A Typology of Ethnographic Scales for Virtual Worlds
NASA Astrophysics Data System (ADS)
Boellstorff, Tom
This chapter outlines a typology of genres of ethnographic research with regard to virtual worlds, informed by extensive research the author has completed both in Second Life and in Indonesia. It begins by identifying four confusions about virtual worlds: they are not games, they need not be graphical or even visual, they are not mass media, and they need not be defined in terms of escapist role-playing. A three-part typology of methods for ethnographic research in virtual worlds focuses on the relationship between research design and ethnographic scale. One class of methods for researching virtual worlds with regard to ethnographic scale explores interfaces between virtual worlds and the actual world, whereas a second examines interfaces between two or more virtual worlds. The third class involves studying a single virtual world in its own terms. Recognizing that all three approaches have merit for particular research purposes, ethnography of virtual worlds can be a vibrant field of research, contributing to central debates about human selfhood and sociality.
Luigi Ingrassia, Pier; Ragazzoni, Luca; Carenzo, Luca; Colombo, Davide; Ripoll Gallardo, Alba; Della Corte, Francesco
2015-04-01
This study tested the hypothesis that virtual reality simulation is equivalent to live simulation for testing naive medical students' abilities to perform mass casualty triage using the Simple Triage and Rapid Treatment (START) algorithm in a simulated disaster scenario and to detect the improvement in these skills after a teaching session. Fifty-six students in their last year of medical school were randomized into two groups (A and B). The same scenario, a car accident, was developed identically on the two simulation methodologies: virtual reality and live simulation. On day 1, group A was exposed to the live scenario and group B was exposed to the virtual reality scenario, aiming to triage 10 victims. On day 2, all students attended a 2-h lecture on mass casualty triage, specifically the START triage method. On day 3, groups A and B were crossed over. The groups' abilities to perform mass casualty triage in terms of triage accuracy, intervention correctness, and speed in the scenarios were assessed. Triage and lifesaving treatment scores were assessed equally by virtual reality and live simulation on day 1 and on day 3. Both simulation methodologies detected an improvement in triage accuracy and treatment correctness from day 1 to day 3 (P<0.001). The time to complete each scenario and its decrease from day 1 to day 3 were detected equally in the two groups (P<0.05). Virtual reality simulation proved to be a valuable tool, equivalent to live simulation, to test medical students' abilities to perform mass casualty triage and to detect improvement in such skills.
On the two-loop virtual QCD corrections to Higgs boson pair production in the standard model
Degrassi, Giuseppe; Giardino, Pier Paolo; Gröber, Ramona
2016-07-21
Here, we compute the next-to-leading order virtual QCD corrections to Higgs-pair production via gluon fusion. We also present analytic results for the two-loop contributions to the spin-0 and spin-2 form factors in the amplitude. The reducible contributions, given by the double-triangle diagrams, are evaluated exactly while the two-loop irreducible diagrams are evaluated by an asymptotic expansion in heavy top-quark mass up to and including terms of O(1/mmore » $$8\\atop{t}$$). We estimate that mass effects can reduce the hadronic cross section by at most 10 %, assuming that the finite top-quark mass effects are of similar size in the entire range of partonic energies.« less
Low Q2 jet production at HERA and virtual photon structure
NASA Astrophysics Data System (ADS)
H1 Collaboration; Adloff, C.; Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Arkadov, V.; Arndt, C.; Ayyaz, I.; Babaev, A.; Bähr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Bassler, U.; Beck, M.; Behrend, H.-J.; Beier, C.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Borras, K.; Botterweck, F.; Boudry, V.; Bourov, S.; Braemer, A.; Braunschweig, W.; Brisson, V.; Brown, D. P.; Brückner, W.; Bruel, P.; Bruncko, D.; Brune, C.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Calvet, D.; Campbell, A. J.; Carli, T.; Charlet, M.; Clarke, D.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Cousinou, M.-C.; Cox, B. E.; Cozzika, G.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; de Roeck, A.; de Wolf, E. A.; Delcourt, B.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Donovan, K. T.; Dowell, J. D.; Droutskoi, A.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Erdmann, M.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Gerhards, R.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, A.; Gruber, C.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Hengstmann, S.; Henschel, H.; Herynek, I.; Hess, M. F.; Hewitt, K.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; Isolarş Sever, Ç.; Itterbeck, H.; Jacquet, M.; Jaffre, M.; Janoth, J.; Jansen, D. M.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kausch, M.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küpper, A.; Küster, H.; Kuhlen, M.; Kurča, T.; Laforge, B.; Lahmann, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Lemaitre, V.; Levonian, S.; Lindstroem, M.; Lipinski, J.; List, B.; Lobo, G.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krüger, H.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nowak, G.; Nunnemann, T.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Passaggio, S.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pöschl, R.; Pope, G.; Povh, B.; Rabbertz, K.; Reimer, P.; Rick, H.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Scheins, J.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schultz-Coulon, H.-C.; Schwab, B.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Swart, M.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P. D.; Tobien, N.; Todenhagen, R.; Truöl, P.; Zálešák, J.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; van Esch, P.; van Mechelen, P.; Vandenplas, D.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wobisch, M.; Wollatz, H.; Wünsch, E.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zurnedden, M.
1997-12-01
The transition between photoproduction and deep-inelastic scattering is investigated in jet production at the HERA ep collider, using data collected by the H1 experiment. Measurements of the differential inclusive jet cross-sections dσep/dEt* and dσep/dη*, where Et* and η* are the transverse energy and the pseudorapidity of the jets in the virtual photon-proton centre of mass frame, are presented for 0
Generation of Aerodynamics Via Physics-Based Virtual Flight Simulations
2008-12-01
problems associated with projectile and missile aerodynamics. For maneuvering munitions, the effect of many new weapon control mechanisms being...dynamic simulation. The terms containing YPAC constitute the Magnus air load acting at the Magnus center of pressure while the terms containing 0 2...an unsteady aerodynamic moment along with terms due to the fact that the center of pressure and center of Magnus are not located at the mass
Double-Higgs boson production in the high-energy limit: planar master integrals
NASA Astrophysics Data System (ADS)
Davies, Joshua; Mishima, Go; Steinhauser, Matthias; Wellmann, David
2018-03-01
We consider the virtual corrections to the process gg → HH at NLO in the high energy limit and compute the corresponding planar master integrals in an expansion for small top quark mass. We provide details on the evaluation of the boundary conditions and present analytic results expressed in terms of harmonic polylogarithms.
NASA Astrophysics Data System (ADS)
Bumbacher, Engin; Salehi, Shima; Wieman, Carl; Blikstein, Paulo
2017-12-01
Manipulative environments play a fundamental role in inquiry-based science learning, yet how they impact learning is not fully understood. In a series of two studies, we develop the argument that manipulative environments (MEs) influence the kind of inquiry behaviors students engage in, and that this influence realizes through the affordances of MEs, independent of whether they are physical or virtual. In particular, we examine how MEs shape college students' experimentation strategies and conceptual understanding. In study 1, students engaged in two consecutive inquiry tasks, first on mass and spring systems and then on electric circuits. They either used virtual or physical MEs. We found that the use of experimentation strategies was strongly related to conceptual understanding across tasks, but that students engaged differently in those strategies depending on what ME they used. More students engaged in productive strategies using the virtual ME for electric circuits, and vice versa using the physical ME for mass and spring systems. In study 2, we isolated the affordance of measurement uncertainty by comparing two versions of the same virtual ME for electric circuits—one with and one without noise—and found that the conditions differed in terms of productive experimentation strategies. These findings indicate that measures of inquiry processes may resolve apparent ambiguities and inconsistencies between studies on MEs that are based on learning outcomes alone.
Mass production of holographic transparent components for augmented and virtual reality applications
NASA Astrophysics Data System (ADS)
Russo, Juan Manuel; Dimov, Fedor; Padiyar, Joy; Coe-Sullivan, Seth
2017-06-01
Diffractive optics such as holographic optical elements (HOEs) can provide transparent and narrow band components with arbitrary incident and diffracted angles for near-to-eye commercial electronic products for augmented reality (AR), virtual reality (VR), and smart glass applications. In this paper, we will summarize the operational parameters and general optical geometries relevant for near-to-eye displays, the holographic substrates available for these applications, and their performance characteristics and ease of manufacture. We will compare the holographic substrates available in terms of fabrication, manufacturability, and end-user performance characteristics. Luminit is currently emplacing the manufacturing capacity to serve this market, and this paper will discuss the capabilities and limitations of this unique facility.
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
2002-01-01
This document contains copies of those technical papers received in time for publication prior to the Tenth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Nineteenth IEEE Symposium on Mass Storage Systems at the University of Maryland University College Inn and Conference Center April 15-18, 2002. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the ingest, storage, and management of large volumes of data. The Conference encourages all interested organizations to discuss long-term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long-term retention of data, and data distribution. This year's discussion topics include architecture, future of current technology, storage networking with emphasis on IP storage, performance, standards, site reports, and vendor solutions. Tutorials will be available on perpendicular magnetic recording, object based storage, storage virtualization and IP storage.
Are nonsymmetric balanced configurations of four equal masses virtual or real?
NASA Astrophysics Data System (ADS)
Chenciner, Alain
2017-11-01
Balanced configurations of N point masses are the configurations which, in a Euclidean space of high enough dimension, i. e., up to 2( N - 1), admit a relative equilibrium motion under the Newtonian (or similar) attraction. Central configurations are balanced and it has been proved by Alain Albouy that central configurations of four equal masses necessarily possess a symmetry axis, from which followed a proof that the number of such configurations up to similarity is finite and explicitly describable. It is known that balanced configurations of three equal masses are exactly the isosceles triangles, but it is not known whether balanced configurations of four equal masses must have some symmetry. As balanced configurations come in families, it makes sense to look for possible branches of nonsymmetric balanced configurations bifurcating from the subset of symmetric ones. In the simpler case of a logarithmic potential, the subset of symmetric balanced configurations of four equal masses is easy to describe as well as the bifurcation locus, but there is a grain of salt: expressed in terms of the squared mutual distances, this locus lies almost completely outside the set of true configurations (i. e., generalizations of triangular inequalities are not satisfied) and hence could lead most of the time only to the bifurcation of a branch of virtual nonsymmetric balanced configurations. Nevertheless, a tiny piece of the bifurcation locus lies within the subset of real balanced configurations symmetric with respect to a line and hence has a chance to lead to the bifurcation of real nonsymmetric balanced configurations. This raises the question of the title, a question which, thanks to the explicit description given here, should be solvable by computer experts even in the Newtonian case. Another interesting question is about the possibility for a bifurcating branch of virtual nonsymmetric balanced configurations to come back to the domain of true configurations.
Quintessence from virtual dark matter
NASA Astrophysics Data System (ADS)
Damdinsuren, Battsetseg; Sim, Jonghyun; Lee, Tae Hoon
2017-09-01
Considering a theory of Brans-Dicke gravity with general couplings of Higgs-like bosons including a non-renormalizable term, we derive the low-energy effective theory action in the Universe of a temperature much lower than the Higgs-like boson mass. Necessary equations containing gravitational field equations and an effective potential of the Brans-Dicke scalar field are obtained, which are induced through virtual interactions of the Higgs-like heavy field in the late-time Universe. We find a de Sitter cosmological solution with the inverse power law effective potential of the scalar field and discuss the possibility that the late-time acceleration of our Universe can be naturally explained by means of the solution. We also investigate stability properties of the quintessence model by using a linear approximation.
Design of virtual display and testing system for moving mass electromechanical actuator
NASA Astrophysics Data System (ADS)
Gao, Zhigang; Geng, Keda; Zhou, Jun; Li, Peng
2015-12-01
Aiming at the problem of control, measurement and movement virtual display of moving mass electromechanical actuator(MMEA), the virtual testing system of MMEA was developed based on the PC-DAQ architecture and the software platform of LabVIEW, and the comprehensive test task such as drive control of MMEA, tests of kinematic parameter, measurement of centroid position and virtual display of movement could be accomplished. The system could solve the alignment for acquisition time between multiple measurement channels in different DAQ cards, then on this basis, the researches were focused on the dynamic 3D virtual display by the LabVIEW, and the virtual display of MMEA were realized by the method of calling DLL and the method of 3D graph drawing controls. Considering the collaboration with the virtual testing system, including the hardware drive, the measurement software of data acquisition, and the 3D graph drawing controls method was selected, which could obtained the synchronization measurement, control and display. The system can measure dynamic centroid position and kinematic position of movable mass block while controlling the MMEA, and the interface of 3D virtual display has realistic effect and motion smooth, which can solve the problem of display and playback about MMEA in the closed shell.
Experimental Characterization of Microfabricated VirtualImpactor Efficiency
The Air-Microfluidics Group is developing a microelectromechanical systems-based direct reading particulate matter (PM) mass sensor. The sensor consists of two main components: a microfabricated virtual impactor (VI) and a PM mass sensor. The VI leverages particle inertia to sepa...
Can virtual reality be used to conduct mass prophylaxis clinic training? A pilot program.
Yellowlees, Peter; Cook, James N; Marks, Shayna L; Wolfe, Daniel; Mangin, Elanor
2008-03-01
To create and evaluate a pilot bioterrorism defense training environment using virtual reality technology. The present pilot project used Second Life, an internet-based virtual world system, to construct a virtual reality environment to mimic an actual setting that might be used as a Strategic National Stockpile (SNS) distribution site for northern California in the event of a bioterrorist attack. Scripted characters were integrated into the system as mock patients to analyze various clinic workflow scenarios. Users tested the virtual environment over two sessions. Thirteen users who toured the environment were asked to complete an evaluation survey. Respondents reported that the virtual reality system was relevant to their practice and had potential as a method of bioterrorism defense training. Computer simulations of bioterrorism defense training scenarios are feasible with existing personal computer technology. The use of internet-connected virtual environments holds promise for bioterrorism defense training. Recommendations are made for public health agencies regarding the implementation and benefits of using virtual reality for mass prophylaxis clinic training.
Determination of balloon gas mass and revised estimates of drag and virtual mass coefficients
NASA Technical Reports Server (NTRS)
Robbins, E.; Martone, M.
1993-01-01
In support of the NASA Balloon Program, small-scale balloons were flown with varying lifting gas and total system mass. Instrument packages were developed to measure and record acceleration and temperature data during these tests. Top fitting and instrument payload accelerations were measured from launch to steady state ascent and through ballast drop transients. The development of the small lightweight self-powered Stowaway Special instrument packages is discussed along with mathematical models developed to determine gas mass, drag and virtual mass coefficients.
Heavy-quark production in gluon fusion at two loops in QCD
NASA Astrophysics Data System (ADS)
Czakon, M.; Mitov, A.; Moch, S.
2008-07-01
We present the two-loop virtual QCD corrections to the production of heavy quarks in gluon fusion. The results are exact in the limit when all kinematical invariants are large compared to the mass of the heavy quark up to terms suppressed by powers of the heavy-quark mass. Our derivation uses a simple relation between massless and massive QCD scattering amplitudes as well as a direct calculation of the massive amplitude at two loops. The results presented here together with those obtained previously for quark-quark scattering form important parts of the next-to-next-to-leading order QCD corrections to heavy-quark production in hadron-hadron collisions.
Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology
NASA Astrophysics Data System (ADS)
Weiler, Markus; McDonnell, Jeff
2004-01-01
We present an approach for process conceptualization in hillslope hydrology. We develop and implement a series of virtual experiments, whereby the interaction between water flow pathways, source and mixing at the hillslope scale is examined within a virtual experiment framework. We define these virtual experiments as 'numerical experiments with a model driven by collective field intelligence'. The virtual experiments explore the first-order controls in hillslope hydrology, where the experimentalist and modeler work together to cooperatively develop and analyze the results. Our hillslope model for the virtual experiments (HillVi) in this paper is based on conceptualizing the water balance within the saturated and unsaturated zone in relation to soil physical properties in a spatially explicit manner at the hillslope scale. We argue that a virtual experiment model needs to be able to capture all major controls on subsurface flow processes that the experimentalist might deem important, while at the same time being simple with few 'tunable parameters'. This combination makes the approach, and the dialog between experimentalist and modeler, a useful hypothesis testing tool. HillVi simulates mass flux for different initial conditions under the same flow conditions. We analyze our results in terms of an artificial line source and isotopic hydrograph separation of water and subsurface flow. Our results for this first set of virtual experiments showed how drainable porosity and soil depth variability exert a first order control on flow and transport at the hillslope scale. We found that high drainable porosity soils resulted in a restricted water table rise, resulting in more pronounced channeling of lateral subsurface flow along the soil-bedrock interface. This in turn resulted in a more anastomosing network of tracer movement across the slope. The virtual isotope hydrograph separation showed higher proportions of event water with increasing drainable porosity. When combined with previous experimental findings and conceptualizations, virtual experiments can be an effective way to isolate certain controls and examine their influence over a range of rainfall and antecedent wetness conditions.
Dividing phases in two-phase flow and modeling of interfacial drag
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narumo, T.; Rajamaeki, M.
1997-07-01
Different models intended to describe one-dimensional two-phase flow are considered in this paper. The following models are introduced: conventional six-equation model, conventional model equipped with terms taking into account nonuniform transverse velocity distribution of the phases, several virtual mass models and a model in which the momentum equations have been derived by using the principles of Separation of the Flow According to Velocity (SFAV). The dynamics of the models have been tested by comparing their characteristic velocities to each other and against experimental data. The results show that the SFAV-model makes a hyperbolic system and predicts the propagation velocities ofmore » disturbances with the same order of accuracy as the best tested virtual mass models. Furthermore, the momentum interaction terms for the SFAV-model are considered. These consist of the wall friction terms and the interfacial friction term. The authors model wall friction with two independent terms describing the effect of each fluid on the wall separately. In the steady state, a relationship between the slip velocity and friction coefficients can be derived. Hence, the friction coefficients for the SFAV-model can be calculated from existing correlations, viz. from a drift-flux correlation and a wall friction correlation. The friction model was tested by searching steady-state distributions in a partial BWR fuel channel and comparing the relaxed values with the drift-flux correlation, which agreed very well with each other. In addition, response of the flow to a sine-wave disturbance in the water inlet flux was calculated as function of frequency. The results of the models differed from each other already with frequency of order 5 Hz, while the time constant for the relaxation, obtained from steady-state distribution calculation, would have implied significant differences appear not until with frequency of order 50 Hz.« less
Plechawska, Małgorzata; Polańska, Joanna
2009-01-01
This article presents the method of the processing of mass spectrometry data. Mass spectra are modelled with Gaussian Mixture Models. Every peak of the spectrum is represented by a single Gaussian. Its parameters describe the location, height and width of the corresponding peak of the spectrum. An authorial version of the Expectation Maximisation Algorithm was used to perform all calculations. Errors were estimated with a virtual mass spectrometer. The discussed tool was originally designed to generate a set of spectra within defined parameters.
Accurate EPR radiosensitivity calibration using small sample masses
NASA Astrophysics Data System (ADS)
Hayes, R. B.; Haskell, E. H.; Barrus, J. K.; Kenner, G. H.; Romanyukha, A. A.
2000-03-01
We demonstrate a procedure in retrospective EPR dosimetry which allows for virtually nondestructive sample evaluation in terms of sample irradiations. For this procedure to work, it is shown that corrections must be made for cavity response characteristics when using variable mass samples. Likewise, methods are employed to correct for empty tube signals, sample anisotropy and frequency drift while considering the effects of dose distribution optimization. A demonstration of the method's utility is given by comparing sample portions evaluated using both the described methodology and standard full sample additive dose techniques. The samples used in this study are tooth enamel from teeth removed during routine dental care. We show that by making all the recommended corrections, very small masses can be both accurately measured and correlated with measurements of other samples. Some issues relating to dose distribution optimization are also addressed.
The specificity of memory enhancement during interaction with a virtual environment.
Brooks, B M; Attree, E A; Rose, F D; Clifford, B R; Leadbetter, A G
1999-01-01
Two experiments investigated differences between active and passive participation in a computer-generated virtual environment in terms of spatial memory, object memory, and object location memory. It was found that active participants, who controlled their movements in the virtual environment using a joystick, recalled the spatial layout of the virtual environment better than passive participants, who merely watched the active participants' progress. Conversely, there were no significant differences between the active and passive participants' recall or recognition of the virtual objects, nor in their recall of the correct locations of objects in the virtual environment. These findings are discussed in terms of subject-performed task research and the specificity of memory enhancement in virtual environments.
Lohnes, Karen; Quebbemann, Neil R; Liu, Kate; Kobzeff, Fred; Loo, Joseph A; Ogorzalek Loo, Rachel R
2016-07-15
The virtual two-dimensional gel electrophoresis/mass spectrometry (virtual 2D gel/MS) technology combines the premier, high-resolution capabilities of 2D gel electrophoresis with the sensitivity and high mass accuracy of mass spectrometry (MS). Intact proteins separated by isoelectric focusing (IEF) gel electrophoresis are imaged from immobilized pH gradient (IPG) polyacrylamide gels (the first dimension of classic 2D-PAGE) by matrix-assisted laser desorption/ionization (MALDI) MS. Obtaining accurate intact masses from sub-picomole-level proteins embedded in 2D-PAGE gels or in IPG strips is desirable to elucidate how the protein of one spot identified as protein 'A' on a 2D gel differs from the protein of another spot identified as the same protein, whenever tryptic peptide maps fail to resolve the issue. This task, however, has been extremely challenging. Virtual 2D gel/MS provides access to these intact masses. Modifications to our matrix deposition procedure improve the reliability with which IPG gels can be prepared; the new procedure is described. Development of this MALDI MS imaging (MSI) method for high-throughput MS with integrated 'top-down' MS to elucidate protein isoforms from complex biological samples is described and it is demonstrated that a 4-cm IPG gel segment can now be imaged in approximately 5min. Gel-wide chemical and enzymatic methods with further interrogation by MALDI MS/MS provide identifications, sequence-related information, and post-translational/transcriptional modification information. The MSI-based virtual 2D gel/MS platform may potentially link the benefits of 'top-down' and 'bottom-up' proteomics. Copyright © 2016 Elsevier Inc. All rights reserved.
Virtual Simulations: A Creative, Evidence-Based Approach to Develop and Educate Nurses.
Leibold, Nancyruth; Schwarz, Laura
2017-02-01
The use of virtual simulations in nursing is an innovative strategy that is increasing in application. There are several terms related to virtual simulation; although some are used interchangeably, the meanings are not the same. This article presents examples of virtual simulation, virtual worlds, and virtual patients in continuing education, staff development, and academic nursing education. Virtual simulations in nursing use technology to provide safe, as realistic as possible clinical practice for nurses and nursing students. Virtual simulations are useful for learning new skills; practicing a skill that puts content, high-order thinking, and psychomotor elements together; skill competency learning; and assessment for low-volume, high-risk skills. The purpose of this article is to describe the related terms, examples, uses, theoretical frameworks, challenges, and evidence related to virtual simulations in nursing.
Review of high energy diffraction in real and virtual photon-proton scattering at HERA
NASA Astrophysics Data System (ADS)
Wolf, G.
2010-11-01
The electron-proton collider HERA at DESY opened the door for the study of diffraction in real and virtual photon-proton scattering at centre-of-mass energies W up to 250 GeV and for large negative mass squared -Q2 of the virtual photon up to Q2 = 1600 GeV2. At W = 220 GeV and Q2 = 4 GeV2, diffraction accounts for about 15% of the total virtual photon-proton cross section, decreasing to ≈5% at Q2 = 200 GeV2. An overview of the results obtained by the experiments H1 and ZEUS on the production of neutral vector mesons and on inclusive diffraction up to the year 2008 is presented.
Heavy-quark production in massless quark scattering at two loops in QCD
NASA Astrophysics Data System (ADS)
Czakon, M.; Mitov, A.; Moch, S.
2007-07-01
We present the two-loop virtual QCD corrections to the production of heavy quarks in the quark-anti-quark annihilation channel in the limit when all kinematical invariants are large compared to the mass of the heavy quark. Our result is exact up to terms suppressed by powers of the heavy-quark mass. The derivation is based on a simple relation between massless and massive scattering amplitudes in gauge theories proposed recently by two of the authors as well as a direct calculation of the massive amplitude at two loops. The results presented here form an important part of the next-to-next-to-leading order QCD contributions to heavy-quark production in hadron-hadron collisions.
Coil motion effects in watt balances: a theoretical check
NASA Astrophysics Data System (ADS)
Li, Shisong; Schlamminger, Stephan; Haddad, Darine; Seifert, Frank; Chao, Leon; Pratt, Jon R.
2016-04-01
A watt balance is a precision apparatus for the measurement of the Planck constant that has been proposed as a primary method for realizing the unit of mass in a revised International System of Units. In contrast to an ampere balance, which was historically used to realize the unit of current in terms of the kilogram, the watt balance relates electrical and mechanical units through a virtual power measurement and has far greater precision. However, because the virtual power measurement requires the execution of a prescribed motion of a coil in a fixed magnetic field, systematic errors introduced by horizontal and rotational deviations of the coil from its prescribed path will compromise the accuracy. We model these potential errors using an analysis that accounts for the fringing field in the magnet, creating a framework for assessing the impact of this class of errors on the uncertainty of watt balance results.
Virtual Reality and the Virtual Library.
ERIC Educational Resources Information Center
Oppenheim, Charles
1993-01-01
Explains virtual reality, including proper and improper uses of the term, and suggests ways that libraries might be affected by it. Highlights include elements of virtual reality systems; possible virtual reality applications, including architecture, the chemical industry, transport planning, armed forces, and entertainment; and the virtual…
Network Virtualization - Opportunities and Challenges for Operators
NASA Astrophysics Data System (ADS)
Carapinha, Jorge; Feil, Peter; Weissmann, Paul; Thorsteinsson, Saemundur E.; Etemoğlu, Çağrı; Ingþórsson, Ólafur; Çiftçi, Selami; Melo, Márcio
In the last few years, the concept of network virtualization has gained a lot of attention both from industry and research projects. This paper evaluates the potential of network virtualization from an operator's perspective, with the short-term goal of optimizing service delivery and rollout, and on a longer term as an enabler of technology integration and migration. Based on possible scenarios for implementing and using network virtualization, new business roles and models are examined. Open issues and topics for further evaluation are identified. In summary, the objective is to identify the challenges but also new opportunities for telecom operators raised by network virtualization.
ERIC Educational Resources Information Center
Tilley, C. M.; Bruce, C. S.; Hallam, G.; Hills, A. P.
2006-01-01
Introduction: This paper reports results of an investigation into the needs of persons with disabilities wanting to participate in the use of virtual communities. The aim was to investigate "how virtual communities for persons with long-term, severe physical disabilities can best be facilitated"? Method: A Grounded Theory approach was…
Virtual(ly) Athletes: Where eSports Fit within the Definition of "Sport"
ERIC Educational Resources Information Center
Jenny, Seth E.; Manning, R. Douglas; Keiper, Margaret C.; Olrich, Tracy W.
2017-01-01
Electronic sports, cybersports, gaming, competitive computer gaming, and virtual sports are all synonyms for the term eSports. Regardless of the term used, eSports is now becoming more accepted as a "sport" and gamers are being identified as "athletes" within society today. eSports has even infiltrated higher education in the…
NASA Astrophysics Data System (ADS)
Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi
2017-10-01
With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.
Staggered heavy baryon chiral perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Jon A.
2008-03-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{supmore » 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.« less
NASA Astrophysics Data System (ADS)
Chen, Jiao-Kai
2018-04-01
We present one reduction of the Bethe-Salpeter equation for the bound states composed of two off-mass-shell constituents. Both the relativistic effects and the virtuality effects can be considered in the obtained spinless virtuality distribution equation. The eigenvalues of the spinless virtuality distribution equation are perturbatively calculated and the bound states e+e-, μ+μ-, τ+τ-, μ+e-, and τ+e- are discussed.
Scale influence on the energy dependence of photon-proton cross sections
NASA Astrophysics Data System (ADS)
Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Beck, M.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Brückner, W.; Bruel, P.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Calvet, D.; Campbell, A. J.; Carli, T.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; de Roeck, A.; de Wolf, E. A.; Dirkmann, M.; Dixon, P.; di Nezza, P.; Dlugosz, W.; Dollfus, C.; Donovan, K. T.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Erdmann, M.; Erdmann, W.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, A.; Gruber, C.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hewitt, K.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, D. M.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kausch, M.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Levonian, S.; Lindström, G.; Lindstroem, M.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Lytkin, L.; Magnussen, N.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nowak, G.; Noyes, G. W.; Nunnemann, T.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Povh, B.; Prell, S.; Rabbertz, K.; Rädel, G.; Reimer, P.; Reinshagen, S.; Rick, H.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steiner, H.; Steinhart, J.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tutas, J.; Tzamariudaki, E.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; van Esch, P.; van Mechelen, P.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wobisch, M.; Wünsch, E.; ŽáČek, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zuber, K.; Zurnedden, M.
1997-02-01
The scale dependence of the evolution of photoproduction cross sections with the photon-proton centre of mass energyW is studied using low Q2 < 0.01 GeV2 e+p interactions collected by the H1 experiment at HERA. The value of the largest transverse momentum of a charged particle in the photon fragmentation region is used to define the hard scale. The slope of the W dependence of the cross section is observed to increase steeply with increasing transverse momentum. The result is compared to measurements of the Q2 evolution of the W dependence of the virtual photon-proton cross section. Interpretations in terms of QCD and in terms of Regge phenomenology are discussed.
Virtual Models of Long-Term Care
ERIC Educational Resources Information Center
Phenice, Lillian A.; Griffore, Robert J.
2012-01-01
Nursing homes, assisted living facilities and home-care organizations, use web sites to describe their services to potential consumers. This virtual ethnographic study developed models representing how potential consumers may understand this information using data from web sites of 69 long-term-care providers. The content of long-term-care web…
Nucleon Resonance Structure from Exclusive Meson Electroproduction with CLAS
Mokeev, Victor I.
2018-04-06
Studies of the nucleon resonance electroexcitation amplitudes in a wide range of photon virtualities offer unique information on many facets of strong QCD behind the generation of all prominent excited nucleon states of distinctively different structure. Advances in the evaluation of resonance electroexcitation amplitudes from the data measured with the CLAS detector and the future extension of these studies with the CLAS12 detector at Jefferson Lab are presented in this paper. For the first time, analyses ofmore » $$\\pi^0p$$, $$\\pi^+n$$, $$\\eta p$$, and $$\\pi^+\\pi^-p$$ electroproduction off proton channels have provided electroexcitation amplitudes of most resonances in the mass range up to 1.8 GeV and at photon virtualities $Q^2 < 5$ GeV$^2$. Consistent results on resonance electroexcitation amplitudes determined from different exclusive channels validate a credible extraction of these fundamental quantities. Studies of the resonance electroexcitation amplitudes revealed the $N^*$ structure as a complex interplay between the inner core of three dressed quarks and the external meson-baryon cloud. The successful description of the $$\\Delta(1232)3/2^+$$ and $N(1440)1/2^+$ electrocouplings achieved within the Dyson-Schwinger Equation approach under a traceable connection to the QCD Lagrangian and supported by the novel light front quark model demonstrated the relevance of dressed quarks with dynamically generated masses as an active structural component in baryons. Future experiments with the CLAS12 detector will offer insight into the structure of all prominent resonances at the highest photon virtualities, $Q^2 < 12$ GeV$^2$, ever achieved in exclusive reactions, thus addressing the most challenging problems of the Standard Model on the nature of hadron mass, quark-gluon confinement, and the emergence of nucleon resonance structures from QCD. Finally, a search for new states of hadronic matter, the so-called hybrid-baryons with glue as a structural component, will complete the long term efforts on the resonance spectrum exploration.« less
Nucleon Resonance Structure from Exclusive Meson Electroproduction with CLAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mokeev, Victor I.
Studies of the nucleon resonance electroexcitation amplitudes in a wide range of photon virtualities offer unique information on many facets of strong QCD behind the generation of all prominent excited nucleon states of distinctively different structure. Advances in the evaluation of resonance electroexcitation amplitudes from the data measured with the CLAS detector and the future extension of these studies with the CLAS12 detector at Jefferson Lab are presented in this paper. For the first time, analyses ofmore » $$\\pi^0p$$, $$\\pi^+n$$, $$\\eta p$$, and $$\\pi^+\\pi^-p$$ electroproduction off proton channels have provided electroexcitation amplitudes of most resonances in the mass range up to 1.8 GeV and at photon virtualities $Q^2 < 5$ GeV$^2$. Consistent results on resonance electroexcitation amplitudes determined from different exclusive channels validate a credible extraction of these fundamental quantities. Studies of the resonance electroexcitation amplitudes revealed the $N^*$ structure as a complex interplay between the inner core of three dressed quarks and the external meson-baryon cloud. The successful description of the $$\\Delta(1232)3/2^+$$ and $N(1440)1/2^+$ electrocouplings achieved within the Dyson-Schwinger Equation approach under a traceable connection to the QCD Lagrangian and supported by the novel light front quark model demonstrated the relevance of dressed quarks with dynamically generated masses as an active structural component in baryons. Future experiments with the CLAS12 detector will offer insight into the structure of all prominent resonances at the highest photon virtualities, $Q^2 < 12$ GeV$^2$, ever achieved in exclusive reactions, thus addressing the most challenging problems of the Standard Model on the nature of hadron mass, quark-gluon confinement, and the emergence of nucleon resonance structures from QCD. Finally, a search for new states of hadronic matter, the so-called hybrid-baryons with glue as a structural component, will complete the long term efforts on the resonance spectrum exploration.« less
Knowledge Retention for Computer Simulations: A study comparing virtual and hands-on laboratories
NASA Astrophysics Data System (ADS)
Croom, John R., III
The use of virtual laboratories has the potential to change physics education. These low-cost, interactive computer activities interest students, allow for easy setup, and give educators a way to teach laboratory based online classes. This study investigated whether virtual laboratories could replace traditional hands-on laboratories and whether students could retain the same long-term knowledge in virtual laboratories as compared to hands-on laboratories. This study is a quantitative quasi-experiment that used a multiple posttest design to determine if students using virtual laboratories would retain the same knowledge as students who performed hands-on laboratories after 9 weeks. The study was composed of 336 students from 14 school districts. Students had their performances on the laboratories and their retention of the laboratories compared to a series of factors that might have affected their retention using a pretest and two posttests, which were compared using a t test. The results showed no significant difference in short-term learning between the hands-on laboratory groups and virtual laboratory groups. There was, however, a significant difference (p = .005) between the groups in long-term retention; students in the hands-on laboratory groups retained more information than those in the virtual laboratory groups. These results suggest that long-term learning is enhanced when a laboratory contains a hands-on component. Finally, the results showed that both groups of students felt their particular laboratory style was superior to the alternative method. The findings of this study can be used to improve the integration of virtual laboratories into science curriculum.
Leptonic current structure and azimuthal asymmetry in deeply inelastic scattering
NASA Astrophysics Data System (ADS)
Zhang, Hong-Fei; Sun, Zhan
2017-08-01
We present a compact form of the leptonic currents for the computation of the processes involving an initial virtual boson (photon, W± , or Z0). For deeply inelastic scattering, once the azimuthal angle of the plane expanded by the initial- and final-state leptons is integrated over in the boson-proton center-of-mass frame, the azimuthal-asymmetric terms vanish, which, however, is not true when some physical quantities (such as the transverse momentum of the observed particle) are specified in the laboratory frame. The misuse of the symmetry may lead to wrong results.
ERIC Educational Resources Information Center
Argan, Mehpare Tokay; Argan, Metin; Suher, Idil K.
2011-01-01
Like in all areas, virtual communities make their presence felt in the area of healthcare too. Virtual communities play an important role in healthcare in terms of gathering information on healthcare, sharing of personal interests and providing social support. Virtual communities provide a way for a group of peers to communicate with each other.…
ERIC Educational Resources Information Center
Cuasialpud Canchala, Ruth Elena
2010-01-01
This article reports an exploratory study carried out at a public university in Bogotá, Colombia, with two indigenous students who took a level I virtual English-course during the second term of 2008 and the first term of 2009. The aim was to analyse their attitudes towards the learning of English through the virtual modality. Interviews,…
Using immersive simulation for training first responders for mass casualty incidents.
Wilkerson, William; Avstreih, Dan; Gruppen, Larry; Beier, Klaus-Peter; Woolliscroft, James
2008-11-01
A descriptive study was performed to better understand the possible utility of immersive virtual reality simulation for training first responders in a mass casualty event. Utilizing a virtual reality cave automatic virtual environment (CAVE) and high-fidelity human patient simulator (HPS), a group of experts modeled a football stadium that experienced a terrorist explosion during a football game. Avatars (virtual patients) were developed by expert consensus that demonstrated a spectrum of injuries ranging from death to minor lacerations. A group of paramedics was assessed by observation for decisions made and action taken. A critical action checklist was created and used for direct observation and viewing videotaped recordings. Of the 12 participants, only 35.7% identified the type of incident they encountered. None identified a secondary device that was easily visible. All participants were enthusiastic about the simulation and provided valuable comments and insights. Learner feedback and expert performance review suggests that immersive training in a virtual environment has the potential to be a powerful tool to train first responders for high-acuity, low-frequency events, such as a terrorist attack.
Will Anything Useful Come Out of Virtual Reality? Examination of a Naval Application
1993-05-01
The term virtual reality can encompass varying meanings, but some generally accepted attributes of a virtual environment are that it is immersive...technology, but at present there are few practical applications which are utilizing the broad range of virtual reality technology. This paper will discuss an...Operability, operator functions, Virtual reality , Man-machine interface, Decision aids/decision making, Decision support. ASW.
Nucleon spin-averaged forward virtual Compton tensor at large Q 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Richard J.; Paz, Gil
The nucleon spin-averaged forward virtual Compton tensor determines important physical quantities such as electromagnetically-induced mass differences of nucleons, and two-photon exchange contributions in hydrogen spectroscopy. It depends on two kinematic variables:more » $$\
NASA Astrophysics Data System (ADS)
Greco, F.
2008-12-01
This research considers the historical impact of virtual water into the geophysical arena by considering it as a human-led phenomenon that impacts the hydrologic system and, consequently, the environment as a whole. This paper is in line with the idea of including the humans into the water-balance model, and it is deepening the idea that this has to be done not only at the light of each watershed, but globally, looking at the role of water-trade embedded in food and tradable goods. Starting from a definition of what virtual water is, this research explores the role of crops export in the early U.S. Colonial time. As early as 1630 a huge biomass from here was already exported to the UK (the fur trade). In 1700 the tobacco export started, along with cereals exports and timber. An entire ecosystem has been "exported" in terms of water-embedded-in-goods. This was the beginning of a massive depletion of bio-mass stocks and flows, a raise in nitrogen discharge into the environment and its impact on the hydrological systems ( CUAHSI Summer Institute findings). Immigration and its effects on the water balance is also considered in this work. The experiment of interdisciplinary work of CUAHSI Summer Institute 2008 has proven that there is space for a historical reconstruction of evidence of human-led changes to the hydrological systems. This has been possible through the analysis of material stocks and flows, water-balance analysis of these stocks and flows, including human-led changes like international trade and population growth. This proposal will argue that these changes can also be identified by the term of 'socio- economic metabolism', in which societies are trading their goods internationally but taking the primary resources, including water, locally. This work will put the basis for the history of virtual water and its implications on both socio-economic metabolism and local geophysical changes.
Virtual human versus human administration of photographic lineups.
Daugherty, Brent; Babu, Sabarish; Wallendael, Lori Van; Cutler, Brian; Hodges, Larry F
2008-01-01
One solution to mistaken identification by a crime's victims and eyewitnesses is to use a virtual officer to conduct identification procedures. Results from a study comparing a virtual officer with a live human investigator indicate that the virtual officer performs comparably to the human in terms of identification accuracy, emotional affect, and ease of use.
A virtual water network of the Roman world
NASA Astrophysics Data System (ADS)
Dermody, B. J.; van Beek, R. P. H.; Meeks, E.; Klein Goldewijk, K.; Scheidel, W.; van der Velde, Y.; Bierkens, M. F. P.; Wassen, M. J.; Dekker, S. C.
2014-06-01
The Romans were perhaps the most impressive exponents of water resource management in preindustrial times with irrigation and virtual water trade facilitating unprecedented urbanisation and socioeconomic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanisation and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we find that irrigation and virtual water trade increased Roman resilience to climate variability in the short term. However, urbanisation arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and reduced its resilience to climate variability in the long-term. In addition to improving our understanding of Roman water resource management, our cost-distance based analysis illuminates how increases in import costs arising from climatic and population pressures are likely to be distributed in the future global virtual water network.
Kiryu, Tohru; So, Richard H Y
2007-09-25
Around three years ago, in the special issue on augmented and virtual reality in rehabilitation, the topics of simulator sickness was briefly discussed in relation to vestibular rehabilitation. Simulator sickness with virtual reality applications have also been referred to as visually induced motion sickness or cybersickness. Recently, study on cybersickness has been reported in entertainment, training, game, and medical environment in several journals. Virtual stimuli can enlarge sensation of presence, but they sometimes also evoke unpleasant sensation. In order to safely apply augmented and virtual reality for long-term rehabilitation treatment, sensation of presence and cybersickness should be appropriately controlled. This issue presents the results of five studies conducted to evaluate visually-induced effects and speculate influences of virtual rehabilitation. In particular, the influence of visual and vestibular stimuli on cardiovascular responses are reported in terms of academic contribution.
Kiryu, Tohru; So, Richard HY
2007-01-01
Around three years ago, in the special issue on augmented and virtual reality in rehabilitation, the topics of simulator sickness was briefly discussed in relation to vestibular rehabilitation. Simulator sickness with virtual reality applications have also been referred to as visually induced motion sickness or cybersickness. Recently, study on cybersickness has been reported in entertainment, training, game, and medical environment in several journals. Virtual stimuli can enlarge sensation of presence, but they sometimes also evoke unpleasant sensation. In order to safely apply augmented and virtual reality for long-term rehabilitation treatment, sensation of presence and cybersickness should be appropriately controlled. This issue presents the results of five studies conducted to evaluate visually-induced effects and speculate influences of virtual rehabilitation. In particular, the influence of visual and vestibular stimuli on cardiovascular responses are reported in terms of academic contribution. PMID:17894857
Lorenz, D; Armbruster, W; Vogelgesang, C; Hoffmann, H; Pattar, A; Schmidt, D; Volk, T; Kubulus, D
2016-09-01
Chief emergency physicians are regarded as an important element in the care of the injured and sick following mass casualty accidents. Their education is very theoretical; practical content in contrast often falls short. Limitations are usually the very high costs of realistic (large-scale) exercises, poor reproducibility of the scenarios, and poor corresponding results. To substantially improve the educational level because of the complexity of mass casualty accidents, modified training concepts are required that teach the not only the theoretical but above all the practical skills considerably more intensively than at present. Modern training concepts should make it possible for the learner to realistically simulate decision processes. This article examines how interactive virtual environments are applicable for the education of emergency personnel and how they could be designed. Virtual simulation and training environments offer the possibility of simulating complex situations in an adequately realistic manner. The so-called virtual reality (VR) used in this context is an interface technology that enables free interaction in addition to a stereoscopic and spatial representation of virtual large-scale emergencies in a virtual environment. Variables in scenarios such as the weather, the number wounded, and the availability of resources, can be changed at any time. The trainees are able to practice the procedures in many virtual accident scenes and act them out repeatedly, thereby testing the different variants. With the aid of the "InSitu" project, it is possible to train in a virtual reality with realistically reproduced accident situations. These integrated, interactive training environments can depict very complex situations on a scale of 1:1. Because of the highly developed interactivity, the trainees can feel as if they are a direct part of the accident scene and therefore identify much more with the virtual world than is possible with desktop systems. Interactive, identifiable, and realistic training environments based on projector systems could in future enable a repetitive exercise with changes within a decision tree, in reproducibility, and within different occupational groups. With a hard- and software environment numerous accident situations can be depicted and practiced. The main expense is the creation of the virtual accident scenes. As the appropriate city models and other three-dimensional geographical data are already available, this expenditure is very low compared with the planning costs of a large-scale exercise.
VIRTOPSY - the Swiss virtual autopsy approach.
Thali, Michael J; Jackowski, Christian; Oesterhelweg, Lars; Ross, Steffen G; Dirnhofer, Richard
2007-03-01
The aim of the VIRTOPSY project () is utilizing radiological scanning to push low-tech documentation and autopsy procedures in a world of high-tech medicine in order to improve scientific value, to increase significance and quality in the forensic field. The term VIRTOPSY was created from the terms virtual and autopsy: Virtual is derived from the Latin word 'virtus', which means 'useful, efficient and good'. Autopsy is a combination of the old Greek terms 'autos' (=self) and 'opsomei' (=I will see). Thus autopsy means 'to see with ones own eyes'. Because our goal was to eliminate the subjectivity of "autos", we merged the two terms virtual and autopsy - deleting "autos" - to create VIRTOPSY. Today the project VIRTOPSY combining the research topics under one scientific umbrella, is characterized by a trans-disciplinary research approach that combines Forensic Medicine, Pathology, Radiology, Image Processing, Physics, and Biomechanics to an international scientific network. The paper will give an overview of the Virtopsy change process in forensic medicine.
Massetti, Thais; Fávero, Francis Meire; Menezes, Lilian Del Ciello de; Alvarez, Mayra Priscila Boscolo; Crocetta, Tânia Brusque; Guarnieri, Regiani; Nunes, Fátima L S; Monteiro, Carlos Bandeira de Mello; Silva, Talita Dias da
2018-04-01
To evaluate whether people with Duchenne muscular dystrophy (DMD) practicing a task in a virtual environment could improve performance given a similar task in a real environment, as well as distinguishing whether there is transference between performing the practice in virtual environment and then a real environment and vice versa. Twenty-two people with DMD were evaluated and divided into two groups. The goal was to reach out and touch a red cube. Group A began with the real task and had to touch a real object, and Group B began with the virtual task and had to reach a virtual object using the Kinect system. ANOVA showed that all participants decreased the movement time from the first (M = 973 ms) to the last block of acquisition (M = 783 ms) in both virtual and real tasks and motor learning could be inferred by the short-term retention and transfer task (with increasing distance of the target). However, the evaluation of task performance demonstrated that the virtual task provided an inferior performance when compared to the real task in all phases of the study, and there was no effect for sequence. Both virtual and real tasks promoted improvement of performance in the acquisition phase, short-term retention, and transfer. However, there was no transference of learning between environments. In conclusion, it is recommended that the use of virtual environments for individuals with DMD needs to be considered carefully.
NASA Technical Reports Server (NTRS)
Orr, Joel N.
1995-01-01
This reflection of human-computer interface and its requirements as virtual technology is advanced, proposes a new term: 'Pezonomics'. The term replaces the term ergonomics ('the law of work') with a definition pointing to 'the law of play.' The necessity of this term, the author reasons, comes from the need to 'capture the essence of play and calibrate our computer systems to its cadences.' Pezonomics will ensure that artificial environments, in particular virtual reality, are user friendly.
Smith, F.A.; Betancourt, J.L.
1998-01-01
Temperature profoundly influences the physiology and life history characteristics of organisms, particularly in terms of body size. Because so many critical parameters scale with body mass, long-term temperature fluctuations can have dramatic impacts. We examined the response of a small mammalian herbivore, the bushy-tailed woodrat (Neotoma cinerea), to temperature change from 20 000 yr BP to present, at five sites within the Colorado Plateau. Our investigations focused on the relationship between temperature, plant composition and abundance, and woodrat size. Body size was estimated by measuring fossil fecal pellets, a technique validated in earlier work. We found significant and highly covariable patterns in body mass over the five locations, suggesting that responses to temperature fluctuations during the late Quaternary have been very similar. Although woodrat mass and the occurrence of several plant species in the fossil record were significantly correlated, in virtually all instances changes in woodrat size preceded changes in vegetational composition. These results may be due to the greater sensitivity of woodrats to temperature, or to the shorter generation times of woodrats as compared to most plants. An alternative hypothesis is that winter temperatures increased before summer ones. Woodrats are highly sensitive to warmer winters, whereas little response would be expected from forest/woodland plants growing at their lower limits. Our work suggests that woodrat size is a precise paleothermometer, yielding information about temperature variation over relatively short-term temporal and regional scales.
Goswami, Prashant; Nishad, Shiv Narayan
2015-03-20
Assessment and policy design for sustainability in primary resources like arable land and water need to adopt long-term perspective; even small but persistent effects like net export of water may influence sustainability through irreversible losses. With growing consumption, this virtual water trade has become an important element in the water sustainability of a nation. We estimate and contrast the virtual (embedded) water trades of two populous nations, India and China, to present certain quantitative measures and time scales. Estimates show that export of embedded water alone can lead to loss of water sustainability. With the current rate of net export of water (embedded) in the end products, India is poised to lose its entire available water in less than 1000 years; much shorter time scales are implied in terms of water for production. The two cases contrast and exemplify sustainable and non-sustainable virtual water trade in long term perspective.
NASA Astrophysics Data System (ADS)
Goswami, Prashant; Nishad, Shiv Narayan
2015-03-01
Assessment and policy design for sustainability in primary resources like arable land and water need to adopt long-term perspective; even small but persistent effects like net export of water may influence sustainability through irreversible losses. With growing consumption, this virtual water trade has become an important element in the water sustainability of a nation. We estimate and contrast the virtual (embedded) water trades of two populous nations, India and China, to present certain quantitative measures and time scales. Estimates show that export of embedded water alone can lead to loss of water sustainability. With the current rate of net export of water (embedded) in the end products, India is poised to lose its entire available water in less than 1000 years; much shorter time scales are implied in terms of water for production. The two cases contrast and exemplify sustainable and non-sustainable virtual water trade in long term perspective.
Automated quantification of pancreatic β-cell mass
Golson, Maria L.; Bush, William S.
2014-01-01
β-Cell mass is a parameter commonly measured in studies of islet biology and diabetes. However, the rigorous quantification of pancreatic β-cell mass using conventional histological methods is a time-consuming process. Rapidly evolving virtual slide technology with high-resolution slide scanners and newly developed image analysis tools has the potential to transform β-cell mass measurement. To test the effectiveness and accuracy of this new approach, we assessed pancreata from normal C57Bl/6J mice and from mouse models of β-cell ablation (streptozotocin-treated mice) and β-cell hyperplasia (leptin-deficient mice), using a standardized systematic sampling of pancreatic specimens. Our data indicate that automated analysis of virtual pancreatic slides is highly reliable and yields results consistent with those obtained by conventional morphometric analysis. This new methodology will allow investigators to dramatically reduce the time required for β-cell mass measurement by automating high-resolution image capture and analysis of entire pancreatic sections. PMID:24760991
Retention of Mastoidectomy Skills After Virtual Reality Simulation Training.
Andersen, Steven Arild Wuyts; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2016-07-01
The ultimate goal of surgical training is consolidated skills with a consistently high performance. However, surgical skills are heterogeneously retained and depend on a variety of factors, including the task, cognitive demands, and organization of practice. Virtual reality (VR) simulation is increasingly being used in surgical skills training, including temporal bone surgery, but there is a gap in knowledge on the retention of mastoidectomy skills after VR simulation training. To determine the retention of mastoidectomy skills after VR simulation training with distributed and massed practice and to investigate participants' cognitive load during retention procedures. A prospective 3-month follow-up study of a VR simulation trial was conducted from February 6 to September 19, 2014, at an academic teaching hospital among 36 medical students: 19 from a cohort trained with distributed practice and 17 from a cohort trained with massed practice. Participants performed 2 virtual mastoidectomies in a VR simulator a mean of 3.2 months (range, 2.4-5.0 months) after completing initial training with 12 repeated procedures. Practice blocks were spaced apart in time (distributed), or all procedures were performed in 1 day (massed). Performance of the virtual mastoidectomy as assessed by 2 masked senior otologists using a modified Welling scale, as well as cognitive load as estimated by reaction time to perform a secondary task. Among 36 participants, mastoidectomy final-product skills were largely retained at 3 months (mean change in score, 0.1 points; P = .89) regardless of practice schedule, but the group trained with massed practice took more time to complete the task. The performance of the massed practice group increased significantly from the first to the second retention procedure (mean change, 1.8 points; P = .001), reflecting that skills were less consolidated. For both groups, increases in reaction times in the secondary task (distributed practice group: mean pretraining relative reaction time, 1.42 [95% CI, 1.37-1.47]; mean end of training relative reaction time, 1.24 [95% CI, 1.16-1.32]; and mean retention relative reaction time, 1.36 [95% CI, 1.30-1.42]; massed practice group: mean pretraining relative reaction time, 1.34 [95% CI, 1.28-1.40]; mean end of training relative reaction time, 1.31 [95% CI, 1.21-1.42]; and mean retention relative reaction time, 1.39 [95% CI, 1.31-1.46]) indicated that cognitive load during the virtual procedures had returned to the pretraining level. Mastoidectomy skills acquired under time-distributed practice conditions were retained better than skills acquired under massed practice conditions. Complex psychomotor skills should be regularly reinforced to consolidate both motor and cognitive aspects. Virtual reality simulation training provides the opportunity for such repeated training and should be integrated into training curricula.
Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System.
Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama
2017-01-01
Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one's center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one's individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one's overall performance in balance-related tasks belonging to different difficulty levels.
Shiri, Shimon; Feintuch, Uri; Lorber-Haddad, Adi; Moreh, Elior; Twito, Dvora; Tuchner-Arieli, Maya; Meiner, Zeev
2012-01-01
To introduce the rationale of a novel virtual reality system based on self-face viewing and mirror visual feedback, and to examine its feasibility as a rehabilitation tool for poststroke patients. A novel motion capture virtual reality system integrating online self-face viewing and mirror visual feedback has been developed for stroke rehabilitation.The system allows the replacement of the impaired arm by a virtual arm. Upon making small movements of the paretic arm, patients view themselves virtually performing healthy full-range movements. A sample of 6 patients in the acute poststroke phase received the virtual reality treatment concomitantly with conservative rehabilitation treatment. Feasibility was assessed during 10 sessions for each participant. All participants succeeded in operating the system, demonstrating its feasibility in terms of adherence and improvement in task performance. Patients' performance within the virtual environment and a set of clinical-functional measures recorded before the virtual reality treatment, at 1 week, and after 3 months indicated neurological status and general functioning improvement. These preliminary results indicate that this newly developed virtual reality system is safe and feasible. Future randomized controlled studies are required to assess whether this system has beneficial effects in terms of enhancing upper limb function and quality of life in poststroke patients.
Measurement of bedload transport in sand-bed rivers: a look at two indirect sampling methods
Holmes, Robert R.; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.
2010-01-01
Sand-bed rivers present unique challenges to accurate measurement of the bedload transport rate using the traditional direct sampling methods of direct traps (for example the Helley-Smith bedload sampler). The two major issues are: 1) over sampling of sand transport caused by “mining” of sand due to the flow disturbance induced by the presence of the sampler and 2) clogging of the mesh bag with sand particles reducing the hydraulic efficiency of the sampler. Indirect measurement methods hold promise in that unlike direct methods, no transport-altering flow disturbance near the bed occurs. The bedform velocimetry method utilizes a measure of the bedform geometry and the speed of bedform translation to estimate the bedload transport through mass balance. The bedform velocimetry method is readily applied for the estimation of bedload transport in large sand-bed rivers so long as prominent bedforms are present and the streamflow discharge is steady for long enough to provide sufficient bedform translation between the successive bathymetric data sets. Bedform velocimetry in small sandbed rivers is often problematic due to rapid variation within the hydrograph. The bottom-track bias feature of the acoustic Doppler current profiler (ADCP) has been utilized to accurately estimate the virtual velocities of sand-bed rivers. Coupling measurement of the virtual velocity with an accurate determination of the active depth of the streambed sediment movement is another method to measure bedload transport, which will be termed the “virtual velocity” method. Much research remains to develop methods and determine accuracy of the virtual velocity method in small sand-bed rivers.
Bai, Min; Du, Lianfang; Gu, Jiying; Li, Fan; Jia, Xiao
2012-02-01
The purpose of this study was to investigate the clinical usage of Virtual Touch tissue quantification (VTQ; Siemens Medical Solutions, Mountain View, CA) implementing sonographic acoustic radiation force impulse technology for differentiation between benign and malignant solid breast masses. A total of 143 solid breast masses were examined with VTQ, and their shear wave velocities (SWVs) were measured. From all of the masses, 30 were examined by two independent operators to evaluate the reproducibility of the results of VTQ measurement. All masses were later surgically resected, and the histologic results were correlated with the SWV results. A receiver operating characteristic curve was calculated to assess the diagnostic performance of VTQ. A total of 102 benign lesions and 41 carcinomas were diagnosed on the basis of histologic examination. The VTQ measurements performed by the two independent operators yielded a correlation coefficient of 0.885. Applying a cutoff point of 3.065 m/s, a significant difference (P < .001) was found between the SWVs of the benign (mean ± SD, 2.25 ± 0.59 m/s) and malignant (5.96 ± 2.96 m/s) masses. The sensitivity, specificity, and area under the receiver operating characteristic curve for the differentiation were 75.6%, 95.1%, and 85.6%, respectively. When the repeated non-numeric result X.XX of the SWV measurements was designated as an indicator of malignancy, the sensitivity, specificity, and accuracy were 63.4%, 100%, and 89.5%. Virtual Touch tissue quantification can yield reproducible and quantitative diagnostic information on solid breast masses and serve as an effective diagnostic tool for differentiation between benign and malignant solid masses.
ERIC Educational Resources Information Center
Polymeropoulou, Panagiota
2014-01-01
In this paper we will investigate the way that the technological progress and the Informatics contributed greatly to the field of Archaeology. There will be analyzed the terms of virtual archaeology and virtual reality in archaeology and there will be an extended reference to the applications and the computer graphics that archaeologists could use…
Physics Education in Virtual Reality: An Example
ERIC Educational Resources Information Center
Kaufmann, Hannes; Meyer, Bernd
2009-01-01
We present an immersive virtual reality (VR) application for physics education. It utilizes a recent physics engine developed for the PC gaming market to simulate physical experiments correctly and accurately. Students are enabled to actively build their own experiments and study them. A variety of tools are provided to analyze forces, mass, paths…
Goswami, Prashant; Nishad, Shiv Narayan
2015-01-01
Assessment and policy design for sustainability in primary resources like arable land and water need to adopt long-term perspective; even small but persistent effects like net export of water may influence sustainability through irreversible losses. With growing consumption, this virtual water trade has become an important element in the water sustainability of a nation. We estimate and contrast the virtual (embedded) water trades of two populous nations, India and China, to present certain quantitative measures and time scales. Estimates show that export of embedded water alone can lead to loss of water sustainability. With the current rate of net export of water (embedded) in the end products, India is poised to lose its entire available water in less than 1000 years; much shorter time scales are implied in terms of water for production. The two cases contrast and exemplify sustainable and non-sustainable virtual water trade in long term perspective. PMID:25790964
Robust controller designs for second-order dynamic system: A virtual passive approach
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh
1990-01-01
A robust controller design is presented for second-order dynamic systems. The controller is model-independent and itself is a virtual second-order dynamic system. Conditions on actuator and sensor placements are identified for controller designs that guarantee overall closed-loop stability. The dynamic controller can be viewed as a virtual passive damping system that serves to stabilize the actual dynamic system. The control gains are interpreted as virtual mass, spring, and dashpot elements that play the same roles as actual physical elements in stability analysis. Position, velocity, and acceleration feedback are considered. Simple examples are provided to illustrate the physical meaning of this controller design.
