system has the ability to quantify sound and light interference effects on targeting and firing accuracy in three dimensions. This was achieved by development of a hardware and software system that presents the subject with a sound or light target, preceded by a sound or light interference. SonyXplod. TM 4-way speakers present sound interference and sound targeting. The Martin ® MiniMAC TM Profile operates as a source of light interference, while a red laser light serves as a target. A tracking system was created to monitor toy gun movement and firing in three-dimensional space. Data are collected via the Ascension ® Flock of Birds TM tracking system and a custom National Instrument ® LabVIEW TM 7.0 program to monitor gun movement and firing. A test protocol examined system parameters. Results confirm that the system enables tracking of virtual shots from a fired simulation gun to determine shot accuracy and location in three dimensions.
[Development of a virtual model of fibro-bronchoscopy].
Solar, Mauricio; Ducoing, Eugenio
2011-09-01
A virtual model of fibro-bronchoscopy is reported. The virtual model represents in 3D the trachea and the bronchi creating a virtual world of the bronchial tree. The bronchoscope is modeled to look over the bronchial tree imitating the displacement and rotation of the real bronchoscope. The parameters of the virtual model were gradually adjusted according to expert opinion and allowed the training of specialists with a virtual bronchoscope of great realism. The virtual bronchial tree provides clues of reality regarding the movement of the bronchoscope, creating the illusion that the virtual instrument is behaving as the real one with all the benefits in costs that this means.
Aubin, Ginette; Béliveau, Marie-France; Klinger, Evelyne
2018-07-01
People with schizophrenia often have functional limitations that affect their daily activities due to executive function deficits. One way to assess these deficits is through the use of virtual reality programmes that reproduce real-life instrumental activities of daily living (IADLs). One such programme is the Virtual Action Planning-Supermarket (VAP-S). This exploratory study aimed to examine the ecological validity of this programme, specifically, how task performance in both virtual and natural environments compares. Case studies were used and involved five participants with schizophrenia, who were familiar with grocery shopping. They were assessed during both the VAP-S shopping task and a real-life grocery shopping task using an observational assessment tool, the Perceive, Recall, Plan and Perform (PRPP) System of Task Analysis. The results show that when difficulties were present in the virtual task, difficulties were also observed in the real-life task. For some participants, greater difficulties were observed in the virtual task. These difficulties could be explained by the presence of perceptual deficits and problems remembering the required sequenced actions in the virtual task. In conclusion, performance on the VAP-S by these five participants was generally comparable to the performance in a natural environment.
Effects of Base Cavity Depth on a Free Spinning Wrap-Around Fin Missile Configuration
1995-12-01
packaging problem. Current missile systems which possess wrap-around fin designs are the Army’s Multiple Launch Rocket System (MLRS) and the Hard Target...aerodynamic irregularities (2). Of particular importance to projectile designers is the side force/moment inherent to wrap-around fin configurations. During...virtual instrument programs integrated to perform all necessary aspects of calibration, data collection, and reduction. The details surrounding the design
2014-01-01
Background Cycling has been used in the rehabilitation of individuals with both chronic and post-surgical conditions. Among the challenges with implementing bicycling for rehabilitation is the recruitment of both extremities, in particular when one is weaker or less coordinated. Feedback embedded in virtual reality (VR) augmented cycling may serve to address the requirement for efficacious cycling; specifically recruitment of both extremities and exercising at a high intensity. Methods In this paper a mechatronic rehabilitation bicycling system with an interactive virtual environment, called Virtual Reality Augmented Cycling Kit (VRACK), is presented. Novel hardware components embedded with sensors were implemented on a stationary exercise bicycle to monitor physiological and biomechanical parameters of participants while immersing them in an augmented reality simulation providing the user with visual, auditory and haptic feedback. This modular and adaptable system attaches to commercially-available stationary bicycle systems and interfaces with a personal computer for simulation and data acquisition processes. The complete bicycle system includes: a) handle bars based on hydraulic pressure sensors; b) pedals that monitor pedal kinematics with an inertial measurement unit (IMU) and forces on the pedals while providing vibratory feedback; c) off the shelf electronics to monitor heart rate and d) customized software for rehabilitation. Bench testing for the handle and pedal systems is presented for calibration of the sensors detecting force and angle. Results The modular mechatronic kit for exercise bicycles was tested in bench testing and human tests. Bench tests performed on the sensorized handle bars and the instrumented pedals validated the measurement accuracy of these components. Rider tests with the VRACK system focused on the pedal system and successfully monitored kinetic and kinematic parameters of the rider’s lower extremities. Conclusions The VRACK system, a virtual reality mechatronic bicycle rehabilitation modular system was designed to convert most bicycles in virtual reality (VR) cycles. Preliminary testing of the augmented reality bicycle system was successful in demonstrating that a modular mechatronic kit can monitor and record kinetic and kinematic parameters of several riders. PMID:24902780
Percutaneous computer-assisted translaminar facet screw: an initial human cadaveric study.
Sasso, Rick C; Best, Natalie M; Potts, Eric A
2005-01-01
Translaminar facet screws are a minimally invasive technique for posterior lumbar fixation with good success rates. Computer-assisted image navigation using virtual fluoroscopy allows multiple simultaneous screens in various planes to plan and drive spinal instrumentation. This study evaluates the percutaneous placement of translaminar facet screws with the use of virtual fluoroscopy as an image guidance technique. A human cadaveric study was performed with a percutaneous reference frame applied to the iliac crest. Ten translaminar facet screws were placed bilaterally at five levels. Anteroposterior and lateral images were used to navigate 4.0-mm screws through a percutaneous portal under virtual fluoroscopy. An axial computed tomographic scan through the instrumented levels was obtained after the screws were placed. Screws were graded on entry, course through the lamina, and terminus. A grading system was devised to grade the course through the lamina. All 10 screw-entry points were judged optimal at the spinous process laminar junction. There were five Grade I breeches with less than 1/2 the screw through the lamina, and five Grade 0 screw placements with the screw contained completely within the lamina. The termination point was acceptable in five screws. The screws that began on the right and terminated on the left were all found to have grade II breakouts. No screws placed the spinal canal or exiting nerve root at risk. Virtual fluoroscopy provides significant assistance in percutaneous placement of translaminar facet screws and results in safe position of entry, lamina course, and terminus.
NASA Astrophysics Data System (ADS)
Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng
2010-08-01
In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.
Development of a teledermatopathology consultation system using virtual slides
2012-01-01
Background An online consultation system using virtual slides (whole slide images; WSI) has been developed for pathological diagnosis, and could help compensate for the shortage of pathologists, especially in the field of dermatopathology and in other fields dealing with difficult cases. This study focused on the performance and future potential of the system. Method In our system, histological specimens on slide glasses are digitalized by a virtual slide instrument, converted into web data, and up-loaded to an open server. Using our own purpose-built online system, we then input patient details such as age, gender, affected region, clinical data, past history and other related items. We next select up to ten consultants. Finally we send an e-mail to all consultants simultaneously through a single command. The consultant receives an e-mail containing an ID and password which is used to access the open server and inspect the images and other data associated with the case. The consultant makes a diagnosis, which is sent to us along with comments. Because this was a pilot study, we also conducted several questionnaires with consultants concerning the quality of images, operability, usability, and other issues. Results We solicited consultations for 36 cases, including cases of tumor, and involving one to eight consultants in the field of dermatopathology. No problems were noted concerning the images or the functioning of the system on the sender or receiver sides. The quickest diagnosis was received only 18 minutes after sending our data. This is much faster than in conventional consultation using glass slides. There were no major problems relating to the diagnosis, although there were some minor differences of opinion between consultants. The results of questionnaires answered by many consultants confirmed the usability of this system for pathological consultation. (16 out of 23 consultants.) Conclusion We have developed a novel teledermatopathological consultation system using virtual slides, and investigated the usefulness of the system. The results demonstrate that our system can be a useful tool for international medical work, and we anticipate its wider application in the future. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1902376044831574 PMID:23237667
KLASS: Kennedy Launch Academy Simulation System
NASA Technical Reports Server (NTRS)
Garner, Lesley C.
2007-01-01
Software provides access to many sophisticated scientific instrumentation (Scanning Electron Microscope (SEM), a Light Microscope, a Scanning Probe Microscope (covering Scanning Tunneling, Atomic Force, and Magnetic Force microscopy), and an Energy Dispersive Spectrometer for the SEM). Flash animation videos explain how each of the instruments work. Videos on how they are used at NASA and the sample preparation. Measuring and labeling tools provided with each instrument. Hands on experience of controlling the virtual instrument to conduct investigations, much like the real scientists at NASA do. Very open architecture. Open source on SourceForge. Extensive use of XML Target audience is high school and entry-level college students. "Many beginning students never get closer to an electron microscope than the photos in their textbooks. But anyone can get a sense of what the instrument can do by downloading this simulator from NASA's Kennedy Space Center." Science Magazine, April 8th, 2005
Compact tracking of surgical instruments through structured markers.
Alberto Borghese, N; Frosio, I
2013-07-01
Virtual and augmented reality surgery calls for reliable and efficient tracking of the surgical instruments in the virtual or real operating theatre. The most diffused approach uses three or more not aligned markers, attached to each instrument and surveyed by a set of cameras. However, the structure required to carry the markers does modify the instrument's mass distribution and can interfere with surgeon movements. To overcome these problems, we propose here a new methodology, based on structured markers, to compute the six degrees of freedom of a surgical instrument. Two markers are attached on the instrument axis and one of them has a stripe painted over its surface. We also introduce a procedure to compute with high accuracy the markers center on the cameras image, even when partially occluded by the instrument's axis or by other structures. Experimental results demonstrate the reliability and accuracy of the proposed approach. The introduction of structured passive markers can open new possibilities to accurate tracking, combining markers detection with real-time image processing.
A virtual laboratory for neutron and synchrotron strain scanning
NASA Astrophysics Data System (ADS)
James, J. A.; Santisteban, J. R.; Edwards, L.; Daymond, M. R.
2004-07-01
The new generation of dedicated Engineering Strain Scanners at neutron and synchrotron facilities offer considerable improvements in both counting time and spatial resolution. In order to make full use of these advances in instrumentation, the routine tasks associated with setting up measurement runs and analysing the data need to be made as efficient as possible. Such tasks include the planning of the experiment, the alignment and positioning of the specimen, the least-squares refinement of diffraction spectra, the definition of strain in the sample coordinate system, and its visualization within a 3D model of the specimen. With this aim in mind, we have written a software providing support for most of these operations. The approach is based on a virtual lab consisting of 3D models of the sample and laboratory equipment. The system has been developed for ENGIN-X, the new engineering strain scanner recently commissioned at ISIS, but it is flexible enough to be ported to other neutron or synchrotron strain scanners. The software has been designed with visiting industrial and academic researchers in mind, users who need to be able to control the instrument after only a short period of training.
Physically Based Virtual Surgery Planning and Simulation Tools for Personal Health Care Systems
NASA Astrophysics Data System (ADS)
Dogan, Firat; Atilgan, Yasemin
The virtual surgery planning and simulation tools have gained a great deal of importance in the last decade in a consequence of increasing capacities at the information technology level. The modern hardware architectures, large scale database systems, grid based computer networks, agile development processes, better 3D visualization and all the other strong aspects of the information technology brings necessary instruments into almost every desk. The last decade’s special software and sophisticated super computer environments are now serving to individual needs inside “tiny smart boxes” for reasonable prices. However, resistance to learning new computerized environments, insufficient training and all the other old habits prevents effective utilization of IT resources by the specialists of the health sector. In this paper, all the aspects of the former and current developments in surgery planning and simulation related tools are presented, future directions and expectations are investigated for better electronic health care systems.
NASA Astrophysics Data System (ADS)
Ni, Y. Q.; Fan, K. Q.; Zheng, G.; Chan, T. H. T.; Ko, J. M.
2003-08-01
An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm to identify modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers deployed on the cable-stayed Ting Kau Bridge. With the continuously identified results, normal variability of modal vectors caused by varying environmental and operational conditions is observed. Such observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring applications.
NASA Astrophysics Data System (ADS)
Smith, D.; Barnes, R. J.; Morrison, D.; Talaat, E. R.; Potter, M.; Patrone, D.; Weiss, M.; Sarris, T.
2013-12-01
Virtual Observatories are more than data portals that span multiple missions and data sets. They need to provide a system that is useable by a broad swath of people with different backgrounds. The great promise of Virtual Observatories is the ability to perform complex search operations on a large variety of different data sets. This allows the researcher to isolate and select the relevant measurements for their topic of study. The Virtual ITM Observatory (VITMO) is unique in having many diverse datasets that cover a large temporal and spatial range that present a unique search problem. VITMO provides many methods by which the user can search for and select data of interest including restricting selections based on geophysical conditions (solar wind speed, Kp, etc) as well as finding those datasets that overlap in time and/or space. We are developing a series of light-weight web services that will provide a new data search capability for VITMO and other VxOs. The services will consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that will map in situ and ground based measurements to the equatorial plane in magnetic coordinates for a number of field models and geophysical conditions. Each service on their own provides a useful new capability for virtual observatories; operating together they will provide a powerful new search tool. The ephemerides service is being built using the Navigation and Ancillary Information Facility (NAIF) SPICE toolkit (http://naif.jpl.nasa.gov/naif/index.html) allowing them to be extended to support any Earth orbiting satellite with the addition of the appropriate SPICE kernels or two-line element sets (TLE). An instrument kernel (IK) file will be used to describe the observational geometry of the instrument (e.g., Field-of-view size, shape, and orientation). The overlap calculator uses techniques borrowed from computer graphics to identify overlapping measurements in space and time. The calculator will allow a user defined uncertainty to be selected to allow 'near misses' to be found. The magnetic field tracing service will feature a database of pre-calculated field line tracings of ground stations but will also allow dynamic tracing of arbitrary coordinates. These services will allow the non-specialist user of VITMO to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and making it much easier for future students who come into the field.
NASA Technical Reports Server (NTRS)
Smith, Jeffrey
2003-01-01
The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices (Ascention Inc.) attached to instrumented gloves (Immersion Inc.) which co-locate the user's hands with hand/forearm representations in the virtual workspace. Force-feedback is possible in a work volume defined by a Phantom Desktop device (SensAble inc.). Graphics are written in OpenGL. The system runs on a 2.2 GHz Pentium 4 PC. The prototype VGX provides astronauts and support personnel with a real-time physically-based VE system to simulate basic research tasks both on Earth and in the microgravity of Space. The immersive virtual environment of the VGX also makes it a useful tool for virtual engineering applications including CAD development, procedure design and simulation of human-system systems in a desktop-sized work volume.
Automated Instrumentation, Monitoring and Visualization of PVM Programs Using AIMS
NASA Technical Reports Server (NTRS)
Mehra, Pankaj; VanVoorst, Brian; Yan, Jerry; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
We present views and analysis of the execution of several PVM (Parallel Virtual Machine) codes for Computational Fluid Dynamics on a networks of Sparcstations, including: (1) NAS Parallel Benchmarks CG and MG; (2) a multi-partitioning algorithm for NAS Parallel Benchmark SP; and (3) an overset grid flowsolver. These views and analysis were obtained using our Automated Instrumentation and Monitoring System (AIMS) version 3.0, a toolkit for debugging the performance of PVM programs. We will describe the architecture, operation and application of AIMS. The AIMS toolkit contains: (1) Xinstrument, which can automatically instrument various computational and communication constructs in message-passing parallel programs; (2) Monitor, a library of runtime trace-collection routines; (3) VK (Visual Kernel), an execution-animation tool with source-code clickback; and (4) Tally, a tool for statistical analysis of execution profiles. Currently, Xinstrument can handle C and Fortran 77 programs using PVM 3.2.x; Monitor has been implemented and tested on Sun 4 systems running SunOS 4.1.2; and VK uses XIIR5 and Motif 1.2. Data and views obtained using AIMS clearly illustrate several characteristic features of executing parallel programs on networked workstations: (1) the impact of long message latencies; (2) the impact of multiprogramming overheads and associated load imbalance; (3) cache and virtual-memory effects; and (4) significant skews between workstation clocks. Interestingly, AIMS can compensate for constant skew (zero drift) by calibrating the skew between a parent and its spawned children. In addition, AIMS' skew-compensation algorithm can adjust timestamps in a way that eliminates physically impossible communications (e.g., messages going backwards in time). Our current efforts are directed toward creating new views to explain the observed performance of PVM programs. Some of the features planned for the near future include: (1) ConfigView, showing the physical topology of the virtual machine, inferred using specially formatted IP (Internet Protocol) packets: and (2) LoadView, synchronous animation of PVM-program execution and resource-utilization patterns.
Use of a scanning optical profilometer for toolmark characterization
NASA Astrophysics Data System (ADS)
Chumbley, L. S.; Eisenmann, D. J.; Morris, M.; Zhang, S.; Craft, J.; Fisher, C.; Saxton, A.
2009-05-01
An optical profilometer has been used to obtain 3-dimensional data for use in two research projects concerning toolmark quantification and identification. In the first study quantitative comparisons between toolmarks made using data from the optical system proved superior to similar data obtained using a stylus profilometer. In the second study the ability of the instrument to obtain accurate data from two surfaces intersecting at a high angle (approximately 90 degrees) is demonstrated by obtaining measurements from the tip of a flat screwdriver. The data obtained was used to produce a computer generated "virtual tool," which was then employed to create "virtual tool marks." How these experiments were conducted and the results obtained will be presented and discussed.
Pan, Xueni; Hamilton, Antonia F de C
2018-03-05
As virtual reality (VR) technology and systems become more commercially available and accessible, more and more psychologists are starting to integrate VR as part of their methods. This approach offers major advantages in experimental control, reproducibility, and ecological validity, but also has limitations and hidden pitfalls which may distract the novice user. This study aimed to guide the psychologist into the novel world of VR, reviewing available instrumentation and mapping the landscape of possible systems. We use examples of state-of-the-art research to describe challenges which research is now solving, including embodiment, uncanny valley, simulation sickness, presence, ethics, and experimental design. Finally, we propose that the biggest challenge for the field would be to build a fully interactive virtual human who can pass a VR Turing test - and that this could only be achieved if psychologists, VR technologists, and AI researchers work together. © 2018 The Authors British Journal of Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
VERSE - Virtual Equivalent Real-time Simulation
NASA Technical Reports Server (NTRS)
Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel
2005-01-01
Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.
Wong, Kwok-Chuen; Sze, Kwan-Yik; Wong, Irene Oi-Ling; Wong, Chung-Ming; Kumta, Shekhar-Madhukar
2016-02-01
Inaccurate resection in pelvic tumors can result in compromised margins with increase local recurrence. Navigation-assisted and patient-specific instrument (PSI) techniques have recently been reported in assisting pelvic tumor surgery with the tendency of improving surgical accuracy. We examined and compared the accuracy of transferring a virtual pelvic resection plan to actual surgery using navigation-assisted or PSI technique in a cadaver study. We performed CT scan in twelve cadaveric bodies including whole pelvic bones. Either supraacetabular or partial acetabular resection was virtually planned in a hemipelvis using engineering software. The virtual resection plan was transferred to a CT-based navigation system or was used for design and fabrication of PSI. Pelvic resections were performed using navigation assistance in six cadavers and PSI in another six. Post-resection images were co-registered with preoperative planning for comparative analysis of resection accuracy in the two techniques. The mean average deviation error from the planned resection was no different ([Formula: see text]) for the navigation and the PSI groups: 1.9 versus 1.4 mm, respectively. The mean time required for the bone resection was greater ([Formula: see text]) for the navigation group than for the PSI group: 16.2 versus 1.1 min, respectively. In simulated periacetabular pelvic tumor resections, PSI technique enabled surgeons to reproduce the virtual surgical plan with similar accuracy but with less bone resection time when compared with navigation assistance. Further studies are required to investigate the clinical benefits of PSI technique in pelvic tumor surgery.
Virtual Engineering and Science Team - Reusable Autonomy for Spacecraft Subsystems
NASA Technical Reports Server (NTRS)
Bailin, Sidney C.; Johnson, Michael A.; Rilee, Michael L.; Truszkowski, Walt; Thompson, Bryan; Day, John H. (Technical Monitor)
2002-01-01
In this paper we address the design, development, and evaluation of the Virtual Engineering and Science Team (VEST) tool - a revolutionary way to achieve onboard subsystem/instrument autonomy. VEST directly addresses the technology needed for advanced autonomy enablers for spacecraft subsystems. It will significantly support the efficient and cost effective realization of on-board autonomy and contribute directly to realizing the concept of an intelligent autonomous spacecraft. VEST will support the evolution of a subsystem/instrument model that is probably correct and from that model the automatic generation of the code needed to support the autonomous operation of what was modeled. VEST will directly support the integration of the efforts of engineers, scientists, and software technologists. This integration of efforts will be a significant advancement over the way things are currently accomplished. The model, developed through the use of VEST, will be the basis for the physical construction of the subsystem/instrument and the generated code will support its autonomous operation once in space. The close coupling between the model and the code, in the same tool environment, will help ensure that correct and reliable operational control of the subsystem/instrument is achieved.VEST will provide a thoroughly modern interface that will allow users to easily and intuitively input subsystem/instrument requirements and visually get back the system's reaction to the correctness and compatibility of the inputs as the model evolves. User interface/interaction, logic, theorem proving, rule-based and model-based reasoning, and automatic code generation are some of the basic technologies that will be brought into play in realizing VEST.
NASA Astrophysics Data System (ADS)
Dell'Agnello, S.; Boni, A.; Cantone, C.; Ciocci, E.; Martini, M.; Patrizi, G.; Tibuzzi, M.; Delle Monache, G.; Vittori, R.; Bianco, G.; Currie, D.; Intaglietta, N.; Salvatori, L.; Lops, C.; Contessa, S.; Porcelli, L.; Mondaini, C.; Tuscano, P.; Maiello, M.
2017-11-01
The SCF_Lab (Satellite/lunar/gnss laser ranging and altimetry Characterization Facility Laboratory) of INFNLNF is designed to cover virtually LRAs (Laser Retroreflector Arrays) of CCRs (Cube Corner Retroreflectors) for missions in the whole solar system, with a modular organization of its instrumentation, two redundant SCF (SCF_Lab Characterization Facilities), and an evolutionary measurement approach, including customization and potentially upgrade on-demand. See http://www.lnf.infn.it/esperimenti/etrusco/ for a general description.
1998-01-01
including the surface they lie on and the edge curves that bind them. Also stored is topological information indicating how all these elements are connected...microchip. This technology researched by Texas Instruments is referred to as a Digital Micromirror Device (DMD) (Burdea & Coiffet, 1994). It has the...stereoscopic imaging system designed to resemble traditional designer drafting boards. The Visionarium uses a 180 degree curved screen providing users with
Concepts for multi-IFU robotic positioning systems
NASA Astrophysics Data System (ADS)
Miziarski, Stan; Brzeski, Jurek; Bland Hawthorn, Joss; Gilbert, James; Goodwin, Michael; Heijmans, Jeroen; Horton, Anthony; Lawrence, Jon; Saunders, Will; Smith, Greg A.; Staszak, Nicholas
2012-09-01
Following the successful commissioning of SAMI (Sydney-AAO Multi-object IFU) the AAO has undertaken concept studies leading to a design of a new instrument for the AAT (Hector). It will use an automated robotic system for the deployment of fibre hexabundles to the focal plane. We have analysed several concepts, which could be applied in the design of new instruments or as a retrofit to existing positioning systems. We look at derivatives of Starbugs that could handle a large fibre bundle as well as modifications to pick and place robots like 2dF or OzPoz. One concept uses large magnetic buttons that adhere to a steel field plate with substantial force. To move them we replace the gripper with a pneumatic device, which engages with the button and injects it with compressed air, thus forming a magnet preloaded air bearing allowing virtually friction-less repositioning of the button by a gantry or an R-Theta robot. New fibre protection, guiding and retraction systems are also described. These developments could open a practical avenue for the upgrade to a number of instruments.
Labview Interface Concepts Used in NASA Scientific Investigations and Virtual Instruments
NASA Technical Reports Server (NTRS)
Roth, Don J.; Parker, Bradford H.; Rapchun, David A.; Jones, Hollis H.; Cao, Wei
2001-01-01
This article provides an overview of several software control applications developed for NASA using LabVIEW. The applications covered here include (1) an Ultrasonic Measurement System for nondestructive evaluation of advanced structural materials, an Xray Spectral Mapping System for characterizing the quality and uniformity of developing photon detector materials, (2) a Life Testing System for these same materials, (3) and the instrument panel for an aircraft mounted Cloud Absorption Radiometer that measures the light scattered by clouds in multiple spectral bands. Many of the software interface concepts employed are explained. Panel layout and block diagram (code) strategies for each application are described. In particular, some of the more unique features of the applications' interfaces and source code are highlighted. This article assumes that the reader has a beginner-to-intermediate understanding of LabVIEW methods.
NASA Astrophysics Data System (ADS)
Yamauchi, Makoto; Iwamoto, Kazuyo
2010-05-01
Line heating is a skilled task in shipbuilding to shape the outer plates of ship hulls. Real-time information on the deformation of the plates during the task would be helpful to workers performing this process. Therefore, we herein propose an interactive scheme for supporting workers performing line heating; the system provides such information through an optical shape measurement instrument combined with an augmented reality (AR) system. The instrument was designed and fabricated so that the measured data were represented using coordinates based on fiducial markers. Since the markers were simultaneously used in the AR system for the purpose of positioning, the data could then be displayed to the workers through a head-mounted display as a virtual image overlaid on the plates. Feedback of the shape measurement results was thus performed in real time using the proposed system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpaia, P.; Technology Department, European Organization for Nuclear Research; Blanco, E.
2015-07-15
A transducer based on a virtual flow meter is proposed for monitoring helium distribution and consumption in cryogenic systems for particle accelerators. The virtual flow meter allows technical and economical constraints, preventing installation of physical instruments in all the needed measurement points, to be overcome. Virtual flow meter performance for the alternative models of Samson [ http://www.samson.de (2015)] and Sereg-Schlumberger [ http://www.slb.com/ (2015)] is compared with the standard IEC 60534-2-1 [Industrial-process control valves—Part 2-1: Flow capacity—sizing equations for fluid flow under installed conditions (2011), https://webstore.iec.ch/publication/2461], for a large temperature range, for both gaseous and liquid helium phases, and for differentmore » pressure drops. Then, the calibration function of the transducer is derived. Finally, the experimental validation for the helium gaseous state on the test station for superconducting magnets in the laboratory SM18 [Pirotte et al., AIP Conf. Proc. 1573, 187 (2014)] at CERN is reported.« less
Virtual reality-based assessment of basic laparoscopic skills using the Leap Motion controller.
Lahanas, Vasileios; Loukas, Constantinos; Georgiou, Konstantinos; Lababidi, Hani; Al-Jaroudi, Dania
2017-12-01
The majority of the current surgical simulators employ specialized sensory equipment for instrument tracking. The Leap Motion controller is a new device able to track linear objects with sub-millimeter accuracy. The aim of this study was to investigate the potential of a virtual reality (VR) simulator for assessment of basic laparoscopic skills, based on the low-cost Leap Motion controller. A simple interface was constructed to simulate the insertion point of the instruments into the abdominal cavity. The controller provided information about the position and orientation of the instruments. Custom tools were constructed to simulate the laparoscopic setup. Three basic VR tasks were developed: camera navigation (CN), instrument navigation (IN), and bimanual operation (BO). The experiments were carried out in two simulation centers: MPLSC (Athens, Greece) and CRESENT (Riyadh, Kingdom of Saudi Arabia). Two groups of surgeons (28 experts and 21 novices) participated in the study by performing the VR tasks. Skills assessment metrics included time, pathlength, and two task-specific errors. The face validity of the training scenarios was also investigated via a questionnaire completed by the participants. Expert surgeons significantly outperformed novices in all assessment metrics for IN and BO (p < 0.05). For CN, a significant difference was found in one error metric (p < 0.05). The greatest difference between the performances of the two groups occurred for BO. Qualitative analysis of the instrument trajectory revealed that experts performed more delicate movements compared to novices. Subjects' ratings on the feedback questionnaire highlighted the training value of the system. This study provides evidence regarding the potential use of the Leap Motion controller for assessment of basic laparoscopic skills. The proposed system allowed the evaluation of dexterity of the hand movements. Future work will involve comparison studies with validated simulators and development of advanced training scenarios on current Leap Motion controller.
Complete LabVIEW-Controlled HPLC Lab: An Advanced Undergraduate Experience
ERIC Educational Resources Information Center
Beussman, Douglas J.; Walters, John P.
2017-01-01
Virtually all modern chemical instrumentation is controlled by computers. While software packages are continually becoming easier to use, allowing for more researchers to utilize more complex instruments, conveying some level of understanding as to how computers and instruments communicate is still an important part of the undergraduate…
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Zeng, Lvming; Huang, Zhen; Zeng, Wenping
2010-10-01
The tongue coating diagnosis is an important part in tongue diagnosis of traditional Chinese medicine (TCM).The change of the thickness and color of the tongue coating can reflect the pathological state for the patient. By observing the tongue coating, a Chinese doctor can determine the nature or severity of disease. Because some limitations existed in the tongue diagnosis method of TCM and the method based on the digital image processing, a novel tongue coating analyzer(TCA) based on the concave grating monochrometer and virtual instrument is developed in this paper. This analyzer consists of the light source system, check cavity, optical fiber probe, concave grating monochrometer, spectrum detector system based on CCD and data acquisition (DAQ) card, signal processing circuit system, computer and data analysis software based on LabVIEW, etc. Experimental results show that the novel TCA's spectral range can reach 300-1000 nm, its wavelength resolution can reach 1nm, and this TCA uses the back-split-light technology and multi-channel parallel analysis. Compared with the TCA based on the image processing technology, this TCA has many advantages, such as, compact volume, simpler algorithm, faster processing speed, higher accuracy, cheaper cost and real-time handle data and display the result, etc. Therefore, it has the greatly potential values in the fields of the tongue coating diagnosis for TCM.
Chen, Xiaojun; Xu, Lu; Wang, Yiping; Wang, Huixiang; Wang, Fang; Zeng, Xiangsen; Wang, Qiugen; Egger, Jan
2015-06-01
The surgical navigation system has experienced tremendous development over the past decades for minimizing the risks and improving the precision of the surgery. Nowadays, Augmented Reality (AR)-based surgical navigation is a promising technology for clinical applications. In the AR system, virtual and actual reality are mixed, offering real-time, high-quality visualization of an extensive variety of information to the users (Moussa et al., 2012) [1]. For example, virtual anatomical structures such as soft tissues, blood vessels and nerves can be integrated with the real-world scenario in real time. In this study, an AR-based surgical navigation system (AR-SNS) is developed using an optical see-through HMD (head-mounted display), aiming at improving the safety and reliability of the surgery. With the use of this system, including the calibration of instruments, registration, and the calibration of HMD, the 3D virtual critical anatomical structures in the head-mounted display are aligned with the actual structures of patient in real-world scenario during the intra-operative motion tracking process. The accuracy verification experiment demonstrated that the mean distance and angular errors were respectively 0.809±0.05mm and 1.038°±0.05°, which was sufficient to meet the clinical requirements. Copyright © 2015 Elsevier Inc. All rights reserved.
[Artificial Intelligence in Drug Discovery].
Fujiwara, Takeshi; Kamada, Mayumi; Okuno, Yasushi
2018-04-01
According to the increase of data generated from analytical instruments, application of artificial intelligence(AI)technology in medical field is indispensable. In particular, practical application of AI technology is strongly required in "genomic medicine" and "genomic drug discovery" that conduct medical practice and novel drug development based on individual genomic information. In our laboratory, we have been developing a database to integrate genome data and clinical information obtained by clinical genome analysis and a computational support system for clinical interpretation of variants using AI. In addition, with the aim of creating new therapeutic targets in genomic drug discovery, we have been also working on the development of a binding affinity prediction system for mutated proteins and drugs by molecular dynamics simulation using supercomputer "Kei". We also have tackled for problems in a drug virtual screening. Our developed AI technology has successfully generated virtual compound library, and deep learning method has enabled us to predict interaction between compound and target protein.
Development and comparison of projection and image space 3D nodule insertion techniques
NASA Astrophysics Data System (ADS)
Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Samei, Ehsan
2016-04-01
This study aimed to develop and compare two methods of inserting computerized virtual lesions into CT datasets. 24 physical (synthetic) nodules of three sizes and four morphologies were inserted into an anthropomorphic chest phantom (LUNGMAN, KYOTO KAGAKU). The phantom was scanned (Somatom Definition Flash, Siemens Healthcare) with and without nodules present, and images were reconstructed with filtered back projection and iterative reconstruction (SAFIRE) at 0.6 mm slice thickness using a standard thoracic CT protocol at multiple dose settings. Virtual 3D CAD models based on the physical nodules were virtually inserted (accounting for the system MTF) into the nodule-free CT data using two techniques. These techniques include projection-based and image-based insertion. Nodule volumes were estimated using a commercial segmentation tool (iNtuition, TeraRecon, Inc.). Differences were tested using paired t-tests and R2 goodness of fit between the virtually and physically inserted nodules. Both insertion techniques resulted in nodule volumes very similar to the real nodules (<3% difference) and in most cases the differences were not statistically significant. Also, R2 values were all <0.97 for both insertion techniques. These data imply that these techniques can confidently be used as a means of inserting virtual nodules in CT datasets. These techniques can be instrumental in building hybrid CT datasets composed of patient images with virtually inserted nodules.
The virtual laboratory: a new on-line resource for the history of psychology.
Schmidgen, Henning; Evans, Rand B
2003-05-01
The authors provide a description of the Virtual Laboratory at Department III of the Max Planck Institute for the History of Science in Berlin. The Virtual Laboratory currently provides Internet links to rooms that present texts, instruments, model organisms, research sites, and biographies. Existing links provide access to a library of journals, handbooks, monographs, and trade catalogues; research institutes and laboratories; biographies and bibliographic essays; and essays by contemporary researchers. Historians of psychology are encouraged to submit photographic material and essays to the Virtual Laboratory.
Shang, D; Carnahan, H; Dubrowski, A
2006-01-01
Laparoscopic training, under simulated settings, benefits from high fidelity models of the actual environment. This study was aimed at reducing uncertainty in the displacement and loads experienced by a laparoscopic instrument during surgical training. Infrared tracking of laparoscopic instruments is ineffective when real tissues attenuate the infrared signals. Incorporating the use of strain gauges for tip deflection measurements allows for online motion and load tracking during a procedure. Strain gauge voltages and infrared markers indicating displacement were both linear with respect to loads up to 700 grams. The resultant strain gauge voltage was equated to deflection values with a calibration constant. The results serve two purposes. First, it may enable the tracking and analysis of the skill level of novice surgeons using bench models. Second, the mechanical model of each instrument can be quantified and incorporated into virtual simulations, thus increasing model fidelity, effectively leading to better learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stansfield, S.; Shawver, D.; Sobel, A.
This paper presents a prototype virtual reality (VR) system for training medical first responders. The initial application is to battlefield medicine and focuses on the training of medical corpsmen and other front-line personnel who might be called upon to provide emergency triage on the battlefield. The system is built upon Sandia`s multi-user, distributed VR platform and provides an interactive, immersive simulation capability. The user is represented by an Avatar and is able to manipulate his virtual instruments and carry out medical procedures. A dynamic casualty simulation provides realistic cues to the patient`s condition (e.g. changing blood pressure and pulse) andmore » responds to the actions of the trainee (e.g. a change in the color of a patient`s skin may result from a check of the capillary refill rate). The current casualty simulation is of an injury resulting in a tension pneumothorax. This casualty model was developed by the University of Pennsylvania and integrated into the Sandia MediSim system.« less
Gestural interaction in a virtual environment
NASA Astrophysics Data System (ADS)
Jacoby, Richard H.; Ferneau, Mark; Humphries, Jim
1994-04-01
This paper discusses the use of hand gestures (i.e., changing finger flexion) within a virtual environment (VE). Many systems now employ static hand postures (i.e., static finger flexion), often coupled with hand translations and rotations, as a method of interacting with a VE. However, few systems are currently using dynamically changing finger flexion for interacting with VEs. In our system, the user wears an electronically instrumented glove. We have developed a simple algorithm for recognizing gestures for use in two applications: automotive design and visualization of atmospheric data. In addition to recognizing the gestures, we also calculate the rate at which the gestures are made and the rate and direction of hand movement while making the gestures. We report on our experiences with the algorithm design and implementation, and the use of the gestures in our applications. We also talk about our background work in user calibration of the glove, as well as learned and innate posture recognition (postures recognized with and without training, respectively).
Novel design of interactive multimodal biofeedback system for neurorehabilitation.
Huang, He; Chen, Y; Xu, W; Sundaram, H; Olson, L; Ingalls, T; Rikakis, T; He, Jiping
2006-01-01
A previous design of a biofeedback system for Neurorehabilitation in an interactive multimodal environment has demonstrated the potential of engaging stroke patients in task-oriented neuromotor rehabilitation. This report explores the new concept and alternative designs of multimedia based biofeedback systems. In this system, the new interactive multimodal environment was constructed with abstract presentation of movement parameters. Scenery images or pictures and their clarity and orientation are used to reflect the arm movement and relative position to the target instead of the animated arm. The multiple biofeedback parameters were classified into different hierarchical levels w.r.t. importance of each movement parameter to performance. A new quantified measurement for these parameters were developed to assess the patient's performance both real-time and offline. These parameters were represented by combined visual and auditory presentations with various distinct music instruments. Overall, the objective of newly designed system is to explore what information and how to feedback information in interactive virtual environment could enhance the sensorimotor integration that may facilitate the efficient design and application of virtual environment based therapeutic intervention.
Haptic feedback in OP:Sense - augmented reality in telemanipulated robotic surgery.
Beyl, T; Nicolai, P; Mönnich, H; Raczkowksy, J; Wörn, H
2012-01-01
In current research, haptic feedback in robot assisted interventions plays an important role. However most approaches to haptic feedback only regard the mapping of the current forces at the surgical instrument to the haptic input devices, whereas surgeons demand a combination of medical imaging and telemanipulated robotic setups. In this paper we describe how this feature is integrated in our robotic research platform OP:Sense. The proposed method allows the automatic transfer of segmented imaging data to the haptic renderer and therefore allows enriching the haptic feedback with virtual fixtures based on imaging data. Anatomical structures are extracted from pre-operative generated medical images or virtual walls are defined by the surgeon inside the imaging data. Combining real forces with virtual fixtures can guide the surgeon to the regions of interest as well as helps to prevent the risk of damage to critical structures inside the patient. We believe that the combination of medical imaging and telemanipulation is a crucial step for the next generation of MIRS-systems.
A 3D virtual reality simulator for training of minimally invasive surgery.
Mi, Shao-Hua; Hou, Zeng-Gunag; Yang, Fan; Xie, Xiao-Liang; Bian, Gui-Bin
2014-01-01
For the last decade, remarkable progress has been made in the field of cardiovascular disease treatment. However, these complex medical procedures require a combination of rich experience and technical skills. In this paper, a 3D virtual reality simulator for core skills training in minimally invasive surgery is presented. The system can generate realistic 3D vascular models segmented from patient datasets, including a beating heart, and provide a real-time computation of force and force feedback module for surgical simulation. Instruments, such as a catheter or guide wire, are represented by a multi-body mass-spring model. In addition, a realistic user interface with multiple windows and real-time 3D views are developed. Moreover, the simulator is also provided with a human-machine interaction module that gives doctors the sense of touch during the surgery training, enables them to control the motion of a virtual catheter/guide wire inside a complex vascular model. Experimental results show that the simulator is suitable for minimally invasive surgery training.
The DFKI Competence Center for Ambient Assisted Living
NASA Astrophysics Data System (ADS)
Frey, Jochen; Stahl, Christoph; Röfer, Thomas; Krieg-Brückner, Bernd; Alexandersson, Jan
The DFKI Competence Center for Ambient Assisted Living (CCAAL) is a cross-project and cross-department virtual organization within the German Research Center for Artificial Intelligence coordinating and conducting research and development in the area of Ambient Assisted Living (AAL). Our demonstrators range from multimodal speech dialog systems to fully instrumented environments allowing the development of intelligent assistant systems, for instance an autonomous wheelchair, or the recognition and processing of everyday activities in a smart home. These innovative technologies are then tested, evaluated and demonstrated in DFKI's living labs.
Immersive Virtual Reality with Applications to Tele-Operation and Training
2016-03-07
to design accurate models for the control of a remote agent by retargeting human gestures (or body part movements) on the control structure of the...which is designed to co-operate with human inhabitants will need to posses, on some levels, a theory of mind [20]. This will enable the system to...University of Houston-Victoria, a designated Hispanic Serving Institution of higher education. The requested equipment and instrumentation will be
CPU Performance Counter-Based Problem Diagnosis for Software Systems
2009-09-01
application servers and implementation techniques), this thesis only used the Enterprise Java Bean (EJB) SessionBean version of RUBiS. The PHP and Servlet ...collection statistics at the Java Virtual Machine (JVM) level can be reused for any Java application. Other examples of gray-box instrumentation include path...used gray-box approaches. For example, PinPoint [11, 14] and [29] use request tracing to diagnose Java exceptions, endless calls, and null calls in
NASA Astrophysics Data System (ADS)
Rivers, Thane D.
1992-06-01
An Automated Scanning Monochromator was developed using: an Acton Research Corporation (ARC) Monochromator, Ealing Photomultiplier Tube and a Macintosh PC in conjunction with LabVIEW software. The LabVIEW Virtual Instrument written to operate the ARC Monochromator is a mouse driven user friendly program developed for automated spectral data measurements. Resolution and sensitivity of the Automated Scanning Monochromator System were determined experimentally. The Automated monochromator was then used for spectral measurements of a Platinum Lamp. Additionally, the reflectivity curve for a BaSO4 coated screen has been measured. Reflectivity measurements indicate a large discrepancy with expected results. Further analysis of the reflectivity experiment is required for conclusive results.
Stock density managed in real-time
USDA-ARS?s Scientific Manuscript database
The spatio-temporal management of stocking density will be possible once virtual fencing (VF) becomes a commercial reality. VF uses sensory cues (currently audio and electrical stimulation) to change an instrumented animal's forward direction of movement. Free-ranging cattle instrumented with VF e...
A new method for aerodynamic test of high altitude propellers
NASA Astrophysics Data System (ADS)
Gong, Xiying; Zhang, Lin
A ground test system is designed for aerodynamic performance tests of high altitude propellers. The system is consisted of stable power supply, servo motors, two-component balance constructed by tension-compression sensors, ultrasonic anemometer, data acquisition module. It is loaded on a truck to simulate propellers' wind-tunnel test for different wind velocities at low density circumstance. The graphical programming language LABVIEW for developing virtual instrument is used to realize the test system control and data acquisition. Aerodynamic performance test of a propeller with 6.8 m diameter was completed by using this system. The results verify the feasibility of the ground test method.
A systematic review of phacoemulsification cataract surgery in virtual reality simulators.
Lam, Chee Kiang; Sundaraj, Kenneth; Sulaiman, Mohd Nazri
2013-01-01
The aim of this study was to review the capability of virtual reality simulators in the application of phacoemulsification cataract surgery training. Our review included the scientific publications on cataract surgery simulators that had been developed by different groups of researchers along with commercialized surgical training products, such as EYESI® and PhacoVision®. The review covers the simulation of the main cataract surgery procedures, i.e., corneal incision, capsulorrhexis, phacosculpting, and intraocular lens implantation in various virtual reality surgery simulators. Haptics realism and visual realism of the procedures are the main elements in imitating the actual surgical environment. The involvement of ophthalmology in research on virtual reality since the early 1990s has made a great impact on the development of surgical simulators. Most of the latest cataract surgery training systems are able to offer high fidelity in visual feedback and haptics feedback, but visual realism, such as the rotational movements of an eyeball with response to the force applied by surgical instruments, is still lacking in some of them. The assessment of the surgical tasks carried out on the simulators showed a significant difference in the performance before and after the training.
Visualization of spatial-temporal data based on 3D virtual scene
NASA Astrophysics Data System (ADS)
Wang, Xianghong; Liu, Jiping; Wang, Yong; Bi, Junfang
2009-10-01
The main purpose of this paper is to realize the expression of the three-dimensional dynamic visualization of spatialtemporal data based on three-dimensional virtual scene, using three-dimensional visualization technology, and combining with GIS so that the people's abilities of cognizing time and space are enhanced and improved by designing dynamic symbol and interactive expression. Using particle systems, three-dimensional simulation, virtual reality and other visual means, we can simulate the situations produced by changing the spatial location and property information of geographical entities over time, then explore and analyze its movement and transformation rules by changing the interactive manner, and also replay history and forecast of future. In this paper, the main research object is the vehicle track and the typhoon path and spatial-temporal data, through three-dimensional dynamic simulation of its track, and realize its timely monitoring its trends and historical track replaying; according to visualization techniques of spatialtemporal data in Three-dimensional virtual scene, providing us with excellent spatial-temporal information cognitive instrument not only can add clarity to show spatial-temporal information of the changes and developments in the situation, but also be used for future development and changes in the prediction and deduction.
New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems
NASA Astrophysics Data System (ADS)
Eckardt, Andreas; Börner, Anko; Lehmann, Frank
2007-10-01
The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.
Kim, Jong Bae; Brienza, David M
2006-01-01
A Remote Accessibility Assessment System (RAAS) that uses three-dimensional (3-D) reconstruction technology is being developed; it enables clinicians to assess the wheelchair accessibility of users' built environments from a remote location. The RAAS uses commercial software to construct 3-D virtualized environments from photographs. We developed custom screening algorithms and instruments for analyzing accessibility. Characteristics of the camera and 3-D reconstruction software chosen for the system significantly affect its overall reliability. In this study, we performed an accuracy assessment to verify that commercial hardware and software can construct accurate 3-D models by analyzing the accuracy of dimensional measurements in a virtual environment and a comparison of dimensional measurements from 3-D models created with four cameras/settings. Based on these two analyses, we were able to specify a consumer-grade digital camera and PhotoModeler (EOS Systems, Inc, Vancouver, Canada) software for this system. Finally, we performed a feasibility analysis of the system in an actual environment to evaluate its ability to assess the accessibility of a wheelchair user's typical built environment. The field test resulted in an accurate accessibility assessment and thus validated our system.
Kosterhon, Michael; Gutenberg, Angelika; Kantelhardt, Sven R; Conrad, Jens; Nimer Amr, Amr; Gawehn, Joachim; Giese, Alf
2017-08-01
A feasibility study. To develop a method based on the DICOM standard which transfers complex 3-dimensional (3D) trajectories and objects from external planning software to any navigation system for planning and intraoperative guidance of complex spinal procedures. There have been many reports about navigation systems with embedded planning solutions but only few on how to transfer planning data generated in external software. Patients computerized tomography and/or magnetic resonance volume data sets of the affected spinal segments were imported to Amira software, reconstructed to 3D images and fused with magnetic resonance data for soft-tissue visualization, resulting in a virtual patient model. Objects needed for surgical plans or surgical procedures such as trajectories, implants or surgical instruments were either digitally constructed or computerized tomography scanned and virtually positioned within the 3D model as required. As crucial step of this method these objects were fused with the patient's original diagnostic image data, resulting in a single DICOM sequence, containing all preplanned information necessary for the operation. By this step it was possible to import complex surgical plans into any navigation system. We applied this method not only to intraoperatively adjustable implants and objects under experimental settings, but also planned and successfully performed surgical procedures, such as the percutaneous lateral approach to the lumbar spine following preplanned trajectories and a thoracic tumor resection including intervertebral body replacement using an optical navigation system. To demonstrate the versatility and compatibility of the method with an entirely different navigation system, virtually preplanned lumbar transpedicular screw placement was performed with a robotic guidance system. The presented method not only allows virtual planning of complex surgical procedures, but to export objects and surgical plans to any navigation or guidance system able to read DICOM data sets, expanding the possibilities of embedded planning software.
Development of low cost and accurate homemade sensor system based on Surface Plasmon Resonance (SPR)
NASA Astrophysics Data System (ADS)
Laksono, F. D.; Supardianningsih; Arifin, M.; Abraha, K.
2018-04-01
In this paper, we developed homemade and computerized sensor system based on Surface Plasmon Resonance (SPR). The developed systems consist of mechanical system instrument, laser power sensor, and user interface. The mechanical system development that uses anti-backlash gear design was successfully able to enhance the angular resolution angle of incidence laser up to 0.01°. In this system, the laser detector acquisition system and stepper motor controller utilizing Arduino Uno which is easy to program, flexible, and low cost, was used. Furthermore, we employed LabView’s user interface as the virtual instrument for facilitating the sample measurement and for transforming the data recording directly into the digital form. The test results using gold-deposited half-cylinder prism showed the Total Internal Reflection (TIR) angle of 41,34°± 0,01° and SPR angle of 44,20°± 0,01°, respectively. The result demonstrated that the developed system managed to reduce the measurement duration and data recording errors caused by human error. Also, the test results also concluded that the system’s measurement is repeatable and accurate.
ERIC Educational Resources Information Center
Rodriguez, Carolina; Hudson, Roland; Niblock, Chantelle
2018-01-01
Combinations of Conventional Studio and Virtual Design Studio (VDS) have created valuable learning environments that take advantage of different instruments of communication and interaction. However, past experiences have reported limitations in regards to student engagement and motivation, especially when the studio projects encourage abstraction…
Madasamy, Thangamuthu; Pandiaraj, Manickam; Balamurugan, Murugesan; Karnewar, Santosh; Benjamin, Alby Robson; Venkatesh, Krishna Arun; Vairamani, Kanagavel; Kotamraju, Srigiridhar; Karunakaran, Chandran
2012-10-15
In this work, we have designed and developed a novel and cost effective virtual electrochemical analyzer for the measurement of NO in exhaled breath and from hydrogen peroxide stimulated endothelial cells using home-made potentiostat. Here, data acquisition system (NI MyDAQ) was used to acquire the data from the electrochemical oxidation of NO mediated by copper, zinc superoxide dismutase (Cu,ZnSOD). The electrochemical control programs (graphical user-interface software) were developed using LabVIEW 10.0 to sweep the potential, acquire the current response and process the acquired current signal. The Cu,ZnSOD (SOD1) immobilized on the carbon nanotubes in polypyrrole modified platinum electrode was used as the NO biosensor. The electrochemical behavior of the SOD1 modified electrode exhibited the characteristic quasi-reversible redox peak at the potential, +0.06 V vs. Ag/AgCl. The biological interferences were eliminated by nafion coated SOD1 electrode and then NO was measured selectively. Further, this biosensor showed a wide linear range of response over the concentration of NO from 0.1 μM to 1 mM with a detection limit of 0.1 μM and high sensitivity of 1.1 μA μM(-1). The electroanalytical results obtained here using the developed virtual electrochemical instrument were also compared with the standard cyclic voltammetry instrument and found in agreement with each other. Copyright © 2012 Elsevier B.V. All rights reserved.
Using a virtual patient system for the teaching of pharmaceutical care.
Menendez, Elisa; Balisa-Rocha, Blície; Jabbur-Lopes, Monique; Costa, Wanderson; Nascimento, José Rafael; Dósea, Marcos; Silva, Leila; Lyra Junior, Divaldo
2015-09-01
The communication skills of pharmacists are essential for the identification and reduction of patient́s drug related problems. Therefore, Pharmacy courses started the process of teaching Pharmaceutical Care to students in order to improve their communication skills. The use of virtual patients (VP) has been a widely used technique in health care courses, but many of the VP tools in Pharmacy field are in English and do not have clinical cases that are common in tropical countries, such as Brazil. The aim of this work is to describe the PharmaVP system, developed with the purpose of training Latin America students in Pharmaceutical Care. The main differential of PharmaVP is the availability in three languages (Portuguese, English and Spanish) and the possibility of clinical case evolution, simulating several visits made by the patient. The system was developed according to an incremental and interactive methodology, well suited for conducting multidisciplinary projects. Real clinical cases were collected from a Pharmaceutical Care program and added in PharmaVP to simulate the virtual patients. Then, 31 students of a Pharmacy course were trained and invited to participate of the evaluation study. They used the software and answered adapted instruments that assess the students' acceptance of, use of, learning of, and satisfaction with the system. The results showed that the students found the cases realistic and learned significantly using the software. Another positive point is that the application process of PharmaVP did not consume much time. We can conclude that the virtual patient tool contributed to the development of the skills required for the practice of Pharmaceutical Care, but should be used as complementary technique. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Mixed-reality simulation for neurosurgical procedures.
Bova, Frank J; Rajon, Didier A; Friedman, William A; Murad, Gregory J; Hoh, Daniel J; Jacob, R Patrick; Lampotang, Samsun; Lizdas, David E; Lombard, Gwen; Lister, J Richard
2013-10-01
Surgical education is moving rapidly to the use of simulation for technical training of residents and maintenance or upgrading of surgical skills in clinical practice. To optimize the learning exercise, it is essential that both visual and haptic cues are presented to best present a real-world experience. Many systems attempt to achieve this goal through a total virtual interface. To demonstrate that the most critical aspect in optimizing a simulation experience is to provide the visual and haptic cues, allowing the training to fully mimic the real-world environment. Our approach has been to create a mixed-reality system consisting of a physical and a virtual component. A physical model of the head or spine is created with a 3-dimensional printer using deidentified patient data. The model is linked to a virtual radiographic system or an image guidance platform. A variety of surgical challenges can be presented in which the trainee must use the same anatomic and radiographic references required during actual surgical procedures. Using the aforementioned techniques, we have created simulators for ventriculostomy, percutaneous stereotactic lesion procedure for trigeminal neuralgia, and spinal instrumentation. The design and implementation of these platforms are presented. The system has provided the residents an opportunity to understand and appreciate the complex 3-dimensional anatomy of the 3 neurosurgical procedures simulated. The systems have also provided an opportunity to break procedures down into critical segments, allowing the user to concentrate on specific areas of deficiency.
NASA Astrophysics Data System (ADS)
Akbar, M. N.; Firman, H.; Rusyati, L.
2017-02-01
Critical thinking is skill and ability to use of risk taking creativity to make a decision and knowledge as a result, analysis and synthesis that, evaluation, to acquire, information search, to develop thinking, as an individual aware of his or her own thinking. The aim of this study is to develop the science virtual test to measure students’ critical thinking on living things and environmental sustainability theme. The research method that is used in this research was descriptive research. The development of science virtual test item consist of five steps: (1) content analysis; (2) constructing the instrument (multiple choice) based on the elements of critical thinking by Inch; (3) validity judgment of the instrument by the expert; (4) legibility test of the instrument; (5) conducting the large field test. On the large field test was gained the results of validity and reliability of the test, difficulty index, discriminating power, and quality of distractor. The subjects of research were 8th grade students at International Junior High School in Bandung with 125 total of respondents. The coefficient alpha (α) was 0.747, the reliability of the test was categorized as ‘high’ and value of RXY correlation was 0.63 which mean that the validity of the test was categorized as ‘high’. These means that science virtual test can be used to measure student’s critical thinking with a good consistency. It is expected for other researcher to take this description as one of the basic information to be considered in developing science virtual test for improving students’ critical thinking by various kind of topic.
NASA Astrophysics Data System (ADS)
Kredler, L.; Häußler, W.; Martin, N.; Böni, P.
The flux is still a major limiting factor in neutron research. For instruments being supplied by cold neutrons using neutron guides, both at present steady-state and at new spallation neutron sources, it is therefore important to optimize the instrumental setup and the neutron guidance. Optimization of neutron guide geometry and of the instrument itself can be performed by numerical ray-tracing simulations using existing open-access codes. In this paper, we discuss how such Monte Carlo simulations have been employed in order to plan improvements of the Neutron Resonant Spin Echo spectrometer RESEDA (FRM II, Germany) as well as the neutron guides before and within the instrument. The essential components have been represented with the help of the McStas ray-tracing package. The expected intensity has been tested by means of several virtual detectors, implemented in the simulation code. Comparison between simulations and preliminary measurements results shows good agreement and demonstrates the reliability of the numerical approach. These results will be taken into account in the planning of new components installed in the guide system.
Teaching Surgical Hysteroscopy with a Computer
Lefebvre; Cote; Lefebvre
1996-08-01
Using a hysteroscope can be simulated on a computer. It will improve physician training by measuring basic knowledge and abilities, allow different interventions and anatomic variations, minimize the trauma of surgical intervention, and reduce operative casualties. An integrated questionnaire covers instrumentation, fluid infusion, power source, indications and preparation for endometrial ablation, surgical techniques, and complications to evaluate the user's knowledge. The operation simulation then proceeds. In the endometrial cavity, by virtual simulation, the operating field should appear in real time to allow physicians to adapt the trajectory of the instruments. The computer is an IBM PC compatible. We use a modified joystick with optical encoders to know the instrument position. The simulation can be repeated as desired. An evaluation system is integrated in the software to keep the user informed on the amount of burn area(s) that have been completed. This prototype model is available.
LapSim virtual reality laparoscopic simulator reflects clinical experience in German surgeons.
Langelotz, C; Kilian, M; Paul, C; Schwenk, W
2005-11-01
The aim of this study was to analyze the ability of a training module on a virtual laparoscopic simulator to assess surgical experience in laparoscopy. One hundred and fifteen participants at the 120th annual convent of the German surgical society took part in this study. All participants were stratified into two groups, one with laparoscopic experience of less than 50 operations (group 1, n=61) and one with laparoscopic experience of more than 50 laparoscopic operations (group 2, n=54). All subjects completed a laparoscopic training module consisting of five different exercises for navigation, coordination, grasping, cutting and clipping. The time to perform each task was measured, as were the path lengths of the instruments and their respective angles representing the economy of the movements. Results between groups were compared using chi(2) or Mann-Whitney U-test. Group 1 needed more time for completion of the exercises (median 424 s, range 99-1,376 s) than group 2 (median 315 s, range 168-625 s) (P<0.01). Instrument movements were less economic in group 1 with larger angular pathways, e.g. in the cutting exercise (median 352 degrees , range 104-1,628 degrees vs median 204 degrees , range 107-444 degrees , P<0.01), and longer path lengths (each instrument P<0.05). As time for completion of exercises, instrument path lengths and angular paths are indicators of clinical experience, it can be concluded that laparoscopic skills acquired in the operating room transfer into virtual reality. A laparoscopic simulator can serve as an instrument for the assessment of experience in laparoscopic surgery.
World Virtual Observatory Organization
NASA Astrophysics Data System (ADS)
Ignatyev, Mikhail; Pinigin, Gennadij
On the base of experience of our Unoversity and Observatory we investigate the seven blocks model of virtual organization for consolidation of resources. This model consists of the next blocks: 1.Population-scientists students robots and agents. 2.Aspiration of population groups. 3.Territory. 4.Production. 5.Ecology and safety. 6.Finance. 7. External relations - input and output flows of population information resources.The world virtual observatory is the virtual world which consists of three groups of variables - appearances essences and structured uncertainty which defines the number and distribution of arbitrary coefficients in equivalent equations. The consolodation of recources permit to create the large telescopes with distributed structure on our planet and cosmos. Virtual instruments can have the best characteristics by means of collective effects which have investigated in our paper.
A Virtual Room to Enhance Writing Skills in the EFL Class
ERIC Educational Resources Information Center
Ochoa Alpala, Dayra Piedad; Medina Peña, Nieves
2014-01-01
This article reports an action research that intended to study to what extent students shape their writing skill in English through the use of a virtual room. As the study, we randomly selected six ninth graders in high school from thirty two students at a Colombian private institution. Three instruments were used, namely, interviews, students'…
NASA Astrophysics Data System (ADS)
Rusyati, Lilit; Firman, Harry
2017-05-01
This research was motivated by the importance of multiple-choice questions that indicate the elements and sub-elements of critical thinking and implementation of computer-based test. The method used in this research was descriptive research for profiling the validation of science virtual test to measure students' critical thinking in junior high school. The participant is junior high school students of 8th grade (14 years old) while science teacher and expert as the validators. The instrument that used as a tool to capture the necessary data are sheet of an expert judgment, sheet of legibility test, and science virtual test package in multiple choice form with four possible answers. There are four steps to validate science virtual test to measure students' critical thinking on the theme of "Living Things and Environmental Sustainability" in 7th grade Junior High School. These steps are analysis of core competence and basic competence based on curriculum 2013, expert judgment, legibility test and trial test (limited and large trial test). The test item criterion based on trial test are accepted, accepted but need revision, and rejected. The reliability of the test is α = 0.747 that categorized as `high'. It means the test instruments used is reliable and high consistency. The validity of Rxy = 0.63 means that the validity of the instrument was categorized as `high' according to interpretation value of Rxy (correlation).
Measurement Tools for the Immersive Visualization Environment: Steps Toward the Virtual Laboratory.
Hagedorn, John G; Dunkers, Joy P; Satterfield, Steven G; Peskin, Adele P; Kelso, John T; Terrill, Judith E
2007-01-01
This paper describes a set of tools for performing measurements of objects in a virtual reality based immersive visualization environment. These tools enable the use of the immersive environment as an instrument for extracting quantitative information from data representations that hitherto had be used solely for qualitative examination. We provide, within the virtual environment, ways for the user to analyze and interact with the quantitative data generated. We describe results generated by these methods to obtain dimensional descriptors of tissue engineered medical products. We regard this toolbox as our first step in the implementation of a virtual measurement laboratory within an immersive visualization environment.
Virtual Prototyping for Personal Protective Equipment and Workplaces
1999-03-01
Basket Weave Kevlar-29 Fabric Loosely Draped over 20% Ordnance Gelatin Block Subject to Non-Perforating Impact by .38 Special (130-grain FMJ...Fabric and fabric-like materials are very difficult to model because of the dynamic properties of folding, draping , and stretching. How these...Targets Bare Targets with Insitu Instrumentation V7 Instrumented Targets with Loosely Draped Clothing SL Instrumented Targets with Body Armor
Solar Resource Assessment with Sky Imagery and a Virtual Testbed for Sky Imager Solar Forecasting
NASA Astrophysics Data System (ADS)
Kurtz, Benjamin Bernard
In recent years, ground-based sky imagers have emerged as a promising tool for forecasting solar energy on short time scales (0 to 30 minutes ahead). Following the development of sky imager hardware and algorithms at UC San Diego, we present three new or improved algorithms for sky imager forecasting and forecast evaluation. First, we present an algorithm for measuring irradiance with a sky imager. Sky imager forecasts are often used in conjunction with other instruments for measuring irradiance, so this has the potential to decrease instrumentation costs and logistical complexity. In particular, the forecast algorithm itself often relies on knowledge of the current irradiance which can now be provided directly from the sky images. Irradiance measurements are accurate to within about 10%. Second, we demonstrate a virtual sky imager testbed that can be used for validating and enhancing the forecast algorithm. The testbed uses high-quality (but slow) simulations to produce virtual clouds and sky images. Because virtual cloud locations are known, much more advanced validation procedures are possible with the virtual testbed than with measured data. In this way, we are able to determine that camera geometry and non-uniform evolution of the cloud field are the two largest sources of forecast error. Finally, with the assistance of the virtual sky imager testbed, we develop improvements to the cloud advection model used for forecasting. The new advection schemes are 10-20% better at short time horizons.
European Pharmacy Students' Experience With Virtual Patient Technology
Madeira, Filipe
2012-01-01
Objective. To describe how virtual patients are being used to simulate real-life clinical scenarios in undergraduate pharmacy education in Europe. Methods. One hundred ninety-four participants at the 2011 Congress of the European Pharmaceutical Students Association (EPSA) completed an exploratory cross-sectional survey instrument. Results. Of the 46 universities and 23 countries represented at the EPSA Congress, only 12 students from 6 universities in 6 different countries reported having experience with virtual patient technology. The students were satisfied with the virtual patient technology and considered it more useful as a teaching and learning tool than an assessment tool. Respondents who had not used virtual patient technology expressed support regarding its potential benefits in pharmacy education. French and Dutch students were significantly less interested in virtual patient technology than were their counterparts from other European countries. Conclusion. The limited use of virtual patients in pharmacy education in Europe suggests the need for initiatives to increase the use of virtual patient technology and the benefits of computer-assisted learning in pharmacy education. PMID:22919082
European pharmacy students' experience with virtual patient technology.
Cavaco, Afonso Miguel; Madeira, Filipe
2012-08-10
To describe how virtual patients are being used to simulate real-life clinical scenarios in undergraduate pharmacy education in Europe. One hundred ninety-four participants at the 2011 Congress of the European Pharmaceutical Students Association (EPSA) completed an exploratory cross-sectional survey instrument. Of the 46 universities and 23 countries represented at the EPSA Congress, only 12 students from 6 universities in 6 different countries reported having experience with virtual patient technology. The students were satisfied with the virtual patient technology and considered it more useful as a teaching and learning tool than an assessment tool. Respondents who had not used virtual patient technology expressed support regarding its potential benefits in pharmacy education. French and Dutch students were significantly less interested in virtual patient technology than were their counterparts from other European countries. The limited use of virtual patients in pharmacy education in Europe suggests the need for initiatives to increase the use of virtual patient technology and the benefits of computer-assisted learning in pharmacy education.
Heteronyms and avatars: a self-reflective system for artistic activity
NASA Astrophysics Data System (ADS)
Ayiter, Elif
2012-03-01
This text will examine how avatars and the socially interactive, online virtual worlds in which they become embodied may lead to an understanding of identity and of self-perception, how such shifts in awareness may relate to the notion of the undividedly holistic 'self' and whether such perceptual shifts may be instrumental in bringing forth virtual states of experiential creative activity which may also have their precursors in the literary pseudonym, particularly as evidenced in Fernando Pessoa's conception of 'heteronyms.' The output of my study is a self-observational social system of my own creation, of which the agents are a coterie of avatars of both sexes, endowed with distinct physical attributes, both human and non-human; with uniquely emergent personalities which have progressed towards further idiosyncrasy over a period of three years. I, their creator am also the observer of their undertakings, their interactions, and their creative output, all of which manifest as disparate facets of my own persona and my artistic activity.
HIRDLS Cryocooler Subsystem on-orbit Performance
NASA Astrophysics Data System (ADS)
Lock, J.; Stack, R.; Glaister, D. S.; Gully, W.
2006-04-01
This paper describes the HIRDLS (High Resolution Dynamic Limb Sounder) Cryocooler Subsystem (CSS) and its on-orbit flight performance. The HIRDLS Instrument was launched on July 15, 2004 as part of the NASA GSFC EOS Aura platform. Ball Aerospace provided the CSS, which includes the long life Stirling cryocooler (cooling at 59 K), cold plumbing to connect the cooler to the instrument Detector Subsystem, an ambient radiator to reject the cooler dissipation, and a vacuum enclosure system that enabled bench top ground testing. As of August 20, 2005, the cryocooler has over 9,000 hours of continuous operation with performance that exceeds requirements. Of note is that the CSS has experienced virtually no change in performance, including no indication of external contamination related degradation that has been evident on several other cryocooler systems in space flights. This steady performance can be attributed to the multi-layer insulation (MLI) based insulation design, which will be described in the paper.
System of technical vision for autonomous unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Bondarchuk, A. S.
2018-05-01
This paper is devoted to the implementation of image recognition algorithm using the LabVIEW software. The created virtual instrument is designed to detect the objects on the frames from the camera mounted on the UAV. The trained classifier is invariant to changes in rotation, as well as to small changes in the camera's viewing angle. Finding objects in the image using particle analysis, allows you to classify regions of different sizes. This method allows the system of technical vision to more accurately determine the location of the objects of interest and their movement relative to the camera.
Tools Automate Spacecraft Testing, Operation
NASA Technical Reports Server (NTRS)
2010-01-01
"NASA began the Small Explorer (SMEX) program to develop spacecraft to advance astrophysics and space physics. As one of the entities supporting software development at Goddard Space Flight Center, the Hammers Company Inc. (tHC Inc.), of Greenbelt, Maryland, developed the Integrated Test and Operations System to support SMEX. Later, the company received additional Small Business Innovation Research (SBIR) funding from Goddard for a tool to facilitate the development of flight software called VirtualSat. NASA uses the tools to support 15 satellites, and the aerospace industry is using them to develop science instruments, spacecraft computer systems, and navigation and control software."
Yun, M H; Cannon, D; Freivalds, A; Thomas, G
1997-10-01
Hand posture and force, which define aspects of the way an object is grasped, are features of robotic manipulation. A means for specifying these grasping "flavors" has been developed that uses an instrumented glove equipped with joint and force sensors. The new grasp specification system will be used at the Pennsylvania State University (Penn State) in a Virtual Reality based Point-and-Direct (VR-PAD) robotics implementation. Here, an operator gives directives to a robot in the same natural way that human may direct another. Phrases such as "put that there" cause the robot to define a grasping strategy and motion strategy to complete the task on its own. In the VR-PAD concept, pointing is done using virtual tools such that an operator can appear to graphically grasp real items in live video. Rather than requiring full duplication of forces and kinesthetic movement throughout a task as is required in manual telemanipulation, hand posture and force are now specified only once. The grasp parameters then become object flavors. The robot maintains the specified force and hand posture flavors for an object throughout the task in handling the real workpiece or item of interest. In the Computer integrated Manufacturing (CIM) Laboratory at Penn State, hand posture and force data were collected for manipulating bricks and other items that require varying amounts of force at multiple pressure points. The feasibility of measuring desired grasp characteristics was demonstrated for a modified Cyberglove impregnated with Force-Sensitive Resistor (FSR) (pressure sensors in the fingertips. A joint/force model relating the parameters of finger articulation and pressure to various lifting tasks was validated for the instrumented "wired" glove. Operators using such a modified glove may ultimately be able to configure robot grasping tasks in environments involving hazardous waste remediation, flexible manufacturing, space operations and other flexible robotics applications. In each case, the VR-PAD approach will finesse the computational and delay problems of real-time multiple-degree-of-freedom force feedback telemanipulation.
Mega-precovery and data mining of near-Earth asteroids and other Solar System objects
NASA Astrophysics Data System (ADS)
Popescu, M.; Vaduvescu, O.; Char, F.; Curelaru, L.; Euronear Team
2014-07-01
The vast collection of CCD images and photographic plate archives available from the world-wide archives and telescopes is still insufficiently exploited. Within the EURONEAR project we designed two data mining software with the purpose to search very large collections of archives for images which serendipitously include known asteroids or comets in their field, with the main aims to extend the arc and improve the orbits. In this sense, ''Precovery'' (published in 2008, aiming to search all known NEAs in few archives via IMCCE's SkyBoT server) and ''Mega-Precovery'' (published in 2010, querying the IMCCE's Miriade server) were made available to the community via the EURONEAR website (euronear.imcce.fr). Briefly, Mega-Precovery aims to search one or a few known asteroids or comets in a mega-collection including millions of images from some of the largest observatory archives: ESO (15 instruments served by ESO Archive including VLT), NVO (8 instruments served by U.S. NVO Archive), CADC (11 instruments, including HST and Gemini), plus other important instrument archives: SDSS, CFHTLS, INT-WFC, Subaru-SuprimeCam and AAT-WFI, adding together 39 instruments and 4.3 million images (Mar 2014), and our Mega-Archive is growing. Here we present some of the most important results obtained with our data-mining software and some new planned search options of Mega-Precovery. Particularly, the following capabilities will be added soon: the ING archive (all imaging cameras) will be included and new search options will be made available (such as query by orbital elements and by observations) to be able to target new Solar System objects such as Virtual Impactors, bolides, planetary satellites, TNOs (besides the comets added recently). In order to better characterize the archives, we introduce the ''AOmegaA'' factor (archival etendue) proportional to the AOmega (etendue) and the number of images in an archive. With the aim to enlarge the Mega-Archive database, we invite the observatories (particularly those storing their images online and also those that own plate archives which could be scanned on request) to contact us in order to add their instrument archives (consisting of an ASCII file with telescope pointings in a simple format) to our Mega-Precovery open project. We intend for the future to synchronise our service with the Virtual Observatory.
The application of smart sensor techniques to a solid-state array multispectral sensor
NASA Technical Reports Server (NTRS)
Mcfadin, L. W.
1978-01-01
The solid-state array spectroradiometer (SAS) developed at JSC for remote sensing applications is a multispectral sensor which has no moving parts, is virtually maintenance-free, and has the ability to provide data which requires a minimum of processing. The instrument is based on the 42 x 342 element charge injection device (CID) detector. This system allows the combination of spectral scanning and across-track spatial scanning along with its associated digitization electronics into a single detector.
Tele-surgery: a new virtual tool for medical education.
Russomano, Thais; Cardoso, Ricardo B; Fernandes, Jefferson; Cardoso, Paulizan G; Alves, Jarcedy M; Pianta, Christina D; Souza, Hamilton P; Lopes, Maria Helena I
2009-01-01
The rapid evolution of telecommunication technology has enabled advances to be made in low cost video-conferencing through the improvement of high speed computer communication networks and the enhancement of Internet security protocols. As a result of this progress, eHealth education programs are becoming a reality in universities, providing the opportunity for students to have greater interaction at live surgery classes by means of virtual participation. Undergraduate students can be introduced to new concepts of medical care, remote second opinion and to telecommunication systems, whilst virtually experiencing surgical procedures and lectures. The better access this provides to the operating theater environment, the patient and the surgeon can improve the learning process for students. An analogical system was used for this experimental pilot project due to the benefits of it being low cost with a comparatively easy setup. The tele-surgery lectures were also transmitted to other universities by means of a Pentium 4 computer using open source software and connected to a portable image acquisition device located in the São Lucas University Hospital. Telemedicine technology has proven to be an important instrument for the improvement of medical education and health care. This study allowed health professionals, professors and students to have greater interaction during surgical procedures, thus enabling a greater opportunity for knowledge exchange.
The unbalanced signal measuring of automotive brake drum
NASA Astrophysics Data System (ADS)
Wang, Xiao-Dong; Ye, Sheng-Hua; Zhang, Bang-Cheng
2005-04-01
For the purpose of the research and development of automatic balancing system by mass removing, the dissertation deals with the measuring method of the unbalance signal, the design the automatic balance equipment and the software. This paper emphases the testing system of the balancer of automotive brake drum. The paper designs the band-pass filter product with favorable automatic follow of electronic product, and with favorable automatic follow capability, filtration effect and stability. The system of automatic balancing system by mass removing based on virtual instrument is designed in this paper. A lab system has been constructed. The results of contrast experiments indicate the notable effect of 1-plane automatic balance and the high precision of dynamic balance, and demonstrate the application value of the system.
NPSNET: Aural cues for virtual world immersion
NASA Astrophysics Data System (ADS)
Dahl, Leif A.
1992-09-01
NPSNET is a low-cost visual and aural simulation system designed and implemented at the Naval Postgraduate School. NPSNET is an example of a virtual world simulation environment that incorporates real-time aural cues through software-hardware interaction. In the current implementation of NPSNET, a graphics workstation functions in the sound server role which involves sending and receiving networked sound message packets across a Local Area Network, composed of multiple graphics workstations. The network messages contain sound file identification information that is transmitted from the sound server across an RS-422 protocol communication line to a serial to Musical Instrument Digital Interface (MIDI) converter. The MIDI converter, in turn relays the sound byte to a sampler, an electronic recording and playback device. The sampler correlates the hexadecimal input to a specific note or stored sound and sends it as an audio signal to speakers via an amplifier. The realism of a simulation is improved by involving multiple participant senses and removing external distractions. This thesis describes the incorporation of sound as aural cues, and the enhancement they provide in the virtual simulation environment of NPSNET.
Assessment of Student Learning in Virtual Spaces, Using Orders of Complexity in Levels of Thinking
ERIC Educational Resources Information Center
Capacho, Jose
2017-01-01
This paper aims at showing a new methodology to assess student learning in virtual spaces supported by Information and Communications Technology-ICT. The methodology is based on the Conceptual Pedagogy Theory, and is supported both on knowledge instruments (KI) and intelectual operations (IO). KI are made up of teaching materials embedded in the…
Levac, Danielle; Nawrotek, Joanna; Deschenes, Emilie; Giguere, Tia; Serafin, Julie; Bilodeau, Martin; Sveistrup, Heidi
2016-06-01
Virtual reality active video games are increasingly popular physical therapy interventions for children with cerebral palsy. However, physical therapists require educational resources to support decision making about game selection to match individual patient goals. Quantifying the movements elicited during virtual reality active video game play can inform individualized game selection in pediatric rehabilitation. The objectives of this study were to develop and evaluate the feasibility and reliability of the Movement Rating Instrument for Virtual Reality Game Play (MRI-VRGP). Item generation occurred through an iterative process of literature review and sample videotape viewing. The MRI-VRGP includes 25 items quantifying upper extremity, lower extremity, and total body movements. A total of 176 videotaped 90-second game play sessions involving 7 typically developing children and 4 children with cerebral palsy were rated by 3 raters trained in MRI-VRGP use. Children played 8 games on 2 virtual reality and active video game systems. Intraclass correlation coefficients (ICCs) determined intra-rater and interrater reliability. Excellent intrarater reliability was evidenced by ICCs of >0.75 for 17 of the 25 items across the 3 raters. Interrater reliability estimates were less precise. Excellent interrater reliability was achieved for far reach upper extremity movements (ICC=0.92 [for right and ICC=0.90 for left) and for squat (ICC=0.80) and jump items (ICC=0.99), with 9 items achieving ICCs of >0.70, 12 items achieving ICCs of between 0.40 and 0.70, and 4 items achieving poor reliability (close-reach upper extremity-ICC=0.14 for right and ICC=0.07 for left) and single-leg stance (ICC=0.55 for right and ICC=0.27 for left). Poor video quality, differing item interpretations between raters, and difficulty quantifying the high-speed movements involved in game play affected reliability. With item definition clarification and further psychometric property evaluation, the MRI-VRGP could inform the content of educational resources for therapists by ranking games according to frequency and type of elicited body movements.
Nawrotek, Joanna; Deschenes, Emilie; Giguere, Tia; Serafin, Julie; Bilodeau, Martin; Sveistrup, Heidi
2016-01-01
Background Virtual reality active video games are increasingly popular physical therapy interventions for children with cerebral palsy. However, physical therapists require educational resources to support decision making about game selection to match individual patient goals. Quantifying the movements elicited during virtual reality active video game play can inform individualized game selection in pediatric rehabilitation. Objective The objectives of this study were to develop and evaluate the feasibility and reliability of the Movement Rating Instrument for Virtual Reality Game Play (MRI-VRGP). Methods Item generation occurred through an iterative process of literature review and sample videotape viewing. The MRI-VRGP includes 25 items quantifying upper extremity, lower extremity, and total body movements. A total of 176 videotaped 90-second game play sessions involving 7 typically developing children and 4 children with cerebral palsy were rated by 3 raters trained in MRI-VRGP use. Children played 8 games on 2 virtual reality and active video game systems. Intraclass correlation coefficients (ICCs) determined intra-rater and interrater reliability. Results Excellent intrarater reliability was evidenced by ICCs of >0.75 for 17 of the 25 items across the 3 raters. Interrater reliability estimates were less precise. Excellent interrater reliability was achieved for far reach upper extremity movements (ICC=0.92 [for right and ICC=0.90 for left) and for squat (ICC=0.80) and jump items (ICC=0.99), with 9 items achieving ICCs of >0.70, 12 items achieving ICCs of between 0.40 and 0.70, and 4 items achieving poor reliability (close-reach upper extremity-ICC=0.14 for right and ICC=0.07 for left) and single-leg stance (ICC=0.55 for right and ICC=0.27 for left). Conclusions Poor video quality, differing item interpretations between raters, and difficulty quantifying the high-speed movements involved in game play affected reliability. With item definition clarification and further psychometric property evaluation, the MRI-VRGP could inform the content of educational resources for therapists by ranking games according to frequency and type of elicited body movements. PMID:27251029
The Virtual Telescope Project: Enjoy the Universe from your desktop
NASA Astrophysics Data System (ADS)
Masi, G.
2008-06-01
The Virtual Telescope is a new robotic facility that makes possible for people worldwide to participate in real-time observations of the sky. Complete scientific instruments are made available, matching the needs of researchers, students and amateur astronomers. Instruments are controlled live and in real time by the remote user while qualified assistance is made available from a professional astronomer, to assist and address the observing experience. The project consists of several remote controlled and independent telescopes, including solar scopes for daytime observations. Their diameters range from 40-360 mm. The project and the technology involved are presented here, as well as the peculiar benefits for students and other users.
High-speed laser photoacoustic imaging system combined with a digital ultrasonic imaging platform
NASA Astrophysics Data System (ADS)
Zeng, Lvming; Liu, Guodong; Ji, Xuanrong; Ren, Zhong; Huang, Zhen
2009-07-01
As a new field of combined ultrasound/photoacoustic imaging in biomedical photonics research, we present and demonstrate a high-speed laser photoacoustic imaging system combined with digital ultrasound imaging platform. In the prototype system, a new B-mode digital ultrasonic imaging system is modified as the hardware platform with 384 vertical transducer elements. The centre resonance frequency of the piezoelectric transducer is 5.0 MHz with greater than 70% pulse-echo -6dB fractional bandwidth. The modular instrument of PCI-6541 is used as the hardware control centre of the testing system, which features 32 high-speed channels to build low-skew and multi-channel system. The digital photoacoustic data is transported into computer for subsequent reconstruction at 25 MHz clock frequency. Meantime, the software system for controlling and analyzing is correspondingly explored with LabVIEW language on virtual instrument platform. In the breast tissue experiment, the reconstructed image agrees well with the original sample, and the spatial resolution of the system can reach 0.2 mm with multi-element synthetic aperture focusing technique. Therefore, the system and method may have a significant value in improving early detecting level of cancer in the breast and other organs.
New approach to isometric transformations in oblique local coordinate systems of reference
NASA Astrophysics Data System (ADS)
Stępień, Grzegorz; Zalas, Ewa; Ziębka, Tomasz
2017-12-01
The research article describes a method of isometric transformation and determining an exterior orientation of a measurement instrument. The method is based on a designation of a "virtual" translation of two relative oblique orthogonal systems to a common, known in the both systems, point. The relative angle orientation of the systems does not change as each of the systems is moved along its axis. The next step is the designation of the three rotation angles (e.g. Tait-Bryan or Euler angles), transformation of the system convoluted at the calculated angles and moving the system to the initial position where the primary coordinate system was. This way eliminates movements of the systems from the calculations and makes it possible to calculate angles of mutual rotation angles of two orthogonal systems primarily involved in the movement. The research article covers laboratory calculations for simulated data. The accuracy of the results is 10-6 m (10-3 regarding the accuracy of the input data). This confi rmed the correctness of the assumed calculation method. In the following step the method was verifi ed under fi eld conditions, where the accuracy of the method raised to 0.003 m. The proposed method enabled to make the measurements with the oblique and uncentered instrument, e.g. total station instrument set over an unknown point. This is the reason why the method was named by the authors as Total Free Station - TFS. The method may be also used for isometric transformations for photogrammetric purposes.
NASA Astrophysics Data System (ADS)
Schenk, L. P.; Mertes, S.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Schmidt, S.; Schneider, J.; Worringen, A.; Kandler, K.; Bukowiecki, N.; Ebert, M.; Curtius, J.; Stratmann, F.
2014-10-01
A specific instrument combination was developed to achieve a better microphysical and chemical characterization of atmospheric aerosol particles that have the potential to act as ice nucleating particles (INP). For this purpose a pumped counterflow virtual impactor system called IN-PCVI was set up and characterized to separate ice particles that had been activated on INP in the Fast Ice Nucleus Chamber (FINCH) from interstitial, non-activated particles. This coupled setup consisting of FINCH (ice particle activation and counting), IN-PCVI (INP separation and preparation), and further aerosol instrumentation (INP characterization) had been developed for the application in field experiments. The separated INP were characterized on-line with regard to their total number concentration, number size distribution and chemical composition, especially with the Aircraft-based Laser Ablation Aerosol Mass Spectrometer ALABAMA. Moreover, impactor samples for electron microscopy were taken. Due to the coupling the IN-PCVI had to be operated with different flow settings than known from literature, which required a further characterization of its cut-off-behavior. Taking the changed cut-off-behavior into account, the INP number concentration measured by the IN-PCVI system was in good agreement with the one detected by the FINCH optics for water saturation ratios up to 1.01 (ice saturation ratios between 1.21-1.34 and temperatures between -18 and -26 °C). First field results of INP properties are presented which were gained during the INUIT-JFJ/CLACE 2013 campaign at the high altitude research station Jungfraujoch in the Bernese Alps, Switzerland (3580 m a.s.l.).
Remotely accessible laboratory for MEMS testing
NASA Astrophysics Data System (ADS)
Sivakumar, Ganapathy; Mulsow, Matthew; Melinger, Aaron; Lacouture, Shelby; Dallas, Tim E.
2010-02-01
We report on the construction of a remotely accessible and interactive laboratory for testing microdevices (aka: MicroElectroMechancial Systems - MEMS). Enabling expanded utilization of microdevices for research, commercial, and educational purposes is very important for driving the creation of future MEMS devices and applications. Unfortunately, the relatively high costs associated with MEMS devices and testing infrastructure makes widespread access to the world of MEMS difficult. The creation of a virtual lab to control and actuate MEMS devices over the internet helps spread knowledge to a larger audience. A host laboratory has been established that contains a digital microscope, microdevices, controllers, and computers that can be logged into through the internet. The overall layout of the tele-operated MEMS laboratory system can be divided into two major parts: the server side and the client side. The server-side is present at Texas Tech University, and hosts a server machine that runs the Linux operating system and is used for interfacing the MEMS lab with the outside world via internet. The controls from the clients are transferred to the lab side through the server interface. The server interacts with the electronics required to drive the MEMS devices using a range of National Instruments hardware and LabView Virtual Instruments. An optical microscope (100 ×) with a CCD video camera is used to capture images of the operating MEMS. The server broadcasts the live video stream over the internet to the clients through the website. When the button is pressed on the website, the MEMS device responds and the video stream shows the movement in close to real time.
Bell, Marnie; Robertson, Della; Weeks, Marlene; Yu, Deborah
2002-01-01
Virtual teams are a phenomenon of the Information Era and their existence in health care is anticipated to increase with technology enhancements such as telehealth and groupware. The mobilization and support of high performing virtual teams are important for leading knowledge-based health professionals in the 21st century. Using an adapted McGrath group development model, the four staged maturation process of a virtual team consisting of four masters students is explored in this paper. The team's development is analyzed addressing the interaction of technology with social and task dynamics. Throughout the project, leadership competencies of value to the group that emerged were demonstrated and incorporated into the development of a leadership competency assessment instrument. The demonstration of these competencies illustrated how they were valued and internalized by the group. In learning about the work of this virtual team, the reader will gain understanding of how leadership impacts virtual team performance.
MERIANS, Alma S.; TUNIK, Eugene; ADAMOVICH, Sergei V.
2015-01-01
Stroke patients report hand function as the most disabling motor deficit. Current evidence shows that learning new motor skills is essential for inducing functional neuroplasticity and functional recovery. Adaptive training paradigms that continually and interactively move a motor outcome closer to the targeted skill are important to motor recovery. Computerized virtual reality simulations when interfaced with robots, movement tracking and sensing glove systems are particularly adaptable, allowing for online and offline modifications of task based activities using the participant’s current performance and success rate. We have developed a second generation system that can exercise the hand and the arm together or in isolation and provides for both unilateral and bilateral hand and arm activities in three-dimensional space. We demonstrate that by providing haptic assistance for the hand and arm and adaptive anti-gravity support, the system can accommodate patients with lower level impairments. We hypothesize that combining training in VE with observation of motor actions can bring additional benefits. We present a proof of concept of a novel system that integrates interactive VE with functional neuroimaging to address this issue. Three components of this system are synchronized, the presentation of the visual display of the virtual hands, the collection of fMRI images and the collection of hand joint angles from the instrumented gloves. We show that interactive VEs can facilitate activation of brain areas during training by providing appropriately modified visual feedback. We predict that visual augmentation can become a tool to facilitate functional neuroplasticity. PMID:19592790
Virtual sensors for robust on-line monitoring (OLM) and Diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipireddy, Ramakrishna; Lerchen, Megan E.; Ramuhalli, Pradeep
Unscheduled shutdown of nuclear power facilities for recalibration and replacement of faulty sensors can be expensive and disruptive to grid management. In this work, we present virtual (software) sensors that can replace a faulty physical sensor for a short duration thus allowing recalibration to be safely deferred to a later time. The virtual sensor model uses a Gaussian process model to process input data from redundant and other nearby sensors. Predicted data includes uncertainty bounds including spatial association uncertainty and measurement noise and error. Using data from an instrumented cooling water flow loop testbed, the virtual sensor model has predictedmore » correct sensor measurements and the associated error corresponding to a faulty sensor.« less
NASA Astrophysics Data System (ADS)
Chakaveh, Sepideh; Skaley, Detlef; Laine, Patricia; Haeger, Ralf; Maad, Soha
2003-01-01
Today, interactive multimedia educational systems are well established, as they prove useful instruments to enhance one's learning capabilities. Hitherto, the main difficulty with almost all E-Learning systems was latent in the rich media implementation techniques. This meant that each and every system should be created individually as reapplying the media, be it only a part, or the whole content was not directly possible, as everything must be applied mechanically i.e. by hand. Consequently making E-learning systems exceedingly expensive to generate, both in time and money terms. Media-3D or M3D is a new platform independent programming language, developed at the Fraunhofer Institute Media Communication to enable visualisation and simulation of E-Learning multimedia content. M3D is an XML-based language, which is capable of distinguishing between the3D models from that of the 3D scenes, as well as handling provisions for animations, within the programme. Here we give a technical account of M3D programming language and briefly describe two specific application scenarios where M3D is applied to create virtual reality E-Learning content for training of technical personnel.
VCSim3: a VR simulator for cardiovascular interventions.
Korzeniowski, Przemyslaw; White, Ruth J; Bello, Fernando
2018-01-01
Effective and safe performance of cardiovascular interventions requires excellent catheter/guidewire manipulation skills. These skills are currently mainly gained through an apprenticeship on real patients, which may not be safe or cost-effective. Computer simulation offers an alternative for core skills training. However, replicating the physical behaviour of real instruments navigated through blood vessels is a challenging task. We have developed VCSim3-a virtual reality simulator for cardiovascular interventions. The simulator leverages an inextensible Cosserat rod to model virtual catheters and guidewires. Their mechanical properties were optimized with respect to their real counterparts scanned in a silicone phantom using X-ray CT imaging. The instruments are manipulated via a VSP haptic device. Supporting solutions such as fluoroscopic visualization, contrast flow propagation, cardiac motion, balloon inflation, and stent deployment, enable performing a complete angioplasty procedure. We present detailed results of simulation accuracy of the virtual instruments, along with their computational performance. In addition, the results of a preliminary face and content validation study conveyed on a group of 17 interventional radiologists are given. VR simulation of cardiovascular procedure can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. VCSim3 is still a prototype, yet the initial results indicate that it provides promising foundations for further development.
ERIC Educational Resources Information Center
Shen, Hao-Yu; Shen, Bo; Hardacre, Christopher
2013-01-01
A systematic approach to develop the teaching of instrumental analytical chemistry is discussed, as well as a conceptual framework for organizing and executing lectures and a laboratory course. Three main components are used in this course: theoretical knowledge developed in the classroom, simulations via a virtual laboratory, and practical…
Using Texas Instruments Emulators as Teaching Tools in Quantitative Chemical Analysis
ERIC Educational Resources Information Center
Young, Vaneica Y.
2011-01-01
This technology report alerts upper-division undergraduate chemistry faculty and lecturers to the use of Texas Instruments emulators as virtual graphing calculators. These may be used in multimedia lectures to instruct students on the use of their graphing calculators to obtain solutions to complex chemical problems. (Contains 1 figure.)
Virtualization - A Key Cost Saver in NASA Multi-Mission Ground System Architecture
NASA Technical Reports Server (NTRS)
Swenson, Paul; Kreisler, Stephen; Sager, Jennifer A.; Smith, Dan
2014-01-01
With science team budgets being slashed, and a lack of adequate facilities for science payload teams to operate their instruments, there is a strong need for innovative new ground systems that are able to provide necessary levels of capability processing power, system availability and redundancy while maintaining a small footprint in terms of physical space, power utilization and cooling.The ground system architecture being presented is based off of heritage from several other projects currently in development or operations at Goddard, but was designed and built specifically to meet the needs of the Science and Planetary Operations Control Center (SPOCC) as a low-cost payload command, control, planning and analysis operations center. However, this SPOCC architecture was designed to be generic enough to be re-used partially or in whole by other labs and missions (since its inception that has already happened in several cases!)The SPOCC architecture leverages a highly available VMware-based virtualization cluster with shared SAS Direct-Attached Storage (DAS) to provide an extremely high-performing, low-power-utilization and small-footprint compute environment that provides Virtual Machine resources shared among the various tenant missions in the SPOCC. The storage is also expandable, allowing future missions to chain up to 7 additional 2U chassis of storage at an extremely competitive cost if they require additional archive or virtual machine storage space.The software architecture provides a fully-redundant GMSEC-based message bus architecture based on the ActiveMQ middleware to track all health and safety status within the SPOCC ground system. All virtual machines utilize the GMSEC system agents to report system host health over the GMSEC bus, and spacecraft payload health is monitored using the Hammers Integrated Test and Operations System (ITOS) Galaxy Telemetry and Command (TC) system, which performs near-real-time limit checking and data processing on the downlinked data stream and injects messages into the GMSEC bus that are monitored to automatically page the on-call operator or Systems Administrator (SA) when an off-nominal condition is detected. This architecture, like the LTSP thin clients, are shared across all tenant missions.Other required IT security controls are implemented at the ground system level, including physical access controls, logical system-level authentication authorization management, auditing and reporting, network management and a NIST 800-53 FISMA-Moderate IT Security plan Risk Assessment Contingency Plan, helping multiple missions share the cost of compliance with agency-mandated directives.The SPOCC architecture provides science payload control centers and backup mission operations centers with a cost-effective, standardized approach to virtualizing and monitoring resources that were traditionally multiple racks full of physical machines. The increased agility in deploying new virtual systems and thin client workstations can provide significant savings in personnel costs for maintaining the ground system. The cost savings in procurement, power, rack footprint and cooling as well as the shared multi-mission design greatly reduces upfront cost for missions moving into the facility. Overall, the authors hope that this architecture will become a model for how future NASA operations centers are constructed!
NASA Astrophysics Data System (ADS)
Tobin, Stephen J.; Peura, Pauli; Bélanger-Champagne, Camille; Moring, Mikael; Dendooven, Peter; Honkamaa, Tapani
2018-07-01
The performance of a passive neutron albedo reactivity (PNAR) instrument to measure neutron multiplication of spent nuclear fuel in borated water is investigated as part of an integrated non-destructive assay safeguards system. To measure the PNAR Ratio, which is proportional to the neutron multiplication, the total neutron count rate is measured in high- and low-multiplying environments by the PNAR instrument. The integrated system also contains a load cell and a passive gamma emission tomograph, and as such meets all the recommendations of the IAEA's recent ASTOR Experts Group report. A virtual spent fuel library for VVER-440 fuel was used in conjunction with MCNP simulations of the PNAR instrument to estimate the measurement uncertainties from (1) variation in the water boron content, (2) assembly positioning in the detector and (3) counting statistics. The estimated aggregate measurement uncertainty on the PNAR Ratio measurement is 0.008, to put this uncertainty in context, the difference in the PNAR Ratio between a fully irradiated assembly and this same assembly when fissile isotopes only absorb neutrons, but do not emit neutrons, is 0.106, a 13-sigma effect. The 1-sigma variation of 0.008 in the PNAR Ratio is estimated to correspond to a 3.2 GWd/tU change in assembly burnup.
Core body temperature control by total liquid ventilation using a virtual lung temperature sensor.
Nadeau, Mathieu; Micheau, Philippe; Robert, Raymond; Avoine, Olivier; Tissier, Renaud; Germim, Pamela Samanta; Vandamme, Jonathan; Praud, Jean-Paul; Walti, Herve
2014-12-01
In total liquid ventilation (TLV), the lungs are filled with a breathable liquid perfluorocarbon (PFC) while a liquid ventilator ensures proper gas exchange by renewal of a tidal volume of oxygenated and temperature-controlled PFC. Given the rapid changes in core body temperature generated by TLV using the lung has a heat exchanger, it is crucial to have accurate and reliable core body temperature monitoring and control. This study presents the design of a virtual lung temperature sensor to control core temperature. In the first step, the virtual sensor, using expired PFC to estimate lung temperature noninvasively, was validated both in vitro and in vivo. The virtual lung temperature was then used to rapidly and automatically control core temperature. Experimentations were performed using the Inolivent-5.0 liquid ventilator with a feedback controller to modulate inspired PFC temperature thereby controlling lung temperature. The in vivo experimental protocol was conducted on seven newborn lambs instrumented with temperature sensors at the femoral artery, pulmonary artery, oesophagus, right ear drum, and rectum. After stabilization in conventional mechanical ventilation, TLV was initiated with fast hypothermia induction, followed by slow posthypothermic rewarming for 1 h, then by fast rewarming to normothermia and finally a second fast hypothermia induction phase. Results showed that the virtual lung temperature was able to provide an accurate estimation of systemic arterial temperature. Results also demonstrate that TLV can precisely control core body temperature and can be favorably compared to extracorporeal circulation in terms of speed.