NASA Astrophysics Data System (ADS)
Hiranuma, N.; Kohn, M.; Pekour, M. S.; Nelson, D. A.; Shilling, J. E.; Cziczo, D. J.
2011-10-01
Droplets produced in a cloud condensation nuclei chamber (CCNC) as a function of supersaturation have been separated from unactivated aerosol particles using counterflow virtual impaction. Residual material after droplets were evaporated was chemically analyzed with an Aerodyne Aerosol Mass Spectrometer (AMS) and the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Experiments were initially conducted to verify activation conditions for monodisperse ammonium sulfate particles and to determine the resulting droplet size distribution as a function of supersaturation. Based on the observed droplet size, the counterflow virtual impactor cut-size was set to differentiate droplets from unactivated interstitial particles. Validation experiments were then performed to verify that only droplets with sufficient size passed through the counterflow virtual impactor for subsequent analysis. A two-component external mixture of monodisperse particles was also exposed to a supersaturation which would activate one of the types (hygroscopic salts) but not the other (polystyrene latex spheres or adipic acid). The mass spectrum observed after separation indicated only the former, validating separation of droplets from unactivated particles. Results from ambient measurements using this technique and AMS analysis were inconclusive, showing little chemical differentiation between ambient aerosol and activated droplet residuals, largely due to low signal levels. When employing as single particle mass spectrometer for compositional analysis, however, we observed enhancement of sulfate in droplet residuals.
Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System
Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama
2018-01-01
Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one’s center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one’s individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one’s overall performance in balance-related tasks belonging to different difficulty levels. PMID:29359128
A Virtual Research Environment for a Secondary Ion Mass Spectrometer (SIMS)
NASA Astrophysics Data System (ADS)
Wiedenbeck, M.; Schäfer, L.; Klump, J.; Galkin, A.
2013-12-01
Overview: This poster describes the development of a Virtual Research Environment for the Secondary Ion Mass Spectrometer (SIMS) at GFZ Potsdam. Background: Secondary Ion Mass Spectrometers (SIMS) are extremely sensitive instruments for analyzing the surfaces of solid and thin film samples. These instruments are rare, expensive and experienced operators are very highly sought after. As such, measurement time is a precious commodity, until now only accessible to small numbers of researchers. The challenge: The Virtual SIMS Project aims to set up a Virtual Research Environment for the operation of the CAMECA IMS 1280-HR instrument at the GFZ Potsdam. The objective of the VRE is to provide SIMS access not only to researchers locally present in Potsdam but also to scientists working with SIMS cooperation partners in e.g., South Africa, Brazil or India. The requirements: The system should address the complete spectrum of laboratory procedures - from online application for measurement time, to remote access for data acquisition to data archiving for the subsequent publication and for future reuse. The approach: The targeted Virtual SIMS Environment will consist of a: 1. Web Server running the Virtual SIMS website providing general information about the project, lab access proposal forms and calendar for the timing of project related tasks. 2. LIMS Server, responsible for scheduling procedures, data management and, if applicable, accounting and billing. 3. Remote SIMS Tool, devoted to the operation of the experiment within a remote control environment. 4. Publishing System, which supports the publication of results in cooperation with the GFZ Library services. 5. Training Simulator, which offers the opportunity to rehearse experiments and to prepare for possible events such as a power outages or interruptions to broadband services. First results: The SIMS Virtual Research Environment will be mainly based on open source software, the only exception being the CAMECA IMS 1280-HR SIMS operating under LabView. The Publishing System will be based on eSciDoc, which is already successfully used by the GFZ scientific library. For the LIMS Server we are currently testing various options. The challenge, however, is the successful integration of all the various components and, where necessary, the definition of useful interfaces between the modules.
A Systematic, Inquiry-Based 7-Step Virtual Worlds Teacher Training
ERIC Educational Resources Information Center
Nussli, Natalie Christina; Oh, Kevin
2015-01-01
Eighteen special education teachers explored one prominent example of three-dimensional virtual worlds, namely Second Life. This study aimed to (a) determine their perception of the effectiveness of a systematic 7-Step Virtual Worlds Teacher Training workshop in terms of enabling them to make informed decisions about the usability of virtual…
Lin, Cheng-Shih; Jeng, Mei-Yuan; Yeh, Tsu-Ming
2018-04-03
This study uses means-end chain (MEC) techniques to examine the awareness, decision-making procedure, and personal values of the elderly with regard to virtual reality leisure activities. The results of the study show that elderly respondents value virtual reality leisure activities that are fun, safe, and easy. In terms of outcome benefits, elderly respondents value feeling physically and mentally healthy, firsthand experience, and satisfied curiosity. In value terms, elderly respondents hope that their chosen virtual reality leisure activities improve not only their relationships with others, but also their enjoyment, quality of life, and sense of belonging. The results show that, while consumers with different awarenesses of virtual reality leisure activities have different decision-making processes, they share creating "good memories" as the terminal value with the most significant effect. This presents a potential opportunity to promote virtual reality leisure activities. Relevant bodies or enterprises can seek to create good memories in consumers by developing activities that are safe and fun, promote good health, and provide good service, thereby attracting the interest of elderly consumers.
Lin, Cheng-Shih; Jeng, Mei-Yuan
2018-01-01
This study uses means-end chain (MEC) techniques to examine the awareness, decision-making procedure, and personal values of the elderly with regard to virtual reality leisure activities. The results of the study show that elderly respondents value virtual reality leisure activities that are fun, safe, and easy. In terms of outcome benefits, elderly respondents value feeling physically and mentally healthy, firsthand experience, and satisfied curiosity. In value terms, elderly respondents hope that their chosen virtual reality leisure activities improve not only their relationships with others, but also their enjoyment, quality of life, and sense of belonging. The results show that, while consumers with different awarenesses of virtual reality leisure activities have different decision-making processes, they share creating “good memories” as the terminal value with the most significant effect. This presents a potential opportunity to promote virtual reality leisure activities. Relevant bodies or enterprises can seek to create good memories in consumers by developing activities that are safe and fun, promote good health, and provide good service, thereby attracting the interest of elderly consumers. PMID:29614012
Naval Applications of Virtual Reality,
1993-01-01
Expert Virtual Reality Special Report , pp. 67- 72. 14. SUBJECT TERMS 15 NUMBER o0 PAGES man-machine interface virtual reality decision support...collective and individual performance. -" Virtual reality projects could help *y by Mark Gembicki Av-t-abilty CodesA Avafllat Idt Iofe and David Rousseau...alt- 67 VIRTUAL . REALITY SPECIAl, REPORT r-OPY avcriaikxb to DD)C qg .- 154,41X~~~~~~~~~~~~j 1411 iI..:41 T a].’ 1,1 4 1111 I 4 1 * .11 ~ 4 l.~w111511 I
Maintaining Engagement in Long-term Interventions with Relational Agents
Bickmore, Timothy; Schulman, Daniel; Yin, Langxuan
2011-01-01
We discuss issues in designing virtual humans for applications which require long-term voluntary use, and the problem of maintaining engagement with users over time. Concepts and theories related to engagement from a variety of disciplines are reviewed. We describe a platform for conducting studies into long-term interactions between humans and virtual agents, and present the results of two longitudinal randomized controlled experiments in which the effect of manipulations of agent behavior on user engagement was assessed. PMID:21318052
A Miniature System for Separating Aerosol Particles and Measuring Mass Concentrations
Liang, Dao; Shih, Wen-Pin; Chen, Chuin-Shan; Dai, Chi-An
2010-01-01
We designed and fabricated a new sensing system which consists of two virtual impactors and two quartz-crystal microbalance (QCM) sensors for measuring particle mass concentration and size distribution. The virtual impactors utilized different inertial forces of particles in air flow to classify different particle sizes. They were designed to classify particle diameter, d, into three different ranges: d < 2.28 μm, 2.28 μm ≤ d ≤ 3.20 μm, d > 3.20 μm. The QCM sensors were coated with a hydrogel, which was found to be a reliable adhesive for capturing aerosol particles. The QCM sensor coated with hydrogel was used to measure the mass loading of particles by utilizing its characteristic of resonant frequency shift. An integrated system has been demonstrated. PMID:22319317
Chen, Yizheng; Qiu, Rui; Li, Chunyan; Wu, Zhen; Li, Junli
2016-03-07
In vivo measurement is a main method of internal contamination evaluation, particularly for large numbers of people after a nuclear accident. Before the practical application, it is necessary to obtain the counting efficiency of the detector by calibration. The virtual calibration based on Monte Carlo simulation usually uses the reference human computational phantom, and the morphological difference between the monitored personnel with the calibrated phantom may lead to the deviation of the counting efficiency. Therefore, a phantom library containing a wide range of heights and total body masses is needed. In this study, a Chinese reference adult male polygon surface (CRAM_S) phantom was constructed based on the CRAM voxel phantom, with the organ models adjusted to match the Chinese reference data. CRAM_S phantom was then transformed to sitting posture for convenience in practical monitoring. Referring to the mass and height distribution of the Chinese adult male, a phantom library containing 84 phantoms was constructed by deforming the reference surface phantom. Phantoms in the library have 7 different heights ranging from 155 cm to 185 cm, and there are 12 phantoms with different total body masses in each height. As an example of application, organ specific and total counting efficiencies of Ba-133 were calculated using the MCNPX code, with two series of phantoms selected from the library. The influence of morphological variation on the counting efficiency was analyzed. The results show only using the reference phantom in virtual calibration may lead to an error of 68.9% for total counting efficiency. Thus the influence of morphological difference on virtual calibration can be greatly reduced using the phantom library with a wide range of masses and heights instead of a single reference phantom.
NASA Astrophysics Data System (ADS)
Chen, Yizheng; Qiu, Rui; Li, Chunyan; Wu, Zhen; Li, Junli
2016-03-01
In vivo measurement is a main method of internal contamination evaluation, particularly for large numbers of people after a nuclear accident. Before the practical application, it is necessary to obtain the counting efficiency of the detector by calibration. The virtual calibration based on Monte Carlo simulation usually uses the reference human computational phantom, and the morphological difference between the monitored personnel with the calibrated phantom may lead to the deviation of the counting efficiency. Therefore, a phantom library containing a wide range of heights and total body masses is needed. In this study, a Chinese reference adult male polygon surface (CRAM_S) phantom was constructed based on the CRAM voxel phantom, with the organ models adjusted to match the Chinese reference data. CRAMS phantom was then transformed to sitting posture for convenience in practical monitoring. Referring to the mass and height distribution of the Chinese adult male, a phantom library containing 84 phantoms was constructed by deforming the reference surface phantom. Phantoms in the library have 7 different heights ranging from 155 cm to 185 cm, and there are 12 phantoms with different total body masses in each height. As an example of application, organ specific and total counting efficiencies of Ba-133 were calculated using the MCNPX code, with two series of phantoms selected from the library. The influence of morphological variation on the counting efficiency was analyzed. The results show only using the reference phantom in virtual calibration may lead to an error of 68.9% for total counting efficiency. Thus the influence of morphological difference on virtual calibration can be greatly reduced using the phantom library with a wide range of masses and heights instead of a single reference phantom.
Allen, R J; Rieger, T R; Musante, C J
2016-03-01
Quantitative systems pharmacology models mechanistically describe a biological system and the effect of drug treatment on system behavior. Because these models rarely are identifiable from the available data, the uncertainty in physiological parameters may be sampled to create alternative parameterizations of the model, sometimes termed "virtual patients." In order to reproduce the statistics of a clinical population, virtual patients are often weighted to form a virtual population that reflects the baseline characteristics of the clinical cohort. Here we introduce a novel technique to efficiently generate virtual patients and, from this ensemble, demonstrate how to select a virtual population that matches the observed data without the need for weighting. This approach improves confidence in model predictions by mitigating the risk that spurious virtual patients become overrepresented in virtual populations.
ERIC Educational Resources Information Center
Yuzer, T. Volkan
2007-01-01
The Internet usage has been increasing among persons in the worldwide. This situation highlights that the number of potential distance learners has been increasing in the Internet society. Besides, the terms and concepts of the Internet environments become to be spread out in this society like virtual reality. It is also possible to explain the…
Uniqueness of Experience and Virtual Playworlds: Playing Is Not Just for Fun
ERIC Educational Resources Information Center
Talamo, Alessandra; Pozzi, Simone; Mellini, Barbara
2010-01-01
Social interactions within virtual communities are often described solely as being online experiences. Such descriptions are limited, for they fail to reference life external to the screen. The terms "virtual" and "real" have a negative connotation for many people and can even be interpreted to mean that something is "false" or "inauthentic."…
An Evaluative Case Study of Nine Virtual High School Programs
ERIC Educational Resources Information Center
Bannister, Clara M.
2009-01-01
The purpose of this study was to conduct a program evaluation of nine virtual high school programs in the states of Alabama, California, Florida, Idaho, Colorado, Illinois, Michigan, North Carolina and Massachusetts. In order to assess the quality and effectiveness of the virtual high school programs in the study in terms of overall quality and…
Short Term Motor-Skill Acquisition Improves with Size of Self-Controlled Virtual Hands
Ossmy, Ori; Mukamel, Roy
2017-01-01
Visual feedback in general, and from the body in particular, is known to influence the performance of motor skills in humans. However, it is unclear how the acquisition of motor skills depends on specific visual feedback parameters such as the size of performing effector. Here, 21 healthy subjects physically trained to perform sequences of finger movements with their right hand. Through the use of 3D Virtual Reality devices, visual feedback during training consisted of virtual hands presented on the screen, tracking subject’s hand movements in real time. Importantly, the setup allowed us to manipulate the size of the displayed virtual hands across experimental conditions. We found that performance gains increase with the size of virtual hands. In contrast, when subjects trained by mere observation (i.e., in the absence of physical movement), manipulating the size of the virtual hand did not significantly affect subsequent performance gains. These results demonstrate that when it comes to short-term motor skill learning, the size of visual feedback matters. Furthermore, these results suggest that highest performance gains in individual subjects are achieved when the size of the virtual hand matches their real hand size. These results may have implications for optimizing motor training schemes. PMID:28056023
NASA Astrophysics Data System (ADS)
Aberasturi, M.; Solano, E.; Martín, E.
2015-05-01
Low-mass stars and brown dwarfs (with spectral types M, L, T and Y) are the most common objects in the Milky Way. A complete census of these objects is necessary to understand the theories about their complex structure and formation processes. In order to increase the number of known objects in the Solar neighborhood (d<30 pc), we have made use of the Virtual Observatory which allows an efficient handling of the huge amount of information available in astronomical databases. We also used the WFC3 installed in the Hubble Space Telescope to look for T5+ dwarfs binaries.
Rieger, TR; Musante, CJ
2016-01-01
Quantitative systems pharmacology models mechanistically describe a biological system and the effect of drug treatment on system behavior. Because these models rarely are identifiable from the available data, the uncertainty in physiological parameters may be sampled to create alternative parameterizations of the model, sometimes termed “virtual patients.” In order to reproduce the statistics of a clinical population, virtual patients are often weighted to form a virtual population that reflects the baseline characteristics of the clinical cohort. Here we introduce a novel technique to efficiently generate virtual patients and, from this ensemble, demonstrate how to select a virtual population that matches the observed data without the need for weighting. This approach improves confidence in model predictions by mitigating the risk that spurious virtual patients become overrepresented in virtual populations. PMID:27069777
Tozaki, Mitsuhiro; Saito, Masahiro; Benson, John; Fan, Liexiang; Isobe, Sachiko
2013-12-01
This study compared the diagnostic performance of two shear wave speed measurement techniques in 81 patients with 83 solid breast lesions. Virtual Touch Quantification, which provides single-point shear wave speed measurement capability (SP-SWS), was compared with Virtual Touch IQ, a new 2-D shear wave imaging technique with multi-point shear wave speed measurement capability (2D-SWS). With SP-SWS, shear wave velocity was measured within the lesion ("internal" value) and the marginal areas ("marginal" value). With 2D-SWS, the highest velocity was measured. The marginal values obtained with the SP-SWS and 2D-SWS methods were significantly higher for malignant lesions and benign lesions, respectively (p < 0.0001). Sensitivity, specificity and accuracy were 86% (36/42), 90% (37/41) and 88% (73/83), respectively, for SP-SWS, and 88% (37/42), 93% (38/41) and 90% (75/83), respectively, for 2D-SWS. It is concluded that 2D-SWS is a useful diagnostic tool for differentiating malignant from benign solid breast masses. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Karaoglan Yilmaz, Fatma Gizem
2017-01-01
Today, the use of social network-based virtual learning communities is increasing rapidly in terms of knowledge management. An important dynamic of knowledge management processes is the knowledge sharing behaviors (KSB) in community. The purpose of this study is to examine the KSB of the students in a Facebook-based virtual community created…
What People Talk About in Virtual Worlds
NASA Astrophysics Data System (ADS)
Maher, Mary Lou
This chapter examines what people talk about in virtual worlds, employing protocol analysis. Each of two scenario studies was developed to assess the impact of virtual worlds as a collaborative environment for a specific purpose: one for learning and one for designing. The first designed a place in Active Worlds for a course on Web Site Design, having group learning spaces surrounded by individual student galleries. Student text chat was analyzed through a coding scheme with four major categories: control, technology, learning, and place. The second studied expert architects in a Second Life environment called DesignWorld that combined 3D modeling and sketching tools. Video and audio recordings were coded in terms of four categories of communication content (designing, representation of the model, awareness of each other, and software features), and in terms of synthesis comparing alternative designs versus analysis of how well the proposed solution satisfies the given design task. Both studies found that people talk about their avatars, identity, and location in the virtual world. However, the discussion is chiefly about the task and not about the virtual world, implying that virtual worlds provide a viable environment for learning and designing that does not distract people from their task.
Virtual reality triage training provides a viable solution for disaster-preparedness.
Andreatta, Pamela B; Maslowski, Eric; Petty, Sean; Shim, Woojin; Marsh, Michael; Hall, Theodore; Stern, Susan; Frankel, Jen
2010-08-01
The objective of this study was to compare the relative impact of two simulation-based methods for training emergency medicine (EM) residents in disaster triage using the Simple Triage and Rapid Treatment (START) algorithm, full-immersion virtual reality (VR), and standardized patient (SP) drill. Specifically, are there differences between the triage performances and posttest results of the two groups, and do both methods differentiate between learners of variable experience levels? Fifteen Postgraduate Year 1 (PGY1) to PGY4 EM residents were randomly assigned to two groups: VR or SP. In the VR group, the learners were effectively surrounded by a virtual mass disaster environment projected on four walls, ceiling, and floor and performed triage by interacting with virtual patients in avatar form. The second group performed likewise in a live disaster drill using SP victims. Setting and patient presentations were identical between the two modalities. Resident performance of triage during the drills and knowledge of the START triage algorithm pre/post drill completion were assessed. Analyses included descriptive statistics and measures of association (effect size). The mean pretest scores were similar between the SP and VR groups. There were no significant differences between the triage performances of the VR and SP groups, but the data showed an effect in favor of the SP group performance on the posttest. Virtual reality can provide a feasible alternative for training EM personnel in mass disaster triage, comparing favorably to SP drills. Virtual reality provides flexible, consistent, on-demand training options, using a stable, repeatable platform essential for the development of assessment protocols and performance standards.
NASA Astrophysics Data System (ADS)
Asatrian, H. M.; Greub, C.
2014-05-01
We calculate the O(αs) corrections to the double differential decay width dΓ77/(ds1ds2) for the process B¯→Xsγγ, originating from diagrams involving the electromagnetic dipole operator O7. The kinematical variables s1 and s2 are defined as si=(pb-qi)2/mb2, where pb, q1, q2 are the momenta of the b quark and two photons. We introduce a nonzero mass ms for the strange quark to regulate configurations where the gluon or one of the photons become collinear with the strange quark and retain terms which are logarithmic in ms, while discarding terms which go to zero in the limit ms→0. When combining virtual and bremsstrahlung corrections, the infrared and collinear singularities induced by soft and/or collinear gluons drop out. By our cuts the photons do not become soft, but one of them can become collinear with the strange quark. This implies that in the final result a single logarithm of ms survives. In principle, the configurations with collinear photon emission could be treated using fragmentation functions. In a related work we find that similar results can be obtained when simply interpreting ms appearing in the final result as a constituent mass. We do so in the present paper and vary ms between 400 and 600 MeV in the numerics. This work extends a previous paper by us, where only the leading power terms with respect to the (normalized) hadronic mass s3=(pb-q1-q2)2/mb2 were taken into account in the underlying triple differential decay width dΓ77/(ds1ds2ds3).
Virtual gonio-spectrophotometer for validation of BRDF designs
NASA Astrophysics Data System (ADS)
Mihálik, Andrej; Ďurikovič, Roman
2011-10-01
Measurement of the appearance of an object consists of a group of measurements to characterize the color and surface finish of the object. This group of measurements involves the spectral energy distribution of propagated light measured in terms of reflectance and transmittance, and the spatial energy distribution of that light measured in terms of the bidirectional reflectance distribution function (BRDF). In this article we present the virtual gonio-spectrophotometer, a device that measures flux (power) as a function of illumination and observation. Virtual gonio-spectrophotometer measurements allow the determination of the scattering profile of specimens that can be used to verify the physical characteristics of the computer model used to simulate the scattering profile. Among the characteristics that we verify is the energy conservation of the computer model. A virtual gonio-spectrophotometer is utilized to find the correspondence between industrial measurements obtained from gloss meters and the parameters of a computer reflectance model.
Cognitive load in distributed and massed practice in virtual reality mastoidectomy simulation.
Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2016-02-01
Cognitive load theory states that working memory is limited. This has implications for learning and suggests that reducing cognitive load (CL) could promote learning and skills acquisition. This study aims to explore the effect of repeated practice and simulator-integrated tutoring on CL in virtual reality (VR) mastoidectomy simulation. Prospective trial. Forty novice medical students performed 12 repeated virtual mastoidectomy procedures in the Visible Ear Simulator: 21 completed distributed practice with practice blocks spaced in time and 19 participants completed massed practice (all practices performed in 1 day). Participants were randomized for tutoring with the simulator-integrated tutor function. Cognitive load was estimated by measuring reaction time in a secondary task. Data were analyzed using linear mixed models for repeated measurements. The mean reaction time increased by 37% during the procedure compared with baseline, demonstrating that the procedure placed substantial cognitive demands. Repeated practice significantly lowered CL in the distributed practice group but not in massed practice group. In addition, CL was found to be further increased by 10.3% in the later and more complex stages of the procedure. The simulator-integrated tutor function did not have an impact on CL. Distributed practice decreased CL in repeated VR mastoidectomy training more consistently than was seen in massed practice. This suggests a possible effect of skills and memory consolidation occurring over time. To optimize technical skills learning, training should be organized as time-distributed practice rather than as a massed block of practice, which is common in skills-training courses. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Virtual Application of Darul Arif Palace from Serdang Sultanate using Virtual Reality
NASA Astrophysics Data System (ADS)
Syahputra, M. F.; Annisa, T.; Rahmat, R. F.; Muchtar, M. A.
2017-01-01
Serdang Sultanate is one of Malay Sultanate in Sumatera Utara. In the 18th century, many Malay Aristocrats have developed in Sumatera Utara. Social revolution has happened in 1946, many sultanates were overthrown and member of PKI (Communist Party of Indonesia) did mass killing on members of the sultanate families. As the results of this incident, many cultural and historical heritage destroyed. The integration of heritage preservation and the digital technology has become recent trend. The digital technology is not only able to record, preserve detailed documents and information of heritage completely, but also effectively bring the value-added. In this research, polygonal modelling techniques from 3D modelling technology is used to reconstruct Darul Arif Palace of Serdang Sultanate. After modelling the palace, it will be combined with virtual reality technology to allow user to explore the palace and the environment around the palace. Virtual technology is simulation of real objects in virtual world. The results in this research is that virtual reality application can run using Head-Mounted Display.
Delay-dependent stability and added damping of SDOF real-time dynamic hybrid testing
NASA Astrophysics Data System (ADS)
Chi, Fudong; Wang, Jinting; Jin, Feng
2010-09-01
It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and added damping of SDOF systems in RTDHT. The exponential delay term is transferred into a rational fraction by the Padé approximation, and the delay-dependent stability conditions and instability mechanism of SDOF RTDHT systems are investigated by the root locus technique. First, the stability conditions are discussed separately for the cases of stiffness, mass, and damping experimental substructure. The use of root locus plots shows that the added damping effect and instability mechanism for mass are different from those for stiffness. For the stiffness experimental substructure case, the instability results from the inherent mode because of an obvious negative damping effect of the delay. For the mass case, the delay introduces an equivalent positive damping into the inherent mode, and instability occurs at an added high frequency mode. Then, the compound stability condition is investigated for a general case and the results show that the mass ratio may have both upper and lower limits to remain stable. Finally, a high-emulational virtual shaking table model is built to validate the stability conclusions.
ERIC Educational Resources Information Center
Stamenkovski, Sasha; Zajkov, Oliver
2014-01-01
This research is conducted among 65 seventh graders (12-14 years old) who attend introductory course on physics. Tests and interviews are used to trace the roots of the students' misconceptions about mass. Results from the research reveal serious weaknesses in students' understanding of concept of mass, and its confusion with concepts of density…
Constraint, Intelligence, and Control Hierarchy in Virtual Environments. Chapter 1
NASA Technical Reports Server (NTRS)
Sheridan, Thomas B.
2007-01-01
This paper seeks to deal directly with the question of what makes virtual actors and objects that are experienced in virtual environments seem real. (The term virtual reality, while more common in public usage, is an oxymoron; therefore virtual environment is the preferred term in this paper). Reality is difficult topic, treated for centuries in those sub-fields of philosophy called ontology- "of or relating to being or existence" and epistemology- "the study of the method and grounds of knowledge, especially with reference to its limits and validity" (both from Webster s, 1965). Advances in recent decades in the technologies of computers, sensors and graphics software have permitted human users to feel present or experience immersion in computer-generated virtual environments. This has motivated a keen interest in probing this phenomenon of presence and immersion not only philosophically but also psychologically and physiologically in terms of the parameters of the senses and sensory stimulation that correlate with the experience (Ellis, 1991). The pages of the journal Presence: Teleoperators and Virtual Environments have seen much discussion of what makes virtual environments seem real (see, e.g., Slater, 1999; Slater et al. 1994; Sheridan, 1992, 2000). Stephen Ellis, when organizing the meeting that motivated this paper, suggested to invited authors that "We may adopt as an organizing principle for the meeting that the genesis of apparently intelligent interaction arises from an upwelling of constraints determined by a hierarchy of lower levels of behavioral interaction. "My first reaction was "huh?" and my second was "yeah, that seems to make sense." Accordingly the paper seeks to explain from the author s viewpoint, why Ellis s hypothesis makes sense. What is the connection of "presence" or "immersion" of an observer in a virtual environment, to "constraints" and what types of constraints. What of "intelligent interaction," and is it the intelligence of the observer or the intelligence of the environment (whatever the latter may mean) that is salient? And finally, what might be relevant about "upwelling" of constraints as determined by a hierarchy of levels of interaction?
STS-EVA Mass Ops training of the STS-117 EVA crewmembers
2006-11-01
JSC2006-E-47612 (1 Nov. 2006) --- Astronaut Steven R. Swanson, STS-117 mission specialist, uses the virtual reality lab at Johnson Space Center to train for his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
ERIC Educational Resources Information Center
Association for Education in Journalism and Mass Communication.
The Qualitative Studies section of the proceedings contains the following 14 papers: "'Virtual Anonymity': Online Accountability in Political Bulletin Boards and the Makings of the Virtuous Virtual Journalist" (Jane B. Singer); "The Case of the Mysterious Ritual: 'Murder, She Wrote' and 'Perry Mason'" (Karen E. Riggs);…
D Visualization for Virtual Museum Development
NASA Astrophysics Data System (ADS)
Skamantzari, M.; Georgopoulos, A.
2016-06-01
The interest in the development of virtual museums is nowadays rising rapidly. During the last decades there have been numerous efforts concerning the 3D digitization of cultural heritage and the development of virtual museums, digital libraries and serious games. The realistic result has always been the main concern and a real challenge when it comes to 3D modelling of monuments, artifacts and especially sculptures. This paper implements, investigates and evaluates the results of the photogrammetric methods and 3D surveys that were used for the development of a virtual museum. Moreover, the decisions, the actions, the methodology and the main elements that this kind of application should include and take into consideration are described and analysed. It is believed that the outcomes of this application will be useful to researchers who are planning to develop and further improve the attempts made on virtual museums and mass production of 3D models.
Bottom and charm mass determinations from global fits to Q\\overline{Q} bound states at N3LO
NASA Astrophysics Data System (ADS)
Mateu, Vicent; Ortega, Pablo G.
2018-01-01
The bottomonium spectrum up to n = 3 is studied within Non-Relativistic Quantum Chromodynamics up to N3LO. We consider finite charm quark mass effects both in the QCD potential and the \\overline{MS} -pole mass relation up to third order in the Y-scheme counting. The u = 1 /2 renormalon of the static potential is canceled by expressing the bottom quark pole mass in terms of the MSR mass. A careful investigation of scale variation reveals that, while n = 1 , 2 states are well behaved within perturbation theory, n = 3 bound states are no longer reliable. We carry out our analysis in the n ℓ = 3 and n ℓ = 4 schemes and conclude that, as long as finite m c effects are smoothly incorporated in the MSR mass definition, the difference between the two schemes is rather small. Performing a fit to b\\overline{b} bound states we find {\\overline{m}}_b({\\overline{m}}_b) = 4 .216 ± 0 .039 GeV. We extend our analysis to the lowest lying charmonium states finding {\\overline{m}}_c({\\overline{m}}_c) = 1 .273 ± 0 .054 GeV. Finally, we perform simultaneous fits for {\\overline{m}}_b and α s finding {α}_s^{({n}_f=5)}({m}_Z)=0.1178± 0.0051 . Additionally, using a modified version of the MSR mass with lighter massive quarks we are able to predict the uncalculated O({α}_s^4) virtual massive quark corrections to the relation between the \\overline{MS} and pole masses.
Deploying Embodied AI into Virtual Worlds
NASA Astrophysics Data System (ADS)
Burden, David J. H.
The last two years have seen the start of commercial activity within virtual worlds. Unlike computer games where Non-Player-Character avatars are common, in most virtual worlds they are the exception — and until recently in Second Life they were non-existent. However there is real commercial scope for Als in these worlds — in roles from virtual sales staff and tutors to personal assistants. Deploying an embodied AI into a virtual world offers a unique opportunity to evaluate embodied Als, and to develop them within an environment where human and computer are on almost equal terms. This paper presents an architecture being used for the deployment of chatbot driven avatars within the Second Life virtual world, looks at the challenges of deploying an AI within such a virtual world, the possible implications for the Turing Test, and identifies research directions for the future.
A virtual model of the bench press exercise.
Rahmani, Abderrahmane; Rambaud, Olivier; Bourdin, Muriel; Mariot, Jean-Pierre
2009-08-07
The objective of this study was to design and validate a three degrees of freedom model in the sagittal plane for the bench press exercise. The mechanical model was based on rigid segments connected by revolute and prismatic pairs, which enabled a kinematic approach and global force estimation. The method requires only three simple measurements: (i) horizontal position of the hand (x(0)); (ii) vertical displacement of the barbell (Z) and (iii) elbow angle (theta). Eight adult male throwers performed maximal concentric bench press exercises against different masses. The kinematic results showed that the vertical displacement of each segment and the global centre of mass followed the vertical displacement of the lifted mass. Consequently, the vertical velocity and acceleration of the combined centre of mass and the lifted mass were identical. Finally, for each lifted mass, there were no practical differences between forces calculated from the bench press model and those simultaneously measured with a force platform. The error was lower than 2.5%. The validity of the mechanical method was also highlighted by a standard error of the estimate (SEE) ranging from 2.0 to 6.6N in absolute terms, a coefficient of variation (CV) < or =0.8%, and a correlation between the two scores > or =0.99 for all the lifts (p<0.001). The method described here, which is based on three simple parameters, allows accurate evaluation of the force developed by the upper limb muscles during bench press exercises in both field and laboratory conditions.
Virtual Reality: Ready or Not!
ERIC Educational Resources Information Center
Lewis, Joan E.
1994-01-01
Describes the development and current status of virtual reality (VR) and VR research. Market potentials for VR are discussed, including the entertainment industry, health care and medical training, flight and other simulators, and educational possibilities. A glossary of VR-related terms is included. (LRW)
Virtual reality and paranoid ideations in people with an 'at-risk mental state' for psychosis.
Valmaggia, Lucia R; Freeman, Daniel; Green, Catherine; Garety, Philippa; Swapp, David; Antley, Angus; Prescott, Corinne; Fowler, David; Kuipers, Elizabeth; Bebbington, Paul; Slater, Mel; Broome, Matthew; McGuire, Philip K
2007-12-01
Virtual reality provides a means of studying paranoid thinking in controlled laboratory conditions. However, this method has not been used with a clinical group. To establish the feasibility and safety of using virtual reality methodology in people with an at-risk mental state and to investigate the applicability of a cognitive model of paranoia to this group. Twenty-one participants with an at-risk mental state were assessed before and after entering a virtual reality environment depicting the inside of an underground train. Virtual reality did not raise levels of distress at the time of testing or cause adverse experiences over the subsequent week. Individuals attributed mental states to virtual reality characters including hostile intent. Persecutory ideation in virtual reality was predicted by higher levels of trait paranoia, anxiety, stress, immersion in virtual reality, perseveration and interpersonal sensitivity. Virtual reality is an acceptable experimental technique for use with individuals with at-risk mental states. Paranoia in virtual reality was understandable in terms of the cognitive model of persecutory delusions.
ERIC Educational Resources Information Center
2003
The Mass Communication and Society Division of the proceedings contains the following 12 papers: "Free Congress Research and Education Foundation: An Extremist Organization in Think Tank Clothing?" (Sharron M. Hope); "Presence in Informative Virtual Environments: The Effects of Self-Efficacy, Spatial Ability and Mood" (Lynette…
Advanced Maintenance Simulation by Means of Hand-Based Haptic Interfaces
NASA Astrophysics Data System (ADS)
Nappi, Michele; Paolino, Luca; Ricciardi, Stefano; Sebillo, Monica; Vitiello, Giuliana
Aerospace industry has been involved in virtual simulation for design and testing since the birth of virtual reality. Today this industry is showing a growing interest in the development of haptic-based maintenance training applications, which represent the most advanced way to simulate maintenance and repair tasks within a virtual environment by means of a visual-haptic approach. The goal is to allow the trainee to experiment the service procedures not only as a workflow reproduced at a visual level but also in terms of the kinaesthetic feedback involved with the manipulation of tools and components. This study, conducted in collaboration with aerospace industry specialists, is aimed to the development of an immersive virtual capable of immerging the trainees into a virtual environment where mechanics and technicians can perform maintenance simulation or training tasks by directly manipulating 3D virtual models of aircraft parts while perceiving force feedback through the haptic interface. The proposed system is based on ViRstperson, a virtual reality engine under development at the Italian Center for Aerospace Research (CIRA) to support engineering and technical activities such as design-time maintenance procedure validation, and maintenance training. This engine has been extended to support haptic-based interaction, enabling a more complete level of interaction, also in terms of impedance control, and thus fostering the development of haptic knowledge in the user. The user’s “sense of touch” within the immersive virtual environment is simulated through an Immersion CyberForce® hand-based force-feedback device. Preliminary testing of the proposed system seems encouraging.
A VM-shared desktop virtualization system based on OpenStack
NASA Astrophysics Data System (ADS)
Liu, Xi; Zhu, Mingfa; Xiao, Limin; Jiang, Yuanjie
2018-04-01
With the increasing popularity of cloud computing, desktop virtualization is rising in recent years as a branch of virtualization technology. However, existing desktop virtualization systems are mostly designed as a one-to-one mode, which one VM can only be accessed by one user. Meanwhile, previous desktop virtualization systems perform weakly in terms of response time and cost saving. This paper proposes a novel VM-Shared desktop virtualization system based on OpenStack platform. The paper modified the connecting process and the display data transmission process of the remote display protocol SPICE to support VM-Shared function. On the other hand, we propose a server-push display mode to improve user interactive experience. The experimental results show that our system performs well in response time and achieves a low CPU consumption.
Role of virtual reality simulation in endoscopy training
Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen
2015-01-01
Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed. PMID:26675895
Role of virtual reality simulation in endoscopy training.
Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen
2015-12-10
Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed.
Treatment of complicated grief using virtual reality: a case report.
Botella, C; Osma, J; Palacios, A García; Guillén, V; Baños, R
2008-01-01
This is the first work exploring the application of new technologies, concretely virtual reality, to facilitate emotional processing in the treatment of Complicated Grief. Our research team has designed a virtual reality environment (EMMA's World) to foster the expression and processing of emotions. In this study the authors present a description of EMMA's World, the clinical protocol, and a case report. The treatment program was applied in eight sessions. We present a brief description of the session agendas including the techniques used. We offer short-term (from pre-test to post-test) and long-term (2-, 6- and 12-month follow-ups) efficacy data. Our results offer preliminary support of the use of EMMA's World for the treatment of Complicated Grief.
Internet gratifications and internet addiction: on the uses and abuses of new media.
Song, Indeok; LaRose, Robert; Eastin, Matthew S; Lin, Carolyn A
2004-08-01
Internet addiction has been identified as a pathological behavior, but its symptoms may be found in normal populations, placing it within the scope of conventional theories of media attendance. The present study drew upon fresh conceptualizations of gratifications specific to the Internet to uncover seven gratification factors: Virtual Community, Information Seeking, Aesthetic Experience, Monetary Compensation, Diversion, Personal Status, and Relationship Maintenance. With no parallel in prior research, Virtual Community might be termed a "new" gratification. Virtual Community, Monetary Compensation, Diversion, and Personal Status gratifications accounted for 28% of the variance in Internet Addiction Tendency. The relationship between Internet addiction and gratifications was discussed in terms of the formation of media habits and the distinction between content and process gratifications.
Leading virtual teams: hierarchical leadership, structural supports, and shared team leadership.
Hoch, Julia E; Kozlowski, Steve W J
2014-05-01
Using a field sample of 101 virtual teams, this research empirically evaluates the impact of traditional hierarchical leadership, structural supports, and shared team leadership on team performance. Building on Bell and Kozlowski's (2002) work, we expected structural supports and shared team leadership to be more, and hierarchical leadership to be less, strongly related to team performance when teams were more virtual in nature. As predicted, results from moderation analyses indicated that the extent to which teams were more virtual attenuated relations between hierarchical leadership and team performance but strengthened relations for structural supports and team performance. However, shared team leadership was significantly related to team performance regardless of the degree of virtuality. Results are discussed in terms of needed research extensions for understanding leadership processes in virtual teams and practical implications for leading virtual teams. (c) 2014 APA, all rights reserved.
Dynamically Allocated Virtual Clustering Management System Users Guide
2016-11-01
provides usage instructions for the DAVC version 2.0 web application. 15. SUBJECT TERMS DAVC, Dynamically Allocated Virtual Clustering...This report provides usage instructions for the DAVC version 2.0 web application. This report is separated into the following sections, which detail
Samani, Afshin; Pontonnier, Charles; Dumont, Georges; Madeleine, Pascal
2015-01-01
The design of an industrial workstation tends to include ergonomic assessment steps based on a digital mock-up and a virtual reality setup. Lack of interaction and system fidelity is often reported as a main issue in such virtual reality applications. This limitation is a crucial issue as thorough ergonomic analysis is required for an investigation of the biomechanics. In the current study, we investigated the biomechanical responses of the shoulder joint in a simulated assembly task for comparison with the biomechanical responses in virtual environments. Sixteen male healthy novice subjects performed the task on three different platforms: real (RE), virtual (VE), and virtual environment with force feedback (VEF) with low and high precision demands. The subjects repeated the task 12 times (i.e., 12 cycles). High density electromyography from the upper trapezius and rotation angles of the shoulder joint were recorded and split into the cycles. The angular trajectories and velocity profiles of the shoulder joint angles over a cycle were computed in 3D. The inter-subject similarity in terms of normalized mutual information on kinematics and electromyography was investigated. Compared with RE the task in VE and VEF was characterized by lower kinematic maxima. The inter-subject similarity in RE compared with intra-subject similarity across the platforms was lower in terms of movement trajectories and greater in terms of trapezius muscle activation. The precision demand resulted in lower inter- and intra-subject similarity across platforms. The proposed approach identifies biomechanical differences in the shoulder joint in both VE and VEF compared with the RE platform, but these differences are less marked in VE mostly due to technical limitations of co-localizing the force feedback system in the VEF platform. PMID:25768123
Virtual industrial water usage and wastewater generation in the Middle East/North African region
NASA Astrophysics Data System (ADS)
Sakhel, S. R.; Geissen, S.-U.; Vogelpohl, A.
2013-01-01
This study deals with the quantification of volumes of water usage, wastewater generation, virtual water export, and wastewater generation from export for eight export relevant industries present in the Middle East/North Africa (MENA). It shows that about 3400 million m3 of water is used per annum while around 793 million m3 of wastewater is generated from products that are meant for domestic consumption and export. The difference between volumes of water usage and wastewater generation is due to water evaporation or injecting underground (oil wells pressure maintenance). The wastewater volume generated from production represents a population equivalent of 15.5 million in terms of wastewater quantity and 30.4 million in terms of BOD. About 409 million m3 of virtual water flows from MENA to EU27 (resulting from export of eight commodities) which is equivalent to 12.1% of the water usage of those industries and Libya is the largest virtual water exporter (about 87 million m3). Crude oil and refined petroleum products represent about 89% of the total virtual water flow, fertilizers represent around 10% and 1% remaining industries. EU27 poses the greatest indirect pressure on the Kuwaiti hydrological system where the virtual water export represents about 96% of the actual renewable water resources in this country. The Kuwaiti crude oil water use in relation to domestic water withdrawal is about 89% which is highest among MENA countries. Pollution of water bodies, in terms of BOD, due to production is very relevant for crude oil, slaughterhouses, refineries, olive oil, and tanneries while pollution due to export to EU27 is most relevant for crude oil industry and olive oil mills.
NASA Astrophysics Data System (ADS)
Aberasturi, Miriam
2015-11-01
Context: Two thirds of the stars in our galactic neighborhood (d < 10 pc) are M-dwarfs which also constitute the most common stellar objects in the Milky Way. This property, combined with their small stellar masses and radii, increases the likelihood of detecting terrestrial planets through radial velocity and transit techniques, making them very adequate targets for the exoplanet hunting projects. Nevertheless, M dwarfs have associated different observational difficulties. They are cool objects whose emission radiation peaks at infrared wavelengths and, thus, with a low surface brightness in the optical range. Also, the photometric variability as well as the significant chromospheric activity hinder the radial velocity and transit determinations. It is necessary, therefore, to carry out a detailed characterization of M-dwarfs before building a shortlist with the best possible candidates for exoplanet searches. Brown dwarfs (BDs) are self-gravitating objects that do not get enough mass to maintain a sufficiently high temperature in their core for stable hydrogen fusion. They represent the link between low-mass stars and giant planets. Due to their low temperatures, BDs emit significant flux at mid-infrared wavelength which makes this range very adequate to look for this type of objects. The Virtual Observatory (VO) is an international initiative designed to help the astronomical community in the exploitation of the multi-wavelength information that resides in data archives. In the last years the Spanish Virtual Observatory is conducting a number of projects focused on the study of substellar objects taking advantage of Virtual Observatory tools for an easy data access and analysis of large area surveys. This is the framework where this thesis has been carried out. This dissertation addresses three problems in the framework of low-mass stars and brown dwarfs, namely, the search for brown dwarf candidates crossmatching catalogues (Chapter 4), the search for nearby bright M dwarfs and the subsequent spectroscopic characterization (Chapter 5), and a study of binarity in mid to late-T brown dwarfs (Chapter 6); the first two topics use Virtual Observatory tools. Aims and methodology:In the first paper we carried out a search of brown dwarfs in the sky area in common to the WISE, 2MASS Point Source and SDSS catalogues. A VO-workflow with the criteria that must accomplish our candidates was built using STILTS. The workflow returned 138 sources that were visually inspected. For the six new candidates that passed the inspection, proper motions were calculated using the positions and the different observing epochs of the catalogues previously quoted. Effective temperatures were estimated using VOSA and spectral types and distances using appropriate photometric calibrations. In the second publication we conducted an all-sky photometric search by cross correlating the Carlsberg Meridian Catalogue (CMC14) and the 2MASS Point Source Catalogue with the aim of increasing the number of known, nearby M dwarfs that could be used as targets for exoplanet searches in general and CARMENES in particular. This VO search was combined with low-resolution spectroscopic followup of 27 objects using the IDS spectrograph at the Isaac Newton telescope at La Palma, as well as with an astrometric and photometric study. In the third paper we attempted to refine the multiplicity properties of T dwarfs studying the largest sample so far observed with high angular resolution imaging. We undertook two parallel programs using the Wide Field Camera 3 (WFC3) installed on the Hubble Space Telescope (HST). We used a PSF-fitting subtraction technique to reveal the presence of any close companion to the sources in our sample. Monte Carlo simulations were carried out to estimate the capability of WFC3 to detect close binaries in terms of angular separation and magnitude difference. Simulations were also used to determine the fraction of binaries that would have been detected around each source based on assumed separations, mass ratio distributions and orientations of the systems. Results: The main conclusion from this dissertation is that the Virtual Observatory has proved to be an excellent research methodology in the field of low mass stars and brown dwarfs. In particular, it allowed an efficient management of the queries to different catalogues and archives as well as the estimation of physical parameters through VO-tools. In the first publication we present the identification of 31 brown dwarf (25 known and 6 strong candidates not previously reported in the literature) identified in the sky area in common toWISE, 2MASS and SDSS. This is a remarkable number considering that 2MASS has been extensively searched for ultracool dwarfs and clearly show how new surveys and the use of VO tools can help to mine older surveys. The robustness of our methodology was confirmed with the spectroscopic confirmation of our candidate targets making it an ideal technique to identify brown dwarfs and, by extension, other rare objects. In the second paper, we show the potential of the VO and a purely photometric approach for finding new bright, nearby M dwarfs that escaped previous surveys mostly based on proper motions. We discover 24 new potential targets for exoplanet hunting (7 at less than 20 pc), 12 of which have been included in the CARMENES input catalogue of M dwarfs. We also identify three young very low-mass stars (M4-M5 spectral types) in the Taurus-Auriga region and a wide (110 AU) binary system. In the third paper we infer an upper limit for the binary fraction of >T5 dwarfs of <16 - < 25% depending of the underlying mass ratio distribution. This binary fraction is consistent with previous estimations. From this work we also conclude that theWFC3 is more sensitive to cool companions than otherHST instruments like NICMOS or WFPC2 but its lower angular resolution makes it unsuitable to detect tight brown dwarf binary systems.
ERIC Educational Resources Information Center
Broughton, Lee
2011-01-01
Since the rise of the Internet, the act of border crossing has become a pursuit that must necessarily be conceptualized in both real and virtual terms. By using theories connected to virtual communities, new technologies, fan cultures and tourism, this paper seeks to show that the culturally productive activities of a transnational virtual…
ERIC Educational Resources Information Center
Miller, Carmen
1992-01-01
The first of two articles discusses virtual reality (VR) and online databases; the second one reports on an interview with Thomas A. Furness III, who defines VR and explains work at the Human Interface Technology Laboratory (HIT). Sidebars contain a glossary of VR terms and a conversation with Toni Emerson, the HIT lab's librarian. (LRW)
2015-09-28
the performance of log-and- replay can degrade significantly for VMs configured with multiple virtual CPUs, since the shared memory communication...whether based on checkpoint replication or log-and- replay , existing HA ap- proaches use in- memory backups. The backup VM sits in the memory of a...efficiently. 15. SUBJECT TERMS High-availability virtual machines, live migration, memory and traffic overheads, application suspension, Java
Educational Uses of Virtual Reality Technology.
1998-01-01
technology. It is affordable in that a basic level of technology can be achieved on most existing personal computers at either no cost or some minimal...actually present in a virtual environment is termed "presence" and is an artifact of being visually immersed in the computer -generated virtual world...Carolina University, VREL Teachers 1996 onward £ CO ■3 u VR in Education University of Illinois, National Center for Super- computing Applications
NASA Astrophysics Data System (ADS)
Adlisia Puspa Harani, Sandhika
2018-05-01
The study is conducted by gathering data from interviews an in-home experiment, to examine the impacts of both virtual and physical SED toward user engagement. Business opportunity and benefits of virtual SED for stake holders are also discussed in this study. The research was conducted by interviewing method to respondens in Nottingham, UK. By comparing consumers’ energy saving behaviour from physical and virtual SED users, virtual SED shows similar level of effectiveness as physical SED, but there is no evidence that the virtual versions are better than the physical ones in terms of reducing energy consumption. Nevertheless, virtual SED can be more beneficial for consumers who can get easier access. They also help educating users to be more concern about energy issue. Energy suppliers get benefits by having virtual versions of SED, in which they can reduce production and distribution costs, as well as diminishing waste from physical SED.
Ganier, Franck; Hoareau, Charlotte; Tisseau, Jacques
2014-01-01
Virtual reality opens new opportunities for operator training in complex tasks. It lowers costs and has fewer constraints than traditional training. The ultimate goal of virtual training is to transfer knowledge gained in a virtual environment to an actual real-world setting. This study tested whether a maintenance procedure could be learnt equally well by virtual-environment and conventional training. Forty-two adults were divided into three equally sized groups: virtual training (GVT® [generic virtual training]), conventional training (using a real tank suspension and preparation station) and control (no training). Participants then performed the procedure individually in the real environment. Both training types (conventional and virtual) produced similar levels of performance when the procedure was carried out in real conditions. Performance level for the two trained groups was better in terms of success and time taken to complete the task, time spent consulting job instructions and number of times the instructor provided guidance.
Rivera-Gutierrez, Diego; Ferdig, Rick; Li, Jian; Lok, Benjamin
2014-04-01
We have created You, M.D., an interactive museum exhibit in which users learn about topics in public health literacy while interacting with virtual humans. You, M.D. is equipped with a weight sensor, a height sensor and a Microsoft Kinect that gather basic user information. Conceptually, You, M.D. could use this user information to dynamically select the appearance of the virtual humans in the interaction attempting to improve learning outcomes and user perception for each particular user. For this concept to be possible, a better understanding of how different elements of the visual appearance of a virtual human affects user perceptions is required. In this paper, we present the results of an initial user study with a large sample size (n =333) ran using You, M.D. The study measured users reactions based on the users gender and body-mass index (BMI) when facing virtual humans with BMI either concordant or discordant from the users BMI. The results of the study indicate that concordance between the users BMI and the virtual humans BMI affects male and female users differently. The results also show that female users rate virtual humans as more knowledgeable than male users rate the same virtual humans.
Chen, Bowen; Zhao, Yongli; Zhang, Jie
2015-09-21
In this paper, we develop a virtual link priority mapping (LPM) approach and a virtual node priority mapping (NPM) approach to improve the energy efficiency and to reduce the spectrum usage over the converged flexible bandwidth optical networks and data centers. For comparison, the lower bound of the virtual optical network mapping is used for the benchmark solutions. Simulation results show that the LPM approach achieves the better performance in terms of power consumption, energy efficiency, spectrum usage, and the number of regenerators compared to the NPM approach.
Virtual Training and Coaching of Health Behavior: Example from Mindfulness Meditation Training
Hudlicka, Eva
2014-01-01
Objective Computer-based virtual coaches are increasingly being explored for patient education, counseling, and health behavior training and coaching. The objective of this research was to develop and evaluate a Virtual Mindfulness Coach for training and coaching in mindfulness meditation. Method The coach was implemented as an embodied conversational character, providing mindfulness training and coaching via mixed initiative, text-based, natural language dialogue with the student, and emphasizing affect-adaptive interaction. (The term ‘mixed initiative dialog’ refers to a human-machine dialogue where either can initiate a conversation or a change in the conversation topic.) Results Findings from a pilot evaluation study indicate that the coach-based training is more effective in helping students establish a regular practice than self-administered training using written and audio materials. The coached group also appeared to be in more advanced stages of change in terms of the transtheoretical model, and have a higher sense of self-efficacy regarding establishment of a regular mindfulness practice. Conclusion These results suggest that virtual coach-based training of mindfulness is both feasible, and potentially more effective, than a self-administered program. Of particular interest is the identification of the specific coach features that contribute to its effectiveness. Practice Implications Virtual coaches could provide easily-accessible and cost-effective customized training for a range of health behaviors. The affect-adaptive aspect of these coaches is particularly relevant for helping patients establish long-term behavior changes. PMID:23809167
Virtual training and coaching of health behavior: example from mindfulness meditation training.
Hudlicka, Eva
2013-08-01
Computer-based virtual coaches are increasingly being explored for patient education, counseling, and health behavior training and coaching. The objective of this research was to develop and evaluate a Virtual Mindfulness Coach for training and coaching in mindfulness meditation. The coach was implemented as an embodied conversational character, providing mindfulness training and coaching via mixed initiative, text-based, natural language dialog with the student, and emphasizing affect-adaptive interaction. (The term 'mixed initiative dialog' refers to a human-machine dialog where either can initiate a conversation or a change in the conversation topic.) Findings from a pilot evaluation study indicate that the coach-based training is more effective in helping students establish a regular practice than self-administered training using written and audio materials. The coached group also appeared to be in more advanced stages of change in terms of the transtheoretical model, and have a higher sense of self-efficacy regarding establishment of a regular mindfulness practice. These results suggest that virtual coach-based training of mindfulness is both feasible, and potentially more effective, than a self-administered program. Of particular interest is the identification of the specific coach features that contribute to its effectiveness. Virtual coaches could provide easily accessible and cost-effective customized training for a range of health behaviors. The affect-adaptive aspect of these coaches is particularly relevant for helping patients establish long-term behavior changes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Yilmaz Yelvar, Gul Deniz; Çırak, Yasemin; Dalkılınç, Murat; Parlak Demir, Yasemin; Guner, Zeynep; Boydak, Ayşenur
2017-02-01
According to literature, virtual reality was found to reduce pain and kinesiophobia in patients with chronic pain. The purpose of the study was to investigate short-term effect of the virtual reality on pain, function, and kinesiophobia in patients with subacute and chronic non-specific low-back pain METHODS: This randomised controlled study in which 44 patients were randomly assigned to the traditional physiotherapy (control group, 22 subjects) or virtual walking integrated physiotherapy (experimental group, 22 subjects). Before and after treatment, Visual Analog Scale (VAS), TAMPA Kinesiophobia Scale (TKS), Oswestry Disability Index (ODI), Nottingham Health Profile (NHP), Timed-up and go Test (TUG), 6-Minute Walk Test (6MWT), and Single-Leg Balance Test were assessed. The interaction effect between group and time was assessed by using repeated-measures analysis of covariance. After treatment, both groups showed improvement in all parameters. However, VAS, TKS, TUG, and 6MWT scores showed significant differences in favor of the experimental group. Virtual walking integrated physiotherapy reduces pain and kinesiophobia, and improved function in patients with subacute and chronic non-specific low-back pain in short term.
Virtual collaboration in the online educational setting: a concept analysis.
Breen, Henny
2013-01-01
This study was designed to explore the concept of virtual collaboration within the context of an online learning environment in an academic setting. Rodgers' method of evolutionary concept analysis was used to provide a contextual view of the concept to identify attributes, antecedents, and consequences of virtual collaboration. Commonly used terms to describe virtual collaboration are collaborative and cooperative learning, group work, group interaction, group learning, and teamwork. A constructivist pedagogy, group-based process with a shared purpose, support, and web-based technology is required for virtual collaboration to take place. Consequences of virtual collaboration are higher order thinking and learning to work with others. A comprehensive definition of virtual collaboration is offered as an outcome of this analysis. Clarification of virtual collaboration prior to using it as a pedagogical tool in the online learning environment will enhance nursing education with the changes in nursing curriculum being implemented today. Further research is recommended to describe the developmental stages of the collaborative process among nursing students in online education and how virtual collaboration facilitates collaboration in practice. © 2013 Wiley Periodicals, Inc.
Open Virtual Worlds as Pedagogical Research Tools: Learning from the Schome Park Programme
NASA Astrophysics Data System (ADS)
Twining, Peter; Peachey, Anna
This paper introduces the term Open Virtual Worlds and argues that they are ‘unclaimed educational spaces’, which provide a valuable tool for researching pedagogy. Having explored these claims the way in which Teen Second Life® virtual world was used for pedagogical experimentation in the initial phases of the Schome Park Programme is described. Four sets of pedagogical dimensions that emerged are presented and illustrated with examples from the Schome Park Programme.
NASA Astrophysics Data System (ADS)
Sieradzan, Adam K.; Makowski, Mariusz; Augustynowicz, Antoni; Liwo, Adam
2017-03-01
A general and systematic method for the derivation of the functional expressions for the effective energy terms in coarse-grained force fields of polymer chains is proposed. The method is based on the expansion of the potential of mean force of the system studied in the cluster-cumulant series and expanding the all-atom energy in the Taylor series in the squares of interatomic distances about the squares of the distances between coarse-grained centers, to obtain approximate analytical expressions for the cluster cumulants. The primary degrees of freedom to average about are the angles for collective rotation of the atoms contained in the coarse-grained interaction sites about the respective virtual-bond axes. The approach has been applied to the revision of the virtual-bond-angle, virtual-bond-torsional, and backbone-local-and-electrostatic correlation potentials for the UNited RESidue (UNRES) model of polypeptide chains, demonstrating the strong dependence of the torsional and correlation potentials on virtual-bond angles, not considered in the current UNRES. The theoretical considerations are illustrated with the potentials calculated from the ab initio potential-energy surface of terminally blocked alanine by numerical integration and with the statistical potentials derived from known protein structures. The revised torsional potentials correctly indicate that virtual-bond angles close to 90° result in the preference for the turn and helical structures, while large virtual-bond angles result in the preference for polyproline II and extended backbone geometry. The revised correlation potentials correctly reproduce the preference for the formation of β-sheet structures for large values of virtual-bond angles and for the formation of α-helical structures for virtual-bond angles close to 90°.
The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory
NASA Astrophysics Data System (ADS)
Gurman, J. B.; Hourclé, J. A.; Bogart, R. S.; Tian, K.; Hill, F.; Suàrez-Sola, I.; Zarro, D. M.; Davey, A. R.; Martens, P. C.; Yoshimura, K.; Reardon, K. M.
2006-12-01
The Virtual Solar Observatory (VSO) has survived its infancy and provides metadata search and data identification for measurements from 45 instrument data sets held at 12 online archives, as well as flare and coronal mass ejection (CME) event lists. Like any toddler, the VSO is good at getting into anything and everything, and is now extending its grasp to more data sets, new missions, and new access methods using its application programming interface (API). We discuss and demonstrate recent changes, including developments for STEREO and SDO, and an IDL-callable interface for the VSO API. We urge the heliophysics community to help civilize this obstreperous youngster by providing input on ways to make the VSO even more useful for system science research in its role as part of the growing cluster of Heliophysics Virtual Observatories.