ERIC Educational Resources Information Center
Gilboa, Yafit; Rosenblum, Sara; Fattal-Valevski, Aviva; Toledano-Alhadef, Hagit; Rizzo, Albert; Josman, Naomi
2011-01-01
The objectives of this study were to describe the nature of the attention deficits in children with Neurofibromatosis type 1 (NF1) in comparison with typically developing (TD) children, using the Virtual Classroom (VC), and to assess the utility of this instrument for detecting attention deficits. Twenty-nine NF1 children and 25 age-and…
ERIC Educational Resources Information Center
Enz, Sibylle; Zoll, Carsten; Vannini, Natalie; Schneider, Wolfgang; Hall, Lynne; Paiva, Ana; Aylett, Ruth
2008-01-01
Addressing the problems of bullying in schools, this paper presents a novel and highly innovative pedagogical approach, building on the immersive power of virtual role-play. Educational role-play is widely accepted as a powerful instrument to change attitudes and behaviour, but faces some difficulties and disadvantages when applied to sensitive…
Loukas, Constantinos; Lahanas, Vasileios; Georgiou, Evangelos
2013-12-01
Despite the popular use of virtual and physical reality simulators in laparoscopic training, the educational potential of augmented reality (AR) has not received much attention. A major challenge is the robust tracking and three-dimensional (3D) pose estimation of the endoscopic instrument, which are essential for achieving interaction with the virtual world and for realistic rendering when the virtual scene is occluded by the instrument. In this paper we propose a method that addresses these issues, based solely on visual information obtained from the endoscopic camera. Two different tracking algorithms are combined for estimating the 3D pose of the surgical instrument with respect to the camera. The first tracker creates an adaptive model of a colour strip attached to the distal part of the tool (close to the tip). The second algorithm tracks the endoscopic shaft, using a combined Hough-Kalman approach. The 3D pose is estimated with perspective geometry, using appropriate measurements extracted by the two trackers. The method has been validated on several complex image sequences for its tracking efficiency, pose estimation accuracy and applicability in AR-based training. Using a standard endoscopic camera, the absolute average error of the tip position was 2.5 mm for working distances commonly found in laparoscopic training. The average error of the instrument's angle with respect to the camera plane was approximately 2°. The results are also supplemented by video segments of laparoscopic training tasks performed in a physical and an AR environment. The experiments yielded promising results regarding the potential of applying AR technologies for laparoscopic skills training, based on a computer vision framework. The issue of occlusion handling was adequately addressed. The estimated trajectory of the instruments may also be used for surgical gesture interpretation and assessment. Copyright © 2013 John Wiley & Sons, Ltd.
Development of low cost instrumentation for non-invasive detection of Helicobacter pylori
NASA Astrophysics Data System (ADS)
Kannath, A.; Rutt, H. N.
2007-02-01
A new clinical diagnostic instrument for urea breath test (UBT) based non-invasive detection of Helicobacter Pylori is presented here. Its compact and low cost design makes it an economical and commercial alternative for the more expensive Isotope Ratio Mass Spectrometer (IRMS). The instrument is essentially a two channel non-dispersive IR spectrometer that performs high precision ratio measurements of the two carbon isotopomers ( 12CO II and 13CO II) present in exhaled breath. A balanced absorption system configuration was designed where the two channel path lengths would roughly be in the ratio of their concentrations. Equilibrium between the transmitted channel intensities was maintained by using a novel feedback servo mechanism to adjust the length of the 13C channel cell. Extensive computational simulations were performed to study the effect of various possible interferents and their results were considered in the design of the instrument so as to achieve the desired measurement precision of 1%. Specially designed gas cells and a custom made gas filling rig were also developed. A complete virtual interface for both instrument control and data acquisition was implemented in LABVIEW. Initial tests were used to validate the theory and a basic working device was demonstrated.
Kamel Boulos, M N; Roudsari, A V; Gordon, C; Muir Gray, J A
2001-01-01
In 1998, the U.K. National Health Service Information for Health Strategy proposed the implementation of a National electronic Library for Health to provide clinicians, healthcare managers and planners, patients and the public with easy, round the clock access to high quality, up-to-date electronic information on health and healthcare. The Virtual Branch Libraries are among the most important components of the National electronic Library for Health. They aim at creating online knowledge based communities, each concerned with some specific clinical and other health-related topics. This study is about the envisaged Dermatology Virtual Branch Libraries of the National electronic Library for Health. It aims at selecting suitable dermatology Web resources for inclusion in the forthcoming Virtual Branch Libraries after establishing preliminary quality benchmarking rules for this task. Psoriasis, being a common dermatological condition, has been chosen as a starting point. Because quality is a principal concern of the National electronic Library for Health, the study includes a review of the major quality benchmarking systems available today for assessing health-related Web sites. The methodology of developing a quality benchmarking system has been also reviewed. Aided by metasearch Web tools, candidate resources were hand-selected in light of the reviewed benchmarking systems and specific criteria set by the authors. Over 90 professional and patient-oriented Web resources on psoriasis and dermatology in general are suggested for inclusion in the forthcoming Dermatology Virtual Branch Libraries. The idea of an all-in knowledge-hallmarking instrument for the National electronic Library for Health is also proposed based on the reviewed quality benchmarking systems. Skilled, methodical, organized human reviewing, selection and filtering based on well-defined quality appraisal criteria seems likely to be the key ingredient in the envisaged National electronic Library for Health service. Furthermore, by promoting the application of agreed quality guidelines and codes of ethics by all health information providers and not just within the National electronic Library for Health, the overall quality of the Web will improve with time and the Web will ultimately become a reliable and integral part of the care space.
NASA Astrophysics Data System (ADS)
Sun, Yun-Ping; Ju, Jiun-Yan; Liang, Yen-Chu
2008-12-01
Since the unmanned aerial vehicles (UAVs) bring forth many innovative applications in scientific, civilian, and military fields, the development of UAVs is rapidly growing every year. The on-board autopilot that reliably performs attitude and guidance control is a vital part for out-of-sight flights. However, the control law in autopilot is designed according to a simplified plant model in which the dynamics of real hardware are usually not taken into consideration. It is a necessity to develop a test-bed including real servos to make real-time control experiments for prototype autopilots, so called hardware-in-the-loop (HIL) simulation. In this paper on the basis of the graphical application software LabVIEW, the real-time HIL simulation system is realized efficiently by the virtual instrumentation approach. The proportional-integral-derivative (PID) controller in autopilot for the pitch angle control loop is experimentally determined by the classical Ziegler-Nichols tuning rule and exhibits good transient and steady-state response in real-time HIL simulation. From the results the differences between numerical simulation and real-time HIL simulation are also clearly presented. The effectiveness of HIL simulation for UAV autopilot design is definitely confirmed
NASA Astrophysics Data System (ADS)
Yusvana, Rama; Headon, Denis; Markx, Gerard H.
2009-08-01
The use of dielectrophoresis for the construction of artificial skin tissue with skin cells in follicle-like 3D cell aggregates in well-defined patterns is demonstrated. To analyse the patterns produced and to study their development after their formation a Virtual Instrument (VI) system was developed using the LabVIEW IMAQ Vision Development Module. A series of programming functions (algorithms) was used to isolate the features on the image (in our case; the patterned aggregates) and separate them from all other unwanted regions on the image. The image was subsequently converted into a binary version, covering only the desired microarray regions which could then be analysed by computer for automatic object measurements. The analysis utilized the simple and easy-to-use User-Specified Multi-Regions Masking (MRM) technique, which allows one to concentrate the analysis on the desired regions specified in the mask. This simplified the algorithms for the analysis of images of cell arrays having similar geometrical properties. By having a collection of scripts containing masks of different patterns, it was possible to quickly and efficiently develop sets of custom virtual instruments for the offline or online analysis of images of cell arrays in the database.
Ultrasound image guidance of cardiac interventions
NASA Astrophysics Data System (ADS)
Peters, Terry M.; Pace, Danielle F.; Lang, Pencilla; Guiraudon, Gérard M.; Jones, Douglas L.; Linte, Cristian A.
2011-03-01
Surgical procedures often have the unfortunate side-effect of causing the patient significant trauma while accessing the target site. Indeed, in some cases the trauma inflicted on the patient during access to the target greatly exceeds that caused by performing the therapy. Heart disease has traditionally been treated surgically using open chest techniques with the patient being placed "on pump" - i.e. their circulation being maintained by a cardio-pulmonary bypass or "heart-lung" machine. Recently, techniques have been developed for performing minimally invasive interventions on the heart, obviating the formerly invasive procedures. These new approaches rely on pre-operative images, combined with real-time images acquired during the procedure. Our approach is to register intra-operative images to the patient, and use a navigation system that combines intra-operative ultrasound with virtual models of instrumentation that has been introduced into the chamber through the heart wall. This paper illustrates the problems associated with traditional ultrasound guidance, and reviews the state of the art in real-time 3D cardiac ultrasound technology. In addition, it discusses the implementation of an image-guided intervention platform that integrates real-time ultrasound with a virtual reality environment, bringing together the pre-operative anatomy derived from MRI or CT, representations of tracked instrumentation inside the heart chamber, and the intra-operatively acquired ultrasound images.
Autonomous sample switcher for Mössbauer spectroscopy
NASA Astrophysics Data System (ADS)
López, J. H.; Restrepo, J.; Barrero, C. A.; Tobón, J. E.; Ramírez, L. F.; Jaramillo, J.
2017-11-01
In this work we show the design and implementation of an autonomous sample switcher device to be used as a part of the experimental set up in transmission Mössbauer spectroscopy, which can be extended to other spectroscopic techniques employing radioactive sources. The changer is intended to minimize radiation exposure times to the users or technical staff and to optimize the use of radioactive sources without compromising the resolution of measurements or spectra. This proposal is motivated firstly by the potential hazards arising from the use of radioactive sources and secondly by the expensive costs involved, and in other cases the short life times, where a suitable and optimum use of the sources is crucial. The switcher system includes a PIC microcontroller for simple tasks involving sample displacement and positioning, in addition to a virtual instrument developed by using LabView. The shuffle of the samples proceeds in a sequential way based on the number of counts and the signal to noise ratio as selection criteria whereas the virtual instrument allows performing} a remote monitoring from a PC via Internet about the status of the spectra and to take control decisions. As an example, we show a case study involving a series of akaganeite samples. An efficiency and economical analysis is finally presented and discussed.
NASA Astrophysics Data System (ADS)
Becherer, Nico; Hesser, Jürgen; Kornmesser, Ulrike; Schranz, Dietmar; Männer, Reinhard
2007-03-01
Simulation systems are becoming increasingly essential in medical education. Hereby, capturing the physical behaviour of the real world requires a sophisticated modelling of instruments within the virtual environment. Most models currently used are not capable of user interactive simulations due to the computation of the complex underlying analytical equations. Alternatives are often based on simplifying mass-spring systems, being able to deliver high update rates that come at the cost of less realistic motion. In addition, most techniques are limited to narrow and tubular vessel structures or restrict shape alterations to two degrees of freedom, not allowing instrument deformations like torsion. In contrast, our approach combines high update rates with highly realistic motion and can in addition be used with respect to arbitrary structures like vessels or cavities (e.g. atrium, ventricle) without limiting the degrees of freedom. Based on energy minimization, bending energies and vessel structures are considered as linear elastic elements; energies are evaluated at regularly spaced points on the instrument, while the distance of the points is fixed, i.e. we simulate an articulated structure of joints with fixed connections between them. Arbitrary tissue structures are modeled through adaptive distance fields and are connected by nodes via an undirected graph system. The instrument points are linked to nodes by a system of rules. Energy minimization uses a Quasi Newton method without preconditioning and, hereby, gradients are estimated using a combination of analytical and numerical terms. Results show a high quality in motion simulation when compared to a phantom model. The approach is also robust and fast. Simulating an instrument with 100 joints runs at 100 Hz on a 3 GHz PC.
Project on Chinese Virtual Solar Observatory
NASA Astrophysics Data System (ADS)
Lin, Gang-Hua
2004-09-01
With going deep into research of solar physics, development of observational instrument and accumulation of obervation data, it urges people to think such things: using data which is observed in different times, places, bands and history data to seek answers of a plenty science problems. In the meanwhile, researcher can easily search the data and analyze data. This is why the project of the virtual solar observatory gained active replies and operation from observatories, institutes and universities in the world. In this article, how we face to the development of the virtual solar observatory and our preliminary project on CVSO are discussed.
Doing Your Science While You're in Orbit
NASA Astrophysics Data System (ADS)
Green, Mark L.; Miller, Stephen D.; Vazhkudai, Sudharshan S.; Trater, James R.
2010-11-01
Large-scale neutron facilities such as the Spallation Neutron Source (SNS) located at Oak Ridge National Laboratory need easy-to-use access to Department of Energy Leadership Computing Facilities and experiment repository data. The Orbiter thick- and thin-client and its supporting Service Oriented Architecture (SOA) based services (available at https://orbiter.sns.gov) consist of standards-based components that are reusable and extensible for accessing high performance computing, data and computational grid infrastructure, and cluster-based resources easily from a user configurable interface. The primary Orbiter system goals consist of (1) developing infrastructure for the creation and automation of virtual instrumentation experiment optimization, (2) developing user interfaces for thin- and thick-client access, (3) provide a prototype incorporating major instrument simulation packages, and (4) facilitate neutron science community access and collaboration. The secure Orbiter SOA authentication and authorization is achieved through the developed Virtual File System (VFS) services, which use Role-Based Access Control (RBAC) for data repository file access, thin-and thick-client functionality and application access, and computational job workflow management. The VFS Relational Database Management System (RDMS) consists of approximately 45 database tables describing 498 user accounts with 495 groups over 432,000 directories with 904,077 repository files. Over 59 million NeXus file metadata records are associated to the 12,800 unique NeXus file field/class names generated from the 52,824 repository NeXus files. Services that enable (a) summary dashboards of data repository status with Quality of Service (QoS) metrics, (b) data repository NeXus file field/class name full text search capabilities within a Google like interface, (c) fully functional RBAC browser for the read-only data repository and shared areas, (d) user/group defined and shared metadata for data repository files, (e) user, group, repository, and web 2.0 based global positioning with additional service capabilities are currently available. The SNS based Orbiter SOA integration progress with the Distributed Data Analysis for Neutron Scattering Experiments (DANSE) software development project is summarized with an emphasis on DANSE Central Services and the Virtual Neutron Facility (VNF). Additionally, the DANSE utilization of the Orbiter SOA authentication, authorization, and data transfer services best practice implementations are presented.
NASA Astrophysics Data System (ADS)
Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.
2018-05-01
This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.
Consistency of performance of robot-assisted surgical tasks in virtual reality.
Suh, I H; Siu, K-C; Mukherjee, M; Monk, E; Oleynikov, D; Stergiou, N
2009-01-01
The purpose of this study was to investigate consistency of performance of robot-assisted surgical tasks in a virtual reality environment. Eight subjects performed two surgical tasks, bimanual carrying and needle passing, with both the da Vinci surgical robot and a virtual reality equivalent environment. Nonlinear analysis was utilized to evaluate consistency of performance by calculating the regularity and the amount of divergence in the movement trajectories of the surgical instrument tips. Our results revealed that movement patterns for both training tasks were statistically similar between the two environments. Consistency of performance as measured by nonlinear analysis could be an appropriate methodology to evaluate the complexity of the training tasks between actual and virtual environments and assist in developing better surgical training programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.
2014-05-01
The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routinemore » measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.« less
NASA Astrophysics Data System (ADS)
Silva, C. E. R.; Alvarenga, A. V.; Costa-Felix, R. P. B.
2011-02-01
Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Ø 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.
Evaluating an immersive virtual environment prototyping and simulation system
NASA Astrophysics Data System (ADS)
Nemire, Kenneth
1997-05-01
An immersive virtual environment (IVE) modeling and simulation tool is being developed for designing advanced weapon and training systems. One unique feature of the tool is that the design, and not just visualization of the design is accomplished with the IVE tool. Acceptance of IVE tools requires comparisons with current commercial applications. In this pilot study, expert users of a popular desktop 3D graphics application performed identical modeling and simulation tasks using both the desktop and IVE applications. The IVE tool consisted of a head-mounted display, 3D spatialized sound, spatial trackers on head and hands, instrumented gloves, and a simulated speech recognition system. The results are preliminary because performance from only four users has been examined. When using the IVE system, users completed the tasks to criteria in less time than when using the desktop application. Subjective ratings of the visual displays in each system were similar. Ratings for the desktop controls were higher than for the IVE controls. Ratings of immersion and user enjoyment were higher for the IVE than for the desktop application. These results are particular remarkable because participants had used the desktop application regularly for three to five years and the prototype IVE tool for only three to six hours.
Faster acquisition of laparoscopic skills in virtual reality with haptic feedback and 3D vision.
Hagelsteen, Kristine; Langegård, Anders; Lantz, Adam; Ekelund, Mikael; Anderberg, Magnus; Bergenfelz, Anders
2017-10-01
The study investigated whether 3D vision and haptic feedback in combination in a virtual reality environment leads to more efficient learning of laparoscopic skills in novices. Twenty novices were allocated to two groups. All completed a training course in the LapSim ® virtual reality trainer consisting of four tasks: 'instrument navigation', 'grasping', 'fine dissection' and 'suturing'. The study group performed with haptic feedback and 3D vision and the control group without. Before and after the LapSim ® course, the participants' metrics were recorded when tying a laparoscopic knot in the 2D video box trainer Simball ® Box. The study group completed the training course in 146 (100-291) minutes compared to 215 (175-489) minutes in the control group (p = .002). The number of attempts to reach proficiency was significantly lower. The study group had significantly faster learning of skills in three out of four individual tasks; instrument navigation, grasping and suturing. Using the Simball ® Box, no difference in laparoscopic knot tying after the LapSim ® course was noted when comparing the groups. Laparoscopic training in virtual reality with 3D vision and haptic feedback made training more time efficient and did not negatively affect later video box-performance in 2D. [Formula: see text].
2014-05-01
utilizing buoyancy differences in vapor and liquid phases to pump the heat transfer fluid between the evaporator and condenser. In this particular...Virtual Instrumentation Engineering Workbench LHP Loop Heat Pipe LVDT Linear Voltage Displacement Transducer MACE Micro -technologies for Air...Bland 1992). This type of duty cycle lends itself to thermal energy storage, which when coupled with an effective heat transfer mechanism can
Natural Whisker-Guided Behavior by Head-Fixed Mice in Tactile Virtual Reality
Sofroniew, Nicholas J.; Cohen, Jeremy D.; Lee, Albert K.
2014-01-01
During many natural behaviors the relevant sensory stimuli and motor outputs are difficult to quantify. Furthermore, the high dimensionality of the space of possible stimuli and movements compounds the problem of experimental control. Head fixation facilitates stimulus control and movement tracking, and can be combined with techniques for recording and manipulating neural activity. However, head-fixed mouse behaviors are typically trained through extensive instrumental conditioning. Here we present a whisker-based, tactile virtual reality system for head-fixed mice running on a spherical treadmill. Head-fixed mice displayed natural movements, including running and rhythmic whisking at 16 Hz. Whisking was centered on a set point that changed in concert with running so that more protracted whisking was correlated with faster running. During turning, whiskers moved in an asymmetric manner, with more retracted whisker positions in the turn direction and protracted whisker movements on the other side. Under some conditions, whisker movements were phase-coupled to strides. We simulated a virtual reality tactile corridor, consisting of two moveable walls controlled in a closed-loop by running speed and direction. Mice used their whiskers to track the walls of the winding corridor without training. Whisker curvature changes, which cause forces in the sensory follicles at the base of the whiskers, were tightly coupled to distance from the walls. Our behavioral system allows for precise control of sensorimotor variables during natural tactile navigation. PMID:25031397
Rationale and Roadmap for Moon Exploration
NASA Astrophysics Data System (ADS)
Foing, B. H.; ILEWG Team
We discuss the different rationale for Moon exploration. This starts with areas of scientific investigations: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), records astrobiology, survival of organics; past, present and future life. The rationale includes also the advancement of instrumentation: Remote sensing miniaturised instruments; Surface geophysical and geochemistry package; Instrument deployment and robotic arm, nano-rover, sampling, drilling; Sample finder and collector. There are technologies in robotic and human exploration that are a drive for the creativity and economical competitivity of our industries: Mecha-electronics-sensors; Tele control, telepresence, virtual reality; Regional mobility rover; Autonomy and Navigation; Artificially intelligent robots, Complex systems, Man-Machine interface and performances. Moon-Mars Exploration can inspire solutions to global Earth sustained development: In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental protection aspects; Life sciences laboratories; Support to human exploration. We also report on the IAA Cosmic Study on Next Steps In Exploring Deep Space, and ongoing IAA Cosmic Studies, ILEWG/IMEWG ongoing activities, and we finally discuss possible roadmaps for robotic and human exploration, starting with the Moon-Mars missions for the coming decade, and building effectively on joint technology developments.
Improvements in Virtual Sensors: Using Spatial Information to Estimate Remote Sensing Spectra
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.; Srivastava, Ashok N.; Stroeve, Julienne
2005-01-01
Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. Sometimes these instruments are built in a phased approach, with additional measurement capabilities added in later phases. In other cases, technology may mature to the point that the instrument offers new measurement capabilities that were not planned in the original design of the instrument. In still other cases, high resolution spectral measurements may be too costly to perform on a large sample and therefore lower resolution spectral instruments are used to take the majority of measurements. Many applied science questions that are relevant to the earth science remote sensing community require analysis of enormous amounts of data that were generated by instruments with disparate measurement capabilities. In past work [1], we addressed this problem using Virtual Sensors: a method that uses models trained on spectrally rich (high spectral resolution) data to "fill in" unmeasured spectral channels in spectrally poor (low spectral resolution) data. We demonstrated this method by using models trained on the high spectral resolution Terra MODIS instrument to estimate what the equivalent of the MODIS 1.6 micron channel would be for the NOAA AVHRR2 instrument. The scientific motivation for the simulation of the 1.6 micron channel is to improve the ability of the AVHRR2 sensor to detect clouds over snow and ice. This work contains preliminary experiments demonstrating that the use of spatial information can improve our ability to estimate these spectra.
Martínez-Moreno, J M; Sánchez-González, P; Luna, M; Roig, T; Tormos, J M; Gómez, E J
2016-01-01
Brain Injury (BI) has become one of the most common causes of neurological disability in developed countries. Cognitive disorders result in a loss of independence and patients' quality of life. Cognitive rehabilitation aims to promote patients' skills to achieve their highest degree of personal autonomy. New technologies such as virtual reality or interactive video allow developing rehabilitation therapies based on reproducible Activities of Daily Living (ADLs), increasing the ecological validity of the therapy. However, the lack of frameworks to formalize and represent the definition of this kind of therapies can be a barrier for widespread use of interactive virtual environments in clinical routine. To provide neuropsychologists with a methodology and an instrument to design and evaluate cognitive rehabilitation therapeutic interventions strategies based on ADLs performed in interactive virtual environments. The proposed methodology is used to model therapeutic interventions during virtual ADLs considering cognitive deficit, expected abnormal interactions and therapeutic hypotheses. It allows identifying abnormal behavioural patterns and designing interventions strategies in order to achieve errorless-based rehabilitation. An ADL case study ('buying bread') is defined according to the guidelines established by the ADL intervention model. This case study is developed, as a proof of principle, using interactive video technology and is used to assess the feasibility of the proposed methodology in the definition of therapeutic intervention procedures. The proposed methodology provides neuropsychologists with an instrument to design and evaluate ADL-based therapeutic intervention strategies, attending to solve actual limitation of virtual scenarios, to be use for ecological rehabilitation of cognitive deficit in daily clinical practice. The developed case study proves the potential of the methodology to design therapeutic interventions strategies; however our current work is devoted to designing more experiments in order to present more evidence about its values.
VirGO: A Visual Browser for the ESO Science Archive Facility
NASA Astrophysics Data System (ADS)
Chéreau, Fabien
2012-04-01
VirGO is the next generation Visual Browser for the ESO Science Archive Facility developed by the Virtual Observatory (VO) Systems Department. It is a plug-in for the popular open source software Stellarium adding capabilities for browsing professional astronomical data. VirGO gives astronomers the possibility to easily discover and select data from millions of observations in a new visual and intuitive way. Its main feature is to perform real-time access and graphical display of a large number of observations by showing instrumental footprints and image previews, and to allow their selection and filtering for subsequent download from the ESO SAF web interface. It also allows the loading of external FITS files or VOTables, the superimposition of Digitized Sky Survey (DSS) background images, and the visualization of the sky in a `real life' mode as seen from the main ESO sites. All data interfaces are based on Virtual Observatory standards which allow access to images and spectra from external data centers, and interaction with the ESO SAF web interface or any other VO applications supporting the PLASTIC messaging system.
Woodbury, M A; Woodbury, M F
1998-01-01
Our 3-D Body Representation constructed during development by our Central Nervous System under the direction of our DNA, consists of a holographic representation arising from sensory input in the cerebellum and projected extraneurally in the brain ventricular fluid which has the chemical structure of liquid crystal. The structure of 3-D holographic Body Representation is then extrapolated by such cognitive instruments as boundarization, geometrization and gestalt organization upon the external environment which is perceived consequently as three dimensional. When the Body Representation collapses as in psychotic panic states. patients become terrified as they suddenly lose the perception of themselves and the world around them as three dimensional, solid in a reliably solid environment but feel suddenly that they are no longer a person but a disorganized blob. In our clinical practice we found serendipitously that the structure of three dimensionality can be restored even without medication by techniques involving stimulation of the body sensory system in the presence of a benevolent psychotherapist. Implications for Virtual Reality will be discussed.
Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data
NASA Astrophysics Data System (ADS)
Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.
2014-12-01
The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.
Besnard, Jeremy; Richard, Paul; Banville, Frederic; Nolin, Pierre; Aubin, Ghislaine; Le Gall, Didier; Richard, Isabelle; Allain, Phillippe
2016-01-01
Traumatic brain injury (TBI) causes impairments affecting instrumental activities of daily living (IADL). However, few studies have considered virtual reality as an ecologically valid tool for the assessment of IADL in patients who have sustained a TBI. The main objective of the present study was to examine the use of the Nonimmersive Virtual Coffee Task (NI-VCT) for IADL assessment in patients with TBI. We analyzed the performance of 19 adults suffering from TBI and 19 healthy controls (HCs) in the real and virtual tasks of making coffee with a coffee machine, as well as in global IQ and executive functions. Patients performed worse than HCs on both real and virtual tasks and on all tests of executive functions. Correlation analyses revealed that NI-VCT scores were related to scores on the real task. Moreover, regression analyses demonstrated that performance on NI-VCT matched real-task performance. Our results support the idea that the virtual kitchen is a valid tool for IADL assessment in patients who have sustained a TBI.
Fully Three-Dimensional Virtual-Reality System
NASA Technical Reports Server (NTRS)
Beckman, Brian C.
1994-01-01
Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.
Virtual Network Configuration Management System for Data Center Operations and Management
NASA Astrophysics Data System (ADS)
Okita, Hideki; Yoshizawa, Masahiro; Uehara, Keitaro; Mizuno, Kazuhiko; Tarui, Toshiaki; Naono, Ken
Virtualization technologies are widely deployed in data centers to improve system utilization. However, they increase the workload for operators, who have to manage the structure of virtual networks in data centers. A virtual-network management system which automates the integration of the configurations of the virtual networks is provided. The proposed system collects the configurations from server virtualization platforms and VLAN-supported switches, and integrates these configurations according to a newly developed XML-based management information model for virtual-network configurations. Preliminary evaluations show that the proposed system helps operators by reducing the time to acquire the configurations from devices and correct the inconsistency of operators' configuration management database by about 40 percent. Further, they also show that the proposed system has excellent scalability; the system takes less than 20 minutes to acquire the virtual-network configurations from a large scale network that includes 300 virtual machines. These results imply that the proposed system is effective for improving the configuration management process for virtual networks in data centers.
Photoacoustic detection of CO2 based on LABVIEW at 10.303 μm.
Zhao, Junjuan; Zhao, Zhan; Du, Lidong; Geng, Daoqu; Wu, Shaohua
2011-04-01
A detailed study on a photoacoustic carbon dioxide detection system, through sound card based on virtual instrument, is presented in this paper. In this system, the CO(2) concentration was measured with the non-resonant photoacoustic cell technique through measuring the photoacoustic signal caused by the CO(2). In order to obtain small photoacoustic signals buried in noise, a measurement software was designed with LABVIEW. It has functions of Lock-in Amplifier, digital filter, and signal generator; can also be used to achieve spectrum analysis and signal recovery; has been provided with powerful function for data processing and communication with other measuring instrument. The test results show that the entire system has an outstanding measuring performance with the sensitivity of 10 μv between 10-44 KHz. The non-resonance test of the trace gas analyte CO(2) conducted at 100 Hz demonstrated large signals (15.89 mV) for CO(2) concentrations at 600 ppm and high signal-to-noise values (∼85:1). © 2011 American Institute of Physics
A Robust, Low-Cost Virtual Archive for Science Data
NASA Technical Reports Server (NTRS)
Lynnes, Christopher; Vollmer, Bruce
2005-01-01
Despite their expense tape silos are still often the only affordable option for petabytescale science data archives, particularly when other factors such as data reliability, floor space, power and cooling load are accounted for. However, the complexity, management software, hardware reliability and access latency of tape silos make online data storage ever more attractive. Drastic reductions in low-cost mass-market PC disk drivers help to make this more affordable (approx. 1$/GB), but are challenging to scale to the petabyte range and of questionable reliability for archival use, On the other hand, if much of the science archive could be "virtualized", i.e., produced on demand when requested by users, we would need store only a fraction of the data online, perhaps bringing an online-only system into in affordable range. Radiance data from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) instrument provides a good opportunity for such a virtual archive: the raw data amount to 140 GB/day, but these are small relative to the 550 GB/day making up the radiance products. These data are routinely processed as inputs for geophysical parameter products and then archived on tape at the Goddard Earth Sciences Distributed Active Archive (GES DAAC) for distributing to users. Virtualizing them would be an immediate and signifcant reduction in the amount of data being stored in the tape archives and provide more customizable products. A prototype of such a virtual archive is being developed to prove the concept and develop ways of incorporating the robustness that a science data archive requires.
Moldovanu, R; Târcoveanu, E; Lupaşcu, C; Dimofte, G; Filip, V; Vlad, N; Vasilescu, A
2009-01-01
Laparoscopic simulators provide a safe and efficient means of acquiring surgical skills. It is well known that virtual reality training improves the performance of young surgeons. Most of the virtual reality simulators have construct validity and can differentiate between novice and expert surgeons. However, for some training modules and trainees categories the possibility to distinguish the real surgeon's experience is still discussed. A total of 14 young surgeons were evaluated during a 5 days postgraduate laparoscopic course using a LapSim Basic Skills, v. 3.0 simulator and a Virtual Laparoscopic Interface (VLI) hardware. The best performances of the surgeons were included in a MS Access database and statistical analyzed. There were 6 males and 8 women with a mean age of 30.21 +/- 1.01 years old (range 26-38). Nine surgeons (64.28%) were young residents without any laparoscopic surgical experience (group I), and the other 5, had some laparoscopic surgical experience (10 to 30 laparoscopic procedures) (group II). During the instrument navigation task we found that both hands performances were significant better in group II--the navigation time was 12.43 +/- 1.31 vs 19.01 +/- 1.40 seconds for the left hand--p = 0.006 and 13.57 +/- 1.47 vs 22.18 +/- 3.16 seconds for the right hand--p = 0.032); the right instrument angular path degree was also shorter for experienced surgeons (153.17 +/- 16.72 vs 230.88 +/- 22.6 - p = 0.017). The same data were noted for the lifting and grasping module. However, the suturing module tasks revealed contradictory results: the group I residents recorded better performances then the group II surgeons: total time--677.06 +/- 111.48 vs 1122.65 +/- 166.62 seconds; p = 0.043; right instrument path (m)--15.62 +/- 2.47 vs 25.73 +/- 3.13; p = 0.028; right instrument angular path (degree)--3940.43 +/- 572.54 vs 6595.5597 +/- 753.26; p = 0.017. Laparoscopic simulators are useful to evaluate the surgeons' experience; the parameters of the instrument navigation and lifting and grasping modules, which require a higher degree of eye-hand coordination, were better for residents with previous surgical experience and revealed a good transfer of training (TOT). The suturing module is less influenced by surgeons' experience. This result is probably explained by a lack of TOT.
Interfacing LabVIEW With Instrumentation for Electronic Failure Analysis and Beyond
NASA Technical Reports Server (NTRS)
Buchanan, Randy K.; Bryan, Coleman; Ludwig, Larry
1996-01-01
The Laboratory Virtual Instrumentation Engineering Workstation (LabVIEW) software is designed such that equipment and processes related to control systems can be operationally lined and controlled by the use of a computer. Various processes within the failure analysis laboratories of NASA's Kennedy Space Center (KSC) demonstrate the need for modernization and, in some cases, automation, using LabVIEW. An examination of procedures and practices with the Failure Analaysis Laboratory resulted in the conclusion that some device was necessary to elevate the potential users of LabVIEW to an operational level in minimum time. This paper outlines the process involved in creating a tutorial application to enable personnel to apply LabVIEW to their specific projects. Suggestions for furthering the extent to which LabVIEW is used are provided in the areas of data acquisition and process control.
[A focused sound field measurement system by LabVIEW].
Jiang, Zhan; Bai, Jingfeng; Yu, Ying
2014-05-01
In this paper, according to the requirement of the focused sound field measurement, a focused sound field measurement system was established based on the LabVIEW virtual instrument platform. The system can automatically search the focus position of the sound field, and adjust the scanning path according to the size of the focal region. Three-dimensional sound field scanning time reduced from 888 hours in uniform step to 9.25 hours in variable step. The efficiency of the focused sound field measurement was improved. There is a certain deviation between measurement results and theoretical calculation results. Focal plane--6 dB width difference rate was 3.691%, the beam axis--6 dB length differences rate was 12.937%.
Ahn, Woojin; Dargar, Saurabh; Halic, Tansel; Lee, Jason; Li, Baichun; Pan, Junjun; Sankaranarayanan, Ganesh; Roberts, Kurt; De, Suvranu
2014-01-01
The first virtual-reality-based simulator for Natural Orifice Translumenal Endoscopic Surgery (NOTES) is developed called the Virtual Translumenal Endoscopic Surgery Trainer (VTESTTM). VTESTTM aims to simulate hybrid NOTES cholecystectomy procedure using a rigid scope inserted through the vaginal port. The hardware interface is designed for accurate motion tracking of the scope and laparoscopic instruments to reproduce the unique hand-eye coordination. The haptic-enabled multimodal interactive simulation includes exposing the Calot's triangle and detaching the gall bladder while performing electrosurgery. The developed VTESTTM was demonstrated and validated at NOSCAR 2013.
NASA Astrophysics Data System (ADS)
Li, N.; Zhang, X. Y.; Zhou, X. T.; Leng, J.; Liang, Z.; Zheng, C.; Sun, X. F.
2008-03-01
Though the brief introduction of the completed structural health and safety monitoring warning systems for Shenzhen-Hongkong western corridor Shenzhen bay highway bridge (SZBHMS), the self-developed system frame, hardware and software scheme of this practical research project are systematically discussed in this paper. The data acquisition and transmission hardware and the basic software based on the NI (National Instruments) Company virtual instruments technology were selected in this system, which adopted GPS time service receiver technology and so on. The objectives are to establish the structural safety monitoring and status evaluation system to monitor the structural responses and working conditions in real time and to analyze the structural working statue using information obtained from the measured data. It will be also provided the scientific decision-making bases for the bridge management and maintenance. Potential technical approaches to the structural safety warning systems, status identification and evaluation method are presented. The result indicated that the performance of the system has achieved the desired objectives, ensure the longterm high reliability, real time concurrence and advanced technology of SZBHMS. The innovate achievement which is the first time to implement in domestic, provide the reference for long-span bridge structural health and safety monitoring warning systems design.
Scientific Workflows and the Sensor Web for Virtual Environmental Observatories
NASA Astrophysics Data System (ADS)
Simonis, I.; Vahed, A.
2008-12-01
Virtual observatories mature from their original domain and become common practice for earth observation research and policy building. The term Virtual Observatory originally came from the astronomical research community. Here, virtual observatories provide universal access to the available astronomical data archives of space and ground-based observatories. Further on, as those virtual observatories aim at integrating heterogeneous ressources provided by a number of participating organizations, the virtual observatory acts as a coordinating entity that strives for common data analysis techniques and tools based on common standards. The Sensor Web is on its way to become one of the major virtual observatories outside of the astronomical research community. Like the original observatory that consists of a number of telescopes, each observing a specific part of the wave spectrum and with a collection of astronomical instruments, the Sensor Web provides a multi-eyes perspective on the current, past, as well as future situation of our planet and its surrounding spheres. The current view of the Sensor Web is that of a single worldwide collaborative, coherent, consistent and consolidated sensor data collection, fusion and distribution system. The Sensor Web can perform as an extensive monitoring and sensing system that provides timely, comprehensive, continuous and multi-mode observations. This technology is key to monitoring and understanding our natural environment, including key areas such as climate change, biodiversity, or natural disasters on local, regional, and global scales. The Sensor Web concept has been well established with ongoing global research and deployment of Sensor Web middleware and standards and represents the foundation layer of systems like the Global Earth Observation System of Systems (GEOSS). The Sensor Web consists of a huge variety of physical and virtual sensors as well as observational data, made available on the Internet at standardized interfaces. All data sets and sensor communication follow well-defined abstract models and corresponding encodings, mostly developed by the OGC Sensor Web Enablement initiative. Scientific progress is currently accelerated by an emerging new concept called scientific workflows, which organize and manage complex distributed computations. A scientific workflow represents and records the highly complex processes that a domain scientist typically would follow in exploration, discovery and ultimately, transformation of raw data to publishable results. The challenge is now to integrate the benefits of scientific workflows with those provided by the Sensor Web in order to leverage all resources for scientific exploration, problem solving, and knowledge generation. Scientific workflows for the Sensor Web represent the next evolutionary step towards efficient, powerful, and flexible earth observation frameworks and platforms. Those platforms support the entire process from capturing data, sharing and integrating, to requesting additional observations. Multiple sites and organizations will participate on single platforms and scientists from different countries and organizations interact and contribute to large-scale research projects. Simultaneously, the data- and information overload becomes manageable, as multiple layers of abstraction will free scientists to deal with underlying data-, processing or storage peculiarities. The vision are automated investigation and discovery mechanisms that allow scientists to pose queries to the system, which in turn would identify potentially related resources, schedules processing tasks and assembles all parts in workflows that may satisfy the query.
A Low-cost System for Generating Near-realistic Virtual Actors
NASA Astrophysics Data System (ADS)
Afifi, Mahmoud; Hussain, Khaled F.; Ibrahim, Hosny M.; Omar, Nagwa M.
2015-06-01
Generating virtual actors is one of the most challenging fields in computer graphics. The reconstruction of a realistic virtual actor has been paid attention by the academic research and the film industry to generate human-like virtual actors. Many movies were acted by human-like virtual actors, where the audience cannot distinguish between real and virtual actors. The synthesis of realistic virtual actors is considered a complex process. Many techniques are used to generate a realistic virtual actor; however they usually require expensive hardware equipment. In this paper, a low-cost system that generates near-realistic virtual actors is presented. The facial features of the real actor are blended with a virtual head that is attached to the actor's body. Comparing with other techniques that generate virtual actors, the proposed system is considered a low-cost system that requires only one camera that records the scene without using any expensive hardware equipment. The results of our system show that the system generates good near-realistic virtual actors that can be used on many applications.
NASA Astrophysics Data System (ADS)
Raghuwanshi, Sanjeev Kumar; Srivastav, Akash
2017-12-01
Microwave photonics system provides high bandwidth capabilities of fiber optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, we can considered microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper we have thoroughly reviewed the microwave generation techniques by using photonics technology.
NASA Technical Reports Server (NTRS)
1997-01-01
This report summarizes work done under Cooperative Agreement (CA) on the following testbed projects: TERRIERS - The development of the ground systems to support the TERRIERS satellite mission at Boston University (BU). HSTS - The application of ARC's Heuristic Scheduling Testbed System (HSTS) to the EUVE satellite mission. SELMON - The application of NASA's Jet Propulsion Laboratory's (JPL) Selective Monitoring (SELMON) system to the EUVE satellite mission. EVE - The development of the EUVE Virtual Environment (EVE), a prototype three-dimensional (3-D) visualization environment for the EUVE satellite and its sensors, instruments, and communications antennae. FIDO - The development of the Fault-Induced Document Officer (FIDO) system, a prototype application to respond to anomalous conditions by automatically searching for, retrieving, and displaying relevant documentation for an operators use.
Hou, Yang; Lin, Yanping; Shi, Jiangang; Chen, Huajiang; Yuan, Wen
2018-03-14
The virtual simulation surgery has initially exhibited its promising potentials in neurosurgery training. To evaluate effectiveness of the Virtual Surgical Training System (VSTS) on novice residents placing thoracic pedicle screws in a cadaver study. A total of 10 inexperienced residents participated in this study and were randomly assigned to 2 groups. The group using VSTS to learn thoracic pedicle screw fixation was the simulation training (ST) group and the group receiving an introductory teaching session was the control group. Ten fresh adult spine specimens including 6 males and 4 females with a mean age of 58.5 yr (range: 33-72) were collected and randomly allocated to the 2 groups. After exposing anatomic structures of thoracic spine, the bilateral pedicle screw placement of T6-T12 was performed on each cadaver specimen. The postoperative computed tomography scan was performed on each spine specimen, and experienced observers independently reviewed the placement of the pedicle screws to assess the incidence of pedicle breach. The screw penetration rates of the ST group (7.14%) was significantly lower in comparison to the control group (30%, P < .05). Statistically significant difference in acceptable rates of screws also occurred between the ST (100%) and control (92.86%) group (P < .05). In addition, the average screw penetration distance in control group (2.37 mm ± 0.23 mm) was significantly greater than ST group (1.23 mm ± 0.56 mm, P < .05). The virtual reality surgical training of thoracic pedicle screw instrumentation effectively improves surgical performance of novice residents compared to those with traditional teaching method, and can help new beginners to master the surgical technique within shortest period of time.
Design of a small laser ceilometer and visibility measuring device for helicopter landing sites
NASA Astrophysics Data System (ADS)
Streicher, Jurgen; Werner, Christian; Dittel, Walter
2004-01-01
Hardware development for remote sensing costs a lot of time and money. A virtual instrument based on software modules was developed to optimise a small visibility and cloud base height sensor. Visibility is the parameter describing the turbidity of the atmosphere. This can be done either by a mean value over a path measured by a transmissometer or for each point of the atmosphere like the backscattered intensity of a range resolved lidar measurement. A standard ceilometer detects the altitude of clouds by using the runtime of the laser pulse and the increasing intensity of the back scattered light when hitting the boundary of a cloud. This corresponds to hard target range finding, but with a more sensitive detection. The output of a standard ceilometer is in case of cloud coverage the altitude of one or more layers. Commercial cloud sensors are specified to track cloud altitude at rather large distances (100 m up to 10 km) and are therefore big and expensive. A virtual instrument was used to calculate the system parameters for a small system for heliports at hospitals and landing platforms under visual flight rules (VFR). Helicopter pilots need information about cloud altitude (base not below 500 feet) and/or the visibility conditions (visual range not lower than 600m) at the destinated landing point. Private pilots need this information too when approaching a non-commercial airport. Both values can be measured automatically with the developed small and compact prototype, at the size of a shoebox for a reasonable price.
Novel 3D/VR interactive environment for MD simulations, visualization and analysis.
Doblack, Benjamin N; Allis, Tim; Dávila, Lilian P
2014-12-18
The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.
Novel 3D/VR Interactive Environment for MD Simulations, Visualization and Analysis
Doblack, Benjamin N.; Allis, Tim; Dávila, Lilian P.
2014-01-01
The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced. PMID:25549300
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bianco, Laura; Friedrich, Katja; Wilczak, James M.
To assess current remote-sensing capabilities for wind energy applications, a remote-sensing system evaluation study, called XPIA (eXperimental Planetary boundary layer Instrument Assessment), was held in the spring of 2015 at NOAA's Boulder Atmospheric Observatory (BAO) facility. Several remote-sensing platforms were evaluated to determine their suitability for the verification and validation processes used to test the accuracy of numerical weather prediction models.The evaluation of these platforms was performed with respect to well-defined reference systems: the BAO's 300 m tower equipped at six levels (50, 100, 150, 200, 250, and 300 m) with 12 sonic anemometers and six temperature ( T) andmore » relative humidity (RH) sensors; and approximately 60 radiosonde launches.In this study we first employ these reference measurements to validate temperature profiles retrieved by two co-located microwave radiometers (MWRs) as well as virtual temperature ( T v) measured by co-located wind profiling radars equipped with radio acoustic sounding systems (RASSs). Results indicate a mean absolute error (MAE) in the temperature retrieved by the microwave radiometers below 1.5 K in the lowest 5?km of the atmosphere and a mean absolute error in the virtual temperature measured by the radio acoustic sounding systems below 0.8 K in the layer of the atmosphere covered by these measurements (up to approximately 1.6-2 km). We also investigated the benefit of the vertical velocity correction applied to the speed of sound before computing the virtual temperature by the radio acoustic sounding systems. We find that using this correction frequently increases the RASS error, and that it should not be routinely applied to all data.Water vapor density (WVD) profiles measured by the MWRs were also compared with similar measurements from the soundings, showing the capability of MWRs to follow the vertical profile measured by the sounding and finding a mean absolute error below 0.5 g m -3 in the lowest 5 km of the atmosphere. However, the relative humidity profiles measured by the microwave radiometer lack the high-resolution details available from radiosonde profiles. Furthermore, an encouraging and significant finding of this study was that the coefficient of determination between the lapse rate measured by the microwave radiometer and the tower measurements over the tower levels between 50 and 300 m ranged from 0.76 to 0.91, proving that these remote-sensing instruments can provide accurate information on atmospheric stability conditions in the lower boundary layer.« less
Bianco, Laura; Friedrich, Katja; Wilczak, James M.; ...
2017-05-09
To assess current remote-sensing capabilities for wind energy applications, a remote-sensing system evaluation study, called XPIA (eXperimental Planetary boundary layer Instrument Assessment), was held in the spring of 2015 at NOAA's Boulder Atmospheric Observatory (BAO) facility. Several remote-sensing platforms were evaluated to determine their suitability for the verification and validation processes used to test the accuracy of numerical weather prediction models.The evaluation of these platforms was performed with respect to well-defined reference systems: the BAO's 300 m tower equipped at six levels (50, 100, 150, 200, 250, and 300 m) with 12 sonic anemometers and six temperature ( T) andmore » relative humidity (RH) sensors; and approximately 60 radiosonde launches.In this study we first employ these reference measurements to validate temperature profiles retrieved by two co-located microwave radiometers (MWRs) as well as virtual temperature ( T v) measured by co-located wind profiling radars equipped with radio acoustic sounding systems (RASSs). Results indicate a mean absolute error (MAE) in the temperature retrieved by the microwave radiometers below 1.5 K in the lowest 5?km of the atmosphere and a mean absolute error in the virtual temperature measured by the radio acoustic sounding systems below 0.8 K in the layer of the atmosphere covered by these measurements (up to approximately 1.6-2 km). We also investigated the benefit of the vertical velocity correction applied to the speed of sound before computing the virtual temperature by the radio acoustic sounding systems. We find that using this correction frequently increases the RASS error, and that it should not be routinely applied to all data.Water vapor density (WVD) profiles measured by the MWRs were also compared with similar measurements from the soundings, showing the capability of MWRs to follow the vertical profile measured by the sounding and finding a mean absolute error below 0.5 g m -3 in the lowest 5 km of the atmosphere. However, the relative humidity profiles measured by the microwave radiometer lack the high-resolution details available from radiosonde profiles. Furthermore, an encouraging and significant finding of this study was that the coefficient of determination between the lapse rate measured by the microwave radiometer and the tower measurements over the tower levels between 50 and 300 m ranged from 0.76 to 0.91, proving that these remote-sensing instruments can provide accurate information on atmospheric stability conditions in the lower boundary layer.« less
NASA Astrophysics Data System (ADS)
Bianco, Laura; Friedrich, Katja; Wilczak, James M.; Hazen, Duane; Wolfe, Daniel; Delgado, Ruben; Oncley, Steven P.; Lundquist, Julie K.
2017-05-01
To assess current remote-sensing capabilities for wind energy applications, a remote-sensing system evaluation study, called XPIA (eXperimental Planetary boundary layer Instrument Assessment), was held in the spring of 2015 at NOAA's Boulder Atmospheric Observatory (BAO) facility. Several remote-sensing platforms were evaluated to determine their suitability for the verification and validation processes used to test the accuracy of numerical weather prediction models.The evaluation of these platforms was performed with respect to well-defined reference systems: the BAO's 300 m tower equipped at six levels (50, 100, 150, 200, 250, and 300 m) with 12 sonic anemometers and six temperature (T) and relative humidity (RH) sensors; and approximately 60 radiosonde launches.In this study we first employ these reference measurements to validate temperature profiles retrieved by two co-located microwave radiometers (MWRs) as well as virtual temperature (Tv) measured by co-located wind profiling radars equipped with radio acoustic sounding systems (RASSs). Results indicate a mean absolute error (MAE) in the temperature retrieved by the microwave radiometers below 1.5 K in the lowest 5 km of the atmosphere and a mean absolute error in the virtual temperature measured by the radio acoustic sounding systems below 0.8 K in the layer of the atmosphere covered by these measurements (up to approximately 1.6-2 km). We also investigated the benefit of the vertical velocity correction applied to the speed of sound before computing the virtual temperature by the radio acoustic sounding systems. We find that using this correction frequently increases the RASS error, and that it should not be routinely applied to all data.Water vapor density (WVD) profiles measured by the MWRs were also compared with similar measurements from the soundings, showing the capability of MWRs to follow the vertical profile measured by the sounding and finding a mean absolute error below 0.5 g m-3 in the lowest 5 km of the atmosphere. However, the relative humidity profiles measured by the microwave radiometer lack the high-resolution details available from radiosonde profiles. An encouraging and significant finding of this study was that the coefficient of determination between the lapse rate measured by the microwave radiometer and the tower measurements over the tower levels between 50 and 300 m ranged from 0.76 to 0.91, proving that these remote-sensing instruments can provide accurate information on atmospheric stability conditions in the lower boundary layer.
Measurement Capabilities of the DOE ARM Aerial Facility
NASA Astrophysics Data System (ADS)
Schmid, B.; Tomlinson, J. M.; Hubbe, J.; Comstock, J. M.; Kluzek, C. D.; Chand, D.; Pekour, M. S.
2012-12-01
The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites in three important climatic regimes that provide long-term measurements of climate relevant properties. ARM also operates mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months) to investigate understudied climate regimes around the globe. Finally, airborne observations by ARM's Aerial Facility (AAF) enhance the surface-based ARM measurements by providing high-resolution in situ measurements for process understanding, retrieval algorithm development, and model evaluation that is not possible using ground-based techniques. AAF started out in 2007 as a "virtual hangar" with no dedicated aircraft and only a small number of instruments owned by ARM. In this mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, the Battelle owned G-1 aircraft was included in the ARM facility. The G-1 is a large twin turboprop aircraft, capable of measurements up to altitudes of 7.5 km and a range of 2,800 kilometers. Furthermore the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of seventeen new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also heavily engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments. In the presentation we will showcase science applications based on measurements from recent field campaigns such as CARES, CALWATER and TCAP.
Xie, Huiting; Liu, Lei; Wang, Jia; Joon, Kum Eng; Parasuram, Rajni; Gunasekaran, Jamuna; Poh, Chee Lien
2015-08-14
With the evolution of education, there has been a shift from the use of traditional teaching methods, such as didactic or rote teaching, towards non-traditional teaching methods, such as viewing of role plays, simulation, live interviews and the use of virtual environments. Mental state examination is an essential competency for all student healthcare professionals. If mental state examination is not taught in the most effective manner so learners can comprehend its concepts and interpret the findings correctly, it could lead to serious repercussions and subsequently impact on clinical care provided for patients with mental health conditions, such as incorrect assessment of suicidal ideation. However, the methods for teaching mental state examination vary widely between countries, academic institutions and clinical settings. This systematic review aimed to identify and synthesize the best available evidence of effective teaching methods used to prepare student health care professionals for the delivery of mental state examination. This review considered evidence from primary quantitative studies which address the effectiveness of a chosen method used for the teaching of mental state examination published in English, including studies that measure learner outcomes, i.e. improved knowledge and skills, self-confidence and learners' satisfaction. A three-step search strategy was undertaken in this review to search for articles published in English from the inception of the database to December 2014. An initial search of MEDLINE and CINAHL was undertaken to identify keywords. Secondly, the keywords identified were used to search electronic databases, namely, CINAHL, Medline, Cochrane Central Register of Controlled Trials, Ovid, PsycINFO and, ProQuest Dissertations & Theses. Thirdly, reference lists of the articles identified in the second stage were searched for other relevant studies. Studies selected were assessed by two independent reviewers for methodological validity prior to inclusion in the review using the standardized critical appraisal instruments from the Joanna Briggs Institute's Meta-Analysis of Statistics Assessment and Review Instrument embedded within the System for the Unified Management, Assessment and Review of Information. Any disagreements that arose between the reviewers were resolved through discussion between the reviewers. Data was extracted using data extraction tools developed by the Joanna Briggs Institute Quantitative data was extracted from papers using standardized data extraction tools from the Joanna Briggs Institute's Meta-Analysis of Statistics Assessment and Review Instrument. The included studies were found to be heterogeneous in terms of participants and teaching methods. Moreover, a wide variety of instruments were used to determine impact and outcomes of the teaching methods. Hence, findings of the included articles were presented in a narrative summary. A total of 12 articles were included in this review with consensus from all reviewers. The evidence retrieved in this study suggests that non-traditional teaching methods, such as videotapes, virtual simulation, standardized patients and reflection, improve learners' understanding and skills of mental state examination as opposed to traditional teaching methods like lectures and provision of reading materials. However, studies that specifically compared the effectiveness of one method over another were limited to comparison between lectures with videotaped interviews and virtual simulations. It was shown that both videotaped interviews and virtual simulations were superior to lectures. In videotaped teaching, interactions between patients and learners performing mental state examination were shown for the learner’s discussion while virtual simulations mimicked patient symptoms in computer applications. Virtual simulation was notably a unique learning opportunity for the learners as it allowed learning to take place without the use of diminishing real life resources. However, in view of the high cost and learners’ difficulty in negotiating the virtual environment, videotaped teaching remained as the more commonly used method of teaching mental state examination. This systematic review study identified teaching strategies utilized in the teaching of mental state examination and their effectiveness. Videotapes was the most widely used and effective approach, that is, until the issue of high cost and ease of maneuver in virtual simulation could be overcome. There were also potential benefits of other teaching, such as reflection and use of standardized patients, and educators could consider these in the teaching of mental state examination. Future research could focus more on the comparison of various teaching methods to offer more evidence on the use of one teaching method over another. The Joanna Briggs Institute.
Upper limb assessment using a Virtual Peg Insertion Test.
Fluet, Marie-Christine; Lambercy, Olivier; Gassert, Roger
2011-01-01
This paper presents the initial evaluation of a Virtual Peg Insertion Test developed to assess sensorimotor functions of arm and hand using an instrumented tool, virtual reality and haptic feedback. Nine performance parameters derived from kinematic and kinetic data were selected and compared between two groups of healthy subjects performing the task with the dominant and non-dominant hand, as well as with a group of chronic stroke subjects suffering from different levels of upper limb impairment. Results showed significantly smaller grasping forces applied by the stroke subjects compared to the healthy subjects. The grasping force profiles suggest a poor coordination between position and grasping for the stroke subjects, and the collision forces with the virtual board were found to be indicative of sensory deficits. These preliminary results suggest that the analyzed parameters could be valid indicators of impairment. © 2011 IEEE
A model for flexible tools used in minimally invasive medical virtual environments.
Soler, Francisco; Luzon, M Victoria; Pop, Serban R; Hughes, Chris J; John, Nigel W; Torres, Juan Carlos
2011-01-01
Within the limits of current technology, many applications of a virtual environment will trade-off accuracy for speed. This is not an acceptable compromise in a medical training application where both are essential. Efficient algorithms must therefore be developed. The purpose of this project is the development and validation of a novel physics-based real time tool manipulation model, which is easy to integrate into any medical virtual environment that requires support for the insertion of long flexible tools into complex geometries. This encompasses medical specialities such as vascular interventional radiology, endoscopy, and laparoscopy, where training, prototyping of new instruments/tools and mission rehearsal can all be facilitated by using an immersive medical virtual environment. Our model recognises and uses accurately patient specific data and adapts to the geometrical complexity of the vessel in real time.
Hou, Yang; Shi, Jiangang; Lin, Yanping; Chen, Huajiang; Yuan, Wen
2018-06-01
The cervical screw placement is one of the most difficult procedures in spine surgery, which often needs a long period of repeated practices and could cause screw placement-related complications. We performed this cadaver study to investigate the effectiveness of virtual surgical training system (VSTS) on cervical pedicle screw instrumentation for residents. A total of ten novice residents were randomly assigned to two groups: the simulation training (ST) group (n = 5) and control group (n = 5). The ST group received a surgical training of cervical pedicle screw placement on VSTS and the control group was given an introductory teaching session before cadaver test. Ten fresh adult spine specimens including 6 males and 4 females were collected, and were randomly allocated to the two groups. The bilateral C3-C6 pedicle screw instrumentation was performed in the specimens of the two groups, respectively. After instrumentation, screw positions of the two groups were evaluated by image examinations. There was significantly statistical difference in screw penetration rates between the ST (10%) and control group (62.5%, P < 0.05). The acceptable rates of screws were 100 and 50% in the ST and control groups with significant difference between each other (P < 0.05). In addition, the average screw penetration distance in the ST group (1.12 ± 0.47 mm) was significantly lower than the control group (2.08 ± 0.39 mm, P < 0.05). This study demonstrated that the VSTS as an advanced training tool exhibited promising effects on improving performance of novice residents in cervical pedicle screw placement compared with the traditional teaching methods.
Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos
2016-11-18
This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform's mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument's working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform.
Roudsari, AV; Gordon, C; Gray, JA Muir
2001-01-01
Background In 1998, the U.K. National Health Service Information for Health Strategy proposed the implementation of a National electronic Library for Health to provide clinicians, healthcare managers and planners, patients and the public with easy, round the clock access to high quality, up-to-date electronic information on health and healthcare. The Virtual Branch Libraries are among the most important components of the National electronic Library for Health . They aim at creating online knowledge based communities, each concerned with some specific clinical and other health-related topics. Objectives This study is about the envisaged Dermatology Virtual Branch Libraries of the National electronic Library for Health . It aims at selecting suitable dermatology Web resources for inclusion in the forthcoming Virtual Branch Libraries after establishing preliminary quality benchmarking rules for this task. Psoriasis, being a common dermatological condition, has been chosen as a starting point. Methods Because quality is a principal concern of the National electronic Library for Health, the study includes a review of the major quality benchmarking systems available today for assessing health-related Web sites. The methodology of developing a quality benchmarking system has been also reviewed. Aided by metasearch Web tools, candidate resources were hand-selected in light of the reviewed benchmarking systems and specific criteria set by the authors. Results Over 90 professional and patient-oriented Web resources on psoriasis and dermatology in general are suggested for inclusion in the forthcoming Dermatology Virtual Branch Libraries. The idea of an all-in knowledge-hallmarking instrument for the National electronic Library for Health is also proposed based on the reviewed quality benchmarking systems. Conclusions Skilled, methodical, organized human reviewing, selection and filtering based on well-defined quality appraisal criteria seems likely to be the key ingredient in the envisaged National electronic Library for Health service. Furthermore, by promoting the application of agreed quality guidelines and codes of ethics by all health information providers and not just within the National electronic Library for Health, the overall quality of the Web will improve with time and the Web will ultimately become a reliable and integral part of the care space. PMID:11720947
Interactive stereo electron microscopy enhanced with virtual reality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E.Wes; Bastacky, S.Jacob; Schwartz, Kenneth S.
2001-12-17
An analytical system is presented that is used to take measurements of objects perceived in stereo image pairs obtained from a scanning electron microscope (SEM). Our system operates by presenting a single stereo view that contains stereo image data obtained from the SEM, along with geometric representations of two types of virtual measurement instruments, a ''protractor'' and a ''caliper''. The measurements obtained from this system are an integral part of a medical study evaluating surfactant, a liquid coating the inner surface of the lung which makes possible the process of breathing. Measurements of the curvature and contact angle of submicronmore » diameter droplets of a fluorocarbon deposited on the surface of airways are performed in order to determine surface tension of the air/liquid interface. This approach has been extended to a microscopic level from the techniques of traditional surface science by measuring submicrometer rather than millimeter diameter droplets, as well as the lengths and curvature of cilia responsible for movement of the surfactant, the airway's protective liquid blanket. An earlier implementation of this approach for taking angle measurements from objects perceived in stereo image pairs using a virtual protractor is extended in this paper to include distance measurements and to use a unified view model. The system is built around a unified view model that is derived from microscope-specific parameters, such as focal length, visible area and magnification. The unified view model ensures that the underlying view models and resultant binocular parallax cues are consistent between synthetic and acquired imagery. When the view models are consistent, it is possible to take measurements of features that are not constrained to lie within the projection plane. The system is first calibrated using non-clinical data of known size and resolution. Using the SEM, stereo image pairs of grids and spheres of known resolution are created to calibrate the measurement system. After calibration, the system is used to take distance and angle measurements of clinical specimens.« less
NASA Astrophysics Data System (ADS)
Barr, D.; Gilpatrick, J. D.; Martinez, D.; Shurter, R. B.
2004-11-01
The Los Alamos Neutron Science Center (LANSCE) facility at Los Alamos National Laboratory has constructed both an Isotope Production Facility (IPF) and a Switchyard Kicker (XDK) as additions to the H+ and H- accelerator. These additions contain eleven Beam Position Monitors (BPMs) that measure the beam's position throughout the transport. The analog electronics within each processing module determines the beam position using the log-ratio technique. For system reliability, calibrations compensate for various temperature drifts and other imperfections in the processing electronics components. Additionally, verifications are periodically implemented by a PC running a National Instruments LabVIEW virtual instrument (VI) to verify continued system and cable integrity. The VI communicates with the processor cards via a PCI/MXI-3 VXI-crate communication module. Previously, accelerator operators performed BPM system calibrations typically once per day while beam was explicitly turned off. One of this new measurement system's unique achievements is its automated calibration and verification capability. Taking advantage of the pulsed nature of the LANSCE-facility beams, the integrated electronics hardware and VI perform calibration and verification operations between beam pulses without interrupting production beam delivery. The design, construction, and performance results of the automated calibration and verification portion of this position measurement system will be the topic of this paper.
NASA Astrophysics Data System (ADS)
Uzoff, Phuong Pham
The purpose of this study was to examine how much K-12 science teachers working in a virtual school experience a community of practice and how that experience affects personal science-teaching efficacy and science-teaching outcome expectancy. The study was rooted in theoretical frameworks from Lave and Wenger's (1991) community of practice and Bandura's (1977) self-efficacy beliefs. The researcher used three surveys to examine schoolteachers' experiences of a community of practice and science-teaching efficacy beliefs. The instrument combined Mangieri's (2008) virtual teacher demographic survey, Riggs and Enochs (1990) Science-teaching efficacy Beliefs Instrument-A (STEBI-A), and Cadiz, Sawyer, and Griffith's (2009) Experienced Community of Practice (eCoP) instrument. The results showed a significant linear statistical relationship between the science teachers' experiences of community of practice and personal science-teaching efficacy. In addition, the study found that there was also a significant linear statistical relationship between teachers' community of practice experiences and science-teaching outcome expectancy. The results from this study were in line with numerous studies that have found teachers who are involved in a community of practice report higher science-teaching efficacy beliefs (Akerson, Cullen, & Hanson, 2009; Fazio, 2009; Lakshmanan, Heath, Perlmutter, & Elder, 2011; Liu, Lee, & Lin, 2010; Sinclair, Naizer, & Ledbetter, 2010). The researcher concluded that school leaders, policymakers, and researchers should increase professional learning opportunities that are grounded in social constructivist theoretical frameworks in order to increase teachers' science efficacy.
NASA Technical Reports Server (NTRS)
Ohl, Raymond; Slotwinski, Anthony; Eegholm, Bente; Saif, Babak
2011-01-01
The fabrication of large optics is traditionally a slow process, and fabrication capability is often limited by measurement capability. W hile techniques exist to measure mirror figure with nanometer precis ion, measurements of large-mirror prescription are typically limited to submillimeter accuracy. Using a lidar instrument enables one to measure the optical surface rough figure and prescription in virtuall y all phases of fabrication without moving the mirror from its polis hing setup. This technology improves the uncertainty of mirror presc ription measurement to the micron-regime.
Fast, cheap and in control: spectral imaging with handheld devices
NASA Astrophysics Data System (ADS)
Gooding, Edward A.; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.
2017-05-01
Remote sensing has moved out of the laboratory and into the real world. Instruments using reflection or Raman imaging modalities become faster, cheaper and more powerful annually. Enabling technologies include virtual slit spectrometer design, high power multimode diode lasers, fast open-loop scanning systems, low-noise IR-sensitive array detectors and low-cost computers with touchscreen interfaces. High-volume manufacturing assembles these components into inexpensive portable or handheld devices that make possible sophisticated decision-making based on robust data analytics. Examples include threat, hazmat and narcotics detection; remote gas sensing; biophotonic screening; environmental remediation and a host of other applications.
Development of a virtual reality training system for endoscope-assisted submandibular gland removal.
Miki, Takehiro; Iwai, Toshinori; Kotani, Kazunori; Dang, Jianwu; Sawada, Hideyuki; Miyake, Minoru
2016-11-01
Endoscope-assisted surgery has widely been adopted as a basic surgical procedure, with various training systems using virtual reality developed for this procedure. In the present study, a basic training system comprising virtual reality for the removal of submandibular glands under endoscope assistance was developed. The efficacy of the training system was verified in novice oral surgeons. A virtual reality training system was developed using existing haptic devices. Virtual reality models were constructed from computed tomography data to ensure anatomical accuracy. Novice oral surgeons were trained using the developed virtual reality training system. The developed virtual reality training system included models of the submandibular gland and surrounding connective tissues and blood vessels entering the submandibular gland. Cutting or abrasion of the connective tissue and manipulations, such as elevation of blood vessels, were reproduced by the virtual reality system. A training program using the developed system was devised. Novice oral surgeons were trained in accordance with the devised training program. Our virtual reality training system for endoscope-assisted removal of the submandibular gland is effective in the training of novice oral surgeons in endoscope-assisted surgery. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Bonessio, N; Pereira, E S J; Lomiento, G; Arias, A; Bahia, M G A; Buono, V T L; Peters, O A
2015-05-01
To validate torsional analysis, based on finite elements, of WaveOne instruments against in vitro tests and to model the effects of different nickel-titanium (NiTi) materials. WaveOne reciprocating instruments (Small, Primary and Large, n = 8 each, M-Wire) were tested under torsion according to standard ISO 3630-1. Torsional profiles including torque and angle at fracture were determined. Test conditions were reproduced through Finite Element Analysis (FEA) simulations based on micro-CT scans at 10-μm resolution; results were compared to experimental data using analysis of variance and two-sided one sample t-tests. The same simulation was performed on virtual instruments with identical geometry and load condition, based on M-Wire or conventional NiTi alloy. Torsional profiles from FEA simulations were in significant agreement with the in vitro results. Therefore, the models developed in this study were accurate and able to provide reliable simulation of the torsional performance. Stock NiTi files under torsional tests had up to 44.9%, 44.9% and 44.1% less flexibility than virtual M-Wire files at small deflections for Small, Primary and Large instruments, respectively. As deflection levels increased, the differences in flexibility between the two sets of simulated instruments decreased until fracture. Stock NiTi instruments had a torsional fracture resistance up to 10.3%, 8.0% and 7.4% lower than the M-Wire instruments, for the Small, Primary and Large file, respectively. M-Wire instruments benefitted primarily through higher material flexibility while still at low deflection levels, compared with conventional NiTi alloy. At fracture, the instruments did not take complete advantage of the enhanced fractural resistance of the M-Wire material, which determines only limited improvements of the torsional performance. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Virtual Interactomics of Proteins from Biochemical Standpoint
Kubrycht, Jaroslav; Sigler, Karel; Souček, Pavel
2012-01-01
Virtual interactomics represents a rapidly developing scientific area on the boundary line of bioinformatics and interactomics. Protein-related virtual interactomics then comprises instrumental tools for prediction, simulation, and networking of the majority of interactions important for structural and individual reproduction, differentiation, recognition, signaling, regulation, and metabolic pathways of cells and organisms. Here, we describe the main areas of virtual protein interactomics, that is, structurally based comparative analysis and prediction of functionally important interacting sites, mimotope-assisted and combined epitope prediction, molecular (protein) docking studies, and investigation of protein interaction networks. Detailed information about some interesting methodological approaches and online accessible programs or databases is displayed in our tables. Considerable part of the text deals with the searches for common conserved or functionally convergent protein regions and subgraphs of conserved interaction networks, new outstanding trends and clinically interesting results. In agreement with the presented data and relationships, virtual interactomic tools improve our scientific knowledge, help us to formulate working hypotheses, and they frequently also mediate variously important in silico simulations. PMID:22928109
Al-Dahir, Sara; Bryant, Kendrea; Kennedy, Kathleen B; Robinson, Donna S
2014-05-15
To evaluate the efficacy of faculty-led problem-based learning (PBL) vs online simulated-patient case in fourth-year (P4) pharmacy students. Fourth-year pharmacy students were randomly assigned to participate in either online branched-case learning using a virtual simulation platform or a small-group discussion. Preexperience and postexperience student assessments and a survey instrument were completed. While there were no significant differences in the preexperience test scores between the groups, there was a significant increase in scores in both the virtual-patient group and the PBL group between the preexperience and postexperience tests. The PBL group had higher postexperience test scores (74.8±11.7) than did the virtual-patient group (66.5±13.6) (p=0.001). The PBL method demonstrated significantly greater improvement in postexperience test scores than did the virtual-patient method. Both were successful learning methods, suggesting that a diverse approach to simulated patient cases may reach more student learning styles.
ESO Reflex: a graphical workflow engine for data reduction
NASA Astrophysics Data System (ADS)
Hook, Richard; Ullgrén, Marko; Romaniello, Martino; Maisala, Sami; Oittinen, Tero; Solin, Otto; Savolainen, Ville; Järveläinen, Pekka; Tyynelä, Jani; Péron, Michèle; Ballester, Pascal; Gabasch, Armin; Izzo, Carlo
ESO Reflex is a prototype software tool that provides a novel approach to astronomical data reduction by integrating a modern graphical workflow system (Taverna) with existing legacy data reduction algorithms. Most of the raw data produced by instruments at the ESO Very Large Telescope (VLT) in Chile are reduced using recipes. These are compiled C applications following an ESO standard and utilising routines provided by the Common Pipeline Library (CPL). Currently these are run in batch mode as part of the data flow system to generate the input to the ESO/VLT quality control process and are also exported for use offline. ESO Reflex can invoke CPL-based recipes in a flexible way through a general purpose graphical interface. ESO Reflex is based on the Taverna system that was originally developed within the UK life-sciences community. Workflows have been created so far for three VLT/VLTI instruments, and the GUI allows the user to make changes to these or create workflows of their own. Python scripts or IDL procedures can be easily brought into workflows and a variety of visualisation and display options, including custom product inspection and validation steps, are available. Taverna is intended for use with web services and experiments using ESO Reflex to access Virtual Observatory web services have been successfully performed. ESO Reflex is the main product developed by Sampo, a project led by ESO and conducted by a software development team from Finland as an in-kind contribution to joining ESO. The goal was to look into the needs of the ESO community in the area of data reduction environments and to create pilot software products that illustrate critical steps along the road to a new system. Sampo concluded early in 2008. This contribution will describe ESO Reflex and show several examples of its use both locally and using Virtual Observatory remote web services. ESO Reflex is expected to be released to the community in early 2009.
Integrated instrumentation & computation environment for GRACE
NASA Astrophysics Data System (ADS)
Dhekne, P. S.
2002-03-01
The project GRACE (Gamma Ray Astrophysics with Coordinated Experiments) aims at setting up a state of the art Gamma Ray Observatory at Mt. Abu, Rajasthan for undertaking comprehensive scientific exploration over a wide spectral window (10's keV - 100's TeV) from a single location through 4 coordinated experiments. The cumulative data collection rate of all the telescopes is expected to be about 1 GB/hr, necessitating innovations in the data management environment. As real-time data acquisition and control as well as off-line data processing, analysis and visualization environment of these systems is based on the us cutting edge and affordable technologies in the field of computers, communications and Internet. We propose to provide a single, unified environment by seamless integration of instrumentation and computations by taking advantage of the recent advancements in Web based technologies. This new environment will allow researchers better acces to facilities, improve resource utilization and enhance collaborations by having identical environments for online as well as offline usage of this facility from any location. We present here a proposed implementation strategy for a platform independent web-based system that supplements automated functions with video-guided interactive and collaborative remote viewing, remote control through virtual instrumentation console, remote acquisition of telescope data, data analysis, data visualization and active imaging system. This end-to-end web-based solution will enhance collaboration among researchers at the national and international level for undertaking scientific studies, using the telescope systems of the GRACE project.
A novel ultrasound-guided shoulder arthroscopic surgery
NASA Astrophysics Data System (ADS)
Tyryshkin, K.; Mousavi, P.; Beek, M.; Chen, T.; Pichora, D.; Abolmaesumi, P.
2006-03-01
This paper presents a novel ultrasound-guided computer system for arthroscopic surgery of the shoulder joint. Intraoperatively, the system tracks and displays the surgical instruments, such as arthroscope and arthroscopic burrs, relative to the anatomy of the patient. The purpose of this system is to improve the surgeon's perception of the three-dimensional space within the anatomy of the patient in which the instruments are manipulated and to provide guidance towards the targeted anatomy. Pre-operatively, computed tomography images of the patient are acquired to construct virtual threedimensional surface models of the shoulder bone structure. Intra-operatively, live ultrasound images of pre-selected regions of the shoulder are captured using an ultrasound probe whose three-dimensional position is tracked by an optical camera. These images are used to register the surface model to the anatomy of the patient in the operating room. An initial alignment is obtained by matching at least three points manually selected on the model to their corresponding points identified on the ultrasound images. The registration is then improved with an iterative closest point or a sequential least squares estimation technique. In the present study the registration results of these techniques are compared. After the registration, surgical instruments are displayed relative to the surface model of the patient on a graphical screen visible to the surgeon. Results of laboratory experiments on a shoulder phantom indicate acceptable registration results and sufficiently fast overall system performance to be applicable in the operating room.
Computer network defense system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urias, Vincent; Stout, William M. S.; Loverro, Caleb
A method and apparatus for protecting virtual machines. A computer system creates a copy of a group of the virtual machines in an operating network in a deception network to form a group of cloned virtual machines in the deception network when the group of the virtual machines is accessed by an adversary. The computer system creates an emulation of components from the operating network in the deception network. The components are accessible by the group of the cloned virtual machines as if the group of the cloned virtual machines was in the operating network. The computer system moves networkmore » connections for the group of the virtual machines in the operating network used by the adversary from the group of the virtual machines in the operating network to the group of the cloned virtual machines, enabling protecting the group of the virtual machines from actions performed by the adversary.« less
PiCO QL: A software library for runtime interactive queries on program data
NASA Astrophysics Data System (ADS)
Fragkoulis, Marios; Spinellis, Diomidis; Louridas, Panos
PiCO QL is an open source C/C++ software whose scientific scope is real-time interactive analysis of in-memory data through SQL queries. It exposes a relational view of a system's or application's data structures, which is queryable through SQL. While the application or system is executing, users can input queries through a web-based interface or issue web service requests. Queries execute on the live data structures through the respective relational views. PiCO QL makes a good candidate for ad-hoc data analysis in applications and for diagnostics in systems settings. Applications of PiCO QL include the Linux kernel, the Valgrind instrumentation framework, a GIS application, a virtual real-time observatory of stellar objects, and a source code analyser.
LiveView3D: Real Time Data Visualization for the Aerospace Testing Environment
NASA Technical Reports Server (NTRS)
Schwartz, Richard J.; Fleming, Gary A.
2006-01-01
This paper addresses LiveView3D, a software package and associated data visualization system for use in the aerospace testing environment. The LiveView3D system allows researchers to graphically view data from numerous wind tunnel instruments in real time in an interactive virtual environment. The graphical nature of the LiveView3D display provides researchers with an intuitive view of the measurement data, making it easier to interpret the aerodynamic phenomenon under investigation. LiveView3D has been developed at the NASA Langley Research Center and has been applied in the Langley Unitary Plan Wind Tunnel (UPWT). This paper discusses the capabilities of the LiveView3D system, provides example results from its application in the UPWT, and outlines features planned for future implementation.
Spibey, C A; Jackson, P; Herick, K
2001-03-01
In recent years the use of fluorescent dyes in biological applications has dramatically increased. The continual improvement in the capabilities of these fluorescent dyes demands increasingly sensitive detection systems that provide accurate quantitation over a wide linear dynamic range. In the field of proteomics, the detection, quantitation and identification of very low abundance proteins are of extreme importance in understanding cellular processes. Therefore, the instrumentation used to acquire an image of such samples, for spot picking and identification by mass spectrometry, must be sensitive enough to be able, not only, to maximise the sensitivity and dynamic range of the staining dyes but, as importantly, adapt to the ever changing portfolio of fluorescent dyes as they become available. Just as the available fluorescent probes are improving and evolving so are the users application requirements. Therefore, the instrumentation chosen must be flexible to address and adapt to those changing needs. As a result, a highly competitive market for the supply and production of such dyes and the instrumentation for their detection and quantitation have emerged. The instrumentation currently available is based on either laser/photomultiplier tube (PMT) scanning or lamp/charge-coupled device (CCD) based mechanisms. This review briefly discusses the advantages and disadvantages of both System types for fluorescence imaging, gives a technical overview of CCD technology and describes in detail a unique xenon/are lamp CCD based instrument, from PerkinElmer Life Sciences. The Wallac-1442 ARTHUR is unique in its ability to scan both large areas at high resolution and give accurate selectable excitation over the whole of the UV/visible range. It operates by filtering both the excitation and emission wavelengths, providing optimal and accurate measurement and quantitation of virtually any available dye and allows excellent spectral resolution between different fluorophores. This flexibility and excitation accuracy is key to multicolour applications and future adaptation of the instrument to address the application requirements and newly emerging dyes.
Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance
NASA Technical Reports Server (NTRS)
Ricci, Stefano; Peeters, Bart; Fetter, Rebecca; Boland, Doug; Debille, Jan
2008-01-01
In the field of vibration testing, the interaction between the structure being tested and the instrumentation hardware used to perform the test is a critical issue. This is particularly true when testing massive structures (e.g. satellites), because due to physical design and manufacturing limits, the dynamics of the testing facility often couples with the test specimen one in the frequency range of interest. A further issue in this field is the standard use of a closed loop real-time vibration control scheme, which could potentially shift poles and change damping of the aforementioned coupled system. Virtual shaker testing is a novel approach to deal with these issues. It means performing a simulation which closely represents the real vibration test on the specific facility by taking into account all parameters which might impact the dynamic behavior of the specimen. In this paper, such a virtual shaker testing approach is developed. It consists of the following components: (1) Either a physical-based or an equation-based coupled electro-mechanical lumped parameter shaker model is created. The model parameters are obtained from manufacturer's specifications or by carrying out some dedicated experiments; (2) Existing real-time vibration control algorithm are ported to the virtual simulation environment; and (3) A structural model of the test object is created and after defining proper interface conditions structural modes are computed by means of the well-established Craig-Bampton CMS technique. At this stage, a virtual shaker test has been run, by coupling the three described models (shaker, control loop, structure) in a co-simulation routine. Numerical results have eventually been correlated with experimental ones in order to assess the robustness of the proposed methodology.
A New PC and LabVIEW Package Based System for Electrochemical Investigations
Stević, Zoran; Andjelković, Zoran; Antić, Dejan
2008-01-01
The paper describes a new PC and LabVIEW software package based system for electrochemical research. An overview of well known electrochemical methods, such as potential measurements, galvanostatic and potentiostatic method, cyclic voltammetry and EIS is given. Electrochemical impedance spectroscopy has been adapted for systems containing large capacitances. For signal generation and recording of the response of investigated electrochemical cell, a measurement and control system was developed, based on a PC P4. The rest of the hardware consists of a commercially available AD-DA converter and an external interface for analog signal processing. The interface is a result of authors own research. The software platform for desired measurement methods is LabVIEW 8.2 package, which is regarded as a high standard in the area of modern virtual instruments. The developed system was adjusted, tested and compared with commercially available system and ORCAD simulation. PMID:27879794
Bluetooth-based distributed measurement system
NASA Astrophysics Data System (ADS)
Tang, Baoping; Chen, Zhuo; Wei, Yuguo; Qin, Xiaofeng
2007-07-01
A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit.
An innovative virtual reality training tool for orthognathic surgery.
Pulijala, Y; Ma, M; Pears, M; Peebles, D; Ayoub, A
2018-02-01
Virtual reality (VR) surgery using Oculus Rift and Leap Motion devices is a multi-sensory, holistic surgical training experience. A multimedia combination including 360° videos, three-dimensional interaction, and stereoscopic videos in VR has been developed to enable trainees to experience a realistic surgery environment. The innovation allows trainees to interact with the individual components of the maxillofacial anatomy and apply surgical instruments while watching close-up stereoscopic three-dimensional videos of the surgery. In this study, a novel training tool for Le Fort I osteotomy based on immersive virtual reality (iVR) was developed and validated. Seven consultant oral and maxillofacial surgeons evaluated the application for face and content validity. Using a structured assessment process, the surgeons commented on the content of the developed training tool, its realism and usability, and the applicability of VR surgery for orthognathic surgical training. The results confirmed the clinical applicability of VR for delivering training in orthognathic surgery. Modifications were suggested to improve the user experience and interactions with the surgical instruments. This training tool is ready for testing with surgical trainees. Copyright © 2018 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Knapic, C.; Zanichelli, A.; Dovgan, E.; Nanni, M.; Stagni, M.; Righini, S.; Sponza, M.; Bedosti, F.; Orlati, A.; Smareglia, R.
2016-07-01
Radio Astronomical Data models are becoming very complex since the huge possible range of instrumental configurations available with the modern Radio Telescopes. What in the past was the last frontiers of data formats in terms of efficiency and flexibility is now evolving with new strategies and methodologies enabling the persistence of a very complex, hierarchical and multi-purpose information. Such an evolution of data models and data formats require new data archiving techniques in order to guarantee data preservation following the directives of Open Archival Information System and the International Virtual Observatory Alliance for data sharing and publication. Currently, various formats (FITS, MBFITS, VLBI's XML description files and ancillary files) of data acquired with the Medicina and Noto Radio Telescopes can be stored and handled by a common Radio Archive, that is planned to be released to the (inter)national community by the end of 2016. This state-of-the-art archiving system for radio astronomical data aims at delegating as much as possible to the software setting how and where the descriptors (metadata) are saved, while the users perform user-friendly queries translated by the web interface into complex interrogations on the database to retrieve data. In such a way, the Archive is ready to be Virtual Observatory compliant and as much as possible user-friendly.
A New PC and LabVIEW Package Based System for Electrochemical Investigations.
Stević, Zoran; Andjelković, Zoran; Antić, Dejan
2008-03-15
The paper describes a new PC and LabVIEW software package based system forelectrochemical research. An overview of well known electrochemical methods, such aspotential measurements, galvanostatic and potentiostatic method, cyclic voltammetry andEIS is given. Electrochemical impedance spectroscopy has been adapted for systemscontaining large capacitances. For signal generation and recording of the response ofinvestigated electrochemical cell, a measurement and control system was developed, basedon a PC P4. The rest of the hardware consists of a commercially available AD-DA converterand an external interface for analog signal processing. The interface is a result of authorsown research. The software platform for desired measurement methods is LabVIEW 8.2package, which is regarded as a high standard in the area of modern virtual instruments. Thedeveloped system was adjusted, tested and compared with commercially available systemand ORCAD simulation.
Landsat Data Continuity Mission (LDCM) space to ground mission data architecture
Nelson, Jack L.; Ames, J.A.; Williams, J.; Patschke, R.; Mott, C.; Joseph, J.; Garon, H.; Mah, G.
2012-01-01
The Landsat Data Continuity Mission (LDCM) is a scientific endeavor to extend the longest continuous multi-spectral imaging record of Earth's land surface. The observatory consists of a spacecraft bus integrated with two imaging instruments; the Operational Land Imager (OLI), built by Ball Aerospace & Technologies Corporation in Boulder, Colorado, and the Thermal Infrared Sensor (TIRS), an in-house instrument built at the Goddard Space Flight Center (GSFC). Both instruments are integrated aboard a fine-pointing, fully redundant, spacecraft bus built by Orbital Sciences Corporation, Gilbert, Arizona. The mission is scheduled for launch in January 2013. This paper will describe the innovative end-to-end approach for efficiently managing high volumes of simultaneous realtime and playback of image and ancillary data from the instruments to the reception at the United States Geological Survey's (USGS) Landsat Ground Network (LGN) and International Cooperator (IC) ground stations. The core enabling capability lies within the spacecraft Command and Data Handling (C&DH) system and Radio Frequency (RF) communications system implementation. Each of these systems uniquely contribute to the efficient processing of high speed image data (up to 265Mbps) from each instrument, and provide virtually error free data delivery to the ground. Onboard methods include a combination of lossless data compression, Consultative Committee for Space Data Systems (CCSDS) data formatting, a file-based/managed Solid State Recorder (SSR), and Low Density Parity Check (LDPC) forward error correction. The 440 Mbps wideband X-Band downlink uses Class 1 CCSDS File Delivery Protocol (CFDP), and an earth coverage antenna to deliver an average of 400 scenes per day to a combination of LGN and IC ground stations. This paper will also describe the integrated capabilities and processes at the LGN ground stations for data reception using adaptive filtering, and the mission operations approach fro- the LDCM Mission Operations Center (MOC) to perform the CFDP accounting, file retransmissions, and management of the autonomous features of the SSR.
AOF LTAO mode: reconstruction strategy and first test results
NASA Astrophysics Data System (ADS)
Oberti, Sylvain; Kolb, Johann; Le Louarn, Miska; La Penna, Paolo; Madec, Pierre-Yves; Neichel, Benoit; Sauvage, Jean-François; Fusco, Thierry; Donaldson, Robert; Soenke, Christian; Suárez Valles, Marcos; Arsenault, Robin
2016-07-01
GALACSI is the Adaptive Optics (AO) system serving the instrument MUSE in the framework of the Adaptive Optics Facility (AOF) project. Its Narrow Field Mode (NFM) is a Laser Tomography AO (LTAO) mode delivering high resolution in the visible across a small Field of View (FoV) of 7.5" diameter around the optical axis. From a reconstruction standpoint, GALACSI NFM intends to optimize the correction on axis by estimating the turbulence in volume via a tomographic process, then projecting the turbulence profile onto one single Deformable Mirror (DM) located in the pupil, close to the ground. In this paper, the laser tomographic reconstruction process is described. Several methods (virtual DM, virtual layer projection) are studied, under the constraint of a single matrix vector multiplication. The pseudo-synthetic interaction matrix model and the LTAO reconstructor design are analysed. Moreover, the reconstruction parameter space is explored, in particular the regularization terms. Furthermore, we present here the strategy to define the modal control basis and split the reconstruction between the Low Order (LO) loop and the High Order (HO) loop. Finally, closed loop performance obtained with a 3D turbulence generator will be analysed with respect to the most relevant system parameters to be tuned.
VirGO: A Visual Browser for the ESO Science Archive Facility
NASA Astrophysics Data System (ADS)
Chéreau, F.
2008-08-01
VirGO is the next generation Visual Browser for the ESO Science Archive Facility developed by the Virtual Observatory (VO) Systems Department. It is a plug-in for the popular open source software Stellarium adding capabilities for browsing professional astronomical data. VirGO gives astronomers the possibility to easily discover and select data from millions of observations in a new visual and intuitive way. Its main feature is to perform real-time access and graphical display of a large number of observations by showing instrumental footprints and image previews, and to allow their selection and filtering for subsequent download from the ESO SAF web interface. It also allows the loading of external FITS files or VOTables, the superimposition of Digitized Sky Survey (DSS) background images, and the visualization of the sky in a `real life' mode as seen from the main ESO sites. All data interfaces are based on Virtual Observatory standards which allow access to images and spectra from external data centers, and interaction with the ESO SAF web interface or any other VO applications supporting the PLASTIC messaging system. The main website for VirGO is at http://archive.eso.org/cms/virgo.
Head-mounted active noise control system with virtual sensing technique
NASA Astrophysics Data System (ADS)
Miyazaki, Nobuhiro; Kajikawa, Yoshinobu
2015-03-01
In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.
A low-cost multimodal head-mounted display system for neuroendoscopic surgery.
Xu, Xinghua; Zheng, Yi; Yao, Shujing; Sun, Guochen; Xu, Bainan; Chen, Xiaolei
2018-01-01
With rapid advances in technology, wearable devices as head-mounted display (HMD) have been adopted for various uses in medical science, ranging from simply aiding in fitness to assisting surgery. We aimed to investigate the feasibility and practicability of a low-cost multimodal HMD system in neuroendoscopic surgery. A multimodal HMD system, mainly consisted of a HMD with two built-in displays, an action camera, and a laptop computer displaying reconstructed medical images, was developed to assist neuroendoscopic surgery. With this intensively integrated system, the neurosurgeon could freely switch between endoscopic image, three-dimensional (3D) reconstructed virtual endoscopy images, and surrounding environment images. Using a leap motion controller, the neurosurgeon could adjust or rotate the 3D virtual endoscopic images at a distance to better understand the positional relation between lesions and normal tissues at will. A total of 21 consecutive patients with ventricular system diseases underwent neuroendoscopic surgery with the aid of this system. All operations were accomplished successfully, and no system-related complications occurred. The HMD was comfortable to wear and easy to operate. Screen resolution of the HMD was high enough for the neurosurgeon to operate carefully. With the system, the neurosurgeon might get a better comprehension on lesions by freely switching among images of different modalities. The system had a steep learning curve, which meant a quick increment of skill with it. Compared with commercially available surgical assistant instruments, this system was relatively low-cost. The multimodal HMD system is feasible, practical, helpful, and relatively cost efficient in neuroendoscopic surgery.
MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package
Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; ...
2015-11-28
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less
Virtual hand: a 3D tactile interface to virtual environments
NASA Astrophysics Data System (ADS)
Rogowitz, Bernice E.; Borrel, Paul
2008-02-01
We introduce a novel system that allows users to experience the sensation of touch in a computer graphics environment. In this system, the user places his/her hand on an array of pins, which is moved about space on a 6 degree-of-freedom robot arm. The surface of the pins defines a surface in the virtual world. This "virtual hand" can move about the virtual world. When the virtual hand encounters an object in the virtual world, the heights of the pins are adjusted so that they represent the object's shape, surface, and texture. A control system integrates pin and robot arm motions to transmit information about objects in the computer graphics world to the user. It also allows the user to edit, change and move the virtual objects, shapes and textures. This system provides a general framework for touching, manipulating, and modifying objects in a 3-D computer graphics environment, which may be useful in a wide range of applications, including computer games, computer aided design systems, and immersive virtual worlds.
The Interactive Virtual Earth Science Teaching (InVEST) project: preliminary results
NASA Astrophysics Data System (ADS)
Gallus, W.; Cervato, C.; Parham, T.; Larsen, M.; Cruz-Neira, C.; Boudreaux, H.
2009-04-01
The InVEST (Interactive Virtual Earth Science Teaching) project has as its goal the development of state-of-the-art virtual reality geoscience tools that can be used to correct student misunderstandings about some geoscience phenomena. One tool, originally developed several years ago, the virtual tornadic thunderstorm, was recently modified based on feedback from instructors given the opportunity to use the tool. The modified virtual storm will be demonstrated during the presentation. In addition, a virtual volcano application is currently under development. To steer the development of this application, a Volcanic Concept Survey was recently administered to over 600 students at six U.S. institutions with the goal of identifying areas of greatest misconception relating to volcanoes. Both mean and median scores on the instrument were exceptionally low, indicating that students generally possessed minimal understanding of volcanic systems. High scores were restricted to the simplest aspects of volcanism (terminology, basic volcano shape) while questions requiring higher thinking and deeper conceptual connections (analysis of patterns, eruptive controls, and hazards) saw much lower scores. Categorical analysis of response types revealed the extent of specific misconceptions, the most predominant of which demonstrated a failure to link tectonics to a global volcanic pattern. Eruptive catalysts and controls also appear poorly understood, as are volcanic impacts on the environment and human endeavors. The survey also included demographic information which has been analyzed. Analysis of student sources of knowledge found that over 41% of students said that they had acquired most of their understanding about volcanoes from non-traditional sources such as the popular media and Hollywood films. Application of a multiple linear regression model and an expanded model suggests that these students were much less likely to receive high scores on questions relating to understanding. In contrast, traditional sources of knowledge (in-class learning, learning from textbooks) were highly significant predictors of high score in both models.
Comparative evaluation of monocular augmented-reality display for surgical microscopes.
Rodriguez Palma, Santiago; Becker, Brian C; Lobes, Louis A; Riviere, Cameron N
2012-01-01
Medical augmented reality has undergone much development recently. However, there is a lack of studies quantitatively comparing the different display options available. This paper compares the effects of different graphical overlay systems in a simple micromanipulation task with "soft" visual servoing. We compared positioning accuracy in a real-time visually-guided task using Micron, an active handheld tremor-canceling microsurgical instrument, using three different displays: 2D screen, 3D screen, and microscope with monocular image injection. Tested with novices and an experienced vitreoretinal surgeon, display of virtual cues in the microscope via an augmented reality injection system significantly decreased 3D error (p < 0.05) compared to the 2D and 3D monitors when confounding factors such as magnification level were normalized.
NASA Technical Reports Server (NTRS)
Arvidson, R. E.; Lindemann, R.; Matijevic, J.; Richter, L.; Sullivan, R.; Haldemann, A.; Anderson, R.; Snider, N.
2003-01-01
The two 2003 Mars Exploration Rovers (MERs), in combination with the Athena Payload, will be used as virtual instrument systems to infer terrain properties during traverses, in addition to using the rover wheels to excavate trenches, exposing subsurface materials for remote and in-situ observations. The MERs are being modeled using finite element-based rover system transfer functions that utilize the distribution of masses associated with the vehicle, together with suspension and wheel dynamics, to infer surface roughness and mechanical properties from traverse time series data containing vehicle yaw, pitch, roll, encoder counts, and motor currents. These analyses will be supplemented with imaging and other Athena Payload measurements. The approach is being validated using Sojourner data, the FIDO rover, and experiments with MER testbed vehicles. In addition to conducting traverse science and associated analyses, trenches will be excavated by the MERs to depths of approximately 10-20 cm by locking all but one of the front wheels and rotating that wheel backwards so that the excavated material is piled up on the side of the trench away from the vehicle. Soil cohesion and angle of internal friction will be determined from the trench telemetry data. Emission spectroscopy and in-situ observations will be made using the Athena payload before and after imaging. Trenching and observational protocols have been developed using Sojourner results; data from the FIDO rover, including trenches dug into sand, mud cracks, and weakly indurated bedrock; and experiments with MER testbed rovers. Particular attention will be focused on Mini-TES measurements designed to determine the abundance and state of subsurface water (e.g. hydrated, in zeolites, residual pore ice?) predicted to be present from Odyssey GRS/NS/HEND data.
Allen, R J; Rieger, T R; Musante, C J
2016-03-01
Quantitative systems pharmacology models mechanistically describe a biological system and the effect of drug treatment on system behavior. Because these models rarely are identifiable from the available data, the uncertainty in physiological parameters may be sampled to create alternative parameterizations of the model, sometimes termed "virtual patients." In order to reproduce the statistics of a clinical population, virtual patients are often weighted to form a virtual population that reflects the baseline characteristics of the clinical cohort. Here we introduce a novel technique to efficiently generate virtual patients and, from this ensemble, demonstrate how to select a virtual population that matches the observed data without the need for weighting. This approach improves confidence in model predictions by mitigating the risk that spurious virtual patients become overrepresented in virtual populations.
LVFS: A Scalable Petabye/Exabyte Data Storage System
NASA Astrophysics Data System (ADS)
Golpayegani, N.; Halem, M.; Masuoka, E. J.; Ye, G.; Devine, N. K.
2013-12-01
Managing petabytes of data with hundreds of millions of files is the first step necessary towards an effective big data computing and collaboration environment in a distributed system. We describe here the MODAPS LAADS Virtual File System (LVFS), a new storage architecture which replaces the previous MODAPS operational Level 1 Land Atmosphere Archive Distribution System (LAADS) NFS based approach to storing and distributing datasets from several instruments, such as MODIS, MERIS, and VIIRS. LAADS is responsible for the distribution of over 4 petabytes of data and over 300 million files across more than 500 disks. We present here the first LVFS big data comparative performance results and new capabilities not previously possible with the LAADS system. We consider two aspects in addressing inefficiencies of massive scales of data. First, is dealing in a reliable and resilient manner with the volume and quantity of files in such a dataset, and, second, minimizing the discovery and lookup times for accessing files in such large datasets. There are several popular file systems that successfully deal with the first aspect of the problem. Their solution, in general, is through distribution, replication, and parallelism of the storage architecture. The Hadoop Distributed File System (HDFS), Parallel Virtual File System (PVFS), and Lustre are examples of such file systems that deal with petabyte data volumes. The second aspect deals with data discovery among billions of files, the largest bottleneck in reducing access time. The metadata of a file, generally represented in a directory layout, is stored in ways that are not readily scalable. This is true for HDFS, PVFS, and Lustre as well. Recent experimental file systems, such as Spyglass or Pantheon, have attempted to address this problem through redesign of the metadata directory architecture. LVFS takes a radically different architectural approach by eliminating the need for a separate directory within the file system. The LVFS system replaces the NFS disk mounting approach of LAADS and utilizes the already existing highly optimized metadata database server, which is applicable to most scientific big data intensive compute systems. Thus, LVFS ties the existing storage system with the existing metadata infrastructure system which we believe leads to a scalable exabyte virtual file system. The uniqueness of the implemented design is not limited to LAADS but can be employed with most scientific data processing systems. By utilizing the Filesystem In Userspace (FUSE), a kernel module available in many operating systems, LVFS was able to replace the NFS system while staying POSIX compliant. As a result, the LVFS system becomes scalable to exabyte sizes owing to the use of highly scalable database servers optimized for metadata storage. The flexibility of the LVFS design allows it to organize data on the fly in different ways, such as by region, date, instrument or product without the need for duplication, symbolic links, or any other replication methods. We proposed here a strategic reference architecture that addresses the inefficiencies of scientific petabyte/exabyte file system access through the dynamic integration of the observing system's large metadata file.