CSI, optimal control, and accelerometers: Trials and tribulations
NASA Technical Reports Server (NTRS)
Benjamin, Brian J.; Sesak, John R.
1994-01-01
New results concerning optimal design with accelerometers are presented. These results show that the designer must be concerned with the stability properties of two Linear Quadratic Gaussian (LQG) compensators, one of which does not explicitly appear in the closed-loop system dynamics. The new concepts of virtual and implemented compensators are introduced to cope with these subtleties. The virtual compensator appears in the closed-loop system dynamics and the implemented compensator appears in control electronics. The stability of one compensator does not guarantee the stability of the other. For strongly stable (robust) systems, both compensators should be stable. The presence of controlled and uncontrolled modes in the system results in two additional forms of the compensator with corresponding terms that are of like form, but opposite sign, making simultaneous stabilization of both the virtual and implemented compensator difficult. A new design algorithm termed sensor augmentation is developed that aids stabilization of these compensator forms by incorporating a static augmentation term associated with the uncontrolled modes in the design process.
Development of a Virtual Museum Including a 4d Presentation of Building History in Virtual Reality
NASA Astrophysics Data System (ADS)
Kersten, T. P.; Tschirschwitz, F.; Deggim, S.
2017-02-01
In the last two decades the definition of the term "virtual museum" changed due to rapid technological developments. Using today's available 3D technologies a virtual museum is no longer just a presentation of collections on the Internet or a virtual tour of an exhibition using panoramic photography. On one hand, a virtual museum should enhance a museum visitor's experience by providing access to additional materials for review and knowledge deepening either before or after the real visit. On the other hand, a virtual museum should also be used as teaching material in the context of museum education. The laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has developed a virtual museum (VM) of the museum "Alt-Segeberger Bürgerhaus", a historic town house. The VM offers two options for visitors wishing to explore the museum without travelling to the city of Bad Segeberg, Schleswig-Holstein, Germany. Option a, an interactive computer-based, tour for visitors to explore the exhibition and to collect information of interest or option b, to immerse into virtual reality in 3D with the HTC Vive Virtual Reality System.
Ethmoidectomy combined with superior meatus enlargement increases olfactory airflow
Kondo, Kenji; Nomura, Tsutomu; Yamasoba, Tatsuya
2017-01-01
Objectives The relationship between a particular surgical technique in endoscopic sinus surgery (ESS) and airflow changes in the post‐operative olfactory region has not been assessed. The present study aimed to compare olfactory airflow after ESS between conventional ethmoidectomy and ethmoidectomy with superior meatus enlargement, using virtual ESS and computational fluid dynamics (CFD) analysis. Study Design Prospective computational study. Materials and Methods Nasal computed tomography images of four adult subjects were used to generate models of the nasal airway. The original preoperative model was digitally edited as virtual ESS by performing uncinectomy, ethmoidectomy, antrostomy, and frontal sinusotomy. The following two post‐operative models were prepared: conventional ethmoidectomy with normal superior meatus (ESS model) and ethmoidectomy with superior meatus enlargement (ESS‐SM model). The calculated three‐dimensional nasal geometries were confirmed using virtual endoscopy to ensure that they corresponded to the post‐operative anatomy observed in the clinical setting. Steady‐state, laminar, inspiratory airflow was simulated, and the velocity, streamline, and mass flow rate in the olfactory region were compared among the preoperative and two postoperative models. Results The mean velocity in the olfactory region, number of streamlines bound to the olfactory region, and mass flow rate were higher in the ESS‐SM model than in the other models. Conclusion We successfully used an innovative approach involving virtual ESS, virtual endoscopy, and CFD to assess postoperative outcomes after ESS. It is hypothesized that the increased airflow to the olfactory fossa achieved with ESS‐SM may lead to improved olfactory function; however, further studies are required. Level of Evidence NA. PMID:28894833
Using an embedded reality approach to improve test reliability for NHPT tasks.
Bowler, M; Amirabdollahian, F; Dautenhahn, K
2011-01-01
Research into the use of haptic and virtual reality technologies has increased greatly over the past decade, in terms of both quality and quantity. Methods to utilise haptic and virtual technologies with currently existing techniques for assessing impairment are underway, and, due to the commercially available equipment, has found some success in the use of these methods for individuals who suffer upper limb impairment. This paper uses the clinically validated assessment technique for measuring motor impairment: the Nine Hole Peg Test and creates three tasks with different levels of realism. The efficacy of these tasks is discussed with particular attention paid to analysis in terms of removing factors that limit a virtual environment's use in a clinical setting, such as inter-subject variation. © 2011 IEEE
Software platform virtualization in chemistry research and university teaching
2009-01-01
Background Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Results Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Conclusion Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide. PMID:20150997
Software platform virtualization in chemistry research and university teaching.
Kind, Tobias; Leamy, Tim; Leary, Julie A; Fiehn, Oliver
2009-11-16
Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide.
Huttenlocker, Adam K
2014-01-01
The extent to which mass extinctions influence body size evolution in major tetrapod clades is inadequately understood. For example, the 'Lilliput effect,' a common feature of mass extinctions, describes a temporary decrease in body sizes of survivor taxa in post-extinction faunas. However, its signature on existing patterns of body size evolution in tetrapods and the persistence of its impacts during post-extinction recoveries are virtually unknown, and rarely compared in both geologic and phylogenetic contexts. Here, I evaluate temporal and phylogenetic distributions of body size in Permo-Triassic therocephalian and cynodont therapsids (eutheriodonts) using a museum collections-based approach and time series model fitting on a regional stratigraphic sequence from the Karoo Basin, South Africa. I further employed rank order correlation tests on global age and clade rank data from an expanded phylogenetic dataset, and performed evolutionary model testing using Brownian (passive diffusion) models. Results support significant size reductions in the immediate aftermath of the end-Permian mass extinction (ca. 252.3 Ma) consistent with some definitions of Lilliput effects. However, this temporal succession reflects a pattern that was underscored largely by Brownian processes and constructive selectivity. Results also support two recent contentions about body size evolution and mass extinctions: 1) active, directional evolution in size traits is rare over macroevolutionary time scales and 2) geologically brief size reductions may be accomplished by the ecological removal of large-bodied species without rapid originations of new small-bodied clades or shifts from long-term evolutionary patterns.
Navigating Mythic Space in the Digital Age
ERIC Educational Resources Information Center
Foley, Drew Thomas
2012-01-01
In prior ages, alternate worlds are associated with symbolic expressions of storied space, here termed "mythic space." The digital age brings new forms of virtual space that are co-existent with physical space. These virtual spaces may be understood as a contemporary representation of mythic space. This dissertation explores the paths by…
The Virtual Workplace Ethnography: Positioning Student Writers as Knowledge Makers
ERIC Educational Resources Information Center
Sommers, Jeff
2015-01-01
The Virtual Workplace Ethnography is a first-year composition assignment that positions students as knowledge makers by requiring them to apply a theoretical lens ("Working Knowledge") to a video representation of a workplace. The lens provides multiple terms for analysis of workplace behaviors in context, providing a scaffolding for…
Network Analysis of a Virtual Community of Learning of Economics Educators
ERIC Educational Resources Information Center
Fontainha, Elsa; Martins, Jorge Tiago; Vasconcelos, Ana Cristina
2015-01-01
Introduction: This paper aims at understanding virtual communities of learning in terms of dynamics, types of knowledge shared by participants, and network characteristics such as size, relationships, density, and centrality of participants. It looks at the relationships between these aspects and the evolution of communities of learning. It…
Results of a massive experiment on virtual currency endowments and money demand.
Živić, Nenad; Andjelković, Igor; Özden, Tolga; Dekić, Milovan; Castronova, Edward
2017-01-01
We use a 575,000-subject, 28-day experiment to investigate monetary policy in a virtual setting. The experiment tests the effect of virtual currency endowments on player retention and virtual currency demand. An increase in endowments of a virtual currency should lower the demand for the currency in the short run. However, in the long run, we would expect money demand to rise in response to inflation in the virtual world. We test for this behavior in a virtual field experiment in the football management game Top11. 575,000 players were selected at random and allocated to different "shards" or versions of the world. The shards differed only in terms of the initial money endowment offered to new players. Money demand was observed for 28 days as players used real money to purchase additional virtual currency. The results indicate that player money purchases were significantly higher in the shards where higher endowments were given. This suggests that a positive change in the money supply in a virtual context leads to inflation and increased money demand, and does so much more quickly than in real-world economies. Differences between virtual and real currency behavior will become more interesting as virtual currency becomes a bigger part of the real economy.
Results of a massive experiment on virtual currency endowments and money demand
Živić, Nenad; Andjelković, Igor; Özden, Tolga; Dekić, Milovan
2017-01-01
We use a 575,000-subject, 28-day experiment to investigate monetary policy in a virtual setting. The experiment tests the effect of virtual currency endowments on player retention and virtual currency demand. An increase in endowments of a virtual currency should lower the demand for the currency in the short run. However, in the long run, we would expect money demand to rise in response to inflation in the virtual world. We test for this behavior in a virtual field experiment in the football management game Top11. 575,000 players were selected at random and allocated to different “shards” or versions of the world. The shards differed only in terms of the initial money endowment offered to new players. Money demand was observed for 28 days as players used real money to purchase additional virtual currency. The results indicate that player money purchases were significantly higher in the shards where higher endowments were given. This suggests that a positive change in the money supply in a virtual context leads to inflation and increased money demand, and does so much more quickly than in real-world economies. Differences between virtual and real currency behavior will become more interesting as virtual currency becomes a bigger part of the real economy. PMID:29045494
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, André H.; Lepenik, Christopher; Preisser, Moritz
Here, we provide a systematic renormalization group formalism for the mass effects in the relation of the pole mass m Q pole and short-distance masses such as themore » $$—\\atop{MS}$$ mass $$—\\atop{m}$$ Q of a heavy quark Q, coming from virtual loop insertions of massive quarks lighter than Q. The formalism reflects the constraints from heavy quark symmetry and entails a combined matching and evolution procedure that allows to disentangle and successively integrate out the corrections coming from the lighter massive quarks and the momentum regions between them and to precisely control the large order asymptotic behavior. With the formalism we systematically sum logarithms of ratios of the lighter quark masses and m Q , relate the QCD corrections for different external heavy quarks to each other, predict the O(α$$4\\atop{s}$$) virtual quark mass corrections in the pole-$$—\\atop{MS}$$ mass relation, calculate the pole mass differences for the top, bottom and charm quarks with a precision of around 20 MeV and analyze the decoupling of the lighter massive quark flavors at large orders. The summation of logarithms is most relevant for the top quark pole mass m t pole, where the hierarchy to the bottom and charm quarks is large. We determine the ambiguity of the pole mass for top, bottom and charm quarks in different scenarios with massive or massless bottom and charm quarks in a way consistent with heavy quark symmetry, and we find that it is 250 MeV. The ambiguity is larger than current projections for the precision of top quark mass measurements in the high-luminosity phase of the LHC.« less
Hoang, André H.; Lepenik, Christopher; Preisser, Moritz
2017-09-20
Here, we provide a systematic renormalization group formalism for the mass effects in the relation of the pole mass m Q pole and short-distance masses such as themore » $$—\\atop{MS}$$ mass $$—\\atop{m}$$ Q of a heavy quark Q, coming from virtual loop insertions of massive quarks lighter than Q. The formalism reflects the constraints from heavy quark symmetry and entails a combined matching and evolution procedure that allows to disentangle and successively integrate out the corrections coming from the lighter massive quarks and the momentum regions between them and to precisely control the large order asymptotic behavior. With the formalism we systematically sum logarithms of ratios of the lighter quark masses and m Q , relate the QCD corrections for different external heavy quarks to each other, predict the O(α$$4\\atop{s}$$) virtual quark mass corrections in the pole-$$—\\atop{MS}$$ mass relation, calculate the pole mass differences for the top, bottom and charm quarks with a precision of around 20 MeV and analyze the decoupling of the lighter massive quark flavors at large orders. The summation of logarithms is most relevant for the top quark pole mass m t pole, where the hierarchy to the bottom and charm quarks is large. We determine the ambiguity of the pole mass for top, bottom and charm quarks in different scenarios with massive or massless bottom and charm quarks in a way consistent with heavy quark symmetry, and we find that it is 250 MeV. The ambiguity is larger than current projections for the precision of top quark mass measurements in the high-luminosity phase of the LHC.« less
Virtual Reality at the PC Level
NASA Technical Reports Server (NTRS)
Dean, John
1998-01-01
The main objective of my research has been to incorporate virtual reality at the desktop level; i.e., create virtual reality software that can be run fairly inexpensively on standard PC's. The standard language used for virtual reality on PC's is VRML (Virtual Reality Modeling Language). It is a new language so it is still undergoing a lot of changes. VRML 1.0 came out only a couple years ago and VRML 2.0 came out around last September. VRML is an interpreted language that is run by a web browser plug-in. It is fairly flexible in terms of allowing you to create different shapes and animations. Before this summer, I knew very little about virtual reality and I did not know VRML at all. I learned the VRML language by reading two books and experimenting on a PC. The following topics are presented: CAD to VRML, VRML 1.0 to VRML 2.0, VRML authoring tools, VRML browsers, finding virtual reality applications, the AXAF project, the VRML generator program, web communities and future plans.
A virtual water network of the Roman world
NASA Astrophysics Data System (ADS)
Dermody, B. J.; van Beek, R. P. H.; Meeks, E.; Klein Goldewijk, K.; Scheidel, W.; van der Velde, Y.; Bierkens, M. F. P.; Wassen, M. J.; Dekker, S. C.
2014-12-01
The Romans were perhaps the most impressive exponents of water resource management in preindustrial times with irrigation and virtual water trade facilitating unprecedented urbanization and socioeconomic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanization and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we find that irrigation and virtual water trade increased Roman resilience to interannual climate variability. However, urbanization arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and eroded its resilience to climate variability in the long term. In addition to improving our understanding of Roman water resource management, our cost-distance-based analysis illuminates how increases in import costs arising from climatic and population pressures are likely to be distributed in the future global virtual water network.
Virtuous and vicious virtual water trade with application to Italy.
Winter, Julia Anna; Allamano, Paola; Claps, Pierluigi
2014-01-01
The current trade of agricultural goods, with connections involving all continents, entails for global exchanges of "virtual" water, i.e. water used in the production process of alimentary products, but not contained within. Each trade link translates into a corresponding virtual water trade, allowing quantification of import and export fluxes of virtual water. The assessment of the virtual water import for a given nation, compared to the national consumption, could give an approximate idea of the country's reliance on external resources from the food and the water resources point of view. A descriptive approach to the understanding of a nation's degree of dependency from overseas food and water resources is first proposed, and indices of water trade virtuosity, as opposed to inefficiency, are devised. Such indices are based on the concepts of self-sufficiency and relative export, computed systematically on all products from the FAOSTAT database, taking Italy as the first case study. Analysis of time series of the self-sufficiency and relative export can demonstrate effects of market tendencies and influence water-related policies at the international level. The goal of this approach is highlighting incongruent terms in the virtual water balances by the viewpoint of single products. Specific products, which are here referred to as "swap products", are in fact identified as those that lead to inefficiencies in the virtual water balance due to their contemporaneously high import and export. The inefficiencies due to the exchanges of the same products between two nations are calculated in terms of virtual water volumes. Furthermore, the cases of swap products are investigated by computing two further indexes denoting the ratio of virtual water exchanged in the swap and the ratio of the economic values of the swapped products. The analysis of these figures can help examine the reasons behind the swap phenomenon in trade.
Projection and Reflection of American Culture via Mass Media--Case Study: Australia.
ERIC Educational Resources Information Center
Breen, Myles P.
The current Australian scene is a good example of how American culture as portrayed in the mass media is reflected by a receptor national culture. Australia, sharing a similar history and a common language with the United States, has virtually no resistance to American culture. Some differences in national characteristics, such as the Australian…
USDA-ARS?s Scientific Manuscript database
A method is demonstrated for analysis of vitamin D-fortified dietary supplements that eliminates virtually all chemical pretreatment prior to analysis, and is referred to as a ‘dilute and shoot’ method. Three mass spectrometers, in parallel, plus a UV detector, an evaporative light scattering detec...
Robust stability of second-order systems
NASA Technical Reports Server (NTRS)
Chuang, C.-H.
1995-01-01
It has been shown recently how virtual passive controllers can be designed for second-order dynamic systems to achieve robust stability. The virtual controllers were visualized as systems made up of spring, mass and damping elements. In this paper, a new approach emphasizing on the notion of positive realness to the same second-order dynamic systems is used. Necessary and sufficient conditions for positive realness are presented for scalar spring-mass-dashpot systems. For multi-input multi-output systems, we show how a mass-spring-dashpot system can be made positive real by properly choosing its output variables. In particular, sufficient conditions are shown for the system without output velocity. Furthermore, if velocity cannot be measured then the system parameters must be precise to keep the system positive real. In practice, system parameters are not always constant and cannot be measured precisely. Therefore, in order to be useful positive real systems must be robust to some degrees. This can be achieved with the design presented in this paper.
NASA Astrophysics Data System (ADS)
Beckhaus, Steffi
Virtual Reality aims at creating an artificial environment that can be perceived as a substitute to a real setting. Much effort in research and development goes into the creation of virtual environments that in their majority are perceivable only by eyes and hands. The multisensory nature of our perception, however, allows and, arguably, also expects more than that. As long as we are not able to simulate and deliver a fully sensory believable virtual environment to a user, we could make use of the fully sensory, multi-modal nature of real objects to fill in for this deficiency. The idea is to purposefully integrate real artifacts into the application and interaction, instead of dismissing anything real as hindering the virtual experience. The term virtual reality - denoting the goal, not the technology - shifts from a core virtual reality to an “enriched” reality, technologically encompassing both the computer generated and the real, physical artifacts. Together, either simultaneously or in a hybrid way, real and virtual jointly provide stimuli that are perceived by users through their senses and are later formed into an experience by the user's mind.
Virtual terrain: a security-based representation of a computer network
NASA Astrophysics Data System (ADS)
Holsopple, Jared; Yang, Shanchieh; Argauer, Brian
2008-03-01
Much research has been put forth towards detection, correlating, and prediction of cyber attacks in recent years. As this set of research progresses, there is an increasing need for contextual information of a computer network to provide an accurate situational assessment. Typical approaches adopt contextual information as needed; yet such ad hoc effort may lead to unnecessary or even conflicting features. The concept of virtual terrain is, therefore, developed and investigated in this work. Virtual terrain is a common representation of crucial information about network vulnerabilities, accessibilities, and criticalities. A virtual terrain model encompasses operating systems, firewall rules, running services, missions, user accounts, and network connectivity. It is defined as connected graphs with arc attributes defining dynamic relationships among vertices modeling network entities, such as services, users, and machines. The virtual terrain representation is designed to allow feasible development and maintenance of the model, as well as efficacy in terms of the use of the model. This paper will describe the considerations in developing the virtual terrain schema, exemplary virtual terrain models, and algorithms utilizing the virtual terrain model for situation and threat assessment.
Vertical integration and organizational networks in health care.
Robinson, J C; Casalino, L P
1996-01-01
This paper documents the growing linkages between primary care-centered medical groups and specialists and between physicians and hospitals under managed care. We evaluate the two alternative forms of organizational coordination: "vertical integration," based on unified ownership, and "virtual integration," based on contractual networks. Excess capacity and the need for investment capital are major short-term determinants of these vertical versus virtual integration decisions in health care. In the longer term, the principal determinants are economies of scale, risk-bearing ability, transaction costs, and the capacity for innovation in methods of managing care.
Network Hardware Virtualization for Application Provisioning in Core Networks
Gumaste, Ashwin; Das, Tamal; Khandwala, Kandarp; ...
2017-02-03
We present that service providers and vendors are moving toward a network virtualized core, whereby multiple applications would be treated on their own merit in programmable hardware. Such a network would have the advantage of being customized for user requirements and allow provisioning of next generation services that are built specifically to meet user needs. In this article, we articulate the impact of network virtualization on networks that provide customized services and how a provider's business can grow with network virtualization. We outline a decision map that allows mapping of applications with technology that is supported in network-virtualization - orientedmore » equipment. Analogies to the world of virtual machines and generic virtualization show that hardware supporting network virtualization will facilitate new customer needs while optimizing the provider network from the cost and performance perspectives. A key conclusion of the article is that growth would yield sizable revenue when providers plan ahead in terms of supporting network-virtualization-oriented technology in their networks. To be precise, providers have to incorporate into their growth plans network elements capable of new service deployments while protecting network neutrality. Finally, a simulation study validates our NV-induced model.« less
Network Hardware Virtualization for Application Provisioning in Core Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gumaste, Ashwin; Das, Tamal; Khandwala, Kandarp
We present that service providers and vendors are moving toward a network virtualized core, whereby multiple applications would be treated on their own merit in programmable hardware. Such a network would have the advantage of being customized for user requirements and allow provisioning of next generation services that are built specifically to meet user needs. In this article, we articulate the impact of network virtualization on networks that provide customized services and how a provider's business can grow with network virtualization. We outline a decision map that allows mapping of applications with technology that is supported in network-virtualization - orientedmore » equipment. Analogies to the world of virtual machines and generic virtualization show that hardware supporting network virtualization will facilitate new customer needs while optimizing the provider network from the cost and performance perspectives. A key conclusion of the article is that growth would yield sizable revenue when providers plan ahead in terms of supporting network-virtualization-oriented technology in their networks. To be precise, providers have to incorporate into their growth plans network elements capable of new service deployments while protecting network neutrality. Finally, a simulation study validates our NV-induced model.« less
Silva, Mauro Rubens
2002-10-01
Starting with the excellent collective work done by the European Community (EC)-funded Virtual Reality Environments for Psycho-Neuro-physiological Assessment and Rehabilitation (VREPAR) projects, I try to indicate some possible pathways that would allow a better integration of this advanced technology into the reality of Latin American psychology. I myself use analyses that I did in my master's degree in the PUCSP-Catholic University in São Paulo, Brazil. I also include a brief description of the CD-ROM Clinical Psychology Uses of Virtual Reality (CPUVR) that accompanies my thesis. I point out the importance of collaboration between psychology and other disciplines, including computer science. I explain the method that I used to work with digital information, important for the formation of a critical mass of people thinking in Portuguese and Spanish to accelerate a technological jump.
How does schema theory apply to real versus virtual memories?
Flannery, Kathleen A; Walles, Rena
2003-04-01
Schemas are cognitive frameworks that guide memory, aide in the interpretation of events, and influence how we retrieve stored memories. The purpose of this study was to explore how schemas operate in a well-known environment and to examine whether or not schemas operate differently in real versus virtual environments. Twenty-four undergraduate students from a small liberal arts college in the northeast participated for course credit. Two identical offices (a real office and a virtual office) were created and filled with eight consistent and eight inconsistent items. Each participant explored either the real office or the virtual office for 20 seconds without any knowledge that their memory would be tested. After leaving the office, participants completed a recognition task and a short demographic questionnaire. Overall sensitivity and higher confidence in recognition memory scores was found for inconsistent compared to consistent items. Greater support for the consistency effect was observed in this study and interpreted in terms of the dynamic memory model and the schema-plus-correction model. The results also demonstrate that virtual reality paradigms may produce similar outcomes compared to the real world in terms of some memory processes, but additional design factors must be considered if the researcher's goal is to create equivalent paradigms.
Real and virtual robotics in mathematics education at the school-university transition
NASA Astrophysics Data System (ADS)
Samuels, Peter; Haapasalo, Lenni
2012-04-01
LOGO and turtle graphics were an influential movement in primary school mathematics education in the 1980s and 1990s. Since then, technology has moved forward, both in terms of its sophistication and pedagogical potential; and learner experiences, preferences and ways of thinking have changed dramatically. Based on the authors' previous work and a literature review, this article revisits the subject of enhancing mathematics education through educational robotics kits and virtual robotic animations by proposing their simultaneous deployment at the school-university transition. The rationale for such an application is argued and an evaluation framework for these technologies is proposed. Two educational robotic kits and a virtual environment supporting robotic animations are evaluated both in terms of their feasibility of deployment and their educational effectiveness. Finally, the evaluation of learning experiences when deploying the proposed pedagogical approach is discussed.
Steering a virtual blowfly: simulation of visual pursuit.
Boeddeker, Norbert; Egelhaaf, Martin
2003-09-22
The behavioural repertoire of male flies includes visually guided chasing after moving targets. The visuomotor control system for these pursuits belongs to the fastest found in the animal kingdom. We simulated a virtual fly, to test whether or not experimentally established hypotheses on the underlying control system are sufficient to explain chasing behaviour. Two operating instructions for steering the chasing virtual fly were derived from behavioural experiments: (i) the retinal size of the target controls the fly's forward speed and, thus, indirectly its distance to the target; and (ii) a smooth pursuit system uses the retinal position of the target to regulate the fly's flight direction. Low-pass filters implement neuronal processing time. Treating the virtual fly as a point mass, its kinematics are modelled in consideration of the effects of translatory inertia and air friction. Despite its simplicity, the model shows behaviour similar to that of real flies. Depending on its starting position and orientation as well as on target size and speed, the virtual fly either catches the target or follows it indefinitely without capture. These two behavioural modes of the virtual fly emerge from the control system for flight steering without implementation of an explicit decision maker.
Running of the charm-quark mass from HERA deep-inelastic scattering data
Gizhko, A.; Geiser, A.; Moch, S.; ...
2017-11-07
Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m c(m c) in the MS¯ renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q 2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. Lastly, the scale dependence of the mass is found to be consistent with QCD expectations.
Running of the charm-quark mass from HERA deep-inelastic scattering data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gizhko, A.; Geiser, A.; Moch, S.
Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m c(m c) in the MS¯ renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q 2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. Lastly, the scale dependence of the mass is found to be consistent with QCD expectations.
ERIC Educational Resources Information Center
Nahl, Diane
2010-01-01
New users of virtual environments face a steep learning curve, requiring persistence and determination to overcome challenges experienced while acclimatizing to the demands of avatar-mediated behavior. Concurrent structured self-reports can be used to monitor the personal affective and cognitive struggles involved in virtual world adaptation to…
Planning and Implementing Virtual Charter Schools in Wisconsin: A Case Study
ERIC Educational Resources Information Center
Lee, Juanita Joyce
2010-01-01
The long-term concern relative to education inequity indicates that the nation's youth will not be adequately prepared for the global and highly competitive marketplace of the 21st century (Casner-Lotto & Barrington, 2006). Initiatives to address this concern persist, including the creation of the virtual charter school (Vanourek, 2006;…
ERIC Educational Resources Information Center
Oser, Rachel; Fraser, Barry J.
2015-01-01
As society becomes increasingly global and experiential, research suggests that students can benefit from alternative learning environments that extend beyond the classroom. In providing students with laboratory experiences that otherwise would not be possible in high-school settings, virtual laboratories can simulate real laboratories and…
Virtual Manipulatives: What They Are and How Teachers Can Use Them
ERIC Educational Resources Information Center
Bouck, Emily C.; Flanagan, Sara M.
2010-01-01
Research on the positive impact of using concrete manipulatives in mathematics for students with high-incidence disabilities is clear. Maccini and Gagnon (2000) considered manipulatives to be a best practice in terms of educating students with high-incidence disabilities in mathematics. It would follow, then, that research on virtual manipulatives…
Comparing Synchronous Virtual Classrooms: Student, Instructor and Course Designer Perspectives
ERIC Educational Resources Information Center
Lavolette, Elizabeth; Venable, Melissa A.; Gose, Eddie; Huang, Eric
2010-01-01
The synchronous tool that is right for developing an online course depends on the context, needs and priorities. This report compares synchronous, virtual classroom systems Elluminate Live! v. 9 and Dimdim v. 4.5. The researchers compared the features of each system in terms of facilitation of communication, presentation of course content and…
Enhancing Autonomy of Aerial Systems Via Integration of Visual Sensors into Their Avionics Suite
2016-09-01
aerial platform for subsequent visual sensor integration. 14. SUBJECT TERMS autonomous system, quadrotors, direct method, inverse ...CONTROLLER ARCHITECTURE .....................................................43 B. INVERSE DYNAMICS IN THE VIRTUAL DOMAIN ......................45 1...control station GPS Global-Positioning System IDVD inverse dynamics in the virtual domain ILP integer linear program INS inertial-navigation system
Training healthcare personnel for mass-casualty incidents in a virtual emergency department: VED II.
Heinrichs, Wm Leroy; Youngblood, Patricia; Harter, Phillip; Kusumoto, Laura; Dev, Parvati
2010-01-01
Training emergency personnel on the clinical management of a mass-casualty incident (MCI) with prior chemical, biological, radioactive, nuclear, or explosives (CBRNE) -exposed patients is a component of hospital preparedness procedures. The objective of this research was to determine whether a Virtual Emergency Department (VED), designed after the Stanford University Medical Center's Emergency Department (ED) and populated with 10 virtual patient victims who suffered from a dirty bomb blast (radiological) and 10 who suffered from exposure to a nerve toxin (chemical), is an effective clinical environment for training ED physicians and nurses for such MCIs. Ten physicians with an average of four years of post-training experience, and 12 nurses with an average of 9.5 years of post-graduate experience at Stanford University Medical Center and San Mateo County Medical Center participated in this IRB-approved study. All individuals were provided electronic information about the clinical features of patients exposed to a nerve toxin or radioactive blast before the study date and an orientation to the "game" interface, including an opportunity to practice using it immediately prior to the study. An exit questionnaire was conducted using a Likert Scale test instrument. Among these 22 trainees, two-thirds of whom had prior Code Triage (multiple casualty incident) training, and one-half had prior CBRNE training, about two-thirds felt immersed in the virtual world much or all of the time. Prior to the training, only four trainees (18%) were confident about managing CBRNE MCIs. After the training, 19 (86%) felt either "confident" or "very confident", with 13 (59%) attributing this change to practicing in the virtual ED. Twenty-one (95%) of the trainees reported that the scenarios were useful for improving healthcare team skills training, the primary objective for creating them. Eighteen trainees (82%) believed that the cases also were instructive in learning about clinical skills management of such incidents. These data suggest that training healthcare teams in online, virtual environments with dynamic virtual patients is an effective method of training for management of MCIs, particularly for uncommonly occurring incidents.
Segal, N L; Feng, R; McGuire, S A; Allison, D B; Miller, S
2009-01-01
Earlier studies have established that a substantial percentage of variance in obesity-related phenotypes is explained by genetic components. However, only one study has used both virtual twins (VTs) and biological twins and was able to simultaneously estimate additive genetic, non-additive genetic, shared environmental and unshared environmental components in body mass index (BMI). Our current goal was to re-estimate four components of variance in BMI, applying a more rigorous model to biological and virtual multiples with additional data. Virtual multiples share the same family environment, offering unique opportunities to estimate common environmental influence on phenotypes that cannot be separated from the non-additive genetic component using only biological multiples. Data included 929 individuals from 164 monozygotic twin pairs, 156 dizygotic twin pairs, five triplet sets, one quadruplet set, 128 VT pairs, two virtual triplet sets and two virtual quadruplet sets. Virtual multiples consist of one biological child (or twins or triplets) plus one same-aged adoptee who are all raised together since infancy. We estimated the additive genetic, non-additive genetic, shared environmental and unshared random components in BMI using a linear mixed model. The analysis was adjusted for age, age(2), age(3), height, height(2), height(3), gender and race. Both non-additive genetic and common environmental contributions were significant in our model (P-values<0.0001). No significant additive genetic contribution was found. In all, 63.6% (95% confidence interval (CI) 51.8-75.3%) of the total variance of BMI was explained by a non-additive genetic component, 25.7% (95% CI 13.8-37.5%) by a common environmental component and the remaining 10.7% by an unshared component. Our results suggest that genetic components play an essential role in BMI and that common environmental factors such as diet or exercise also affect BMI. This conclusion is consistent with our earlier study using a smaller sample and shows the utility of virtual multiples for separating non-additive genetic variance from common environmental variance.
1975-09-01
mass diffusion in the immediate region 13 wmmmm mm/mmn*****^^1 «•PIII^ BPP of the combustion zone remain major points of disagreement for many...setup (S2-2f2a S3 = 2f3 ) virtual image I • (9/2 f3 - i/2f2 ) — Fig.12 Virtual image setup(S2 =0.5 f2 aS3 = 3f3) 38 h v. / V image f + obje
Osumi, M; Ichinose, A; Sumitani, M; Wake, N; Sano, Y; Yozu, A; Kumagaya, S; Kuniyoshi, Y; Morioka, S
2017-01-01
We developed a quantitative method to measure movement representations of a phantom upper limb using a bimanual circle-line coordination task (BCT). We investigated whether short-term neurorehabilitation with a virtual reality (VR) system would restore voluntary movement representations and alleviate phantom limb pain (PLP). Eight PLP patients were enrolled. In the BCT, they repeatedly drew vertical lines using the intact hand and intended to draw circles using the phantom limb. Drawing circles mentally using the phantom limb led to the emergence of an oval transfiguration of the vertical lines ('bimanual-coupling' effect). We quantitatively measured the degree of this bimanual-coupling effect as movement representations of the phantom limb before and immediately after short-term VR neurorehabilitation. This was achieved using an 11-point numerical rating scale (NRS) for PLP intensity and the Short-Form McGill Pain Questionnaire (SF-MPQ). During VR neurorehabilitation, patients wore a head-mounted display that showed a mirror-reversed computer graphic image of an intact arm (the virtual phantom limb). By intending to move both limbs simultaneously and similarly, the patients perceived voluntary execution of movement in their phantom limb. Short-term VR neurorehabilitation promptly restored voluntary movement representations in the BCT and alleviated PLP (NRS: p = 0.015; 39.1 ± 28.4% relief, SF-MPQ: p = 0.015; 61.5 ± 48.5% relief). Restoration of phantom limb movement representations and reduced PLP intensity were linearly correlated (p < 0.05). VR rehabilitation may encourage patient's motivation and multimodal sensorimotor re-integration of a phantom limb and subsequently have a potent analgesic effect. There was no objective evidence that restoring movement representation by neurorehabilitation with virtual reality alleviated phantom limb pain. This study revealed quantitatively that restoring movement representation with virtual reality rehabilitation using a bimanual coordination task correlated with alleviation of phantom limb pain. © 2016 European Pain Federation - EFIC®.
Kibria, Muhammad Golam; Ali, Sajjad; Jarwar, Muhammad Aslam; Kumar, Sunil; Chong, Ilyoung
2017-09-22
Due to a very large number of connected virtual objects in the surrounding environment, intelligent service features in the Internet of Things requires the reuse of existing virtual objects and composite virtual objects. If a new virtual object is created for each new service request, then the number of virtual object would increase exponentially. The Web of Objects applies the principle of service modularity in terms of virtual objects and composite virtual objects. Service modularity is a key concept in the Web Objects-Enabled Internet of Things (IoT) environment which allows for the reuse of existing virtual objects and composite virtual objects in heterogeneous ontologies. In the case of similar service requests occurring at the same, or different locations, the already-instantiated virtual objects and their composites that exist in the same, or different ontologies can be reused. In this case, similar types of virtual objects and composite virtual objects are searched and matched. Their reuse avoids duplication under similar circumstances, and reduces the time it takes to search and instantiate them from their repositories, where similar functionalities are provided by similar types of virtual objects and their composites. Controlling and maintaining a virtual object means controlling and maintaining a real-world object in the real world. Even though the functional costs of virtual objects are just a fraction of those for deploying and maintaining real-world objects, this article focuses on reusing virtual objects and composite virtual objects, as well as discusses similarity matching of virtual objects and composite virtual objects. This article proposes a logistic model that supports service modularity for the promotion of reusability in the Web Objects-enabled IoT environment. Necessary functional components and a flowchart of an algorithm for reusing composite virtual objects are discussed. Also, to realize the service modularity, a use case scenario is studied and implemented.
Chong, Ilyoung
2017-01-01
Due to a very large number of connected virtual objects in the surrounding environment, intelligent service features in the Internet of Things requires the reuse of existing virtual objects and composite virtual objects. If a new virtual object is created for each new service request, then the number of virtual object would increase exponentially. The Web of Objects applies the principle of service modularity in terms of virtual objects and composite virtual objects. Service modularity is a key concept in the Web Objects-Enabled Internet of Things (IoT) environment which allows for the reuse of existing virtual objects and composite virtual objects in heterogeneous ontologies. In the case of similar service requests occurring at the same, or different locations, the already-instantiated virtual objects and their composites that exist in the same, or different ontologies can be reused. In this case, similar types of virtual objects and composite virtual objects are searched and matched. Their reuse avoids duplication under similar circumstances, and reduces the time it takes to search and instantiate them from their repositories, where similar functionalities are provided by similar types of virtual objects and their composites. Controlling and maintaining a virtual object means controlling and maintaining a real-world object in the real world. Even though the functional costs of virtual objects are just a fraction of those for deploying and maintaining real-world objects, this article focuses on reusing virtual objects and composite virtual objects, as well as discusses similarity matching of virtual objects and composite virtual objects. This article proposes a logistic model that supports service modularity for the promotion of reusability in the Web Objects-enabled IoT environment. Necessary functional components and a flowchart of an algorithm for reusing composite virtual objects are discussed. Also, to realize the service modularity, a use case scenario is studied and implemented. PMID:28937590
Effective factor of virtual team: Resolving communication breakdown in IBS construction project
NASA Astrophysics Data System (ADS)
Pozin, Mohd Affendi Ahmad; Nawi, Mohd. Nasrun Mohd.
2016-08-01
Currently, rapid development of information technology has provided new opportunities to organisation toward increasing the effectiveness of collaboration and teamwork management. Thus the virtual team approach has been implemented in numerous of field. However, there is limited study of virtual team in construction project management. Currently IBS project is still based on traditional construction process which is isolation team working environment. Therefore this approach has been declared as a main barrier to ensure cooperative working relation in term of communication and information in between project stakeholders. Thus, this paper through literature review is attempted to present a discussion of the virtual team approach toward IBS project in developing effective team communication during construction project.
Pekyavas, Nihan Ozunlu; Ergun, Nevin
2017-05-01
The aim of this study was to compare the short term effects of home exercise program and virtual reality exergaming in patients with subacromial impingement syndrome (SAIS). A total of 30 patients with SAIS were randomized into two groups which are Home Exercise Program (EX Group) (mean age: 40.6 ± 11.7 years) and Virtual Reality Exergaming Program (WII Group) (mean age: 40.33 ± 13.2 years). Subjects were assessed at the first session, at the end of the treatment (6 weeks) and at 1 month follow-up. The groups were assessed and compared with Visual Analogue Scale (based on rest, activity and night pain), Neer and Hawkins Tests, Scapular Retraction Test (SRT), Scapular Assistance Test (SAT), Lateral Scapular Slide Test (LSST) and shoulder disability (Shoulder Pain and Disability Index (SPADI)). Intensity of pain was significantly decreased in both groups with the treatment (p < 0.05). The WII Group had significantly better results for all Neer test, SRT and SAT than the EX Group (p < 0.05). Virtual reality exergaming programs with these programs were found more effective than home exercise programs at short term in subjects with SAIS. Level I, Therapeutic study. Copyright © 2017 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
The Particle Adventure | What is fundamental? | Fundamental
Quiz - What particles are made of The four interactions How does matter interact? The unseen effect Half life Missing mass Particle decay mediators Virtual particles Different interactions Annihilations
Grasping trajectories in a virtual environment adhere to Weber's law.
Ozana, Aviad; Berman, Sigal; Ganel, Tzvi
2018-06-01
Virtual-reality and telerobotic devices simulate local motor control of virtual objects within computerized environments. Here, we explored grasping kinematics within a virtual environment and tested whether, as in normal 3D grasping, trajectories in the virtual environment are performed analytically, violating Weber's law with respect to object's size. Participants were asked to grasp a series of 2D objects using a haptic system, which projected their movements to a virtual space presented on a computer screen. The apparatus also provided object-specific haptic information upon "touching" the edges of the virtual targets. The results showed that grasping movements performed within the virtual environment did not produce the typical analytical trajectory pattern obtained during 3D grasping. Unlike as in 3D grasping, grasping trajectories in the virtual environment adhered to Weber's law, which indicates relative resolution in size processing. In addition, the trajectory patterns differed from typical trajectories obtained during 3D grasping, with longer times to complete the movement, and with maximum grip apertures appearing relatively early in the movement. The results suggest that grasping movements within a virtual environment could differ from those performed in real space, and are subjected to irrelevant effects of perceptual information. Such atypical pattern of visuomotor control may be mediated by the lack of complete transparency between the interface and the virtual environment in terms of the provided visual and haptic feedback. Possible implications of the findings to movement control within robotic and virtual environments are further discussed.
Shared protection based virtual network mapping in space division multiplexing optical networks
NASA Astrophysics Data System (ADS)
Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie
2018-05-01
Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.
Zhou, Xiangmin; Zhang, Nan; Sha, Desong; Shen, Yunhe; Tamma, Kumar K; Sweet, Robert
2009-01-01
The inability to render realistic soft-tissue behavior in real time has remained a barrier to face and content aspects of validity for many virtual reality surgical training systems. Biophysically based models are not only suitable for training purposes but also for patient-specific clinical applications, physiological modeling and surgical planning. When considering the existing approaches for modeling soft tissue for virtual reality surgical simulation, the computer graphics-based approach lacks predictive capability; the mass-spring model (MSM) based approach lacks biophysically realistic soft-tissue dynamic behavior; and the finite element method (FEM) approaches fail to meet the real-time requirement. The present development stems from physics fundamental thermodynamic first law; for a space discrete dynamic system directly formulates the space discrete but time continuous governing equation with embedded material constitutive relation and results in a discrete mechanics framework which possesses a unique balance between the computational efforts and the physically realistic soft-tissue dynamic behavior. We describe the development of the discrete mechanics framework with focused attention towards a virtual laparoscopic nephrectomy application.
NASA Technical Reports Server (NTRS)
Sierhuis, Maarten; Clancey, William J.; Damer, Bruce; Brodsky, Boris; vanHoff, Ron
2007-01-01
A virtual worlds presentation technique with embodied, intelligent agents is being developed as an instructional medium suitable to present in situ training on long term space flight. The system combines a behavioral element based on finite state automata, a behavior based reactive architecture also described as subsumption architecture, and a belief-desire-intention agent structure. These three features are being integrated to describe a Brahms virtual environment model of extravehicular crew activity which could become a basis for procedure training during extended space flight.
A near-optimal guidance for cooperative docking maneuvers
NASA Astrophysics Data System (ADS)
Ciarcià, Marco; Grompone, Alessio; Romano, Marcello
2014-09-01
In this work we study the problem of minimum energy docking maneuvers between two Floating Spacecraft Simulators. The maneuvers are planar and conducted autonomously in a cooperative mode. The proposed guidance strategy is based on the direct method known as Inverse Dynamics in the Virtual Domain, and the nonlinear programming solver known as Sequential Gradient-Restoration Algorithm. The combination of these methods allows for the quick prototyping of near-optimal trajectories, and results in an implementable tool for real-time closed-loop maneuvering. The experimental results included in this paper were obtained by exploiting the recently upgraded Floating Spacecraft-Simulator Testbed of the Spacecraft Robotics Laboratory at the Naval Postgraduate School. A direct performances comparison, in terms of maneuver energy and propellant mass, between the proposed guidance strategy and a LQR controller, demonstrates the effectiveness of the method.
Chen, Karen B; Ponto, Kevin; Tredinnick, Ross D; Radwin, Robert G
2015-06-01
This study was a proof of concept for virtual exertions, a novel method that involves the use of body tracking and electromyography for grasping and moving projections of objects in virtual reality (VR). The user views objects in his or her hands during rehearsed co-contractions of the same agonist-antagonist muscles normally used for the desired activities to suggest exerting forces. Unlike physical objects, virtual objects are images and lack mass. There is currently no practical physically demanding way to interact with virtual objects to simulate strenuous activities. Eleven participants grasped and lifted similar physical and virtual objects of various weights in an immersive 3-D Cave Automatic Virtual Environment. Muscle activity, localized muscle fatigue, ratings of perceived exertions, and NASA Task Load Index were measured. Additionally, the relationship between levels of immersion (2-D vs. 3-D) was studied. Although the overall magnitude of biceps activity and workload were greater in VR, muscle activity trends and fatigue patterns for varying weights within VR and physical conditions were the same. Perceived exertions for varying weights were not significantly different between VR and physical conditions. Perceived exertion levels and muscle activity patterns corresponded to the assigned virtual loads, which supported the hypothesis that the method evoked the perception of physical exertions and showed that the method was promising. Ultimately this approach may offer opportunities for research and training individuals to perform strenuous activities under potentially safer conditions that mimic situations while seeing their own body and hands relative to the scene. © 2014, Human Factors and Ergonomics Society.
Question-Answer Activities in Synchronous Virtual Classrooms in Terms of Interest and Usefulness
ERIC Educational Resources Information Center
Aydemir, Melike; Kursun, Engin; Karaman, Selçuk
2016-01-01
Instructors generally convey their face to face habits to synchronous virtual classrooms, but these face to face strategies do not work in these environments. In this sense, the purpose of this study was to investigate the effects of question type and answer format used in synchronous class implementations on perceived interest and usefulness. To…
ERIC Educational Resources Information Center
Wibowo, Firmanul Catur; Suhandi, Andi; Nahadi; Samsudin, Achmad; Darman, Dina Rahmi; Suherli, Zulmiswal; Hasani, Aceng; Leksono, Sroso Mukti; Hendrayana, Aan; Suherman; Hidayat, Soleh; Hamdani, Dede; Costu, Bayram
2017-01-01
Most students cannot understand the concepts of science concepts. The abstract concepts that require visualization help students to promote to the understanding about the concept. The aim of this study was to develop Virtual Microscopic Simulation (VMS) in terms of encouraging conceptual change and to promote its effectiveness connected to…
ERIC Educational Resources Information Center
Barrett, Bob
2012-01-01
While many students and instructors are transitioning from the brick-and-mortar classrooms to virtual classrooms, labs, and simulations, this requires a higher-level of expertise, control, and perseverance by the instructor. Traditional methods of teaching, leading, managing, and organizing learn activities has changed in terms of the virtual…
Virtual Terrorism and the Internet E-Learning Options
ERIC Educational Resources Information Center
Cole, David R.
2007-01-01
E-learning on the Internet is constituted by the options that this global technology gives the user. This article explores these options in terms of the lifestyle choices and decisions that the learner will make about the virtual worlds, textual meanings and cultural groupings that they will find as they learn online. This is a non-linear process…
Spatial organization and drivers of the virtual water trade: a community-structure analysis
NASA Astrophysics Data System (ADS)
D'Odorico, Paolo; Carr, Joel; Laio, Francesco; Ridolfi, Luca
2012-09-01
The trade of agricultural commodities can be associated with a virtual transfer of the local freshwater resources used for the production of these goods. Thus, trade of food products virtually transfers large amounts of water from areas of food production to far consumption regions, a process termed the ‘globalization of water’. We consider the (time-varying) community structure of the virtual water network for the years 1986-2008. The communities are groups of countries with dense internal connections, while the connections are sparser among different communities. Between 1986 and 2008, the ratio between virtual water flows within communities and the total global trade of virtual water has continuously increased, indicating the existence of well defined clusters of virtual water transfers. In some cases (e.g. Central and North America and Europe in recent years) the virtual water communities correspond to geographically coherent regions, suggesting the occurrence of an ongoing process of regionalization of water resources. However, most communities also include countries located on different ‘sides’ of the world. As such, geographic proximity only partly explains the community structure of virtual water trade. Similarly, the global distribution of people and wealth, whose effect on the virtual water trade is expressed through simple ‘gravity models’, is unable to explain the strength of virtual water communities observed in the past few decades. A gravity model based on the availability of and demand for virtual water in different countries has higher explanatory power, but the drivers of the virtual water fluxes are yet to be adequately identified.
Virtual education effect on cognitive learning and attitude of nursing students towards it.
Borhani, Fariba; Vatanparast, Mahboubeh; Zadeh, Abbas Abbas; Ranjbar, Hadi; Pour, Reza Shojaei
2011-01-01
Along with emersion of the Internet, virtual education increasingly has been growing. Many studies discussed this method and its impact on learning. Present study investigated students' attitude towards virtual education as well as its effect on learning. This was a pretest-posttest quasi-experimental study. The nursing students, who had selected fluids and electrolyte disorders course, were randomly divided into two virtual and conventional education groups. The knowledge of students was assessed through a written exam and students' attitude towards virtual education assessed by a researcher-made questionnaire. Mean scores of students in pretest were 0.8 (0.3) and 1.1 (0.59) in virtual and conventional group respectively [mean (SD)]. At the end of the semester their scores were 15.9 (0.58) and 16.51 (0.89) respectively. Mean attitude scores at baseline were 3.19 (0.48) and 3.21 (0.33) followed by 3.55 (0.45) and 3.21 (0.46) at the end of the semester in virtual and conventional groups respectively. Although the scores of conventional group at the end of the course were higher than virtual group, both methods acted similarly in terms of increasing the knowledge. Passing a virtual education course may improve the attitude of the nurses towards it.
[Current problems in the data acquisition of digitized virtual human and the countermeasures].
Zhong, Shi-zhen; Yuan, Lin
2003-06-01
As a relatively new field of medical science research that has attracted the attention from worldwide researchers, study of digitized virtual human still awaits long-term dedicated effort for its full development. In the full array of research projects of the integrated Virtual Chinese Human project, virtual visible human, virtual physical human, virtual physiome, and intellectualized virtual human must be included as the four essential constitutional opponents. The primary importance should be given to solving the problems concerning the data acquisition for the dataset of this immense project. Currently 9 virtual human datasets have been established worldwide, which are subjected to critical analyses in the paper with special attention given to the problems in the data storage and the techniques employed, for instance, in these datasets. On the basis of current research status of Virtual Chinese Human project, the authors propose some countermeasures for solving the problems in the data acquisition for the dataset, which include (1) giving the priority to the quality control instead of merely racing for quantity and speed, and (2) improving the setting up of the markers specific for the tissues and organs to meet the requirement from information technology, (3) with also attention to the development potential of the dataset which should have explicit pertinence to specific actual applications.
Virtual photon emission from a quark-gluon plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suryanarayana, S. V.
We present phenomenological formulas for virtual photon emission rates from a thermalized quark-gluon plasma (QGP) that include bremsstrahlung and annihilation with scattering (AWS) mechanisms along with the Landau-Pomeranchuk-Migdal (LPM) effects. For this purpose we follow the approach of generalized emission functions (GEF) for virtual photon emission, we showed earlier for a fixed temperature and strong coupling constant. In the present work, we extend the LPM calculations for several temperatures and strong coupling strengths, photon energies (q{sub 0}), photon mass (Q{sup 2}), and quark energies (p{sub 0}). We generalize the dynamical scaling variables, x{sub T},x{sub L}, for bremsstrahlung and AWS processesmore » that are now functions of variables p{sub 0},q{sub 0},Q{sup 2},T,{alpha}{sub s}. The GEF introduced earlier, g{sub T}{sup b},g{sub T}{sup a},g{sub L}{sup b},g{sub L}{sup a}, are also generalized for any temperatures and coupling strengths. From this, the imaginary part of the photon polarization tensor as a function of photon mass and energy has been calculated as a one-dimensional integral over these GEF and parton distribution functions in the plasma. By fitting these polarization tensors obtained from GEF method, we obtained a phenomenological formula for virtual photon emission rates as a function of (q{sub 0},Q{sup 2},T,{alpha}{sub s}) that includes bremsstrahlung and AWS mechanisms with LPM effects.« less
The use of the virtual source technique in computing scattering from periodic ocean surfaces.
Abawi, Ahmad T
2011-08-01
In this paper the virtual source technique is used to compute scattering of a plane wave from a periodic ocean surface. The virtual source technique is a method of imposing boundary conditions using virtual sources, with initially unknown complex amplitudes. These amplitudes are then determined by applying the boundary conditions. The fields due to these virtual sources are given by the environment Green's function. In principle, satisfying boundary conditions on an infinite surface requires an infinite number of sources. In this paper, the periodic nature of the surface is employed to populate a single period of the surface with virtual sources and m surface periods are added to obtain scattering from the entire surface. The use of an accelerated sum formula makes it possible to obtain a convergent sum with relatively small number of terms (∼40). The accuracy of the technique is verified by comparing its results with those obtained using the integral equation technique.
NASA Astrophysics Data System (ADS)
Wang, Jing; Wang, Su; Li, Lihong; Fan, Yi; Lu, Hongbing; Liang, Zhengrong
2008-10-01
Computed tomography colonography (CTC) or CT-based virtual colonoscopy (VC) is an emerging tool for detection of colonic polyps. Compared to the conventional fiber-optic colonoscopy, VC has demonstrated the potential to become a mass screening modality in terms of safety, cost, and patient compliance. However, current CTC delivers excessive X-ray radiation to the patient during data acquisition. The radiation is a major concern for screening application of CTC. In this work, we performed a simulation study to demonstrate a possible ultra low-dose CT technique for VC. The ultra low-dose abdominal CT images were simulated by adding noise to the sinograms of the patient CTC images acquired with normal dose scans at 100 mA s levels. The simulated noisy sinogram or projection data were first processed by a Karhunen-Loeve domain penalized weighted least-squares (KL-PWLS) restoration method and then reconstructed by a filtered backprojection algorithm for the ultra low-dose CT images. The patient-specific virtual colon lumen was constructed and navigated by a VC system after electronic colon cleansing of the orally-tagged residue stool and fluid. By the KL-PWLS noise reduction, the colon lumen can successfully be constructed and the colonic polyp can be detected in an ultra low-dose level below 50 mA s. Polyp detection can be found more easily by the KL-PWLS noise reduction compared to the results using the conventional noise filters, such as Hanning filter. These promising results indicate the feasibility of an ultra low-dose CTC pipeline for colon screening with less-stressful bowel preparation by fecal tagging with oral contrast.
Analysis of recent climatic changes in the Arabian Peninsula region
NASA Astrophysics Data System (ADS)
Nasrallah, H. A.; Balling, R. C.
1996-12-01
Interest in the potential climatic consequences of the continued buildup of anthropo-generated greenhouse gases has led many scientists to conduct extensive climate change studies at the global, hemispheric, and regional scales. In this investigation, analyses are conducted on long-term historical climate records from the Arabian Peninsula region. Over the last 100 years, temperatures in the region increased linearly by 0.63 °C. However, virtually all of this warming occurred from 1911 1935, and over the most recent 50 years, the Arabian Peninsula region has cooled slightly. In addition, the satellite-based measurements of lower-tropospheric temperatures for the region do not show any statistically significant warming over the period 1979 1991. While many other areas of the world are showing a decrease in the diurnal temperature range, the Arabian Peninsula region reveals no evidence of a long-term change in this parameter. Precipitation records for the region show a slight, statistically insignificant decrease over the past 40 years. The results from this study should complement the mass of information that has resulted from similar regional climate studies conducted in the United States, Europe, and Australia.
Head-mounted active noise control system with virtual sensing technique
NASA Astrophysics Data System (ADS)
Miyazaki, Nobuhiro; Kajikawa, Yoshinobu
2015-03-01
In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.
Huttenlocker, Adam K.
2014-01-01
The extent to which mass extinctions influence body size evolution in major tetrapod clades is inadequately understood. For example, the ‘Lilliput effect,’ a common feature of mass extinctions, describes a temporary decrease in body sizes of survivor taxa in post-extinction faunas. However, its signature on existing patterns of body size evolution in tetrapods and the persistence of its impacts during post-extinction recoveries are virtually unknown, and rarely compared in both geologic and phylogenetic contexts. Here, I evaluate temporal and phylogenetic distributions of body size in Permo-Triassic therocephalian and cynodont therapsids (eutheriodonts) using a museum collections-based approach and time series model fitting on a regional stratigraphic sequence from the Karoo Basin, South Africa. I further employed rank order correlation tests on global age and clade rank data from an expanded phylogenetic dataset, and performed evolutionary model testing using Brownian (passive diffusion) models. Results support significant size reductions in the immediate aftermath of the end-Permian mass extinction (ca. 252.3 Ma) consistent with some definitions of Lilliput effects. However, this temporal succession reflects a pattern that was underscored largely by Brownian processes and constructive selectivity. Results also support two recent contentions about body size evolution and mass extinctions: 1) active, directional evolution in size traits is rare over macroevolutionary time scales and 2) geologically brief size reductions may be accomplished by the ecological removal of large-bodied species without rapid originations of new small-bodied clades or shifts from long-term evolutionary patterns. PMID:24498335
Courteille, Olivier; Fahlstedt, Madelen; Ho, Johnson; Hedman, Leif; Fors, Uno; von Holst, Hans; Felländer-Tsai, Li; Möller, Hans
2018-03-28
To compare medical students' and residents' knowledge retention of assessment, diagnosis and treatment procedures, as well as a learning experience, of patients with spinal trauma after training with either a Virtual Patient case or a video-recorded traditional lecture. A total of 170 volunteers (85 medical students and 85 residents in orthopedic surgery) were randomly allocated (stratified for student/resident and gender) to either a video-recorded standard lecture or a Virtual Patient-based training session where they interactively assessed a clinical case portraying a motorcycle accident. The knowledge retention was assessed by a test immediately following the educational intervention and repeated after a minimum of 2 months. Participants' learning experiences were evaluated with exit questionnaires. A repeated-measures analysis of variance was applied on knowledge scores. A total of 81% (n = 138) of the participants completed both tests. There was a small but significant decline in first and second test results for both groups (F (1, 135) = 18.154, p = 0.00). However, no significant differences in short-term and long-term knowledge retention were observed between the two teaching methods. The Virtual Patient group reported higher learning experience levels in engagement, stimulation, general perception, and expectations. Participants' levels engagement were reported in favor of the VP format. Similar knowledge retention was achieved through either a Virtual Patient or a recorded lecture.
Regenbogen, Christina; Herrmann, Manfred; Fehr, Thorsten
2010-01-01
Studies investigating the effects of violent computer and video game playing have resulted in heterogeneous outcomes. It has been assumed that there is a decreased ability to differentiate between virtuality and reality in people that play these games intensively. FMRI data of a group of young males with (gamers) and without (controls) a history of long-term violent computer game playing experience were obtained during the presentation of computer game and realistic video sequences. In gamers the processing of real violence in contrast to nonviolence produced activation clusters in right inferior frontal, left lingual and superior temporal brain regions. Virtual violence activated a network comprising bilateral inferior frontal, occipital, postcentral, right middle temporal, and left fusiform regions. Control participants showed extended left frontal, insula and superior frontal activations during the processing of real, and posterior activations during the processing of virtual violent scenarios. The data suggest that the ability to differentiate automatically between real and virtual violence has not been diminished by a long-term history of violent video game play, nor have gamers' neural responses to real violence in particular been subject to desensitization processes. However, analyses of individual data indicated that group-related analyses reflect only a small part of actual individual different neural network involvement, suggesting that the consideration of individual learning history is sufficient for the present discussion.
Magnetic resonance imaging of the saccular otolithic mass.
Sbarbati, A; Leclercq, F; Antonakis, K; Osculati, F
1992-01-01
The frog's inner ear was studied in vivo by high spatial resolution magnetic resonance imaging at 7 Tesla. The vestibule, the internal acoustic meatus, and the auditory tube have been identified. The large otolithic mass contained in the vestibule showed a virtual absence of magnetic resonance signal probably due to its composition of closely packed otoconia. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:1295875
The Internet and Political Involvement in Russia (Based on the Data of Mass Surveys)
ERIC Educational Resources Information Center
Volkov, Denis
2012-01-01
Attention to virtual space is growing in Russia. Russian politicians have an interest in the Internet: the president has his own blog and reads Twitter, and the United Russia Party is starting to work with the iPad on a mass scale. Opposition leaders and movements are not lagging behind either. Online surveys of various Internet resources are…
Practical School Experiments with the Centre of Mass of Bodies
ERIC Educational Resources Information Center
Repnik, Robert; Ambrožic, Milan
2018-01-01
The concept of the centre of mass of a rigid body as a virtual point where the weight force acts is not easy to understand without a number of supporting school experiments. In school practice, however, experiments on this topic are often limited to a few of the simplest cases in which a simple flat body, such as a triangle or rectangle, is hung…
Looking Similar Promotes Group Stability in a Game-Based Virtual Community.
Lortie, Catherine L; Guitton, Matthieu J
2012-08-01
Online support groups are popular Web-based resources that provide tailored information and peer support through virtual communities and fulfill the users' needs for empowerment and belonging. However, the therapeutic potential of online support groups is at present limited by the lack of systematic research on the cognitive mechanisms underlying social group cohesion in virtual communities. We might increase the benefits of participation in online support groups if we gain more insight into the factors that promote long-term commitment to peer support. One approach to foster the therapeutic potential of online support groups could be to increase social selection based on visual similarity. We performed a case study using the popular virtual setting of "World of Warcraft" (Blizzard Entertainment, Irvine, CA). We monitored the social dynamics of a virtual community composed of avatars whose appearance was identical during a period of 3 months, biweekly, for a total of 24 measures. We observed that this homogeneous community displayed a very high level of group stability over time in terms of the total number of members, the number of members that stayed the same, and the number of arrivals and departures, despite the fact that belonging to a heterogeneous group typically favors the success of the group with respect to game progression. Our results confirm that appearance can trigger social selection in online virtual communities. Displaying a similar appearance could be one way to strengthen social bonds among peers who share various health and well-being issues. Thus, the therapeutic potential of online support groups could be promoted through visual cohesion.
Cesa, Gian Luca; Bacchetta, Monica; Castelnuovo, Gianluca; Conti, Sara; Gaggioli, Andrea; Mantovani, Fabrizia; Molinari, Enrico; Cárdenas-López, Georgina; Riva, Giuseppe
2016-01-01
Abstract It is well known that obesity has a multifactorial etiology, including biological, environmental, and psychological causes. For this reason, obesity treatment requires a more integrated approach than the standard behavioral treatment based on dietary and physical activity only. To test the long-term efficacy of an enhanced cognitive–behavioral therapy (CBT) of obesity, including a virtual reality (VR) module aimed at both unlocking the negative memory of the body and to modify its behavioral and emotional correlates, 163 female morbidly obese inpatients (body mass index >40) were randomly assigned to three conditions: a standard behavioral inpatient program (SBP), SBP plus standard CBT, and SBP plus VR-enhanced CBT. Patients' weight, eating behavior, and body dissatisfaction were measured at the start and upon completion of the inpatient program. Weight was assessed also at 1 year follow-up. All measures improved significantly at discharge from the inpatient program, and no significant difference was found among the conditions. However, odds ratios showed that patients in the VR condition had a greater probability of maintaining or improving weight loss at 1 year follow-up than SBP patients had (48% vs. 11%, p = 0.004) and, to a lesser extent, than CBT patients had (48% vs. 29%, p = 0.08). Indeed, only the VR-enhanced CBT was effective in further improving weight loss at 1 year follow-up. On the contrary, participants who received only the inpatient program regained back, on average, most of the weight they had lost. Findings support the hypothesis that a VR module addressing the locked negative memory of the body may enhance the long-term efficacy of standard CBT. PMID:26430819
Manzoni, Gian Mauro; Cesa, Gian Luca; Bacchetta, Monica; Castelnuovo, Gianluca; Conti, Sara; Gaggioli, Andrea; Mantovani, Fabrizia; Molinari, Enrico; Cárdenas-López, Georgina; Riva, Giuseppe
2016-02-01
It is well known that obesity has a multifactorial etiology, including biological, environmental, and psychological causes. For this reason, obesity treatment requires a more integrated approach than the standard behavioral treatment based on dietary and physical activity only. To test the long-term efficacy of an enhanced cognitive-behavioral therapy (CBT) of obesity, including a virtual reality (VR) module aimed at both unlocking the negative memory of the body and to modify its behavioral and emotional correlates, 163 female morbidly obese inpatients (body mass index >40) were randomly assigned to three conditions: a standard behavioral inpatient program (SBP), SBP plus standard CBT, and SBP plus VR-enhanced CBT. Patients' weight, eating behavior, and body dissatisfaction were measured at the start and upon completion of the inpatient program. Weight was assessed also at 1 year follow-up. All measures improved significantly at discharge from the inpatient program, and no significant difference was found among the conditions. However, odds ratios showed that patients in the VR condition had a greater probability of maintaining or improving weight loss at 1 year follow-up than SBP patients had (48% vs. 11%, p = 0.004) and, to a lesser extent, than CBT patients had (48% vs. 29%, p = 0.08). Indeed, only the VR-enhanced CBT was effective in further improving weight loss at 1 year follow-up. On the contrary, participants who received only the inpatient program regained back, on average, most of the weight they had lost. Findings support the hypothesis that a VR module addressing the locked negative memory of the body may enhance the long-term efficacy of standard CBT.
Gritti, Fabrice; Guiochon, Georges
2015-03-06
Previous data have shown that could deliver a minimum reduced plate height as small as 1.7. Additionally, the reduction of the mesopore size after C18 derivatization and the subsequent restriction for sample diffusivity across the Titan-C18 particles were found responsible for the unusually small value of the experimental optimum reduced velocity (5 versus 10 for conventional particles) and for the large values of the average reduced solid-liquid mass transfer resistance coefficients (0.032 versus 0.016) measured for a series of seven n-alkanophenones. The improvements in column efficiency made by increasing the average mesopore size of the Titan silica from 80 to 120Å are investigated from a quantitative viewpoint based on the accurate measurements of the reduced coefficients (longitudinal diffusion, trans-particle mass transfer resistance, and eddy diffusion) and of the intra-particle diffusivity, pore, and surface diffusion for the same series of n-alkanophenone compounds. The experimental results reveal an increase (from 0% to 30%) of the longitudinal diffusion coefficients for the same sample concentration distribution (from 0.25 to 4) between the particle volume and the external volume of the column, a 40% increase of the intra-particle diffusivity for the same sample distribution (from 1 to 7) between the particle skeleton volume and the bulk phase, and a 15-30% decrease of the solid-liquid mass transfer coefficient for the n-alkanophenone compounds. Pore and surface diffusion are increased by 60% and 20%, respectively. The eddy dispersion term and the maximum column efficiency (295000plates/m) remain virtually unchanged. The rate of increase of the total plate height with increasing the chromatographic speed is reduced by 20% and it is mostly controlled (75% and 70% for 80 and 120Å pore size) by the flow rate dependence of the eddy dispersion term. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Young Eun; Saharia, Aditya
With the rapid growth of computer mediated communication technologies in the last two decades, various types of virtual communities have emerged. Some communities provide a role playing arena, enabled by avatars, while others provide an arena for expressing and promoting detailed personal profiles to enhance their offline social networks. Due to different focus of these virtual communities, different factors motivate members to participate in these communities. In this study, we examine differences in members’ motivations to participate in role-playing versus self-expression based virtual communities. To achieve this goal, we apply the Wang and Fesenmaier (2004) framework, which explains members’ participation in terms of their functional, social, psychological, and hedonic needs. The primary contributions of this study are two folds: First, it demonstrates differences between role-playing and self-expression based communities. Second, it provides a comprehensive framework describing members’ motivation to participate in virtual communities.
Seeing ahead: experience and language in spatial perspective.
Alloway, Tracy Packiam; Corley, Martin; Ramscar, Michael
2006-03-01
Spatial perspective can be directed by various reference frames, as well as by the direction of motion. In the present study, we explored how ambiguity in spatial tasks can be resolved. Participants were presented with virtual reality environments in order to stimulate a spatialreference frame based on motion. They interacted with an ego-moving spatial system in Experiment 1 and an object-moving spatial system in Experiment 2. While interacting with the virtual environment, the participants were presented with either a question representing a motion system different from that of the virtual environment or a nonspatial question relating to physical features of the virtual environment. They then performed the target task assign the label front in an ambiguous spatial task. The findings indicate that the disambiguation of spatial terms can be influenced by embodied experiences, as represented by the virtual environment, as well as by linguistic context.
ERIC Educational Resources Information Center
Plumert, Jodie M.; Kearney, Joseph K.; Cremer, James F.; Recker, Kara M.; Strutt, Jonathan
2011-01-01
This investigation examined short-term changes in child and adult cyclists' gap decisions and movement timing in response to general and specific road-crossing experiences. Children (10- and 12-year-olds) and adults rode a bicycle through a virtual environment with 12 intersections. Participants faced continuous cross traffic and waited for gaps…
ERIC Educational Resources Information Center
Weibel, David; Stricker, Daniel; Wissmath, Bartholomaus
2012-01-01
We provided a virtual learning tool to undergraduate psychology students (n = 72) and investigated how different variables influence the learning outcome in terms of performance in an exam and satisfaction with the e-learning tool. These variables were: perceived usefulness, perceived ease of use, attitude towards computers, attitude towards the…
NASA Astrophysics Data System (ADS)
Piedrahita, Ricardo A.
The Denver Aerosol Sources and Health study (DASH) was a long-term study of the relationship between the variability in fine particulate mass and chemical constituents (PM2.5, particulate matter less than 2.5mum) and adverse health effects such as cardio-respiratory illnesses and mortality. Daily filter samples were chemically analyzed for multiple species. We present findings based on 2.8 years of DASH data, from 2003 to 2005. Multilinear Engine 2 (ME-2), a receptor-based source apportionment model was applied to the data to estimate source contributions to PM2.5 mass concentrations. This study relied on two different ME-2 models: (1) a 2-way model that closely reflects PMF-2; and (2) an enhanced model with meteorological data that used additional temporal and meteorological factors. The Coarse Rural Urban Sources and Health study (CRUSH) is a long-term study of the relationship between the variability in coarse particulate mass (PMcoarse, particulate matter between 2.5 and 10mum) and adverse health effects such as cardio-respiratory illnesses, pre-term births, and mortality. Hourly mass concentrations of PMcoarse and fine particulate matter (PM2.5) are measured using tapered element oscillating microbalances (TEOMs) with Filter Dynamics Measurement Systems (FDMS), at two rural and two urban sites. We present findings based on nine months of mass concentration data, including temporal trends, and non-parametric regressions (NPR) results, which were used to characterize the wind speed and wind direction relationships that might point to sources. As part of CRUSH, 1-year coarse and fine mode particulate matter filter sampling network, will allow us to characterize the chemical composition of the particulate matter collected and perform spatial comparisons. This work describes the construction and validation testing of four dichotomous filter samplers for this purpose. The use of dichotomous splitters with an approximate 2.5mum cut point, coupled with a 10mum cut diameter inlet head allows us to collect the separated size fractions that the collocated TEOMs collect continuously. Chemical analysis of the filters will include inorganic ions, organic compounds, EC, OC, and biological analyses. Side by side testing showed the cut diameters were in agreement with each other, and with a well characterized virtual impactor lent to the group by the University of Southern California. Error propagation was performed and uncertainty results were similar to the observed standard deviations.
Virtual photon polarization and dilepton anisotropy in relativistic nucleus-nucleus collisions
NASA Astrophysics Data System (ADS)
Speranza, Enrico; Jaiswal, Amaresh; Friman, Bengt
2018-07-01
The polarization of virtual photons produced in relativistic nucleus-nucleus collisions provides information on the conditions in the emitting medium. In a hydrodynamic framework, the resulting angular anisotropy of the dilepton final state depends on the flow as well as on the transverse momentum and invariant mass of the photon. We illustrate these effects in dilepton production from quark-antiquark annihilation in the QGP phase and π+π- annihilation in the hadronic phase for a static medium in global equilibrium and for a longitudinally expanding system.
Measurements of the virtual bremsstrahlung yields in the p+p system
NASA Astrophysics Data System (ADS)
Messchendorp, J. G.; Bacelar, J. C. S.; Fülöp, J. A.; van Goethem, M. J.; Harakeh, M. N.; Hoefman, M.; Huisman, H.; Kalantar-Nayestanaki, N.; Löhner, H.; Ostendorf, R. W.; Schadmand, S.; Turrisi, R.; Volkerts, M.; Wilschut, H. W.; van der Woude, A.; Holzmann, R.; Simon, R.; Kugler, A.; Tcherkashenko, K.; Wagner, V.
1998-03-01
In this paper recent results obtained from the p+ p→ p+ p+ e++ e- experiment are presented. This experiment has been performed with a 190 MeV polarized proton beam obtained from the new cyclotron AGOR at KVI in Groningen. Differential cross sections have been obtained in exclusive measurements in which all four exit particles have been measured in a coincidence setup between SALAD and TAPS. The data are compared with LET calculations. A reasonable agreement is found for virtual-photon invariant masses up to 80 MeV/c 2.
Algorithms for extraction of structural attitudes from 3D outcrop models
NASA Astrophysics Data System (ADS)
Duelis Viana, Camila; Endlein, Arthur; Ademar da Cruz Campanha, Ginaldo; Henrique Grohmann, Carlos
2016-05-01
The acquisition of geological attitudes on rock cuts using traditional field compass survey can be a time consuming, dangerous, or even impossible task depending on the conditions and location of outcrops. The importance of this type of data in rock-mass classifications and structural geology has led to the development of new techniques, in which the application of photogrammetric 3D digital models has had an increasing use. In this paper we present two algorithms for extraction of attitudes of geological discontinuities from virtual outcrop models: ply2atti and scanline, implemented with the Python programming language. The ply2atti algorithm allows for the virtual sampling of planar discontinuities appearing on the 3D model as individual exposed surfaces, while the scanline algorithm allows the sampling of discontinuities (surfaces and traces) along a virtual scanline. Application to digital models of a simplified test setup and a rock cut demonstrated a good correlation between the surveys undertaken using traditional field compass reading and virtual sampling on 3D digital models.
The Role in the Virtual Astronomical Observatory in the Era of Massive Data Sets
NASA Technical Reports Server (NTRS)
Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.
2012-01-01
The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of services and protocols that respond to the growing size and complexity of astronomy data sets. This paper describes how VAO staff are active in such development efforts, especially in innovative strategies and techniques that recognize the limited operating budgets likely available to astronomers even as demand increases. The project has a program of professional outreach whereby new services and protocols are evaluated.
The role in the Virtual Astronomical Observatory in the era of massive data sets
NASA Astrophysics Data System (ADS)
Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.
2012-09-01
The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of services and protocols that respond to the growing size and complexity of astronomy data sets. This paper describes how VAO staff are active in such development efforts, especially in innovative strategies and techniques that recognize the limited operating budgets likely available to astronomers even as demand increases. The project has a program of professional outreach whereby new services and protocols are evaluated.
AVOCADO: A Virtual Observatory Census to Address Dwarfs Origins
NASA Astrophysics Data System (ADS)
Sánchez-Janssen, Rubén; Sánchez-Janssen
2011-12-01
Dwarf galaxies are by far the most abundant of all galaxy types, yet their properties are still poorly understood-especially due to the observational challenge that their intrinsic faintness represents. AVOCADO aims at establishing firm conclusions on their formation and evolution by constructing a homogeneous, multiwavelength dataset for a statistically significant sample of several thousand nearby dwarfs (-18 < Mi < -14). Using public data and Virtual Observatory tools, we have built GALEX+SDSS+2MASS spectral energy distributions that are fitted by a library of single stellar population models. Star formation rates, stellar masses, ages and metallicities are further complemented with structural parameters that can be used to classify them morphologically. This unique dataset, coupled with a detailed characterization of each dwarf's environment, allows for a fully comprehensive investigation of their origins and to track the (potential) evolutionary paths between the different dwarf types.
Resummation of electroweak Sudakov logarithms for real radiation
Bauer, Christian W.; Ferland, Nicolas
2016-09-01
Using the known resummation of virtual corrections together with knowledge of the leading-log structure of real radiation in a parton shower, we derive analytic expressions for the resummed real radiation after they have been integrated over all of phase space. Performing a numerical analysis for both the 13 TeV LHC and a 100 TeV pp collider, we show that resummation of the real corrections is at least as important as resummation of the virtual corrections, and that this resummation has a sizable effect for partonic center of mass energies exceeding √s=O(few TeV). For partonic center of mass energies √s≳10 TeV,more » which can be reached at a 100 TeV collider, resummation becomes an O(1) effect and needs to be included even for rough estimates of the cross-sections.« less
Event shape analysis of deep inelastic scattering events with a large rapidity gap at HERA
NASA Astrophysics Data System (ADS)
ZEUS Collaboration; Breitweg, J.; Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Yoshida, R.; Zhang, H.; Mattingly, M. C. K.; Anselmo, F.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; de Pasquale, S.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Polini, A.; Ricci, F.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Eckert, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Kerger, R.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Stamm, J.; Wedemeyer, R.; Wieber, H.; Bailey, D. S.; Campbell-Robson, S.; Cottingham, W. N.; Foster, B.; Hall-Wilton, R.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; McFall, J. D.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Pac, M. Y.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Mellado, B.; Parsons, J. A.; Ritz, S.; Sampson, S.; Sciulli, F.; Straub, P. B.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Przybycień , M. B.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Bukowy, M.; Jeleń , K.; Kisielewska, D.; Kowalski, T.; Przybycień , M.; Rulikowska-Zarȩ Bska, E.; Suszycki, L.; Zaja C, J.; Duliń Ski, Z.; Kotań Ski, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Fricke, U.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Haas, T.; Hain, W.; Hasell, D.; Johnson, K. F.; Kasemann, M.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Lindemann, L.; Löhr, B.; Löwe, M.; Mań Czak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Park, I. H.; Pellegrino, A.; Pelucchi, F.; Piotrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Ryan, J. J.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Surrow, B.; Tassi, E.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Zsolararnecki, A. F.; Zeuner, W.; Burow, B. D.; Grabosch, H. J.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Markun, P.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; MacDonald, N.; Saxon, D. H.; Sinclair, L. E.; Strickland, E.; Waugh, R.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Gladilin, L. K.; Horstmann, D.; Kçira, D.; Klanner, R.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Cole, J. E.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Walker, R.; Mallik, U.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; Fleck, J. I.; Ishii, T.; Kuze, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamauchi, K.; Yamazaki, Y.; Hong, S. J.; Lee, S. B.; Nam, S. W.; Park, S. K.; Barreiro, F.; Fernández, J. P.; García, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martínez, M.; del Peso, J.; Puga, J.; Terrón, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Murray, W. N.; Ochs, A.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Golubkov, Yu. A.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Chlebana, F.; Engelen, J.; Koffeman, E.; Kooijman, P.; van Sighem, A.; Tiecke, H.; Tuning, N.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Nylander, P.; Romanowski, T. A.; Blaikley, H. E.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Edmonds, J. K.; Große-Knetter, J.; Harnew, N.; Nath, C.; Noyes, V. A.; Quadt, A.; Ruske, O.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Bertolin, A.; Brugnera, R.; Carlin, R.; dal Corso, F.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Oh, B. Y.; Okrasiń Ski, J. R.; Toothacker, W. S.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Raso, M.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Epperson, D.; Heusch, C.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Wichmann, R.; Williams, D. C.; Schwarzer, O.; Walenta, A. H.; Abramowicz, H.; Briskin, G.; Dagan, S.; Kananov, S.; Levy, A.; Abe, T.; Fusayasu, T.; Inuzuka, M.; Nagano, K.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Petrucci, M. C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sabetfakhri, A.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Lane, J. B.; Saunders, R. L.; Sutton, M. R.; Wing, M.; Ciborowski, J.; Grzelak, G.; Kasprzak, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Badgett, W. F.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Bhadra, S.; Frisken, W. R.; Khakzad, M.; Schmidke, W. B.
1998-03-01
A global event shape analysis of the multihadronic final states observed in neutral current deep inelastic scattering events with a large rapidity gap with respect to the proton direction is presented. The analysis is performed in the range 5<=Q2<=185 GeV2 and 160<=W<=250 GeV, where Q2 is the virtuality of the photon and W is the virtual-photon proton centre of mass energy. Particular emphasis is placed on the dependence of the shape variables, measured in the γ*-pomeron rest frame, on the mass of the hadronic final state, MX. With increasing MX the multihadronic final state becomes more collimated and planar. The experimental results are compared with several models which attempt to describe diffractive events. The broadening effects exhibited by the data require in these models a significant gluon component of the pomeron.
VIGOR: Virtual Interaction with Gravitational Waves to Observe Relativity
NASA Astrophysics Data System (ADS)
Kitagawa, Midori; Kesden, Michael; Tranm, Ngoc; Venlayudam, Thulasi Sivampillai; Urquhart, Mary; Malina, Roger
2017-05-01
In 2015, a century after Albert Einstein published his theory of general relativity, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected gravitational waves from binary black holes fully consistent with this theory. Our goal for VIGOR (Virtual-reality Interaction with Gravitational waves to Observe Relativity) is to communicate this revolutionary discovery to the public by visualizing the gravitational waves emitted by binary black holes. VIGOR has been developed using the Unity game engine and VR headsets (Oculus Rift DK2 and Samsung Gear VR). Wearing a VR headset, VIGOR users control an avatar to "fly" around binary black holes, experiment on the black holes by manipulating their total mass, mass ratio, and orbital separation, and witness how gravitational waves emitted by the black holes stretch and squeeze the avatar. We evaluated our prototype of VIGOR with high school students in 2016 and are further improving VIGOR based on our findings.
Hemangiopericytoma/solitary fibrous tumor of pectoralis major muscle mimicking a breast mass
Dragoumis, Dimitrios; Desiris, Klearchos; Kyropoulou, Aikaterini; Malandri, Maria; Assimaki, Anthoula; Tsiftsoglou, Aris
2013-01-01
INTRODUCTION Hemangiopericytoma (HPC)/solitary fibrous tumor (SFT) is a very uncommon tumor of uncertain malignant behavior. In 1942, Stout and Murray first characterized these neoplasms as “vascular tumors arising from Zimmerman's pericytes” and till now hemangiopericytomas and solitary fibrous tumors of the soft tissues are regarded as features of the same entity in the soft tissue fascicle. PRESENTATION OF CASE We present a case of hemangiopericytoma/solitary fibrous tumor of the pectoralis major muscle in a 33-year-old female. She first noticed a painless mass in her right breast. Ultrasound of the breast revealed a large heterogeneously hypoechoic lesion within the pectoralis major muscle. Fine needle aspiration of the tumor did not produce any meaningful result. The lesion was completely removed by surgical resection. Histologically, the tumor had staghorn-like vasculature and immunohistochemistry for CD34 was positive, whereas desmin, smooth-muscle actin, S-100 protein, cytokeratins (AE1/AE3) and epithelial membrane antigen (EMA) were all negative. A diagnosis of hemangiopericytoma/solitary fibrous tumor was rendered. DISCUSSION Tumors comprising the HPC/SFT spectrum represent a small subset of soft tissue sarcomas and are found virtually at any site in the body. Wide surgical resection can achieve favorable long-term survival. CONCLUSION Due to the rarity and unpredictable biological potential of these tumors, long-term follow-up is mandatory even after radical resection, because recurrence or development of metastasis may be delayed many years. PMID:23416503
Xia, Kelin
2017-12-20
In this paper, a multiscale virtual particle based elastic network model (MVP-ENM) is proposed for the normal mode analysis of large-sized biomolecules. The multiscale virtual particle (MVP) model is proposed for the discretization of biomolecular density data. With this model, large-sized biomolecular structures can be coarse-grained into virtual particles such that a balance between model accuracy and computational cost can be achieved. An elastic network is constructed by assuming "connections" between virtual particles. The connection is described by a special harmonic potential function, which considers the influence from both the mass distributions and distance relations of the virtual particles. Two independent models, i.e., the multiscale virtual particle based Gaussian network model (MVP-GNM) and the multiscale virtual particle based anisotropic network model (MVP-ANM), are proposed. It has been found that in the Debye-Waller factor (B-factor) prediction, the results from our MVP-GNM with a high resolution are as good as the ones from GNM. Even with low resolutions, our MVP-GNM can still capture the global behavior of the B-factor very well with mismatches predominantly from the regions with large B-factor values. Further, it has been demonstrated that the low-frequency eigenmodes from our MVP-ANM are highly consistent with the ones from ANM even with very low resolutions and a coarse grid. Finally, the great advantage of MVP-ANM model for large-sized biomolecules has been demonstrated by using two poliovirus virus structures. The paper ends with a conclusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Woohyun; Braun, J.
Refrigerant mass flow rate is an important measurement for monitoring equipment performance and enabling fault detection and diagnostics. However, a traditional mass flow meter is expensive to purchase and install. A virtual refrigerant mass flow sensor (VRMF) uses a mathematical model to estimate flow rate using low-cost measurements and can potentially be implemented at low cost. This study evaluates three VRMFs for estimating refrigerant mass flow rate. The first model uses a compressor map that relates refrigerant flow rate to measurements of inlet and outlet pressure, and inlet temperature measurements. The second model uses an energy-balance method on the compressormore » that uses a compressor map for power consumption, which is relatively independent of compressor faults that influence mass flow rate. The third model is developed using an empirical correlation for an electronic expansion valve (EEV) based on an orifice equation. The three VRMFs are shown to work well in estimating refrigerant mass flow rate for various systems under fault-free conditions with less than 5% RMS error. Each of the three mass flow rate estimates can be utilized to diagnose and track the following faults: 1) loss of compressor performance, 2) fouled condenser or evaporator filter, 3) faulty expansion device, respectively. For example, a compressor refrigerant flow map model only provides an accurate estimation when the compressor operates normally. When a compressor is not delivering the expected flow due to a leaky suction or discharge valve or other internal fault, the energy-balance or EEV model can provide accurate flow estimates. In this paper, the flow differences provide an indication of loss of compressor performance and can be used for fault detection and diagnostics.« less
Managing in the Virtual World: How Second Life is Rewriting the Rules of "Real Life" Business
NASA Astrophysics Data System (ADS)
Wyld, David C.
In this paper, we will explore the growth of virtual worlds - one of the most exciting and fast-growing concepts in the Web 2.0 era. We will see that while there has been significant growth across all demographic groups, online gaming in MMOGs (Massively Multiplayer Online Games) are finding particular appeal in today's youth - the so-called "digital native" generation. We then overview the today's virtual world marketplace, both in the youth and adult-oriented markets. Second Life is emerging as the most important virtual world today, due to the intense interest amongst both large organizations and individual entrepreneurs to conduct real business in the virtual environment. Due to its prominence today and its forecasted growth over the next decade, we take a look at the unscripted world of Second Life, examining the corporate presence in-world, as well as the economic, technical, legal, ethical and security issues involved for companies doing business in the virtual world. In conclusion, we present an analysis of where we stand in terms of virtual world development today and a projection of where we will be heading in the near future. Finally, we present advice to management practitioners and academicians on how to learn about virtual worlds and explore the world of opportunities in them.
Focus, locus, and sensus: the three dimensions of virtual experience.
Waterworth, E L; Waterworth, J A
2001-04-01
A model of virtual/physical experience is presented, which provides a three dimensional conceptual space for virtual and augmented reality (VR and AR) comprising the dimensions of focus, locus, and sensus. Focus is most closely related to what is generally termed presence in the VR literature. When in a virtual environment, presence is typically shared between the VR and the physical world. "Breaks in presence" are actually shifts of presence away from the VR and toward the external environment. But we can also have "breaks in presence" when attention moves toward absence--when an observer is not attending to stimuli present in the virtual environment, nor to stimuli present in the surrounding physical environment--when the observer is present in neither the virtual nor the physical world. We thus have two dimensions of presence: focus of attention (between presence and absence) and the locus of attention (the virtual vs. the physical world). A third dimension is the sensus of attention--the level of arousal determining whether the observer is highly conscious or relatively unconscious while interacting with the environment. After expanding on each of these three dimensions of experience in relation to VR, we present a couple of educational examples as illustrations, and also relate our model to a suggested spectrum of evaluation methods for virtual environments.
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Bucher, Urs J.; Statler, Irving C. (Technical Monitor)
1994-01-01
The influence of physically presented background stimuli on the perceived depth of optically overlaid, stereoscopic virtual images has been studied using headmounted stereoscopic, virtual image displays. These displays allow presentation of physically unrealizable stimulus combinations. Positioning of an opaque physical object either at the initial perceived depth of the virtual image or at a position substantially in front of the virtual image, causes the virtual image to perceptually move closer to the observer. In the case of objects positioned substantially in front of the virtual image, subjects often perceive the opaque object to become transparent. Evidence is presented that the apparent change of position caused by interposition of the physical object is not due to occlusion cues. According, it may have an alternative cause such as variation in the binocular vengeance position of the eyes caused by introduction of the physical object. This effect may complicate design of overlaid virtual image displays for near objects and appears to be related to the relative conspicuousness of the overlaid virtual image and the background. Consequently, it may be related to earlier analyses of John Foley which modeled open-loop pointing errors to stereoscopically presented points of light in terms of errors in determination of a reference point for interpretation of observed retinal disparities. Implications for the design of see-through displays for manufacturing will be discussed.
Gadomski, A; Hladyszowski, J
2015-01-01
An extension of the Coulomb-Amontons law is proposed in terms of an interaction-detail involving renormalization (simplified) n-th level scheme. The coefficient of friction is obtained in a general exponential (nonlinear) form, characteristic of virtually infinite (or, many body) level of the interaction map. Yet, its application for a hydration repulsion bilayered system, prone to facilitated lubrication, is taken as linearly confined, albeit with an inclusion of a decisive repelling force/pressure factor. Some perspectives toward related systems, fairly outside biotribological issues, have been also addressed.
An efficient hole-filling method based on depth map in 3D view generation
NASA Astrophysics Data System (ADS)
Liang, Haitao; Su, Xiu; Liu, Yilin; Xu, Huaiyuan; Wang, Yi; Chen, Xiaodong
2018-01-01
New virtual view is synthesized through depth image based rendering(DIBR) using a single color image and its associated depth map in 3D view generation. Holes are unavoidably generated in the 2D to 3D conversion process. We propose a hole-filling method based on depth map to address the problem. Firstly, we improve the process of DIBR by proposing a one-to-four (OTF) algorithm. The "z-buffer" algorithm is used to solve overlap problem. Then, based on the classical patch-based algorithm of Criminisi et al., we propose a hole-filling algorithm using the information of depth map to handle the image after DIBR. In order to improve the accuracy of the virtual image, inpainting starts from the background side. In the calculation of the priority, in addition to the confidence term and the data term, we add the depth term. In the search for the most similar patch in the source region, we define the depth similarity to improve the accuracy of searching. Experimental results show that the proposed method can effectively improve the quality of the 3D virtual view subjectively and objectively.
Seeing an Embodied Virtual Hand is Analgesic Contingent on Colocation.
Nierula, Birgit; Martini, Matteo; Matamala-Gomez, Marta; Slater, Mel; Sanchez-Vives, Maria V
2017-06-01
Seeing one's own body has been reported to have analgesic properties. Analgesia has also been described when seeing an embodied virtual body colocated with the real one. However, there is controversy regarding whether this effect holds true when seeing an illusory-owned body part, such as during the rubber-hand illusion. A critical difference between these paradigms is the distance between the real and surrogate body part. Colocation of the real and surrogate arm is possible in an immersive virtual environment, but not during illusory ownership of a rubber arm. The present study aimed at testing whether the distance between a real and a virtual arm can explain such differences in terms of pain modulation. Using a paradigm of embodiment of a virtual body allowed us to evaluate heat pain thresholds at colocation and at a 30-cm distance between the real and the virtual arm. We observed a significantly higher heat pain threshold at colocation than at a 30-cm distance. The analgesic effects of seeing a virtual colocated arm were eliminated by increasing the distance between the real and the virtual arm, which explains why seeing an illusorily owned rubber arm does not consistently result in analgesia. These findings are relevant for the use of virtual reality in pain management. Looking at a virtual body has analgesic properties similar to looking at one's real body. We identify the importance of colocation between a real and a surrogate body for this to occur and thereby resolve a scientific controversy. This information is useful for exploiting immersive virtual reality in pain management. Copyright © 2017. Published by Elsevier Inc.
PMC Formation From Space Shuttle Exhaust and Implications to Trend Studies
NASA Astrophysics Data System (ADS)
Stevens, M. H.
2012-12-01
Main engine exhaust from the space shuttle is nearly entirely water vapor and about 350 tons were injected between 100-115 km during each launch. Many observational studies showed that the meridional transport of these exhaust plumes can be much faster than either general circulation models or satellite wind climatologies predicted. The fast meridional transport is global-scale and can furthermore lead to bursts of polar mesospheric clouds (PMCs) that constitute 10-20% of the PMC ice mass during a summer season. This contribution is significant because reported PMC frequency and albedo trends since the late 20th century are typically less than 1%/year. Although the shuttle program has ended, space traffic continues virtually every week worldwide and the potential effect to the annual PMC ice budget from these smaller launch vehicles remains unquantified. Here we calculate the PMC ice mass for each northern season since 1979 from the suite of Solar Backscatter UltraViolet (SBUV) instruments and compare that to the inventory of water vapor injected concurrently by space traffic worldwide. Care is taken to only consider PMC observations from one part of the diurnal cycle (11.6±1.1 local time) and one latitude (70±2.5° N) so as not to contaminate long-term trend estimates with the well-known tidally induced variations of the PMC ice mass. We infer the long term PMC trend from the SBUV observations and compare that to the water vapor available from space traffic to assess the potential contribution of space traffic to the PMC trend. We find that the total amount of water vapor exhaust injected worldwide into the upper atmosphere (90-140 km) each year between 1979-2011 is on average about three times larger than the PMC ice mass observed. We also find that the PMC ice mass trend is less than 1%/year. Even after consideration of photodissociation, the water vapor exhaust available from space traffic far exceeds the PMC trend estimate and can therefore contribute substantially, depending on what fraction of the exhaust plumes reach the polar summer.
Virtual drug discovery: beyond computational chemistry?
Gilardoni, Francois; Arvanites, Anthony C
2010-02-01
This editorial looks at how a fully integrated structure that performs all aspects in the drug discovery process, under one company, is slowly disappearing. The steps in the drug discovery paradigm have been slowly increasing toward virtuality or outsourcing at various phases of product development in a company's candidate pipeline. Each step in the process, such as target identification and validation and medicinal chemistry, can be managed by scientific teams within a 'virtual' company. Pharmaceutical companies to biotechnology start-ups have been quick in adopting this new research and development business strategy in order to gain flexibility, access the best technologies and technical expertise, and decrease product developmental costs. In today's financial climate, the term virtual drug discovery has an organizational meaning. It represents the next evolutionary step in outsourcing drug development.
ERIC Educational Resources Information Center
Samsudin, Khairulanuar; Rafi, Ahmad; Mohamad Ali, Ahmad Zamzuri; Abd. Rashid, Nazre
2014-01-01
The aim of this study is to develop and to test a low-cost virtual reality spatial trainer in terms of its effectiveness in spatial training. The researchers adopted three features deriving from the constructivist perspective to guide the design of the trainer, namely interaction, instruction, and support. The no control pre test post test…
The Future of Virtual Reality in Education: A Future Oriented Meta Analysis of the Literature
ERIC Educational Resources Information Center
Passig, David
2009-01-01
Many have elaborated on the potential of virtual reality (VR) in learning. This article attempts at organizing the literature in this issue in order to better identify indicators that can account for future valid trends, and seeks to bring to attention how authors who wrote about the future of VR in education confused futures' terms and produced…
Mobility for GCSS-MC through virtual PCs
2017-06-01
their productivity. Mobile device access to GCSS-MC would allow Marines to access a required program for their mission using a form of computing ...network throughput applications with a device running on various operating systems with limited computational ability. The use of VPCs leads to a...reduced need for network throughput and faster overall execution. 14. SUBJECT TERMS GCSS-MC, enterprise resource planning, virtual personal computer
ERIC Educational Resources Information Center
Sylvia, Margaret
1993-01-01
Describes one college library's experience with a gateway for dial-in access to its CD-ROM network to increase access to automated index searching for students off-campus. Hardware and software choices are discussed in terms of access, reliability, affordability, and ease of use. Installation problems are discussed, and an appendix lists product…
USMC Logistics Resource Allocation Optimization Tool
2015-12-01
Virtual Warehouse Concept ..........................................12 3. New Models in Logistics Network Design and Implications for Third Party...is the smallest DD activity in terms of manpower , but due to its proximity to USMC units, stocks a much greater quantity of USMC-demanded materiel...salient conclusion to reference with respect to this thesis. 12 2. Inventory Management of Repairables in the U.S. Marine Corps— A Virtual Warehouse
NASA Astrophysics Data System (ADS)
Bera, P.; Wędrychowicz, D.
2016-09-01
The article presents the influence of number and values of ratios in stepped gearbox on mileage fuel consumption in a city passenger car. The simulations were conducted for a particular vehicle characterized by its mass, body shape, size of tires and equipped with a combustion engine for which the characteristic of fuel consumption in dynamic states was already designated on the basis of engine test bed measurements. Several designs of transmission with different number of gears and their ratios were used in virtual simulations of road traffic, particularly in the NEDC test, to calculate mileage fuel consumption. This allows for a quantitative assessment of transmission parameters in terms of both vehicle economy and dynamic properties. Also, based on obtained results, recommendations for the selection of a particular vehicle for a specific type of exploitation have been formulated.
Hospital admission avoidance through the introduction of a virtual ward.
Jones, Joanne; Carroll, Andrea
2014-07-01
The ageing British population is placing increased demands on the delivery of care in mainstream health-care institutions. While people are living longer, a significant percentage is also living with one or more long-term conditions. These issues, alongside continuing financial austerity measures, require a radical improvement in the care of patients away from hospitals. The Wyre Forest Clinical Commissioning Group introduced a virtual ward model for two main purposes: to save on spiralling costs of hospital admissions, and, secondly, to ensure the preferred wishes of most patients to be cared for and even die at home were achieved. This commentary describes how the virtual ward model was implemented and the impact of preventing unplanned emergency admissions to hospitals. The setting up of enhanced care services and virtual wards in one county is discussed, aiming to highlight success points and potential pitfalls to avoid. The results from the implementation of the virtual ward model show a significant reduction in emergency and avoidable patient admissions to hospital. The success of virtual wards is dependent on integrated working between different health-care disciplines.
Prosthetic Leg Control in the Nullspace of Human Interaction.
Gregg, Robert D; Martin, Anne E
2016-07-01
Recent work has extended the control method of virtual constraints, originally developed for autonomous walking robots, to powered prosthetic legs for lower-limb amputees. Virtual constraints define desired joint patterns as functions of a mechanical phasing variable, which are typically enforced by torque control laws that linearize the output dynamics associated with the virtual constraints. However, the output dynamics of a powered prosthetic leg generally depend on the human interaction forces, which must be measured and canceled by the feedback linearizing control law. This feedback requires expensive multi-axis load cells, and actively canceling the interaction forces may minimize the human's influence over the prosthesis. To address these limitations, this paper proposes a method for projecting virtual constraints into the nullspace of the human interaction terms in the output dynamics. The projected virtual constraints naturally render the output dynamics invariant with respect to the human interaction forces, which instead enter into the internal dynamics of the partially linearized prosthetic system. This method is illustrated with simulations of a transfemoral amputee model walking with a powered knee-ankle prosthesis that is controlled via virtual constraints with and without the proposed projection.
Embodying self-compassion within virtual reality and its effects on patients with depression.
Falconer, Caroline J; Rovira, Aitor; King, John A; Gilbert, Paul; Antley, Angus; Fearon, Pasco; Ralph, Neil; Slater, Mel; Brewin, Chris R
2016-01-01
Self-criticism is a ubiquitous feature of psychopathology and can be combatted by increasing levels of self-compassion. However, some patients are resistant to self-compassion. To investigate whether the effects of self-identification with virtual bodies within immersive virtual reality could be exploited to increase self-compassion in patients with depression. We developed an 8-minute scenario in which 15 patients practised delivering compassion in one virtual body and then experienced receiving it from themselves in another virtual body. In an open trial, three repetitions of this scenario led to significant reductions in depression severity and self-criticism, as well as to a significant increase in self-compassion, from baseline to 4-week follow-up. Four patients showed clinically significant improvement. The results indicate that interventions using immersive virtual reality may have considerable clinical potential and that further development of these methods preparatory to a controlled trial is now warranted. None. © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) licence.
Benefits and Challenges of the Passport Broadcast Intervention in Long-Term Care
ERIC Educational Resources Information Center
Wittenberg-Lyles, Elaine; Oliver, Debra Parker; Demiris, George; Shaunfield, Sara
2012-01-01
Creative activities are a challenge for long-term care facilities. The Passport intervention uses web-based video technology to provide long-term care residents with a virtual travel experience. Passport broadcasts were conducted and staff and residents were interviewed about the experience. A thematic analysis of interviews was used to discern…
Ellis, Terry; Latham, Nancy K.; DeAngelis, Tamara R.; Thomas, Cathi A.; Saint-Hilaire, Marie; Bickmore, Timothy W.
2013-01-01
Objective The short-term benefits of exercise for persons with Parkinson Disease (PD) are well-established, but long-term adherence is limited. The aim of this study was to explore the feasibility, acceptability and preliminary evidence of effectiveness of a virtual exercise coach to promote daily walking in community dwelling persons with PD. Design Twenty subjects with PD participated in this Phase I single group, non-randomized clinical trial. Subjects were instructed to interact with the virtual exercise coach for 5 minutes, wear a pedometer and walk daily for one month. Retention rate, satisfaction and interaction history were assessed at 1-month. Six-minute walk and gait speed were assessed at baseline and post intervention. Results Participants were 55% female, mean age 65.6. At study completion, there was a 100% retention rate. Subjects had an average satisfaction score of 5.6/7 (with seven indicating maximal satisfaction) with the virtual exercise coach. Interaction history revealed that participants logged-in an average of 25.4 days (SD 7) out of the recommended 30 days. Mean adherence to daily walking was 85%. Both gait speed and the 6-minute walk test significantly improved (p<0.05). No adverse events were reported. Conclusions Sedentary persons with PD successfully used a computer and interacted with a virtual exercise coach. Retention, satisfaction and adherence to daily walking were high over one-month and significant improvements were seen in mobility. PMID:23552335
Watson, Alice; Bickmore, Timothy; Cange, Abby; Kulshreshtha, Ambar; Kvedar, Joseph
2012-01-26
Addressing the obesity epidemic requires the development of effective, scalable interventions. Pedometers and Web-based programs are beneficial in increasing activity levels but might be enhanced by the addition of nonhuman coaching. We hypothesized that a virtual coach would increase activity levels, via step count, in overweight or obese individuals beyond the effect observed using a pedometer and website alone. We recruited 70 participants with a body mass index (BMI) between 25 and 35 kg/m(2) from the Boston metropolitan area. Participants were assigned to one of two study arms and asked to wear a pedometer and access a website to view step counts. Intervention participants also met with a virtual coach, an automated, animated computer agent that ran on their home computers, set goals, and provided personalized feedback. Data were collected and analyzed in 2008. The primary outcome measure was change in activity level (percentage change in step count) over the 12-week study, split into four 3-week time periods. Major secondary outcomes were change in BMI and participants' satisfaction. The mean age of participants was 42 years; the majority of participants were female (59/70, 84%), white (53/70, 76%), and college educated (68/70, 97%). Of the initial 70 participants, 62 completed the study. Step counts were maintained in intervention participants but declined in controls. The percentage change in step count between those in the intervention and control arms, from the start to the end, did not reach the threshold for significance (2.9% vs -12.8% respectively, P = .07). However, repeated measures analysis showed a significant difference when comparing percentage changes in step counts between control and intervention participants over all time points (analysis of variance, P = .02). There were no significant changes in secondary outcome measures. The virtual coach was beneficial in maintaining activity level. The long-term benefits and additional applications of this technology warrant further study. ClinicalTrials.gov NCT00792207; http://clinicaltrials.gov/ct2/show/NCT00792207 (Archived by WebCite at http://www.webcitation.org/63sm9mXUD).
2018-01-01
Objective To evaluate the impact of using a ‘virtual clinic’ on patient experience and cost in the care of women with urinary incontinence. Materials and methods Women, aged > 18 years referred to a urogynaecology unit were randomised to either (1) A Standard Clinic or (2) A Virtual Clinic. Both groups completed a validated, web-based interactive, patient-reported outome measure (ePAQ-Pelvic Floor), in advance of their appointment followed by either a telephone consultation (Virtual Clinic) or face-to-face consultation (Standard Care). The primary outcome was the mean ‘short-term outcome scale’ score on the Patient Experience Questionnaire (PEQ). Secondary Outcome Measures included the other domains of the PEQ (Communications, Emotions and Barriers), Client Satisfaction Questionnaire (CSQ), Short-Form 12 (SF-12), personal, societal and NHS costs. Results 195 women were randomised: 98 received the intervention and 97 received standard care. The primary outcome showed a non-significant difference between the two study arms. No significant differences were also observed on the CSQ and SF-12. However, the intervention group showed significantly higher PEQ domain scores for Communications, Emotions and Barriers (including following adjustment for age and parity). Whilst standard care was overall more cost-effective, this was minimal (£38.04). The virtual clinic also significantly reduced consultation time (10.94 minutes, compared with a mean duration of 25.9 minutes respectively) and consultation costs compared to usual care (£31.75 versus £72.17 respectively), thus presenting potential cost-savings in out-patient management. Conclusions The virtual clinical had no impact on the short-term dimension of the PEQ and overall was not as cost-effective as standard care, due to greater clinic re-attendances in this group. In the virtual clinic group, consultation times were briefer, communication experience was enhanced and personal costs lower. For medical conditions of a sensitive or intimate nature, a virtual clinic has potential to support patients to communicate with health professionals about their condition. PMID:29346378
NASA Astrophysics Data System (ADS)
Ghatty, Sundara L.
Over the past decade, there has been a dramatic rise in online delivery of higher education in the United States. Recent developments in web technology and access to the internet have led to a vast increase in online courses. For people who work during the day and whose complicated lives prevent them from taking courses on campus, online courses are the only alternatives by which they may achieve their goals in education. The laboratory courses are the major requirements for college and university students who want to pursue degree and certification programs in science. It is noted that there is a lack of laboratory courses in online physics courses. The present study addressed the effectiveness of a virtual science laboratory in physics instruction in terms of learning outcomes, attitudes, and self-efficacy of students in a Historically Black University College. The study included fifty-eight students (36 male and 22 female) of different science majors who were enrolled in a general physics laboratory course. They were divided into virtual and traditional groups. Three experiments were selected from the syllabus. The traditional group performed one experiment in a traditional laboratory, while the virtual group performed the same experiment in a virtual laboratory. For the second experiment, the use of laboratories by both groups was exchanged. Learner's Assessment Test (LAT), Attitudes Toward Physics Laboratories (ATPL), and Self-Efficacy Survey (SES) instruments were used. Additionally, quantitative methods such as an independent t-test, a paired t-test, and correlation statistics were used to analyze the data. The results of the first experiment indicated the learning outcomes were higher in the Virtual Laboratory than in the traditional laboratory, whereas there was no significant difference in learning outcomes with either type of lab instruction. However, significant self-efficacy gains were observed. Students expressed positive attitudes in terms of liking as well as interests in performing experiments in virtual laboratories. No gender differences were observed in learning outcomes or self-efficacy. The results of the study indicated that virtual laboratories may be a substitute for traditional laboratories to some extent, and may play a vital role in online science courses.
A Virtual Sensor for Online Fault Detection of Multitooth-Tools
Bustillo, Andres; Correa, Maritza; Reñones, Anibal
2011-01-01
The installation of suitable sensors close to the tool tip on milling centres is not possible in industrial environments. It is therefore necessary to design virtual sensors for these machines to perform online fault detection in many industrial tasks. This paper presents a virtual sensor for online fault detection of multitooth tools based on a Bayesian classifier. The device that performs this task applies mathematical models that function in conjunction with physical sensors. Only two experimental variables are collected from the milling centre that performs the machining operations: the electrical power consumption of the feed drive and the time required for machining each workpiece. The task of achieving reliable signals from a milling process is especially complex when multitooth tools are used, because each kind of cutting insert in the milling centre only works on each workpiece during a certain time window. Great effort has gone into designing a robust virtual sensor that can avoid re-calibration due to, e.g., maintenance operations. The virtual sensor developed as a result of this research is successfully validated under real conditions on a milling centre used for the mass production of automobile engine crankshafts. Recognition accuracy, calculated with a k-fold cross validation, had on average 0.957 of true positives and 0.986 of true negatives. Moreover, measured accuracy was 98%, which suggests that the virtual sensor correctly identifies new cases. PMID:22163766
NASA Astrophysics Data System (ADS)
Di Stefano, Omar; Stassi, Roberto; Garziano, Luigi; Frisk Kockum, Anton; Savasta, Salvatore; Nori, Franco
2017-05-01
In quantum field theory, bare particles are dressed by a cloud of virtual particles to form physical particles. The virtual particles affect properties such as the mass and charge of the physical particles, and it is only these modified properties that can be measured in experiments, not the properties of the bare particles. The influence of virtual particles is prominent in the ultrastrong-coupling regime of cavity quantum electrodynamics (QED), which has recently been realised in several condensed-matter systems. In some of these systems, the effective interaction between atom-like transitions and the cavity photons can be switched on or off by external control pulses. This offers unprecedented possibilities for exploring quantum vacuum fluctuations and the relation between physical and bare particles. We consider a single three-level quantum system coupled to an optical resonator. Here we show that, by applying external electromagnetic pulses of suitable amplitude and frequency, each virtual photon dressing a physical excitation in cavity-QED systems can be converted into a physical observable photon, and back again. In this way, the hidden relationship between the bare and the physical excitations can be unravelled and becomes experimentally testable. The conversion between virtual and physical photons can be clearly pictured using Feynman diagrams with cut loops.
Virtual Laparoscopic Training System Based on VCH Model.
Tang, Jiangzhou; Xu, Lang; He, Longjun; Guan, Songluan; Ming, Xing; Liu, Qian
2017-04-01
Laparoscopy has been widely used to perform abdominal surgeries, as it is advantageous in that the patients experience lower post-surgical trauma, shorter convalescence, and less pain as compared to traditional surgery. Laparoscopic surgeries require precision; therefore, it is imperative to train surgeons to reduce the risk of operation. Laparoscopic simulators offer a highly realistic surgical environment by using virtual reality technology, and it can improve the training efficiency of laparoscopic surgery. This paper presents a virtual Laparoscopic surgery system. The proposed system utilizes the Visible Chinese Human (VCH) to construct the virtual models and simulates real-time deformation with both improved special mass-spring model and morph target animation. Meanwhile, an external device that integrates two five-degrees-of-freedom (5-DOF) manipulators was designed and made to interact with the virtual system. In addition, the proposed system provides a modular tool based on Unity3D to define the functions and features of instruments and organs, which could help users to build surgical training scenarios quickly. The proposed virtual laparoscopic training system offers two kinds of training mode, skills training and surgery training. In the skills training mode, the surgeons are mainly trained for basic operations, such as laparoscopic camera, needle, grasp, electric coagulation, and suturing. In the surgery-training mode, the surgeons can practice cholecystectomy and removal of hepatic cysts by guided or non-guided teaching.
A virtual sensor for online fault detection of multitooth-tools.
Bustillo, Andres; Correa, Maritza; Reñones, Anibal
2011-01-01
The installation of suitable sensors close to the tool tip on milling centres is not possible in industrial environments. It is therefore necessary to design virtual sensors for these machines to perform online fault detection in many industrial tasks. This paper presents a virtual sensor for online fault detection of multitooth tools based on a bayesian classifier. The device that performs this task applies mathematical models that function in conjunction with physical sensors. Only two experimental variables are collected from the milling centre that performs the machining operations: the electrical power consumption of the feed drive and the time required for machining each workpiece. The task of achieving reliable signals from a milling process is especially complex when multitooth tools are used, because each kind of cutting insert in the milling centre only works on each workpiece during a certain time window. Great effort has gone into designing a robust virtual sensor that can avoid re-calibration due to, e.g., maintenance operations. The virtual sensor developed as a result of this research is successfully validated under real conditions on a milling centre used for the mass production of automobile engine crankshafts. Recognition accuracy, calculated with a k-fold cross validation, had on average 0.957 of true positives and 0.986 of true negatives. Moreover, measured accuracy was 98%, which suggests that the virtual sensor correctly identifies new cases.
Direct virtual photon production in Au+Au collisions at √{sNN} = 200 GeV
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fujita, J.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, B.; Huang, T.; Huang, H. Z.; Huang, X.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, W.; Li, X.; Li, C.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, Y.; Liu, F.; Liu, H.; Liu, P.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Ma, L.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.
2017-07-01
We report the direct virtual photon invariant yields in the transverse momentum ranges 1
The notions of mass in gravitational and particle physics
NASA Astrophysics Data System (ADS)
Castellani, Gianluca
It is presently thought that the mass of all of the elementary particles is determined by the Higgs field. This scalar field couples directly into the trace of the energy momentum tensor of the elementary particles. The attraction between two or more masses arises from the exchange of gravitational quantum particles of spin 2, called gravitons. The gravitational field couples directly into the energy momentum tensor. Then there is a close connection between the Higgs field, that originates the mass, and the gravitational field that dictates how the masses interact. Our purpose in this thesis is to discuss this close connection in terms of fundamental definitions of inertial and gravitational masses. On a practical level we explore two properties of mass from the viewpoint of coupling into the Higgs field: (i) The coupling of the both the Higgs and gravity to the energy-pressure tensor allows for the decay of the Higgs particle into two gravitons. We use the self energy part of the Higgs propagator to calculate the electromagnetic, weak, fermionic and gravitational decay rate of the Higgs particle. We show that the former process appears to dominate the other decay modes. Since the gravitons are detectable with virtually zero probability, the number of Higgs particles with observable decay products will be much less than previously expected. (ii) Some new experimental results seem to indicate that the mass of the heavy elementary particles like the Z,W+,W- and especially the top quark, depends on the particle environment in which these particles are produced. The presence of a Higgs field due to neighboring particles could be responsible for induced mass shifts. Further measurements of mass shift effects might give an indirect proof of the Higgs particle. Such can be in principle done by re-analyzing some of the production data e +e- → ZZ (or W+W-) already collected at the LEP experiment. About the physical property of the top quark, it is too early to arrive at any conclusion. In the foreseeable future, there will be more extended top quark production statistics from the Tevatron accelerator so that the mass shift hypothesis can be experimentally probed.
NASA Astrophysics Data System (ADS)
Bolton, Richard W.; Dewey, Allen; Horstmann, Paul W.; Laurentiev, John
1997-01-01
This paper examines the role virtual enterprises will have in supporting future business engagements and resulting technology requirements. Two representative end-user scenarios are proposed that define the requirements for 'plug-and-play' information infrastructure frameworks and architectures necessary to enable 'virtual enterprises' in US manufacturing industries. The scenarios provide a high- level 'needs analysis' for identifying key technologies, defining a reference architecture, and developing compliant reference implementations. Virtual enterprises are short- term consortia or alliances of companies formed to address fast-changing opportunities. Members of a virtual enterprise carry out their tasks as if they all worked for a single organization under 'one roof', using 'plug-and-play' information infrastructure frameworks and architectures to access and manage all information needed to support the product cycle. 'Plug-and-play' information infrastructure frameworks and architectures are required to enhance collaboration between companies corking together on different aspects of a manufacturing process. This new form of collaborative computing will decrease cycle-time and increase responsiveness to change.
ERIC Educational Resources Information Center
Lally, Victor; Sclater, Madeleine
2013-01-01
Careers work in the twenty-first century faces a key challenge in terms of digital technologies: to evaluate their potential for careers work in challenging settings. Given the rapidity of developments, technologies require evaluation in research innovations and naturalistic settings. Virtual worlds offer potential for careers and guidance work,…
NASA Technical Reports Server (NTRS)
Ross, M. D.
2001-01-01
Safety of astronauts during long-term space exploration is a priority for NASA. This paper describes efforts to produce Earth-based models for providing expert medical advice when unforeseen medical emergencies occur on spacecraft. These models are Virtual Collaborative Clinics that reach into remote sites using telecommunications and emerging stereo-imaging and sensor technologies. c 2001. Elsevier Science Ltd. All rights reserved.
"A tree must be bent while it is young": teaching urological surgical techniques to schoolchildren.
Buntrock, Stefan
2012-01-01
Playing video games in childhood may help achieve advanced laparoscopic skills later in life. The virtual operating room will soon become a reality, as "doctor games 2.0" will doubtlessly begin to incorporate virtual laparoscopic techniques. To teach surgical skills to schoolchildren in order to attract them to urology as a professional choice later in life. As part of EAU Urology Week 2010, 108 school children aged 15-19 attended a seminar with lectures and simulators (laparoscopy, TUR, cystoscopy, and suture sets) at the 62nd Congress of the German Society of Urology in Düsseldorf. A Pub-Med and Google Scholar search was also performed in order to review the beneficial effects of early virtual surgical training. MeSh terms used were "video games," "children," and "surgical skills." Searches were performed without restriction for a certain period of time. In terms of publicity for urology, EAU Urology Week, and the German Society of Urology, the event was immensely successful. Regarding the literature search, four relevant publications were found involving children. An additional three articles evaluated the usefulness of video gaming in medical students and residents. Making use of virtual reality to attract and educate a new generation of urologists is an important step in designing the future of urology.
Quantum Entanglement Molecular Absorption Spectrum Simulator
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet; Kojima, Jun
2006-01-01
Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.
Virtually-augmented interfaces for tactical aircraft.
Haas, M W
1995-05-01
The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and non-virtual concepts and devices across the visual, auditory and haptic sensory modalities. A fusion interface is a multi-sensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion-interface concepts. One of the virtual concepts to be investigated in the Fusion Interfaces for Tactical Environments facility (FITE) is the application of EEG and other physiological measures for virtual control of functions within the flight environment. FITE is a specialized flight simulator which allows efficient concept development through the use of rapid prototyping followed by direct experience of new fusion concepts. The FITE facility also supports evaluation of fusion concepts by operational fighter pilots in a high fidelity simulated air combat environment. The facility was utilized by a multi-disciplinary team composed of operational pilots, human-factors engineers, electronics engineers, computer scientists, and experimental psychologists to prototype and evaluate the first multi-sensory, virtually-augmented cockpit. The cockpit employed LCD-based head-down displays, a helmet-mounted display, three-dimensionally localized audio displays, and a haptic display. This paper will endeavor to describe the FITE facility architecture, some of the characteristics of the FITE virtual display and control devices, and the potential application of EEG and other physiological measures within the FITE facility.