Rosenthal, R; Gantert, W A; Scheidegger, D; Oertli, D
2006-08-01
A number of studies have investigated several aspects of feasibility and validity of performance assessments with virtual reality surgical simulators. However, the validity of performance assessments is limited by the reliability of such measurements, and some issues of reliability still need to be addressed. This study aimed to evaluate the hypothesis that test subjects show logarithmic performance curves on repetitive trials for a component task of laparoscopic cholecystectomy on a virtual reality simulator, and that interindividual differences in performance after considerable training are significant. According to kinesiologic theory, logarithmic performance curves are expected and an individual's learning capacity for a specific task can be extrapolated, allowing quantification of a person's innate ability to develop task-specific skills. In this study, 20 medical students at the University of Basel Medical School performed five trials of a standardized task on the LS 500 virtual reality simulator for laparoscopic surgery. Task completion time, number of errors, economy of instrument movements, and maximum speed of instrument movements were measured. The hypothesis was confirmed by the fact that the performance curves for some of the simulator measurements were very close to logarithmic curves, and there were significant interindividual differences in performance at the end of the repetitive trials. Assessment of perceptual motor skills and the innate ability of an individual with no prior experience in laparoscopic surgery to develop such skills using the LS 500 VR surgical simulator is feasible and reliable.
The BepiColombo Archive Core System (BACS)
NASA Astrophysics Data System (ADS)
Macfarlane, A. J.; Osuna, P.; Pérez-López, F.; Vallejo, J. C.; Martinez, S.; Arviset, C.; Casale, M.
2015-09-01
BepiColombo is an interdisciplinary ESA mission to explore the planet Mercury in cooperation with JAXA. The mission consists of two separate orbiters: ESA's Mercury Planetary Orbiter (MPO) and JAXA's Mercury Magnetospheric Orbiter (MMO), which are dedicated to the detailed study of the planet and its magnetosphere. The MPO scientific payload comprises 11 instruments covering different scientific disciplines developed by several European teams. The MPO science operations will be prepared by the MPO Science Ground Segment (SGS) located at the European Space Astronomy Centre (ESAC) in Madrid. The BepiColombo Archive Core System (BACS) will be the central archive in which all mission operational data will be stored and is being developed by the Science Archives and Virtual Observatory Team (SAT) also at ESAC. The BACS will act as one of the modular subsystems within the BepiColombo Science Operations Control System (BSCS), (Vallejo 2014; Pérez-López 2014) which is under the responsibility of the SGS, with the purpose of facilitating the information exchange of data and metadata between the other subsystems of the BSCS as well as with the MPO Instrument Teams. This paper gives an overview of the concept and design of the BACS and how it integrates into the science ground segment workflow.
[The operating room of the future].
Broeders, I A; Niessen, W; van der Werken, C; van Vroonhoven, T J
2000-01-29
Advances in computer technology will revolutionize surgical techniques in the next decade. The operating room (OR) of the future will be connected with a laboratory where clinical specialists and researchers prepare image-guided interventions and explore the possibilities of these techniques. The virtual reality is linked to the actual situation in the OR with the aid of navigation instruments. During complicated operations the images prepared preoperatively will be corrected during the operation on the basis of the information obtained peroperatively. MRI currently offers maximal possibilities for image-guided surgery of soft tissues. Simpler techniques such as fluoroscopy and echography will become increasingly integrated in computer-assisted peroperative navigation. The development of medical robot systems will make possible microsurgical procedures by the endoscopic route. Tele-manipulation systems will also play a part in the training of surgeons. Design and construction of the OR will be adapted to the surgical technology, and include an information and control unit where preoperative and peroperative data come together and from where the surgeon operates the instruments. Concepts for the future OR should be regularly adjusted to allow for new surgical technology.
Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines
NASA Astrophysics Data System (ADS)
Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.
2012-12-01
Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.
Slow Monitoring Systems for CUORE
NASA Astrophysics Data System (ADS)
Dutta, Suryabrata; Cuore Collaboration
2016-09-01
The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale neutrinoless double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS). The experiment is comprised of 988 TeO2 bolometric crystals arranged into 19 towers and operated at a temperature of 10 mK. We have developed slow monitoring systems to monitor the cryostat during detector installation, commissioning, data taking, and other crucial phases of the experiment. Our systems use responsive LabVIEW virtual instruments and video streams of the cryostat. We built a website using the Angular, Bootstrap, and MongoDB frameworks to display this data in real-time. The website can also display archival data and send alarms. I will present how we constructed these slow monitoring systems to be robust, accurate, and secure, while maintaining reliable access for the entire collaboration from any platform in order to ensure efficient communications and fast diagnoses of all CUORE systems.
Virtual Sensors: Using Data Mining Techniques to Efficiently Estimate Remote Sensing Spectra
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Oza, Nikunj; Stroeve, Julienne
2004-01-01
Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. These instruments are sometimes built in a phased approach, with some measurement capabilities being added in later phases. In other cases, there may not be a planned increase in measurement capability, but technology may mature to the point that it offers new measurement capabilities that were not available before. In still other cases, detailed spectral measurements may be too costly to perform on a large sample. Thus, lower resolution instruments with lower associated cost may be used to take the majority of measurements. Higher resolution instruments, with a higher associated cost may be used to take only a small fraction of the measurements in a given area. Many applied science questions that are relevant to the remote sensing community need to be addressed by analyzing enormous amounts of data that were generated from instruments with disparate measurement capability. This paper addresses this problem by demonstrating methods to produce high accuracy estimates of spectra with an associated measure of uncertainty from data that is perhaps nonlinearly correlated with the spectra. In particular, we demonstrate multi-layer perceptrons (MLPs), Support Vector Machines (SVMs) with Radial Basis Function (RBF) kernels, and SVMs with Mixture Density Mercer Kernels (MDMK). We call this type of an estimator a Virtual Sensor because it predicts, with a measure of uncertainty, unmeasured spectral phenomena.
Virtual and flexible digital signal processing system based on software PnP and component works
NASA Astrophysics Data System (ADS)
He, Tao; Wu, Qinghua; Zhong, Fei; Li, Wei
2005-05-01
An idea about software PnP (Plug & Play) is put forward according to the hardware PnP. And base on this idea, a virtual flexible digital signal processing system (FVDSPS) is carried out. FVDSPS is composed of a main control center, many sub-function modules and other hardware I/O modules. Main control center sends out commands to sub-function modules, and manages running orders, parameters and results of sub-functions. The software kernel of FVDSPS is DSP (Digital Signal Processing) module, which communicates with the main control center through some protocols, accept commands or send requirements. The data sharing and exchanging between the main control center and the DSP modules are carried out and managed by the files system of the Windows Operation System through the effective communication. FVDSPS real orients objects, orients engineers and orients engineering problems. With FVDSPS, users can freely plug and play, and fast reconfigure a signal process system according to engineering problems without programming. What you see is what you get. Thus, an engineer can orient engineering problems directly, pay more attention to engineering problems, and promote the flexibility, reliability and veracity of testing system. Because FVDSPS orients TCP/IP protocol, through Internet, testing engineers, technology experts can be connected freely without space. Engineering problems can be resolved fast and effectively. FVDSPS can be used in many fields such as instruments and meter, fault diagnosis, device maintenance and quality control.
Douglass, Mark A; Casale, Jillian P; Skirvin, J Andrew; DiVall, Margarita V
2013-10-14
To implement and assess the impact of a virtual patient pilot program on pharmacy students' clinical competence skills. Pharmacy students completed interactive software-based patient case scenarios embedded with drug-therapy problems as part of a course requirement at the end of their third year. Assessments included drug-therapy problem competency achievement, performance on a pretest and posttest, and pilot evaluation survey instrument. Significant improvements in students' posttest scores demonstrated advancement of clinical skills involving drug-therapy problem solving. Students agreed that completing the pilot program improved their chronic disease management skills and the program summarized the course series well. Using virtual patient technology allowed for assessment of student competencies and improved learning outcomes.
Halic, Tansel; Kockara, Sinan; Bayrak, Coskun; Rowe, Richard
2010-10-07
Until quite recently spinal disorder problems in the U.S. have been operated by fusing cervical vertebrae instead of replacement of the cervical disc with an artificial disc. Cervical disc replacement is a recently approved procedure in the U.S. It is one of the most challenging surgical procedures in the medical field due to the deficiencies in available diagnostic tools and insufficient number of surgical practices For physicians and surgical instrument developers, it is critical to understand how to successfully deploy the new artificial disc replacement systems. Without proper understanding and practice of the deployment procedure, it is possible to injure the vertebral body. Mixed reality (MR) and virtual reality (VR) surgical simulators are becoming an indispensable part of physicians' training, since they offer a risk free training environment. In this study, MR simulation framework and intricacies involved in the development of a MR simulator for the rasping procedure in artificial cervical disc replacement (ACDR) surgery are investigated. The major components that make up the MR surgical simulator with motion tracking system are addressed. A mixed reality surgical simulator that targets rasping procedure in the artificial cervical disc replacement surgery with a VICON motion tracking system was developed. There were several challenges in the development of MR surgical simulator. First, the assembly of different hardware components for surgical simulation development that involves knowledge and application of interdisciplinary fields such as signal processing, computer vision and graphics, along with the design and placements of sensors etc . Second challenge was the creation of a physically correct model of the rasping procedure in order to attain critical forces. This challenge was handled with finite element modeling. The third challenge was minimization of error in mapping movements of an actor in real model to a virtual model in a process called registration. This issue was overcome by a two-way (virtual object to real domain and real domain to virtual object) semi-automatic registration method. The applicability of the VICON MR setting for the ACDR surgical simulator is demonstrated. The main stream problems encountered in MR surgical simulator development are addressed. First, an effective environment for MR surgical development is constructed. Second, the strain and the stress intensities and critical forces are simulated under the various rasp instrument loadings with impacts that are applied on intervertebral surfaces of the anterior vertebrae throughout the rasping procedure. Third, two approaches are introduced to solve the registration problem in MR setting. Results show that our system creates an effective environment for surgical simulation development and solves tedious and time-consuming registration problems caused by misalignments. Further, the MR ACDR surgery simulator was tested by 5 different physicians who found that the MR simulator is effective enough to teach the anatomical details of cervical discs and to grasp the basics of the ACDR surgery and rasping procedure.
Mixed reality simulation of rasping procedure in artificial cervical disc replacement (ACDR) surgery
2010-01-01
Background Until quite recently spinal disorder problems in the U.S. have been operated by fusing cervical vertebrae instead of replacement of the cervical disc with an artificial disc. Cervical disc replacement is a recently approved procedure in the U.S. It is one of the most challenging surgical procedures in the medical field due to the deficiencies in available diagnostic tools and insufficient number of surgical practices For physicians and surgical instrument developers, it is critical to understand how to successfully deploy the new artificial disc replacement systems. Without proper understanding and practice of the deployment procedure, it is possible to injure the vertebral body. Mixed reality (MR) and virtual reality (VR) surgical simulators are becoming an indispensable part of physicians’ training, since they offer a risk free training environment. In this study, MR simulation framework and intricacies involved in the development of a MR simulator for the rasping procedure in artificial cervical disc replacement (ACDR) surgery are investigated. The major components that make up the MR surgical simulator with motion tracking system are addressed. Findings A mixed reality surgical simulator that targets rasping procedure in the artificial cervical disc replacement surgery with a VICON motion tracking system was developed. There were several challenges in the development of MR surgical simulator. First, the assembly of different hardware components for surgical simulation development that involves knowledge and application of interdisciplinary fields such as signal processing, computer vision and graphics, along with the design and placements of sensors etc . Second challenge was the creation of a physically correct model of the rasping procedure in order to attain critical forces. This challenge was handled with finite element modeling. The third challenge was minimization of error in mapping movements of an actor in real model to a virtual model in a process called registration. This issue was overcome by a two-way (virtual object to real domain and real domain to virtual object) semi-automatic registration method. Conclusions The applicability of the VICON MR setting for the ACDR surgical simulator is demonstrated. The main stream problems encountered in MR surgical simulator development are addressed. First, an effective environment for MR surgical development is constructed. Second, the strain and the stress intensities and critical forces are simulated under the various rasp instrument loadings with impacts that are applied on intervertebral surfaces of the anterior vertebrae throughout the rasping procedure. Third, two approaches are introduced to solve the registration problem in MR setting. Results show that our system creates an effective environment for surgical simulation development and solves tedious and time-consuming registration problems caused by misalignments. Further, the MR ACDR surgery simulator was tested by 5 different physicians who found that the MR simulator is effective enough to teach the anatomical details of cervical discs and to grasp the basics of the ACDR surgery and rasping procedure PMID:20946594
Asensio, C; Gasco, L; Ruiz, M; Recuero, M
2015-02-01
This paper describes a methodology and case study for the implementation of educational virtual laboratories for practice training on acoustic tests according to international standards. The objectives of this activity are (a) to help the students understand and apply the procedures described in the standards and (b) to familiarize the students with the uncertainty in measurement and its estimation in acoustics. The virtual laboratory will not focus on the handling and set-up of real acoustic equipment but rather on procedures and uncertainty. The case study focuses on the application of the virtual laboratory for facade sound insulation tests according to ISO 140-5:1998 (International Organization for Standardization, Geneva, Switzerland, 1998), and the paper describes the causal and stochastic models and the constraints applied in the virtual environment under consideration. With a simple user interface, the laboratory will provide measurement data that the students will have to process to report the insulation results that must converge with the "virtual true values" in the laboratory. The main advantage of the virtual laboratory is derived from the customization of factors in which the student will be instructed or examined (for instance, background noise correction, the detection of sporadic corrupted observations, and the effect of instrument precision).
Rieger, TR; Musante, CJ
2016-01-01
Quantitative systems pharmacology models mechanistically describe a biological system and the effect of drug treatment on system behavior. Because these models rarely are identifiable from the available data, the uncertainty in physiological parameters may be sampled to create alternative parameterizations of the model, sometimes termed “virtual patients.” In order to reproduce the statistics of a clinical population, virtual patients are often weighted to form a virtual population that reflects the baseline characteristics of the clinical cohort. Here we introduce a novel technique to efficiently generate virtual patients and, from this ensemble, demonstrate how to select a virtual population that matches the observed data without the need for weighting. This approach improves confidence in model predictions by mitigating the risk that spurious virtual patients become overrepresented in virtual populations. PMID:27069777
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotnikov, Aleksey; Cui, Yonggang; Vernon, Emerson
This document presents motivations, goals and the current status of this project; development (fabrication, performance) of position-sensitive virtual Frisch-grid detectors proposed for nanoRaider, an instrument commonly used by nuclear inspectors; ASIC developments for CZT detectors; and the electronics development for the detector prototype..
Efficient operating system level virtualization techniques for cloud resources
NASA Astrophysics Data System (ADS)
Ansu, R.; Samiksha; Anju, S.; Singh, K. John
2017-11-01
Cloud computing is an advancing technology which provides the servcies of Infrastructure, Platform and Software. Virtualization and Computer utility are the keys of Cloud computing. The numbers of cloud users are increasing day by day. So it is the need of the hour to make resources available on demand to satisfy user requirements. The technique in which resources namely storage, processing power, memory and network or I/O are abstracted is known as Virtualization. For executing the operating systems various virtualization techniques are available. They are: Full System Virtualization and Para Virtualization. In Full Virtualization, the whole architecture of hardware is duplicated virtually. No modifications are required in Guest OS as the OS deals with the VM hypervisor directly. In Para Virtualization, modifications of OS is required to run in parallel with other OS. For the Guest OS to access the hardware, the host OS must provide a Virtual Machine Interface. OS virtualization has many advantages such as migrating applications transparently, consolidation of server, online maintenance of OS and providing security. This paper briefs both the virtualization techniques and discusses the issues in OS level virtualization.
SHynergie: Development of a virtual project laboratory for monitoring hydraulic stimulations
NASA Astrophysics Data System (ADS)
Renner, Jörg; Friederich, Wolfgang; Meschke, Günther; Müller, Thomas; Steeb, Holger
2016-04-01
Hydraulic stimulations are the primary means of developing subsurface reservoirs regarding the extent of fluid transport in them. The associated creation or conditioning of a system of hydraulic conduits involves a range of hydraulic and mechanical processes but also chemical reactions, such as dissolution and precipitation, may affect the stimulation result on time scales as short as hours. In the light of the extent and complexity of these processes, the steering potential for the operator of a stimulation critically depends on the ability to integrate the maximum amount of site-specific information with profound process understanding and a large spectrum of experience. We report on the development of a virtual project laboratory for monitoring hydraulic stimulations within the project SHynergie (http://www.ruhr-uni-bochum.de/shynergie/). The concept of the laboratory envisioned product that constitutes a preparing and accompanying rather than post-processing instrument ultimately accessible to persons responsible for a project over a web-repository. The virtual laboratory consists of a data base, a toolbox, and a model-building environment. Entries in the data base are of two categories. On the one hand, selected mineral and rock properties are provided from the literature. On the other hand, project-specific entries of any format can be made that are assigned attributes regarding their use in a stimulation problem at hand. The toolbox is interactive and allows the user to perform calculations of effective properties and simulations of different types (e.g., wave propagation in a reservoir, hydraulic test). The model component is also hybrid. The laboratory provides a library of models reflecting a range of scenarios but also allows the user to develop a site-specific model constituting the basis for simulations. The laboratory offers the option to use its components following the typical workflow of a stimulation project. The toolbox incorporates simulation instruments developed in the course of the SHynergie project that account for the experimental and modeling results of the various sub-projects.
The VO-Dance web application at the IA2 data center
NASA Astrophysics Data System (ADS)
Molinaro, Marco; Knapic, Cristina; Smareglia, Riccardo
2012-09-01
Italian center for Astronomical Archives (IA2, http://ia2.oats.inaf.it) is a national infrastructure project of the Italian National Institute for Astrophysics (Istituto Nazionale di AstroFisica, INAF) that provides services for the astronomical community. Besides data hosting for the Large Binocular Telescope (LBT) Corporation, the Galileo National Telescope (Telescopio Nazionale Galileo, TNG) Consortium and other telescopes and instruments, IA2 offers proprietary and public data access through user portals (both developed and mirrored) and deploys resources complying the Virtual Observatory (VO) standards. Archiving systems and web interfaces are developed to be extremely flexible about adding new instruments from other telescopes. VO resources publishing, along with data access portals, implements the International Virtual Observatory Alliance (IVOA) protocols providing astronomers with new ways of analyzing data. Given the large variety of data flavours and IVOA standards, the need for tools to easily accomplish data ingestion and data publishing arises. This paper describes the VO-Dance tool, that IA2 started developing to address VO resources publishing in a dynamical way from already existent database tables or views. The tool consists in a Java web application, potentially DBMS and platform independent, that stores internally the services' metadata and information, exposes restful endpoints to accept VO queries for these services and dynamically translates calls to these endpoints to SQL queries coherent with the published table or view. In response to the call VO-Dance translates back the database answer in a VO compliant way.
2011-01-01
Introduction A novel system that combines a compact mobile instrument and Internet communications is presented in this paper for remote evaluation of tremors. The system presents a high potential application in Parkinson's disease and connects to the Internet through a TCP/IP protocol. Tremor transduction is carried out by accelerometers, and the data processing, presentation and storage were obtained by a virtual instrument. The system supplies the peak frequency (fp), the amplitude (Afp) and power in this frequency (Pfp), the total power (Ptot), and the power in low (1-4 Hz) and high (4-7 Hz) frequencies (Plf and Phf, respectively). Methods The ability of the proposed system to detect abnormal tremors was initially demonstrated by a fatigue study in normal subjects. In close agreement with physiological fundamentals, the presence of fatigue increased fp, Afp, Pfp and Pt (p < 0.05), while the removal of fatigue reduced all the mentioned parameters (p < 0.05). The system was also evaluated in a preliminary in vivo test in parkinsonian patients. Afp, Pfp, Ptot, Plf and Phf were the most accurate parameters in the detection of the adverse effects of this disease (Se = 100%, Sp = 100%), followed by fp (Se = 100%, Sp = 80%). Tests for Internet transmission that realistically simulated clinical conditions revealed adequate acquisition and analysis of tremor signals and also revealed that the user could adequately receive medical recommendations. Conclusions The proposed system can be used in a wide spectrum of telemedicine scenarios, enabling the home evaluation of tremor occurrence under specific medical treatments and contributing to reduce the costs of the assistance offered to these patients. PMID:21306628
System-Level Virtualization for High Performance Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallee, Geoffroy R; Naughton, III, Thomas J; Engelmann, Christian
2008-01-01
System-level virtualization has been a research topic since the 70's but regained popularity during the past few years because of the availability of efficient solution such as Xen and the implementation of hardware support in commodity processors (e.g. Intel-VT, AMD-V). However, a majority of system-level virtualization projects is guided by the server consolidation market. As a result, current virtualization solutions appear to not be suitable for high performance computing (HPC) which is typically based on large-scale systems. On another hand there is significant interest in exploiting virtual machines (VMs) within HPC for a number of other reasons. By virtualizing themore » machine, one is able to run a variety of operating systems and environments as needed by the applications. Virtualization allows users to isolate workloads, improving security and reliability. It is also possible to support non-native environments and/or legacy operating environments through virtualization. In addition, it is possible to balance work loads, use migration techniques to relocate applications from failing machines, and isolate fault systems for repair. This document presents the challenges for the implementation of a system-level virtualization solution for HPC. It also presents a brief survey of the different approaches and techniques to address these challenges.« less
Shiri, Shimon; Feintuch, Uri; Lorber-Haddad, Adi; Moreh, Elior; Twito, Dvora; Tuchner-Arieli, Maya; Meiner, Zeev
2012-01-01
To introduce the rationale of a novel virtual reality system based on self-face viewing and mirror visual feedback, and to examine its feasibility as a rehabilitation tool for poststroke patients. A novel motion capture virtual reality system integrating online self-face viewing and mirror visual feedback has been developed for stroke rehabilitation.The system allows the replacement of the impaired arm by a virtual arm. Upon making small movements of the paretic arm, patients view themselves virtually performing healthy full-range movements. A sample of 6 patients in the acute poststroke phase received the virtual reality treatment concomitantly with conservative rehabilitation treatment. Feasibility was assessed during 10 sessions for each participant. All participants succeeded in operating the system, demonstrating its feasibility in terms of adherence and improvement in task performance. Patients' performance within the virtual environment and a set of clinical-functional measures recorded before the virtual reality treatment, at 1 week, and after 3 months indicated neurological status and general functioning improvement. These preliminary results indicate that this newly developed virtual reality system is safe and feasible. Future randomized controlled studies are required to assess whether this system has beneficial effects in terms of enhancing upper limb function and quality of life in poststroke patients.
The Computing and Data Grid Approach: Infrastructure for Distributed Science Applications
NASA Technical Reports Server (NTRS)
Johnston, William E.
2002-01-01
With the advent of Grids - infrastructure for using and managing widely distributed computing and data resources in the science environment - there is now an opportunity to provide a standard, large-scale, computing, data, instrument, and collaboration environment for science that spans many different projects and provides the required infrastructure and services in a relatively uniform and supportable way. Grid technology has evolved over the past several years to provide the services and infrastructure needed for building 'virtual' systems and organizations. We argue that Grid technology provides an excellent basis for the creation of the integrated environments that can combine the resources needed to support the large- scale science projects located at multiple laboratories and universities. We present some science case studies that indicate that a paradigm shift in the process of science will come about as a result of Grids providing transparent and secure access to advanced and integrated information and technologies infrastructure: powerful computing systems, large-scale data archives, scientific instruments, and collaboration tools. These changes will be in the form of services that can be integrated with the user's work environment, and that enable uniform and highly capable access to these computers, data, and instruments, regardless of the location or exact nature of these resources. These services will integrate transient-use resources like computing systems, scientific instruments, and data caches (e.g., as they are needed to perform a simulation or analyze data from a single experiment); persistent-use resources. such as databases, data catalogues, and archives, and; collaborators, whose involvement will continue for the lifetime of a project or longer. While we largely address large-scale science in this paper, Grids, particularly when combined with Web Services, will address a broad spectrum of science scenarios. both large and small scale.
Levy
1996-08-01
New interactive computer technologies are having a significant influence on medical education, training, and practice. The newest innovation in computer technology, virtual reality, allows an individual to be immersed in a dynamic computer-generated, three-dimensional environment and can provide realistic simulations of surgical procedures. A new virtual reality hysteroscope passes through a sensing device that synchronizes movements with a three-dimensional model of a uterus. Force feedback is incorporated into this model, so the user actually experiences the collision of an instrument against the uterine wall or the sensation of the resistance or drag of a resectoscope as it cuts through a myoma in a virtual environment. A variety of intrauterine pathologies and procedures are simulated, including hyperplasia, cancer, resection of a uterine septum, polyp, or myoma, and endometrial ablation. This technology will be incorporated into comprehensive training programs that will objectively assess hand-eye coordination and procedural skills. It is possible that by incorporating virtual reality into hysteroscopic training programs, a decrease in the learning curve and the number of complications presently associated with the procedures may be realized. Prospective studies are required to assess these potential benefits.
Design of an Intelligent Front-End Signal Conditioning Circuit for IR Sensors
NASA Astrophysics Data System (ADS)
de Arcas, G.; Ruiz, M.; Lopez, J. M.; Gutierrez, R.; Villamayor, V.; Gomez, L.; Montojo, Mª. T.
2008-02-01
This paper presents the design of an intelligent front-end signal conditioning system for IR sensors. The system has been developed as an interface between a PbSe IR sensor matrix and a TMS320C67x digital signal processor. The system architecture ensures its scalability so it can be used for sensors with different matrix sizes. It includes an integrator based signal conditioning circuit, a data acquisition converter block, and a FPGA based advanced control block that permits including high level image preprocessing routines such as faulty pixel detection and sensor calibration in the signal conditioning front-end. During the design phase virtual instrumentation technologies proved to be a very valuable tool for prototyping when choosing the best A/D converter type for the application. Development time was significantly reduced due to the use of this technology.
Automated Instrumentation, Monitoring and Visualization of PVM Programs Using AIMS
NASA Technical Reports Server (NTRS)
Mehra, Pankaj; VanVoorst, Brian; Yan, Jerry; Tucker, Deanne (Technical Monitor)
1994-01-01
We present views and analysis of the execution of several PVM codes for Computational Fluid Dynamics on a network of Sparcstations, including (a) NAS Parallel benchmarks CG and MG (White, Alund and Sunderam 1993); (b) a multi-partitioning algorithm for NAS Parallel Benchmark SP (Wijngaart 1993); and (c) an overset grid flowsolver (Smith 1993). These views and analysis were obtained using our Automated Instrumentation and Monitoring System (AIMS) version 3.0, a toolkit for debugging the performance of PVM programs. We will describe the architecture, operation and application of AIMS. The AIMS toolkit contains (a) Xinstrument, which can automatically instrument various computational and communication constructs in message-passing parallel programs; (b) Monitor, a library of run-time trace-collection routines; (c) VK (Visual Kernel), an execution-animation tool with source-code clickback; and (d) Tally, a tool for statistical analysis of execution profiles. Currently, Xinstrument can handle C and Fortran77 programs using PVM 3.2.x; Monitor has been implemented and tested on Sun 4 systems running SunOS 4.1.2; and VK uses X11R5 and Motif 1.2. Data and views obtained using AIMS clearly illustrate several characteristic features of executing parallel programs on networked workstations: (a) the impact of long message latencies; (b) the impact of multiprogramming overheads and associated load imbalance; (c) cache and virtual-memory effects; and (4significant skews between workstation clocks. Interestingly, AIMS can compensate for constant skew (zero drift) by calibrating the skew between a parent and its spawned children. In addition, AIMS' skew-compensation algorithm can adjust timestamps in a way that eliminates physically impossible communications (e.g., messages going backwards in time). Our current efforts are directed toward creating new views to explain the observed performance of PVM programs. Some of the features planned for the near future include: (a) ConfigView, showing the physical topology of the virtual machine, inferred using specially formatted IP (Internet Protocol) packets; and (b) LoadView, synchronous animation of PVM-program execution and resource-utilization patterns.
Cone-beam micro-CT system based on LabVIEW software.
Ionita, Ciprian N; Hoffmann, Keneth R; Bednarek, Daniel R; Chityala, Ravishankar; Rudin, Stephen
2008-09-01
Construction of a cone-beam computed tomography (CBCT) system for laboratory research usually requires integration of different software and hardware components. As a result, building and operating such a complex system require the expertise of researchers with significantly different backgrounds. Additionally, writing flexible code to control the hardware components of a CBCT system combined with designing a friendly graphical user interface (GUI) can be cumbersome and time consuming. An intuitive and flexible program structure, as well as the program GUI for CBCT acquisition, is presented in this note. The program was developed in National Instrument's Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) graphical language and is designed to control a custom-built CBCT system but has been also used in a standard angiographic suite. The hardware components are commercially available to researchers and are in general provided with software drivers which are LabVIEW compatible. The program structure was designed as a sequential chain. Each step in the chain takes care of one or two hardware commands at a time; the execution of the sequence can be modified according to the CBCT system design. We have scanned and reconstructed over 200 specimens using this interface and present three examples which cover different areas of interest encountered in laboratory research. The resulting 3D data are rendered using a commercial workstation. The program described in this paper is available for use or improvement by other researchers.
Novel interactive virtual showcase based on 3D multitouch technology
NASA Astrophysics Data System (ADS)
Yang, Tao; Liu, Yue; Lu, You; Wang, Yongtian
2009-11-01
A new interactive virtual showcase is proposed in this paper. With the help of virtual reality technology, the user of the proposed system can watch the virtual objects floating in the air from all four sides and interact with the virtual objects by touching the four surfaces of the virtual showcase. Unlike traditional multitouch system, this system cannot only realize multi-touch on a plane to implement 2D translation, 2D scaling, and 2D rotation of the objects; it can also realize the 3D interaction of the virtual objects by recognizing and analyzing the multi-touch that can be simultaneously captured from the four planes. Experimental results show the potential of the proposed system to be applied in the exhibition of historical relics and other precious goods.
Eye gazing direction inspection based on image processing technique
NASA Astrophysics Data System (ADS)
Hao, Qun; Song, Yong
2005-02-01
According to the research result in neural biology, human eyes can obtain high resolution only at the center of view of field. In the research of Virtual Reality helmet, we design to detect the gazing direction of human eyes in real time and feed it back to the control system to improve the resolution of the graph at the center of field of view. In the case of current display instruments, this method can both give attention to the view field of virtual scene and resolution, and improve the immersion of virtual system greatly. Therefore, detecting the gazing direction of human eyes rapidly and exactly is the basis of realizing the design scheme of this novel VR helmet. In this paper, the conventional method of gazing direction detection that based on Purklinje spot is introduced firstly. In order to overcome the disadvantage of the method based on Purklinje spot, this paper proposed a method based on image processing to realize the detection and determination of the gazing direction. The locations of pupils and shapes of eye sockets change with the gazing directions. With the aid of these changes, analyzing the images of eyes captured by the cameras, gazing direction of human eyes can be determined finally. In this paper, experiments have been done to validate the efficiency of this method by analyzing the images. The algorithm can carry out the detection of gazing direction base on normal eye image directly, and it eliminates the need of special hardware. Experiment results show that the method is easy to implement and have high precision.
Influence of videogames and musical instruments on performances at a simulator for robotic surgery.
Moglia, Andrea; Perrone, Vittorio; Ferrari, Vincenzo; Morelli, Luca; Boggi, Ugo; Ferrari, Mauro; Mosca, Franco; Cuschieri, Alfred
2017-06-01
To assess if exposure to videogames, musical instrument playing, or both influence the psychomotor skills level, assessed by a virtual reality simulator for robot-assisted surgery (RAS). A cohort of 57 medical students were recruited: playing musical instruments (group 1), videogames (group 2), both (group 3), and no activity (group 4); all students executed four exercises on a virtual simulator for RAS. Subjects from group 3 achieved the best performances on overall score: 527.09 ± 130.54 vs. 493.73 ± 108.88 (group 2), 472.72 ± 85.31 (group 1), and 403.13 ± 99.83 (group 4). Statistically significant differences (p < .05) between group 3 and group 4 were found for overall score (p = .009) and for time of completion (p = .044). As regards experience with the piano, subjects from group 3 outperformed those from group 1 on overall score (496.98 ± 122.71 vs. 470.25 ± 92.31), but without statistically significant difference (p = .646). The present study suggests that the level of psychomotor skills in subjects exposed to both musical instrument playing and videogames is higher than that in those practicing either one alone. The effect of videogames appears negligible in individuals playing the piano.
Development of a multitarget tracking system for paramecia
NASA Astrophysics Data System (ADS)
Yeh, Yu-Sing; Huang, Ke-Nung; Jen, Sun-Lon; Li, Yan-Chay; Young, Ming-Shing
2010-07-01
This investigation develops a multitarget tracking system for the motile protozoa, paramecium. The system can recognize, track, and record the orbit of swimming paramecia within a 4 mm diameter of a circular experimental pool. The proposed system is implemented using an optical microscope, a charge-coupled device camera, and a software tool, Laboratory Virtual Instrumentation Engineering Workbench (LABVIEW). An algorithm for processing the images and analyzing the traces of the paramecia is developed in LABVIEW. It focuses on extracting meaningful data in an experiment and recording them to elucidate the behavior of paramecia. The algorithm can also continue to track paramecia even if they are transposed or collide with each other. The experiment demonstrates that this multitarget tracking design can really track more than five paramecia and simultaneously yield meaningful data from the moving paramecia at a maximum speed of 1.7 mm/s.
Tactile Data Entry for Extravehicular Activity
NASA Technical Reports Server (NTRS)
Adams, Richard J.; Olowin, Aaron B.; Hannaford, Blake; Sands, O Scott
2012-01-01
In the task-saturated environment of extravehicular activity (EVA), an astronaut's ability to leverage suit-integrated information systems is limited by a lack of options for data entry. In particular, bulky gloves inhibit the ability to interact with standard computing interfaces such as a mouse or keyboard. This paper presents the results of a preliminary investigation into a system that permits the space suit gloves themselves to be used as data entry devices. Hand motion tracking is combined with simple finger gesture recognition to enable use of a virtual keyboard, while tactile feedback provides touch-based context to the graphical user interface (GUI) and positive confirmation of keystroke events. In human subject trials, conducted with twenty participants using a prototype system, participants entered text significantly faster with tactile feedback than without (p = 0.02). The results support incorporation of vibrotactile information in a future system that will enable full touch typing and general mouse interactions using instrumented EVA gloves.
NASA Astrophysics Data System (ADS)
Dreyer, Christopher B.; Abbud-Madrid, Angel; Atkinson, Jared; Lampe, Alexander; Markley, Tasha; Williams, Hunter; McDonough, Kara; Canney, Travis; Haines, Joseph
2018-06-01
Many surfaces found on the Moon, asteroids, Mars, moons, and other planetary bodies are covered in a fine granular material known as regolith. Increased knowledge of the physical properties of extraterrestrial regolith surfaces will help advance the scientific knowledge of these bodies as well as the development of exploration (e.g., instrument and robotic) and in situ resource utilization (ISRU) systems. The Center for Space Resources at the Colorado School of Mines as part of the Institute for Modeling Plasma, Atmospheres, and Cosmic Dust of NASA's Solar System Exploration Research Virtual Institute has developed a novel system, called the ISRU Experimental Probe (IEP) that can support studies of dry and icy regolith from -196 to 150 °C and pressure from laboratory ambient pressure to 10-7 Torr. The IEP system and proof-of-concept results are presented in this paper.
On Writing and Reading Artistic Computational Ecosystems.
Antunes, Rui Filipe; Leymarie, Frederic Fol; Latham, William
2015-01-01
We study the use of the generative systems known as computational ecosystems to convey artistic and narrative aims. These are virtual worlds running on computers, composed of agents that trade units of energy and emulate cycles of life and behaviors adapted from biological life forms. In this article we propose a conceptual framework in order to understand these systems, which are involved in processes of authorship and interpretation that this investigation analyzes in order to identify critical instruments for artistic exploration. We formulate a model of narrative that we call system stories (after Mitchell Whitelaw), characterized by the dynamic network of material and conceptual processes that define these artefacts. They account for narrative constellations with multiple agencies from which meaning and messages emerge. Finally, we present three case studies to explore the potential of this model within an artistic and generative domain, arguing that this understanding expands and enriches the palette of the language of these systems.
ROBUST ONLINE MONITORING FOR CALIBRATION ASSESSMENT OF TRANSMITTERS AND INSTRUMENTATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Tipireddy, Ramakrishna; Lerchen, Megan E.
Robust online monitoring (OLM) technologies are expected to enable the extension or elimination of periodic sensor calibration intervals in operating and new reactors. Specifically, the next generation of OLM technology is expected to include newly developed advanced algorithms that improve monitoring of sensor/system performance and enable the use of plant data to derive information that currently cannot be measured. These advances in OLM technologies will improve the safety and reliability of current and planned nuclear power systems through improved accuracy and increased reliability of sensors used to monitor key parameters. In this paper, we discuss an overview of research beingmore » performed within the Nuclear Energy Enabling Technologies (NEET)/Advanced Sensors and Instrumentation (ASI) program, for the development of OLM algorithms to use sensor outputs and, in combination with other available information, 1) determine whether one or more sensors are out of calibration or failing and 2) replace a failing sensor with reliable, accurate sensor outputs. Algorithm development is focused on the following OLM functions: • Signal validation – fault detection and selection of acceptance criteria • Virtual sensing – signal value prediction and acceptance criteria • Response-time assessment – fault detection and acceptance criteria selection A GP-based uncertainty quantification (UQ) method previously developed for UQ in OLM, was adapted for use in sensor-fault detection and virtual sensing. For signal validation, the various components to the OLM residual (which is computed using an AAKR model) were explicitly defined and modeled using a GP. Evaluation was conducted using flow loop data from multiple sources. Results using experimental data from laboratory-scale flow loops indicate that the approach, while capable of detecting sensor drift, may be incapable of discriminating between sensor drift and model inadequacy. This may be due to a simplification applied in the initial modeling, where the sensor degradation is assumed to be stationary. In the case of virtual sensors, the GP model was used in a predictive mode to estimate the correct sensor reading for sensors that may have failed. Results have indicated the viability of using this approach for virtual sensing. However, the GP model has proven to be computationally expensive, and so alternative algorithms for virtual sensing are being evaluated. Finally, automated approaches to performing noise analysis for extracting sensor response time were developed. Evaluation of this technique using laboratory-scale data indicates that it compares well with manual techniques previously used for noise analysis. Moreover, the automated and manual approaches for noise analysis also compare well with the current “gold standard”, hydraulic ramp testing, for response time monitoring. Ongoing research in this project is focused on further evaluation of the algorithms, optimization for accuracy and computational efficiency, and integration into a suite of tools for robust OLM that are applicable to monitoring sensor calibration state in nuclear power plants.« less
NASA Astrophysics Data System (ADS)
Berriman, G. Bruce; Cohen, Richard W.; Colson, Andrew; Gelino, Christopher R.; Good, John C.; Kong, Mihseh; Laity, Anastasia C.; Mader, Jeffrey A.; Swain, Melanie A.; Tran, Hien D.; Wang, Shin-Ywan
2016-08-01
The Keck Observatory Archive (KOA) (https://koa.ipac.caltech.edu) curates all observations acquired at the W. M. Keck Observatory (WMKO) since it began operations in 1994, including data from eight active instruments and two decommissioned instruments. The archive is a collaboration between WMKO and the NASA Exoplanet Science Institute (NExScI). Since its inception in 2004, the science information system used at KOA has adopted an architectural approach that emphasizes software re-use and adaptability. This paper describes how KOA is currently leveraging and extending open source software components to develop new services and to support delivery of a complete set of instrument metadata, which will enable more sophisticated and extensive queries than currently possible. In August 2015, KOA deployed a program interface to discover public data from all instruments equipped with an imaging mode. The interface complies with version 2 of the Simple Imaging Access Protocol (SIAP), under development by the International Virtual Observatory Alliance (IVOA), which defines a standard mechanism for discovering images through spatial queries. The heart of the KOA service is an R-tree-based, database-indexing mechanism prototyped by the Virtual Astronomical Observatory (VAO) and further developed by the Montage Image Mosaic project, designed to provide fast access to large imaging data sets as a first step in creating wide-area image mosaics (such as mosaics of subsets of the 4.7 million images of the SDSS DR9 release). The KOA service uses the results of the spatial R-tree search to create an SQLite data database for further relational filtering. The service uses a JSON configuration file to describe the association between instrument parameters and the service query parameters, and to make it applicable beyond the Keck instruments. The images generated at the Keck telescope usually do not encode the image footprints as WCS fields in the FITS file headers. Because SIAP searches are spatial, much of the effort in developing the program interface involved processing the instrument and telescope parameters to understand how accurately we can derive the WCS information for each instrument. This knowledge is now being fed back into the KOA databases as part of a program to include complete metadata information for all imaging observations. The R-tree program was itself extended to support temporal (in addition to spatial) indexing, in response to requests from the planetary science community for a search engine to discover observations of Solar System objects. With this 3D-indexing scheme, the service performs very fast time and spatial matches between the target ephemerides, obtained from the JPL SPICE service. Our experiments indicate these matches can be more than 100 times faster than when separating temporal and spatial searches. Images of the tracks of the moving targets, overlaid with the image footprints, are computed with a new command-line visualization tool, mViewer, released with the Montage distribution. The service is currently in test and will be released in late summer 2016.
Methods and systems relating to an augmented virtuality environment
Nielsen, Curtis W; Anderson, Matthew O; McKay, Mark D; Wadsworth, Derek C; Boyce, Jodie R; Hruska, Ryan C; Koudelka, John A; Whetten, Jonathan; Bruemmer, David J
2014-05-20
Systems and methods relating to an augmented virtuality system are disclosed. A method of operating an augmented virtuality system may comprise displaying imagery of a real-world environment in an operating picture. The method may further include displaying a plurality of virtual icons in the operating picture representing at least some assets of a plurality of assets positioned in the real-world environment. Additionally, the method may include displaying at least one virtual item in the operating picture representing data sensed by one or more of the assets of the plurality of assets and remotely controlling at least one asset of the plurality of assets by interacting with a virtual icon associated with the at least one asset.
Liu Bejarano, Humberto
2011-01-01
Due to the poor agreement between endoscopy and histology, the gastric biopsy continues being the gold standard for the diagnosis of atrophic chronic gastritis. The Virtual chromoendoscopy system allows better observation of the gastric mucosa. Evaluate the agreement between the Kimura-Takemoto ´s endoscopic system classification and the histological system of OLGA (Operative for Link Assessment Gastritis), as well as to evaluate the application of the virtual chromoendoscopy. A prospective and longitudinal study of cohorts, 138 patients was include, using endoscopic system of atrophy by Kimura and Takemoto (K-T), with conventional optical and with the use of seventh filter of virtual chromoendoscopy ,then comparing with the histological findings of the OLGA pathology system, also were determinated injuries associated with respect to stage OLGA. The kappa index of agreement between conventional endoscopy and the system OLGA was 0.859 and with the system of virtual chromoendoscopy was 0.822, the preneoplasic and neoplastic gastric lesions were associate to stages III and IV of atrophy. The endoscopic and histological correlation with both systems isvery good, with or without the use of virtual chromoendoscopy. chronic atrophic gastritis, virtual chromoendoscopy, olga system, , kimuratakemoto system.
NASA Technical Reports Server (NTRS)
Kaplan, Michael L.; Lin, Yuh-Lang
2004-01-01
During the research project, sounding datasets were generated for the region surrounding 9 major airports, including Dallas, TX, Boston, MA, New York, NY, Chicago, IL, St. Louis, MO, Atlanta, GA, Miami, FL, San Francico, CA, and Los Angeles, CA. The numerical simulation of winter and summer environments during which no instrument flight rule impact was occurring at these 9 terminals was performed using the most contemporary version of the Terminal Area PBL Prediction System (TAPPS) model nested from 36 km to 6 km to 1 km horizontal resolution and very detailed vertical resolution in the planetary boundary layer. The soundings from the 1 km model were archived at 30 minute time intervals for a 24 hour period and the vertical dependent variables as well as derived quantities, i.e., 3-dimensional wind components, temperatures, pressures, mixing ratios, turbulence kinetic energy and eddy dissipation rates were then interpolated to 5 m vertical resolution up to 1000 m elevation above ground level. After partial validation against field experiment datasets for Dallas as well as larger scale and much coarser resolution observations at the other 8 airports, these sounding datasets were sent to NASA for use in the Virtual Air Space and Modeling program. The application of these datasets being to determine representative airport weather environments to diagnose the response of simulated wake vortices to realistic atmospheric environments. These virtual datasets are based on large scale observed atmospheric initial conditions that are dynamically interpolated in space and time. The 1 km nested-grid simulated datasets providing a very coarse and highly smoothed representation of airport environment meteorological conditions. Details concerning the airport surface forcing are virtually absent from these simulated datasets although the observed background atmospheric processes have been compared to the simulated fields and the fields were found to accurately replicate the flows surrounding the airport where coarse verification data were available as well as where airport scale datasets were available.
Using XML and Java for Astronomical Instrument Control
NASA Astrophysics Data System (ADS)
Koons, L.; Ames, T.; Evans, R.; Warsaw, C.; Sall, K.
1999-12-01
Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests. Instrument description is too tightly coupled with details of implementation. NASA/Goddard Space Flight Center and AppNet, Inc. are developing a very general and highly extensible framework that applies to virtually any kind of instrument that can be controlled by a computer (e.g., telescopes, microscopes and printers). A key aspect of the object-oriented architecture, implemented in Java, involves software that is driven by an instrument description. The Astronomical Instrument Markup Language (AIML) is a domain-specific implementation of the more generalized Instrument Markup Language (IML). The software architecture combines the platform-independent processing capabilities of Java with the vendor-independent data description syntax of Extensible Markup Language (XML), a human-readable and machine-understandable way to describe structured data. IML is used to describe command sets (including parameters, datatypes, and constraints) and their associated formats, telemetry, and communication mechanisms. The software uses this description to present graphical user interfaces to control and monitor the instrument. Recent efforts have extended to command procedures (scripting) and representation of data pipeline inputs, outputs, and connections. Near future efforts are likely to include an XML description of data visualizations, as well as the potential use of XSL (Extensible Stylesheet Language) to permit astronomers to customize the user interface on several levels: per user, instrument, subsystem, or observatory-wide. Our initial prototyping effort was targeted for HAWC (High-resolution Airborne Wideband Camera), a first-light instrument of SOFIA (the Stratospheric Observatory for Infrared Astronomy). A production-level application of this technology is for one of the three candidate detectors of SPIRE (Spectral and Photometric Imaging REceiver), a focal plane instrument proposed for the European Space Agency's Far Infrared Space Telescope. The detectors are being developed by the Infrared Astrophysics Branch of NASA/GSFC.
A VM-shared desktop virtualization system based on OpenStack
NASA Astrophysics Data System (ADS)
Liu, Xi; Zhu, Mingfa; Xiao, Limin; Jiang, Yuanjie
2018-04-01
With the increasing popularity of cloud computing, desktop virtualization is rising in recent years as a branch of virtualization technology. However, existing desktop virtualization systems are mostly designed as a one-to-one mode, which one VM can only be accessed by one user. Meanwhile, previous desktop virtualization systems perform weakly in terms of response time and cost saving. This paper proposes a novel VM-Shared desktop virtualization system based on OpenStack platform. The paper modified the connecting process and the display data transmission process of the remote display protocol SPICE to support VM-Shared function. On the other hand, we propose a server-push display mode to improve user interactive experience. The experimental results show that our system performs well in response time and achieves a low CPU consumption.
Casale, Jillian P.; Skirvin, J. Andrew; DiVall, Margarita V.
2013-01-01
Objective. To implement and assess the impact of a virtual patient pilot program on pharmacy students’ clinical competence skills. Design. Pharmacy students completed interactive software-based patient case scenarios embedded with drug-therapy problems as part of a course requirement at the end of their third year. Assessment. Assessments included drug-therapy problem competency achievement, performance on a pretest and posttest, and pilot evaluation survey instrument. Significant improvements in students’ posttest scores demonstrated advancement of clinical skills involving drug-therapy problem solving. Students agreed that completing the pilot program improved their chronic disease management skills and the program summarized the course series well. Conclusion. Using virtual patient technology allowed for assessment of student competencies and improved learning outcomes. PMID:24159213
[SOPHOCLE (Ophthalmologic Simulator of Laser PHOtocoagulation): contribution to virtual reality].
Rouland, J F; Dubois, P; Chaillou, C; Meseuree, P; Karpf, S; Godin, S; Duquenoy, F
1995-01-01
This study was undertaken to teach laser retinal photocoagulation in different disorders using a "virtual eye". Most ophthalmologists routinely use laser photocoagulator. Both indications and laser effects are well-known. However, in various diseases (diabetic retinopathy, age-related-macular degeneration, myopia...) complications rate increase or at least does not decrease. The main reasons are: - ignorance of risk factors, - misuse of the instrument. We developed a new automated device stimulating a real laser photocoagulator. Only slit-lamp exists. The three-mirror lens, the fundus and the retinal photocoagulation impacts are "virtual". The aim of the simulator is to help practitioners to recognize various pathologies almost as in real conditions and to be familiar with different technics of photocoagulation. By using computer assisted learning, a constant evaluation determines the level and the progress of practitioners.
Neurosurgical tactile discrimination training with haptic-based virtual reality simulation.
Patel, Achal; Koshy, Nick; Ortega-Barnett, Juan; Chan, Hoi C; Kuo, Yong-Fan; Luciano, Cristian; Rizzi, Silvio; Matulyauskas, Martin; Kania, Patrick; Banerjee, Pat; Gasco, Jaime
2014-12-01
To determine if a computer-based simulation with haptic technology can help surgical trainees improve tactile discrimination using surgical instruments. Twenty junior medical students participated in the study and were randomized into two groups. Subjects in Group A participated in virtual simulation training using the ImmersiveTouch simulator (ImmersiveTouch, Inc., Chicago, IL, USA) that required differentiating the firmness of virtual spheres using tactile and kinesthetic sensation via haptic technology. Subjects in Group B did not undergo any training. With their visual fields obscured, subjects in both groups were then evaluated on their ability to use the suction and bipolar instruments to find six elastothane objects with areas ranging from 1.5 to 3.5 cm2 embedded in a urethane foam brain cavity model while relying on tactile and kinesthetic sensation only. A total of 73.3% of the subjects in Group A (simulation training) were able to find the brain cavity objects in comparison to 53.3% of the subjects in Group B (no training) (P = 0.0183). There was a statistically significant difference in the total number of Group A subjects able to find smaller brain cavity objects (size ≤ 2.5 cm2) compared to that in Group B (72.5 vs. 40%, P = 0.0032). On the other hand, no significant difference in the number of subjects able to detect larger objects (size ≧ 3 cm2) was found between Groups A and B (75 vs. 80%, P = 0.7747). Virtual computer-based simulators with integrated haptic technology may improve tactile discrimination required for microsurgical technique.
Nomura, Tsutomu; Mamada, Yasuhiro; Nakamura, Yoshiharu; Matsutani, Takeshi; Hagiwara, Nobutoshi; Fujita, Isturo; Mizuguchi, Yoshiaki; Fujikura, Terumichi; Miyashita, Masao; Uchida, Eiji
2015-11-01
Definitive assessment of laparoscopic skill improvement after virtual reality simulator training is best obtained during an actual operation. However, this is impossible in medical students. Therefore, we developed an alternative assessment technique using an augmented reality simulator. Nineteen medical students completed a 6-week training program using a virtual reality simulator (LapSim). The pretest and post-test were performed using an object-positioning module and cholecystectomy on an augmented reality simulator(ProMIS). The mean performance measures between pre- and post-training on the LapSim were compared with a paired t-test. In the object-positioning module, the execution time of the task (P < 0.001), left and right instrument path length (P = 0.001), and left and right instrument economy of movement (P < 0.001) were significantly shorter after than before the LapSim training. With respect to improvement in laparoscopic cholecystectomy using a gallbladder model, the execution time to identify, clip, and cut the cystic duct and cystic artery as well as the execution time to dissect the gallbladder away from the liver bed were both significantly shorter after than before the LapSim training (P = 0.01). Our training curriculum using a virtual reality simulator improved the operative skills of medical students as objectively evaluated by assessment using an augmented reality simulator instead of an actual operation. We hope that these findings help to establish an effective training program for medical students. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.
An Audio Architecture Integrating Sound and Live Voice for Virtual Environments
2002-09-01
implementation of a virtual environment. As real world training locations become scarce and training budgets are trimmed, training system developers ...look more and more towards virtual environments as the answer. Virtual environments provide training system developers with several key benefits
LVC interaction within a mixed-reality training system
NASA Astrophysics Data System (ADS)
Pollock, Brice; Winer, Eliot; Gilbert, Stephen; de la Cruz, Julio
2012-03-01
The United States military is increasingly pursuing advanced live, virtual, and constructive (LVC) training systems for reduced cost, greater training flexibility, and decreased training times. Combining the advantages of realistic training environments and virtual worlds, mixed reality LVC training systems can enable live and virtual trainee interaction as if co-located. However, LVC interaction in these systems often requires constructing immersive environments, developing hardware for live-virtual interaction, tracking in occluded environments, and an architecture that supports real-time transfer of entity information across many systems. This paper discusses a system that overcomes these challenges to empower LVC interaction in a reconfigurable, mixed reality environment. This system was developed and tested in an immersive, reconfigurable, and mixed reality LVC training system for the dismounted warfighter at ISU, known as the Veldt, to overcome LVC interaction challenges and as a test bed for cuttingedge technology to meet future U.S. Army battlefield requirements. Trainees interact physically in the Veldt and virtually through commercial and developed game engines. Evaluation involving military trained personnel found this system to be effective, immersive, and useful for developing the critical decision-making skills necessary for the battlefield. Procedural terrain modeling, model-matching database techniques, and a central communication server process all live and virtual entity data from system components to create a cohesive virtual world across all distributed simulators and game engines in real-time. This system achieves rare LVC interaction within multiple physical and virtual immersive environments for training in real-time across many distributed systems.
Golda, Rachel L; Golda, Mark D; Peterson, Tawnya D; Needoba, Joseph A
2017-06-01
The influence of pH on phytoplankton physiology is an important facet of the body of research on ocean acidification. We provide data developed during the design and implementation of a novel pHstat system capable of maintaining both static and dynamic pH environments in a laboratory setting. These data both help improve functionality of the system, and provide specific coding blocks for controlling the pHstat using a LabVIEW® virtual instrument (VI). The data in this paper support the research article "Development of an economical, autonomous pHstat system for culturing phytoplankton under steady state or dynamic conditions" (Golda et al. [2]). These data will be of interest to researchers studying the effects of changing pH on phytoplankton in a laboratory context, and to those desiring to build their own pHstat system(s). These data can also be used to facilitate modification of the pHstat system to control salinity, temperature, or other environmental factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocampo, Luis
Abstract— Arrays of position-sensitive virtual Frisch-grid CdZnTe (CZT) detectors with enhanced energy resolution have been proposed for spectroscopy and imaging of gamma-ray sources in different applications. The flexibility of the array design, which can employ CZT crystals with thicknesses up to several centimeters in the direction of electron drift, allows for integration into different kinds of field-portable instruments. These can include small hand-held devices, compact gamma cameras and large field-of-view imaging systems. In this work, we present results for a small linear array of such detectors optimized for the low-energy region, 50-400 keV gamma-rays, which is principally intended for incorporationmore » into hand-held instruments. There are many potential application areas for such instruments, including uranium enrichment measurements, storage monitoring, dosimetry and other safeguards-related tasks that can benefit from compactness and isotope-identification capability. The array described here provides a relatively large area with a minimum number of readout channels, which potentially allows the developers to avoid using an ASIC-based electronic readout by substituting it with hybrid preamplifiers followed by digitizers. The array prototype consists of six (5x5.7x25 mm3) CZT detectors positioned in a line facing the source to achieve a maximum exposure area (~10 cm2). Each detector is furnished with 5 mm-wide charge-sensing pads placed near the anode. The pad signals are converted into X-Y coordinates for each interaction event, which are combined with the cathode signals (for determining the Z coordinates) to give 3D positional information for all interaction points. This information is used to correct the response non-uniformity caused by material inhomogeneity, which therefore allows the usage of standard-grade (unselected) CZT crystals, while achieving high-resolution spectroscopic performance for the instrument. In this presentation we describe the design of the array, the results from detailed laboratory tests, and preliminary results from measurements taken during a field test.« less
Graphene as a platform for novel nanoelectronic devices
NASA Astrophysics Data System (ADS)
Standley, Brian
Graphene's superlative electrical and mechanical properties, combined with its compatibility with existing planar silicon-based technology, make it an attractive platform for novel nanoelectronic devices. The development of two such devices is reported--a nonvolatile memory element exploiting the nanoscale graphene edge and a field-effect transistor using graphene for both the conducting channel and, in oxidized form, the gate dielectric. These experiments were enabled by custom software written to fully utilize both instrument-based and computer-based data acquisition hardware and provide a simple measurement automation system. Graphene break junctions were studied and found to exhibit switching behavior in response to an electric field. This switching allows the devices to act as nonvolatile memory elements which have demonstrated thousands of writing cycles and long retention times. A model for device operation is proposed based on the formation and breaking of carbon-atom chains that bridge the junctions. Information storage was demonstrated using the concept of rank coding, in which information is stored in the relative conductance of multiple graphene switches in a memory cell. The high mobility and two dimensional nature of graphene make it an attractive material for field-effect transistors. Another ultrathin layered materialmd graphene's insulating analogue, graphite oxidemd was studied as an alternative to bulk gate dielectric materials such as Al2O3 or HfO 2. Transistors were fabricated comprising single or bilayer graphene channels, graphite oxide gate insulators, and metal top-gates. Electron transport measurements reveal minimal leakage through the graphite oxide at room temperature. Its breakdown electric field was found to be comparable to SiO2, typically ˜1-3 x 108 V/m, while its dielectric constant is slightly higher, kappa ≈ 4.3. As nanoelectronics experiments and their associated instrumentation continue to grow in complexity the need for powerful data acquisition software has only increased. This role has traditionally been filled by semiconductor parameter analyzers or desktop computers running LabVIEW. Mezurit 2 represents a hybrid approach, providing basic virtual instruments which can be controlled in concert through a comprehensive scripting interface. Each virtual instrument's model of operation is described and an architectural overview is provided.
Software platform virtualization in chemistry research and university teaching
2009-01-01
Background Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Results Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Conclusion Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide. PMID:20150997
Software platform virtualization in chemistry research and university teaching.
Kind, Tobias; Leamy, Tim; Leary, Julie A; Fiehn, Oliver
2009-11-16
Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide.
Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying
NASA Technical Reports Server (NTRS)
Calhoun, Philip; Novo-Gradac, Anne-Marie; Shah, Neerav
2017-01-01
Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m-500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as microthruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.
Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Novo-Gradac, Anne-Marie; Shah, Neerav
2017-01-01
Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m 500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as micro-thruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.
ERIC Educational Resources Information Center
Hwang, Wu-Yuin; Su, Jia-Han; Huang, Yueh-Min; Dong, Jian-Jie
2009-01-01
In this paper, the development of an innovative Virtual Manipulatives and Whiteboard (VMW) system is described. The VMW system allowed users to manipulate virtual objects in 3D space and find clues to solve geometry problems. To assist with multi-representation transformation, translucent multimedia whiteboards were used to provide a virtual 3D…
Communication Audits in the Age of the Internet.
ERIC Educational Resources Information Center
Goldhaber, Gerald M.
2002-01-01
Describes the history of a multi-instrument approach for auditing the communication behavior of organizations. Notes that with the advent of the Internet, limitations of survey research have virtually been eliminated. Outlines four necessary steps involved in a Web-based communication survey. (PM)
A Virtual Instrument Panel and Serial Interface for the Parr 1672 Thermometer
ERIC Educational Resources Information Center
Salter, Gail; Range, Kevin; Salter, Carl
2005-01-01
The various features of a Visual Basic Program, which implements the 1672 Parr thermometer are described. The program permits remote control of the calorimetry experiment and also provides control for the flow of data and for file storage.
3min. poster presentations of B01
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
We give a report on recommendations from ILEWG International conferences held at Cape Canaveral in 2008 (ICEUM10), and in Beijing in May 2010 with IAF (GLUC -ICEUM11). We discuss the different rationale for Moon exploration. Priorities for scientific investigations include: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), historical records, astrobiology, survival of organics; past, present and future life. The ILEWG technology task group set priorities for the advancement of instrumenta-tion: Remote sensing miniaturised instruments; Surface geophysical and geochemistry package; Instrument deployment and robotic arm, nano-rover, sampling, drilling; Sample finder and collector. Regional mobility rover; Autonomy and Navigation; Artificially intelligent robots, Complex systems. The ILEWG ExogeoLab pilot project was developed as support for instru-ments, landers, rovers,and preparation for cooperative robotic village. The ILEWG lunar base task group looked at minimal design concepts, technologies in robotic and human exploration with Tele control, telepresence, virtual reality; Man-Machine interface and performances. The ILEWG ExoHab pilot project has been started with support from agencies and partners. We discuss ILEWG terrestrial Moon-Mars campaigns for validation of technologies, research and human operations. We indicate how Moon-Mars Exploration can inspire solutions to global Earth sustained development: In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental protection aspects; Life sciences laboratories; Support to human exploration. Co-Authors: ILEWG Task Groups on: Science, Technology, Robotic village, Lunar Bases , Commercial and Societal aspects, Roadmap synergies with other programmes, Public en-gagemnet and Outreach, Young Lunar Explorers.
NASA Technical Reports Server (NTRS)
Smith, Kevin
2011-01-01
This tutorial will explain the concepts and steps for interfacing a National Instruments LabView virtual instrument (VI) running on a Windows platform with another computer via the Object Management Group (OMG) Data Distribution Service (DDS) as implemented by the Twin Oaks Computing CoreDX. This paper is for educational purposes only and therefore, the referenced source code will be simplistic and void of all error checking. Implementation will be accomplished using the C programming language.
NASA Astrophysics Data System (ADS)
Xia, Liu; Shan, Ning; Chao, Ban; Caoshan, Wang
2016-10-01
Metal materials have been used in aerospace and other industrial fields widely because of its excellent characteristics, so its internal defects detection is very important. Ultrasound technology is used widely in the fields of nondestructive detection because of its excellent characteristic. But the conventional detection instrument for ultrasound, which has shortcomings such as low intelligent level and long development cycles, limits its development. In this paper, the theory of ultrasound detection is analyzed. A computational method of the defects distributional position is given. The non-contact type optical fiber F-P interference cavity structure is designed and the length of origin cavity is given. The real-time on-line ultrasound detecting experiment devices for internal defects of metal materials is established based on the optical fiber F-P sensing system. The virtual instrument of automation ultrasound detection internal defects is developed based on LabVIEW software and the experimental study is carried out. The results show that this system can be used in internal defect real-time on-line locating of engineering structures effectively. This system has higher measurement precision. Relative error is 6.7%. It can be met the requirement of engineering practice. The system is characterized by simple operation, easy realization. The software has a friendly interface, good expansibility, and high intelligent level.
Gallagher, A G; Lederman, A B; McGlade, K; Satava, R M; Smith, C D
2004-04-01
Increasing constraints on the time and resources needed to train surgeons have led to a new emphasis on finding innovative ways to teach surgical skills outside the operating room. Virtual reality training has been proposed as a method to both instruct surgical students and evaluate the psychomotor components of minimally invasive surgery ex vivo. The performance of 100 laparoscopic novices was compared to that of 12 experienced (>50 minimally invasive procedures) and 12 inexperienced (<10 minimally invasive procedures) laparoscopic surgeons. The values of the experienced surgeons' performance were used as benchmark comparators (or criterion measures). Each subject completed six tasks on the Minimally Invasive Surgical Trainer-Virtual Reality (MIST-VR) three times. The outcome measures were time to complete the task, number of errors, economy of instrument movement, and economy of diathermy. After three trials, the mean performance of the medical students approached that of the experienced surgeons. However, 7-27% of the scores of the students fell more than two SD below the mean scores of the experienced surgeons (the criterion level). The MIST-VR system is capable of evaluating the psychomotor skills necessary in laparoscopic surgery and discriminating between experts and novices. Furthermore, although some novices improved their skills quickly, a subset had difficulty acquiring the psychomotor skills. The MIST-VR may be useful in identifying that subset of novices.
NASA Astrophysics Data System (ADS)
Da Silva, A.; Sánchez Prieto, S.; Polo, O.; Parra Espada, P.
2013-05-01
Because of the tough robustness requirements in space software development, it is imperative to carry out verification tasks at a very early development stage to ensure that the implemented exception mechanisms work properly. All this should be done long time before the real hardware is available. But even if real hardware is available the verification of software fault tolerance mechanisms can be difficult since real faulty situations must be systematically and artificially brought about which can be imposible on real hardware. To solve this problem the Alcala Space Research Group (SRG) has developed a LEON2 virtual platform (Leon2ViP) with fault injection capabilities. This way it is posible to run the exact same target binary software as runs on the physical system in a more controlled and deterministic environment, allowing a more strict requirements verification. Leon2ViP enables unmanned and tightly focused fault injection campaigns, not possible otherwise, in order to expose and diagnose flaws in the software implementation early. Furthermore, the use of a virtual hardware-in-the-loop approach makes it possible to carry out preliminary integration tests with the spacecraft emulator or the sensors. The use of Leon2ViP has meant a signicant improvement, in both time and cost, in the development and verification processes of the Instrument Control Unit boot software on board Solar Orbiter's Energetic Particle Detector.
The Development of Virtual Laboratory Using ICT for Physics in Senior High School
NASA Astrophysics Data System (ADS)
Masril, M.; Hidayati, H.; Darvina, Y.
2018-04-01
One of the problems found in the implementation of the curriculum in 2013 is not all competency skills can be performed well. Therefore, to overcome these problems, virtual laboratory designed to improve the mastery of concepts of physics. One of the design objectives virtual laboratories is to improve the quality of education and learning in physics in high school. The method used in this study is a research method development four D model with the definition phase, design phase, development phase, and dissemination phase. Research has reached the stage of development and has been tested valid specialist. The instrument used in the research is a questionnaire consisting of: 1) the material substance; 2) The display of visual communication; 3) instructional design; 4) the use of software; and 5) Linguistic. The research results is validity in general has been a very good category (85.6), so that the design of virtual labs designed can already be used in high school.
Software Architecture for a Virtual Environment for Nano Scale Assembly (VENSA).
Lee, Yong-Gu; Lyons, Kevin W; Feng, Shaw C
2004-01-01
A Virtual Environment (VE) uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. The information flow between the user and the VE is bidirectional and the user can influence the environment. The software development of a VE requires orchestrating multiple peripherals and computers in a synchronized way in real time. Although a multitude of useful software components for VEs exists, many of these are packaged within a complex framework and can not be used separately. In this paper, an architecture is presented which is designed to let multiple frameworks work together while being shielded from the application program. This architecture, which is called the Virtual Environment for Nano Scale Assembly (VENSA), has been constructed for interfacing with an optical tweezers instrument for nanotechnology development. However, this approach can be generalized for most virtual environments. Through the use of VENSA, the programmer can rely on existing solutions and concentrate more on the application software design.
Software Architecture for a Virtual Environment for Nano Scale Assembly (VENSA)
Lee, Yong-Gu; Lyons, Kevin W.; Feng, Shaw C.
2004-01-01
A Virtual Environment (VE) uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. The information flow between the user and the VE is bidirectional and the user can influence the environment. The software development of a VE requires orchestrating multiple peripherals and computers in a synchronized way in real time. Although a multitude of useful software components for VEs exists, many of these are packaged within a complex framework and can not be used separately. In this paper, an architecture is presented which is designed to let multiple frameworks work together while being shielded from the application program. This architecture, which is called the Virtual Environment for Nano Scale Assembly (VENSA), has been constructed for interfacing with an optical tweezers instrument for nanotechnology development. However, this approach can be generalized for most virtual environments. Through the use of VENSA, the programmer can rely on existing solutions and concentrate more on the application software design. PMID:27366610
Integration of the virtual 3D model of a control system with the virtual controller
NASA Astrophysics Data System (ADS)
Herbuś, K.; Ociepka, P.
2015-11-01
Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the operation of the adopted research object. The carried out work allowed foot the integration of the virtual model of the control system of the tunneling machine with the virtual controller, enabling the verification of its operation.
Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection
Zhi, Yanan; Wang, Benquan; Yao, Xincheng
2016-01-01
Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches—including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy—have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact–free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina. PMID:27480461
Virtual fringe projection system with nonparallel illumination based on iteration
NASA Astrophysics Data System (ADS)
Zhou, Duo; Wang, Zhangying; Gao, Nan; Zhang, Zonghua; Jiang, Xiangqian
2017-06-01
Fringe projection profilometry has been widely applied in many fields. To set up an ideal measuring system, a virtual fringe projection technique has been studied to assist in the design of hardware configurations. However, existing virtual fringe projection systems use parallel illumination and have a fixed optical framework. This paper presents a virtual fringe projection system with nonparallel illumination. Using an iterative method to calculate intersection points between rays and reference planes or object surfaces, the proposed system can simulate projected fringe patterns and captured images. A new explicit calibration method has been presented to validate the precision of the system. Simulated results indicate that the proposed iterative method outperforms previous systems. Our virtual system can be applied to error analysis, algorithm optimization, and help operators to find ideal system parameter settings for actual measurements.
ViRPET--combination of virtual reality and PET brain imaging
Majewski, Stanislaw; Brefczynski-Lewis, Julie
2017-05-23
Various methods, systems and apparatus are provided for brain imaging during virtual reality stimulation. In one example, among others, a system for virtual ambulatory environment brain imaging includes a mobile brain imager configured to obtain positron emission tomography (PET) scans of a subject in motion, and a virtual reality (VR) system configured to provide one or more stimuli to the subject during the PET scans. In another example, a method for virtual ambulatory environment brain imaging includes providing stimulation to a subject through a virtual reality (VR) system; and obtaining a positron emission tomography (PET) scan of the subject while moving in response to the stimulation from the VR system. The mobile brain imager can be positioned on the subject with an array of imaging photodetector modules distributed about the head of the subject.
Assessment of construct validity of a virtual reality laparoscopy simulator.
Rosenthal, Rachel; Gantert, Walter A; Hamel, Christian; Hahnloser, Dieter; Metzger, Juerg; Kocher, Thomas; Vogelbach, Peter; Scheidegger, Daniel; Oertli, Daniel; Clavien, Pierre-Alain
2007-08-01
The aim of this study was to assess whether virtual reality (VR) can discriminate between the skills of novices and intermediate-level laparoscopic surgical trainees (construct validity), and whether the simulator assessment correlates with an expert's evaluation of performance. Three hundred and seven (307) participants of the 19th-22nd Davos International Gastrointestinal Surgery Workshops performed the clip-and-cut task on the Xitact LS 500 VR simulator (Xitact S.A., Morges, Switzerland). According to their previous experience in laparoscopic surgery, participants were assigned to the basic course (BC) or the intermediate course (IC). Objective performance parameters recorded by the simulator were compared to the standardized assessment by the course instructors during laparoscopic pelvitrainer and conventional surgery exercises. IC participants performed significantly better on the VR simulator than BC participants for the task completion time as well as the economy of movement of the right instrument, not the left instrument. Participants with maximum scores in the pelvitrainer cholecystectomy task performed the VR trial significantly faster, compared to those who scored less. In the conventional surgery task, a significant difference between those who scored the maximum and those who scored less was found not only for task completion time, but also for economy of movement of the right instrument. VR simulation provides a valid assessment of psychomotor skills and some basic aspects of spatial skills in laparoscopic surgery. Furthermore, VR allows discrimination between trainees with different levels of experience in laparoscopic surgery establishing construct validity for the Xitact LS 500 clip-and-cut task. Virtual reality may become the gold standard to assess and monitor surgical skills in laparoscopic surgery.
Azarnoush, Hamed; Siar, Samaneh; Sawaya, Robin; Zhrani, Gmaan Al; Winkler-Schwartz, Alexander; Alotaibi, Fahad Eid; Bugdadi, Abdulgadir; Bajunaid, Khalid; Marwa, Ibrahim; Sabbagh, Abdulrahman Jafar; Del Maestro, Rolando F
2017-07-01
OBJECTIVE Virtual reality simulators allow development of novel methods to analyze neurosurgical performance. The concept of a force pyramid is introduced as a Tier 3 metric with the ability to provide visual and spatial analysis of 3D force application by any instrument used during simulated tumor resection. This study was designed to answer 3 questions: 1) Do study groups have distinct force pyramids? 2) Do handedness and ergonomics influence force pyramid structure? 3) Are force pyramids dependent on the visual and haptic characteristics of simulated tumors? METHODS Using a virtual reality simulator, NeuroVR (formerly NeuroTouch), ultrasonic aspirator force application was continually assessed during resection of simulated brain tumors by neurosurgeons, residents, and medical students. The participants performed simulated resections of 18 simulated brain tumors with different visual and haptic characteristics. The raw data, namely, coordinates of the instrument tip as well as contact force values, were collected by the simulator. To provide a visual and qualitative spatial analysis of forces, the authors created a graph, called a force pyramid, representing force sum along the z-coordinate for different xy coordinates of the tool tip. RESULTS Sixteen neurosurgeons, 15 residents, and 84 medical students participated in the study. Neurosurgeon, resident and medical student groups displayed easily distinguishable 3D "force pyramid fingerprints." Neurosurgeons had the lowest force pyramids, indicating application of the lowest forces, followed by resident and medical student groups. Handedness, ergonomics, and visual and haptic tumor characteristics resulted in distinct well-defined 3D force pyramid patterns. CONCLUSIONS Force pyramid fingerprints provide 3D spatial assessment displays of instrument force application during simulated tumor resection. Neurosurgeon force utilization and ergonomic data form a basis for understanding and modulating resident force application and improving patient safety during tumor resection.
Distributed attitude synchronization of formation flying via consensus-based virtual structure
NASA Astrophysics Data System (ADS)
Cong, Bing-Long; Liu, Xiang-Dong; Chen, Zhen
2011-06-01
This paper presents a general framework for synchronized multiple spacecraft rotations via consensus-based virtual structure. In this framework, attitude control systems for formation spacecrafts and virtual structure are designed separately. Both parametric uncertainty and external disturbance are taken into account. A time-varying sliding mode control (TVSMC) algorithm is designed to improve the robustness of the actual attitude control system. As for the virtual attitude control system, a behavioral consensus algorithm is presented to accomplish the attitude maneuver of the entire formation and guarantee a consistent attitude among the local virtual structure counterparts during the attitude maneuver. A multiple virtual sub-structures (MVSSs) system is introduced to enhance current virtual structure scheme when large amounts of spacecrafts are involved in the formation. The attitude of spacecraft is represented by modified Rodrigues parameter (MRP) for its non-redundancy. Finally, a numerical simulation with three synchronization situations is employed to illustrate the effectiveness of the proposed strategy.
Assessment of wheelchair driving performance in a virtual reality-based simulator
Mahajan, Harshal P.; Dicianno, Brad E.; Cooper, Rory A.; Ding, Dan
2013-01-01
Objective To develop a virtual reality (VR)-based simulator that can assist clinicians in performing standardized wheelchair driving assessments. Design A completely within-subjects repeated measures design. Methods Participants drove their wheelchairs along a virtual driving circuit modeled after the Power Mobility Road Test (PMRT) and in a hallway with decreasing width. The virtual simulator was displayed on computer screen and VR screens and participants interacted with it using a set of instrumented rollers and a wheelchair joystick. Driving performances of participants were estimated and compared using quantitative metrics from the simulator. Qualitative ratings from two experienced clinicians were used to estimate intra- and inter-rater reliability. Results Ten regular wheelchair users (seven men, three women; mean age ± SD, 39.5 ± 15.39 years) participated. The virtual PMRT scores from the two clinicians show high inter-rater reliability (78–90%) and high intra-rater reliability (71–90%) for all test conditions. More research is required to explore user preferences and effectiveness of the two control methods (rollers and mathematical model) and the display screens. Conclusions The virtual driving simulator seems to be a promising tool for wheelchair driving assessment that clinicians can use to supplement their real-world evaluations. PMID:23820148
Instrumentation, metrology, and standards: key elements for the future of nanomanufacturing
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Lyons, Kevin
2007-09-01
Nanomanufacturing is the essential bridge between the discoveries of nanoscience and real world nanotech products and is the vehicle by which the Nation and the World will realize the promise of major technological innovation across a spectrum of products that will affect virtually every industrial sector. For nanotech products to achieve the broad impacts envisioned, they must be manufactured in market-appropriate quantities in a reliable, repeatable, economical and commercially viable manner. In addition, they must be manufactured so that environmental and human health concerns are met, worker safety issues are appropriately assessed and handled, and liability issues are addressed. Critical to this realization of robust nanomanufacturing is the development of the necessary instrumentation, metrology, and standards. Integration of the instruments, their interoperability, and appropriate information management are also critical elements that must be considered for viable nanomanufacturing. Advanced instrumentation, metrology and standards will allow the physical dimensions, properties, functionality, and purity of the materials, processes, tools, systems, products, and emissions that will constitute nanomanufacturing to be measured and characterized. This will in turn enable production to be scaleable, controllable, predictable, and repeatable to meet market needs. If a nano-product cannot be measured it cannot be manufactured; additionally if that product cannot be made safely it should not be manufactured. This presentation introduces the Instrumentation, Metrology, and Standards for Nanomanufacturing Conference at the 2007 SPIE Optics and Photonics. This conference will become the leading forum for the exchange of foundational information and discussion of instrumentation, metrology and standards which are key elements for the success of nanomanufacturing.
Are the effects of Unreal violent video games pronounced when playing with a virtual reality system?
Arriaga, Patrícia; Esteves, Francisco; Carneiro, Paula; Monteiro, Maria Benedicta
2008-01-01
This study was conducted to analyze the short-term effects of violent electronic games, played with or without a virtual reality (VR) device, on the instigation of aggressive behavior. Physiological arousal (heart rate (HR)), priming of aggressive thoughts, and state hostility were also measured to test their possible mediation on the relationship between playing the violent game (VG) and aggression. The participants--148 undergraduate students--were randomly assigned to four treatment conditions: two groups played a violent computer game (Unreal Tournament), and the other two a non-violent game (Motocross Madness), half with a VR device and the remaining participants on the computer screen. In order to assess the game effects the following instruments were used: a BIOPAC System MP100 to measure HR, an Emotional Stroop task to analyze the priming of aggressive and fear thoughts, a self-report State Hostility Scale to measure hostility, and a competitive reaction-time task to assess aggressive behavior. The main results indicated that the violent computer game had effects on state hostility and aggression. Although no significant mediation effect could be detected, regression analyses showed an indirect effect of state hostility between playing a VG and aggression. Copyright 2008 Wiley-Liss, Inc.
Students’ Impression towards Science Virtual Test (SVT) on Digestive System Topic
NASA Astrophysics Data System (ADS)
Mahfira, C.; Sanjaya, Y.; Rusyati, L.
2018-05-01
During the past few years, technology has significantly support the improvements in assessment.Computer-based test (CBT) comes up as a new type of assessment which offers many benefits. The implementation of computer-based test in term of students’ perspective gives rise to numbers of mixed reactions. Students’ impression is one of the essential things for the implementation of SVT. The purpose of this study was to investigate the impression of students toward SVT. The method used in this research was descriptive method. The participant was 98 students from Junior High School “X” in East Bandung. Students’ impression questionnaire was used as the instrument. There are four aspects tested in this instrument which are students’ experience, technical activity, preference and media of SVT. The result shows that SVT generally gives positive impression to students. Students have a positive experience and did not encounter significant problem when implementing SVT. Students prefer to use SVT and students think the media of SVT is already good.
Application of MCM image construction to IRAS comet observations
NASA Technical Reports Server (NTRS)
Schlapfer, Martin F.; Walker, Russell G.
1994-01-01
There is a wealth of IRAS comet data, obtained in both the survey and pointed observations modes. However, these measurements have remained largely untouched due to difficulties in removing instrumental effects from the data. We have developed a version of the Maximum Correlation Method for Image Construction algorithm (MCM) which operates in the moving coordinate system of the comet and properly treats both real cometary motion and apparent motion due to spacecraft parallax. This algorithm has been implemented on a 486/33 PC in FORTRAN and IDL codes. Preprocessing of the IRAS CRDD includes baseline removal, deglitching, and removal of long tails due to dielectric time constants of the detectors. The resulting images are virtually free from instrumental effects and have the highest possible spatial resolution consistent with the data sampling. We present examples of high resolution IRAS images constructed from survey observations of Comets P/Tempel 1 and P/Tempel 2, and pointed observations of IRAS-Araki-Alcock.
Virtual Impactor for Sub-micron Aerosol Particles
NASA Astrophysics Data System (ADS)
Bolshakov, A. A.; Strawa, A. W.; Hallar, A. G.
2005-12-01
The objective of a virtual impactor is to separate out the larger particles in a flow from the smaller particles in such a way that both sizes of particles are available for sampling. A jet of particle-laden air is accelerated toward a collection probe so that a small gap exists between the acceleration nozzle and the probe. A vacuum is applied to deflect a major portion of the airstream away form the collection probe. Particles larger than a certain size have sufficient momentum so that they cross the deflected streamlines and enter the collection probe, whereas smaller particles follow the deflected streamlines. The result is that the collection probe will contain a higher concentration of larger particles than is in the initial airstream. Typically, virtual impactors are high-flow devices used to separate out particles greater than several microns in diameter. We have developed a special virtual impactor to concentrate aerosol particles of diameters between 0.5 to 1 micron for the purpose of calibrating the optical cavity ring-down instrument [1]. No similar virtual impactors are commercially available. In our design, we have exploited considerations described earlier [2-4]. Performance of our virtual impactor was evaluated in an experimental set-up using TSI 3076 nebulizer and TSI 3936 scanning mobility particle size spectrometer. Under experimental conditions optimized for the best performance of the virtual impactor, we were able to concentrate the 700-nm polystyrene particles no less than 15-fold. However, under experimental conditions optimized for calibrating our cavity ring-down instrument, a concentration factor attainable was from 4 to 5. During calibration experiments, maximum realized particle number densities were 190, 300 and 1600 cm-3 for the 900-nm, 700-nm and 500-nm spheres, respectively. This paper discusses the design of the impactor and laboratory studies verifying its performance. References: 1. A.W. Strawa, R. Castaneda, T. Owano, D.S. Baer, B.A. Paldus, J. Atm. Ocean. Technol., 20, 454-465 (2003). 2. V.A. Marple, K.L. Rubow, B.A. Olson, Aerosol Sci. Technol., 22, 140-150 (1995). 3. B.T. Chen, H.C. Yeh, Y.S. Cheng, J. Aerosol Sci., 16, 343-354 (1985). 4. V.A. Marple, C.M. Chien, Environ. Sci. Technol., 14, 976-985 (1980).
Method to Enhance the Operation of an Optical Inspection Instrument Using Spatial Light Modulators
NASA Technical Reports Server (NTRS)
Trolinger, James; Lal, Amit; Jo, Joshua; Kupiec, Stephen
2012-01-01
For many aspheric and freeform optical components, existing interferometric solutions require a custom computer-generated hologram (CGH) to characterize the part. The overall objective of this research is to develop hardware and a procedure to produce a combined, dynamic, Hartmann/ Digital Holographic interferometry inspection system for a wide range of advanced optical components, including aspheric and freeform optics. This new instrument would have greater versatility and dynamic range than currently available measurement systems. The method uses a spatial light modulator to pre-condition wavefronts for imaging, interferometry, and data processing to improve the resolution and versatility of an optical inspection instrument. Existing interferometers and Hartmann inspection systems have either too small a dynamic range or insufficient resolution to characterize conveniently unusual optical surfaces like aspherical and freeform optics. For interferometers, a specially produced, computer-generated holographic optical element is needed to transform the wavefront to within the range of the interferometer. A new hybrid wavefront sensor employs newly available spatial light modulators (SLMs) as programmable holographic optical elements (HOEs). The HOE is programmed to enable the same instrument to inspect an optical element in stages, first by a Hartmann measurement, which has a very large dynamic range but less resolution. The first measurement provides the information required to precondition a reference wave that avails the measurement process to the more precise phase shifting interferometry. The SLM preconditions a wavefront before it is used to inspect an optical component. This adds important features to an optical inspection system, enabling not just wavefront conditioning for null testing and dynamic range extension, but also the creation of hybrid measurement procedures. This, for example, allows the combination of dynamic digital holography and Hartmann sensing procedures to cover a virtually unlimited dynamic range with high resolution. Digital holography technology brings all of the power and benefits of digital holographic interferometry to the requirement, while Hartmann-type wavefront sensors bring deflectometry technologies to the solution. The SLM can be used to generate arbitrary wavefronts in one leg of the interferometer, thereby greatly simplifying its use and extending its range. The SLM can also be used to modify the system into a dynamic Shack-Hartmann system, which is useful for optical components with large amounts of slope. By integrating these capabilities into a single instrument, the system will have tremendous flexibility to measure a variety of optical shapes accurately.
[Testing system design and analysis for the execution units of anti-thrombotic device].
Li, Zhelong; Cui, Haipo; Shang, Kun; Liao, Yuehua; Zhou, Xun
2015-02-01
In an anti-thrombotic pressure circulatory device, relays and solenoid valves serve as core execution units. Thus the therapeutic efficacy and patient safety of the device will directly depend on their performance. A new type of testing system for relays and solenoid valves used in the anti-thrombotic device has been developed, which can test action response time and fatigue performance of relay and solenoid valve. PC, data acquisition card and test platform are used in this testing system based on human-computer interaction testing modules. The testing objectives are realized by using the virtual instrument technology, the high-speed data acquisition technology and reasonable software design. The two sets of the system made by relay and solenoid valve are tested. The results proved the universality and reliability of the testing system so that these relays and solenoid valves could be accurately used in the antithrombotic pressure circulatory equipment. The newly-developed testing system has a bright future in the aspects of promotion and application prospect.
Using smartphone technology to deliver a virtual pedestrian environment: usability and validation.
Schwebel, David C; Severson, Joan; He, Yefei
2017-09-01
Various programs effectively teach children to cross streets more safely, but all are labor- and cost-intensive. Recent developments in mobile phone technology offer opportunity to deliver virtual reality pedestrian environments to mobile smartphone platforms. Such an environment may offer a cost- and labor-effective strategy to teach children to cross streets safely. This study evaluated usability, feasibility, and validity of a smartphone-based virtual pedestrian environment. A total of 68 adults completed 12 virtual crossings within each of two virtual pedestrian environments, one delivered by smartphone and the other a semi-immersive kiosk virtual environment. Participants completed self-report measures of perceived realism and simulator sickness experienced in each virtual environment, plus self-reported demographic and personality characteristics. All participants followed system instructions and used the smartphone-based virtual environment without difficulty. No significant simulator sickness was reported or observed. Users rated the smartphone virtual environment as highly realistic. Convergent validity was detected, with many aspects of pedestrian behavior in the smartphone-based virtual environment matching behavior in the kiosk virtual environment. Anticipated correlations between personality and kiosk virtual reality pedestrian behavior emerged for the smartphone-based system. A smartphone-based virtual environment can be usable and valid. Future research should develop and evaluate such a training system.
Fisher, J Brian; Porter, Susan M
2002-01-01
This paper describes an application of a display approach which uses chromakey techniques to composite real and computer-generated images allowing a user to see his hands and medical instruments collocated with the display of virtual objects during a medical training simulation. Haptic feedback is provided through the use of a PHANTOM force feedback device in addition to tactile augmentation, which allows the user to touch virtual objects by introducing corresponding real objects in the workspace. A simplified catheter introducer insertion simulation was developed to demonstrate the capabilities of this approach.
Design of a Film Cooling Experiment for Rocket Engines
2010-03-01
concentrations inside the UCC (22)............................................................ 25 Figure 7: PIV data in the UCC (23...64 Figure 38: UCC /FCR igniter ............................................................................................. 65 Figure 39: Ethylene...TDLAS Tunable Diode Laser Absorption Spectroscopy UCC Ultra Compact Combustor μm micrometers VI Virtual Instrument Xe Xenon ZnSe
Teaching Chromatography Using Virtual Laboratory Exercises
ERIC Educational Resources Information Center
Stone, David C.
2007-01-01
Though deceptively simple to teach, chromatography presents many nuances and complex interactions that challenge both student and instructor. Time and instrumentation provide major obstacles to a thorough examination of these details in the laboratory. Modern chromatographic method-development software provides an opportunity to overcome this,…
Design of affordable and ruggedized biomedical devices using virtual instrumentation.
Mathern, Ryan Michael; Schopman, Sarah; Kalchthaler, Kyle; Mehta, Khanjan; Butler, Peter
2013-05-01
Abstract This paper presents the designs of four low-cost and ruggedized biomedical devices, including a blood pressure monitor, thermometer, weighing scale and spirometer, designed for the East African context. The design constraints included a mass-production price point of $10, accuracy and precision comparable to commercial devices and ruggedness to function effectively in the harsh environment of East Africa. The blood pressure device, thermometer and weighing scale were field-tested in Kenya and each recorded data within 6% error of the measurements from commercial devices and withstood the adverse climate and rough handling. The spirometer functioned according to specifications, but a re-design is needed to improve operability and usability by patients. This article demonstrates the feasibility of designing and commercializing virtual instrumentation-based biomedical devices in resource-constrained environments through context-driven design. The next steps for the devices include designing them such that they can be more easily manufactured, use standardized materials, are easily calibrated in the field and have more user-friendly software programs that can be updated remotely.
Development and implementation of a virtual reality laparoscopic colorectal training curriculum.
Wynn, Greg; Lykoudis, Panagis; Berlingieri, Pasquale
2017-12-12
Contemporary surgical training can be compromised by fewer practical opportunities. Simulation can fill this gap to optimize skills' development and progress monitoring. A structured virtual reality (VR) laparoscopic sigmoid colectomy curriculum is constructed and its validity and outcomes assessed. Parameters and thresholds were defined by analysing the performance of six expert surgeons completing the relevant module on the LAP Mentor simulator. Fourteen surgical trainees followed the curriculum, performance being recorded and analysed. Evidence of validity was assessed. Time to complete procedure, number of movements of right and left instrument, and total path length of right and left instrument movements demonstrated evidence of validity and clear learning curves, with a median of 14 attempts needed to complete the curriculum. A structured curriculum is proposed for training in laparoscopic sigmoid colectomy in a VR environment based on objective metrics in addition to expert consensus. Validity has been demonstrated for some key metrics. Copyright © 2017 Elsevier Inc. All rights reserved.
Terrain Model Registration for Single Cycle Instrument Placement
NASA Technical Reports Server (NTRS)
Deans, Matthew; Kunz, Clay; Sargent, Randy; Pedersen, Liam
2003-01-01
This paper presents an efficient and robust method for registration of terrain models created using stereo vision on a planetary rover. Our approach projects two surface models into a virtual depth map, rendering the models as they would be seen from a single range sensor. Correspondence is established based on which points project to the same location in the virtual range sensor. A robust norm of the deviations in observed depth is used as the objective function, and the algorithm searches for the rigid transformation which minimizes the norm. An initial coarse search is done using rover pose information from odometry and orientation sensing. A fine search is done using Levenberg-Marquardt. Our method enables a planetary rover to keep track of designated science targets as it moves, and to hand off targets from one set of stereo cameras to another. These capabilities are essential for the rover to autonomously approach a science target and place an instrument in contact in a single command cycle.
Reconfigurable HIL Testing of Earth Satellites
NASA Technical Reports Server (NTRS)
2008-01-01
In recent years, hardware-in-the-loop (HIL) testing has carved a strong niche in several industries, such as automotive, aerospace, telecomm, and consumer electronics. As desktop computers have realized gains in speed, memory size, and data storage capacity, hardware/software platforms have evolved into high performance, deterministic HIL platforms, capable of hosting the most demanding applications for testing components and subsystems. Using simulation software to emulate the digital and analog I/O signals of system components, engineers of all disciplines can now test new systems in realistic environments to evaluate their function and performance prior to field deployment. Within the Aerospace industry, space-borne satellite systems are arguably some of the most demanding in terms of their requirement for custom engineering and testing. Typically, spacecraft are built one or few at a time to fulfill a space science or defense mission. In contrast to other industries that can amortize the cost of HIL systems over thousands, even millions of units, spacecraft HIL systems have been built as one-of-a-kind solutions, expensive in terms of schedule, cost, and risk, to assure satellite and spacecraft systems reliability. The focus of this paper is to present a new approach to HIL testing for spacecraft systems that takes advantage of a highly flexible hardware/software architecture based on National Instruments PXI reconfigurable hardware and virtual instruments developed using LabVIEW. This new approach to HIL is based on a multistage/multimode spacecraft bus emulation development model called Reconfigurable Hardware In-the-Loop or RHIL.
System-Level Virtualization Research at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Stephen L; Vallee, Geoffroy R; Naughton, III, Thomas J
2010-01-01
System-level virtualization is today enjoying a rebirth as a technique to effectively share what were then considered large computing resources to subsequently fade from the spotlight as individual workstations gained in popularity with a one machine - one user approach. One reason for this resurgence is that the simple workstation has grown in capability to rival that of anything available in the past. Thus, computing centers are again looking at the price/performance benefit of sharing that single computing box via server consolidation. However, industry is only concentrating on the benefits of using virtualization for server consolidation (enterprise computing) whereas ourmore » interest is in leveraging virtualization to advance high-performance computing (HPC). While these two interests may appear to be orthogonal, one consolidating multiple applications and users on a single machine while the other requires all the power from many machines to be dedicated solely to its purpose, we propose that virtualization does provide attractive capabilities that may be exploited to the benefit of HPC interests. This does raise the two fundamental questions of: is the concept of virtualization (a machine sharing technology) really suitable for HPC and if so, how does one go about leveraging these virtualization capabilities for the benefit of HPC. To address these questions, this document presents ongoing studies on the usage of system-level virtualization in a HPC context. These studies include an analysis of the benefits of system-level virtualization for HPC, a presentation of research efforts based on virtualization for system availability, and a presentation of research efforts for the management of virtual systems. The basis for this document was material presented by Stephen L. Scott at the Collaborative and Grid Computing Technologies meeting held in Cancun, Mexico on April 12-14, 2007.« less
Extending and expanding the life of older current meters
Strahle, W.J.; Martini, Marinna A.
1995-01-01
The EG&G Model 610 VACM and Model 630 VMCM are standards for ocean current measurements. It is simple to add peripheral sensors to the data stream of the VACM by use of add-on CMOS circuitry. The firmware control of the VMCM makes it virtually impossible to add sampling of additional sensors. Most of the electronic components used in the VACM are obsolete or difficult to replace and the VMCM will soon follow suit. As a result, the USGS joined WHOI in the development of a PCMCIA data storage system to replace the cassette recording system in the VACM. Using the same PCMCIA recording package as the controller and recorder for the VMCM, a user-friendly VMCM is being designed. PCMCIA cards are rapidly becoming an industry standard with a wide range of storage capacities. By upgrading the VACM and VMCM to PCMCIA storage systems with a flexible microprocessor, they will continue to be viable instruments.
2017-08-01
ARL-TN-0839 ● AUG 2017 US Army Research Laboratory User Guide: How to Use and Operate Virtual Reality Equipment in the Systems...ARL-TN-0839 ● AUG 2017 US Army Research Laboratory User Guide: How to Use and Operate Virtual Reality Equipment in the Systems...September 2017 4. TITLE AND SUBTITLE User Guide: How to Use and Operate Virtual Reality Equipment in the Systems Assessment and Usability Laboratory
Virtual reality in surgical training.
Lange, T; Indelicato, D J; Rosen, J M
2000-01-01
Virtual reality in surgery and, more specifically, in surgical training, faces a number of challenges in the future. These challenges are building realistic models of the human body, creating interface tools to view, hear, touch, feel, and manipulate these human body models, and integrating virtual reality systems into medical education and treatment. A final system would encompass simulators specifically for surgery, performance machines, telemedicine, and telesurgery. Each of these areas will need significant improvement for virtual reality to impact medicine successfully in the next century. This article gives an overview of, and the challenges faced by, current systems in the fast-changing field of virtual reality technology, and provides a set of specific milestones for a truly realistic virtual human body.