NASA Technical Reports Server (NTRS)
Twombly, I. Alexander; Smith, Jeffrey; Bruyns, Cynthia; Montgomery, Kevin; Boyle, Richard
2003-01-01
The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The Virtual GloveboX (VGX) integrates high-fidelity graphics, force-feedback devices and real- time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.
2013-01-01
Abstract Paratesticular liposarcoma is a rare neoplasm, described in single case studies or components of larger studies, as histologically well-differentiated liposarcoma (WDL) and dedifferentiated liposarcoma (DL). However, leiomyosarcomatous differentiation is an extremely rare occurrence in WDL and DL. We report a case of leiomyosarcomatous differentiation in a 77-year-old man. The patient presented with a painless right scrotal mass. Magnetic resonance imaging showed a large mass along the right spermatic cord. The resected mass, measuring 17.5 × 12 × 5 cm, was composed of a high-grade pleomorphic undifferentiated sarcomatous component with necrosis. Atypical smooth muscle differentiation was also detected. Additional tumor sampling revealed the presence of a WDL component. Immunohistochemical analysis of the pleomorphic sarcomatous component showed positive staining for MDM2 and CDK4, and negative staining for alpha smooth muscle actin (αSMA) and desmin. The smooth muscle component was positive for αSMA and desmin, and negative for MDM2 and CDK4. Extension from primary retroperitoneal sarcoma was not proved. We diagnosed of DL with leiomyosarcomatous differentiation. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1484291498104021. PMID:23971887
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, John M.; Ellis, R. Keith; Czakon, Michal
We present results for the production of a pair of on-shell Z bosons via gluon-gluon fusion. This process occurs both through the production and decay of the Higgs boson, and through continuum production where the Z boson couples to a loop of massless quarks or to a massive quark. We calculate the interference of the two processes and its contribution to the cross section up to and including order O(αmore » $$_{s}^{3}$$ ). The two-loop contributions to the amplitude are all known analytically, except for the continuum production through loops of top quarks of mass m. The latter contribution is important for the invariant mass of the two Z bosons, (as measured by the mass of their leptonic decay products, m$$_{4l}$$), in a regime where m$$_{4l}$$ ≥ 2m because of the contributions of longitudinal bosons. We examine all the contributions to the virtual amplitude involving top quarks, as expansions about the heavy top quark limit combined with a conformal mapping and Padé approximants. Comparison with the analytic results, where known, allows us to assess the validity of the heavy quark expansion, and it extensions. We give results for the NLO corrections to this interference, including both real and virtual radiation.« less
Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells.
Drobek, Ales; Moudra, Alena; Mueller, Daniel; Huranova, Martina; Horkova, Veronika; Pribikova, Michaela; Ivanek, Robert; Oberle, Susanne; Zehn, Dietmar; McCoy, Kathy D; Draber, Peter; Stepanek, Ondrej
2018-05-11
Virtual memory T cells are foreign antigen-inexperienced T cells that have acquired memory-like phenotype and constitute 10-20% of all peripheral CD8 + T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen-experienced memory T cells are incompletely understood. By analyzing T-cell receptor repertoires and using retrogenic monoclonal T-cell populations, we demonstrate that the virtual memory T-cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self-reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T-cell compartment via modulating the self-reactivity of individual T cells. Although virtual memory T cells descend from the highly self-reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self-reactivity in polyclonal T cells for the generation of functional T-cell diversity. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Cosmology of Universe Particles and Beyond
NASA Astrophysics Data System (ADS)
Xu, Wei
2016-06-01
For the first time in history, all properties of cosmology particles are uncovered and described concisely and systematically, known as the elementary particles in contemporary physics.Aligning with the synthesis of the virtual and physical worlds in a hierarchical taxonomy of the universe, this theory refines the topology framework of cosmology, and presents a new perspective of the Yin Yang natural laws that, through the processes of creation and reproduction, the fundamental elements generate an infinite series of circular objects and a Yin Yang duality of dynamic fields that are sequenced and transformed states of matter between the virtual and physical worlds.Once virtual objects are transformed, they embody various enclaves of energy states, known as dark energy, quarks, leptons, bosons, protons, and neutrons, characterized by their incentive oscillations of timestate variables in a duality of virtual realities: energy and time, spin and charge, mass and space, symmetry and antisymmetry.As a consequence, it derives the fully-scaled quantum properties of physical particles in accordance with numerous historical experiments, and has overcome the limitations of uncertainty principle and the Standard Model, towards concisely exploring physical nature and beyond...
NASA Technical Reports Server (NTRS)
Slater, G. L.; Shelley, Stuart; Jacobson, Mark
1993-01-01
In this paper, the design, analysis, and test of a low cost, linear proof mass actuator for vibration control is presented. The actuator is based on a linear induction coil from a large computer disk drive. Such disk drives are readily available and provide the linear actuator, current feedback amplifier, and power supply for a highly effective, yet inexpensive, experimental laboratory actuator. The device is implemented as a force command input system, and the performance is virtually the same as other, more sophisticated, linear proof mass systems.
Emerging Utility of Virtual Reality as a Multidisciplinary Tool in Clinical Medicine.
Pourmand, Ali; Davis, Steven; Lee, Danny; Barber, Scott; Sikka, Neal
2017-10-01
Among the more recent products borne of the evolution of digital technology, virtual reality (VR) is gaining a foothold in clinical medicine as an adjunct to traditional therapies. Early studies suggest a growing role for VR applications in pain management, clinical skills training, cognitive assessment and cognitive therapy, and physical rehabilitation. To complete a review of the literature, we searched PubMed and MEDLINE databases with the following search terms: "virtual reality," "procedural medicine," "oncology," "physical therapy," and "burn." We further limited our search to publications in the English language. Boolean operators were used to combine search terms. The included search terms yielded 97 potential articles, of which 45 were identified as meeting study criteria, and are included in this review. These articles provide data, which strongly support the hypothesis that VR simulations can enhance pain management (by reducing patient perception of pain and anxiety), can augment clinical training curricula and physical rehabilitation protocols (through immersive audiovisual environments), and can improve clinical assessment of cognitive function (through improved ecological validity). Through computer-generated, life-like digital landscapes, VR stands to change the current approach to pain management, medical training, neurocognitive diagnosis, and physical rehabilitation. Additional studies are needed to help define best practices in VR utilization, and to explore new therapeutic uses for VR in clinical practice.
Higgs-boson production in nucleus-nucleus collisions
NASA Technical Reports Server (NTRS)
Norbury, J. W.; Townsend, L. W. (Principal Investigator)
1990-01-01
Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.
Higgs-Boson Production in Nucleus-Nucleus Collisions
NASA Technical Reports Server (NTRS)
Norbury, John W.
1992-01-01
Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.
High-mass diffraction in the QCD dipole picture
NASA Astrophysics Data System (ADS)
Bialas, A.; Navelet, H.; Peschanski, R.
1998-05-01
Using the QCD dipole picture of the BFKL pomeron, the cross-section of single diffractive dissociation of virtual photons at high energy and large diffractively excited masses is calculated. The calculation takes into account the full impact-parameter phase-space and thus allows to obtain an exact value of the triple BFKL Pomeron vertex. It appears large enough to compensate the perturbative 6-gluon coupling factor (α/π)3 thus suggesting a rather appreciable diffractive cross-section.
Crowd behaviour during high-stress evacuations in an immersive virtual environment
Kapadia, Mubbasir; Thrash, Tyler; Sumner, Robert W.; Gross, Markus; Helbing, Dirk; Hölscher, Christoph
2016-01-01
Understanding the collective dynamics of crowd movements during stressful emergency situations is central to reducing the risk of deadly crowd disasters. Yet, their systematic experimental study remains a challenging open problem due to ethical and methodological constraints. In this paper, we demonstrate the viability of shared three-dimensional virtual environments as an experimental platform for conducting crowd experiments with real people. In particular, we show that crowds of real human subjects moving and interacting in an immersive three-dimensional virtual environment exhibit typical patterns of real crowds as observed in real-life crowded situations. These include the manifestation of social conventions and the emergence of self-organized patterns during egress scenarios. High-stress evacuation experiments conducted in this virtual environment reveal movements characterized by mass herding and dangerous overcrowding as they occur in crowd disasters. We describe the behavioural mechanisms at play under such extreme conditions and identify critical zones where overcrowding may occur. Furthermore, we show that herding spontaneously emerges from a density effect without the need to assume an increase of the individual tendency to imitate peers. Our experiments reveal the promise of immersive virtual environments as an ethical, cost-efficient, yet accurate platform for exploring crowd behaviour in high-risk situations with real human subjects. PMID:27605166
Crowd behaviour during high-stress evacuations in an immersive virtual environment.
Moussaïd, Mehdi; Kapadia, Mubbasir; Thrash, Tyler; Sumner, Robert W; Gross, Markus; Helbing, Dirk; Hölscher, Christoph
2016-09-01
Understanding the collective dynamics of crowd movements during stressful emergency situations is central to reducing the risk of deadly crowd disasters. Yet, their systematic experimental study remains a challenging open problem due to ethical and methodological constraints. In this paper, we demonstrate the viability of shared three-dimensional virtual environments as an experimental platform for conducting crowd experiments with real people. In particular, we show that crowds of real human subjects moving and interacting in an immersive three-dimensional virtual environment exhibit typical patterns of real crowds as observed in real-life crowded situations. These include the manifestation of social conventions and the emergence of self-organized patterns during egress scenarios. High-stress evacuation experiments conducted in this virtual environment reveal movements characterized by mass herding and dangerous overcrowding as they occur in crowd disasters. We describe the behavioural mechanisms at play under such extreme conditions and identify critical zones where overcrowding may occur. Furthermore, we show that herding spontaneously emerges from a density effect without the need to assume an increase of the individual tendency to imitate peers. Our experiments reveal the promise of immersive virtual environments as an ethical, cost-efficient, yet accurate platform for exploring crowd behaviour in high-risk situations with real human subjects. © 2016 The Authors.
Comparison of Gas Displacement based on Thermometry in the Pulse Tube with Rayleigh Scattering
NASA Astrophysics Data System (ADS)
Hagiwara, Yasumasa; Nara, Kenichi; Ito, Seitoku; Saito, Takamoto
A pulse tube refrigerator has high reliability because of its simple structure. Recently the level of development activity of the pulse tube refrigerator has increased, but the quantitative understanding of the refrigeration mechanism has not fully been obtained. Therefore various explanations were proposed. The concept of virtual gas piston in particular helps us to understand the function of a phase shifter such as a buffer tank and an orifice because the virtual gas piston corresponds to a piston of a Stirling refrigerator. However it is difficult to directly measure the averaged gas displacement which corresponds to the virtual gas piston because uniform gas flow such as a gas piston does not always exist. For example, there are a jet flow from orifice and circulated flows in a pulse tube, which are predicted theoretically. In spite of these phenomena, the averaged gas displacement is very important in practical use because it can simply predict the performance from the displacement. In this report, we calculate the averaged gas displacement and mass flow through an orifice. The mass flow is calculated from the pressure change in a buffer tank. The averaged gas displacement is calculated from temperature profiles in the pulse tube and the mass flow. It is necessary to measure temperature in the pulse tube as widely as possible in order to calculate the averaged gas displacement. We apply a method using the Rayleigh Scattering the thermometry in the pulse tube. With this method, it is possible to perform 2-dimensional measurement without disturbing the gas flow. By this method, the averaged gas displacements and the temperature profiles of basic and orifice types of refrigeration were compared.
Bravemind: Advancing the Virtual Iraq/Afghanistan PTSD Exposure Therapy for MST
2015-06-01
threatened death, serious injury or sexual violation. Military Sexual Trauma (MST) has been recognized as a significant risk factor for the...development of PTSD. This has become an issue of grave concern within the military, as reports of sexual violations and assaults have been on the rise over the...far, the system was built and delivered and the RCT has commenced. 15. SUBJECT TERMS PTSD, Virtual Reality, Prolonged Exposure, Military Sexual
Social environments and interpersonal distance regulation in psychosis: A virtual reality study.
Geraets, Chris N W; van Beilen, Marije; Pot-Kolder, Roos; Counotte, Jacqueline; van der Gaag, Mark; Veling, Wim
2018-02-01
Experimentally studying the influence of social environments on mental health and behavior is challenging, as social context is difficult to standardize in laboratory settings. Virtual Reality (VR) enables studying social interaction in terms of interpersonal distance in a more ecologically valid manner. Regulation of interpersonal distance may be abnormal in patients with psychotic disorders and influenced by environmental stress, symptoms or distress. To investigate interpersonal distance in people with a psychotic disorder and at ultrahigh risk for psychosis (UHR) compared to siblings and controls in virtual social environments, and explore the relationship between clinical characteristics and interpersonal distance. Nineteen UHR patients, 52 patients with psychotic disorders, 40 siblings of patients with a psychotic disorder and 47 controls were exposed to virtual cafés. In five virtual café visits, participants were exposed to different levels of social stress, in terms of crowdedness, ethnicity and hostility. Measures on interpersonal distance, distress and state paranoia were obtained. Baseline measures included trait paranoia, social anxiety, depressive, positive and negative symptoms. Interpersonal distance increased when social stressors were present in the environment. No difference in interpersonal distance regulation was found between the groups. Social anxiety and distress were positively associated with interpersonal distance in the total sample. This VR paradigm indicates that interpersonal distance regulation in response to environmental social stressors is unaltered in people with psychosis or UHR. Environmental stress, social anxiety and distress trigger both people with and without psychosis to maintain larger interpersonal distances in social situations. Copyright © 2017 Elsevier B.V. All rights reserved.
Virtual reality in mental health : a review of the literature.
Gregg, Lynsey; Tarrier, Nicholas
2007-05-01
Several virtual reality (VR) applications for the understanding, assessment and treatment of mental health problems have been developed in the last 10 years. The purpose of this review is to outline the current state of virtual reality research in the treatment of mental health problems. PubMed and PsycINFO were searched for all articles containing the words "virtual reality". In addition a manual search of the references contained in the papers resulting from this search was conducted and relevant periodicals were searched. Studies reporting the results of treatment utilizing VR in the mental health field and involving at least one patient were identified. More than 50 studies using VR were identified, the majority of which were case studies. Seventeen employed a between groups design: 4 involved patients with fear of flying; 3 involved patients with fear of heights; 3 involved patients with social phobia/public speaking anxiety; 2 involved people with spider phobia; 2 involved patients with agoraphobia; 2 involved patients with body image disturbance and 1 involved obese patients. There are both advantages in terms of delivery and disadvantages in terms of side effects to using VR. Although virtual reality based therapy appears to be superior to no treatment the effectiveness of VR therapy over traditional therapeutic approaches is not supported by the research currently available. There is a lack of good quality research on the effectiveness of VR therapy. Before clinicians will be able to make effective use of this emerging technology greater emphasis must be placed on controlled trials with clinically identified populations.
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.
1991-01-01
Natural environments have a content, i.e., the objects in them; a geometry, i.e., a pattern of rules for positioning and displacing the objects; and a dynamics, i.e., a system of rules describing the effects of forces acting on the objects. Human interaction with most common natural environments has been optimized by centuries of evolution. Virtual environments created through the human-computer interface similarly have a content, geometry, and dynamics, but the arbitrary character of the computer simulation creating them does not insure that human interaction with these virtual environments will be natural. The interaction, indeed, could be supernatural but it also could be impossible. An important determinant of the comprehensibility of a virtual environment is the correspondence between the environmental frames of reference and those associated with the control of environmental objects. The effects of rotation and displacement of control frames of reference with respect to corresponding environmental references differ depending upon whether perceptual judgement or manual tracking performance is measured. The perceptual effects of frame of reference displacement may be analyzed in terms of distortions in the process of virtualizing the synthetic environment space. The effects of frame of reference displacement and rotation have been studied by asking subjects to estimate exocentric direction in a virtual space.
Analyzing a multimodal biometric system using real and virtual users
NASA Astrophysics Data System (ADS)
Scheidat, Tobias; Vielhauer, Claus
2007-02-01
Three main topics of recent research on multimodal biometric systems are addressed in this article: The lack of sufficiently large multimodal test data sets, the influence of cultural aspects and data protection issues of multimodal biometric data. In this contribution, different possibilities are presented to extend multimodal databases by generating so-called virtual users, which are created by combining single biometric modality data of different users. Comparative tests on databases containing real and virtual users based on a multimodal system using handwriting and speech are presented, to study to which degree the use of virtual multimodal databases allows conclusions with respect to recognition accuracy in comparison to real multimodal data. All tests have been carried out on databases created from donations from three different nationality groups. This allows to review the experimental results both in general and in context of cultural origin. The results show that in most cases the usage of virtual persons leads to lower accuracy than the usage of real users in terms of the measurement applied: the Equal Error Rate. Finally, this article will address the general question how the concept of virtual users may influence the data protection requirements for multimodal evaluation databases in the future.
Semi-Immersive Virtual Turbine Engine Simulation System
NASA Astrophysics Data System (ADS)
Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea
2018-05-01
The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.
Embodying self-compassion within virtual reality and its effects on patients with depression
Falconer, Caroline J.; Rovira, Aitor; King, John A.; Gilbert, Paul; Antley, Angus; Fearon, Pasco; Ralph, Neil; Slater, Mel
2016-01-01
Background Self-criticism is a ubiquitous feature of psychopathology and can be combatted by increasing levels of self-compassion. However, some patients are resistant to self-compassion. Aims To investigate whether the effects of self-identification with virtual bodies within immersive virtual reality could be exploited to increase self-compassion in patients with depression. Method We developed an 8-minute scenario in which 15 patients practised delivering compassion in one virtual body and then experienced receiving it from themselves in another virtual body. Results In an open trial, three repetitions of this scenario led to significant reductions in depression severity and self-criticism, as well as to a significant increase in self-compassion, from baseline to 4-week follow-up. Four patients showed clinically significant improvement. Conclusions The results indicate that interventions using immersive virtual reality may have considerable clinical potential and that further development of these methods preparatory to a controlled trial is now warranted. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) licence. PMID:27703757
Katja — the 24th week of virtual pregnancy for dosimetric calculations
NASA Astrophysics Data System (ADS)
Becker, Janine; Zankl, Maria; Fill, Ute; Hoeschen, Christoph
2008-01-01
Virtual human models, a.k.a. voxel models, are currently the
Virtual water flows in the international trade of agricultural products of China.
Zhang, Yu; Zhang, Jinhe; Tang, Guorong; Chen, Min; Wang, Lachun
2016-07-01
With the rapid development of the economy and population, water scarcity and poor water quality caused by water pollution have become increasingly severe in China. Virtual water trade is a useful tool to alleviate water shortage. This paper focuses on a comprehensive study of China's international virtual water flows from agricultural products trade and completes a diachronic analysis from 2001 to 2013. The results show that China was in trade surplus in relation to the virtual water trade of agricultural products. The exported virtual water amounted to 29.94billionm(3)/yr. while 155.55billionm(3)/yr. was embedded in imported products. The trend that China exported virtual water per year was on the decline while the imported was on a rising trend. Virtual water trade of China was highly concentrated. Not all of the exported products had comparative advantages in virtual water content. Imported products were excessively concentrated on water intensive agricultural products such as soya beans, cotton, and palm oil. The exported virtual water mainly flowed to the Republic of Korea, Hong Kong of China and Japan, while the imported mainly flowed from the United States of America, Brazil and Argentina. From the ethical point of view, the trade partners were classified into four types in terms of "net import" and "water abundance": mutual benefit countries, such as Australia and Canada; unilateral benefit countries, such as Mongolia and Norway; supported countries, such as Egypt and Singapore; and double pressure countries, such as India and Pakistan. Virtual water strategy refers to water resources, agricultural products and human beings. The findings are beneficial for innovating water resources management system, adjusting trade structure, ensuring food security in China, and promoting the construction of national ecological security system. Copyright © 2016 Elsevier B.V. All rights reserved.
Virtual water trade of agricultural products: A new perspective to explore the Belt and Road.
Zhang, Yu; Zhang, Jin-He; Tian, Qing; Liu, Ze-Hua; Zhang, Hong-Lei
2018-05-01
The Belt and Road is an initiative of cooperation and development that was proposed by China. Moreover, most of the spanning countries faced water shortages and agriculture consumed a lot of water. Virtual water links water, food and trade and is an effective tool to ease water shortages. Therefore, this paper aims to understand the Belt and Road from the new perspective of virtual water trade of agricultural products. We considered agricultural products trade from 2001 to 2015. On the whole, the results indicated that China was in virtual water trade surplus with the countries along the Belt and Road. However, in terms of each country, >40 spanning countries were in virtual water trade surplus with China and eased water shortages. Russia had the largest net imported virtual water from China. Furthermore, the proportion of the grey water footprint that China exported to the spanning countries was much higher than that imported, no matter from the whole or different geographical regions. Moreover, more than half of the countries' virtual water trade with China conformed to the virtual water strategy, which helped to ease water crises. Furthermore, the products that they exported to China were mainly advantageous products that each spanning countries have. Virtual water trade is a new perspective to explore the Belt and Road. Agricultural products trade with China definitely benefits both the countries along the Belt and Road and China from the perspective of virtual water. The findings are beneficial for the water management of the countries along the Belt and Road and China, alleviating water shortages, encouraging the rational allocation of water resources in the various departments. They can provide references for optimizing trade structures as well. Copyright © 2017 Elsevier B.V. All rights reserved.
Local and global perspectives on the virtual water trade
NASA Astrophysics Data System (ADS)
Tamea, S.; Allamano, P.; Carr, J. A.; Claps, P.; Laio, F.; Ridolfi, L.
2012-11-01
Recent studies on fluxes of virtual water are showing how the global food and goods trade interconnects the water resources of different and distant countries, conditioning the local water balances. This paper presents and discusses the assessment of virtual water fluxes between a single country and its network of trading partners, delineating a country's virtual water budget in space and time (years 1986-2010). The fluxes between the country under study and its importing/exporting partners are visualized with a geographical representation shaping the trade network as a virtual river/delta. Time variations of exchanged fluxes are quantified to show possible trends in the virtual water balance, while characterizing the time evolution of the trade network and its composition in terms of product categories (plant-based, animal-based, luxury and non-edible). The average distance traveled by virtual water to arrive to the place of consumption is also introduced as a new measure for the analysis of globalization of the virtual water trade. Using Italy as an example, we find that food trade has a steadily growing importance compared to domestic production, with a major component represented by plan-based products, and luxury products taking an increasingly larger share (26% in 2010). In 2010 Italy had an average net import of 55 km3 of virtual water (38 km3 in 1986), a value which poses the country among the top net importers in the world. On average each cubic meter of virtual water travels nearly 4000 km before entering Italy, while export goes to relatively closer countries (average distance: 2600 km), with increasing trends in time which are almost unique among the world countries. Analyses proposed for Italy are replicated for 10 other world countries, triggering similar investigations on different socio-economic actualities.
Local and global perspectives on the virtual water trade
NASA Astrophysics Data System (ADS)
Tamea, S.; Allamano, P.; Carr, J. A.; Claps, P.; Laio, F.; Ridolfi, L.
2013-03-01
Recent studies on fluxes of virtual water are showing how the global food and goods trade interconnects the water resources of different and distant countries, conditioning the local water balances. This paper presents and discusses the assessment of virtual water fluxes between a single country and its network of trading partners, delineating a country's virtual water budget in space and time (years 1986-2010). The fluxes between the country under study and its importing/exporting partners are visualized with a geographical representation shaping the trade network as a virtual river/delta. Time variations of exchanged fluxes are quantified to show possible trends in the virtual water balance, while characterizing the time evolution of the trade network and its composition in terms of product categories (plant-based, animal-based, luxury food, and non-edible). The average distance traveled by virtual water to arrive to the place of consumption is also introduced as a new measure for the analysis of globalization of the virtual water trade. Using Italy as an example, we find that food trade has a steadily growing importance compared to domestic production, with a major component represented by plant-based products, and luxury products taking an increasingly larger share (26% in 2010). In 2010 Italy had an average net import of 55 km3 of virtual water (38 km3 in 1986), a value which poses the country among the top net importers in the world. On average each cubic meter of virtual water travels nearly 4000 km before entering Italy, while export goes to relatively closer countries (average distance: 2600 km), with increasing trends in time which are almost unique among the world countries. Analyses proposed for Italy are replicated for 10 other world countries, triggering similar investigations on different socio-economic actualities.
Virtual Ships: NATO Standards Development and Implementation
2009-10-01
interfaces. Such simulations were unable to be re-used for other applications because they were too application specific and too highly customised ...provides water flow field data (including water flow induced forces and moments and added masses ) to other federates that request it. Ship motion
USE OF STABLE ISOTOPES IN ENVIRONMENTAL AND FORENSIC GEOCHEMISTRY STUDIES
Stable carbon and hydrogen isotopes have been used for many decades in the petroleum industry, but the development of combined gas chromatography-isotope ratio mass spectrometry (GCIRMS) has led to a virtual explosion in application of this technique not only in petroleum explora...
A Semiclassical Derivation of the QCD Coupling
NASA Technical Reports Server (NTRS)
Batchelor, David
2009-01-01
The measured value of the QCD coupling alpha(sub s) at the energy M(sub Zo), the variation of alpha(sub s) as a function of energy in QCD, and classical relativistic dynamics are used to investigate virtual pairs of quarks and antiquarks in vacuum fluctuations. For virtual pairs of bottom quarks and antiquarks, the pair lifetime in the classical model agrees with the lifetime from quantum mechanics to good approximation, and the action integral in the classical model agrees as well with the action that follows from the Uncertainty Principle. This suggests that the particles might have small de Broglie wavelengths and behave with well-localized pointlike dynamics. It also permits alpha(sub s) at the mass energy twice the bottom quark mass to be expressed as a simple fraction: 3/16. This is accurate to approximately 10%. The model in this paper predicts the measured value of alpha(sub s)(M(sub Zo)) to be 0.121, which is in agreement with recent measurements within statistical uncertainties.
Application of virtual reality GIS in urban planning: an example in Huangdao district
NASA Astrophysics Data System (ADS)
Han, Yong; Qiao, Xin; Sun, Weichen; Zhang, Litao
2007-06-01
As an important development direction of GIS, Virtual Reality GIS was founded in 1950s. After 1990s, due to the fast development of its theory and the computer technology, Virtual Reality has been applied to many fields: military, aerospace, design, manufactory, information management, business, construction, city management, medical, education, etc.. The most famous project is the Virtual Los Angeles implemented by the Urban Simulation Team (UST) of UCLA. The main focus of the UST is a long-term effort to build a real-time Virtual Reality model of the entire Los Angeles basin for use by architects, urban planners, emergency response teams, and the government entities. When completed, the entire Virtual L.A. model will cover an area well in excess of 10000 square miles and will elegantly scale from satellite images to street level views accurate enough to allow the signs in the window of the shops and the graffiti on the walls to be legible. Till now, the virtual L.A. has been applied to urban environments and design analysis, transportation studies, historic reconstruction and education, etc. Compared to the early development abroad, the development of Virtual Reality GIS in China is relatively late. It is researched in some universities in early years. But recently, it has been attended by the populace and been used in many social fields: urban planning, environmental protection, historic protection and recovery, real estate, tourism, education etc.. The application of Virtual Reality in urban planning of Huangdao District, Qingdao City is introduced in this paper.
Exploring a novel environment improves motivation and promotes recall of words.
Schomaker, Judith; van Bronkhorst, Marthe L V; Meeter, Martijn
2014-01-01
Active exploration of novel environments is known to increase plasticity in animals, promoting long-term potentiation in the hippocampus and enhancing memory formation. These effects can occur during as well as after exploration. In humans novelty's effects on memory have been investigated with other methods, but never in an active exploration paradigm. We therefore investigated whether active spatial exploration of a novel compared to a previously familiarized virtual environment promotes performance on an unrelated word learning task. Exploration of the novel environment enhanced recall, generally thought to be hippocampus-dependent, but not recognition, believed to rely less on the hippocampus. Recall was better for participants that gave higher presence ratings for their experience in the virtual environment. These ratings were higher for the novel compared to the familiar virtual environment, suggesting that novelty increased attention for the virtual rather than real environment; however, this did not explain the effect of novelty on recall.
Energy-aware virtual network embedding in flexi-grid networks.
Lin, Rongping; Luo, Shan; Wang, Haoran; Wang, Sheng
2017-11-27
Network virtualization technology has been proposed to allow multiple heterogeneous virtual networks (VNs) to coexist on a shared substrate network, which increases the utilization of the substrate network. Efficiently mapping VNs on the substrate network is a major challenge on account of the VN embedding (VNE) problem. Meanwhile, energy efficiency has been widely considered in the network design in terms of operation expenses and the ecological awareness. In this paper, we aim to solve the energy-aware VNE problem in flexi-grid optical networks. We provide an integer linear programming (ILP) formulation to minimize the electricity cost of each arriving VN request. We also propose a polynomial-time heuristic algorithm where virtual links are embedded sequentially to keep a reasonable acceptance ratio and maintain a low electricity cost. Numerical results show that the heuristic algorithm performs closely to the ILP for a small size network, and we also demonstrate its applicability to larger networks.
Sustained efficacy of virtual reality distraction.
Rutter, Charles E; Dahlquist, Lynnda M; Weiss, Karen E
2009-04-01
The current study tested whether the effectiveness of distraction using virtual reality (VR) technology in reducing cold pressor pain would maintain over the course of 8 weekly exposures. Twenty-eight adults, 18 to 23 years of age, underwent 1 baseline cold pressor trial and 1 VR distraction trial in randomized order each week. VR distraction led to significant increases in pain threshold and pain tolerance and significant decreases in pain intensity, time spent thinking about pain, and self-reported anxiety, relative to baseline. Repeated exposure did not appear to affect the benefits of VR. Implications for the long-term use of VR distraction as a nonpharmacological analgesic are discussed. This article addresses the concern that the efficacy of virtual reality-assisted distraction from pain could potentially decrease with repeated exposure. The current finding that efficacy did not diminish over several repeated exposures provides support for the use of virtual reality as an adjuvant treatment of pain.
Pla-Sanjuanelo, Joana; Ferrer-García, Marta; Vilalta-Abella, Ferran; Riva, Giuseppe; Dakanalis, Antonios; Ribas-Sabaté, Joan; Andreu-Gracia, Alexis; Fernandez-Aranda, Fernando; Sanchez-Diaz, Isabel; Escandón-Nagel, Neli; Gomez-Tricio, Osane; Tena, Virgínia; Gutiérrez-Maldonado, José
2017-07-27
Virtual reality (VR) technologies have been proposed as a new tool able to improve on in vivo exposure in patients with eating disorders. This study assessed the validity of a VR-based software for cue exposure therapy (CET) in people with bulimia nervosa (BN) and binge eating disorder (BED). Fifty eight outpatients (33 BN and 25 BED) and 135 healthy participants were exposed to 10 craved virtual foods and a neutral cue in four experimental virtual environments (kitchen, dining room, bedroom, and cafeteria). After exposure to each VR scenario, food craving and anxiety were assessed. The frequency/severity of episodes of uncontrollable overeating was also assessed and body mass index was measured prior to the exposure. In both groups, craving and anxiety responses when exposed to the food-related virtual environments were significantly higher than in the neutral-cue virtual environment. However, craving and anxiety levels were higher in the clinical group. Furthermore, cue-elicited anxiety was better at discriminating between clinical and healthy groups than cue-elicited craving. This study provides evidence of the ability of food-related VR environments to provoke food craving and anxiety responses in BN and BED patients and highlights the need to consider both responses during treatment. The results support the use of VR-CET in the treatment of eating disorder patients characterized by binge-eating and people with high bulimic symptoms.
A pseudoenergy wave-activity relation for ageostrophic and non-hydrostatic moist atmosphere
NASA Astrophysics Data System (ADS)
Ran, Ling-Kun; Ping, Fan
2015-05-01
By employing the energy-Casimir method, a three-dimensional virtual pseudoenergy wave-activity relation for a moist atmosphere is derived from a complete system of nonhydrostatic equations in Cartesian coordinates. Since this system of equations includes the effects of water substance, mass forcing, diabatic heating, and dissipations, the derived wave-activity relation generalizes the previous result for a dry atmosphere. The Casimir function used in the derivation is a monotonous function of virtual potential vorticity and virtual potential temperature. A virtual energy equation is employed (in place of the previous zonal momentum equation) in the derivation, and the basic state is stationary but can be three-dimensional or, at least, not necessarily zonally symmetric. The derived wave-activity relation is further used for the diagnosis of the evolution and propagation of meso-scale weather systems leading to heavy rainfall. Our diagnosis of two real cases of heavy precipitation shows that positive anomalies of the virtual pseudoenergy wave-activity density correspond well with the strong precipitation and are capable of indicating the movement of the precipitation region. This is largely due to the cyclonic vorticity perturbation and the vertically increasing virtual potential temperature over the precipitation region. Project supported by the National Basic Research Program of China (Grant No. 2013CB430105), the Key Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05), the National Natural Science Foundation of China (Grant No. 41175060), and the Project of CAMS, China (Grant No. 2011LASW-B15).
Interactions with Virtual People: Do Avatars Dream of Digital Sheep?. Chapter 6
NASA Technical Reports Server (NTRS)
Slater, Mel; Sanchez-Vives, Maria V.
2007-01-01
This paper explores another form of artificial entity, ones without physical embodiment. We refer to virtual characters as the name for a type of interactive object that have become familiar in computer games and within virtual reality applications. We refer to these as avatars: three-dimensional graphical objects that are in more-or-less human form which can interact with humans. Sometimes such avatars will be representations of real-humans who are interacting together within a shared networked virtual environment, other times the representations will be of entirely computer generated characters. Unlike other authors, who reserve the term agent for entirely computer generated characters and avatars for virtual embodiments of real people; the same term here is used for both. This is because avatars and agents are on a continuum. The question is where does their behaviour originate? At the extremes the behaviour is either completely computer generated or comes only from tracking of a real person. However, not every aspect of a real person can be tracked every eyebrow move, every blink, every breath rather real tracking data would be supplemented by inferred behaviours which are programmed based on the available information as to what the real human is doing and her/his underlying emotional and psychological state. Hence there is always some programmed behaviour it is only a matter of how much. In any case the same underlying problem remains how can the human character be portrayed in such a manner that its actions are believable and have an impact on the real people with whom it interacts? This paper has three main parts. In the first part we will review some evidence that suggests that humans react with appropriate affect in their interactions with virtual human characters, or with other humans who are represented as avatars. This is so in spite of the fact that the representational fidelity is relatively low. Our evidence will be from the realm of psychotherapy, where virtual social situations are created that do test whether people react appropriately within these situations. We will also consider some experiments on face-to-face virtual communications between people in the same shared virtual environments. The second part will try to give some clues about why this might happen, taking into account modern theories of perception from neuroscience. The third part will include some speculations about the future developments of the relationship between people and virtual people. We will suggest that a more likely scenario than the world becoming populated by physically embodied virtual people (robots, androids) is that in the relatively near future we will interact more and more in our everyday lives with virtual people- bank managers, shop assistants, instructors, and so on. What is happening in the movies with computer graphic generated individuals and entire crowds may move into the space of everyday life.
Discovery of wide low and very low-mass binary systems using Virtual Observatory tools
NASA Astrophysics Data System (ADS)
Gálvez-Ortiz, M. C.; Solano, E.; Lodieu, N.; Aberasturi, M.
2017-04-01
The frequency of multiple systems and their properties are key constraints of stellar formation and evolution. Formation mechanisms of very low-mass (VLM) objects are still under considerable debate, and an accurate assessment of their multiplicity and orbital properties is essential for constraining current theoretical models. Taking advantage of the virtual observatory capabilities, we looked for comoving low and VLM binary (or multiple) systems using the Large Area Survey of the UKIDSS LAS DR10, SDSS DR9 and the 2MASS Catalogues. Other catalogues (WISE, GLIMPSE, SuperCosmos, etc.) were used to derive the physical parameters of the systems. We report the identification of 36 low and VLM (˜M0-L0 spectral types) candidates to binary/multiple system (separations between 200 and 92 000 au), whose physical association is confirmed through common proper motion, distance and low probability of chance alignment. This new system list notably increases the previous sampling in their mass-separation parameter space (˜100). We have also found 50 low-mass objects that we can classify as ˜L0-T2 according to their photometric information. Only one of these objects presents a common proper motion high-mass companion. Although we could not constrain the age of the majority of the candidates, probably most of them are still bound except four that may be under disruption processes. We suggest that our sample could be divided in two populations: one tightly bound wide VLM systems that are expected to last more than 10 Gyr, and other formed by weak bound wide VLM systems that will dissipate within a few Gyr.
Kotwal, Ashutosh V.; Jayatilaka, Bodhitha
2016-01-01
W boson mass measurement is sensitive to QED radiative corrections due to virtual photon loops and real photon emission. The largest shift in the measured mass, which depends on the transverse momentum spectrum of the charged lepton from the boson decay, is caused by the emission of real photons from the final-state lepton. There are a number of calculations and codes available to model the final-state photon emission. We perform a detailed study, comparing the results from HORACE and PHOTOS implementations of the final-state multiphoton emission in the context of a direct measurement ofW boson mass at Tevatron. Mass fitsmore » are performed using a simulation of the CDF II detector.« less
NASA Technical Reports Server (NTRS)
Vranish, John M.
2006-01-01
The term "virtual feel" denotes a type of capaciflector (an advanced capacitive proximity sensor) and a methodology for designing and using a sensor of this type to guide a robot in manipulating a tool (e.g., a wrench socket) into alignment with a mating fastener (e.g., a bolt head) or other electrically conductive object. A capaciflector includes at least one sensing electrode, excited with an alternating voltage, that puts out a signal indicative of the capacitance between that electrode and a proximal object.
Thiel, Rainer; Viceconti, Marco; Stroetmann, Karl
2011-01-01
Biocomputational modelling as developed by the European Virtual Physiological Human (VPH) Initiative is the area of ICT most likely to revolutionise in the longer term the practice of medicine. Using the example of osteoporosis management, a socio-economic assessment framework is presented that captures how the transformation of clinical guidelines through VPH models can be evaluated. Applied to the Osteoporotic Virtual Physiological Human Project, a consequent benefit-cost analysis delivers promising results, both methodologically and substantially.
Virtual reality, augmented reality…I call it i-Reality.
Grossmann, Rafael J
2015-01-01
The new term improved reality (i-Reality) is suggested to include virtual reality (VR) and augmented reality (AR). It refers to a real world that includes improved, enhanced and digitally created features that would offer an advantage on a particular occasion (i.e., a medical act). I-Reality may help us bridge the gap between the high demand for medical providers and the low supply of them by improving the interaction between providers and patients.
2009-12-01
events. Work associated with aperiodic tasks have the same statistical behavior and the same timing requirements. The timing deadlines are soft. • Sporadic...answers, but it is possible to calculate how precise the estimates are. Simulation-based performance analysis of a model includes a statistical ...to evaluate all pos- sible states in a timely manner. This is the principle reason for resorting to simulation and statistical analysis to evaluate
A review of simulation platforms in surgery of the temporal bone.
Bhutta, M F
2016-10-01
Surgery of the temporal bone is a high-risk activity in an anatomically complex area. Simulation enables rehearsal of such surgery. The traditional simulation platform is the cadaveric temporal bone, but in recent years other simulation platforms have been created, including plastic and virtual reality platforms. To undertake a review of simulation platforms for temporal bone surgery, specifically assessing their educational value in terms of validity and in enabling transition to surgery. Systematic qualitative review. Search of the Pubmed, CINAHL, BEI and ERIC databases. Assessment of reported outcomes in terms of educational value. A total of 49 articles were included, covering cadaveric, animal, plastic and virtual simulation platforms. Cadaveric simulation is highly rated as an educational tool, but there may be a ceiling effect on educational outcomes after drilling 8-10 temporal bones. Animal models show significant anatomical variation from man. Plastic temporal bone models offer much potential, but at present lack sufficient anatomical or haptic validity. Similarly, virtual reality platforms lack sufficient anatomical or haptic validity, but with technological improvements they are advancing rapidly. At present, cadaveric simulation remains the best platform for training in temporal bone surgery. Technological advances enabling improved materials or modelling mean that in the future plastic or virtual platforms may become comparable to cadaveric platforms, and also offer additional functionality including patient-specific simulation from CT data. © 2015 John Wiley & Sons Ltd.
“A Tree Must Be Bent While It Is Young”: Teaching Urological Surgical Techniques to Schoolchildren
Buntrock, Stefan
2012-01-01
Background Playing video games in childhood may help achieve advanced laparoscopic skills later in life. The virtual operating room will soon become a reality, as “doctor games 2.0” will doubtlessly begin to incorporate virtual laparoscopic techniques. Objectives To teach surgical skills to schoolchildren in order to attract them to urology as a professional choice later in life. Materials and Methods As part of EAU Urology Week 2010, 108 school children aged 15–19 attended a seminar with lectures and simulators (laparoscopy, TUR, cystoscopy, and suture sets) at the 62nd Congress of the German Society of Urology in Düsseldorf. A Pub-Med and Google Scholar search was also performed in order to review the beneficial effects of early virtual surgical training. MeSh terms used were “video games,” “children,” and “surgical skills.” Searches were performed without restriction for a certain period of time. Results In terms of publicity for urology, EAU Urology Week, and the German Society of Urology, the event was immensely successful. Regarding the literature search, four relevant publications were found involving children. An additional three articles evaluated the usefulness of video gaming in medical students and residents. Conclusions Making use of virtual reality to attract and educate a new generation of urologists is an important step in designing the future of urology. PMID:23573467
Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet
NASA Astrophysics Data System (ADS)
Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu
1989-12-01
A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.
An imperialist competitive algorithm for virtual machine placement in cloud computing
NASA Astrophysics Data System (ADS)
Jamali, Shahram; Malektaji, Sepideh; Analoui, Morteza
2017-05-01
Cloud computing, the recently emerged revolution in IT industry, is empowered by virtualisation technology. In this paradigm, the user's applications run over some virtual machines (VMs). The process of selecting proper physical machines to host these virtual machines is called virtual machine placement. It plays an important role on resource utilisation and power efficiency of cloud computing environment. In this paper, we propose an imperialist competitive-based algorithm for the virtual machine placement problem called ICA-VMPLC. The base optimisation algorithm is chosen to be ICA because of its ease in neighbourhood movement, good convergence rate and suitable terminology. The proposed algorithm investigates search space in a unique manner to efficiently obtain optimal placement solution that simultaneously minimises power consumption and total resource wastage. Its final solution performance is compared with several existing methods such as grouping genetic and ant colony-based algorithms as well as bin packing heuristic. The simulation results show that the proposed method is superior to other tested algorithms in terms of power consumption, resource wastage, CPU usage efficiency and memory usage efficiency.
Optoelectronics technologies for Virtual Reality systems
NASA Astrophysics Data System (ADS)
Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław
2017-08-01
Solutions in the field of virtual reality are very strongly associated with optoelectronic technologies. This applies to both process design and operation of VR applications. Technologies such as 360 cameras and 3D scanners significantly improve the design work. What is more, HMD displays with high field of view or optoelectronic Motion Capture systems and 3D cameras guarantee an extraordinary experience in immersive VR applications. This article reviews selected technologies from the perspective of their use in a broadly defined process of creating and implementing solutions for virtual reality. There is also the ability to create, modify and adapt new approaches that show team own work (SteamVR tracker). Most of the introduced examples are effectively used by authors to create different VR applications. The use of optoelectronic technology in virtual reality is presented in terms of design and operation of the system as well as referring to specific applications. Designers and users of VR systems should take a close look on new optoelectronics solutions, as they can significantly contribute to increased work efficiency and offer completely new opportunities for virtual world reception.
Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin
2014-01-01
Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors.
Virtual water trade in the Roman Mediterranean
NASA Astrophysics Data System (ADS)
Dermody, Brian; van Beek, Rens; Meeks, Elijah; Klein Goldewijk, Kees; Scheidel, Walter; van der Velde, Ype; Bierkens, Marc; Wassen, Martin; Dekker, Stefan
2015-04-01
The Romans were perhaps the most impressive exponents of water resource management in pre-industrial times with irrigation and virtual water trade facilitating unprecedented urbanisation and socio-economic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanisation and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we found that irrigation and virtual water trade increased Roman resilience to inter-annual climate variability. However, urbanisation and population growth arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and eroded its resilience to climate variability in the long term. Our newest findings also assess the impact that persistent climate change associated with Holocene climate anomalies had on Roman water resource management. Specifically we assess the impact of the change in climate from the Roman Warm Period to the Dark Ages Cold Period on the Roman food supply and whether it could have contributed to the fall of the Western Roman Empire.
[Virtual otoscopy--technique, indications and initial experiences with multislice spiral CT].
Klingebiel, R; Bauknecht, H C; Lehmann, R; Rogalla, P; Werbs, M; Behrbohm, H; Kaschke, O
2000-11-01
We report the standardized postprocessing of high-resolution CT data acquired by incremental CT and multi-slice CT in patients with suspected middle ear disorders to generate three-dimensional endoluminal views known as virtual otoscopy. Subsequent to the definition of a postprocessing protocol, standardized endoluminal views of the middle ear were generated according to their otological relevance. The HRCT data sets of 26 ENT patients were transferred to a workstation and postprocessed to 52 virtual otoscopies. Generation of predefined endoluminal views from the HRCT data sets was possible in all patients. Virtual endoscopic views added meaningful information to the primary cross-sectional data in patients suffering from ossicular pathology, having contraindications for invasive tympanic endoscopy or being assessed for surgery of the tympanic cavity. Multi slice CT improved the visualization of subtle anatomic details such as the stapes suprastructure and reduced the scanning time. Virtual endoscopy allows for the non invasive endoluminal visualization of various tympanic lesions. Use of the multi-slice CT technique reduces the scanning time and improves image quality in terms of detail resolution.
Design of focused and restrained subsets from extremely large virtual libraries.
Jamois, Eric A; Lin, Chien T; Waldman, Marvin
2003-11-01
With the current and ever-growing offering of reagents along with the vast palette of organic reactions, virtual libraries accessible to combinatorial chemists can reach sizes of billions of compounds or more. Extracting practical size subsets for experimentation has remained an essential step in the design of combinatorial libraries. A typical approach to computational library design involves enumeration of structures and properties for the entire virtual library, which may be unpractical for such large libraries. This study describes a new approach termed as on the fly optimization (OTFO) where descriptors are computed as needed within the subset optimization cycle and without intermediate enumeration of structures. Results reported herein highlight the advantages of coupling an ultra-fast descriptor calculation engine to subset optimization capabilities. We also show that enumeration of properties for the entire virtual library may not only be unpractical but also wasteful. Successful design of focused and restrained subsets can be achieved while sampling only a small fraction of the virtual library. We also investigate the stability of the method and compare results obtained from simulated annealing (SA) and genetic algorithms (GA).
Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin
2014-01-01
Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors. PMID:24693260
-performance Computing Grid Computing Networking Mass Storage Plan for the Future State of the Laboratory to help decipher the language of high-energy physics. Virtual Ask-a-Scientist Read transcripts from past online chat sessions. last modified 1/04/2005 email Fermilab Fermi National Accelerator Laboratory
NASA Astrophysics Data System (ADS)
Acero, R.; Santolaria, J.; Pueo, M.; Aguilar, J. J.; Brau, A.
2015-11-01
High-range measuring equipment like laser trackers need large dimension calibrated reference artifacts in their calibration and verification procedures. In this paper, a new verification procedure for portable coordinate measuring instruments based on the generation and evaluation of virtual distances with an indexed metrology platform is developed. This methodology enables the definition of an unlimited number of reference distances without materializing them in a physical gauge to be used as a reference. The generation of the virtual points and reference lengths derived is linked to the concept of the indexed metrology platform and the knowledge of the relative position and orientation of its upper and lower platforms with high accuracy. It is the measuring instrument together with the indexed metrology platform one that remains still, rotating the virtual mesh around them. As a first step, the virtual distances technique is applied to a laser tracker in this work. The experimental verification procedure of the laser tracker with virtual distances is simulated and further compared with the conventional verification procedure of the laser tracker with the indexed metrology platform. The results obtained in terms of volumetric performance of the laser tracker proved the suitability of the virtual distances methodology in calibration and verification procedures for portable coordinate measuring instruments, broadening and expanding the possibilities for the definition of reference distances in these procedures.
A comparative analysis of dynamic grids vs. virtual grids using the A3pviGrid framework.
Shankaranarayanan, Avinas; Amaldas, Christine
2010-11-01
With the proliferation of Quad/Multi-core micro-processors in mainstream platforms such as desktops and workstations; a large number of unused CPU cycles can be utilized for running virtual machines (VMs) as dynamic nodes in distributed environments. Grid services and its service oriented business broker now termed cloud computing could deploy image based virtualization platforms enabling agent based resource management and dynamic fault management. In this paper we present an efficient way of utilizing heterogeneous virtual machines on idle desktops as an environment for consumption of high performance grid services. Spurious and exponential increases in the size of the datasets are constant concerns in medical and pharmaceutical industries due to the constant discovery and publication of large sequence databases. Traditional algorithms are not modeled at handing large data sizes under sudden and dynamic changes in the execution environment as previously discussed. This research was undertaken to compare our previous results with running the same test dataset with that of a virtual Grid platform using virtual machines (Virtualization). The implemented architecture, A3pviGrid utilizes game theoretic optimization and agent based team formation (Coalition) algorithms to improve upon scalability with respect to team formation. Due to the dynamic nature of distributed systems (as discussed in our previous work) all interactions were made local within a team transparently. This paper is a proof of concept of an experimental mini-Grid test-bed compared to running the platform on local virtual machines on a local test cluster. This was done to give every agent its own execution platform enabling anonymity and better control of the dynamic environmental parameters. We also analyze performance and scalability of Blast in a multiple virtual node setup and present our findings. This paper is an extension of our previous research on improving the BLAST application framework using dynamic Grids on virtualization platforms such as the virtual box.
Vector Meson Production at Hera
NASA Astrophysics Data System (ADS)
Szuba, Dorota
The diffractive production of vector mesons ep→eVMY, with VM=ρ0, ω, ϕ, J/ψ, ψ‧ or ϒ and with Y being either the scattered proton or a low mass hadronic system, has been extensively investigated at HERA. HERA offers a unique opportunity to study the dependences of diffractive processes on different scales: the mass of the vector meson, mVM, the centre-of-mass energy of the γp system, W, the photon virtuality, Q2 and the four-momentum transfer squared at the proton vertex, |t|. Strong interactions can be investigated in the transition from the hard to the soft regime, where the confinement of quarks and gluons occurs.
Applications of virtual reality in individuals with alcohol misuse: A systematic review.
Ghiţă, Alexandra; Gutiérrez-Maldonado, José
2018-06-01
Alcohol use and misuse have been intensively studied, due to their negative consequences in the general population. Evidence-based literature emphasizes that alcohol craving plays a crucial role in the development and maintenance of alcohol-drinking patterns. Many individuals develop Alcohol Use Disorders (AUD); significantly, after treatment many also experience relapses, in which alcohol craving has been repeatedly implicated. Cue-exposure therapy (CET) has been widely used in the treatment of alcohol misuse, but the results are inconsistent. Virtual reality (VR) can add effectiveness to cue-exposure techniques by providing multiple variables and inputs that enable personalized alcohol use assessment and treatment. The aim of this review was to examine the applications of virtual reality in individuals who misuse alcohol. We conducted an exhaustive literature search of the Web of Science, Scopus, Embase, Google Scholar, and PsycInfo databases, using as search items terms such as "alcohol" and its derivates, and virtual reality. We identified 13 studies on alcohol craving that implemented virtual reality as an assessment or treatment tool. The studies that incorporate VR present clear limitations. First, no clinical trials were conducted to explore the efficacy of the VR as a treatment tool; nor were there any studies of the generalization of craving responses in the real world, or of the long-term effects of VR treatment. Despite these limitations, the studies included showed consistent results as regards eliciting and reducing alcohol craving. We suggest that VR shows promise as a tool for the assessment and treatment of craving among individuals with alcohol misuse. Further studies implementing VR in the field of alcohol consumption are now required. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gabyzon, M Elboim; Engel-Yeger, B; Tresser, S; Springer, S
2016-01-01
Virtual reality gaming environments may be used as a supplement to the motor performance assessment tool box by providing clinicians with quantitative information regarding motor performance in terms of movement accuracy and speed, as well as sensory motor integration under different levels of dual tasking. To examine the feasibility of using the virtual reality game `Timocco' as an assessment tool for evaluating goal-directed hand movements among typically developing children. In this pilot study, 47 typically-developing children were divided into two age groups, 4-6 years old and 6-8 years old. Performance was measured using two different virtual environment games (Bubble Bath and Falling Fruit), each with two levels of difficulty. Discriminative validity (age effect) was examined by comparing the performance of the two groups, and by comparing the performance between levels of the games for each group (level effect). Test-retest reliability was examined by reassessing the older children 3-7 days after the first session. The older children performed significantly better in terms of response time, action time, game duration, and efficiency in both games compared to the younger children. Both age groups demonstrated poorer performance at the higher game level in the Bubble Bath game compared to the lower level. A similar level effect was found in the Falling Fruit game for both age groups in response time and efficiency, but not in action time. The performance of the older children was not significantly different between the two sessions at both game levels. The discriminative validity and test-retest reliability indicate the feasibility of using the Timocco virtual reality game as a tool for assessing goal-directed hand movements in children. Further studies should examine its feasibility for use in children with disabilities.
Kobayashi, Hajime; Ohkubo, Masaki; Narita, Akihiro; Marasinghe, Janaka C; Murao, Kohei; Matsumoto, Toru; Sone, Shusuke
2017-01-01
Objective: We propose the application of virtual nodules to evaluate the performance of computer-aided detection (CAD) of lung nodules in cancer screening using low-dose CT. Methods: The virtual nodules were generated based on the spatial resolution measured for a CT system used in an institution providing cancer screening and were fused into clinical lung images obtained at that institution, allowing site specificity. First, we validated virtual nodules as an alternative to artificial nodules inserted into a phantom. In addition, we compared the results of CAD analysis between the real nodules (n = 6) and the corresponding virtual nodules. Subsequently, virtual nodules of various sizes and contrasts between nodule density and background density (ΔCT) were inserted into clinical images (n = 10) and submitted for CAD analysis. Results: In the validation study, 46 of 48 virtual nodules had the same CAD results as artificial nodules (kappa coefficient = 0.913). Real nodules and the corresponding virtual nodules showed the same CAD results. The detection limits of the tested CAD system were determined in terms of size and density of peripheral lung nodules; we demonstrated that a nodule with a 5-mm diameter was detected when the nodule had a ΔCT > 220 HU. Conclusion: Virtual nodules are effective in evaluating CAD performance using site-specific scan/reconstruction conditions. Advances in knowledge: Virtual nodules can be an effective means of evaluating site-specific CAD performance. The methodology for guiding the detection limit for nodule size/density might be a useful evaluation strategy. PMID:27897029
Two loop correction to interference in $$gg \\to ZZ$$
Campbell, John M.; Ellis, R. Keith; Czakon, Michal; ...
2016-08-01
We present results for the production of a pair of on-shell Z bosons via gluon-gluon fusion. This process occurs both through the production and decay of the Higgs boson, and through continuum production where the Z boson couples to a loop of massless quarks or to a massive quark. We calculate the interference of the two processes and its contribution to the cross section up to and including order O(αmore » $$_{s}^{3}$$ ). The two-loop contributions to the amplitude are all known analytically, except for the continuum production through loops of top quarks of mass m. The latter contribution is important for the invariant mass of the two Z bosons, (as measured by the mass of their leptonic decay products, m$$_{4l}$$), in a regime where m$$_{4l}$$ ≥ 2m because of the contributions of longitudinal bosons. We examine all the contributions to the virtual amplitude involving top quarks, as expansions about the heavy top quark limit combined with a conformal mapping and Padé approximants. Comparison with the analytic results, where known, allows us to assess the validity of the heavy quark expansion, and it extensions. We give results for the NLO corrections to this interference, including both real and virtual radiation.« less
Web-Based Virtual Laboratory for Food Analysis Course
NASA Astrophysics Data System (ADS)
Handayani, M. N.; Khoerunnisa, I.; Sugiarti, Y.
2018-02-01
Implementation of learning on food analysis course in Program Study of Agro-industrial Technology Education faced problems. These problems include the availability of space and tools in the laboratory that is not comparable with the number of students also lack of interactive learning tools. On the other hand, the information technology literacy of students is quite high as well the internet network is quite easily accessible on campus. This is a challenge as well as opportunities in the development of learning media that can help optimize learning in the laboratory. This study aims to develop web-based virtual laboratory as one of the alternative learning media in food analysis course. This research is R & D (research and development) which refers to Borg & Gall model. The results showed that assessment’s expert of web-based virtual labs developed, in terms of software engineering aspects; visual communication; material relevance; usefulness and language used, is feasible as learning media. The results of the scaled test and wide-scale test show that students strongly agree with the development of web based virtual laboratory. The response of student to this virtual laboratory was positive. Suggestions from students provided further opportunities for improvement web based virtual laboratory and should be considered for further research.
Sensorimotor Training in Virtual Reality: A Review
Adamovich, Sergei V.; Fluet, Gerard G.; Tunik, Eugene; Merians, Alma S.
2010-01-01
Recent experimental evidence suggests that rapid advancement of virtual reality (VR) technologies has great potential for the development of novel strategies for sensorimotor training in neurorehabilitation. We discuss what the adaptive and engaging virtual environments can provide for massive and intensive sensorimotor stimulation needed to induce brain reorganization. Second, discrepancies between the veridical and virtual feedback can be introduced in VR to facilitate activation of targeted brain networks, which in turn can potentially speed up the recovery process. Here we review the existing experimental evidence regarding the beneficial effects of training in virtual environments on the recovery of function in the areas of gait, upper extremity function and balance, in various patient populations. We also discuss possible mechanisms underlying these effects. We feel that future research in the area of virtual rehabilitation should follow several important paths. Imaging studies to evaluate the effects of sensory manipulation on brain activation patterns and the effect of various training parameters on long term changes in brain function are needed to guide future clinical inquiry. Larger clinical studies are also needed to establish the efficacy of sensorimotor rehabilitation using VR approaches in various clinical populations and most importantly, to identify VR training parameters that are associated with optimal transfer into real-world functional improvements. PMID:19713617
Evolutionary Multiobjective Query Workload Optimization of Cloud Data Warehouses
Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan
2014-01-01
With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048
NASA Technical Reports Server (NTRS)
Batchelor, David; Zukor, Dorothy (Technical Monitor)
2001-01-01
New semiclassical models of virtual antiparticle pairs are used to compute the pair lifetimes, and good agreement with the Heisenberg lifetimes from quantum field theory (QFT) is found. The modeling method applies to both the electromagnetic and color forces. Evaluation of the action integral of potential field fluctuation for each interaction potential yields approximately Planck's constant/2 for both electromagnetic and color fluctuations, in agreement with QFT. Thus each model is a quantized semiclassical representation for such virtual antiparticle pairs, to good approximation. When the results of the new models and QFT are combined, formulae for e and alpha(sub s)(q) are derived in terms of only Planck's constant and c.
Mon-Williams, M; Wann, J P; Rushton, S
1993-10-01
The short-term effects on binocular stability of wearing a conventional head-mounted display (HMD) to explore a virtual reality environment were examined. Twenty adult subjects (aged 19-29 years) wore a commercially available HMD for 10 min while cycling around a computer generated 3-D world. The twin screen presentations were set to suit the average interpupillary distance of our subject population, to mimic the conditions of public access virtual reality systems. Subjects were examined before and after exposure to the HMD and there were clear signs of induced binocular stress for a number of the subjects. The implications of introducing such HMDs into the workplace and entertainment environments are discussed.
Robust hopping based on virtual pendulum posture control.
Sharbafi, Maziar A; Maufroy, Christophe; Ahmadabadi, Majid Nili; Yazdanpanah, Mohammad J; Seyfarth, Andre
2013-09-01
A new control approach to achieve robust hopping against perturbations in the sagittal plane is presented in this paper. In perturbed hopping, vertical body alignment has a significant role for stability. Our approach is based on the virtual pendulum concept, recently proposed, based on experimental findings in human and animal locomotion. In this concept, the ground reaction forces are pointed to a virtual support point, named virtual pivot point (VPP), during motion. This concept is employed in designing the controller to balance the trunk during the stance phase. New strategies for leg angle and length adjustment besides the virtual pendulum posture control are proposed as a unified controller. This method is investigated by applying it on an extension of the spring loaded inverted pendulum (SLIP) model. Trunk, leg mass and damping are added to the SLIP model in order to make the model more realistic. The stability is analyzed by Poincaré map analysis. With fixed VPP position, stability, disturbance rejection and moderate robustness are achieved, but with a low convergence speed. To improve the performance and attain higher robustness, an event-based control of the VPP position is introduced, using feedback of the system states at apexes. Discrete linear quartic regulator is used to design the feedback controller. Considerable enhancements with respect to stability, convergence speed and robustness against perturbations and parameter changes are achieved.
NASA Astrophysics Data System (ADS)
Guidal, M.
2010-09-01
We have analyzed the longitudinally polarized proton target asymmetry data of the Deep Virtual Compton process recently published by the HERMES Collaboration in terms of Generalized Parton Distributions. We have fitted these new data in a largely model-independent fashion and the procedure results in numerical constraints on the accent="true">H˜Im Compton Form Factor. We present its t- and ξ-dependencies. We also find improvement on the determination of two other Compton Form Factors, HRe and HIm.
A Compendium of Solar Dish/Stirling Technology
1994-01-01
systems and Plataforma Solar in Almeria, Spain, with the goal being plans to produce fourteen 7.5-kWe systems for testing to test the system’s long-term...the sun is not a point source, its rays 21 Chapter 3 (a) (b) - N Mounting Ring and CollaraI/ / I/\\ I / Virtual Exit I / Target S• Entrance I 0 L...tptical \\ I Real Exit / Virtual Target \\ Aperture\\ / Cooling \\ / I Coils N - Focal - - - - " Plane 4. Figure 3-2. A secondary concentrator with side view (a
ERIC Educational Resources Information Center
Sandy, Robert; Elliott, Robert R.
2005-01-01
Long-term illness (LTI) is a more prevalent workplace risk than fatal accidents but there is virtually no evidence for compensating differentials for a broad measure of LTI. In 1990 almost 3.4 percent of the U.K. adult population suffered from a LTI caused solely by their working conditions. This paper provides the first estimates of compensating…
A Comparison of Organizational Structure and Pedagogical Approach: Online versus Face-to-Face
ERIC Educational Resources Information Center
McFarlane, Donovan A.
2011-01-01
This paper examines online versus face-to-face organizational structure and pedagogy in terms of education and the teaching and learning process. The author distinguishes several important terms related to distance/online/e-learning, virtual learning and brick-and-mortar learning interactions and concepts such as asynchronous and synchronous…
Acai, Anita; Sonnadara, Ranil R; O'Neill, Thomas A
2018-06-01
Concerns around the time and administrative burden of trainee promotion processes have been reported, making virtual meetings an attractive option for promotions committees in undergraduate and postgraduate medicine. However, whether such meetings can uphold the integrity of decision-making processes has yet to be explored. This narrative review aimed to summarize the literature on decision making in virtual teams, discuss ways to improve the effectiveness of virtual teams, and explore their implications for practice. In August 2017, the Web of Science platform was searched with the terms 'decision making' AND 'virtual teams' for articles published within the last 20 years. The search yielded 336 articles, which was narrowed down to a final set of 188 articles. A subset of these, subjectively deemed to be of high-quality and relevant to the work of promotions committees, was included in this review. Virtual team functioning was explored with respect to team composition and development, idea generation and selection, group memory, and communication. While virtual teams were found to potentially offer a number of key benefits over face-to-face meetings including convenience and scheduling flexibility, inclusion of members at remote sites, and enhanced idea generation and external storage, these benefits must be carefully weighed against potential challenges involving planning and coordination, integration of perspectives, and relational conflict among members, all of which can potentially reduce decision-making quality. Avenues to address these issues and maximize the outcomes of virtual promotions meetings are offered in light of the evidence.
Virtual Reality as an Educational and Training Tool for Medicine.
Izard, Santiago González; Juanes, Juan A; García Peñalvo, Francisco J; Estella, Jesús Mª Gonçalvez; Ledesma, Mª José Sánchez; Ruisoto, Pablo
2018-02-01
Until very recently, we considered Virtual Reality as something that was very close, but it was still science fiction. However, today Virtual Reality is being integrated into many different areas of our lives, from videogames to different industrial use cases and, of course, it is starting to be used in medicine. There are two great general classifications for Virtual Reality. Firstly, we find a Virtual Reality in which we visualize a world completely created by computer, three-dimensional and where we can appreciate that the world we are visualizing is not real, at least for the moment as rendered images are improving very fast. Secondly, there is a Virtual Reality that basically consists of a reflection of our reality. This type of Virtual Reality is created using spherical or 360 images and videos, so we lose three-dimensional visualization capacity (until the 3D cameras are more developed), but on the other hand we gain in terms of realism in the images. We could also mention a third classification that merges the previous two, where virtual elements created by computer coexist with 360 images and videos. In this article we will show two systems that we have developed where each of them can be framed within one of the previous classifications, identifying the technologies used for their implementation as well as the advantages of each one. We will also analize how these systems can improve the current methodologies used for medical training. The implications of these developments as tools for teaching, learning and training are discussed.
NASA Astrophysics Data System (ADS)
Scott, Jeffrey Lance
This research examines how elementary school teachers, when supported, use Virtual Field Trips (VFTs) to address the curricula in meaningful ways. I conducted a qualitative study with six teachers, in a collaborative action research context over a six month period. The teachers, five males and one female, all taught either grade five or six and utilized Virtual Field Trips within a variety of curricula areas including science, social studies, music and language arts. In addition, the thesis examines resulting integration of technology into the regular classroom program as a product of the utilization of Virtual Field Trips. The process of collaborative action research was applied as a means of personal and professional growth both for the participants and the researcher/facilitator. By the end of the research study, all participants had learned to integrate Virtual Field Trips into their classroom program, albeit with different levels of success and in different curricula areas. The development of attitudes, skills and knowledge for students and teachers alike was fostered through the participation in Virtual Field Trips. A common concern regarding the utilization of Virtual Field Trips was the time spent locating an appropriate site that met curricula expectations. Participation in the collaborative action research process allowed each teacher to grow professionally, personally and socially. Each participant strongly encouraged the utilization of a long term project with a common area of exploration as a means for positive professional development. Implications and recommendations for future research on the utilization of Virtual Field Trips, as well as the viability of collaborative action research to facilitate teacher development are presented.
Applications of virtual reality technology in pathology.
Grimes, G J; McClellan, S A; Goldman, J; Vaughn, G L; Conner, D A; Kujawski, E; McDonald, J; Winokur, T; Fleming, W
1997-01-01
TelePath(SM) a telerobotic system utilizing virtual microscope concepts based on high quality still digital imaging and aimed at real-time support for surgery by remote diagnosis of frozen sections. Many hospitals and clinics have an application for the remote practice of pathology, particularly in the area of reading frozen sections in support of surgery, commonly called anatomic pathology. The goal is to project the expertise of the pathologist into the remote setting by giving the pathologist access to the microscope slides with an image quality and human interface comparable to what the pathologist would experience at a real rather than a virtual microscope. A working prototype of a virtual microscope has been defined and constructed which has the needed performance in both the image quality and human interface areas for a pathologist to work remotely. This is accomplished through the use of telerobotics and an image quality which provides the virtual microscope the same diagnostic capabilities as a real microscope. The examination of frozen sections is performed a two-dimensional world. The remote pathologist is in a virtual world with the same capabilities as a "real" microscope, but response times may be slower depending on the specific computing and telecommunication environments. The TelePath system has capabilities far beyond a normal biological microscope, such as the ability to create a low power image of the entire sample using multiple images digitally matched together; the ability to digitally retrace a viewing trajectory; and the ability to archive images using CD ROM and other mass storage devices.
VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients.
Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F; Long, Daniel J; Bolch, Wesley E; Liu, Bob; Xu, X George
2015-07-21
This paper describes the development and testing of VirtualDose--a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the 'software as a service (SaaS)' delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose's functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT-two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.
NASA Astrophysics Data System (ADS)
Zhang, X.; Huang, X. L.; Lu, H. Q.
2017-02-01
In this study, a quasi-finite-time control method for designing stabilising control laws is developed for high-order strict-feedback nonlinear systems with mismatched disturbances. By using mapping filtered forwarding technique, a virtual control is designed to force the off-the-manifold coordinate to converge to zero in quasi-finite time at each step of the design; at the same time, the manifold is rendered insensitive to time-varying, bounded and unknown disturbances. In terms of standard forwarding methodology, the algorithm proposed here not only does not require the Lyapunov function for controller design, but also avoids to calculate the derivative of sign function. As far as the dynamic performance of closed-loop systems is concerned, we essentially obtain the finite-time performances, which is typically reflected in the following aspects: fast and accurate responses, high tracking precision, and robust disturbance rejection. Spring, mass, and damper system and flexible joints robot are tested to demonstrate the proposed controller performance.
Benoit B. Mandelbrot (1924-2010)
NASA Astrophysics Data System (ADS)
Barton, Christopher C.; Lovejoy, Shaun; Schertzer, Daniel J.; Turcotte, Donald L.
2012-01-01
Benoit B. Mandelbrot, who advanced the concept of power law scaling as a fundamental property of a broad range of natural processes and patterns in geophysics, economics, mathematics, and virtually all of science, died on 14 October 2010 in Cambridge, Mass., at the age of 85. Mandelbrot, known as the "father of fractal geometry," was a mathematician who developed the scaling concepts of self-similarity and self-affinity and found examples in spatial, temporal, and size patterns across a broad spectrum of disciplines. He coined the term "fractal" (from the Latin noun "fractus," meaning fragmented) for shapes and patterns that exhibit self-similarity, meaning that they are statistically scale independent. Such shapes are characterized by fractional power law exponents, between the integer (Euclidean) dimensions. He is best known through his books, including Les Objets Fractals: Forme, Hasard et Dimension; Fractals: Form, Chance and Dimension; The Fractal Geometry of Nature; andMultifractals and 1/f Noise: Wild Self-Affinity in Physics [Mandelbrot, 1975, Mandelbrot 1977, Mandelbrot 1982, Mandelbrot 1999].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Kijun
The differential cross sections and structure functions for the exclusive electroproduction process ep --> e'n pi+ were measured in the range of the invariantmass for the np+ system 1.6 GeV lte W lte 2.0 GeV, and the photon virtuality 1.8 GeV2 lte Q2 lte 4.0 GeV2 using CLAS at Jefferson Lab. For the first time, these kinematics are probed in the exclusive p+ production from the protons with nearly full coverage in the azimuthal and polar angles of the np+ center-of-mass system. In this analysis, approximately 39,000 differential cross-section data points in terms of W, Q2, cosq theta* _ pi,more » and phi*_p-, were obtained. The preliminary differential cross section and structure function analyses are carried out, which allow us to extract the helicity amplitudes in high-lying resonances.« less
The inert doublet model in the light of Fermi-LAT gamma-ray data: a global fit analysis
NASA Astrophysics Data System (ADS)
Eiteneuer, Benedikt; Goudelis, Andreas; Heisig, Jan
2017-09-01
We perform a global fit within the inert doublet model taking into account experimental observables from colliders, direct and indirect dark matter searches and theoretical constraints. In particular, we consider recent results from searches for dark matter annihilation-induced gamma-rays in dwarf spheroidal galaxies and relax the assumption that the inert doublet model should account for the entire dark matter in the Universe. We, moreover, study in how far the model is compatible with a possible dark matter explanation of the so-called Galactic center excess. We find two distinct parameter space regions that are consistent with existing constraints and can simultaneously explain the excess: One with dark matter masses near the Higgs resonance and one around 72 GeV where dark matter annihilates predominantly into pairs of virtual electroweak gauge bosons via the four-vertex arising from the inert doublet's kinetic term. We briefly discuss future prospects to probe these scenarios.
Borowka, S; Greiner, N; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T
2016-07-01
We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.
Chalil Madathil, Kapil; Greenstein, Joel S
2017-11-01
Collaborative virtual reality-based systems have integrated high fidelity voice-based communication, immersive audio and screen-sharing tools into virtual environments. Such three-dimensional collaborative virtual environments can mirror the collaboration among usability test participants and facilitators when they are physically collocated, potentially enabling moderated usability tests to be conducted effectively when the facilitator and participant are located in different places. We developed a virtual collaborative three-dimensional remote moderated usability testing laboratory and employed it in a controlled study to evaluate the effectiveness of moderated usability testing in a collaborative virtual reality-based environment with two other moderated usability testing methods: the traditional lab approach and Cisco WebEx, a web-based conferencing and screen sharing approach. Using a mixed methods experimental design, 36 test participants and 12 test facilitators were asked to complete representative tasks on a simulated online shopping website. The dependent variables included the time taken to complete the tasks; the usability defects identified and their severity; and the subjective ratings on the workload index, presence and satisfaction questionnaires. Remote moderated usability testing methodology using a collaborative virtual reality system performed similarly in terms of the total number of defects identified, the number of high severity defects identified and the time taken to complete the tasks with the other two methodologies. The overall workload experienced by the test participants and facilitators was the least with the traditional lab condition. No significant differences were identified for the workload experienced with the virtual reality and the WebEx conditions. However, test participants experienced greater involvement and a more immersive experience in the virtual environment than in the WebEx condition. The ratings for the virtual environment condition were not significantly different from those for the traditional lab condition. The results of this study suggest that participants were productive and enjoyed the virtual lab condition, indicating the potential of a virtual world based approach as an alternative to conventional approaches for synchronous usability testing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rus-Calafell, M; Garety, P; Sason, E; Craig, T J K; Valmaggia, L R
2018-02-01
Over the last two decades, there has been a rapid increase of studies testing the efficacy and acceptability of virtual reality in the assessment and treatment of mental health problems. This systematic review was carried out to investigate the use of virtual reality in the assessment and the treatment of psychosis. Web of Science, PsychInfo, EMBASE, Scopus, ProQuest and PubMed databases were searched, resulting in the identification of 638 articles potentially eligible for inclusion; of these, 50 studies were included in the review. The main fields of research in virtual reality and psychosis are: safety and acceptability of the technology; neurocognitive evaluation; functional capacity and performance evaluation; assessment of paranoid ideation and auditory hallucinations; and interventions. The studies reviewed indicate that virtual reality offers a valuable method of assessing the presence of symptoms in ecologically valid environments, with the potential to facilitate learning new emotional and behavioural responses. Virtual reality is a promising method to be used in the assessment of neurocognitive deficits and the study of relevant clinical symptoms. Furthermore, preliminary findings suggest that it can be applied to the delivery of cognitive rehabilitation, social skills training interventions and virtual reality-assisted therapies for psychosis. The potential benefits for enhancing treatment are highlighted. Recommendations for future research include demonstrating generalisability to real-life settings, examining potential negative effects, larger sample sizes and long-term follow-up studies. The present review has been registered in the PROSPERO register: CDR 4201507776.
Evolution of the global virtual water trade network.
Dalin, Carole; Konar, Megan; Hanasaki, Naota; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio
2012-04-17
Global freshwater resources are under increasing pressure from economic development, population growth, and climate change. The international trade of water-intensive products (e.g., agricultural commodities) or virtual water trade has been suggested as a way to save water globally. We focus on the virtual water trade network associated with international food trade built with annual trade data and annual modeled virtual water content. The evolution of this network from 1986 to 2007 is analyzed and linked to trade policies, socioeconomic circumstances, and agricultural efficiency. We find that the number of trade connections and the volume of water associated with global food trade more than doubled in 22 years. Despite this growth, constant organizational features were observed in the network. However, both regional and national virtual water trade patterns significantly changed. Indeed, Asia increased its virtual water imports by more than 170%, switching from North America to South America as its main partner, whereas North America oriented to a growing intraregional trade. A dramatic rise in China's virtual water imports is associated with its increased soy imports after a domestic policy shift in 2000. Significantly, this shift has led the global soy market to save water on a global scale, but it also relies on expanding soy production in Brazil, which contributes to deforestation in the Amazon. We find that the international food trade has led to enhanced savings in global water resources over time, indicating its growing efficiency in terms of global water use.
MnemoCity Task: Assessment of Childrens Spatial Memory Using Stereoscopy and Virtual Environments.
Rodríguez-Andrés, David; Juan, M-Carmen; Méndez-López, Magdalena; Pérez-Hernández, Elena; Lluch, Javier
2016-01-01
This paper presents the MnemoCity task, which is a 3D application that introduces the user into a totally 3D virtual environment to evaluate spatial short-term memory. A study has been carried out to validate the MnemoCity task for the assessment of spatial short-term memory in children, by comparing the children's performance in the developed task with current approaches. A total of 160 children participated in the study. The task incorporates two types of interaction: one based on standard interaction and another one based on natural interaction involving physical movement by the user. There were no statistically significant differences in the results of the task using the two types of interaction. Furthermore, statistically significant differences were not found in relation to gender. The correlations between scores were obtained using the MnemoCity task and a traditional procedure for assessing spatial short-term memory. Those results revealed that the type of interaction used did not affect the performance of children in the MnemoCity task.
Shema-Shiratzky, Shirley; Brozgol, Marina; Cornejo-Thumm, Pablo; Geva-Dayan, Karen; Rotstein, Michael; Leitner, Yael; Hausdorff, Jeffrey M; Mirelman, Anat
2018-05-17
To examine the feasibility and efficacy of a combined motor-cognitive training using virtual reality to enhance behavior, cognitive function and dual-tasking in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Fourteen non-medicated school-aged children with ADHD, received 18 training sessions during 6 weeks. Training included walking on a treadmill while negotiating virtual obstacles. Behavioral symptoms, cognition and gait were tested before and after the training and at 6-weeks follow-up. Based on parental report, there was a significant improvement in children's social problems and psychosomatic behavior after the training. Executive function and memory were improved post-training while attention was unchanged. Gait regularity significantly increased during dual-task walking. Long-term training effects were maintained in memory and executive function. Treadmill-training augmented with virtual-reality is feasible and may be an effective treatment to enhance behavior, cognitive function and dual-tasking in children with ADHD.
Preliminary research on virtual thermal comfort of automobile occupants
NASA Astrophysics Data System (ADS)
Horobet, Tiberiu; Danca, Paul; Nastase, Ilinca; Bode, Florin
2018-02-01
Numerical simulation of climate conditions in automotive industry for the study of thermal comfort had become more and more prominent in the last years compared with the classical approach which consists in wind tunnel measurements and field testing, the main advantages being the reduction of vehicle development time and costs. The study presented in this paper is a part of a project intended to evaluate different strategies of cabin ventilation for improving the thermal comfort inside vehicles. A virtual thermal manikin consisting of 24 parts was introduced on the driver seat in a vehicle. A heat load calculated for summer condition in the city of Cluj-Napoca, Romania was imposed as boundary condition. The purpose of this study was to elaborate a virtual thermal manikin suitable for our research, introduction of the manikin inside the vehicle and to examine his influence inside the automobile. The thermal comfort of the virtual manikin was evaluated in terms of temperature and air velocity.
E-Government Attempts in Small Island Developing States: The Rate of Corruption with Virtualization.
Sari, Arif
2017-12-01
In recent years, many Small Island Developing State (SIDS) governments have worked to increase openness and transparency of their transactions as a means to enhance efficiency and reduce corruption in their economies. In order to achieve a cost-effective and efficient strategy to implement a transparent government, Information Communication Technologies offer an opportunity of virtualization by deploying e-government services to promote transparency, accountability and consistency in the public sector and to minimize corruption. This paper explores the potential impact of government virtualization by SIDS and against corruption by comparing the corruption perception index (CPI) rates of 15 SIDS countries. The CPI relates to the degree by which corruption is perceived to exist among public officials and politicians by business people and country analysts. In order to reveal the long-term impact of virtual deployment and its consequences on corruption, an in-depth case analysis based on the CPI index rates was conducted on the deployment of the e-government system in Cyprus.
Virtual containment system for composite flywheels
NASA Astrophysics Data System (ADS)
Shiue, Fuh-Wen
2001-07-01
There is much interest in advanced composite flywheel systems for use on satellites mainly because of the potential for considerable weight savings associated with combined energy and momentum management. The additional weight of a containment system needed to protect the satellite in the event of a flywheel failure, however, could negate the potential savings. Therefore, the development of a condition monitoring and virtual containment system is essential to ensure the wide acceptance of flywheel batteries for spacecraft applications. A virtual containment system is a near real-time condition monitoring system, plus additional logic to adjust the operating conditions (maximum rotational speed) accordingly when a flaw or fault is detected. Flaws of primary interest in this study are those unique to composite flywheels, such as delamination and debonding of interfaces. Such flaws change the balance state of a flywheel through small, but detectable, motion of the mass center and principal axes of inertia. A proposed monitoring technique determines the existence and the extent of such flaws by a method similar to the influence-coefficient rotor balancing method. Because of the speed-dependence of the imbalance caused by elastic flaws, a normalized imbalance change, which is a direct measure of the flaw size, was defined. To account for the possibility that flaw growth could actually improve the balance state of a rotor, a new concept of accumulated imbalance change was also introduced. Laboratory tests showed the proposed method was able to detect small simulated flaws that result in as little as 2--3 microns of mass center movement. Fracture mechanics concepts were used to evaluate the severity and growth rate of the detected flaw. An interesting discovery that coincided with some experimental observations reported in the literature was the energy release rate reduction with a large crack. This finding indicates a possible stress relief and crack arrest when a circumferential crack grows over certain size. This phenomenon is largely due to crack curvature unique to filament-wound composite flywheels. Several virtual containment strategies were investigated numerically to demonstrate the feasibility of virtual containment systems. Once a flaw is detected during flywheel operation, the maximum operating speed can be reduced to prevent catastrophic failure, achieve a specific design life, and maximize energy storage capacity over the remaining life. A numerical example showed 4--5 times of improvement in cumulative energy storage through lifetime with a virtual containment. A closed-loop speed controller using condition monitoring sensor feedback was investigated numerically to account for possible imperfection of the fracture mechanics model. Finally, an integrated virtual containment system without any complex fracture mechanics analysis was also developed and successfully demonstrated experimentally.
Static Design and Finite Element Analysis of Innovative CFRP Transverse Leaf Spring
NASA Astrophysics Data System (ADS)
Carello, M.; Airale, A. G.; Ferraris, A.; Messana, A.; Sisca, L.
2017-12-01
This paper describes the design and the numerical modelization of a novel transverse Carbon Fiber Reinforced Plastic (CFRP) leaf-spring prototype for a multilink suspension. The most significant innovation is in the functional integration where the leaf spring has been designed to work as spring, anti-roll bar, lower and longitudinal arms at the same time. In particular, the adopted work flow maintains a very close correlation between virtual simulations and experimental tests. Firstly, several tests have been conducted on the CFRP specimen to characterize the material property. Secondly, a virtual card fitting has been carried out in order to set up the leaf-spring Finite Element (FE) model using CRASURV formulation as material law and RADIOSS as solver. Finally, extensive tests have been done on the manufactured component for validation. The results obtained show a good agreement between virtual simulation and experimental tests. Moreover, this solution enabled the suspension to reduce about 75% of the total mass without losing performance.
Virtual reality training and assessment in laparoscopic rectum surgery.
Pan, Jun J; Chang, Jian; Yang, Xiaosong; Liang, Hui; Zhang, Jian J; Qureshi, Tahseen; Howell, Robert; Hickish, Tamas
2015-06-01
Virtual-reality (VR) based simulation techniques offer an efficient and low cost alternative to conventional surgery training. This article describes a VR training and assessment system in laparoscopic rectum surgery. To give a realistic visual performance of interaction between membrane tissue and surgery tools, a generalized cylinder based collision detection and a multi-layer mass-spring model are presented. A dynamic assessment model is also designed for hierarchy training evaluation. With this simulator, trainees can operate on the virtual rectum with both visual and haptic sensation feedback simultaneously. The system also offers surgeons instructions in real time when improper manipulation happens. The simulator has been tested and evaluated by ten subjects. This prototype system has been verified by colorectal surgeons through a pilot study. They believe the visual performance and the tactile feedback are realistic. It exhibits the potential to effectively improve the surgical skills of trainee surgeons and significantly shorten their learning curve. Copyright © 2014 John Wiley & Sons, Ltd.
Monte Carlo calculations for reporting patient organ doses from interventional radiology
NASA Astrophysics Data System (ADS)
Huo, Wanli; Feng, Mang; Pi, Yifei; Chen, Zhi; Gao, Yiming; Xu, X. George
2017-09-01
This paper describes a project to generate organ dose data for the purposes of extending VirtualDose software from CT imaging to interventional radiology (IR) applications. A library of 23 mesh-based anthropometric patient phantoms were involved in Monte Carlo simulations for database calculations. Organ doses and effective doses of IR procedures with specific beam projection, filed of view (FOV) and beam quality for all parts of body were obtained. Comparing organ doses for different beam qualities, beam projections, patients' ages and patient's body mass indexes (BMIs) which generated by VirtualDose-IR, significant discrepancies were observed. For relatively long time exposure, IR doses depend on beam quality, beam direction and patient size. Therefore, VirtualDose-IR, which is based on the latest anatomically realistic patient phantoms, can generate accurate doses for IR treatment. It is suitable to apply this software in clinical IR dose management as an effective tool to estimate patient doses and optimize IR treatment plans.
The Virtual Observatory Powered PhD Thesis
NASA Astrophysics Data System (ADS)
Zolotukhin, I. Yu.
2010-12-01
The Virtual Observatory has reached sufficient maturity for its routine scientific exploitation by astronomers. To prove this statement, here I present a brief description of the complete VO-powered PhD thesis entitled “Galactic and extragalactic research with modern surveys and the Virtual Observatory” comprising 4 science cases covering various aspects of astrophysical research. These comprize: (1) homogeneous search and measurement of main physical parameters of Galactic open star clusters in huge multi-band photometric surveys; (2) study of optical-to-NIR galaxy colors using a large homogeneous dataset including spectroscopy and photometry from SDSS and UKIDSS; (3) study of faint low-mass X-ray binary population in modern observational archives; (4) search for optical counterparts of unidentified X-ray objects with large positional uncertainties in the Galactic Plane. All these projects make heavy use of the VO technologies and tools and would not be achievable without them. So refereed papers published in the frame of this thesis can undoubtedly be added to the growing list of VO-based research works.
A 3D virtual reality simulator for training of minimally invasive surgery.
Mi, Shao-Hua; Hou, Zeng-Gunag; Yang, Fan; Xie, Xiao-Liang; Bian, Gui-Bin
2014-01-01
For the last decade, remarkable progress has been made in the field of cardiovascular disease treatment. However, these complex medical procedures require a combination of rich experience and technical skills. In this paper, a 3D virtual reality simulator for core skills training in minimally invasive surgery is presented. The system can generate realistic 3D vascular models segmented from patient datasets, including a beating heart, and provide a real-time computation of force and force feedback module for surgical simulation. Instruments, such as a catheter or guide wire, are represented by a multi-body mass-spring model. In addition, a realistic user interface with multiple windows and real-time 3D views are developed. Moreover, the simulator is also provided with a human-machine interaction module that gives doctors the sense of touch during the surgery training, enables them to control the motion of a virtual catheter/guide wire inside a complex vascular model. Experimental results show that the simulator is suitable for minimally invasive surgery training.
Wojcinski, Sebastian; Brandhorst, Kathrin; Sadigh, Gelareh; Hillemanns, Peter; Degenhardt, Friedrich
2013-01-01
Acoustic radiation force impulse imaging (ARFI) with Virtual Touch™ tissue quantification (VTTQ) enables the determination of shear wave velocity (SWV) in meters per second (m/s). The aim of our study was to describe the mean SWV in normal breast tissue and various breast masses. We performed measurements of SWV with ARFI VTTQ in 145 breast masses (57 malignant, 88 benign) and in the adjacent breast parenchyma and adipose tissue. The mean SWV as well as the rate of successful measurements were analyzed. The difference between adipose tissue and parenchyma was statistically significant (3.05 versus 3.65 m/s) (P < 0.001). Focusing on breast masses, numerous measurements exceeded the upper limit of possible measurement (≥9.10 m/s, indicated as "X.XX m/s"). Nevertheless, the difference between the malignant and benign masses was statistically significant (8.38 ± 1.99 m/s versus 5.39 ± 2.95 m/s) (P < 0.001). The best diagnostic accuracy (75.9%) was achieved when the cutoff point for malignancy was set to 9.10 m/s in ARFI VTTQ. This implies that the SWV was regarded as suspicious when the upper limit of possible measurement was exceeded and the machine returned the value X.XX m/s. In conclusion, ARFI VTTQ is a feasible method for measurement of SWV in a region of interest. Furthermore, we propose the event of a highly elevated SWV as a significant criterion for malignancy. However, the method is technically not yet fully developed, and the problem of unsuccessful measurements must still be solved.
Directional virtual backbone based data aggregation scheme for Wireless Visual Sensor Networks.
Zhang, Jing; Liu, Shi-Jian; Tsai, Pei-Wei; Zou, Fu-Min; Ji, Xiao-Rong
2018-01-01
Data gathering is a fundamental task in Wireless Visual Sensor Networks (WVSNs). Features of directional antennas and the visual data make WVSNs more complex than the conventional Wireless Sensor Network (WSN). The virtual backbone is a technique, which is capable of constructing clusters. The version associating with the aggregation operation is also referred to as the virtual backbone tree. In most of the existing literature, the main focus is on the efficiency brought by the construction of clusters that the existing methods neglect local-balance problems in general. To fill up this gap, Directional Virtual Backbone based Data Aggregation Scheme (DVBDAS) for the WVSNs is proposed in this paper. In addition, a measurement called the energy consumption density is proposed for evaluating the adequacy of results in the cluster-based construction problems. Moreover, the directional virtual backbone construction scheme is proposed by considering the local-balanced factor. Furthermore, the associated network coding mechanism is utilized to construct DVBDAS. Finally, both the theoretical analysis of the proposed DVBDAS and the simulations are given for evaluating the performance. The experimental results prove that the proposed DVBDAS achieves higher performance in terms of both the energy preservation and the network lifetime extension than the existing methods.
Template-based combinatorial enumeration of virtual compound libraries for lipids
2012-01-01
A variety of software packages are available for the combinatorial enumeration of virtual libraries for small molecules, starting from specifications of core scaffolds with attachments points and lists of R-groups as SMILES or SD files. Although SD files include atomic coordinates for core scaffolds and R-groups, it is not possible to control 2-dimensional (2D) layout of the enumerated structures generated for virtual compound libraries because different packages generate different 2D representations for the same structure. We have developed a software package called LipidMapsTools for the template-based combinatorial enumeration of virtual compound libraries for lipids. Virtual libraries are enumerated for the specified lipid abbreviations using matching lists of pre-defined templates and chain abbreviations, instead of core scaffolds and lists of R-groups provided by the user. 2D structures of the enumerated lipids are drawn in a specific and consistent fashion adhering to the framework for representing lipid structures proposed by the LIPID MAPS consortium. LipidMapsTools is lightweight, relatively fast and contains no external dependencies. It is an open source package and freely available under the terms of the modified BSD license. PMID:23006594
Thin SiGe virtual substrates for Ge heterostructures integration on silicon
NASA Astrophysics Data System (ADS)
Cecchi, S.; Gatti, E.; Chrastina, D.; Frigerio, J.; Müller Gubler, E.; Paul, D. J.; Guzzi, M.; Isella, G.
2014-03-01
The possibility to reduce the thickness of the SiGe virtual substrate, required for the integration of Ge heterostructures on Si, without heavily affecting the crystal quality is becoming fundamental in several applications. In this work, we present 1 μm thick Si1-xGex buffers (with x > 0.7) having different designs which could be suitable for applications requiring a thin virtual substrate. The rationale is to reduce the lattice mismatch at the interface with the Si substrate by introducing composition steps and/or partial grading. The relatively low growth temperature (475 °C) makes this approach appealing for complementary metal-oxide-semiconductor integration. For all the investigated designs, a reduction of the threading dislocation density compared to constant composition Si1-xGex layers was observed. The best buffer in terms of defects reduction was used as a virtual substrate for the deposition of a Ge/SiGe multiple quantum well structure. Room temperature optical absorption and photoluminescence analysis performed on nominally identical quantum wells grown on both a thick graded virtual substrate and the selected thin buffer demonstrates a comparable optical quality, confirming the effectiveness of the proposed approach.
How virtual reality works: illusions of vision in "real" and virtual environments
NASA Astrophysics Data System (ADS)
Stark, Lawrence W.
1995-04-01
Visual illusions abound in normal vision--illusions of clarity and completeness, of continuity in time and space, of presence and vivacity--and are part and parcel of the visual world inwhich we live. These illusions are discussed in terms of the human visual system, with its high- resolution fovea, moved from point to point in the visual scene by rapid saccadic eye movements (EMs). This sampling of visual information is supplemented by a low-resolution, wide peripheral field of view, especially sensitive to motion. Cognitive-spatial models controlling perception, imagery, and 'seeing,' also control the EMs that shift the fovea in the Scanpath mode. These illusions provide for presence, the sense off being within an environment. They equally well lead to 'Telepresence,' the sense of being within a virtual display, especially if the operator is intensely interacting within an eye-hand and head-eye human-machine interface that provides for congruent visual and motor frames of reference. Interaction, immersion, and interest compel telepresence; intuitive functioning and engineered information flows can optimize human adaptation to the artificial new world of virtual reality, as virtual reality expands into entertainment, simulation, telerobotics, and scientific visualization and other professional work.
Template-based combinatorial enumeration of virtual compound libraries for lipids.
Sud, Manish; Fahy, Eoin; Subramaniam, Shankar
2012-09-25
A variety of software packages are available for the combinatorial enumeration of virtual libraries for small molecules, starting from specifications of core scaffolds with attachments points and lists of R-groups as SMILES or SD files. Although SD files include atomic coordinates for core scaffolds and R-groups, it is not possible to control 2-dimensional (2D) layout of the enumerated structures generated for virtual compound libraries because different packages generate different 2D representations for the same structure. We have developed a software package called LipidMapsTools for the template-based combinatorial enumeration of virtual compound libraries for lipids. Virtual libraries are enumerated for the specified lipid abbreviations using matching lists of pre-defined templates and chain abbreviations, instead of core scaffolds and lists of R-groups provided by the user. 2D structures of the enumerated lipids are drawn in a specific and consistent fashion adhering to the framework for representing lipid structures proposed by the LIPID MAPS consortium. LipidMapsTools is lightweight, relatively fast and contains no external dependencies. It is an open source package and freely available under the terms of the modified BSD license.
Massive QCD Amplitudes at Higher Orders
NASA Astrophysics Data System (ADS)
Moch, S.; Mitov, A.
2007-11-01
We consider the factorisation properties of on-shell QCD amplitudes with massive partons in the limit when all kinematical invariants are large compared to the parton mass and discuss the structure of their infrared singularities. The dimensionally regulated soft poles and the large collinear logarithms of the parton masses exponentiate to all orders. Based on this factorisation a simple relation between massless and massive scattering amplitudes in gauge theories can be established. We present recent applications of this relation for the calculation of the two-loop virtual QCD corrections to the hadro-production of heavy quarks.
Moes, Anne; Vliet, Harry van
2017-06-01
Consumer behaviour in 2016 shows that (r)etailers need online/offline integration to better serve their clients. An important distinguishing feature of the physical shop is how it can offer consumers a shopping experience. This study uses two experiments to research the extent a fashion store's shopping experience can be presented to consumers via visual material (a regular photo, a 360-degree photo and a virtual reality photo of the shop) without the consumers being in the shop itself. The effects of these visual materials will also be measured in (among others) terms of purchase intention, visiting intention to the physical shop and online visit satisfaction. A theoretical framework is used to substantiate how the three types of pictures can be classified in terms of medium richness. The completed experiments show, among other outcomes, that consumers who saw the virtual reality photo of the shop have a more positive shopping experience, a higher purchase intention, a higher intention to visit the physical shop and more online visit satisfaction than people who have only seen the regular photo or the 360-degree photo of the shop. Enjoyment and novelty seem to partly explain these found effects.
Learning English with "The Sims": Exploiting Authentic Computer Simulation Games for L2 Learning
ERIC Educational Resources Information Center
Ranalli, Jim
2008-01-01
With their realistic animation, complex scenarios and impressive interactivity, computer simulation games might be able to provide context-rich, cognitively engaging virtual environments for language learning. However, simulation games designed for L2 learners are in short supply. As an alternative, could games designed for the mass-market be…
Knowledge Maps for E-Literacy in ICT-Rich Learning Environments
ERIC Educational Resources Information Center
Taha, Ahmed
2005-01-01
The Web-based information and communication technology (w-ICT) has become a powerful means for delivery and dissemination of digitised information among the emerging virtual learning and business communities. The w-ICT has engendered a growing cybersphere paradigm to accommodate a huge mass of e-resources cast over the Web. Such abundance of…
Taking a Systems View of Creativity: On the Right Path toward Understanding
ERIC Educational Resources Information Center
Hennessey, Beth A.
2017-01-01
In our 2010 "Annual Review" paper, Teresa Amabile and I argued that a virtual explosion of topics, viewpoints, and methodologies had muddied the investigative waters. Few, if any, "big" questions were being pursued by a critical mass of creativity researchers. Instead, investigators in one subfield seemed entirely unaware of…
Mass Distributions Implying Flat Galactic Rotation Curves
ERIC Educational Resources Information Center
Keeports, David
2010-01-01
The rotational speeds of stars in the disc of a spiral galaxy are virtually independent of the distances of the stars from the centre of the galaxy. In common parlance, the stellar speed versus distance plot known as a galactic rotation curve is by observation typically nearly flat. This observation provides strong evidence that most galactic…
Sznitman, Sharon; Vanable, Peter A.; Carey, Michael P.; Hennessy, Michael; Brown, Larry K.; Valois, Robert F.; Stanton, Bonita F.; Salazar, Laura F.; DiClemente, Ralph; Farber, Naomi; Romer, Daniel
2010-01-01
Purpose To test the long-term effects of a mass media intervention that used culturally and developmentally appropriate messages to enhance HIV-preventive beliefs and behavior of high-risk African-American adolescents. Methods Television and radio messages were delivered over three years in two cities (Syracuse, NY and Macon, GA) that were randomly selected within each of two regionally matched city pairs with the other cities (Providence, RI and Columbia, SC) serving as controls. African American adolescents ages 14 to 17 (N = 1710), recruited in the four cities over a 16-month period, completed audio computer-assisted self-interviews at recruitment and again at 3, 6, 12 and 18-months post-recruitment to assess the long-term effects of the media program. To identify the unique effects of the media intervention, youth who completed at least one follow-up and who did not test positive for any of three sexually transmitted infections at recruitment or at 6 and 12-month follow-up were retained for analysis (N=1346). Results The media intervention reached virtually all of the adolescents in the trial and produced a range of effects including improved normative condom-use negotiation expectancies and increased sex refusal self-efficacy. Most importantly, older adolescents (ages 16-17) exposed to the media program exhibited a less risky age trajectory of unprotected sex than those in the non-media cities. Conclusions Culturally tailored mass media messages delivered consistently over time have the potential to reach a large audience of high-risk adolescents, to support changes in HIV-preventive beliefs, and to reduce HIV-associated risk behaviors among older youth. PMID:21856515
Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity.
Cole, T J; Lobstein, T
2012-08-01
The international (International Obesity Task Force; IOTF) body mass index (BMI) cut-offs are widely used to assess the prevalence of child overweight, obesity and thinness. Based on data from six countries fitted by the LMS method, they link BMI values at 18 years (16, 17, 18.5, 25 and 30 kg m(-2)) to child centiles, which are averaged across the countries. Unlike other BMI references, e.g. the World Health Organization (WHO) standard, these cut-offs cannot be expressed as centiles (e.g. 85th). To address this, we averaged the previously unpublished L, M and S curves for the six countries, and used them to derive new cut-offs defined in terms of the centiles at 18 years corresponding to each BMI value. These new cut-offs were compared with the originals, and with the WHO standard and reference, by measuring their prevalence rates based on US and Chinese data. The new cut-offs were virtually identical to the originals, giving prevalence rates differing by < 0.2% on average. The discrepancies were smaller for overweight and obesity than for thinness. The international and WHO prevalences were systematically different before/after age 5. Defining the international cut-offs in terms of the underlying LMS curves has several benefits. New cut-offs are easy to derive (e.g. BMI 35 for morbid obesity), and they can be expressed as BMI centiles (e.g. boys obesity = 98.9th centile), allowing them to be compared with other BMI references. For WHO, median BMI is relatively low in early life and high at older ages, probably due to its method of construction. © 2012 The Authors. Pediatric Obesity © 2012 International Association for the Study of Obesity.
Nipple adenoma arising from axillary accessory breast: a case report
2012-01-01
Nipple adenoma is a relatively rare benign breast neoplasm, and cases of the disease arising from the axillary accessory breast have very seldom been reported in the English literature. We report a case of nipple adenoma arising from axillary accessory breast including clinical and pathological findings. An 82-year-old woman presented with the complaint of a small painful mass in the right axilla. Physical examination confirmed a well-defined eczematous crusted mass that was 8 mm in size. The diagnosis of nipple adenoma was made from an excisional specimen on the basis of characteristic histological findings. Microscopic structural features included a compact proliferation of small tubules lined by epithelial and myoepithelial cells, and the merging of glandular epithelial cells of the adenoma into squamous epithelial cells in the superficial epidermal layer. Because clinically nipple adenoma may resemble Paget’s disease and pathologically can be misinterpreted as tubular carcinoma, the correct identification of nipple adenoma is an important factor in the differential diagnosis for axillary tumor neoplasms. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1186821489769063 PMID:23186145
Lu, Yuhua; Liu, Qian
2018-01-01
We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications. PMID:29515870
2012-01-01
Abstract Primary sarcomas of the major blood vessels can be classified based on location in relationship to the wall or by histologic type. Angiosarcomas are malignant neoplasms that arise from the endothelial lining of the blood vessels; those arising in the intimal compartment of pulmonary artery are rare. We report a case of pulmonary artery angiosarcoma in a 36-year old female with pulmonary masses. The patient had no other primary malignant neoplasm, thus excluding a metastatic lesion. Gross examination revealed a thickened right pulmonary artery and a necrotic and hemorrhagic tumor, filling and occluding the vascular lumen. The mass extended distally, within the pulmonary vasculature of the right lung. Microscopically, an intravascular undifferentiated tumor was identified. The tumor cells showed expression for vascular markers VEGFR, VEGFR3, PDGFRa, FGF, Ulex europaeus, FVIII, FLI-1, CD31 and CD34; p53 was overexpressed and Ki67 proliferative rate was increased. Intravascular angiosarcomas are aggressive neoplasms, often associated with poor outcome. Virtual slide The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2315906377648045. PMID:23134683
Xu, Lang; Lu, Yuhua; Liu, Qian
2018-02-01
We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications.
Notation of Depression in Case Records of Older Adults in Community Long-Term Care
ERIC Educational Resources Information Center
Proctor, Enola K.
2008-01-01
Although significant numbers of social service clients experience mental health problems, virtually no research has examined the responsiveness of social service agencies to mental disorder. This article examines the extent to which client depression is reflected in records of a public social service agency, community long-term care (CLTC).…
Virtual Mourning and Memory Construction on Facebook: Here Are the Terms of Use
ERIC Educational Resources Information Center
McEwen, Rhonda N.; Scheaffer, Kathleen
2013-01-01
This article investigates the online information practices of persons grieving and mourning via Facebook. It examines how, or whether, these practices and Facebook's terms of use policies have implications for the bereaved and/or the memory of the deceased. To explore these questions, we compared traditional publicly recorded asynchronous…
Virtual Reality for Collaborative E-Learning
ERIC Educational Resources Information Center
Monahan, Teresa; McArdle, Gavin; Bertolotto, Michela
2008-01-01
In the past, the term e-learning referred to any method of learning that used electronic delivery methods. With the advent of the Internet however, e-learning has evolved and the term is now most commonly used to refer to online courses. A multitude of systems are now available to manage and deliver learning content online. While these have proved…
NASA Astrophysics Data System (ADS)
Jones, S. P.; Kerner, M.; Luisoni, G.
2018-04-01
We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high pt ,H region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.
Jones, S P; Kerner, M; Luisoni, G
2018-04-20
We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high p_{t,H} region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.
Virtual reality based experiential cognitive treatment of anorexia nervosa.
Riva, G; Bacchetta, M; Baruffi, M; Rinaldi, S; Molinari, E
1999-09-01
The treatment of a 22-year old female university student diagnosed with Anorexia Nervosa is described. In the study the Experiential Cognitive Therapy (ECT) was used: a relatively short-term, integrated, patient oriented approach that focuses on individual discovery. Main characteristic of this approach is the use of Virtual Reality, a new technology that allows the user to be immersed in a computer-generated virtual world. At the end of the in-patient treatment, the subject increased her bodily awareness joined to a reduction in her level of body dissatisfaction. Moreover, the patient presented a high degree of motivation to change. The results are discussed with regard to Vitousek, Watson and Wilson (1998, Clinical Psychology Review, 18(4), 391-420) proposal of using the Socratic Method to face denial and resistance of anorectic patients.
A Virtual Notebook for biomedical work groups.
Gorry, G A; Burger, A M; Chaney, R J; Long, K B; Tausk, C M
1988-01-01
During the past several years, Baylor College of Medicine has made a substantial commitment to the use of information technology in support of its corporate and academic programs. The concept of an Integrated Academic Information Management System (IAIMS) has proved central in our planning, and the IAIMS activities that we have undertaken with funding from the National Library of Medicine have proved to be important extensions of our technology development. Here we describe our Virtual Notebook system, a conceptual and technologic framework for task coordination and information management in biomedical work groups. When fully developed and deployed, the Virtual Notebook will improve the functioning of basic and clinical research groups in the college, and it currently serves as a model for the longer-term development of our entire information management environment. PMID:3046694
A Preliminary Empirical Evaluation of Virtual Reality as a Training Tool for Visual-Spatial Tasks
1993-05-01
Hillsdale, NJ: Lawrence Erlbaum Associates. Craik , F.I.M., & Lockhart , R.S. (1972). Levels of processing ; A framework for memory research. Journal of...short-term memory (Bower, 1972; Kanigel, 1981), elaborative rehearsai in short-term memory, and subsequent retrieval from long-term memory ( Craik ... Lockhart , 1972; Chase & Ericsson, 1981), ?nd the superiority of gist over verbatim recall of sentences (Bransford & Franks, 1971). Even memory for simple
Pietrzak, Eva; Pullman, Stephen; McGuire, Annabel
2014-08-01
This article reviews the available literature about the use of novel methods of rehabilitation using virtual reality interventions for people living with posttraumatic brain injuries. The MEDLINE, EMBASE, SCOPUS, and Cochrane Library databases were searched using the terms "virtual reality" OR "video games" AND "traumatic brain injury." Included studies investigated therapeutic use of virtual reality in adults with a brain trauma resulting from acquired closed head injury, reported outcomes that included measures of motor or cognitive functionality, and were published in a peer-reviewed journal written in English. Eighteen articles fulfilled inclusion criteria. Eight were case studies, five studies had a quasi-experimental design with a pre-post comparison, and five were pilot randomized control trials or comparative studies. The virtual reality systems used were commercial or custom designed for the study and ranged from expensive, fully immersive systems to cheap online games or videogames. In before-after comparisons, improvements in balance were seen in four case studies and two small randomized control trials. Between-group comparisons in these randomized control trials showed no difference between virtual reality and traditional therapy. Post-training improvements were also seen for upper extremity functions (five small studies) and for various cognitive function measures (four case studies and one pilot randomized control trial). Attitudes of participants toward virtual reality interventions was more positive than for traditional therapy (three studies). The evidence that the use of virtual reality in rehabilitation of traumatic brain injury improves motor and cognitive functionality is currently very limited. However, this approach has the potential to provide alternative, possibly more affordable and available rehabilitation therapy for traumatic brain injury in settings where access to therapy is limited by geographical or financial constraints.
NASA Astrophysics Data System (ADS)
Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.
2015-12-01
Cloud resources nowadays contribute an essential share of resources for computing in high-energy physics. Such resources can be either provided by private or public IaaS clouds (e.g. OpenStack, Amazon EC2, Google Compute Engine) or by volunteers computers (e.g. LHC@Home 2.0). In any case, experiments need to prepare a virtual machine image that provides the execution environment for the physics application at hand. The CernVM virtual machine since version 3 is a minimal and versatile virtual machine image capable of booting different operating systems. The virtual machine image is less than 20 megabyte in size. The actual operating system is delivered on demand by the CernVM File System. CernVM 3 has matured from a prototype to a production environment. It is used, for instance, to run LHC applications in the cloud, to tune event generators using a network of volunteer computers, and as a container for the historic Scientific Linux 5 and Scientific Linux 4 based software environments in the course of long-term data preservation efforts of the ALICE, CMS, and ALEPH experiments. We present experience and lessons learned from the use of CernVM at scale. We also provide an outlook on the upcoming developments. These developments include adding support for Scientific Linux 7, the use of container virtualization, such as provided by Docker, and the streamlining of virtual machine contextualization towards the cloud-init industry standard.
Rodriguez-Andres, David; Mendez-Lopez, Magdalena; Juan, M-Carmen; Perez-Hernandez, Elena
2018-01-01
The use of virtual reality-based tasks for studying memory has increased considerably. Most of the studies that have looked at child population factors that influence performance on such tasks have been focused on cognitive variables. However, little attention has been paid to the impact of non-cognitive skills. In the present paper, we tested 52 typically-developing children aged 5-12 years in a virtual object-location task. The task assessed their spatial short-term memory for the location of three objects in a virtual city. The virtual task environment was presented using a 3D application consisting of a 120″ stereoscopic screen and a gamepad interface. Measures of learning and displacement indicators in the virtual environment, 3D perception, satisfaction, and usability were obtained. We assessed the children's videogame experience, their visuospatial span, their ability to build blocks, and emotional and behavioral outcomes. The results indicate that learning improved with age. Significant effects on the speed of navigation were found favoring boys and those more experienced with videogames. Visuospatial skills correlated mainly with ability to recall object positions, but the correlation was weak. Longer paths were related with higher scores of withdrawal behavior, attention problems, and a lower visuospatial span. Aggressiveness and experience with the device used for interaction were related with faster navigation. However, the correlations indicated only weak associations among these variables.
Ferrer-Garcia, Marta; Gutierrez-Maldonado, Jose; Treasure, Janet; Vilalta-Abella, Ferran
2015-09-01
Virtual reality (VR) technology has been successfully used to study the influence of specific and contextual food-related cues on emotional, cognitive and behavioural responses in patients with eating disorders (ED) and healthy controls. Following this research line, the present study assesses the effect on reported food craving of the type of food (low calorie versus high calorie) and the presence or absence of other people (private versus social context) in VR environments. Relationships between craving and body mass index (BMI) and ED symptoms are also explored. Eighty-seven female students were exposed to four VR scenarios presented in random order: a low-calorie kitchen, a high-calorie kitchen, a low-calorie restaurant and a high-calorie restaurant. After 2 minutes of exposure to each virtual scenario, food craving was assessed. Repeated measures analyses of covariance were conducted to assess changes in food craving following exposure to the different VR environments. Time elapsed since the last meal was introduced as a covariate to control for responses produced by food deprivation. Correlation and hierarchical multiple regression analyses were also conducted to assess the relationship between reported food craving and BMI and ED symptoms. Participants experienced higher levels of food craving after exposure to high-calorie foods (in both the kitchen and restaurant environments) than after exposure to low-calorie foods. Being alone in the kitchen or with friends in the restaurant had no effect on reported craving. Overall, neither BMI nor ED symptoms were related with reported food craving; only in the restaurant with low-calorie food was a significant negative correlation found between BMI and food craving. The results suggest that cue exposure in virtual environments is an effective procedure for inducing food craving in healthy controls and may be useful as a research and therapeutic tool in clinical populations. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.
NASA Astrophysics Data System (ADS)
Alacid, J. Manuel; Solano, Enrique
2015-12-01
The Gran Telescopio Canarias (GTC) archive is operational since November 2011. The archive, maintained by the Data Archive Unit at CAB in the framework of the Spanish Virtual Observatory project, provides access to both raw and science ready data and has been designed in compliance with the standards defined by the International Virtual Observatory Alliance (IVOA) to guarantee a high level of data accessibility and handling. In this presentation I will describe the main capabilities the GTC archive offers to the community, in terms of functionalities and data collections, to carry out an efficient scientific exploitation of GTC data.
Saklatvala, Jake R; Dand, Nick; Simpson, Michael A
2018-05-01
The genetic diagnosis of rare monogenic diseases using exome/genome sequencing requires the true causal variant(s) to be identified from tens of thousands of observed variants. Typically a virtual gene panel approach is taken whereby only variants in genes known to cause phenotypes resembling the patient under investigation are considered. With the number of known monogenic gene-disease pairs exceeding 5,000, manual curation of personalized virtual panels using exhaustive knowledge of the genetic basis of the human monogenic phenotypic spectrum is challenging. We present improved probabilistic methods for estimating phenotypic similarity based on Human Phenotype Ontology annotation. A limitation of existing methods for evaluating a disease's similarity to a reference set is that reference diseases are typically represented as a series of binary (present/absent) observations of phenotypic terms. We evaluate a quantified disease reference set, using term frequency in phenotypic text descriptions to approximate term relevance. We demonstrate an improved ability to identify related diseases through the use of a quantified reference set, and that vector space similarity measures perform better than established information content-based measures. These improvements enable the generation of bespoke virtual gene panels, facilitating more accurate and efficient interpretation of genomic variant profiles from individuals with rare Mendelian disorders. These methods are available online at https://atlas.genetics.kcl.ac.uk/~jake/cgi-bin/patient_sim.py. © 2018 Wiley Periodicals, Inc.
VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients
NASA Astrophysics Data System (ADS)
Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F.; Long, Daniel J.; Bolch, Wesley E.; Liu, Bob; Xu, X. George
2015-07-01
This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruotolo, Francesco, E-mail: francesco.ruotolo@unina2.it; Maffei, Luigi, E-mail: luigi.maffei@unina2.it; Di Gabriele, Maria, E-mail: maria.digabriele@unina2.it
Several international studies have shown that traffic noise has a negative impact on people's health and that people's annoyance does not depend only on noise energetic levels, but rather on multi-perceptual factors. The combination of virtual reality technology and audio rendering techniques allow us to experiment a new approach for environmental noise assessment that can help to investigate in advance the potential negative effects of noise associated with a specific project and that in turn can help designers to make educated decisions. In the present study, the audio–visual impact of a new motorway project on people has been assessed bymore » means of immersive virtual reality technology. In particular, participants were exposed to 3D reconstructions of an actual landscape without the projected motorway (ante operam condition), and of the same landscape with the projected motorway (post operam condition). Furthermore, individuals' reactions to noise were assessed by means of objective cognitive measures (short term verbal memory and executive functions) and subjective evaluations (noise and visual annoyance). Overall, the results showed that the introduction of a projected motorway in the environment can have immediate detrimental effects of people's well-being depending on the distance from the noise source. In particular, noise due to the new infrastructure seems to exert a negative influence on short term verbal memory and to increase both visual and noise annoyance. The theoretical and practical implications of these findings are discussed. -- Highlights: ► Impact of traffic noise on people's well-being depends on multi-perceptual factors. ► A multisensory virtual reality technology is used to simulate a projected motorway. ► Effects on short-term memory and auditory and visual subjective annoyance were found. ► The closer the distance from the motorway the stronger was the effect. ► Multisensory virtual reality methodologies can be used to study environmental impact.« less
NASA Astrophysics Data System (ADS)
Reed, D. L.; Anglin, J.
2005-12-01
General education courses at many universities are required to demonstrate specific student learning outcomes and methodologies of learning assessment that can be measure the success, or lack thereof, of meeting these outcomes. A primary learning outcome of the SJSU general education program is to have students apply a scientific approach to problems of the earth and environment. This requirement can be challenging in high enrollment classes offered at universities without the resources of graduate teaching assistantships. In order to meet this outcome through an active learning environment, we have redesigned a web-based oceanography course, primarily for non-science majors, that has students assume the role of shipboard scientists on a number of ocean-going virtual research experiences. One activity has students participate on a virtual research voyage based on a multi-beam sonar study of the central San Francisco Bay described in USGS Circular 1259 by Chin et al (2004). Students carry out the duties of virtual shipboard scientists, including pre- and post-cruise scientific meetings, sonar data acquisition, processing and visualization, and interpretation of the seafloor mapping data using a combination of scientific visualizations, animations, and audio and video segments. While on the voyage, students are required to: (1) determine the navigational hazards posed by three submerged rocks near the main shipping lane in the bay, (2) assess the long-term viability of a disposal site for mud dredged from the bay, and (3) generate a sediment characteristics map of the bay floor that can be used as a basis for future studies of contaminant transport. Upon completion of the voyage students are required to write an abstract describing their research for publication in the proceedings volume of a virtual scientific conference in the form of an essay question on the mid-term exam. Based on the work of over 200 students, this question has received the highest score of four essay questions on the exam during the past two terms.