Gutiérrez-Maldonado, José; Ferrer-García, Marta; Caqueo-Urízar, Alejandra; Letosa-Porta, Alex
2006-10-01
The aim of this study was to assess the usefulness of virtual environments representing situations that are emotionally significant to subjects with eating disorders (ED). These environments may be applied with both evaluative and therapeutic aims and in simulation procedures to carry out a range of experimental studies. This paper is part of a wider research project analyzing the influence of the situation to which subjects are exposed on their performance on body image estimation tasks. Thirty female patients with eating disorders were exposed to six virtual environments: a living-room (neutral situation), a kitchen with high-calorie food, a kitchen with low-calorie food, a restaurant with high-calorie food, a restaurant with low-calorie food, and a swimming-pool. After exposure to each environment the STAI-S (a measurement of state anxiety) and the CDB (a measurement of depression) were administered to all subjects. The results show that virtual reality instruments are particularly useful for simulating everyday situations that may provoke emotional reactions such as anxiety and depression, in patients with ED. Virtual environments in which subjects are obliged to ingest high-calorie food provoke the highest levels of state anxiety and depression.
Svensson, Madeleine; Bellocco, Rino; Bakkman, Linda; Trolle Lagerros, Ylva
2013-01-18
Misreporting food intake is common because most health screenings rely on self-reports. The more accurate methods (eg, weighing food) are costly, time consuming, and impractical. We developed a new instrument for reporting food intake--an Internet-based interactive virtual food plate. The objective of this study was to validate this instrument's ability to assess lunch intake. Participants were asked to compose an ordinary lunch meal using both a virtual and a real lunch plate (with real food on a real plate). The participants ate their real lunch meals on-site. Before and after pictures of the composed lunch meals were taken. Both meals included identical food items. Participants were randomized to start with either instrument. The 2 instruments were compared using correlation and concordance measures (total energy intake, nutritional components, quantity of food, and participant characteristics). A total of 55 men (median age: 45 years, median body mass index [BMI]: 25.8 kg/m(2)) participated. We found an overall overestimation of reported median energy intake using the computer plate (3044 kJ, interquartile range [IQR] 1202 kJ) compared with the real lunch plate (2734 kJ, IQR 1051 kJ, P<.001). Spearman rank correlations and concordance correlations for energy intake and nutritional components ranged between 0.58 to 0.79 and 0.65 to 0.81, respectively. Although it slightly overestimated, our computer plate provides promising results in assessing lunch intake.
The high throughput virtual slit enables compact, inexpensive Raman spectral imagers
NASA Astrophysics Data System (ADS)
Gooding, Edward; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.
2018-02-01
Raman spectral imaging is increasingly becoming the tool of choice for field-based applications such as threat, narcotics and hazmat detection; air, soil and water quality monitoring; and material ID. Conventional fiber-coupled point source Raman spectrometers effectively interrogate a small sample area and identify bulk samples via spectral library matching. However, these devices are very slow at mapping over macroscopic areas. In addition, the spatial averaging performed by instruments that collect binned spectra, particularly when used in combination with orbital raster scanning, tends to dilute the spectra of trace particles in a mixture. Our design, employing free space line illumination combined with area imaging, reveals both the spectral and spatial content of heterogeneous mixtures. This approach is well suited to applications such as detecting explosives and narcotics trace particle detection in fingerprints. The patented High Throughput Virtual Slit1 is an innovative optical design that enables compact, inexpensive handheld Raman spectral imagers. HTVS-based instruments achieve significantly higher spectral resolution than can be obtained with conventional designs of the same size. Alternatively, they can be used to build instruments with comparable resolution to large spectrometers, but substantially smaller size, weight and unit cost, all while maintaining high sensitivity. When used in combination with laser line imaging, this design eliminates sample photobleaching and unwanted photochemistry while greatly enhancing mapping speed, all with high selectivity and sensitivity. We will present spectral image data and discuss applications that are made possible by low cost HTVS-enabled instruments.
Education about Hallucinations Using an Internet Virtual Reality System: A Qualitative Survey
ERIC Educational Resources Information Center
Yellowlees, Peter M.; Cook, James N.
2006-01-01
Objective: The authors evaluate an Internet virtual reality technology as an education tool about the hallucinations of psychosis. Method: This is a pilot project using Second Life, an Internet-based virtual reality system, in which a virtual reality environment was constructed to simulate the auditory and visual hallucinations of two patients…
NASA Technical Reports Server (NTRS)
Adams, Richard J.
2015-01-01
The patent-pending Glove-Enabled Computer Operations (GECO) design leverages extravehicular activity (EVA) glove design features as platforms for instrumentation and tactile feedback, enabling the gloves to function as human-computer interface devices. Flexible sensors in each finger enable control inputs that can be mapped to any number of functions (e.g., a mouse click, a keyboard strike, or a button press). Tracking of hand motion is interpreted alternatively as movement of a mouse (change in cursor position on a graphical user interface) or a change in hand position on a virtual keyboard. Programmable vibro-tactile actuators aligned with each finger enrich the interface by creating the haptic sensations associated with control inputs, such as recoil of a button press.
Introduction to the virtual special issue on super-resolution imaging techniques
NASA Astrophysics Data System (ADS)
Cao, Liangcai; Liu, Zhengjun
2017-12-01
Until quite recently, the resolution of optical imaging instruments, including telescopes, cameras and microscopes, was considered to be limited by the diffraction of light and by image sensors. In the past few years, many exciting super-resolution approaches have emerged that demonstrate intriguing ways to bypass the classical limit in optics and detectors. More and more research groups are engaged in the study of advanced super-resolution schemes, devices, algorithms, systems, and applications [1-6]. Super-resolution techniques involve new methods in science and engineering of optics [7,8], measurements [9,10], chemistry [11,12] and information [13,14]. Promising applications, particularly in biomedical research and semiconductor industry, have been successfully demonstrated.
NASA Astrophysics Data System (ADS)
Bjorklund, E.
1994-12-01
In the 1970s, when computers were memory limited, operating system designers created the concept of "virtual memory", which gave users the ability to address more memory than physically existed. In the 1990s, many large control systems have the potential of becoming data limited. We propose that many of the principles behind virtual memory systems (working sets, locality, caching and clustering) can also be applied to data-limited systems, creating, in effect, "virtual data systems". At the Los Alamos National Laboratory's Clinton P. Anderson Meson Physics Facility (LAMPF), we have applied these principles to a moderately sized (10 000 data points) data acquisition and control system. To test the principles, we measured the system's performance during tune-up, production, and maintenance periods. In this paper, we present a general discussion of the principles of a virtual data system along with some discussion of our own implementation and the results of our performance measurements.
Virtual reality: past, present and future.
Gobbetti, E; Scateni, R
1998-01-01
This report provides a short survey of the field of virtual reality, highlighting application domains, technological requirements, and currently available solutions. The report is organized as follows: section 1 presents the background and motivation of virtual environment research and identifies typical application domain, section 2 discusses the characteristics a virtual reality system must have in order to exploit the perceptual and spatial skills of users, section 3 surveys current input/output devices for virtual reality, section 4 surveys current software approaches to support the creation of virtual reality systems, and section 5 summarizes the report.
Portable Multispectral Colorimeter for Metallic Ion Detection and Classification
Jaimes, Ruth F. V. V.; Borysow, Walter; Gomes, Osmar F.; Salcedo, Walter J.
2017-01-01
This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView®). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution. PMID:28788082
Portable Multispectral Colorimeter for Metallic Ion Detection and Classification.
Braga, Mauro S; Jaimes, Ruth F V V; Borysow, Walter; Gomes, Osmar F; Salcedo, Walter J
2017-07-28
This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView ® ). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution.
NASA Technical Reports Server (NTRS)
Mcvey, Sally
1991-01-01
Earth remote sensing is a uniquely valuable tool for large-scale resource management, a task whose importance will likely increase world-wide through the foreseeable future. NASA research and engineering have virtually created the existing U.S. system, and will continue to push the frontiers, primarily through Earth Observing System (EOS) instruments, research, and data and information systems. It is the researchers' view that the near-term health of remote sensing applications also deserves attention; it seems important not to abandon the system or its clients. The researchers suggest that, like its Landsat predecessor, a successful Earth Observing System program is likely to reinforce pressure to 'manage' natural resources, and consequently, to create more pressure for Earth Observations Commercialization (EOCAP) type applications. The current applications programs, though small, are valuable because of their technical and commercial results, and also because they support a community whose contributions will increase along with our ability to observe the Earth from space.
Advanced Collaborative Environments Supporting Systems Integration and Design
2003-03-01
concurrently view a virtual system or product model while maintaining natural, human communication . These virtual systems operate within a computer-generated...These environments allow multiple individuals to concurrently view a virtual system or product model while simultaneously maintaining natural, human ... communication . As a result, TARDEC researchers and system developers are using this advanced high-end visualization technology to develop future
Booth, Vicky; Masud, Tahir; Bath-Hextall, Fiona
Balance impairment can result in falls and reduced activities of daily living and function. Virtual reality and interactive gaming systems provide a novel and potentially environmentally flexible treatment option to improve postural stability and reduce falls in balance impaired populations. There are no existing systematic reviews in this topic area. To search, critically appraise and synthesise the best available evidence on whether virtual reality interventions, including interactive gaming systems, are effective at improving balance in adults with impaired balance. Adults with impaired, altered or reduced balance identified either through reduced balance outcome measure score or increased risk or incidence of falls.Types of interventions:Any virtual reality or interactive gaming systems used within a rehabilitative setting.The primary outcome was an objective measure of balance (i.e. balance outcome measure such as Berg Balance Score) or number and/or incidence of falls. Secondary outcome measures of interest included any adverse effects experienced, an outcome measure indicating functional balance (i.e. walking speed), quality of life (through use of an objective measure i.e. EuroQOL), and number of days in hospital due to falls.Types of studies:Randomised controlled trials (RCT). A three-stage strategy searched the following electronic databases: The Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, PsycBITE, OTseeker, Ei Compendex, Inspec, Current Controlled Trials, and the National Institute of Health Clinical Trials Database. The methodological quality of each included study was independently assessed using the Joanna Briggs Institute Meta Analysis of Statistics Assessment and Review Instrument (JBI-MAStARI) to systematically comment on influence of bias. Data was individually extracted from the included studies using the standardised JBI data extraction tool from JBI-MAStARI. Data was analysed using Review Manager 5 software. Results were expressed as mean difference (MD) with 95% confidence intervals for continuous outcomes. Meta-analysis was not possible due to the variation of the interventions given and small number of included trials; hence, a description of the results was given. Four studies were included in the systematic review. All the included studies used different types of virtual reality or interactive gaming interventions. Two of the included studies used the same balance outcome measure. There was a notable inconsistency of balance outcome measurement between all the included studies. No data was given regarding falls in any of the studies. A secondary outcome, the 10m walk test, was recorded in two of the studies. The four included studies had small sample sizes and poor methodological quality. Despite the presentation of statistically significant results, the clinical significance is questionable. The review can not recommend the inclusion of virtual reality or interactive gaming systems into the rehabilitation of balance impairment based on the results of the four included studies. Further investigation in this topic area is required.
Construct validity and expert benchmarking of the haptic virtual reality dental simulator.
Suebnukarn, Siriwan; Chaisombat, Monthalee; Kongpunwijit, Thanapohn; Rhienmora, Phattanapon
2014-10-01
The aim of this study was to demonstrate construct validation of the haptic virtual reality (VR) dental simulator and to define expert benchmarking criteria for skills assessment. Thirty-four self-selected participants (fourteen novices, fourteen intermediates, and six experts in endodontics) at one dental school performed ten repetitions of three mode tasks of endodontic cavity preparation: easy (mandibular premolar with one canal), medium (maxillary premolar with two canals), and hard (mandibular molar with three canals). The virtual instrument's path length was registered by the simulator. The outcomes were assessed by an expert. The error scores in easy and medium modes accurately distinguished the experts from novices and intermediates at the onset of training, when there was a significant difference between groups (ANOVA, p<0.05). The trend was consistent until trial 5. From trial 6 on, the three groups achieved similar scores. No significant difference was found between groups at the end of training. Error score analysis was not able to distinguish any group at the hard level of training. Instrument path length showed a difference in performance according to groups at the onset of training (ANOVA, p<0.05). This study established construct validity for the haptic VR dental simulator by demonstrating its discriminant capabilities between that of experts and non-experts. The experts' error scores and path length were used to define benchmarking criteria for optimal performance.
Temkin, Bharti; Acosta, Eric; Malvankar, Ameya; Vaidyanath, Sreeram
2006-04-01
The Visible Human digital datasets make it possible to develop computer-based anatomical training systems that use virtual anatomical models (virtual body structures-VBS). Medical schools are combining these virtual training systems and classical anatomy teaching methods that use labeled images and cadaver dissection. In this paper we present a customizable web-based three-dimensional anatomy training system, W3D-VBS. W3D-VBS uses National Library of Medicine's (NLM) Visible Human Male datasets to interactively locate, explore, select, extract, highlight, label, and visualize, realistic 2D (using axial, coronal, and sagittal views) and 3D virtual structures. A real-time self-guided virtual tour of the entire body is designed to provide detailed anatomical information about structures, substructures, and proximal structures. The system thus facilitates learning of visuospatial relationships at a level of detail that may not be possible by any other means. The use of volumetric structures allows for repeated real-time virtual dissections, from any angle, at the convenience of the user. Volumetric (3D) virtual dissections are performed by adding, removing, highlighting, and labeling individual structures (and/or entire anatomical systems). The resultant virtual explorations (consisting of anatomical 2D/3D illustrations and animations), with user selected highlighting colors and label positions, can be saved and used for generating lesson plans and evaluation systems. Tracking users' progress using the evaluation system helps customize the curriculum, making W3D-VBS a powerful learning tool. Our plan is to incorporate other Visible Human segmented datasets, especially datasets with higher resolutions, that make it possible to include finer anatomical structures such as nerves and small vessels. (c) 2006 Wiley-Liss, Inc.
The Effects of a Virtual Tutee System on Academic Reading Engagement in a College Classroom
ERIC Educational Resources Information Center
Park, Seung Won; Kim, ChanMin
2016-01-01
Poor student engagement with academic readings has been frequently reported in college classrooms. As an effort to improve college students' reading engagement, researchers have developed a virtual environment in which students take on the role of tutor and teach a virtual tutee, the virtual tutee system (VTS). This research examined the…
Intelligent Virtual Assistant's Impact on Technical Proficiency within Virtual Teams
ERIC Educational Resources Information Center
Graham, Christian; Jones, Nory B.
2016-01-01
Information-systems development continues to be a difficult process, particularly for virtual teams that do not have the luxury of meeting face-to-face. The research literature on this topic reinforces this point: the greater part of database systems development projects ends in failure. The use of virtual teams to complete projects further…
A Direct Comparison of Real-World and Virtual Navigation Performance in Chronic Stroke Patients.
Claessen, Michiel H G; Visser-Meily, Johanna M A; de Rooij, Nicolien K; Postma, Albert; van der Ham, Ineke J M
2016-04-01
An increasing number of studies have presented evidence that various patient groups with acquired brain injury suffer from navigation problems in daily life. This skill is, however, scarcely addressed in current clinical neuropsychological practice and suitable diagnostic instruments are lacking. Real-world navigation tests are limited by geographical location and associated with practical constraints. It was, therefore, investigated whether virtual navigation might serve as a useful alternative. To investigate the convergent validity of virtual navigation testing, performance on the Virtual Tubingen test was compared to that on an analogous real-world navigation test in 68 chronic stroke patients. The same eight subtasks, addressing route and survey knowledge aspects, were assessed in both tests. In addition, navigation performance of stroke patients was compared to that of 44 healthy controls. A correlation analysis showed moderate overlap (r = .535) between composite scores of overall real-world and virtual navigation performance in stroke patients. Route knowledge composite scores correlated somewhat stronger (r = .523) than survey knowledge composite scores (r = .442). When comparing group performances, patients obtained lower scores than controls on seven subtasks. Whereas the real-world test was found to be easier than its virtual counterpart, no significant interaction-effects were found between group and environment. Given moderate overlap of the total scores between the two navigation tests, we conclude that virtual testing of navigation ability is a valid alternative to navigation tests that rely on real-world route exposure.
V-ROOM: a virtual meeting system with intelligent structured summarisation
NASA Astrophysics Data System (ADS)
James, Anne E.; Nanos, Antonios G.; Thompson, Philip
2016-10-01
With the growth of virtual organisations and multinational companies, virtual collaboration tasks are becoming more important for employees. This paper describes the development of a virtual meeting system called V-ROOM. An exploration of facilities required in such a system has been conducted. The findings highlighted that intelligent systems are needed, especially since information that individuals have to know and process is vast. The survey results showed that meeting summarisation is one of the most important new features that should be added to virtual meeting systems for enterprises. This paper highlights the innovative methods employed in V-ROOM to produce relevant meeting summaries. V-ROOM's approach is compared to other methods from the literature, and it is shown how the use of metadata provided by parts of the V-ROOM system can improve the quality of summaries produced.
A Desktop Virtual Reality Earth Motion System in Astronomy Education
ERIC Educational Resources Information Center
Chen, Chih Hung; Yang, Jie Chi; Shen, Sarah; Jeng, Ming Chang
2007-01-01
In this study, a desktop virtual reality earth motion system (DVREMS) is designed and developed to be applied in the classroom. The system is implemented to assist elementary school students to clarify earth motion concepts using virtual reality principles. A study was conducted to observe the influences of the proposed system in learning.…
Virtual reality based surgical assistance and training system for long duration space missions.
Montgomery, K; Thonier, G; Stephanides, M; Schendel, S
2001-01-01
Access to medical care during long duration space missions is extremely important. Numerous unanticipated medical problems will need to be addressed promptly and efficiently. Although telemedicine provides a convenient tool for remote diagnosis and treatment, it is impractical due to the long delay between data transmission and reception to Earth. While a well-trained surgeon-internist-astronaut would be an essential addition to the crew, the vast number of potential medical problems necessitate instant access to computerized, skill-enhancing and diagnostic tools. A functional prototype of a virtual reality based surgical training and assistance tool was created at our center, using low-power, small, lightweight components that would be easy to transport on a space mission. The system consists of a tracked, head-mounted display, a computer system, and a number of tracked surgical instruments. The software provides a real-time surgical simulation system with integrated monitoring and information retrieval and a voice input/output subsystem. Initial medical content for the system has been created, comprising craniofacial, hand, inner ear, and general anatomy, as well as information on a number of surgical procedures and techniques. One surgical specialty in particular, microsurgery, was provided as a full simulation due to its long training requirements, significant impact on result due to experience, and likelihood for need. However, the system is easily adapted to realistically simulate a large number of other surgical procedures. By providing a general system for surgical simulation and assistance, the astronaut-surgeon can maintain their skills, acquire new specialty skills, and use tools for computer-based surgical planning and assistance to minimize overall crew and mission risk.
Dixon, Benjamin J; Daly, Michael J; Chan, Harley; Vescan, Allan; Witterick, Ian J; Irish, Jonathan C
2014-04-01
Image-guided surgery (IGS) systems are frequently utilized during cranial base surgery to aid in orientation and facilitate targeted surgery. We wished to assess the performance of our recently developed localized intraoperative virtual endoscopy (LIVE)-IGS prototype in a preclinical setting prior to deployment in the operating room. This system combines real-time ablative instrument tracking, critical structure proximity alerts, three-dimensional virtual endoscopic views, and intraoperative cone-beam computed tomographic image updates. Randomized-controlled trial plus qualitative analysis. Skull base procedures were performed on 14 cadaver specimens by seven fellowship-trained skull base surgeons. Each subject performed two endoscopic transclival approaches; one with LIVE-IGS and one using a conventional IGS system in random order. National Aeronautics and Space Administration Task Load Index (NASA-TLX) scores were documented for each dissection, and a semistructured interview was recorded for qualitative assessment. The NASA-TLX scores for mental demand, effort, and frustration were significantly reduced with the LIVE-IGS system in comparison to conventional navigation (P < .05). The system interface was judged to be intuitive and most useful when there was a combination of high spatial demand, reduced or absent surface landmarks, and proximity to critical structures. The development of auditory icons for proximity alerts during the trial better informed the surgeon while limiting distraction. The LIVE-IGS system provided accurate, intuitive, and dynamic feedback to the operating surgeon. Further refinements to proximity alerts and visualization settings will enhance orientation while limiting distraction. The system is currently being deployed in a prospective clinical trial in skull base surgery. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
77 FR 27859 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
... Veterans Affairs. ACTION: Notice of New System of Records ``Virtual Lifetime Electronic Record (VLER)-VA... ``Virtual Lifetime Electronic Record (VLER)-VA'' (168VA10P2). DATES: Comments on this new system of records... Virtual Lifetime Electronic Record (VLER) is an overarching program being developed by the Department of...
Virtualization for Cost-Effective Teaching of Assembly Language Programming
ERIC Educational Resources Information Center
Cadenas, José O.; Sherratt, R. Simon; Howlett, Des; Guy, Chris G.; Lundqvist, Karsten O.
2015-01-01
This paper describes a virtual system that emulates an ARM-based processor machine, created to replace a traditional hardware-based system for teaching assembly language. The virtual system proposed here integrates, in a single environment, all the development tools necessary to deliver introductory or advanced courses on modern assembly language…
A computer-based training system combining virtual reality and multimedia
NASA Technical Reports Server (NTRS)
Stansfield, Sharon A.
1993-01-01
Training new users of complex machines is often an expensive and time-consuming process. This is particularly true for special purpose systems, such as those frequently encountered in DOE applications. This paper presents a computer-based training system intended as a partial solution to this problem. The system extends the basic virtual reality (VR) training paradigm by adding a multimedia component which may be accessed during interaction with the virtual environment. The 3D model used to create the virtual reality is also used as the primary navigation tool through the associated multimedia. This method exploits the natural mapping between a virtual world and the real world that it represents to provide a more intuitive way for the student to interact with all forms of information about the system.
A mission operations architecture for the 21st century
NASA Technical Reports Server (NTRS)
Tai, W.; Sweetnam, D.
1996-01-01
An operations architecture is proposed for low cost missions beyond the year 2000. The architecture consists of three elements: a service based architecture; a demand access automata; and distributed science hubs. The service based architecture is based on a set of standard multimission services that are defined, packaged and formalized by the deep space network and the advanced multi-mission operations system. The demand access automata is a suite of technologies which reduces the need to be in contact with the spacecraft, and thus reduces operating costs. The beacon signaling, the virtual emergency room, and the high efficiency tracking automata technologies are described. The distributed science hubs provide information system capabilities to the small science oriented flight teams: individual access to all traditional mission functions and services; multimedia intra-team communications, and automated direct transparent communications between the scientists and the instrument.
General-purpose interface bus for multiuser, multitasking computer system
NASA Technical Reports Server (NTRS)
Generazio, Edward R.; Roth, Don J.; Stang, David B.
1990-01-01
The architecture of a multiuser, multitasking, virtual-memory computer system intended for the use by a medium-size research group is described. There are three central processing units (CPU) in the configuration, each with 16 MB memory, and two 474 MB hard disks attached. CPU 1 is designed for data analysis and contains an array processor for fast-Fourier transformations. In addition, CPU 1 shares display images viewed with the image processor. CPU 2 is designed for image analysis and display. CPU 3 is designed for data acquisition and contains 8 GPIB channels and an analog-to-digital conversion input/output interface with 16 channels. Up to 9 users can access the third CPU simultaneously for data acquisition. Focus is placed on the optimization of hardware interfaces and software, facilitating instrument control, data acquisition, and processing.
Can virtual reality be used to conduct mass prophylaxis clinic training? A pilot program.
Yellowlees, Peter; Cook, James N; Marks, Shayna L; Wolfe, Daniel; Mangin, Elanor
2008-03-01
To create and evaluate a pilot bioterrorism defense training environment using virtual reality technology. The present pilot project used Second Life, an internet-based virtual world system, to construct a virtual reality environment to mimic an actual setting that might be used as a Strategic National Stockpile (SNS) distribution site for northern California in the event of a bioterrorist attack. Scripted characters were integrated into the system as mock patients to analyze various clinic workflow scenarios. Users tested the virtual environment over two sessions. Thirteen users who toured the environment were asked to complete an evaluation survey. Respondents reported that the virtual reality system was relevant to their practice and had potential as a method of bioterrorism defense training. Computer simulations of bioterrorism defense training scenarios are feasible with existing personal computer technology. The use of internet-connected virtual environments holds promise for bioterrorism defense training. Recommendations are made for public health agencies regarding the implementation and benefits of using virtual reality for mass prophylaxis clinic training.
NASA's Planetary Science Missions and Participations
NASA Astrophysics Data System (ADS)
Daou, Doris; Green, James L.
2017-04-01
NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another instrument. This was a tremendously successful activity leading to another similar call for instrument proposals for the Europa mission. Europa mission instruments will be used to conduct high priority scientific investigations addressing the science goals for the moon's exploration outlined in the National Resource Council's Planetary Decadal Survey, Vision and Voyages (2011). International partnerships are an excellent, proven way of amplifying the scope and sharing the science results of a mission otherwise implemented by an individual space agency. The exploration of the Solar System is uniquely poised to bring planetary scientists, worldwide, together under the common theme of understanding the origin, evolution, and bodies of our solar neighborhood. In the past decade we have witnessed great examples of international partnerships that made various missions the success they are known for today. The Planetary Science Division at NASA continues to seek cooperation with our strong international partners in support of planetary missions.
Design of virtual display and testing system for moving mass electromechanical actuator
NASA Astrophysics Data System (ADS)
Gao, Zhigang; Geng, Keda; Zhou, Jun; Li, Peng
2015-12-01
Aiming at the problem of control, measurement and movement virtual display of moving mass electromechanical actuator(MMEA), the virtual testing system of MMEA was developed based on the PC-DAQ architecture and the software platform of LabVIEW, and the comprehensive test task such as drive control of MMEA, tests of kinematic parameter, measurement of centroid position and virtual display of movement could be accomplished. The system could solve the alignment for acquisition time between multiple measurement channels in different DAQ cards, then on this basis, the researches were focused on the dynamic 3D virtual display by the LabVIEW, and the virtual display of MMEA were realized by the method of calling DLL and the method of 3D graph drawing controls. Considering the collaboration with the virtual testing system, including the hardware drive, the measurement software of data acquisition, and the 3D graph drawing controls method was selected, which could obtained the synchronization measurement, control and display. The system can measure dynamic centroid position and kinematic position of movable mass block while controlling the MMEA, and the interface of 3D virtual display has realistic effect and motion smooth, which can solve the problem of display and playback about MMEA in the closed shell.
Seung, Sungmin; Choi, Hongseok; Jang, Jongseong; Kim, Young Soo; Park, Jong-Oh; Park, Sukho; Ko, Seong Young
2017-01-01
This article presents a haptic-guided teleoperation for a tumor removal surgical robotic system, so-called a SIROMAN system. The system was developed in our previous work to make it possible to access tumor tissue, even those that seat deeply inside the brain, and to remove the tissue with full maneuverability. For a safe and accurate operation to remove only tumor tissue completely while minimizing damage to the normal tissue, a virtual wall-based haptic guidance together with a medical image-guided control is proposed and developed. The virtual wall is extracted from preoperative medical images, and the robot is controlled to restrict its motion within the virtual wall using haptic feedback. Coordinate transformation between sub-systems, a collision detection algorithm, and a haptic-guided teleoperation using a virtual wall are described in the context of using SIROMAN. A series of experiments using a simplified virtual wall are performed to evaluate the performance of virtual wall-based haptic-guided teleoperation. With haptic guidance, the accuracy of the robotic manipulator's trajectory is improved by 57% compared to one without. The tissue removal performance is also improved by 21% ( p < 0.05). The experiments show that virtual wall-based haptic guidance provides safer and more accurate tissue removal for single-port brain surgery.
Incorporating Technology in Teaching Musical Instruments
ERIC Educational Resources Information Center
Prodan, Angelica
2017-01-01
After discussing some of the drawbacks of using Skype for long distance music lessons, Angelica Prodan describes three different types of Artificial Reality (Virtual Reality, Augmented Reality and Mixed or Merged Reality). She goes on to describe the beneficial applications of technology, with results otherwise impossible to achieve in areas such…
ICT Facilitated Access to Information and Undergraduates' Cheating Behaviours
ERIC Educational Resources Information Center
Trushell, John; Byrne, Kevin; Hassan, Nasima
2013-01-01
This paper describes an illuminative small-scale study that featured a survey instrument, distributed to 66 undergraduate students of Education and social science. The investigation concerned students' use of ICT--including a virtual learning environment and the Internet--and students' engagement in lecturer impressing strategies and cheating…
ERIC Educational Resources Information Center
Hu, Ridong; Wu, Yi-Yong; Shieh, Chich-Jen
2016-01-01
Since the popular applications of information technology, digitalized materials, media, and equipment have become the essential abilities and instruments for teachers in modern education. In addition to some curricula requiring computing & reasoning and operation & demonstration, the situations of teachers utilizing transparencies, films,…
NASA Astrophysics Data System (ADS)
De Breuck, Carlos
2018-03-01
The APEX telescope has a range instruments that are highly complementary to ALMA. The single pixel heterodyne receivers cover virtually all atmospheric windows from 157 GHz to above 1 THz, augmented by 7-pixel heterodyne arrays covering 280 to 950 GHz, while the bolometer arrays cover the 870, 450 and 350µm bands.
Surgery applications of virtual reality
NASA Technical Reports Server (NTRS)
Rosen, Joseph
1994-01-01
Virtual reality is a computer-generated technology which allows information to be displayed in a simulated, bus lifelike, environment. In this simulated 'world', users can move and interact as if they were actually a part of that world. This new technology will be useful in many different fields, including the field of surgery. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations, simulate and perform surgical procedures (telesurgery), and predict the outcomes of surgery. The authors of this paper describe the basic components of a virtual reality surgical system. These components include: the virtual world, the virtual tools, the anatomical model, the software platform, the host computer, the interface, and the head-coupled display. In the chapter they also review the progress towards using virtual reality for surgical training, planning, telesurgery, and predicting outcomes. Finally, the authors present a training system being developed for the practice of new procedures in abdominal surgery.
International Space Station Columbus Payload SoLACES Degradation Assessment
NASA Technical Reports Server (NTRS)
Hartman, William A.; Schmidl, William D.; Mikatarian, Ron; Soares, Carlos; Schmidtke, Gerhard; Erhardt, Christian
2016-01-01
SOLAR is a European Space Agency (ESA) payload deployed on the International Space Station (ISS) and located on the Columbus Laboratory. It is located on the Columbus External Payload Facility in a zenith location. The objective of the SOLAR payload is to study the Sun. The SOLAR payload consists of three instruments that allow for measurement of virtually the entire electromagnetic spectrum (17 nm to 2900 nm). The three payload instruments are SOVIM (SOlar Variable and Irradiance Monitor), SOLSPEC (SOLar SPECctral Irradiance measurements), and SolACES (SOLar Auto-Calibrating Extreme UV/UV Spectrophotometers).
Kim, Dong Seong; Park, Jong Sou
2014-01-01
It is important to assess availability of virtualized systems in IT business infrastructures. Previous work on availability modeling and analysis of the virtualized systems used a simplified configuration and assumption in which only one virtual machine (VM) runs on a virtual machine monitor (VMM) hosted on a physical server. In this paper, we show a comprehensive availability model using stochastic reward nets (SRN). The model takes into account (i) the detailed failures and recovery behaviors of multiple VMs, (ii) various other failure modes and corresponding recovery behaviors (e.g., hardware faults, failure and recovery due to Mandelbugs and aging-related bugs), and (iii) dependency between different subcomponents (e.g., between physical host failure and VMM, etc.) in a virtualized servers system. We also show numerical analysis on steady state availability, downtime in hours per year, transaction loss, and sensitivity analysis. This model provides a new finding on how to increase system availability by combining both software rejuvenations at VM and VMM in a wise manner. PMID:25165732
ERIC Educational Resources Information Center
Huang, Hsiu-Mei; Liaw, Shu-Sheng; Lai, Chung-Min
2016-01-01
Advanced technologies have been widely applied in medical education, including human-patient simulators, immersive virtual reality Cave Automatic Virtual Environment systems, and video conferencing. Evaluating learner acceptance of such virtual reality (VR) learning environments is a critical issue for ensuring that such technologies are used to…
2013-01-01
Background Virtual Patients (VPs) have been used in undergraduate healthcare education for many years. This project is focused on using VPs for training professionals to care for highly vulnerable patient populations. The aim of the study was to evaluate if Refugee Trauma VPs was perceived as an effective and engaging learning tool by primary care professionals (PCPs) in a Primary Health Care Centre (PHC). Methods A VP system was designed to create realistic and engaging VP cases for Refugee Trauma for training refugee patient interview, use of established trauma and mental health instruments as well as to give feedback to the learners. The patient interview section was based on video clips with a Bosnian actor with a trauma story and mental health problems. The video clips were recorded in Bosnian language to further increase the realism, but also subtitled in English. The system was evaluated by 11 volunteering primary health clinicians at the Lynn Community Health Centre, Lynn, Massachusetts, USA. The participants were invited to provide insights/feedback about the system’s usefulness and educational value. A mixed methodological approach was used, generating both quantitative and qualitative data. Results Self-reported dimensions of clinical care, pre and post questionnaire questions on the PCPs clinical worldview, motivation to use the VP, and IT Proficiency. Construct items used in these questionnaires had previously demonstrated high face and construct validity. The participants ranked the mental status examination more positively after the simulation exercise compared to before the simulation. Follow up interviews supported the results. Conclusions Even though virtual clinical encounters are quite a new paradigm in PHC, the participants in the present study considered our VP case to be a relevant and promising educational tool. Next phase of our project will be a RCT study including comparison with specially prepared paper-cases and determinative input on improving clinical diagnosis and treatment of the traumatized refugee patient. PMID:23957962
Infrastructure Suitability Assessment Modeling for Cloud Computing Solutions
2011-09-01
Virtualization vs . Para-Virtualization .......................................................10 Figure 4. Modeling alternatives in relation to model...the conceptual difference between full virtualization and para-virtualization. Figure 3. Full Virtualization vs . Para-Virtualization 2. XEN...Besides Microsoft’s own client implementations, dubbed “Remote Desktop Con- nection Client” for Windows® and Apple ® operating systems, various open
Wen, Weiping; Kalkan, Erol
2017-01-01
Deconvolution and cross‐correlation techniques are used for system identification of a 20‐story steel, moment‐resisting frame building in downtown Anchorage, Alaska. This regular‐plan midrise structure is instrumented with a 32‐channel accelerometer array at 10 levels. The impulse response functions (IRFs) and correlation functions (CFs) are computed based on waveforms recorded from ambient vibrations and five local and regional earthquakes. The earthquakes occurred from 2005 to 2014 with moment magnitudes between 4.7 and 6.2 over a range of azimuths at epicenter distances of 13.3–183 km. The building’s fundamental frequencies and mode shapes are determined using a complex mode indicator function based on singular value decomposition of multiple reference frequency‐response functions. The traveling waves, identified in IRFs with a virtual source at the roof, and CFs are used to estimate the intrinsic attenuation associated with the fundamental modes and shear‐wave velocity in the building. Although the cross correlation of the waveforms at various levels with the corresponding waveform at the first floor provides more complicated wave propagation than that from the deconvolution with virtual source at the roof, the shear‐wave velocities identified by both techniques are consistent—the largest difference in average values is within 8%. The median shear‐wave velocity from the IRFs of five earthquakes is 191 m/s for the east–west (E‐W), 205 m/s for the north–south (N‐S), and 176 m/s for the torsional responses. The building’s average intrinsic‐damping ratio is estimated to be 3.7% and 3.4% in the 0.2–1 Hz frequency band for the E‐W and N‐S directions, respectively. These results are intended to serve as reference for the undamaged condition of the building, which may be used for tracking changes in structural integrity during and after future earthquakes.
Education Potential of the National Virtual Observatory
NASA Astrophysics Data System (ADS)
Christian, Carol
2006-12-01
Research in astronomy is blossoming with the availability of sophisticated instrumentation and tools aimed at breakthroughs in our understanding of the physical universe. Researchers can take advantage of the astronomical infrastructure, the National Virtual Observatory (NVO), for their investigations. . As well, data and tools available to the public are increasing through the distributed resources of observatories, academic institutions, computing facilities and educational organizations. Because Astronomy holds the public interest through engaging content and striking a cord with fundamental questions of human interest, it is a perfect context for science and technical education. Through partnerships we are cultivating, the NVO can be tuned for educational purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaper, H. G.
1998-01-05
An interdisciplinary project encompassing sound synthesis, music composition, sonification, and visualization of music is facilitated by the high-performance computing capabilities and the virtual-reality environments available at Argonne National Laboratory. The paper describes the main features of the project's centerpiece, DIASS (Digital Instrument for Additive Sound Synthesis); ''A.N.L.-folds'', an equivalence class of compositions produced with DIASS; and application of DIASS in two experiments in the sonification of complex scientific data. Some of the larger issues connected with this project, such as the changing ways in which both scientists and composers perform their tasks, are briefly discussed.
NASA Astrophysics Data System (ADS)
Nurismawati, R.; Sanjaya, Y.; Rusyati, L.
2018-05-01
The aim of this study is to examine the relationship between students’ critical thinking skill and students’ logical thinking skill of Junior High School students in Tasikmalaya city. The respondent consists of 168 students from eighth grade at three public schools in Tasikmalaya City. Science Virtual Test and Test of Logical Thinking were used in this research study. Science virtual test instrument consist of 26 questions with 5 different topics. IBM SPSS 23.00 program was used for analysis of the data. By the findings; students’ critical thinking skill has significant differences in elements of generating purpose, embodying point of view, utilizing concept and making implication and consequence. By Post Hoc LSD Test, from those four elements, there are significant differences between concrete - transitional groups and transitional – concrete groups. There is positive and weak correlation between students’ critical thinking and students’ logical thinking attainment.
Robust controller designs for second-order dynamic system: A virtual passive approach
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh
1990-01-01
A robust controller design is presented for second-order dynamic systems. The controller is model-independent and itself is a virtual second-order dynamic system. Conditions on actuator and sensor placements are identified for controller designs that guarantee overall closed-loop stability. The dynamic controller can be viewed as a virtual passive damping system that serves to stabilize the actual dynamic system. The control gains are interpreted as virtual mass, spring, and dashpot elements that play the same roles as actual physical elements in stability analysis. Position, velocity, and acceleration feedback are considered. Simple examples are provided to illustrate the physical meaning of this controller design.
Assessment of basic laparoscopic skills on virtual reality simulator or box trainer.
Brinkman, Willem M; Tjiam, Irene M; Buzink, Sonja N
2013-10-01
We investigated whether the peg transfer task is interchangeable between a VR simulator and a box trainer. Our research questions: (1) Are scores of the box trainer interchangeable with the virtual equivalent of the exercise; (2) does training on the box affect performance on the VR simulator and vice versa; and (3) which system is preferred? Experienced laparoscopists and medical interns were randomly assigned to one of two groups (V or B). They performed eight repetitions of the peg transfer task (4 on each simulator system) following a crossover study design. Group B started on the box trainer and group V started on the VR simulator. Opinion of participants was evaluated by a questionnaire. A significant correlation was found between time to complete the task on the box and the VR simulator. The comparison of the performances per system showed that group B (N = 14) performed the peg transfer task on the VR simulator in significantly less time than group V (N = 14; p = 0.014). Overall, the box was preferred over the VR simulator. Although performances on the box trainer and VR simulator were correlated, they were not interchangeable. The results also imply that assessment on the VR simulator after pretraining on the box is acceptable, whereas VR simulator training alone might not suffice to pass an assessment on a box trainer. More research is needed to validate the use of the VR simulator as a FLS and PLUS assessment instrument.
A training system of orientation and mobility for blind people using acoustic virtual reality.
Seki, Yoshikazu; Sato, Tetsuji
2011-02-01
A new auditory orientation training system was developed for blind people using acoustic virtual reality (VR) based on a head-related transfer function (HRTF) simulation. The present training system can reproduce a virtual training environment for orientation and mobility (O&M) instruction, and the trainee can walk through the virtual training environment safely by listening to sounds such as vehicles, stores, ambient noise, etc., three-dimensionally through headphones. The system can reproduce not only sound sources but also sound reflection and insulation, so that the trainee can learn both sound location and obstacle perception skills. The virtual training environment is described in extensible markup language (XML), and the O&M instructor can edit it easily according to the training curriculum. Evaluation experiments were conducted to test the efficiency of some features of the system. Thirty subjects who had not acquired O&M skills attended the experiments. The subjects were separated into three groups: a no-training group, a virtual-training group using the present system, and a real-training group in real environments. The results suggested that virtual-training can reduce "veering" more than real-training and also can reduce stress as much as real training. The subjective technical and anxiety scores also improved.
LAHYSTOTRAIN development and evaluation of a complex training system for hysteroscopy.
Müller-Wittig, W K; Bisler, A; Bockholt, U; Los Arcos, J L; Oppelt, P; Stähler, J; Voss, G
2001-01-01
Hysteroscopy has already become an irreplaceable method in gynaecoloic diagnosis and therapy. In the diagnostic case the hysteroscope with a 30 degrees optic is insert transvaginally, in the therapeutic case the resectoscope with a 12 degrees optic is used. The endoscopic intervention requires special surgical skills for endoscope handling and remote instrument control. To acquire these skills currently hands-on training in clinical praxis has become standard, which is linked with higher danger for the women. To overcome current drawbacks of traditional training methods the European project LAHYSTOTRAIN was set up, that tries to combine Virtual Reality (VR), Multimedia (MM) technology, and Intelligent Tutoring Systems (ITS) to develop an alternative training system for hysteroscopic interventions. The first prototype of the LAHYSTOTRAIN demonstrator has been shown on several European conferences. An evaluation of the system was performed, with the idea, to collect feedback and impressions, that should be considered in further developments. This paper presents the LAHYSTOTRAIN prototype and the results of these evaluations.
Liu, Xiujuan; Tao, Haiquan; Xiao, Xigang; Guo, Binbin; Xu, Shangcai; Sun, Na; Li, Maotong; Xie, Li; Wu, Changjun
2018-07-01
This study aimed to compare the diagnostic performance of the stereoscopic virtual reality display system with the conventional computed tomography (CT) workstation and three-dimensional rotational angiography (3DRA) for intracranial aneurysm detection and characterization, with a focus on small aneurysms and those near the bone. First, 42 patients with suspected intracranial aneurysms underwent both 256-row CT angiography (CTA) and 3DRA. Volume rendering (VR) images were captured using the conventional CT workstation. Next, VR images were transferred to the stereoscopic virtual reality display system. Two radiologists independently assessed the results that were obtained using the conventional CT workstation and stereoscopic virtual reality display system. The 3DRA results were considered as the ultimate reference standard. Based on 3DRA images, 38 aneurysms were confirmed in 42 patients. Two cases were misdiagnosed and 1 was missed when the traditional CT workstation was used. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of the conventional CT workstation were 94.7%, 85.7%, 97.3%, 75%, and99.3%, respectively, on a per-aneurysm basis. The stereoscopic virtual reality display system missed a case. The sensitivity, specificity, PPV, NPV, and accuracy of the stereoscopic virtual reality display system were 100%, 85.7%, 97.4%, 100%, and 97.8%, respectively. No difference was observed in the accuracy of the traditional CT workstation, stereoscopic virtual reality display system, and 3DRA in detecting aneurysms. The stereoscopic virtual reality display system has some advantages in detecting small aneurysms and those near the bone. The virtual reality stereoscopic vision obtained through the system was found as a useful tool in intracranial aneurysm diagnosis and pre-operative 3D imaging. Copyright © 2018 Elsevier B.V. All rights reserved.
Uterus models for use in virtual reality hysteroscopy simulators.
Niederer, Peter; Weiss, Stephan; Caduff, Rosmarie; Bajka, Michael; Szekély, Gabor; Harders, Matthias
2009-05-01
Virtual reality models of human organs are needed in surgery simulators which are developed for educational and training purposes. A simulation can only be useful, however, if the mechanical performance of the system in terms of force-feedback for the user as well as the visual representation is realistic. We therefore aim at developing a mechanical computer model of the organ in question which yields realistic force-deformation behavior under virtual instrument-tissue interactions and which, in particular, runs in real time. The modeling of the human uterus is described as it is to be implemented in a simulator for minimally invasive gynecological procedures. To this end, anatomical information which was obtained from specially designed computed tomography and magnetic resonance imaging procedures as well as constitutive tissue properties recorded from mechanical testing were used. In order to achieve real-time performance, the combination of mechanically realistic numerical uterus models of various levels of complexity with a statistical deformation approach is suggested. In view of mechanical accuracy of such models, anatomical characteristics including the fiber architecture along with the mechanical deformation properties are outlined. In addition, an approach to make this numerical representation potentially usable in an interactive simulation is discussed. The numerical simulation of hydrometra is shown in this communication. The results were validated experimentally. In order to meet the real-time requirements and to accommodate the large biological variability associated with the uterus, a statistical modeling approach is demonstrated to be useful.
Virtual Reality and the Virtual Library.
ERIC Educational Resources Information Center
Oppenheim, Charles
1993-01-01
Explains virtual reality, including proper and improper uses of the term, and suggests ways that libraries might be affected by it. Highlights include elements of virtual reality systems; possible virtual reality applications, including architecture, the chemical industry, transport planning, armed forces, and entertainment; and the virtual…
Collaboration and Synergy among Government, Industry and Academia in M&S Domain: Turkey’s Approach
2009-10-01
Analysis, Decision Support System Design and Implementation, Simulation Output Analysis, Statistical Data Analysis, Virtual Reality , Artificial... virtual and constructive visual simulation systems as well as integrated advanced analytical models. Collaboration and Synergy among Government...simulation systems that are ready to use, credible, integrated with C4ISR systems. Creating synthetic environments and/or virtual prototypes of concepts
Training Capability Data for Dismounted Soldier Training System
2015-06-01
Simulators (2004) An Assessment of V-IMTS (2004) Evaluation of the Virtual Squad Training System (2007) Perceived Usefulness of TTES : A Second Look (1995...Center-White Sands Missile Range, V-IMTS – Virtual Integrated MOUT ( Military Operation in Urban Terrain) Training System, VIRTSIM – Virtual... military grid reference system coordinate. There currently is no indication or capability to determine the distance traveled (e.g., pace count
Virtual alternative to the oral examination for emergency medicine residents.
McGrath, Jillian; Kman, Nicholas; Danforth, Douglas; Bahner, David P; Khandelwal, Sorabh; Martin, Daniel R; Nagel, Rollin; Verbeck, Nicole; Way, David P; Nelson, Richard
2015-03-01
The oral examination is a traditional method for assessing the developing physician's medical knowledge, clinical reasoning and interpersonal skills. The typical oral examination is a face-to-face encounter in which examiners quiz examinees on how they would confront a patient case. The advantage of the oral exam is that the examiner can adapt questions to the examinee's response. The disadvantage is the potential for examiner bias and intimidation. Computer-based virtual simulation technology has been widely used in the gaming industry. We wondered whether virtual simulation could serve as a practical format for delivery of an oral examination. For this project, we compared the attitudes and performance of emergency medicine (EM) residents who took our traditional oral exam to those who took the exam using virtual simulation. EM residents (n=35) were randomized to a traditional oral examination format (n=17) or a simulated virtual examination format (n=18) conducted within an immersive learning environment, Second Life (SL). Proctors scored residents using the American Board of Emergency Medicine oral examination assessment instruments, which included execution of critical actions and ratings on eight competency categories (1-8 scale). Study participants were also surveyed about their oral examination experience. We observed no differences between virtual and traditional groups on critical action scores or scores on eight competency categories. However, we noted moderate effect sizes favoring the Second Life group on the clinical competence score. Examinees from both groups thought that their assessment was realistic, fair, objective, and efficient. Examinees from the virtual group reported a preference for the virtual format and felt that the format was less intimidating. The virtual simulated oral examination was shown to be a feasible alternative to the traditional oral examination format for assessing EM residents. Virtual environments for oral examinations should continue to be explored, particularly since they offer an inexpensive, more comfortable, yet equally rigorous alternative.