Phenomenology of Heavy Quarkonia and Quantum Chromodynamics
NASA Astrophysics Data System (ADS)
Schmitz, Stefan Josef Anton
Heavy quarkonia, the cc, b(')b, and soon to be discovered t(')t families of states, are studied in the framework of potential theory. The earlier proposed, flavor independent "Riverside"-potential is fit to masses of cc and b(')b states and their electronic widths are calculated. An unusual feature of the potential is the use of a parameter b which controls the small r or "asymptotic freedom" behavior and which can be related to the QCD scale parameter (LAMDA)(,MS). This param- eter b is virtually undetermined by the cc and b(')b spectra, merely excluding the range b < 4 or (LAMDA)(,MS) < 120MeV and slightly favoring (LAMDA)(,MS) (DBLTURN) 250MeV. It is shown how even minimal information on the t(')t states will restrict the (LAMDA)(,MS) value to a range of the order of 50MeV. A recent Lattice Gauge potential shows a remarkable closeness to the phenomenological approach. In view of the approximations involved, the difference between the two potentials is small. This difference is investigated in terms of the strong coupling constant (alpha) which can be extracted from both potentials. In the main r regime the Lattice Gauge (alpha) is markedly smaller than the phenomenological one. It is shown that the absence of intermediate, virtual quark loops in the Lattice Gauge calculation, i.e. the so-called quenched approximation, accounts for at least some and possibly most of that difference. Overall, the phenomenology of heavy quarkonia as studied in this work is in no conflict with QCD.
de Mello Monteiro, Carlos Bandeira; da Silva, Talita Dias; de Abreu, Luiz Carlos; Fregni, Felipe; de Araujo, Luciano Vieira; Ferreira, Fernando Henrique Inocêncio Borba; Leone, Claudio
2017-04-14
Down syndrome (DS) has unique physical, motor and cognitive characteristics. Despite cognitive and motor difficulties, there is a possibility of intervention based on the knowledge of motor learning. However, it is important to study the motor learning process in individuals with DS during a virtual reality task to justify the use of virtual reality to organize intervention programs. The aim of this study was to analyze the motor learning process in individuals with DS during a virtual reality task. A total of 40 individuals participated in this study, 20 of whom had DS (24 males and 8 females, mean age of 19 years, ranging between 14 and 30 yrs.) and 20 typically developing individuals (TD) who were matched by age and gender to the individuals with DS. To examine this issue, we used software that uses 3D images and reproduced a coincidence-timing task. The results showed that all individuals improved performance in the virtual task, but the individuals with DS that started the task with worse performance showed higher difference from the beginning. Besides that, they were able to retain and transfer the performance with increase of speed of the task. Individuals with DS are able to learn movements from virtual tasks, even though the movement time was higher compared to the TD individuals. The results showed that individuals with DS who started with low performance improved coincidence- timing task with virtual objects, but were less accurate than typically developing individuals. ClinicalTrials.gov Identifier: NCT02719600 .
Virtual planning in orthognathic surgery.
Stokbro, K; Aagaard, E; Torkov, P; Bell, R B; Thygesen, T
2014-08-01
Numerous publications regarding virtual surgical planning protocols have been published, most reporting only one or two case reports to emphasize the hands-on planning. None have systematically reviewed the data published from clinical trials. This systematic review analyzes the precision and accuracy of three-dimensional (3D) virtual surgical planning of orthognathic procedures compared with the actual surgical outcome following orthognathic surgery reported in clinical trials. A systematic search of the current literature was conducted to identify clinical trials with a sample size of more than five patients, comparing the virtual surgical plan with the actual surgical outcome. Search terms revealed a total of 428 titles, out of which only seven articles were included, with a combined sample size of 149 patients. Data were presented in three different ways: intra-class correlation coefficient, 3D surface area with a difference <2mm, and linear and angular differences in three dimensions. Success criteria were set at 2mm mean difference in six articles; 125 of the 133 patients included in these articles were regarded as having had a successful outcome. Due to differences in the presentation of data, meta-analysis was not possible. Virtual planning appears to be an accurate and reproducible method for orthognathic treatment planning. A more uniform presentation of the data is necessary to allow the performance of a meta-analysis. Currently, the software system most often used for 3D virtual planning in clinical trials is SimPlant (Materialise). More independent clinical trials are needed to further validate the precision of virtual planning. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. All rights reserved.
USDA-ARS?s Scientific Manuscript database
There is virtually no information on the metabolic impact of dietary fructose intake in adolescents despite their high fructose consumption, particularly via sweetened beverages. To determine the short-term metabolic effects of dietary fructose intake in obese adolescents, six volunteers (3 M/3 F; 1...
ERIC Educational Resources Information Center
Finch, Christopher Leigh
2013-01-01
The term rebel is virtually nonexistent in academic literature within the field of educational leadership and maintains a generally negative connotation. This research is intended to cast the term in a new light and allow for conceptualization of the word as a positive descriptor for educational leaders. This study explored the impact and efficacy…
Digital Lecture Halls Keep Teachers in the Mood and Learners in the Loop.
ERIC Educational Resources Information Center
Muhlhauser, Max; Trompler, Christoph
In the transition from traditional teaching and learning to eLearning, the authors advocate avoiding disruptive approaches. The authors claim that many virtual university and corporate university efforts worldwide try to showcase big leaps forward, yet lack sustainability, suffer from in-vitro conditions, and leave behind the big mass of teachers.…
Meta-Analysis inside and outside Particle Physics: Two Traditions That Should Converge?
ERIC Educational Resources Information Center
Baker, Rose D.; Jackson, Dan
2013-01-01
The use of meta-analysis in medicine and epidemiology really took off in the 1970s. However, in high-energy physics, the Particle Data Group has been carrying out meta-analyses of measurements of particle masses and other properties since 1957. Curiously, there has been virtually no interaction between those working inside and outside particle…
The development of a virtual camera system for astronaut-rover planetary exploration.
Platt, Donald W; Boy, Guy A
2012-01-01
A virtual assistant is being developed for use by astronauts as they use rovers to explore the surface of other planets. This interactive database, called the Virtual Camera (VC), is an interactive database that allows the user to have better situational awareness for exploration. It can be used for training, data analysis and augmentation of actual surface exploration. This paper describes the development efforts and Human-Computer Interaction considerations for implementing a first-generation VC on a tablet mobile computer device. Scenarios for use will be presented. Evaluation and success criteria such as efficiency in terms of processing time and precision situational awareness, learnability, usability, and robustness will also be presented. Initial testing and the impact of HCI design considerations of manipulation and improvement in situational awareness using a prototype VC will be discussed.
Šendula-Jengić, Vesna; Šendula-Pavelić, Martina; Hodak, Jelena
2016-06-01
In terms of health and healthcare cyberspace and virtual reality can be used differently and for different purposes and consequently create different outcomes. The three main areas which we shall discuss here are: 1) cyberspace as provider of health information and self-help resources, since the anonymity cyberspace provides is particularly important in the highly stigmatized field of psychiatry where a large number of people never seek professional help, which in turn negatively affects not only the person in question, but the family and ultimately the society (work efficiency, disability-adjusted life year - DALY, etc.), 2) cyberspace and virtual reality (VR) as cause of psychopathology, starting from violent behaviour, to addictive behaviour and other, 3) and finally cyberspace and VR as providers of efficient professional therapy in the field of psychiatry.
FBX aqueous chemical dosimeter for measurement of virtual wedge profiles.
Semwal, Manoj K; Bansal, Anil K; Thakur, Pradeep K; Vidyasagar, Pandit B
2008-10-24
We investigated the ferrous sulfate-benzoic acid-xylenol orange (FBX) aqueous chemical dosimeter for measurement of virtual (dynamic) wedge profiles on a linear accelerator. The layout for irradiation of the FBX-filled tubes mimicked a conventional linear detector array geometry. A comparison of the resulting measurements with film-measured profiles showed that, in the main beam region, the difference between the FBX system and the film system was within +/-2% and that, in the penumbra region, the difference varied from +/-1 mm to +/-2.5 mm in terms of positional equivalence, depending on the size of the dosimeter tubes. We thus believe that the energy-independent FBX dosimetry system can measure virtual wedge profiles with reasonable accuracy at reasonable cost. However, efficiency improvement is required before this dosimetry system can be accepted into routine practice.
Shiban, Youssef; Brütting, Johanna; Pauli, Paul; Mühlberger, Andreas
2015-03-01
The current study is the first to examine whether reactivation of fear memory prior to exposure therapy reduces relapse in a randomized clinical sample. In a standardized treatment protocol combining virtual reality and in-vivo exposure, patients underwent a fear reactivation procedure using a virtual spider 10 min prior to a virtual reality (VR) exposure (reactivation group: RG, n = 15). A control group (CG, n = 17) was exposed to a virtual plant 10 min prior to the VR exposure. Outcome measures were a VR spontaneous recovery test (SRT) and in-vivo a behavioral avoidance test assessed 24 h after VR exposure. One week later an in-vivo exposure session followed. Additionally, a follow-up using psychometric assessment was conducted six months after the first session. Both groups benefitted significantly and equally from the combined treatment, and importantly, the SRT revealed no return of fear in both groups. Furthermore, follow-up tests showed long-term treatment effects with no group differences. Due to different study components (VR treatment and in-vivo), we were not able to determine which treatment module was mainly responsible for the long-term treatment effect. Furthermore, no direct measure of memory destabilization was possible in this study. Our treatment package was highly effective in reducing phobic fear up to 6 months following treatment. Explicit fear reactivation prior to exposure was not beneficial in VR exposure treatment, possibly due to a failure to induce a memory destabilization or due to an implicit fear reactivation prior to treatment in both groups.
Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization
NASA Astrophysics Data System (ADS)
Winterberg, F.
2016-01-01
Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.
Higgs boson pair production at NNLO with top quark mass effects
NASA Astrophysics Data System (ADS)
Grazzini, M.; Heinrich, G.; Jones, S.; Kallweit, S.; Kerner, M.; Lindert, J. M.; Mazzitelli, J.
2018-05-01
We consider QCD radiative corrections to Higgs boson pair production through gluon fusion in proton collisions. We combine the exact next-to-leading order (NLO) contribution, which features two-loop virtual amplitudes with the full dependence on the top quark mass M t , with the next-to-next-to-leading order (NNLO) corrections computed in the large- M t approximation. The latter are improved with different reweighting techniques in order to account for finite- M t effects beyond NLO. Our reference NNLO result is obtained by combining one-loop double-real corrections with full M t dependence with suitably reweighted real-virtual and double-virtual contributions evaluated in the large- M t approximation. We present predictions for inclusive cross sections in pp collisions at √{s} = 13, 14, 27 and 100 TeV and we discuss their uncertainties due to missing M t effects. Our approximated NNLO corrections increase the NLO result by an amount ranging from +12% at √{s}=13 TeV to +7% at √{s}=100 TeV, and the residual uncertainty of the inclusive cross section from missing M t effects is estimated to be at the few percent level. Our calculation is fully differential in the Higgs boson pair and the associated jet activity: we also present predictions for various differential distributions at √{s}=14 and 100 TeV, and discuss the size of the missing M t effects, which can be larger, especially in the tails of certain observables. Our results represent the most advanced perturbative prediction available to date for this process.
Abidi, Mustufa Haider; Al-Ahmari, Abdulrahman; Ahmad, Ali
2018-01-01
Advanced graphics capabilities have enabled the use of virtual reality as an efficient design technique. The integration of virtual reality in the design phase still faces impediment because of issues linked to the integration of CAD and virtual reality software. A set of empirical tests using the selected conversion parameters was found to yield properly represented virtual reality models. The reduced model yields an R-sq (pred) value of 72.71% and an R-sq (adjusted) value of 86.64%, indicating that 86.64% of the response variability can be explained by the model. The R-sq (pred) is 67.45%, which is not very high, indicating that the model should be further reduced by eliminating insignificant terms. The reduced model yields an R-sq (pred) value of 73.32% and an R-sq (adjusted) value of 79.49%, indicating that 79.49% of the response variability can be explained by the model. Using the optimization software MODE Frontier (Optimization, MOGA-II, 2014), four types of response surfaces for the three considered response variables were tested for the data of DOE. The parameter values obtained using the proposed experimental design methodology result in better graphics quality, and other necessary design attributes.
NASA Astrophysics Data System (ADS)
Ángel Bajo, José; Redel-Macías, María Dolores; Nichols, Mary; Pérez, Rafael; Bellido, Francisco; Marín-Moreno, Víctor; Taguas, Encarnación V.
2017-04-01
A virtual lab for learning to use devices and to treat experimental measurements of hydrological and erosive processes in small agricultural catchments was created to support the practical content of the subject Restoration of Forest Ecosystems of the Master of Forest Engineer (University of Cordoba). The objective was to build a virtual place representing a real site equipped to make measurements of rainfall, runoff and sediment concentration. The virtual lab included pictures, videos and explanations that facilitate learning. Moreover, some practical cases were proposed to apply the explained terms. The structure of menu consisted of: Experimental measurements in catchments; Gallery of videos; Equipment; Practical case; Glossary and Additional Information. Their contents were carefully carried out by professors and scientists of Hydrology and Electronics. The main advantages of the virtual lab were its compatibility with on-line platforms such as Moodle and the presentation of examples for the direct analysis as a basis for solving the proposed practical cases. It has been successfully used for two years and was well-values by the students due the opportunities offered by self-access learning tools. In addition, constraints associated with field trips such as logistical complexity and economic aspects are removed.
Renaud, Patrice; Trottier, Dominique; Nolet, Kevin; Rouleau, Joanne L; Goyette, Mathieu; Bouchard, Stéphane
2014-04-01
The eye movements and penile responses of 20 male participants were recorded while they were immersed with virtual sexual stimuli. These participants were divided into two groups according to their capacity to focus their attention in immersion (high and low focus). In order to understand sexual self-regulation better, we subjected participants to three experimental conditions: (a) immersion with a preferred sexual stimulus, without sexual inhibition; (b) immersion with a preferred sexual stimulus, with sexual inhibition; and (c) immersion with a neutral stimulus. A significant difference was observed between the effects of each condition on erectile response and scanpath. The groups differed on self-regulation of their erectile responses and on their scanpath patterns. High focus participants had more difficulties than low focus participants with inhibiting their sexual responses and displayed less scattered eye movement trajectories over the critical areas of the virtual sexual stimuli. Results are interpreted in terms of sexual self-regulation and cognitive absorption in virtual immersion. In addition, the use of validated virtual sexual stimuli is presented as a methodological improvement over static and moving pictures, since it paves the way for the study of the role of social interaction in an ecologically valid and well-controlled way.
Overman, William H.; Pierce, Allison
2013-01-01
Performance on the Iowa Gambling Task (IGT) in clinical populations can be interpreted only in relation to established baseline performance in normal populations. As in all comparisons of assessment tools, the normal baseline must reflect performance under conditions in which subjects can function at their best levels. In this review, we show that a number of variables enhance IGT performance in non-clinical participants. First, optimal performance is produced by having participants turn over real cards while viewing virtual cards on a computer screen. The use of only virtual cards results in significantly lower performance than the combination of real + virtual cards. Secondly, administration of more than 100 trials also enhances performance. When using the real/virtual card procedure, performance is shown to significantly increase from early adolescence through young adulthood. Under these conditions young (mean age 19 years) and older (mean age 59 years) adults perform equally. Females, as a group, score lower than males because females tend to choose cards from high-frequency-of-gain Deck B. Groups of females with high or low gonadal hormones perform equally. Concurrent tasks, e.g., presentation of aromas, decrease performance in males. Age and gender effects are discussed in terms of a dynamic between testosterone and orbital prefrontal cortex. PMID:24376431
Fortmeier, Dirk; Mastmeyer, Andre; Schröder, Julian; Handels, Heinz
2016-01-01
This study presents a new visuo-haptic virtual reality (VR) training and planning system for percutaneous transhepatic cholangio-drainage (PTCD) based on partially segmented virtual patient models. We only use partially segmented image data instead of a full segmentation and circumvent the necessity of surface or volume mesh models. Haptic interaction with the virtual patient during virtual palpation, ultrasound probing and needle insertion is provided. Furthermore, the VR simulator includes X-ray and ultrasound simulation for image-guided training. The visualization techniques are GPU-accelerated by implementation in Cuda and include real-time volume deformations computed on the grid of the image data. Computation on the image grid enables straightforward integration of the deformed image data into the visualization components. To provide shorter rendering times, the performance of the volume deformation algorithm is improved by a multigrid approach. To evaluate the VR training system, a user evaluation has been performed and deformation algorithms are analyzed in terms of convergence speed with respect to a fully converged solution. The user evaluation shows positive results with increased user confidence after a training session. It is shown that using partially segmented patient data and direct volume rendering is suitable for the simulation of needle insertion procedures such as PTCD.
X3DOM as Carrier of the Virtual Heritage
NASA Astrophysics Data System (ADS)
Jung, Y.; Behr, J.; Graf, H.
2011-09-01
Virtual Museums (VM) are a new model of communication that aims at creating a personalized, immersive, and interactive way to enhance our understanding of the world around us. The term "VM" is a short-cut that comprehends various types of digital creations. One of the carriers for the communication of the virtual heritage at future internet level as de-facto standard is browser front-ends presenting the content and assets of museums. A major driving technology for the documentation and presentation of heritage driven media is real-time 3D content, thus imposing new strategies for a web inclusion. 3D content must become a first class web media that can be created, modified, and shared in the same way as text, images, audio and video are handled on the web right now. A new integration model based on a DOM integration into the web browsers' architecture opens up new possibilities for declarative 3 D content on the web and paves the way for new application scenarios for the virtual heritage at future internet level. With special regards to the X3DOM project as enabling technology for declarative 3D in HTML, this paper describes application scenarios and analyses its technological requirements for an efficient presentation and manipulation of virtual heritage assets on the web.
Global effects of local food-production crises: a virtual water perspective
Tamea, Stefania; Laio, Francesco; Ridolfi, Luca
2016-01-01
By importing food and agricultural goods, countries cope with the heterogeneous global water distribution and often rely on water resources available abroad. The virtual displacement of the water used to produce such goods (known as virtual water) connects together, in a global water system, all countries participating to the international trade network. Local food-production crises, having social, economic or environmental origin, propagate in this network, modifying the virtual water trade and perturbing local and global food availability, quantified in terms of virtual water. We analyze here the possible effects of local crises by developing a new propagation model, parsimonious but grounded on data-based and statistically-verified assumptions, whose effectiveness is proved on the Argentinean crisis in 2008–09. The model serves as the basis to propose indicators of crisis impact and country vulnerability to external food-production crises, which highlight that countries with largest water resources have the highest impact on the international trade, and that not only water-scarce but also wealthy and globalized countries are among the most vulnerable to external crises. The temporal analysis reveals that global average vulnerability has increased over time and that stronger effects of crises are now found in countries with low food (and water) availability. PMID:26804492
Global effects of local food-production crises: a virtual water perspective.
Tamea, Stefania; Laio, Francesco; Ridolfi, Luca
2016-01-25
By importing food and agricultural goods, countries cope with the heterogeneous global water distribution and often rely on water resources available abroad. The virtual displacement of the water used to produce such goods (known as virtual water) connects together, in a global water system, all countries participating to the international trade network. Local food-production crises, having social, economic or environmental origin, propagate in this network, modifying the virtual water trade and perturbing local and global food availability, quantified in terms of virtual water. We analyze here the possible effects of local crises by developing a new propagation model, parsimonious but grounded on data-based and statistically-verified assumptions, whose effectiveness is proved on the Argentinean crisis in 2008-09. The model serves as the basis to propose indicators of crisis impact and country vulnerability to external food-production crises, which highlight that countries with largest water resources have the highest impact on the international trade, and that not only water-scarce but also wealthy and globalized countries are among the most vulnerable to external crises. The temporal analysis reveals that global average vulnerability has increased over time and that stronger effects of crises are now found in countries with low food (and water) availability.
Global effects of local food-production crises: a virtual water perspective
NASA Astrophysics Data System (ADS)
Tamea, Stefania; Laio, Francesco; Ridolfi, Luca
2016-01-01
By importing food and agricultural goods, countries cope with the heterogeneous global water distribution and often rely on water resources available abroad. The virtual displacement of the water used to produce such goods (known as virtual water) connects together, in a global water system, all countries participating to the international trade network. Local food-production crises, having social, economic or environmental origin, propagate in this network, modifying the virtual water trade and perturbing local and global food availability, quantified in terms of virtual water. We analyze here the possible effects of local crises by developing a new propagation model, parsimonious but grounded on data-based and statistically-verified assumptions, whose effectiveness is proved on the Argentinean crisis in 2008-09. The model serves as the basis to propose indicators of crisis impact and country vulnerability to external food-production crises, which highlight that countries with largest water resources have the highest impact on the international trade, and that not only water-scarce but also wealthy and globalized countries are among the most vulnerable to external crises. The temporal analysis reveals that global average vulnerability has increased over time and that stronger effects of crises are now found in countries with low food (and water) availability.
Bargmann's theorem and position-dependent effective mass
NASA Astrophysics Data System (ADS)
Kawamura, Kiyoshi; Brown, Ronald A.
1988-03-01
The physical significance of Galilean transformations applied to effective-mass (EM) equations for Bloch electrons in Wannier representation is discussed and contrasted with that of Galilean coordinate transformations applied to the free-particle Schrödinger equation. Mass constraints imposed on the latter by Bargmann's (1954) superselection rule do not extend to the EM, and criticisms of the position-dependent EM concept which have invoked Bargmann's theorem are shown to be without foundation. Other criticisms concerning the nonuniqueness and non-Hermiticity of effective Hamiltonians which employ this concept to describe crystals of graded composition are discussed, and it is argued that the problems are associated with the heuristic nature of the virtual-crystal model which is adopted rather than with the position-dependent EM.
On the usefulness of the concept of presence in virtual reality applications
NASA Astrophysics Data System (ADS)
Mestre, Daniel R.
2015-03-01
Virtual Reality (VR) leads to realistic experimental situations, while enabling researchers to have deterministic control on these situations, and to precisely measure participants' behavior. However, because more realistic and complex situations can be implemented, important questions arise, concerning the validity and representativeness of the observed behavior, with reference to a real situation. One example is the investigation of a critical (virtually dangerous) situation, in which the participant knows that no actual threat is present in the simulated situation, and might thus exhibit a behavioral response that is far from reality. This poses serious problems, for instance in training situations, in terms of transfer of learning to a real situation. Facing this difficult question, it seems necessary to study the relationships between three factors: immersion (physical realism), presence (psychological realism) and behavior. We propose a conceptual framework, in which presence is a necessary condition for the emergence of a behavior that is representative of what is observed in real conditions. Presence itself depends not only on physical immersive characteristics of the Virtual Reality setup, but also on contextual and psychological factors.
Haptic, Virtual Interaction and Motor Imagery: Entertainment Tools and Psychophysiological Testing
Invitto, Sara; Faggiano, Chiara; Sammarco, Silvia; De Luca, Valerio; De Paolis, Lucio T.
2016-01-01
In this work, the perception of affordances was analysed in terms of cognitive neuroscience during an interactive experience in a virtual reality environment. In particular, we chose a virtual reality scenario based on the Leap Motion controller: this sensor device captures the movements of the user’s hand and fingers, which are reproduced on a computer screen by the proper software applications. For our experiment, we employed a sample of 10 subjects matched by age and sex and chosen among university students. The subjects took part in motor imagery training and immersive affordance condition (a virtual training with Leap Motion and a haptic training with real objects). After each training sessions the subject performed a recognition task, in order to investigate event-related potential (ERP) components. The results revealed significant differences in the attentional components during the Leap Motion training. During Leap Motion session, latencies increased in the occipital lobes, which are entrusted to visual sensory; in contrast, latencies decreased in the frontal lobe, where the brain is mainly activated for attention and action planning. PMID:26999151
THE VIRTUAL INSTRUMENT: SUPPORT FOR GRID-ENABLED MCELL SIMULATIONS
Casanova, Henri; Berman, Francine; Bartol, Thomas; Gokcay, Erhan; Sejnowski, Terry; Birnbaum, Adam; Dongarra, Jack; Miller, Michelle; Ellisman, Mark; Faerman, Marcio; Obertelli, Graziano; Wolski, Rich; Pomerantz, Stuart; Stiles, Joel
2010-01-01
Ensembles of widely distributed, heterogeneous resources, or Grids, have emerged as popular platforms for large-scale scientific applications. In this paper we present the Virtual Instrument project, which provides an integrated application execution environment that enables end-users to run and interact with running scientific simulations on Grids. This work is performed in the specific context of MCell, a computational biology application. While MCell provides the basis for running simulations, its capabilities are currently limited in terms of scale, ease-of-use, and interactivity. These limitations preclude usage scenarios that are critical for scientific advances. Our goal is to create a scientific “Virtual Instrument” from MCell by allowing its users to transparently access Grid resources while being able to steer running simulations. In this paper, we motivate the Virtual Instrument project and discuss a number of relevant issues and accomplishments in the area of Grid software development and application scheduling. We then describe our software design and report on the current implementation. We verify and evaluate our design via experiments with MCell on a real-world Grid testbed. PMID:20689618
Embodied information behavior, mixed reality and big data
NASA Astrophysics Data System (ADS)
West, Ruth; Parola, Max J.; Jaycen, Amelia R.; Lueg, Christopher P.
2015-03-01
A renaissance in the development of virtual (VR), augmented (AR), and mixed reality (MR) technologies with a focus on consumer and industrial applications is underway. As data becomes ubiquitous in our lives, a need arises to revisit the role of our bodies, explicitly in relation to data or information. Our observation is that VR/AR/MR technology development is a vision of the future framed in terms of promissory narratives. These narratives develop alongside the underlying enabling technologies and create new use contexts for virtual experiences. It is a vision rooted in the combination of responsive, interactive, dynamic, sharable data streams, and augmentation of the physical senses for capabilities beyond those normally humanly possible. In parallel to the varied definitions of information and approaches to elucidating information behavior, a myriad of definitions and methods of measuring and understanding presence in virtual experiences exist. These and other ideas will be tested by designers, developers and technology adopters as the broader ecology of head-worn devices for virtual experiences evolves in order to reap the full potential and benefits of these emerging technologies.
Haptic, Virtual Interaction and Motor Imagery: Entertainment Tools and Psychophysiological Testing.
Invitto, Sara; Faggiano, Chiara; Sammarco, Silvia; De Luca, Valerio; De Paolis, Lucio T
2016-03-18
In this work, the perception of affordances was analysed in terms of cognitive neuroscience during an interactive experience in a virtual reality environment. In particular, we chose a virtual reality scenario based on the Leap Motion controller: this sensor device captures the movements of the user's hand and fingers, which are reproduced on a computer screen by the proper software applications. For our experiment, we employed a sample of 10 subjects matched by age and sex and chosen among university students. The subjects took part in motor imagery training and immersive affordance condition (a virtual training with Leap Motion and a haptic training with real objects). After each training sessions the subject performed a recognition task, in order to investigate event-related potential (ERP) components. The results revealed significant differences in the attentional components during the Leap Motion training. During Leap Motion session, latencies increased in the occipital lobes, which are entrusted to visual sensory; in contrast, latencies decreased in the frontal lobe, where the brain is mainly activated for attention and action planning.
Christophel, Eva; Schnotz, Wolfgang
2017-01-01
Women are still underrepresented in engineering courses although some German universities offer separate women’s engineering courses which include virtual STEM learning environments. To outline information about fundamental aspects relevant for virtual STEM learning, one has to reveal which similarities both genders in virtual learning show. Moreover, the question arises as to whether there are in fact differences in the virtual science learning of female and male learners. Working with virtual STEM learning environments requires strategic and arithmetic-operative competences. Even if we assume that female and male learners have similar competences levels, their correlational pattern of competences, motivational variables, and invested effort during virtual STEM learning might differ. If such gender differences in the correlations between cognitive and motivational variables and learning behavior were revealed, it would be possible to finetune study conditions for female students in a separate engineering course and shape virtual STEM learning in a more gender-appropriate manner. That might support an increase in the number of women in engineering courses. To reveal the differences and similarities between female and male learners, a field study was conducted with 56 students (female = 27, male = 29) as part of the Open MINT Labs project (the German term for Open STEM Labs, OML). The participants had to complete a virtual STEM learning environment during their regular science lessons. The data were collected with questionnaires. The results revealed that the strategic competences of both genders were positively correlated with situational interest in the virtual learning environment. This result shows the big impact strategic competences have for both genders regarding their situational interest. In contrast, the correlations between mental effort and competences differed between female and male participants. Especially female learners’ mental effort decreased if they had more strategic competences. On the other hand, female learners’ mental effort increased if they had more arithmetic-operative competences. All in all, female learners seem to be more sensitive to differences in their strategic and arithmetic-operative competences regarding their mental effort. These results imply that the implementation of separate women’s engineering courses could be an interesting approach. PMID:29114234
Christophel, Eva; Schnotz, Wolfgang
2017-01-01
Women are still underrepresented in engineering courses although some German universities offer separate women's engineering courses which include virtual STEM learning environments. To outline information about fundamental aspects relevant for virtual STEM learning, one has to reveal which similarities both genders in virtual learning show. Moreover, the question arises as to whether there are in fact differences in the virtual science learning of female and male learners. Working with virtual STEM learning environments requires strategic and arithmetic-operative competences. Even if we assume that female and male learners have similar competences levels, their correlational pattern of competences, motivational variables, and invested effort during virtual STEM learning might differ. If such gender differences in the correlations between cognitive and motivational variables and learning behavior were revealed, it would be possible to finetune study conditions for female students in a separate engineering course and shape virtual STEM learning in a more gender-appropriate manner. That might support an increase in the number of women in engineering courses. To reveal the differences and similarities between female and male learners, a field study was conducted with 56 students (female = 27, male = 29) as part of the Open MINT Labs project (the German term for Open STEM Labs, OML). The participants had to complete a virtual STEM learning environment during their regular science lessons. The data were collected with questionnaires. The results revealed that the strategic competences of both genders were positively correlated with situational interest in the virtual learning environment. This result shows the big impact strategic competences have for both genders regarding their situational interest. In contrast, the correlations between mental effort and competences differed between female and male participants. Especially female learners' mental effort decreased if they had more strategic competences. On the other hand, female learners' mental effort increased if they had more arithmetic-operative competences. All in all, female learners seem to be more sensitive to differences in their strategic and arithmetic-operative competences regarding their mental effort. These results imply that the implementation of separate women's engineering courses could be an interesting approach.
The role of black holes in galaxy formation and evolution.
Cattaneo, A; Faber, S M; Binney, J; Dekel, A; Kormendy, J; Mushotzky, R; Babul, A; Best, P N; Brüggen, M; Fabian, A C; Frenk, C S; Khalatyan, A; Netzer, H; Mahdavi, A; Silk, J; Steinmetz, M; Wisotzki, L
2009-07-09
Virtually all massive galaxies, including our own, host central black holes ranging in mass from millions to billions of solar masses. The growth of these black holes releases vast amounts of energy that powers quasars and other weaker active galactic nuclei. A tiny fraction of this energy, if absorbed by the host galaxy, could halt star formation by heating and ejecting ambient gas. A central question in galaxy evolution is the degree to which this process has caused the decline of star formation in large elliptical galaxies, which typically have little cold gas and few young stars, unlike spiral galaxies.
Learning Curves of Virtual Mastoidectomy in Distributed and Massed Practice.
Andersen, Steven Arild Wuyts; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2015-10-01
Repeated and deliberate practice is crucial in surgical skills training, and virtual reality (VR) simulation can provide self-directed training of basic surgical skills to meet the individual needs of the trainee. Assessment of the learning curves of surgical procedures is pivotal in understanding skills acquisition and best-practice implementation and organization of training. To explore the learning curves of VR simulation training of mastoidectomy and the effects of different practice sequences with the aim of proposing the optimal organization of training. A prospective trial with a 2 × 2 design was conducted at an academic teaching hospital. Participants included 43 novice medical students. Of these, 21 students completed time-distributed practice from October 14 to November 29, 2013, and a separate group of 19 students completed massed practice on May 16, 17, or 18, 2014. Data analysis was performed from June 6, 2014, to March 3, 2015. Participants performed 12 repeated virtual mastoidectomies using a temporal bone surgical simulator in either a distributed (practice blocks spaced in time) or massed (all practice in 1 day) training program with randomization for simulator-integrated tutoring during the first 5 sessions. Performance was assessed using a modified Welling Scale for final product analysis by 2 blinded senior otologists. Compared with the 19 students in the massed practice group, the 21 students in the distributed practice group were older (mean age, 25.1 years), more often male (15 [62%]), and had slightly higher mean gaming frequency (2.3 on a 1-5 Likert scale). Learning curves were established and distributed practice was found to be superior to massed practice, reported as mean end score (95% CI) of 15.7 (14.4-17.0) in distributed practice vs. 13.0 (11.9-14.1) with massed practice (P = .002). Simulator-integrated tutoring accelerated the initial performance, with mean score for tutored sessions of 14.6 (13.9-15.2) vs. 13.4 (12.8-14.0) for corresponding nontutored sessions (P < .01) but at the cost of a drop in performance once tutoring ceased. The performance drop was less with distributed practice, suggesting a protective effect when acquired skills were consolidated over time. The mean performance of the nontutored participants in the distributed practice group plateaued on a score of 16.0 (15.3-16.7) at approximately the ninth repetition, but the individual learning curves were highly variable. Novices can acquire basic mastoidectomy competencies with self-directed VR simulation training. Training should be organized with distributed practice, and simulator-integrated tutoring can be useful to accelerate the initial learning curve. Practice should be deliberate and toward a standard set level of proficiency that remains to be defined rather than toward the mean learning curve plateau.
From MUDs to MMORPGs: The History of Virtual Worlds
NASA Astrophysics Data System (ADS)
Bartle, Richard A.
Today's massively multiplayer online role-playing games are the direct descendants of the textual worlds of the 1980s, not only in design and implementation terms but also in the way they are evolving thematically.
Deeply virtual Compton scattering with a positron beam
NASA Astrophysics Data System (ADS)
Girod, François-Xavier; Elouadrhiri, Latifa; Burkert, Volker D.
2018-05-01
The hard electroproduction of a photon off a hadron in the Bjorken regime, Deeply Virtual Compton Scattering, unravels three-dimensional information on the partonic structure of the hadron. The imaginary part of the amplitude is more particularly sensitive to the spatial distribution of quarks as functions of the light cone momentum fraction. On the other hand, the real part of the amplitude is less constrained experimentally, and provides access to the D-term. Here we present preliminary results for the extraction of the D-term from unpolarized cross-sections and beam spin asymmetries measured with the CEBAF Large Acceptance Spectrometer at 6 GeV. We discuss some aspects of the associated physics interpretation, and give prospects for future measurements. The availability of a Positron beam at Jefferson Lab will provide access to the Beam Charge Asymmetry for this reaction, which will crucially enable us to keep under control the systematical and model uncertainties in this framework.
A geometrically nonlinear theory of elastic plates
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Atilgan, Ali R.; Danielson, D. A.
1992-01-01
A set of kinematic and intrinsic equilibrium equations is derived for plates undergoing large deflection and rotation but with small strain. The large rotation is treated by the general finite rotation of a frame in which the material points that are originally along a normal line in the undeformed plate undergo only small displacements. Exact intrinsic virtual strain-displacement relations are derived; using a reduced 2-D strain energy function from which the warping has been systematically eliminated, a set of intrinsic equilibrium equations follows. It is demonstrated that only five equilibrium equations can be derived in this way, because the component of virtual rotation about the normal is not independent. These equations include terms which cannot be obtained without the use of a finite rotation vector which contains three nonzero components. These extra terms correspond to the difference of in-plane shear stress resultants in other theories.
Beaulieu, C F; Jeffrey, R B; Karadi, C; Paik, D S; Napel, S
1999-07-01
To determine the sensitivity of radiologist observers for detecting colonic polyps by using three different data review (display) modes for computed tomographic (CT) colonography, or "virtual colonoscopy." CT colonographic data in a patient with a normal colon were used as base data for insertion of digitally synthesized polyps. Forty such polyps (3.5, 5, 7, and 10 mm in diameter) were randomly inserted in four copies of the base data. Axial CT studies, volume-rendered virtual endoscopic movies, and studies from a three-dimensional mode termed "panoramic endoscopy" were reviewed blindly and independently by two radiologists. Detection improved with increasing polyp size. Trends in sensitivity were dependent on whether all inserted lesions or only visible lesions were considered, because modes differed in how completely the colonic surface was depicted. For both reviewers and all polyps 7 mm or larger, panoramic endoscopy resulted in significantly greater sensitivity (90%) than did virtual endoscopy (68%, P = .014). For visible lesions only, the sensitivities were 85%, 81%, and 60% for one reader and 65%, 62%, and 28% for the other for virtual endoscopy, panoramic endoscopy, and axial CT, respectively. Three-dimensional displays were more sensitive than two-dimensional displays (P < .05). The sensitivity of panoramic endoscopy is higher than that of virtual endoscopy, because the former displays more of the colonic surface. Higher sensitivities for three-dimensional displays may justify the additional computation and review time.
Functional performance comparison between real and virtual tasks in older adults
Bezerra, Ítalla Maria Pinheiro; Crocetta, Tânia Brusque; Massetti, Thais; da Silva, Talita Dias; Guarnieri, Regiani; Meira, Cassio de Miranda; Arab, Claudia; de Abreu, Luiz Carlos; de Araujo, Luciano Vieira; Monteiro, Carlos Bandeira de Mello
2018-01-01
Abstract Introduction: Ageing is usually accompanied by deterioration of physical abilities, such as muscular strength, sensory sensitivity, and functional capacity, making chronic diseases, and the well-being of older adults new challenges to global public health. Objective: The purpose of this study was to evaluate whether a task practiced in a virtual environment could promote better performance and enable transfer to the same task in a real environment. Method: The study evaluated 65 older adults of both genders, aged 60 to 82 years (M = 69.6, SD = 6.3). A timing coincident task was applied to measure the perceptual-motor ability to perform a motor response. The participants were divided into 2 groups: started in a real interface and started in a virtual interface. Results: All subjects improved their performance during the practice, but improvement was not observed for the real interface, as the participants were near maximum performance from the beginning of the task. However, there was no transfer of performance from the virtual to real environment or vice versa. Conclusions: The virtual environment was shown to provide improvement of performance with a short-term motor learning protocol in a timing coincident task. This result suggests that the practice of tasks in a virtual environment seems to be a promising tool for the assessment and training of healthy older adults, even though there was no transfer of performance to a real environment. Trial registration: ISRCTN02960165. Registered 8 November 2016. PMID:29369177
Rodriguez-Andres, David; Mendez-Lopez, Magdalena; Juan, M.-Carmen; Perez-Hernandez, Elena
2018-01-01
The use of virtual reality-based tasks for studying memory has increased considerably. Most of the studies that have looked at child population factors that influence performance on such tasks have been focused on cognitive variables. However, little attention has been paid to the impact of non-cognitive skills. In the present paper, we tested 52 typically-developing children aged 5–12 years in a virtual object-location task. The task assessed their spatial short-term memory for the location of three objects in a virtual city. The virtual task environment was presented using a 3D application consisting of a 120″ stereoscopic screen and a gamepad interface. Measures of learning and displacement indicators in the virtual environment, 3D perception, satisfaction, and usability were obtained. We assessed the children’s videogame experience, their visuospatial span, their ability to build blocks, and emotional and behavioral outcomes. The results indicate that learning improved with age. Significant effects on the speed of navigation were found favoring boys and those more experienced with videogames. Visuospatial skills correlated mainly with ability to recall object positions, but the correlation was weak. Longer paths were related with higher scores of withdrawal behavior, attention problems, and a lower visuospatial span. Aggressiveness and experience with the device used for interaction were related with faster navigation. However, the correlations indicated only weak associations among these variables. PMID:29674988
MnemoCity Task: Assessment of Childrens Spatial Memory Using Stereoscopy and Virtual Environments
Rodríguez-Andrés, David; Méndez-López, Magdalena; Pérez-Hernández, Elena; Lluch, Javier
2016-01-01
This paper presents the MnemoCity task, which is a 3D application that introduces the user into a totally 3D virtual environment to evaluate spatial short-term memory. A study has been carried out to validate the MnemoCity task for the assessment of spatial short-term memory in children, by comparing the children’s performance in the developed task with current approaches. A total of 160 children participated in the study. The task incorporates two types of interaction: one based on standard interaction and another one based on natural interaction involving physical movement by the user. There were no statistically significant differences in the results of the task using the two types of interaction. Furthermore, statistically significant differences were not found in relation to gender. The correlations between scores were obtained using the MnemoCity task and a traditional procedure for assessing spatial short-term memory. Those results revealed that the type of interaction used did not affect the performance of children in the MnemoCity task. PMID:27579715
Luque-Moreno, Carlos; Ferragut-Garcías, Alejandro; Rodríguez-Blanco, Cleofás; Heredia-Rizo, Alberto Marcos; Oliva-Pascual-Vaca, Jesús; Kiper, Pawel; Oliva-Pascual-Vaca, Ángel
2015-01-01
To develop a systematic review of the literature, to describe the different virtual reality (VR) interventions and interactive videogames applied to the lower extremity (LE) of stroke patients, and to analyse the results according to the most frequently used outcome measures. An electronic search of randomized trials between January 2004 and January 2014 in different databases (Medline, Cinahl, Web of Science, PEDro, and Cochrane) was carried out. Several terms (virtual reality, feedback, stroke, hemiplegia, brain injury, cerebrovascular accident, lower limb, leg, and gait) were combined, and finally 11 articles were included according to the established inclusion and exclusion criteria. The reviewed trials showed a high heterogeneity in terms of study design and assessment tools, which makes it difficult to compare and analyze the different types of interventions. However, most of them found a significant improvement on gait speed, balance and motor function, due to VR intervention. Although evidence is limited, it suggests that VR intervention (more than 10 sessions) in stroke patients may have a positive impact on balance, and gait recovery. Better results were obtained when a multimodal approach, combining VR and conventional physiotherapy, was used. Flexible software seems to adapt better to patients' requirements, allowing more specific and individual treatments.
Behavioral and neural effects of congruency of visual feedback during short-term motor learning.
Ossmy, Ori; Mukamel, Roy
2018-05-15
Visual feedback can facilitate or interfere with movement execution. Here, we describe behavioral and neural mechanisms by which the congruency of visual feedback during physical practice of a motor skill modulates subsequent performance gains. 18 healthy subjects learned to execute rapid sequences of right hand finger movements during fMRI scans either with or without visual feedback. Feedback consisted of a real-time, movement-based display of virtual hands that was either congruent (right virtual hand movement), or incongruent (left virtual hand movement yoked to the executing right hand). At the group level, right hand performance gains following training with congruent visual feedback were significantly higher relative to training without visual feedback. Conversely, performance gains following training with incongruent visual feedback were significantly lower. Interestingly, across individual subjects these opposite effects correlated. Activation in the Supplementary Motor Area (SMA) during training corresponded to individual differences in subsequent performance gains. Furthermore, functional coupling of SMA with visual cortices predicted individual differences in behavior. Our results demonstrate that some individuals are more sensitive than others to congruency of visual feedback during short-term motor learning and that neural activation in SMA correlates with such inter-individual differences. Copyright © 2017 Elsevier Inc. All rights reserved.
Is Carbon Capture and Storage Really Needed?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsouris, Costas; Williams, Kent Alan; Aaron, D
2010-01-01
Two of the greatest contemporary global challenges are anthropogenic greenhouse gas emissions and energy sustainability. A popular proposed solution to the former problem is carbon capture and storage (CCS). Unfortunately, CCS has little benefit for energy sustainability and introduces significant long-term costs and risks. Thus, we propose the adoption of 'virtual CCS' by directing the resources that would have been spent on CCS to alternative energy technologies. (The term 'virtual' is used here because the concept described in this work satisfies the Merriam-Webster Dictionary definition of virtual: 'being such in essence or effect though not formally recognized or admitted.') Inmore » this example, we consider wind and nuclear power and use the funds that would have been required by CCS to invest in installation and operation of these technologies. Many other options exist in addition to wind and nuclear power including solar, biomass, geothermal, and others. These additional energy technologies can be considered in future studies. While CCS involves spending resources to concentrate CO{sub 2} in sinks, such as underground reservoirs, low-carbon alternative energy produces power, which will displace fossil fuel use while simultaneously generating revenues. Thus, these alternative energy technologies achieve the same objective as that of CCS, namely, the avoidance of atmospheric CO{sub 2} emissions.« less
NASA Astrophysics Data System (ADS)
Somogyi, Gábor; Trócsányi, Zoltán
2008-08-01
In previous articles we outlined a subtraction scheme for regularizing doubly-real emission and real-virtual emission in next-to-next-to-leading order (NNLO) calculations of jet cross sections in electron-positron annihilation. In order to find the NNLO correction these subtraction terms have to be integrated over the factorized unresolved phase space and combined with the two-loop corrections. In this paper we perform the integration of all one-parton unresolved subtraction terms.
Labor and pollution prevention in Canada.
Bennett, Dave
2012-01-01
This article gives an account of Canadian Chemicals Policy over the past three decades, including the project for the "virtual elimination" of toxic chemicals and the federal government's Chemical Management Plan. The latter is what remained when the virtual elimination program achieved few results. The article then embarks on its central theme: explaining how the labor movement introduced the concept and the practice of Pollution Prevention (P2) to Canada, as well as its impact on legislation and policies over the use reduction of chemical pesticides. The Appendix is a glossary of terms and concepts used in the article.
Malicious MXit? South African adolescents' use of mobile-based communication applications.
Swanepoel, Tarah L; Thomas, Kevin Gf
2012-10-01
Across the globe, and particularly in the high-income countries of the developed world, adolescents are resorting in increasing numbers to the virtual world for peer interaction and socialisation (Subrahmanyam, Smahel and Greenfield 2006). This new and popular way of relating through virtual mediums such as the Internet has sparked public concern, and has been a focus of academic debate. Ongoing debate in psychology literature discusses the notion of compulsive usage of online communication platforms (commonly termed Internet addiction), particularly among adolescents (Kim et al. 2006, Fu et al. 2010, Israelashvili, Kim and Bukobza 2012).
2001-03-01
term research efforts to focus on natural interfaces ( innovative metaphors) and on how to model (intelligent) human and object behaviour. In the short...Kalawsky A Virtual Environment for Naval Flight Deck Operations Training 1 by V.S.S. Sastry, J. Steel and E.A. Trott Mission Debriefing System 2 by B.I...stricom.army.mil Email: trond.myhrer@ffi.no continued overleaf ix Antonio GRAMAGE MCS Jean- Paul PAPIN ISDEFE 7, rue Roger Edison, 4 92140 CLAMART 28006 Madrid
Geometric morphometrics and virtual anthropology: advances in human evolutionary studies.
Rein, Thomas R; Harvati, Katerina
2014-01-01
Geometric morphometric methods have been increasingly used in paleoanthropology in the last two decades, lending greater power to the analysis and interpretation of the human fossil record. More recently the advent of the wide use of computed tomography and surface scanning, implemented in combination with geometric morphometrics (GM), characterizes a new approach, termed Virtual Anthropology (VA). These methodological advances have led to a number of developments in human evolutionary studies. We present some recent examples of GM and VA related research in human evolution with an emphasis on work conducted at the University of Tübingen and other German research institutions.
Large-scale P2P network based distributed virtual geographic environment (DVGE)
NASA Astrophysics Data System (ADS)
Tan, Xicheng; Yu, Liang; Bian, Fuling
2007-06-01
Virtual Geographic Environment has raised full concern as a kind of software information system that helps us understand and analyze the real geographic environment, and it has also expanded to application service system in distributed environment--distributed virtual geographic environment system (DVGE), and gets some achievements. However, limited by the factor of the mass data of VGE, the band width of network, as well as numerous requests and economic, etc. DVGE still faces some challenges and problems which directly cause the current DVGE could not provide the public with high-quality service under current network mode. The Rapid development of peer-to-peer network technology has offered new ideas of solutions to the current challenges and problems of DVGE. Peer-to-peer network technology is able to effectively release and search network resources so as to realize efficient share of information. Accordingly, this paper brings forth a research subject on Large-scale peer-to-peer network extension of DVGE as well as a deep study on network framework, routing mechanism, and DVGE data management on P2P network.
Precision calculation of threshold πd scattering, πN scattering lengths, and the GMO sum rule
NASA Astrophysics Data System (ADS)
Baru, V.; Hanhart, C.; Hoferichter, M.; Kubis, B.; Nogga, A.; Phillips, D. R.
2011-12-01
We use chiral perturbation theory (ChPT) to calculate the πd scattering length with an accuracy of a few percent, including isospin-violating corrections in both the two- and three-body sectors. In particular, we provide the technical details of a recent letter (Baru et al., 2011) [1], where we used data on pionic deuterium and pionic hydrogen atoms to extract the isoscalar and isovector pion-nucleon scattering lengths a and a. We study isospin-breaking contributions to the three-body part of a due to mass differences, isospin violation in the πN scattering lengths, and virtual photons. This last class of effects is ostensibly infrared enhanced due to the smallness of the deuteron binding energy. However, we show that the leading virtual-photon effects that might undergo such enhancement cancel, and hence the standard ChPT counting provides a reliable estimate of isospin violation in a due to virtual photons. Finally, we discuss the validity of the Goldberger-Miyazawa-Oehme sum rule in the presence of isospin violation, and use it to determine the charged-pion-nucleon coupling constant.
Innovation in weight loss programs: a 3-dimensional virtual-world approach.
Johnston, Jeanne D; Massey, Anne P; Devaneaux, Celeste A
2012-09-20
The rising trend in obesity calls for innovative weight loss programs. While behavioral-based face-to-face programs have proven to be the most effective, they are expensive and often inaccessible. Internet or Web-based weight loss programs have expanded reach but may lack qualities critical to weight loss and maintenance such as human interaction, social support, and engagement. In contrast to Web technologies, virtual reality technologies offer unique affordances as a behavioral intervention by directly supporting engagement and active learning. To explore the effectiveness of a virtual-world weight loss program relative to weight loss and behavior change. We collected data from overweight people (N = 54) participating in a face-to-face or a virtual-world weight loss program. Weight, body mass index (BMI), percentage weight change, and health behaviors (ie, weight loss self-efficacy, physical activity self-efficacy, self-reported physical activity, and fruit and vegetable consumption) were assessed before and after the 12-week program. Repeated measures analysis was used to detect differences between groups and across time. A total of 54 participants with a BMI of 32 (SD 6.05) kg/m(2)enrolled in the study, with a 13% dropout rate for each group (virtual world group: 5/38; face-to-face group: 3/24). Both groups lost a significant amount of weight (virtual world: 3.9 kg, P < .001; face-to-face: 2.8 kg, P = .002); however, no significant differences between groups were detected (P = .29). Compared with baseline, the virtual-world group lost an average of 4.2%, with 33% (11/33) of the participants losing a clinically significant (≥5%) amount of baseline weight. The face-to-face group lost an average of 3.0% of their baseline weight, with 29% (6/21) losing a clinically significant amount. We detected a significant group × time interaction for moderate (P = .006) and vigorous physical activity (P = .008), physical activity self-efficacy (P = .04), fruit and vegetable consumption (P = .007), and weight loss self-efficacy (P < .001). Post hoc paired t tests indicated significant improvements across all of the variables for the virtual-world group. Overall, these results offer positive early evidence that a virtual-world-based weight loss program can be as effective as a face-to-face one relative to biometric changes. In addition, our results suggest that a virtual world may be a more effective platform to influence meaningful behavioral changes and improve self-efficacy.
Innovation in Weight Loss Programs: A 3-Dimensional Virtual-World Approach
Massey, Anne P; DeVaneaux, Celeste A
2012-01-01
Background The rising trend in obesity calls for innovative weight loss programs. While behavioral-based face-to-face programs have proven to be the most effective, they are expensive and often inaccessible. Internet or Web-based weight loss programs have expanded reach but may lack qualities critical to weight loss and maintenance such as human interaction, social support, and engagement. In contrast to Web technologies, virtual reality technologies offer unique affordances as a behavioral intervention by directly supporting engagement and active learning. Objective To explore the effectiveness of a virtual-world weight loss program relative to weight loss and behavior change. Methods We collected data from overweight people (N = 54) participating in a face-to-face or a virtual-world weight loss program. Weight, body mass index (BMI), percentage weight change, and health behaviors (ie, weight loss self-efficacy, physical activity self-efficacy, self-reported physical activity, and fruit and vegetable consumption) were assessed before and after the 12-week program. Repeated measures analysis was used to detect differences between groups and across time. Results A total of 54 participants with a BMI of 32 (SD 6.05) kg/m2 enrolled in the study, with a 13% dropout rate for each group (virtual world group: 5/38; face-to-face group: 3/24). Both groups lost a significant amount of weight (virtual world: 3.9 kg, P < .001; face-to-face: 2.8 kg, P = .002); however, no significant differences between groups were detected (P = .29). Compared with baseline, the virtual-world group lost an average of 4.2%, with 33% (11/33) of the participants losing a clinically significant (≥5%) amount of baseline weight. The face-to-face group lost an average of 3.0% of their baseline weight, with 29% (6/21) losing a clinically significant amount. We detected a significant group × time interaction for moderate (P = .006) and vigorous physical activity (P = .008), physical activity self-efficacy (P = .04), fruit and vegetable consumption (P = .007), and weight loss self-efficacy (P < .001). Post hoc paired t tests indicated significant improvements across all of the variables for the virtual-world group. Conclusions Overall, these results offer positive early evidence that a virtual-world-based weight loss program can be as effective as a face-to-face one relative to biometric changes. In addition, our results suggest that a virtual world may be a more effective platform to influence meaningful behavioral changes and improve self-efficacy. PMID:22995535
Meldrum, Dara; Herdman, Susan; Moloney, Roisin; Murray, Deirdre; Duffy, Douglas; Malone, Kareena; French, Helen; Hone, Stephen; Conroy, Ronan; McConn-Walsh, Rory
2012-03-26
Unilateral peripheral vestibular loss results in gait and balance impairment, dizziness and oscillopsia. Vestibular rehabilitation benefits patients but optimal treatment remains unknown. Virtual reality is an emerging tool in rehabilitation and provides opportunities to improve both outcomes and patient satisfaction with treatment. The Nintendo Wii Fit Plus® (NWFP) is a low cost virtual reality system that challenges balance and provides visual and auditory feedback. It may augment the motor learning that is required to improve balance and gait, but no trials to date have investigated efficacy. In a single (assessor) blind, two centre randomised controlled superiority trial, 80 patients with unilateral peripheral vestibular loss will be randomised to either conventional or virtual reality based (NWFP) vestibular rehabilitation for 6 weeks. The primary outcome measure is gait speed (measured with three dimensional gait analysis). Secondary outcomes include computerised posturography, dynamic visual acuity, and validated questionnaires on dizziness, confidence and anxiety/depression. Outcome will be assessed post treatment (8 weeks) and at 6 months. Advances in the gaming industry have allowed mass production of highly sophisticated low cost virtual reality systems that incorporate technology previously not accessible to most therapists and patients. Importantly, they are not confined to rehabilitation departments, can be used at home and provide an accurate record of adherence to exercise. The benefits of providing augmented feedback, increasing intensity of exercise and accurately measuring adherence may improve conventional vestibular rehabilitation but efficacy must first be demonstrated. Clinical trials.gov identifier: NCT01442623.
A Robust, Low-Cost Virtual Archive for Science Data
NASA Technical Reports Server (NTRS)
Lynnes, Christopher; Vollmer, Bruce
2005-01-01
Despite their expense tape silos are still often the only affordable option for petabytescale science data archives, particularly when other factors such as data reliability, floor space, power and cooling load are accounted for. However, the complexity, management software, hardware reliability and access latency of tape silos make online data storage ever more attractive. Drastic reductions in low-cost mass-market PC disk drivers help to make this more affordable (approx. 1$/GB), but are challenging to scale to the petabyte range and of questionable reliability for archival use, On the other hand, if much of the science archive could be "virtualized", i.e., produced on demand when requested by users, we would need store only a fraction of the data online, perhaps bringing an online-only system into in affordable range. Radiance data from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) instrument provides a good opportunity for such a virtual archive: the raw data amount to 140 GB/day, but these are small relative to the 550 GB/day making up the radiance products. These data are routinely processed as inputs for geophysical parameter products and then archived on tape at the Goddard Earth Sciences Distributed Active Archive (GES DAAC) for distributing to users. Virtualizing them would be an immediate and signifcant reduction in the amount of data being stored in the tape archives and provide more customizable products. A prototype of such a virtual archive is being developed to prove the concept and develop ways of incorporating the robustness that a science data archive requires.
"TEEB begins now": a virtual moment in the production of natural capital.
MacDonald, Kenneth Iain; Corson, Catherine
2012-01-01
This article uses theories of virtualism to analyse the role of The Economics of Ecosystems and Biodiversity (TEEB) project in the production of natural capital. Presented at the 10th Conference of the Parties to the Convention on Biological Diversity, the project seeks to redress the ‘economic invisibility of nature’ by quantifying the value of ecosystems and biodiversity. This endeavour to put an economic value on ecosystems makes nature legible by abstracting it from social and ecological contexts and making it subject to, and productive of, new market devices. In reducing the complexity of ecological dynamics to idealized categories TEEB is driven by economic ideas and idealism, and, in claiming to be a quantitative force for morality, is engaged in the production of practices designed to conform the ‘real’ to the virtual. By rendering a ‘valued’ nature legible for key audiences, TEEB has mobilized a critical mass of support including modellers, policy makers and bankers. We argue that TEEB's rhetoric of crisis and value aligns capitalism with a new kind of ecological modernization in which ‘the market’ and market devices serve as key mechanisms to conform the real and the virtual. Using the case of TEEB, and drawing on data collected at COP10, we illustrate the importance of international meetings as key points where idealized models of biodiversity protection emerge, circulate and are negotiated, and as sites where actors are aligned and articulated with these idealized models in ways that begin further processes of conforming the real with the virtual and the realization of ‘natural capital’.
Van Bruwaene, Siska; Schijven, Marlies P; Napolitano, Daniel; De Win, Gunter; Miserez, Marc
2015-01-01
As conventional laparoscopic procedural training requires live animals or cadaver organs, virtual simulation seems an attractive alternative. Therefore, we compared the transfer of training for the laparoscopic cholecystectomy from porcine cadaver organs vs virtual simulation to surgery in a live animal model in a prospective randomized trial. After completing an intensive training in basic laparoscopic skills, 3 groups of 10 participants proceeded with no additional training (control group), 5 hours of cholecystectomy training on cadaver organs (= organ training) or proficiency-based cholecystectomy training on the LapMentor (= virtual-reality training). Participants were evaluated on time and quality during a laparoscopic cholecystectomy on a live anaesthetized pig at baseline, 1 week (= post) and 4 months (= retention) after training. All research was performed in the Center for Surgical Technologies, Leuven, Belgium. In total, 30 volunteering medical students without prior experience in laparoscopy or minimally invasive surgery from the University of Leuven (Belgium). The organ training group performed the procedure significantly faster than the virtual trainer and borderline significantly faster than control group at posttesting. Only 1 of 3 expert raters suggested significantly better quality of performance of the organ training group compared with both the other groups at posttesting (p < 0.01). There were no significant differences between groups at retention testing. The virtual trainer group did not outperform the control group at any time. For trainees who are proficient in basic laparoscopic skills, the long-term advantage of additional procedural training, especially on a virtual but also on the conventional organ training model, remains to be proven. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Appraising the role of the virtual patient for therapeutics health education.