Virtual Alternative to the Oral Examination for Emergency Medicine Residents
McGrath, Jillian; Kman, Nicholas; Danforth, Douglas; Bahner, David P.; Khandelwal, Sorabh; Martin, Daniel R.; Nagel, Rollin; Verbeck, Nicole; Way, David P.; Nelson, Richard
2015-01-01
Introduction The oral examination is a traditional method for assessing the developing physician’s medical knowledge, clinical reasoning and interpersonal skills. The typical oral examination is a face-to-face encounter in which examiners quiz examinees on how they would confront a patient case. The advantage of the oral exam is that the examiner can adapt questions to the examinee’s response. The disadvantage is the potential for examiner bias and intimidation. Computer-based virtual simulation technology has been widely used in the gaming industry. We wondered whether virtual simulation could serve as a practical format for delivery of an oral examination. For this project, we compared the attitudes and performance of emergency medicine (EM) residents who took our traditional oral exam to those who took the exam using virtual simulation. Methods EM residents (n=35) were randomized to a traditional oral examination format (n=17) or a simulated virtual examination format (n=18) conducted within an immersive learning environment, Second Life (SL). Proctors scored residents using the American Board of Emergency Medicine oral examination assessment instruments, which included execution of critical actions and ratings on eight competency categories (1–8 scale). Study participants were also surveyed about their oral examination experience. Results We observed no differences between virtual and traditional groups on critical action scores or scores on eight competency categories. However, we noted moderate effect sizes favoring the Second Life group on the clinical competence score. Examinees from both groups thought that their assessment was realistic, fair, objective, and efficient. Examinees from the virtual group reported a preference for the virtual format and felt that the format was less intimidating. Conclusion The virtual simulated oral examination was shown to be a feasible alternative to the traditional oral examination format for assessing EM residents. Virtual environments for oral examinations should continue to be explored, particularly since they offer an inexpensive, more comfortable, yet equally rigorous alternative. PMID:25834684
NASA Astrophysics Data System (ADS)
Ren, Yilong; Duan, Xitong; Wu, Lei; He, Jin; Xu, Wu
2017-06-01
With the development of the “VR+” era, the traditional virtual assembly system of power equipment has been unable to satisfy our growing needs. In this paper, based on the analysis of the traditional virtual assembly system of electric power equipment and the application of VR technology in the virtual assembly system of electric power equipment in our country, this paper puts forward the scheme of establishing the virtual assembly system of power equipment: At first, we should obtain the information of power equipment, then we should using OpenGL and multi texture technology to build 3D solid graphics library. After the completion of three-dimensional modeling, we can use the dynamic link library DLL package three-dimensional solid graphics generation program to realize the modularization of power equipment model library and power equipment model library generated hidden algorithm. After the establishment of 3D power equipment model database, we set up the virtual assembly system of 3D power equipment to separate the assembly operation of the power equipment from the space. At the same time, aiming at the deficiency of the traditional gesture recognition algorithm, we propose a gesture recognition algorithm based on improved PSO algorithm for BP neural network data glove. Finally, the virtual assembly system of power equipment can really achieve multi-channel interaction function.
Virtualization and cloud computing in dentistry.
Chow, Frank; Muftu, Ali; Shorter, Richard
2014-01-01
The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.
Game-Based Virtual Worlds as Decentralized Virtual Activity Systems
NASA Astrophysics Data System (ADS)
Scacchi, Walt
There is widespread interest in the development and use of decentralized systems and virtual world environments as possible new places for engaging in collaborative work activities. Similarly, there is widespread interest in stimulating new technological innovations that enable people to come together through social networking, file/media sharing, and networked multi-player computer game play. A decentralized virtual activity system (DVAS) is a networked computer supported work/play system whose elements and social activities can be both virtual and decentralized (Scacchi et al. 2008b). Massively multi-player online games (MMOGs) such as World of Warcraft and online virtual worlds such as Second Life are each popular examples of a DVAS. Furthermore, these systems are beginning to be used for research, deve-lopment, and education activities in different science, technology, and engineering domains (Bainbridge 2007, Bohannon et al. 2009; Rieber 2005; Scacchi and Adams 2007; Shaffer 2006), which are also of interest here. This chapter explores two case studies of DVASs developed at the University of California at Irvine that employ game-based virtual worlds to support collaborative work/play activities in different settings. The settings include those that model and simulate practical or imaginative physical worlds in different domains of science, technology, or engineering through alternative virtual worlds where players/workers engage in different kinds of quests or quest-like workflows (Jakobsson 2006).
Surgical Robotics Research in Cardiovascular Disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pohost, Gerald M; Guthrie, Barton L; Steiner, Charles
This grant is to support a research in robotics at three major medical centers: the University of Southern California-USC- (Project 1); the University of Alabama at Birmingham-UAB-(Project 2); and the Cleveland Clinic Foundation-CCF-(Project 3). Project 1 is oriented toward cardiovascular applications, while projects 2 and 3 are oriented toward neurosurgical applications. The main objective of Project 1 is to develop an approach to assist patients in maintaining a constant level of stress while undergoing magnetic resonance imaging or spectroscopy. The specific project is to use handgrip to detect the changes in high energy phosphate metabolism between rest and stress. Themore » high energy phosphates, ATP and phosphocreatine (PCr) are responsible for the energy of the heart muscle (myocardium) responsible for its contractile function. If the blood supply to the myocardium in insufficient to support metabolism and contractility during stress, the high energy phosphates, particularly PCr, will decrease in concentration. The high energy phosphates can be tracked using phosphorus-31 magnetic resonance spectroscopy ({sup 31}P MRS). In Project 2 the UAB Surgical Robotics project focuses on the use of virtual presence to assist with remote surgery and surgical training. The goal of this proposal was to assemble a pilot system for proof of concept. The pilot project was completed successfully and was judged to demonstrate that the concept of remote surgical assistance as applied to surgery and surgical training was feasible and warranted further development. The main objective of Project 3 is to develop a system to allow for the tele-robotic delivery of instrumentation during a functional neurosurgical procedure (Figure 3). Instrumentation such as micro-electrical recording probes or deep brain stimulation leads. Current methods for the delivery of these instruments involve the integration of linear actuators to stereotactic navigation systems. The control of these delivery devices utilizes an open-loop configuration involving a team consisting of neurosurgeon, neurologist and neurophysiologist all present and participating in the decision process of delivery. We propose the development of an integrated system which provides for distributed decision making and tele-manipulation of the instrument delivery system.« less
Enhancing Security by System-Level Virtualization in Cloud Computing Environments
NASA Astrophysics Data System (ADS)
Sun, Dawei; Chang, Guiran; Tan, Chunguang; Wang, Xingwei
Many trends are opening up the era of cloud computing, which will reshape the IT industry. Virtualization techniques have become an indispensable ingredient for almost all cloud computing system. By the virtual environments, cloud provider is able to run varieties of operating systems as needed by each cloud user. Virtualization can improve reliability, security, and availability of applications by using consolidation, isolation, and fault tolerance. In addition, it is possible to balance the workloads by using live migration techniques. In this paper, the definition of cloud computing is given; and then the service and deployment models are introduced. An analysis of security issues and challenges in implementation of cloud computing is identified. Moreover, a system-level virtualization case is established to enhance the security of cloud computing environments.
A Versatile High Speed 250 MHz Pulse Imager for Biomedical Applications
Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.
2009-01-01
A versatile 250 MHz pulse electron paramagnetic resonance (EPR) instrument for imaging of small animals is presented. Flexible design of the imager hardware and software makes it possible to use virtually any pulse EPR imaging modality. A fast pulse generation and data acquisition system based on general purpose PCI boards performs measurements with minimal additional delays. Careful design of receiver protection circuitry allowed us to achieve very high sensitivity of the instrument. In this article we demonstrate the ability of the instrument to obtain three dimensional images using the electron spin echo (ESE) and single point imaging (SPI) methods. In a phantom that contains a 1 mM solution of narrow line (16 μT, peak-to-peak) paramagnetic spin probe we achieved an acquisition time of 32 seconds per image with a fast 3D ESE imaging protocol. Using an 18 minute 3D phase relaxation (T2e) ESE imaging protocol in a homogeneous sample a spatial resolution of 1.4 mm and a standard deviation of T2e of 8.5% were achieved. When applied to in vivo imaging this precision of T2e determination would be equivalent to 2 torr resolution of oxygen partial pressure in animal tissues. PMID:19924261
Implementation of real-time digital endoscopic image processing system
NASA Astrophysics Data System (ADS)
Song, Chul Gyu; Lee, Young Mook; Lee, Sang Min; Kim, Won Ky; Lee, Jae Ho; Lee, Myoung Ho
1997-10-01
Endoscopy has become a crucial diagnostic and therapeutic procedure in clinical areas. Over the past four years, we have developed a computerized system to record and store clinical data pertaining to endoscopic surgery of laparascopic cholecystectomy, pelviscopic endometriosis, and surgical arthroscopy. In this study, we developed a computer system, which is composed of a frame grabber, a sound board, a VCR control board, a LAN card and EDMS. Also, computer system controls peripheral instruments such as a color video printer, a video cassette recorder, and endoscopic input/output signals. Digital endoscopic data management system is based on open architecture and a set of widely available industry standards; namely Microsoft Windows as an operating system, TCP/IP as a network protocol and a time sequential database that handles both images and speech. For the purpose of data storage, we used MOD and CD- R. Digital endoscopic system was designed to be able to store, recreate, change, and compress signals and medical images. Computerized endoscopy enables us to generate and manipulate the original visual document, making it accessible to a virtually unlimited number of physicians.
Visual Data-Analytics of Large-Scale Parallel Discrete-Event Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Caitlin; Carothers, Christopher D.; Mubarak, Misbah
Parallel discrete-event simulation (PDES) is an important tool in the codesign of extreme-scale systems because PDES provides a cost-effective way to evaluate designs of highperformance computing systems. Optimistic synchronization algorithms for PDES, such as Time Warp, allow events to be processed without global synchronization among the processing elements. A rollback mechanism is provided when events are processed out of timestamp order. Although optimistic synchronization protocols enable the scalability of large-scale PDES, the performance of the simulations must be tuned to reduce the number of rollbacks and provide an improved simulation runtime. To enable efficient large-scale optimistic simulations, one has tomore » gain insight into the factors that affect the rollback behavior and simulation performance. We developed a tool for ROSS model developers that gives them detailed metrics on the performance of their large-scale optimistic simulations at varying levels of simulation granularity. Model developers can use this information for parameter tuning of optimistic simulations in order to achieve better runtime and fewer rollbacks. In this work, we instrument the ROSS optimistic PDES framework to gather detailed statistics about the simulation engine. We have also developed an interactive visualization interface that uses the data collected by the ROSS instrumentation to understand the underlying behavior of the simulation engine. The interface connects real time to virtual time in the simulation and provides the ability to view simulation data at different granularities. We demonstrate the usefulness of our framework by performing a visual analysis of the dragonfly network topology model provided by the CODES simulation framework built on top of ROSS. The instrumentation needs to minimize overhead in order to accurately collect data about the simulation performance. To ensure that the instrumentation does not introduce unnecessary overhead, we perform a scaling study that compares instrumented ROSS simulations with their noninstrumented counterparts in order to determine the amount of perturbation when running at different simulation scales.« less
Testing of visual field with virtual reality goggles in manual and visual grasp modes.
Wroblewski, Dariusz; Francis, Brian A; Sadun, Alfredo; Vakili, Ghazal; Chopra, Vikas
2014-01-01
Automated perimetry is used for the assessment of visual function in a variety of ophthalmic and neurologic diseases. We report development and clinical testing of a compact, head-mounted, and eye-tracking perimeter (VirtualEye) that provides a more comfortable test environment than the standard instrumentation. VirtualEye performs the equivalent of a full threshold 24-2 visual field in two modes: (1) manual, with patient response registered with a mouse click, and (2) visual grasp, where the eye tracker senses change in gaze direction as evidence of target acquisition. 59 patients successfully completed the test in manual mode and 40 in visual grasp mode, with 59 undergoing the standard Humphrey field analyzer (HFA) testing. Large visual field defects were reliably detected by VirtualEye. Point-by-point comparison between the results obtained with the different modalities indicates: (1) minimal systematic differences between measurements taken in visual grasp and manual modes, (2) the average standard deviation of the difference distributions of about 5 dB, and (3) a systematic shift (of 4-6 dB) to lower sensitivities for VirtualEye device, observed mostly in high dB range. The usability survey suggested patients' acceptance of the head-mounted device. The study appears to validate the concepts of a head-mounted perimeter and the visual grasp mode.
Automated recycling of chemistry for virtual screening and library design.
Vainio, Mikko J; Kogej, Thierry; Raubacher, Florian
2012-07-23
An early stage drug discovery project needs to identify a number of chemically diverse and attractive compounds. These hit compounds are typically found through high-throughput screening campaigns. The diversity of the chemical libraries used in screening is therefore important. In this study, we describe a virtual high-throughput screening system called Virtual Library. The system automatically "recycles" validated synthetic protocols and available starting materials to generate a large number of virtual compound libraries, and allows for fast searches in the generated libraries using a 2D fingerprint based screening method. Virtual Library links the returned virtual hit compounds back to experimental protocols to quickly assess the synthetic accessibility of the hits. The system can be used as an idea generator for library design to enrich the screening collection and to explore the structure-activity landscape around a specific active compound.
TAPAS, a VO archive at the IRAM 30-m telescope
NASA Astrophysics Data System (ADS)
Leon, Stephane; Espigares, Victor; Ruíz, José Enrique; Verdes-Montenegro, Lourdes; Mauersberger, Rainer; Brunswig, Walter; Kramer, Carsten; Santander-Vela, Juan de Dios; Wiesemeyer, Helmut
2012-07-01
Astronomical observatories are today generating increasingly large volumes of data. For an efficient use of them, databases have been built following the standards proposed by the International Virtual Observatory Alliance (IVOA), providing a common protocol to query them and make them interoperable. The IRAM 30-m radio telescope, located in Sierra Nevada (Granada, Spain) is a millimeter wavelength telescope with a constantly renewed, extensive choice of instruments, and capable of covering the frequency range between 80 and 370 GHz. It is continuously producing a large amount of data thanks to the more than 200 scientific projects observed each year. The TAPAS archive at the IRAM 30-m telescope is aimed to provide public access to the headers describing the observations performed with the telescope, according to a defined data policy, making as well the technical data available to the IRAM staff members. A special emphasis has been made to make it Virtual Observatory (VO) compliant, and to offer a VO compliant web interface allowing to make the information available to the scientific community. TAPAS is built using the Django Python framework on top of a relational MySQL database, and is fully integrated with the telescope control system. The TAPAS data model (DM) is based on the Radio Astronomical DAta Model for Single dish radio telescopes (RADAMS), to allow for easy integration into the VO infrastructure. A metadata modeling layer is used by the data-filler to allow an implementation free from assumptions about the control system and the underlying database. TAPAS and its public web interface (
A Standard-Compliant Virtual Meeting System with Active Video Object Tracking
NASA Astrophysics Data System (ADS)
Lin, Chia-Wen; Chang, Yao-Jen; Wang, Chih-Ming; Chen, Yung-Chang; Sun, Ming-Ting
2002-12-01
This paper presents an H.323 standard compliant virtual video conferencing system. The proposed system not only serves as a multipoint control unit (MCU) for multipoint connection but also provides a gateway function between the H.323 LAN (local-area network) and the H.324 WAN (wide-area network) users. The proposed virtual video conferencing system provides user-friendly object compositing and manipulation features including 2D video object scaling, repositioning, rotation, and dynamic bit-allocation in a 3D virtual environment. A reliable, and accurate scheme based on background image mosaics is proposed for real-time extracting and tracking foreground video objects from the video captured with an active camera. Chroma-key insertion is used to facilitate video objects extraction and manipulation. We have implemented a prototype of the virtual conference system with an integrated graphical user interface to demonstrate the feasibility of the proposed methods.
NASA Technical Reports Server (NTRS)
1990-01-01
Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.
Explosive Transient Camera (ETC) Program
NASA Technical Reports Server (NTRS)
Ricker, George
1991-01-01
Since the inception of the ETC program, a wide range of new technologies was developed to support this astronomical instrument. The prototype unit was installed at ETC Site 1. The first partially automated observations were made and some major renovations were later added to the ETC hardware. The ETC was outfitted with new thermoelectrically-cooled CCD cameras and a sophisticated vacuum manifold, which, together, made the ETC a much more reliable unit than the prototype. The ETC instrumentation and building were placed under full computer control, allowing the ETC to operate as an automated, autonomous instrument with virtually no human intervention necessary. The first fully-automated operation of the ETC was performed, during which the ETC monitored the error region of the repeating soft gamma-ray burster SGR 1806-21.
Virtual and Augmented Reality Systems for Renal Interventions: A Systematic Review.
Detmer, Felicitas J; Hettig, Julian; Schindele, Daniel; Schostak, Martin; Hansen, Christian
2017-01-01
Many virtual and augmented reality systems have been proposed to support renal interventions. This paper reviews such systems employed in the treatment of renal cell carcinoma and renal stones. A systematic literature search was performed. Inclusion criteria were virtual and augmented reality systems for radical or partial nephrectomy and renal stone treatment, excluding systems solely developed or evaluated for training purposes. In total, 52 research papers were identified and analyzed. Most of the identified literature (87%) deals with systems for renal cell carcinoma treatment. About 44% of the systems have already been employed in clinical practice, but only 20% in studies with ten or more patients. Main challenges remaining for future research include the consideration of organ movement and deformation, human factor issues, and the conduction of large clinical studies. Augmented and virtual reality systems have the potential to improve safety and outcomes of renal interventions. In the last ten years, many technical advances have led to more sophisticated systems, which are already applied in clinical practice. Further research is required to cope with current limitations of virtual and augmented reality assistance in clinical environments.
From Panoramic Photos to a Low-Cost Photogrammetric Workflow for Cultural Heritage 3d Documentation
NASA Astrophysics Data System (ADS)
D'Annibale, E.; Tassetti, A. N.; Malinverni, E. S.
2013-07-01
The research aims to optimize a workflow of architecture documentation: starting from panoramic photos, tackling available instruments and technologies to propose an integrated, quick and low-cost solution of Virtual Architecture. The broader research background shows how to use spherical panoramic images for the architectural metric survey. The input data (oriented panoramic photos), the level of reliability and Image-based Modeling methods constitute an integrated and flexible 3D reconstruction approach: from the professional survey of cultural heritage to its communication in virtual museum. The proposed work results from the integration and implementation of different techniques (Multi-Image Spherical Photogrammetry, Structure from Motion, Imagebased Modeling) with the aim to achieve high metric accuracy and photorealistic performance. Different documentation chances are possible within the proposed workflow: from the virtual navigation of spherical panoramas to complex solutions of simulation and virtual reconstruction. VR tools make for the integration of different technologies and the development of new solutions for virtual navigation. Image-based Modeling techniques allow 3D model reconstruction with photo realistic and high-resolution texture. High resolution of panoramic photo and algorithms of panorama orientation and photogrammetric restitution vouch high accuracy and high-resolution texture. Automated techniques and their following integration are subject of this research. Data, advisably processed and integrated, provide different levels of analysis and virtual reconstruction joining the photogrammetric accuracy to the photorealistic performance of the shaped surfaces. Lastly, a new solution of virtual navigation is tested. Inside the same environment, it proposes the chance to interact with high resolution oriented spherical panorama and 3D reconstructed model at once.
1998-03-01
Research Laboratory’s Virtual Reality Responsive Workbench (VRRWB) and Dragon software system which together address the problem of battle space...and describe the lessons which have been learned. Interactive graphics, workbench, battle space visualization, virtual reality , user interface.
NASA Astrophysics Data System (ADS)
Gerndt, Andreas M.; Engelke, Wito; Giuranna, Marco; Vandaele, Ann C.; Neary, Lori; Aoki, Shohei; Kasaba, Yasumasa; Garcia, Arturo; Fernando, Terrence; Roberts, David; CROSS DRIVE Team
2016-10-01
Atmospheric phenomena of Mars can be highly dynamic and have daily and seasonal variations. Planetary-scale wavelike disturbances, for example, are frequently observed in Mars' polar winter atmosphere. Possible sources of the wave activity were suggested to be dynamical instabilities and quasi-stationary planetary waves, i.e. waves that arise predominantly via zonally asymmetric surface properties. For a comprehensive understanding of these phenomena, single layers of altitude have to be analyzed carefully and relations between different atmospheric quantities and interaction with the surface of Mars have to be considered. The CROSS DRIVE project tries to address the presentation of those data with a global view by means of virtual reality techniques. Complex orbiter data from spectrometer and observation data from Earth are combined with global circulation models and high-resolution terrain data and images available from Mars Express or MRO instruments. Scientists can interactively extract features from those dataset and can change visualization parameters in real-time in order to emphasize findings. Stereoscopic views allow for perception of the actual 3D behavior of Mars's atmosphere. A very important feature of the visualization system is the possibility to connect distributed workspaces together. This enables discussions between distributed working groups. The workspace can scale from virtual reality systems to expert desktop applications to web-based project portals. If multiple virtual environments are connected, the 3D position of each individual user is captured and used to depict the scientist as an avatar in the virtual world. The appearance of the avatar can also scale from simple annotations to complex avatars using tele-presence technology to reconstruct the users in 3D. Any change of the feature set (annotations, cutplanes, volume rendering, etc.) within the VR is immediately exchanged between all connected users. This allows that everybody is always aware of what is visible and discussed. The discussion is supported by audio and interaction is controlled by a moderator managing turn-taking presentations. A use case execution proved a success and showed the potential of this immersive approach.
Suitability of virtual prototypes to support human factors/ergonomics evaluation during the design.
Aromaa, Susanna; Väänänen, Kaisa
2016-09-01
In recent years, the use of virtual prototyping has increased in product development processes, especially in the assessment of complex systems targeted at end-users. The purpose of this study was to evaluate the suitability of virtual prototyping to support human factors/ergonomics evaluation (HFE) during the design phase. Two different virtual prototypes were used: augmented reality (AR) and virtual environment (VE) prototypes of a maintenance platform of a rock crushing machine. Nineteen designers and other stakeholders were asked to assess the suitability of the prototype for HFE evaluation. Results indicate that the system model characteristics and user interface affect the experienced suitability. The VE system was valued as being more suitable to support the assessment of visibility, reach, and the use of tools than the AR system. The findings of this study can be used as a guidance for the implementing virtual prototypes in the product development process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis
Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel
2013-01-01
This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007
Software-Based Scoring and Sound Design: An Introductory Guide for Music Technology Instruction
ERIC Educational Resources Information Center
Walzer, Daniel A.
2016-01-01
This article explores the creative function of virtual instruments, sequencers, loops, and software-based synthesizers to introduce basic scoring and sound design concepts for visual media in an introductory music technology course. Using digital audio workstations with user-focused and configurable options, novice composers can hone a broad range…
ERIC Educational Resources Information Center
Fernández-Pascual, Maria Dolores; Ferrer-Cascales, Rosario; Reig-Ferrer, Abilio; Albaladejo-Blázquez, Natalia; Walker, Scott L.
2015-01-01
The aim of this study was to examine the validity of the Spanish version of the Distance Education Learning Environments Survey (Sp-DELES). This instrument assesses students' perceptions of virtual learning environments using six scales: Instructor Support, Student Interaction and Collaboration, Personal Relevance, Authentic Learning, Active…
Portable SERS Instrument for Explosives Monitoring
2008-01-01
groundwater monitoring from a cone penetrometer (CPT) platform (5) Demonstrate improved capability for discriminating explosives versus colorimetry ...interference, and better discrimination of individual explosives compared to colorimetry • Applicability to virtually any environmental water...chemicals such as nitroaromatics or nitramines. While this makes colorimetry more generally applicable at explosive sites, it also limits the ability to
Electrical Machines Laminations Magnetic Properties: A Virtual Instrument Laboratory
ERIC Educational Resources Information Center
Martinez-Roman, Javier; Perez-Cruz, Juan; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Roger-Folch, Jose; Riera-Guasp, Martin; Sapena-Baño, Angel
2015-01-01
Undergraduate courses in electrical machines often include an introduction to their magnetic circuits and to the various magnetic materials used in their construction and their properties. The students must learn to be able to recognize and compare the permeability, saturation, and losses of these magnetic materials, relate each material to its…
Fostering Mathematical Understanding through Physical and Virtual Manipulatives
ERIC Educational Resources Information Center
Loong, Esther Yook Kin
2014-01-01
When solving mathematical problems, many students know the procedure to get to the answer but cannot explain why they are doing it in that way. According to Skemp (1976) these students have instrumental understanding but not relational understanding of the problem. They have accepted the rules to arriving at the answer without questioning or…
Preparing Preservice Teachers in a Virtual Space: A Case Study of a Literacy Methods Course
ERIC Educational Resources Information Center
Fayne, Harriet R.
2014-01-01
This article describes a case study of an online literacy methods course offered at a small, midwestern university. Formal and informal instruments were used to assess students' backgrounds, interests, and dispositions. Archival course data were analyzed to examine interactions among content, course design, and student characteristics. Despite…
NASA Astrophysics Data System (ADS)
Rana, K. P. S.; Kumar, Vineet; Mendiratta, Jatin
2017-11-01
One of the most elementary concepts in freshmen Electrical Engineering subject comprises the Resistance-Inductance-Capacitance (RLC) circuit fundamentals, that is, their time and frequency domain responses. For a beginner, generally, it is difficult to understand and appreciate the step and the frequency responses, particularly the resonance. This paper proposes a student-friendly teaching and learning approach by inculcating the multifaceted versatile software LabVIEWTM along with the educational laboratory virtual instrumentation suite hardware, for studying the RLC circuit time and frequency domain responses. The proposed approach has offered an interactive laboratory experiment where students can model circuits in simulation and hardware circuits on prototype board, and then compare their performances. The theoretical simulations and the obtained experimental data are found to be in very close agreement, thereby enhancing the conviction of students. Finally, the proposed methodology was also subjected to the assessment of learning outcomes based on student feedback, and an average score of 8.05 out of 10 with a standard deviation of 0.471 was received, indicating the overall satisfaction of the students.
Innovative application of virtual display technique in virtual museum
NASA Astrophysics Data System (ADS)
Zhang, Jiankang
2017-09-01
Virtual museum refers to display and simulate the functions of real museum on the Internet in the form of 3 Dimensions virtual reality by applying interactive programs. Based on Virtual Reality Modeling Language, virtual museum building and its effective interaction with the offline museum lie in making full use of 3 Dimensions panorama technique, virtual reality technique and augmented reality technique, and innovatively taking advantages of dynamic environment modeling technique, real-time 3 Dimensions graphics generating technique, system integration technique and other key virtual reality techniques to make sure the overall design of virtual museum.3 Dimensions panorama technique, also known as panoramic photography or virtual reality, is a technique based on static images of the reality. Virtual reality technique is a kind of computer simulation system which can create and experience the interactive 3 Dimensions dynamic visual world. Augmented reality, also known as mixed reality, is a technique which simulates and mixes the information (visual, sound, taste, touch, etc.) that is difficult for human to experience in reality. These technologies make virtual museum come true. It will not only bring better experience and convenience to the public, but also be conducive to improve the influence and cultural functions of the real museum.
VR-Planets : a 3D immersive application for real-time flythrough images of planetary surfaces
NASA Astrophysics Data System (ADS)
Civet, François; Le Mouélic, Stéphane
2015-04-01
During the last two decades, a fleet of planetary probes has acquired several hundred gigabytes of images of planetary surfaces. Mars has been particularly well covered thanks to the Mars Global Surveyor, Mars Express and Mars Reconnaissance Orbiter spacecrafts. HRSC, CTX, HiRISE instruments allowed the computation of Digital Elevation Models with a resolution from hundreds of meters up to 1 meter per pixel, and corresponding orthoimages with a resolution from few hundred of meters up to 25 centimeters per pixel. The integration of such huge data sets into a system allowing user-friendly manipulation either for scientific investigation or for public outreach can represent a real challenge. We are investigating how innovative tools can be used to freely fly over reconstructed landscapes in real time, using technologies derived from the game industry and virtual reality. We have developed an application based on a game engine, using planetary data, to immerse users in real martian landscapes. The user can freely navigate in each scene at full spatial resolution using a game controller. The actual rendering is compatible with several visualization devices such as 3D active screen, virtual reality headsets (Oculus Rift), and android devices.
Integration of 3d Models and Diagnostic Analyses Through a Conservation-Oriented Information System
NASA Astrophysics Data System (ADS)
Mandelli, A.; Achille, C.; Tommasi, C.; Fassi, F.
2017-08-01
In the recent years, mature technologies for producing high quality virtual 3D replicas of Cultural Heritage (CH) artefacts has grown thanks to the progress of Information Technologies (IT) tools. These methods are an efficient way to present digital models that can be used with several scopes: heritage managing, support to conservation, virtual restoration, reconstruction and colouring, art cataloguing and visual communication. The work presented is an emblematic case of study oriented to the preventive conservation through monitoring activities, using different acquisition methods and instruments. It was developed inside a project founded by Lombardy Region, Italy, called "Smart Culture", which was aimed to realise a platform that gave the users the possibility to easily access to the CH artefacts, using as an example a very famous statue. The final product is a 3D reality-based model that contains a lot of information inside it, and that can be consulted through a common web browser. In the end, it was possible to define the general strategies oriented to the maintenance and the valorisation of CH artefacts, which, in this specific case, must consider the integration of different techniques and competencies, to obtain a complete, accurate and continuative monitoring of the statue.
Massey, Meredith; Roter, Debra L
2016-01-01
Certified nursing assistants (CNAs) provide 80% of the hands-on care in US nursing homes; a significant portion of this work is performed by immigrants with limited English fluency. This study is designed to assess immigrant CNA's communication behavior in response to a series of virtual simulated care challenges. A convenience sample of 31 immigrant CNAs verbally responded to 9 care challenges embedded in an interactive computer platform. The responses were coded with the Roter Interaction Analysis System (RIAS), CNA instructors rated response quality and spoken English was rated. CNA communication behaviors varied across care challenges and a broad repertoire of communication was used; 69% of response content was characterized as psychosocial. Communication elements (both instrumental and psychosocial) were significant predictors of response quality for 5 of 9 scenarios. Overall these variables explained between 13% and 36% of the adjusted variance in quality ratings. Immigrant CNAs responded to common care challenges using a variety of communication strategies despite fluency deficits. Virtual simulation-based observation is a feasible, acceptable and low cost method of communication assessment with implications for supervision, training and evaluation of a para-professional workforce. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A Platform to Build Mobile Health Apps: The Personal Health Intervention Toolkit (PHIT).
Eckhoff, Randall Peter; Kizakevich, Paul Nicholas; Bakalov, Vesselina; Zhang, Yuying; Bryant, Stephanie Patrice; Hobbs, Maria Ann
2015-06-01
Personal Health Intervention Toolkit (PHIT) is an advanced cross-platform software framework targeted at personal self-help research on mobile devices. Following the subjective and objective measurement, assessment, and plan methodology for health assessment and intervention recommendations, the PHIT platform lets researchers quickly build mobile health research Android and iOS apps. They can (1) create complex data-collection instruments using a simple extensible markup language (XML) schema; (2) use Bluetooth wireless sensors; (3) create targeted self-help interventions based on collected data via XML-coded logic; (4) facilitate cross-study reuse from the library of existing instruments and interventions such as stress, anxiety, sleep quality, and substance abuse; and (5) monitor longitudinal intervention studies via daily upload to a Web-based dashboard portal. For physiological data, Bluetooth sensors collect real-time data with on-device processing. For example, using the BinarHeartSensor, the PHIT platform processes the heart rate data into heart rate variability measures, and plots these data as time-series waveforms. Subjective data instruments are user data-entry screens, comprising a series of forms with validation and processing logic. The PHIT instrument library consists of over 70 reusable instruments for various domains including cognitive, environmental, psychiatric, psychosocial, and substance abuse. Many are standardized instruments, such as the Alcohol Use Disorder Identification Test, Patient Health Questionnaire-8, and Post-Traumatic Stress Disorder Checklist. Autonomous instruments such as battery and global positioning system location support continuous background data collection. All data are acquired using a schedule appropriate to the app's deployment. The PHIT intelligent virtual advisor (iVA) is an expert system logic layer, which analyzes the data in real time on the device. This data analysis results in a tailored app of interventions and other data-collection instruments. For example, if a user anxiety score exceeds a threshold, the iVA might add a meditation intervention to the task list in order to teach the user how to relax, and schedule a reassessment using the anxiety instrument 2 weeks later to re-evaluate. If the anxiety score exceeds a higher threshold, then an advisory to seek professional help would be displayed. Using the easy-to-use PHIT scripting language, the researcher can program new instruments, the iVA, and interventions to their domain-specific needs. The iVA, instruments, and interventions are defined via XML files, which facilities rapid app development and deployment. The PHIT Web-based dashboard portal provides the researcher access to all the uploaded data. After a secure login, the data can be filtered by criteria such as study, protocol, domain, and user. Data can also be exported into a comma-delimited file for further processing. The PHIT framework has proven to be an extensible, reconfigurable technology that facilitates mobile data collection and health intervention research. Additional plans include instrument development in other domains, additional health sensors, and a text messaging notification system.
A Platform to Build Mobile Health Apps: The Personal Health Intervention Toolkit (PHIT)
2015-01-01
Personal Health Intervention Toolkit (PHIT) is an advanced cross-platform software framework targeted at personal self-help research on mobile devices. Following the subjective and objective measurement, assessment, and plan methodology for health assessment and intervention recommendations, the PHIT platform lets researchers quickly build mobile health research Android and iOS apps. They can (1) create complex data-collection instruments using a simple extensible markup language (XML) schema; (2) use Bluetooth wireless sensors; (3) create targeted self-help interventions based on collected data via XML-coded logic; (4) facilitate cross-study reuse from the library of existing instruments and interventions such as stress, anxiety, sleep quality, and substance abuse; and (5) monitor longitudinal intervention studies via daily upload to a Web-based dashboard portal. For physiological data, Bluetooth sensors collect real-time data with on-device processing. For example, using the BinarHeartSensor, the PHIT platform processes the heart rate data into heart rate variability measures, and plots these data as time-series waveforms. Subjective data instruments are user data-entry screens, comprising a series of forms with validation and processing logic. The PHIT instrument library consists of over 70 reusable instruments for various domains including cognitive, environmental, psychiatric, psychosocial, and substance abuse. Many are standardized instruments, such as the Alcohol Use Disorder Identification Test, Patient Health Questionnaire-8, and Post-Traumatic Stress Disorder Checklist. Autonomous instruments such as battery and global positioning system location support continuous background data collection. All data are acquired using a schedule appropriate to the app’s deployment. The PHIT intelligent virtual advisor (iVA) is an expert system logic layer, which analyzes the data in real time on the device. This data analysis results in a tailored app of interventions and other data-collection instruments. For example, if a user anxiety score exceeds a threshold, the iVA might add a meditation intervention to the task list in order to teach the user how to relax, and schedule a reassessment using the anxiety instrument 2 weeks later to re-evaluate. If the anxiety score exceeds a higher threshold, then an advisory to seek professional help would be displayed. Using the easy-to-use PHIT scripting language, the researcher can program new instruments, the iVA, and interventions to their domain-specific needs. The iVA, instruments, and interventions are defined via XML files, which facilities rapid app development and deployment. The PHIT Web-based dashboard portal provides the researcher access to all the uploaded data. After a secure login, the data can be filtered by criteria such as study, protocol, domain, and user. Data can also be exported into a comma-delimited file for further processing. The PHIT framework has proven to be an extensible, reconfigurable technology that facilitates mobile data collection and health intervention research. Additional plans include instrument development in other domains, additional health sensors, and a text messaging notification system. PMID:26033047
Virtual Visits and Patient-Centered Care: Results of a Patient Survey and Observational Study
2017-01-01
Background Virtual visits are clinical interactions in health care that do not involve the patient and provider being in the same room at the same time. The use of virtual visits is growing rapidly in health care. Some health systems are integrating virtual visits into primary care as a complement to existing modes of care, in part reflecting a growing focus on patient-centered care. There is, however, limited empirical evidence about how patients view this new form of care and how it affects overall health system use. Objective Descriptive objectives were to assess users and providers of virtual visits, including the reasons patients give for use. The analytic objective was to assess empirically the influence of virtual visits on overall primary care use and costs, including whether virtual care is with a known or a new primary care physician. Methods The study took place in British Columbia, Canada, where virtual visits have been publicly funded since October 2012. A survey of patients who used virtual visits and an observational study of users and nonusers of virtual visits were conducted. Comparison groups included two groups: (1) all other BC residents, and (2) a group matched (3:1) to the cohort. The first virtual visit was used as the intervention and the main outcome measures were total primary care visits and costs. Results During 2013-2014, there were 7286 virtual visit encounters, involving 5441 patients and 144 physicians. Younger patients and physicians were more likely to use and provide virtual visits (P<.001), with no differences by sex. Older and sicker patients were more likely to see a known provider, whereas the lowest socioeconomic groups were the least likely (P<.001). The survey of 399 virtual visit patients indicated that virtual visits were liked by patients, with 372 (93.2%) of respondents saying their virtual visit was of high quality and 364 (91.2%) reporting their virtual visit was “very” or “somewhat” helpful to resolve their health issue. Segmented regression analysis and the corresponding regression parameter estimates suggested virtual visits appear to have the potential to decrease primary care costs by approximately Can $4 per quarter (Can –$3.79, P=.12), but that benefit is most associated with seeing a known provider (Can –$8.68, P<.001). Conclusions Virtual visits may be one means of making the health system more patient-centered, but careful attention needs to be paid to how these services are integrated into existing health care delivery systems. PMID:28550006
NASA Astrophysics Data System (ADS)
Freeland, S.; Hurlburt, N.
2005-12-01
The SolarSoft system (SSW) is a set of integrated software libraries, databases, and system utilities which provide a common programming and data analysis environment for solar physics. The system includes contributions from a large community base, representing the efforts of many NASA PI team MO&DA teams,spanning many years and multiple NASA and international orbital and ground based missions. The SSW general use libraries include Many hundreds of utilities which are instrument and mission independent. A large subset are also SOLAR independent, such as time conversions, digital detector cleanup, time series analysis, mathematics, image display, WWW server communications and the like. PI teams may draw on these general purpose libraries for analysis and application development while concentrating efforts on instrument specific calibration issues rather than reinvention of general use software. By the same token, PI teams are encouraged to contribute new applications or enhancements to existing utilities which may have more general interest. Recent areas of intense evolution include space weather applications, automated distributed data access and analysis, interfaces with the ongoing Virtual Solar Observatory efforts, and externalization of SolarSoft power through Web Services. We will discuss the current status of SSW web services and demonstrate how this facilitates accessing the underlying power of SolarSoft in more abstract terms. In this context, we will describe the use of SSW services within the Collaborative Sun Earth Connector environment.
Semi-Immersive Virtual Turbine Engine Simulation System
NASA Astrophysics Data System (ADS)
Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea
2018-05-01
The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.
Dynamic Extension of a Virtualized Cluster by using Cloud Resources
NASA Astrophysics Data System (ADS)
Oberst, Oliver; Hauth, Thomas; Kernert, David; Riedel, Stephan; Quast, Günter
2012-12-01
The specific requirements concerning the software environment within the HEP community constrain the choice of resource providers for the outsourcing of computing infrastructure. The use of virtualization in HPC clusters and in the context of cloud resources is therefore a subject of recent developments in scientific computing. The dynamic virtualization of worker nodes in common batch systems provided by ViBatch serves each user with a dynamically virtualized subset of worker nodes on a local cluster. Now it can be transparently extended by the use of common open source cloud interfaces like OpenNebula or Eucalyptus, launching a subset of the virtual worker nodes within the cloud. This paper demonstrates how a dynamically virtualized computing cluster is combined with cloud resources by attaching remotely started virtual worker nodes to the local batch system.
The RoboCup Mixed Reality League - A Case Study
NASA Astrophysics Data System (ADS)
Gerndt, Reinhard; Bohnen, Matthias; da Silva Guerra, Rodrigo; Asada, Minoru
In typical mixed reality systems there is only a one-way interaction from real to virtual. A human user or the physics of a real object may influence the behavior of virtual objects, but real objects usually cannot be influenced by the virtual world. By introducing real robots into the mixed reality system, we allow a true two-way interaction between virtual and real worlds. Our system has been used since 2007 to implement the RoboCup mixed reality soccer games and other applications for research and edutainment. Our framework system is freely programmable to generate any virtual environment, which may then be further supplemented with virtual and real objects. The system allows for control of any real object based on differential drive robots. The robots may be adapted for different applications, e.g., with markers for identification or with covers to change shape and appearance. They may also be “equipped” with virtual tools. In this chapter we present the hardware and software architecture of our system and some applications. The authors believe this can be seen as a first implementation of Ivan Sutherland’s 1965 idea of the ultimate display: “The ultimate display would, of course, be a room within which the computer can control the existence of matter …” (Sutherland, 1965, Proceedings of IFIPS Congress 2:506-508).
Robust Online Monitoring for Calibration Assessment of Transmitters and Instrumentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Coble, Jamie B.; Shumaker, Brent
Robust online monitoring (OLM) technologies are expected to enable the extension or elimination of periodic sensor calibration intervals in operating and new reactors. These advances in OLM technologies will improve the safety and reliability of current and planned nuclear power systems through improved accuracy and increased reliability of sensors used to monitor key parameters. In this article, we discuss an overview of research being performed within the Nuclear Energy Enabling Technologies (NEET)/Advanced Sensors and Instrumentation (ASI) program, for the development of OLM algorithms to use sensor outputs and, in combination with other available information, 1) determine whether one or moremore » sensors are out of calibration or failing and 2) replace a failing sensor with reliable, accurate sensor outputs. Algorithm development is focused on the following OLM functions: • Signal validation • Virtual sensing • Sensor response-time assessment These algorithms incorporate, at their base, a Gaussian Process-based uncertainty quantification (UQ) method. Various plant models (using kernel regression, GP, or hierarchical models) may be used to predict sensor responses under various plant conditions. These predicted responses can then be applied in fault detection (sensor output and response time) and in computing the correct value (virtual sensing) of a failing physical sensor. The methods being evaluated in this work can compute confidence levels along with the predicted sensor responses, and as a result, may have the potential for compensating for sensor drift in real-time (online recalibration). Evaluation was conducted using data from multiple sources (laboratory flow loops and plant data). Ongoing research in this project is focused on further evaluation of the algorithms, optimization for accuracy and computational efficiency, and integration into a suite of tools for robust OLM that are applicable to monitoring sensor calibration state in nuclear power plants.« less
Shaw, James; Jamieson, Trevor; Agarwal, Payal; Griffin, Bailey; Wong, Ivy; Bhatia, R Sacha
2017-01-01
Background The development of new virtual care technologies (including telehealth and telemedicine) is growing rapidly, leading to a number of challenges related to health policy and planning for health systems around the world. Methods We brought together a diverse group of health system stakeholders, including patient representatives, to engage in policy dialogue to set health system priorities for the application of virtual care in the primary care sector in the Province of Ontario, Canada. We applied a nominal group technique (NGT) process to determine key priorities, and synthesized these priorities with group discussion to develop recommendations for virtual care policy. Methods included a structured priority ranking process, open-ended note-taking, and thematic analysis to identify priorities. Results Recommendations were summarized under the following themes: (a) identify clear health system leadership to embed virtual care strategies into all aspects of primary and community care; (b) make patients the focal point of health system decision-making; (c) leverage incentives to achieve meaningful health system improvements; and (d) building virtual care into streamlined workflows. Two key implications of our policy dialogue are especially relevant for an international audience. First, shifting the dialogue away from technology toward more meaningful patient engagement will enable policy planning for applications of technology that better meet patients' needs. Second, a strong conceptual framework on guiding the meaningful use of technology in health care settings is essential for intelligent planning of virtual care policy. Conclusions Policy planning for virtual care needs to shift toward a stronger focus on patient engagement to understand patients' needs.
Spaceborne Lidar in the Study of Marine Systems.
Hostetler, Chris A; Behrenfeld, Michael J; Hu, Yongxiang; Hair, Johnathan W; Schulien, Jennifer A
2018-01-03
Satellite passive ocean color instruments have provided an unbroken ∼20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.
Expanding NASA's Land, Atmosphere Near Real-Time Capability for EOS (LANCE)
NASA Technical Reports Server (NTRS)
Davies, Diane; Michael, Karen; Masuoka, Ed; Ye, Gang; Schmaltz, Jeffrey; Harrison, Sherry; Ziskin, Daniel; Durbin, Phil B; Protack, Steve; Rinsland, Pamela Livingstone;
2017-01-01
NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) is a virtual system that provides near real-time EOS data and imagery to meet the needs of scientists and application users interested in monitoring a wide variety of natural and man-made phenomena in near real-time. Over the last year: near real-time data and imagery from MOPITT, MISR, OMPS and VIIRS (Land and Atmosphere), the Fire Information for Resource Management System (FIRMS) has been updated and LANCE has begun the process of integrating the Global NRT flood, and Black Marble products. In addition, following the AMSU-A2 instrument anomaly in September 2016, AIRS-only products have replaced the NRT level 2 AIRS+AMSU products. This presentation provides a brief overview of LANCE, describes the new products that are recently available and contains a preview of what to expect in LANCE over the coming year.
Expanding NASA's Land, Atmosphere Near real-time Capability for EOS
NASA Astrophysics Data System (ADS)
Davies, D.; Michael, K.; Masuoka, E.; Ye, G.; Schmaltz, J. E.; Harrison, S.; Ziskin, D.; Durbin, P. B.; Protack, S.; Rinsland, P. L.; Slayback, D. A.; Policelli, F. S.; Olsina, O.; Fu, G.; Ederer, G. A.; Ding, F.; Braun, J.; Gumley, L.; Prins, E. M.; Davidson, C. C.; Wong, M. M.
2017-12-01
NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) is a virtual system that provides near real-time EOS data and imagery to meet the needs of scientists and application users interested in monitoring a wide variety of natural and man-made phenomena in near real-time. Over the last year: near real-time products and imagery from MOPITT, MISR, OMPS and VIIRS (Land and Atmosphere) have been added; the Fire Information for Resource Management System (FIRMS) has been updated and LANCE has begun the process of integrating the Global NRT flood product. In addition, following the AMSU-A2 instrument anomaly in September 2016, AIRS-only products have replaced the NRT level 2 AIRS+AMSU products. This presentation provides a brief overview of LANCE, describes the new products that are recently available and contains a preview of what to expect in LANCE over the coming year. For more information visit: https://earthdata.nasa.gov/lance
Archive Management of NASA Earth Observation Data to Support Cloud Analysis
NASA Technical Reports Server (NTRS)
Lynnes, Christopher; Baynes, Kathleen; McInerney, Mark A.
2017-01-01
NASA collects, processes and distributes petabytes of Earth Observation (EO) data from satellites, aircraft, in situ instruments and model output, with an order of magnitude increase expected by 2024. Cloud-based web object storage (WOS) of these data can simplify the execution of such an increase. More importantly, it can also facilitate user analysis of those volumes by making the data available to the massively parallel computing power in the cloud. However, storing EO data in cloud WOS has a ripple effect throughout the NASA archive system with unexpected challenges and opportunities. One challenge is modifying data servicing software (such as Web Coverage Service servers) to access and subset data that are no longer on a directly accessible file system, but rather in cloud WOS. Opportunities include refactoring of the archive software to a cloud-native architecture; virtualizing data products by computing on demand; and reorganizing data to be more analysis-friendly.
Spaceborne Lidar in the Study of Marine Systems
NASA Astrophysics Data System (ADS)
Hostetler, Chris A.; Behrenfeld, Michael J.; Hu, Yongxiang; Hair, Johnathan W.; Schulien, Jennifer A.
2018-01-01
Satellite passive ocean color instruments have provided an unbroken ˜20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.
NASA Astrophysics Data System (ADS)
Gintautas, Vadas; Hubler, Alfred
2006-03-01
As worldwide computer resources increase in power and decrease in cost, real-time simulations of physical systems are becoming increasingly prevalent, from laboratory models to stock market projections and entire ``virtual worlds'' in computer games. Often, these systems are meticulously designed to match real-world systems as closely as possible. We study the limiting behavior of a virtual horizontally driven pendulum coupled to its real-world counterpart, where the interaction occurs on a time scale that is much shorter than the time scale of the dynamical system. We find that if the physical parameters of the virtual system match those of the real system within a certain tolerance, there is a qualitative change in the behavior of the two-pendulum system as the strength of the coupling is increased. Applications include a new method to measure the physical parameters of a real system and the use of resonance spectroscopy to refine a computer model. As virtual systems better approximate real ones, even very weak interactions may produce unexpected and dramatic behavior. The research is supported by the National Science Foundation Grant No. NSF PHY 01-40179, NSF DMS 03-25939 ITR, and NSF DGE 03-38215.
Fly's Eye camera system: optical imaging using a hexapod platform
NASA Astrophysics Data System (ADS)
Jaskó, Attila; Pál, András.; Vida, Krisztián.; Mészáros, László; Csépány, Gergely; Mező, György
2014-07-01
The Fly's Eye Project is a high resolution, high coverage time-domain survey in multiple optical passbands: our goal is to cover the entire visible sky above the 30° horizontal altitude with a cadence of ~3 min. Imaging is going to be performed by 19 wide-field cameras mounted on a hexapod platform resembling a fly's eye. Using a hexapod developed and built by our team allows us to create a highly fault-tolerant instrument that uses the sky as a reference to define its own tracking motion. The virtual axis of the platform is automatically aligned with the Earth's rotational axis; therefore the same mechanics can be used independently from the geographical location of the device. Its enclosure makes it capable of autonomous observing and withstanding harsh environmental conditions. We briefly introduce the electrical, mechanical and optical design concepts of the instrument and summarize our early results, focusing on sidereal tracking. Due to the hexapod design and hence the construction is independent from the actual location, it is considerably easier to build, install and operate a network of such devices around the world.