Baumann-Birkbeck, Lyndsee; Florentina, Fiona; Karatas, Onur; Sun, Jianbe; Tang, Tingna; Thaung, Victor; McFarland, Amelia; Bernaitis, Nijole; Khan, Sohil A; Grant, Gary; Anoopkumar-Dukie, Shailendra
2017-09-01
Face-to-face instruction, paper-based case-studies and clinical placements remain the most commonly used teaching methods for therapeutics curricula. Presenting clinical content in a didactic manner presents challenges in engaging learners and developing their clinical reasoning skills which may be overcome by inclusion of the virtual patient (VP). Currently there is limited literature examining the use of the VP in therapeutics teaching and learning. This review aimed to determine the role of VPs in therapeutics education, specifically the impact on student experiences, performance, and clinical skills. A search of primary literature was conducted with search terms including virtual patient, education, health, AND learning. Boolean operators were applied to include studies from health relevant fields with article titles and abstracts vetted. Nine of the 21 included studies were control-matched, and all but one compared VPs to traditional teaching. VPs enhanced the learning experience in all 17 studies that measured this outcome. Fourteen studies measured performance and clinical skills and 12 found VPs were beneficial, while two did not. The VP was not superior to traditional teaching in all studies, but the VP appeared beneficial to the student learning experience. Discrepancy was found between the impact of VPs on short- and long-term knowledge. The VP appears to enhance the student learning experience and has a role in therapeutics education, however a blended-learning (BL) approach may be required to account for individual learning styles. Additional investigation is required to clarify the efficacy of the VP, particularly as a component of BL, on longer-term knowledge retention. Copyright © 2017 Elsevier Inc. All rights reserved.
LeRouge, Cynthia; Dickhut, Kathryn; Lisetti, Christine; Sangameswaran, Savitha; Malasanos, Toree
2016-01-01
This research focuses on the potential ability of animated avatars (a digital representation of the user) and virtual agents (a digital representation of a coach, buddy, or teacher) to deliver computer-based interventions for adolescents' chronic weight management. An exploration of the acceptance and desire of teens to interact with avatars and virtual agents for self-management and behavioral modification was undertaken. The utilized approach was inspired by community-based participatory research. Data was collected from 2 phases: Phase 1) focus groups with teens, provider interviews, parent interviews; and Phase 2) mid-range prototype assessment by teens and providers. Data from all stakeholder groups expressed great interest in avatars and virtual agents assisting self-management efforts. Adolescents felt the avatars and virtual agents could: 1) reinforce guidance and support, 2) fit within their lifestyle, and 3) help set future goals, particularly after witnessing the effect of their current behavior(s) on the projected physical appearance (external and internal organs) of avatars. Teens wanted 2 virtual characters: a virtual agent to act as a coach or teacher and an avatar (extension of themselves) to serve as a "buddy" for empathic support and guidance and as a surrogate for rewards. Preferred modalities for use include both mobile devices to accommodate access and desktop to accommodate preferences for maximum screen real estate to support virtualization of functions that are more contemplative and complex (e.g., goal setting). Adolescents expressed a desire for limited co-user access, which they could regulate. Data revealed certain barriers and facilitators that could affect adoption and use. The current study extends the support of teens, parents, and providers for adding avatars or virtual agents to traditional computer-based interactions. Data supports the desire for a personal relationship with a virtual character in support of previous studies. The study provides a foundation for further work in the area of avatar-driven motivational interviewing. This study provides evidence supporting the use of avatars and virtual agents, designed using participatory approaches, to be included in the continuum of care. Increased probability of engagement and long-term retention of overweight, obese adolescent users and suggests expanding current chronic care models toward more comprehensive, socio-technical representations. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hard diffraction from quasi-elastic dipole scattering
NASA Astrophysics Data System (ADS)
Bialas, A.; Peschanski, R.
1996-02-01
The contribution to diffraction dissociation of virtual photons due to quasi-elastic scattering of the q- overlineq component is calculated in the framework of the QCD dipole picture. Both longitudinal and transverse components of the cross-section are given. It is shown that, at fixed mass of the diffractively produced system, quantum mechanical interference plays an important rôle. Phenomenological consequences are discussed.
ERIC Educational Resources Information Center
2002
The Public Relations Division of the proceedings contains the following 15 papers: "Virtual Issues in Traditional Texts: How Introductory Public Relations Textbooks Address Internet Technology Issues" (Lois A. Boynton and Cassandra Imfeld Gajkowski); "Crisis Public Relations: A Study of Leadership, Culture, Demand and Delivery"…
ERIC Educational Resources Information Center
Tucker, Marc S.
2013-01-01
The fundamental changes taking place in the global economy pose an existential threat for high-wage economies like the United States. Countries with high-wage economies will either figure out how to convert their mass education systems into systems that can educate virtually all their students to the standards formerly reserved for their elites,…
Cho, Hyeyoung; Sohng, Kyeong-Yae
2014-10-01
[Purpose] The aim of the present study was to investigate the effects of a virtual reality exercise program (VREP) on physical fitness, body composition, and fatigue in hemodialysis (HD) patients with end-stage renal failure. [Subjects and Methods] A nonequivalent control group pretest-posttest design was used. Forty-six HD patients were divided into exercise (n=23) and control groups (n=23); while waiting for their dialyses, the exercise group followed a VREP, and the control group received only their usual care. The VREP was accomplished using Nintendo's Wii Fit Plus for 40 minutes, 3 times a week for 8 weeks during the period of May 27 to July 19, 2013. Physical fitness (muscle strength, balance, flexibility), body composition (skeletal muscle mass, body fat rate, arm and leg muscle mass), and fatigue were measured at baseline and after the intervention. [Results] After the VREP, physical fitness and body composition significantly increased, and the level of fatigue significantly decreased in the exercise group. [Conclusion] These results suggest that a VREP improves physical fitness, body composition, and fatigue in HD patients. Based on the findings, VREPs should be used as a health promotion programs for HD patients.
Multiband Study of Radio Sources of the Rcr Catalogue with Virtual Observatory Tools
NASA Astrophysics Data System (ADS)
Zhelenkova, O. P.; Soboleva, N. S.; Majorova, E. K.; Temirova, A. V.
We present early results of our multiband study of the RATAN Cold Revised (RCR) catalogue obtained from seven cycles of the ``Cold'' survey carried with the RATAN-600 radio telescope at 7.6 cm in 1980--1999, at the declination of the SS 433 source. We used the 2MASS and LAS UKIDSS infrared surveys, the DSS-II and SDSS DR7 optical surveys, as well as the USNO-B1 and GSC-II catalogues, the VLSS, TXS, NVSS, FIRST and GB6 radio surveys to accumulate information about the sources. For radio sources that have no detectable optical candidate in optical or infrared catalogues, we additionally looked through images in several bands from the SDSS, LAS UKIDSS, DPOSS, 2MASS surveys and also used co-added frames in different bands. We reliably identified 76% of radio sources of the RCR catalogue. We used the ALADIN and SAOImage DS9 scripting capabilities, interoperability services of ALADIN and TOPCAT, and also other Virtual Observatory (VO) tools and resources, such as CASJobs, NED, Vizier, and WSA, for effective data access, visualization and analysis. Without VO tools it would have been problematic to perform our study.
Age Dating Merger Events in Early Type Galaxies via the Detection of AGB Light
NASA Technical Reports Server (NTRS)
Bothun, G.
2005-01-01
A thorough statistical analysis of the J-H vs. H-K color plane of all detected early type galaxies in the 2MASS catalog with velocities less than 5000 km/s has been performed. This all sky survey is not sensitive to one particular galactic environment and therefore a representative range of early type galaxy environments have been sampled. Virtually all N-body simulation so major mergers produces a central starburst due to rapid collection of gas. This central starburst is of sufficient amplitude to change the stellar population in the central regions of the galaxy. Intermediate age populations are given away by the presence of AGB stars which will drive the central colors redder in H-K relative to the J- H baseline. This color anomaly has a lifetime of 2-5 billion years depending on the amplitude of the initial starburst Employing this technique on the entire 2MASS sample (several hundred galaxies) reveals that the AGB signature occurs less than 1% of the time. This is a straightforward indication that virtually all nearby early type galaxies have not had a major merger occur within the last few billion years.
Virtual Versus In-Person Focus Groups: Comparison of Costs, Recruitment, and Participant Logistics
Poehlman, Jon A; Hayes, Jennifer J; Ray, Sarah E; Moultrie, Rebecca R
2017-01-01
Background Virtual focus groups—such as online chat and video groups—are increasingly promoted as qualitative research tools. Theoretically, virtual groups offer several advantages, including lower cost, faster recruitment, greater geographic diversity, enrollment of hard-to-reach populations, and reduced participant burden. However, no study has compared virtual and in-person focus groups on these metrics. Objective To rigorously compare virtual and in-person focus groups on cost, recruitment, and participant logistics. We examined 3 focus group modes and instituted experimental controls to ensure a fair comparison. Methods We conducted 6 1-hour focus groups in August 2014 using in-person (n=2), live chat (n=2), and video (n=2) modes with individuals who had type 2 diabetes (n=48 enrolled, n=39 completed). In planning groups, we solicited bids from 6 virtual platform vendors and 4 recruitment firms. We then selected 1 platform or facility per mode and a single recruitment firm across all modes. To minimize bias, the recruitment firm employed different recruiters by mode who were blinded to recruitment efforts for other modes. We tracked enrollment during a 2-week period. A single moderator conducted all groups using the same guide, which addressed the use of technology to communicate with health care providers. We conducted the groups at the same times of day on Monday to Wednesday during a single week. At the end of each group, participants completed a short survey. Results Virtual focus groups offered minimal cost savings compared with in-person groups (US $2000 per chat group vs US $2576 per in-person group vs US $2,750 per video group). Although virtual groups did not incur travel costs, they often had higher management fees and miscellaneous expenses (eg, participant webcams). Recruitment timing did not differ by mode, but show rates were higher for in-person groups (94% [15/16] in-person vs 81% [13/16] video vs 69% [11/16] chat). Virtual group participants were more geographically diverse (but with significant clustering around major metropolitan areas) and more likely to be non-white, less educated, and less healthy. Internet usage was higher among virtual group participants, yet virtual groups still reached light Internet users. In terms of burden, chat groups were easiest to join and required the least preparation (chat = 13 minutes, video = 40 minutes, in-person = 78 minutes). Virtual group participants joined using laptop or desktop computers, and most virtual participants (82% [9/11] chat vs 62% [8/13] video) reported having no other people in their immediate vicinity. Conclusions Virtual focus groups offer potential advantages for participant diversity and reaching less healthy populations. However, virtual groups do not appear to cost less or recruit participants faster than in-person groups. Further research on virtual group data quality and group dynamics is needed to fully understand their advantages and limitations. PMID:28330832
In-N-Out: The Gas Cycle from Dwarfs to Spiral Galaxies
NASA Astrophysics Data System (ADS)
Christensen, Charlotte R.; Davé, Romeel; Governato, Fabio; Pontzen, Andrew; Brooks, Alyson; Munshi, Ferah; Quinn, Thomas; Wadsley, James
2016-06-01
We examine the scalings of galactic outflows with halo mass across a suite of 20 high-resolution cosmological zoom galaxy simulations covering halo masses in the range {10}9.5{--}{10}12 {M}⊙ . These simulations self-consistently generate outflows from the available supernova energy in a manner that successfully reproduces key galaxy observables, including the stellar mass-halo mass, Tully-Fisher, and mass-metallicity relations. We quantify the importance of ejective feedback to setting the stellar mass relative to the efficiency of gas accretion and star formation. Ejective feedback is increasingly important as galaxy mass decreases; we find an effective mass loading factor that scales as {v}{{circ}}-2.2, with an amplitude and shape that are invariant with redshift. These scalings are consistent with analytic models for energy-driven wind, based solely on the halo potential. Recycling is common: about half of the outflow mass across all galaxy masses is later reaccreted. The recycling timescale is typically ˜1 Gyr, virtually independent of halo mass. Recycled material is reaccreted farther out in the disk and with typically ˜2-3 times more angular momentum. These results elucidate and quantify how the baryon cycle plausibly regulates star formation and alters the angular momentum distribution of disk material across the halo mass range where most cosmic star formation occurs.
Golomb, Meredith R.; Warden, Stuart J.; Fess, Elaine; Rabin, Bryan; Yonkman, Janell; Shirley, Bridget; Burdea, Grigore C.
2015-01-01
Virtual reality videogames can be used to motivate rehabilitation, and telerehabilitation can be used to improve access to rehabilitation. These uses of technology to improve health outcomes are a burgeoning area of rehabilitation research. So far, there is a lack of reports of long-term outcomes of these types of interventions. The authors report a 15-year-old boy with hemiplegic cerebral palsy and epilepsy because of presumed perinatal stroke who improved his plegic hand function and increased his plegic forearm bone health during a 14-month virtual reality videogame hand telerehabilitation intervention. A total of 14 months after the intervention ended, repeat evaluation demonstrated maintenance of both increased hand function and forearm bone health. The implications of this work for the future of rehabilitation in children with neurological disabilities are discussed in this article. PMID:21383228
Golomb, Meredith R; Warden, Stuart J; Fess, Elaine; Rabin, Bryan; Yonkman, Janell; Shirley, Bridget; Burdea, Grigore C
2011-03-01
Virtual reality videogames can be used to motivate rehabilitation, and telerehabilitation can be used to improve access to rehabilitation. These uses of technology to improve health outcomes are a burgeoning area of rehabilitation research. So far, there is a lack of reports of long-term outcomes of these types of interventions. The authors report a 15-year-old boy with hemiplegic cerebral palsy and epilepsy because of presumed perinatal stroke who improved his plegic hand function and increased his plegic forearm bone health during a 14-month virtual reality videogame hand telerehabilitation intervention. A total of 14 months after the intervention ended, repeat evaluation demonstrated maintenance of both increased hand function and forearm bone health. The implications of this work for the future of rehabilitation in children with neurological disabilities are discussed in this article.
The virtual enhancements - solar proton event radiation (VESPER) model
NASA Astrophysics Data System (ADS)
Aminalragia-Giamini, Sigiava; Sandberg, Ingmar; Papadimitriou, Constantinos; Daglis, Ioannis A.; Jiggens, Piers
2018-02-01
A new probabilistic model introducing a novel paradigm for the modelling of the solar proton environment at 1 AU is presented. The virtual enhancements - solar proton event radiation model (VESPER) uses the European space agency's solar energetic particle environment modelling (SEPEM) Reference Dataset and produces virtual time-series of proton differential fluxes. In this regard it fundamentally diverges from the approach of existing SPE models that are based on probabilistic descriptions of SPE macroscopic characteristics such as peak flux and cumulative fluence. It is shown that VESPER reproduces well the dataset characteristics it uses, and further comparisons with existing models are made with respect to their results. The production of time-series as the main output of the model opens a straightforward way for the calculation of solar proton radiation effects in terms of time-series and the pairing with effects caused by trapped radiation and galactic cosmic rays.
Coggins, L.G.; Pine, William E.; Walters, C.J.; Martell, S.J.D.
2006-01-01
We present a new model to estimate capture probabilities, survival, abundance, and recruitment using traditional Jolly-Seber capture-recapture methods within a standard fisheries virtual population analysis framework. This approach compares the numbers of marked and unmarked fish at age captured in each year of sampling with predictions based on estimated vulnerabilities and abundance in a likelihood function. Recruitment to the earliest age at which fish can be tagged is estimated by using a virtual population analysis method to back-calculate the expected numbers of unmarked fish at risk of capture. By using information from both marked and unmarked animals in a standard fisheries age structure framework, this approach is well suited to the sparse data situations common in long-term capture-recapture programs with variable sampling effort. ?? Copyright by the American Fisheries Society 2006.
Virtual Antiparticle Pairs, the Unit of Charge Epsilon and the QCD Coupling Alpha(sub s)
NASA Technical Reports Server (NTRS)
Batchelor, David
2001-01-01
New semi-classical models of virtual antiparticle pairs are used to compute the pair lifetimes, and good agreement with the Heisenberg lifetimes from quantum field theory (QFT) is found. When the results of the new models and QFT are combined, formulae for e and alpha(sub s)(q) are derived in terms of only h and c. The modeling method applies to both the electromagnetic and color forces. Evaluation of the action integral of potential field fluctuation for each interaction potential yields approx. = h/2 for both electromagnetic and color fluctuations, in agreement with QFT. Thus each model is a quantized semiclassical representation for such virtual antiparticle pairs, to good approximation. This work reduces the number of arbitrary parameters of the Standard Model by two from 18 to 16. These are remarkable, unexpected results from a basically classical method.
NASA Astrophysics Data System (ADS)
Paszkiewicz, Zbigniew; Picard, Willy
Performance management (PM) is a key function of virtual organization (VO) management. A large set of PM indicators has been proposed and evaluated within the context of virtual breeding environments (VBEs). However, it is currently difficult to describe and select suitable PM indicators because of the lack of a common vocabulary and taxonomies of PM indicators. Therefore, there is a need for a framework unifying concepts in the domain of VO PM. In this paper, a reference model for VO PM is presented in the context of service-oriented VBEs. In the proposed reference model, both a set of terms that could be used to describe key performance indicators, and a set of taxonomies reflecting various aspects of PM are proposed. The proposed reference model is a first attempt and a work in progress that should not be supposed exhaustive.
Grewal, Gurtej S; Sayeed, Rashad; Schwenk, Michael; Bharara, Manish; Menzies, Robert; Talal, Talal K; Armstrong, David G; Najafi, Bijan
2013-01-01
Individuals with diabetic peripheral neuropathy frequently experience concomitant impaired proprioception and postural instability. Conventional exercise training has been demonstrated to be effective in improving balance but does not incorporate visual feedback targeting joint perception, which is an integral mechanism that helps compensate for impaired proprioception in diabetic peripheral neuropathy. This prospective cohort study recruited 29 participants (mean ± SD: age, 57 ± 10 years; body mass index [calculated as weight in kilograms divided by height in meters squared], 26.9 ± 3.1). Participants satisfying the inclusion criteria performed predefined ankle exercises through reaching tasks, with visual feedback from the ankle joint projected on a screen. Ankle motion in the mediolateral and anteroposterior directions was captured using wearable sensors attached to the participant's shank. Improvements in postural stability were quantified by measuring center of mass sway area and the reciprocal compensatory index before and after training using validated body-worn sensor technology. Findings revealed a significant reduction in center of mass sway after training (mean, 22%; P = .02). A higher postural stability deficit (high body sway) at baseline was associated with higher training gains in postural balance (reduction in center of mass sway) (r = -0.52, P < .05). In addition, significant improvement was observed in postural coordination between the ankle and hip joints (mean, 10.4%; P = .04). The present research implemented a novel balance rehabilitation strategy based on virtual reality technology. The method included wearable sensors and an interactive user interface for real-time visual feedback based on ankle joint motion, similar to a video gaming environment, for compensating impaired joint proprioception. These findings support that visual feedback generated from the ankle joint coupled with motor learning may be effective in improving postural stability in patients with diabetic peripheral neuropathy.
Kaltenbach, Angela; Noordmann, Janine; Görlitz, Volker; Pape, Carola; Richter, Silke; Kipphardt, Heinrich; Kopp, Gernot; Jährling, Reinhard; Rienitz, Olaf; Güttler, Bernd
2015-04-01
Gravimetrically prepared mono-elemental reference solutions having a well-known mass fraction of approximately 1 g/kg (or a mass concentration of 1 g/L) define the very basis of virtually all measurements in inorganic analysis. Serving as the starting materials of all standard/calibration solutions, they link virtually all measurements of inorganic analytes (regardless of the method applied) to the purity of the solid materials (high-purity metals or salts) they were prepared from. In case these solid materials are characterized comprehensively with respect to their purity, this link also establishes direct metrological traceability to The International System of Units (SI). This, in turn, ensures the comparability of all results on the highest level achievable. Several national metrology institutes (NMIs) and designated institutes (DIs) have been working for nearly two decades in close cooperation with commercial producers on making an increasing number of traceable reference solutions available. Besides the comprehensive characterization of the solid starting materials, dissolving them both loss-free and completely under strict gravimetric control is a challenging problem in the case of several elements like molybdenum and rhodium. Within the framework of the European Metrology Research Programme (EMRP), in the Joint Research Project (JRP) called SIB09 Primary standards for challenging elements, reference solutions of molybdenum and rhodium were prepared directly from the respective metals with a relative expanded uncertainty associated with the mass fraction of U rel(w) < 0.05 %. To achieve this, a microwave-assisted digestion procedure for Rh and a hotplate digestion procedure for Mo were developed along with highly accurate and precise inductively coupled plasma optical emission spectrometry (ICP OES) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) methods required to assist with the preparation and as dissemination tools.
Gong, LiJie; He, Yan; Tian, Peng; Yan, Yan
2016-07-01
To determine the effect of elastic strain rate ratio method and virtual touch tissue quantification (VTQ) on the diagnosis of breast masses. Sixty female patients with breast cancer, who received surgical treatment in Daqing Oilfield General Hospital, were enrolled. All patients signed the informed consent paperwork and they were treated by routine ultrasound examination, compression elastography (CE) examination, and VTQ examination in turn. Strain ratio (SR) was checked by CE and shear wave velocity (SWV) value was measured by VTQ. The diagnostic values of different methods were evaluated by receiver operating characteristic (ROC) curves in the diagnosis of benign and malignant breast tumors. The maximum diameter and SWV value of the benign tumors were lower than those of the malignant tumors, and the SR ratio of benign masses was higher than that of malignant tumors (P<0.01). The AUC, sensitivity and specificity for elastic strain rate and VTQ for single or combined use were higher than those of conventional ultrasound (0.904, 97.5%, 69.2%; 0.946, 87.5%, 87.2%; 0.976, 90%, 97.4% vs 0.783, 85%, 61.5%). The AUC and specificity of VTQ were higher than those of the elastic strain rate (0.946, 87.2% vs 0.904, 69.2%), but the sensitivity of VTQ was higher than that of the latter (87.5% vs 97.5%). The AUC and specificity for combination of both methods were higher than those of single method, but the sensitivity was lower than that of the elastic strain rate. Combination of elastic strain rate ratio method with VTQ possesses the best diagnostic value and the highest diagnostic accuracy in the diagnosis of breast mass than that used alone.
A Virtual Laboratory for the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly
NASA Technical Reports Server (NTRS)
Coker, Robert; Knox, James; O'Connor, Brian
2016-01-01
Ongoing work to improve water and carbon dioxide separation systems to be used on crewed space vehicles combines sub-scale systems testing and multi-physics simulations. Thus, as part of NASA's Advanced Exploration Systems (AES) program and the Life Support Systems Project (LSSP), fully predictive COMSOL Multiphysics models of the Four Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) on the International Space Station (ISS) have been developed. This Virtual Laboratory is being used to help reduce mass, power, and volume requirements for exploration missions. In this paper we describe current and planned modeling developments in the area of carbon dioxide removal to support future missions as well as the resolution of anomalies observed in the ISS CDRA.
A population of compact elliptical galaxies detected with the Virtual Observatory.
Chilingarian, Igor; Cayatte, Véronique; Revaz, Yves; Dodonov, Serguei; Durand, Daniel; Durret, Florence; Micol, Alberto; Slezak, Eric
2009-12-04
Compact elliptical galaxies are characterized by small sizes and high stellar densities. They are thought to form through tidal stripping of massive progenitors. However, only a handful of them were known, preventing us from understanding the role played by this mechanism in galaxy evolution. We present a population of 21 compact elliptical galaxies gathered with the Virtual Observatory. Follow-up spectroscopy and data mining, using high-resolution images and large databases, show that all the galaxies exhibit old metal-rich stellar populations different from those of dwarf elliptical galaxies of similar masses but similar to those of more massive early-type galaxies, supporting the tidal stripping scenario. Their internal properties are reproduced by numerical simulations, which result in compact, dynamically hot remnants resembling the galaxies in our sample.
Virtual reality for stroke rehabilitation: an abridged version of a Cochrane review.
Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M
2015-08-01
Virtual reality and interactive video gaming have emerged as new treatment approaches in stroke rehabilitation settings over the last ten years. The primary objective of this review was to determine the effectiveness of virtual reality on upper limb function and activity after stroke. The impact on secondary outcomes including gait, cognitive function and activities of daily living was also assessed. Randomized and quasi-randomized controlled trials comparing virtual reality with an alternative intervention or no intervention were eligible to be included in the review. The authors searched a number of electronic databases including: the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, clinical trial registers, reference lists, Dissertation Abstracts and contacted key researchers in the field. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. A total of 37 randomized or quasi randomized controlled trials with a total of 1019 participants were included in the review. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardized mean difference [SMD] 0.28, 95% confidence intervals [CI] 0.08 to 0.49) based on 12 studies and significantly more effective than no therapy in improving upper limber function (SMD 0.44 [95% CI 0.15 to 0.73]) based on nine studies. The use of virtual reality also significantly improved activities of daily living function when compared to more conventional therapy approaches (SMD 0.43 [95% CI 0.18 to 0.69]) based on eight studies. While there are a large number of studies assessing the efficacy of virtual reality they tend to be small and many are at risk of bias. While there is evidence to support the use of virtual reality intervention as part of upper limb training programs, more research is required to determine whether it is beneficial in terms of improving lower limb function and gait and cognitive function.
Lee, Shui-Shan; Lam, Agnes N S; Lee, Chi-Kei; Wong, Ngai-Sze
2012-01-01
Advances in communication technology may affect networking pattern, thereby influencing the dynamics of sex partnership. The aim of the study is to explore the impacts of partner sourcing through internet and related channels on exposure risk to sexually transmitted infections (STI) including HIV. Using venue-based sampling, a cross-sectional questionnaire survey was conducted at saunas frequented by men having sex with men (MSM) in Hong Kong. Comparison was made between MSM sourcing partners through physical venues alone versus concomitant users of physical and virtual channels, the latter referring to internet and smart-phone applications, using bivariate logistic regression. Over a 7-week study period, 299 MSM were recruited from 9 saunas. Three main types of sex partners were distinguished: steady (46.8%), regular (26.4%) and casual (96.0%) partners. Users of sauna (n = 78) were compared with concomitant users of saunas and virtual channels (n = 179) for partner sourcing. Sauna-visiting virtual channel users were younger and inclined to use selected physical venues for sourcing partners. Smart-phone users (n = 90) were not different from other internet-users in terms of age, education level and single/mixed self-identified body appearance. Classifying respondents into high risk and low risk MSM by their frequency of condom use, concomitant use of both sauna and virtual channels accounted for a higher proportion in the high risk category (71.6% vs. 58.2%, OR = 1.81, p<0.05). In virtual channel users, partner sourcing through smart-phone was not associated with a higher practice of unprotected sex. MSM sauna customers commonly use virtual channels for sex partner sourcing. Unprotected sex is more prevalent in sauna customers who use virtual channel for sex partner sourcing. While the popularity of smart-phone is rising, its use is not associated with increased behavioural risk for HIV/STI transmission.
First observation of the Λ(1405) line shape in electroproduction
NASA Astrophysics Data System (ADS)
Lu, H. Y.; Schumacher, R. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Pereira, S. Anefalos; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gabrielyan, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Lewis, S.; Livingston, K.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Camacho, C. Munoz; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Tian, Ye; Tkachenko, S.; Torayev, B.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.
2013-10-01
We report the first observation of the line shape of the Λ(1405) from electroproduction, and show that it is not a simple Breit-Wigner resonance. Electroproduction of K+Λ(1405) off the proton was studied by using data from CLAS at Jefferson Lab in the range 1.0
Gustafsson, Johan O. R.; Oehler, Martin K.; Ruszkiewicz, Andrew; McColl, Shaun R.; Hoffmann, Peter
2011-01-01
MALDI imaging mass spectrometry (MALDI-IMS) allows acquisition of mass data for metabolites, lipids, peptides and proteins directly from tissue sections. IMS is typically performed either as a multiple spot profiling experiment to generate tissue specific mass profiles, or a high resolution imaging experiment where relative spatial abundance for potentially hundreds of analytes across virtually any tissue section can be measured. Crucially, imaging can be achieved without prior knowledge of tissue composition and without the use of antibodies. In effect MALDI-IMS allows generation of molecular data which complement and expand upon the information provided by histology including immuno-histochemistry, making its application valuable to both cancer biomarker research and diagnostics. The current state of MALDI-IMS, key biological applications to ovarian cancer research and practical considerations for analysis of peptides and proteins on ovarian tissue are presented in this review. PMID:21340013
Gustafsson, Johan O R; Oehler, Martin K; Ruszkiewicz, Andrew; McColl, Shaun R; Hoffmann, Peter
2011-01-21
MALDI imaging mass spectrometry (MALDI-IMS) allows acquisition of mass data for metabolites, lipids, peptides and proteins directly from tissue sections. IMS is typically performed either as a multiple spot profiling experiment to generate tissue specific mass profiles, or a high resolution imaging experiment where relative spatial abundance for potentially hundreds of analytes across virtually any tissue section can be measured. Crucially, imaging can be achieved without prior knowledge of tissue composition and without the use of antibodies. In effect MALDI-IMS allows generation of molecular data which complement and expand upon the information provided by histology including immuno-histochemistry, making its application valuable to both cancer biomarker research and diagnostics. The current state of MALDI-IMS, key biological applications to ovarian cancer research and practical considerations for analysis of peptides and proteins on ovarian tissue are presented in this review.
Mercury Isotopes in Earth and Environmental Sciences
NASA Astrophysics Data System (ADS)
Blum, Joel D.; Sherman, Laura S.; Johnson, Marcus W.
2014-05-01
Virtually all biotic, dark abiotic, and photochemical transformations of mercury (Hg) produce Hg isotope fractionation, which can be either mass dependent (MDF) or mass independent (MIF). The largest range in MDF is observed among geological materials and rainfall impacted by anthropogenic sources. The largest positive MIF of Hg isotopes (odd-mass excess) is caused by photochemical degradation of methylmercury in water. This signature is retained through the food web and measured in all freshwater and marine fish. The largest negative MIF of Hg isotopes (odd-mass deficit) is caused by photochemical reduction of inorganic Hg and has been observed in Arctic snow and plant foliage. Ratios of MDF to MIF and ratios of 199Hg MIF to 201Hg MIF are often diagnostic of biogeochemical reaction pathways. More than a decade of research demonstrates that Hg isotopes can be used to trace sources, biogeochemical cycling, and reactions involving Hg in the environment.
THE WEIGHT OF SUCCESS: THE BODY MASS INDEX AND ECONOMIC WELL-BEING IN SOUTHERN AFRICA.
Wittenberg, Martin
2013-10-01
We show that body mass increases with economic resources among most Southern Africans, although not all. Among Black South Africans the relationship is non-decreasing over virtually the entire range of incomes/wealth. Furthermore in this group other measures of "success" (e.g., employment and education) are also associated with increases in body mass. This is true in both 1998 (the Demographic and Health Survey) and 2008 (National Income Dynamics Survey). A similar relationship holds among residents of Lesotho, Swaziland, Mozambique, Malawi, and Namibia. This suggests that body mass can be used as a crude measure of well-being. This allows us to examine the vexed question in South African labor economics whether there is involuntary unemployment. The fact that the unemployed are lighter than the employed, even when we control for household fixed effects, suggests that they are not choosing this state.
THE WEIGHT OF SUCCESS: THE BODY MASS INDEX AND ECONOMIC WELL-BEING IN SOUTHERN AFRICA
Wittenberg, Martin
2015-01-01
We show that body mass increases with economic resources among most Southern Africans, although not all. Among Black South Africans the relationship is non-decreasing over virtually the entire range of incomes/wealth. Furthermore in this group other measures of “success” (e.g., employment and education) are also associated with increases in body mass. This is true in both 1998 (the Demographic and Health Survey) and 2008 (National Income Dynamics Survey). A similar relationship holds among residents of Lesotho, Swaziland, Mozambique, Malawi, and Namibia. This suggests that body mass can be used as a crude measure of well-being. This allows us to examine the vexed question in South African labor economics whether there is involuntary unemployment. The fact that the unemployed are lighter than the employed, even when we control for household fixed effects, suggests that they are not choosing this state. PMID:26199456
Low-mass e+e- mass distributions from 1.23A GeV Au+Au collisions with HADES
NASA Astrophysics Data System (ADS)
Galatyuk, Tetyana; Hades Collaboration
2017-11-01
We present measurements of low-mass electron pairs for the Au+Au system based on a data sample of 2.6 billion events of the 40% most central collisions. In order to understand the microscopic structure of matter in the region of high baryochemical potential HADES pursues a strategy, which relies on systematic measurements of virtual photons emission in elementary and heavy-ion collisions. As of now, HADES has completed measurements of rare penetrating probes in p+p, n+p, C+C, p+Nb and Ar+KCl collisions. In continuation of a systematic investigation of the emissivity of strongly interacting matter, HADES has recently measured the dielectron emission in Au+Au collisions at 1.23A GeV beam energy. This measurement is part of the beam energy scan and marks lowest point in the excitation function of low-mass thermal dilepton radiation.
Is “morphodynamic equilibrium” an oxymoron?
Zhou, Zeng; Coco, Giovanni; Townend, Ian; Olabarrieta, Maitane; van der Wegen, Mick; Gong, Zheng; D'Alpaos, Andrea; Gao, Shu; Jaffe, Bruce E.; Gelfenbaum, Guy R.; He, Qing; Wang, Yaping; Lanzoni, Stefano; Wang, Zhengbing; Winterwerp, Han; Zhang, Changkuan
2017-01-01
Morphodynamic equilibrium is a widely adopted yet elusive concept in the field of geomorphology of coasts, rivers and estuaries. Based on the Exner equation, an expression of mass conservation of sediment, we distinguish three types of equilibrium defined as static and dynamic, of which two different types exist. Other expressions such as statistical and quasi-equilibrium which do not strictly satisfy the Exner conditions are also acknowledged for their practical use. The choice of a temporal scale is imperative to analyse the type of equilibrium. We discuss the difference between morphodynamic equilibrium in the “real world” (nature) and the “virtual world” (model). Modelling studies rely on simplifications of the real world and lead to understanding of process interactions. A variety of factors affect the use of virtual-world predictions in the real world (e.g., variability in environmental drivers and variability in the setting) so that the concept of morphodynamic equilibrium should be mathematically unequivocal in the virtual world and interpreted over the appropriate spatial and temporal scale in the real world. We draw examples from estuarine settings which are subject to various governing factors which broadly include hydrodynamics, sedimentology and landscape setting. Following the traditional “tide-wave-river” ternary diagram, we summarize studies to date that explore the “virtual world”, discuss the type of equilibrium reached and how it relates to the real world.
Dell, M
1998-01-01
Michael Dell started his computer company in 1984 with a simple business insight. He could bypass the dealer channel through which personal computers were then being sold and sell directly to customers, building products to order. Dell's direct model eliminated the dealer's markup and the risks associated with carrying large inventories of finished goods. In this interview, Michael Dell provides a detailed description of how his company is pushing that business model one step further, toward what he calls virtual integration. Dell is using technology and information to blur the traditional boundaries in the value chain between suppliers, manufacturers, and customers. The individual pieces of Dell's strategy--customer focus, supplier partnerships, mass customization, just-in-time manufacturing--may be all be familiar. But Michael Dell's business insight into how to combine them is highly innovative. Direct relationships with customers create valuable information, which in turn allows the company to coordinate its entire value chain back through manufacturing to product design. Dell describes how his company has come to achieve this tight coordination without the "drag effect" of ownership. Dell reaps the advantages of being vertically integrated without incurring the costs, all the while achieving the focus, agility, and speed of a virtual organization. As envisioned by Michael Dell, virtual integration may well become a new organizational model for the information age.
Using non-specialist observers in 4AFC human observer studies
NASA Astrophysics Data System (ADS)
Elangovan, Premkumar; Mackenzie, Alistair; Dance, David R.; Young, Kenneth C.; Wells, Kevin
2017-03-01
Virtual clinical trials (VCTs) are an emergent approach for rapid evaluation and comparison of various breast imaging technologies and techniques using computer-based modeling tools. Increasingly 4AFC (Four alternative forced choice) virtual clinical trials are used to compare detection performances of different breast imaging modalities. Most prior studies have used physicists and/or radiologists and physicists interchangeably. However, large scale use of statistically significant 4AFC observer studies is challenged by the individual time commitment and cost of such observers, often drawn from a limited local pool of specialists. This work aims to investigate whether non-specialist observers can be used to supplement such studies. A team of five specialist observers (medical physicists) and five non-specialists participated in a 4AFC study containing simulated 2D-mammography and DBT (digital breast tomosynthesis) images, produced using the OPTIMAM toolbox for VCTs. The images contained 4mm irregular solid masses and 4mm spherical targets at a range of contrast levels embedded in a realistic breast phantom background. There was no statistically significant difference between the detection performance of medical physicists and non-specialists (p>0.05). However, non-specialists took longer to complete the study than their physicist counterparts, which was statistically significant (p<0.05). Overall, the results from both observer groups indicate that DBT has a lower detectable threshold contrast than 2D-mammography for both masses and spheres, and both groups found spheres easier to detect than irregular solid masses.
NASA Astrophysics Data System (ADS)
Scott, Jill R.; Tremblay, Paul L.
2002-03-01
Traditionally, mass spectrometry has relied on manipulating the sample target to provide scanning capabilities for laser desorption microprobes. This has been problematic for an internal source laser desorption Fourier transform mass spectrometer (LD-FTMS) because of the high magnetic field (7 Tesla) and geometric constraints of the superconducting magnet bore. To overcome these limitations, we have implemented a unique external laser scanning mechanism for an internal source LD-FTMS. This mechanism provides adjustable resolution enhancement so that the spatial resolution at the target is not limited to that of the stepper motors at the light source (˜5 μm/step). The spatial resolution is now limited by the practical optical diffraction limit of the final focusing lens. The scanning mechanism employs a virtual source that is wavelength independent up to the final focusing lens, which can be controlled remotely to account for focal length dependence on wavelength. A binary index provides an automatic alignment feature. The virtual source is located ˜9 ft from the sample; therefore, it is completely outside of the vacuum system and beyond the 50 G line of the fringing magnetic field. To eliminate reproducibility problems associated with vacuum pump vibrations, we have taken advantage of the magnetic field inherent to the FTMS to utilize Lenz's law for vibrational dampening. The LD-FTMS microprobe has exceptional reproducibility, which enables successive mapping sequences for depth-profiling studies.
Nishikawa, Hiroki; Nishimura, Takashi; Enomoto, Hirayuki; Iwata, Yoshinori; Ishii, Akio; Miyamoto, Yuho; Ishii, Noriko; Yuri, Yukihisa; Takata, Ryo; Hasegawa, Kunihiro; Nakano, Chikage; Yoh, Kazunori; Aizawa, Nobuhiro; Sakai, Yoshiyuki; Ikeda, Naoto; Takashima, Tomoyuki; Nishiguchi, Shuhei; Iijima, Hiroko
2017-01-01
Background and aims: We sought to clarify the relationship between virtual touch quantification (VTQ) in acoustic radiation force impulse and skeletal muscle mass as assessed by bio-electronic impedance analysis in patients with chronic liver diseases (CLDs, n = 468, 222 males and 246 females, median age = 62 years). Patients and methods: Decreased skeletal muscle index (D-SMI) was defined as skeletal muscle index (SMI) <7.0 kg/m2 for males and as SMI <5.7 kg/m2 for females, according to the recommendations in current Japanese guidelines. We examined the correlation between SMI and VTQ levels and investigated factors linked to D-SMI in the univariate and multivariate analyses. The area under the receiver operating curve (AUROC) for the presence of D-SMI was also calculated. Results: In patients with D-SMI, the median VTQ level was 1.64 meters/second (m/s) (range, 0.93–4.32 m/s), while in patients without D-SMI, the median VTQ level was 1.11 m/s (range, 0.67–4.09 m/s) (p < 0.0001). In the multivariate analysis, higher VTQ was found to be an independent predictor linked to the presence of D-SMI (p < 0.0001). In receiver operating characteristic analysis, body mass index had the highest AUROC (0.805), followed by age (0.721) and VTQ (0.706). Conclusion: VTQ levels can be useful for predicting D-SMI in patients with CLDs. PMID:28621757
Quasi-model free control for the post-capture operation of a non-cooperative target
NASA Astrophysics Data System (ADS)
She, Yuchen; Sun, Jun; Li, Shuang; Li, Wendan; Song, Ting
2018-06-01
This paper investigates a quasi-model free control (QMFC) approach for the post-capture control of a non-cooperative space object. The innovation of this paper lies in the following three aspects, which correspond to the three challenges presented in the mission scenario. First, an excitation-response mapping search strategy is developed based on the linearization of the system in terms of a set of parameters, which is efficient in handling the combined spacecraft with a high coupling effect on the inertia matrix. Second, a virtual coordinate system is proposed to efficiently compute the center of mass (COM) of the combined system, which improves the COM tracking efficiency for time-varying COM positions. Third, a linear online corrector is built to reduce the control error to further improve the control accuracy, which helps control the tracking mode within the combined system's time-varying inertia matrix. Finally, simulation analyses show that the proposed control framework is able to realize combined spacecraft post-capture control in extremely unfavorable conditions with high control accuracy.
Bai, Min; Zhang, Hui-Ping; Xing, Jin-Fang; Shi, Qiu-Sheng; Gu, Ji-Ying; Li, Fan; Chen, Hui-Li; Zhang, Xue-Mei; Fang, Yun; Du, Lian-Fang
2015-01-01
To evaluate diagnostic performance of acoustic radiation force impulse (ARFI) technology for solid breast masses with different sizes and determine which features are most efficient. 271 solid breast masses in 242 women were examined with ARFI, and their shear wave velocities (SWVs), Virtual Touch tissue imaging (VTI) patterns, and area ratios (ARs) were measured and compared with their histopathological outcomes. Receiver operating characteristic curves (ROC) were calculated to assess diagnostic performance of ARFI for small masses (6-14 mm) and big masses (15-30 mm). SWV of mass was shown to be positively associated with mass size (P < 0.001). For small masses, area under ROC (Az) of AR was larger than that of SWV (P < 0.001) and VTI pattern (P < 0.001); no significant difference was found between Az of SWV and that of VTI pattern (P = 0.906). For big masses, Az of VTI pattern was less than that of SWV (P = 0.008) and AR (P = 0.002); no significant difference was identified between Az of SWV and that of AR (P = 0.584). For big masses, SWV and AR are both efficient measures; nevertheless, for small masses, AR seems to be the best feature.
Xu, Long-Chun; Zhang, Gang; Zou, Yue; Zhang, Min-Feng; Zhang, Dong-Sheng; Ma, Hua; Zhao, Wen-Bo; Zhang, Guang-Yu
2017-10-13
The objective of the study is to provide some implications for rehabilitation of hearing impairment by investigating changes of neural activities of directional brain networks in patients with long-term bilateral hearing loss. Firstly, we implemented neuropsychological tests of 21 subjects (11 patients with long-term bilateral hearing loss, and 10 subjects with normal hearing), and these tests revealed significant differences between the deaf group and the controls. Then we constructed the individual specific virtual brain based on functional magnetic resonance data of participants by utilizing effective connectivity and multivariate regression methods. We exerted the stimulating signal to the primary auditory cortices of the virtual brain and observed the brain region activations. We found that patients with long-term bilateral hearing loss presented weaker brain region activations in the auditory and language networks, but enhanced neural activities in the default mode network as compared with normally hearing subjects. Especially, the right cerebral hemisphere presented more changes than the left. Additionally, weaker neural activities in the primary auditor cortices were also strongly associated with poorer cognitive performance. Finally, causal analysis revealed several interactional circuits among activated brain regions, and these interregional causal interactions implied that abnormal neural activities of the directional brain networks in the deaf patients impacted cognitive function.
Aero-Thermo-Dynamic Mass Analysis
NASA Astrophysics Data System (ADS)
Shiba, Kota; Yoshikawa, Genki
2016-07-01
Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.
The development of the red giant branch. II - Astrophysical properties
NASA Technical Reports Server (NTRS)
Sweigart, Allen V.; Greggio, Laura; Renzini, Alvio
1990-01-01
Evolutionary sequences developed in another paper are used here to investigate the properties of the red giant branch (RGB) phase transition. Results are found for compositions in the range Y(MS) between 0.20 and 0.30 and Z between 0.004 and 0.04. The transition mass M(HeF) increases as either Y(MS) decreases or Z increases. The stellar population transition age t(HeF) is virtually independent of composition and close to 0.6 Gyr. The RGB phase transition occurs almost abruptly over a mass range of only a few tenths of a solar mass or, equivalently, over a time interval of about 0.2 Gyr in the life of a stellar population. During the RGB phase transition the core mass Mc at helium ignition increases very rapidly by about 0.15 solar mass, while the luminosity at the tip of the RGB increases by about one order of magnitude. Absolute minima are found for the values of Mc and the RGB tip luminosity.
[Pregnancy and lactation are not risk factors for osteoporosis or fractures].
Karlsson, Magnus K; Ahlborg, Henrik G; Karlsson, Caroline
Observational and case control studies infer that a pregnancy and a period of lactation are followed by loss in bone mass of up to 5%. The reason for this loss is virtually impossible to conclude as so many factors known to influence the bone mass undergo changes during a pregnancy and lactation. The increased calcium demand, changed nutritional habits, reduced smoking and alcohol consumption seen in many women during these periods, the changes in body weight and fat content, the changed level of physical activity and the changed levels of hormones with potential to influence the bone metabolism could all influence the bone mass. Most studies also report that the deficit in "bone mass" normalises after weaning. Multiple pregnancies and long total duration of lactation can not be regarded as risk factors for osteoporosis and fragility fractures as most reports indicate that women with multiple pregnancies have similar or higher bone mass and similar or lower fracture incidence than their peers with no children.
Giant dedifferentiated liposarcoma of small bowel mesentery: a case report.
Meher, Susanta; Mishra, Tushar Subhadarshan; Rath, Satyajit; Sasmal, Prakash Kumar; Mishra, Pritinanda; Patra, Susama
2016-09-21
Dedifferentiated liposarcoma is an uncommon variant of liposarcoma, with poor prognosis and higher preponderance to local recurrence. Only nine cases of dedifferentiated liposarcoma of small bowel mesentery have been reported till now. This is a case of giant dedifferentiated liposarcoma of the small bowel mesentery, weighing nearly 9 kg (19.8 lbs), with synchronous lesions in the extraperitoneal space, which is the first such case to be reported. We report a case of a 62-year-old man, who presented with a huge abdominal mass occupying nearly the entire abdomen. A contrast enhanced computed tomography of abdomen and pelvis revealed a large, poorly enhancing, heterogeneous, lobulated mass of size 27 × 16 cm, displacing the bowel loops peripherally. At laparotomy, a large mass arising from the small bowel mesentery was found. In addition, many other smaller synchronous lesions were studded in the entire small bowel mesentery and a couple more in the extraperitoneal space. A palliative excision of the giant mass along with the adjacent small bowel was done. The other smaller swellings were not causing any mass effect and were left behind as they were numerous, virtually ruling out any possibility of a curative excision. The histopathological examination suggested the diagnosis of dedifferentiated liposarcoma. On immunohistochemistry, S-100 was positive in the well-differentiated sarcomatous areas. The CD 117 and SMA were strongly negative ruling out the possibility of a gastrointestinal stromal tumour. The CD 34 however was positive in the tumour cells. Dedifferentiated liposarcoma of the small bowel mesentery is rare. Involvement of nearly whole of the small bowel mesentery in the disease process virtually rules out the possibility of a curative resection, the mainstay of management. This report would add to the knowledge of this rare disease and the possible therapeutic problem that may be encountered in case of multifocal disease.
First virtual endocasts of adapiform primates.
Harrington, Arianna R; Silcox, Mary T; Yapuncich, Gabriel S; Boyer, Doug M; Bloch, Jonathan I
2016-10-01
Well-preserved crania of notharctine adapiforms from the Eocene of North America provide the best direct evidence available for inferring neuroanatomy and encephalization in early euprimates (crown primates). Virtual endocasts of the notharctines Notharctus tenebrosus (n = 3) and Smilodectes gracilis (n = 4) from the middle Eocene Bridger formation of Wyoming, and the late Eocene European adapid adapiform Adapis parisiensis (n = 1), were reconstructed from high-resolution X-ray computed tomography (CT) data. While the three species share many neuroanatomical similarities differentiating them from plesiadapiforms (stem primates) and extant euprimates, our sample of N. tenebrosus displays more variation than that of S. gracilis, possibly related to differences in the patterns of cranial sexual dimorphism or within-lineage evolution. Body masses predicted from associated teeth suggest that N. tenebrosus was larger and had a lower encephalization quotient (EQ) than S. gracilis, despite their close relationship and similar inferred ecologies. Meanwhile, body masses predicted from cranial length of the same specimens suggest that the two species were more similar, with overlapping body mass and EQ, although S. gracilis exhibits a range of EQs shifted upwards relative to that of N. tenebrosus. While associated data from other parts of the skeleton are mostly lacking for specimens included in this study, measurements for unassociated postcrania attributed to these species yield body mass and EQ estimates that are also more similar to each other than those based on teeth. Regardless of the body mass prediction method used, results suggest that the average EQ of adapiforms was similar to that of plesiadapiforms, only overlapped the lower quadrant for the range of extant strepsirrhines, and did not overlap with the range of extant haplorhines. However, structural changes evident in these endocasts suggest that early euprimates relied more on vision than olfaction relative to plesiadapiforms, despite having relatively small endocranial volumes compared to extant taxa. Copyright © 2016 Elsevier Ltd. All rights reserved.
Musile, Giacomo; Cenci, Lucia; Piletska, Elena; Gottardo, Rossella; Bossi, Alessandra M; Bortolotti, Federica
2018-07-27
The aim of the present work was to develop a novel in-house mixed-mode SPE sorbent to be used for the HPLC-Ion TrapMS determination of 16 basic drugs in urine. By using a computational modelling, a virtual monomer library was screened identifying three suitable functional monomers, methacrylic acid (MAA), itaconic acid (IA) and 2-acrylamide-2-methylpropane sulfonic acid (AMPSA), respectively. Three different sorbents were then synthetized based on these monomers, and using as cross-linker trimethylolpropane trimethacrylate (TMPTMA). The sorbent characterization analyses brought to the selection of the AMPSA based phase. Using this novel in-house sorbent, a SPE-HPLC-Ion TrapMS method for drug analysis in urine was validated proving to be selective and accurate and showing a sensitivity adequate for toxicological urine analysis. The comparison of the in-house mixed-mode SPE sorbent with two analogous commercial mixed-mode SPE phases showed that the first one was better not only in terms of process efficiency, but also in terms of quality-price rate. To the best of our knowledge, this is the first time in which an in-house SPE procedure has been applied to the toxicological analysis of a complex matrix, such as urine. Copyright © 2018 Elsevier B.V. All rights reserved.
Mass Spectrometry Using Nanomechanical Systems: Beyond the Point-Mass Approximation.
Sader, John E; Hanay, M Selim; Neumann, Adam P; Roukes, Michael L
2018-03-14
The mass measurement of single molecules, in real time, is performed routinely using resonant nanomechanical devices. This approach models the molecules as point particles. A recent development now allows the spatial extent (and, indeed, image) of the adsorbate to be characterized using multimode measurements ( Hanay , M. S. , Nature Nanotechnol. , 10 , 2015 , pp 339 - 344 ). This "inertial imaging" capability is achieved through virtual re-engineering of the resonator's vibrating modes, by linear superposition of their measured frequency shifts. Here, we present a complementary and simplified methodology for the analysis of these inertial imaging measurements that exhibits similar performance while streamlining implementation. This development, together with the software that we provide, enables the broad implementation of inertial imaging that opens the door to a range of novel characterization studies of nanoscale adsorbates.
Research of Precataclysmic Variables with Radius Excesses
NASA Astrophysics Data System (ADS)
Deminova, N. R.; Shimansky, V. V.; Borisov, N. V.; Gabdeev, M. M.; Shimanskaya, N. N.
2017-06-01
The results of spectroscopic observations of the pre-cataclysmic variable NSVS 14256825, which is a HW Vir binary system, were analyzed. The chemical composition is determined, the radial velocities and equivalent widths of a given star are measured. The fundamental parameters of the components were determined (R1 = 0.166 R⊙ , M2 = 0.100 M⊙ , R2 = 0.122 R⊙). It is shown that the secondary component has a mass close to the mass of brown dwarfs. A comparison of two close binary systems is made: HS 2333 + 3927 and NSVS 14256825. A radius-to-mass relationship for the secondary components of the studied pre-cataclysmic variables is constructed. It is concluded that an excess of radii relative to model predictions for MS stars is observed in virtually all systems.
Virtual Balancing for Studying and Training Postural Control.
Buettner, Daniela; Dalin, Daniela; Wiesmeier, Isabella K; Maurer, Christoph
2017-01-01
Postural control during free stance has been frequently interpreted in terms of balancing an inverted pendulum. This even holds, if subjects do not balance their own, but an external body weight. We introduce here a virtual balancing apparatus, which produces torque in the ankle joint as a function of ankle angle resembling the gravity and inertial effects of free standing. As a first aim of this study, we systematically modified gravity, damping, and inertia to examine its effect on postural control beyond the physical constraints given in the real world. As a second aim, we compared virtual balancing to free stance to test its suitability for balance training in patients who are not able to balance their full body weight due to certain medical conditions. In a feasibility study, we analyzed postural control during free stance and virtual balancing in 15 healthy subjects. Postural control was characterized by spontaneous sway measures and measures of perturbed stance. During free stance, perturbations were induced by pseudorandom anterior-posterior tilts of the body support surface. In the virtual balancing task, we systematically varied the anterior-posterior position of the foot plate where the balancing forces are zero following a similar pseudorandom stimulus profile. We found that subjects' behavior during virtual balancing resembles free stance on a tilting platform. This specifically holds for the profile of body excursions as a function of stimulus frequencies. Moreover, non-linearity between stimulus and response amplitude is similar in free and virtual balancing. The overall larger stimulus induced body excursions together with an altered phase behavior between stimulus and response could be in part explained by the limited use of vestibular and visual feedback in our experimental setting. Varying gravity or damping significantly affected postural behavior. Inertia as an isolated factor had a mild effect on the response functions. We conclude that virtual balancing may be well suited to simulate conditions which could otherwise only be realized in space experiments or during parabolic flights. Further studies are needed to examine patients' potential benefit of virtual balance training.
Virtual Balancing for Studying and Training Postural Control
Buettner, Daniela; Dalin, Daniela; Wiesmeier, Isabella K.; Maurer, Christoph
2017-01-01
Postural control during free stance has been frequently interpreted in terms of balancing an inverted pendulum. This even holds, if subjects do not balance their own, but an external body weight. We introduce here a virtual balancing apparatus, which produces torque in the ankle joint as a function of ankle angle resembling the gravity and inertial effects of free standing. As a first aim of this study, we systematically modified gravity, damping, and inertia to examine its effect on postural control beyond the physical constraints given in the real world. As a second aim, we compared virtual balancing to free stance to test its suitability for balance training in patients who are not able to balance their full body weight due to certain medical conditions. In a feasibility study, we analyzed postural control during free stance and virtual balancing in 15 healthy subjects. Postural control was characterized by spontaneous sway measures and measures of perturbed stance. During free stance, perturbations were induced by pseudorandom anterior-posterior tilts of the body support surface. In the virtual balancing task, we systematically varied the anterior-posterior position of the foot plate where the balancing forces are zero following a similar pseudorandom stimulus profile. We found that subjects' behavior during virtual balancing resembles free stance on a tilting platform. This specifically holds for the profile of body excursions as a function of stimulus frequencies. Moreover, non-linearity between stimulus and response amplitude is similar in free and virtual balancing. The overall larger stimulus induced body excursions together with an altered phase behavior between stimulus and response could be in part explained by the limited use of vestibular and visual feedback in our experimental setting. Varying gravity or damping significantly affected postural behavior. Inertia as an isolated factor had a mild effect on the response functions. We conclude that virtual balancing may be well suited to simulate conditions which could otherwise only be realized in space experiments or during parabolic flights. Further studies are needed to examine patients' potential benefit of virtual balance training. PMID:29018320
NASA Astrophysics Data System (ADS)
Lubecka, Emilia A.; Liwo, Adam
2017-09-01
Based on the theory of the construction of coarse-grained force fields for polymer chains described in our recent work [A. K. Sieradzan et al., J. Chem. Phys. 146, 124106 (2017)], in this work effective coarse-grained potentials, to be used in the SUGRES-1P model of polysaccharides that is being developed in our laboratory, have been determined for the O ⋯O ⋯O virtual-bond angles (θ ) and for the dihedral angles for rotation about the O ⋯O virtual bonds (γ ) of 1 → 4 -linked glucosyl polysaccharides, for all possible combinations of [α ,β ]-[d,l]-glucose. The potentials of mean force corresponding to the virtual-bond angles and the virtual-bond dihedral angles were calculated from the free-energy surfaces of [α ,β ]-[d,l]-glucose pairs, determined by umbrella-sampling molecular-dynamics simulations with the AMBER12 force field, or combinations of the surfaces of two pairs sharing the overlapping residue, respectively, by integrating the respective Boltzmann factor over the dihedral angles λ for the rotation of the sugar units about the O ⋯O virtual bonds. Analytical expressions were subsequently fitted to the potentials of mean force. The virtual-bond-torsional potentials depend on both virtual-bond-dihedral angles and virtual-bond angles. The virtual-bond-angle potentials contain a single minimum at about θ =14 0° for all pairs except β -d-[α ,β ] -l-glucose, where the global minimum is shifted to θ =150° and a secondary minimum appears at θ =90°. The torsional potentials favor small negative γ angles for the α -d-glucose and extended negative angles γ for the β -d-glucose chains, as observed in the experimental structures of starch and cellulose, respectively. It was also demonstrated that the approximate expression derived based on Kubo's cluster-cumulant theory, whose coefficients depend on the identity of the disugar units comprising a trisugar unit that defines a torsional potential, fits simultaneously all torsional potentials very well, thus reducing the number of parameters significantly.
The Critical Role of Self-Contact for Embodiment in Virtual Reality.
Bovet, Sidney; Debarba, Henrique Galvan; Herbelin, Bruno; Molla, Eray; Boulic, Ronan
2018-04-01
With the broad range of motion capture devices available on the market, it is now commonplace to directly control the limb movement of an avatar during immersion in a virtual environment. Here, we study how the subjective experience of embodying a full-body controlled avatar is influenced by motor alteration and self-contact mismatches. Self-contact is in particular a strong source of passive haptic feedback and we assume it to bring a clear benefit in terms of embodiment. For evaluating this hypothesis, we experimentally manipulate self-contacts and the virtual hand displacement relatively to the body. We introduce these body posture transformations to experimentally reproduce the imperfect or incorrect mapping between real and virtual bodies, with the goal of quantifying the limits of acceptance for distorted mapping on the reported body ownership and agency. We first describe how we exploit egocentric coordinate representations to perform a motion capture ensuring that real and virtual hands coincide whenever the real hand is in contact with the body. Then, we present a pilot study that focuses on quantifying our sensitivity to visuo-tactile mismatches. The results are then used to design our main study with two factors, offset (for self-contact) and amplitude (for movement amplification). Our main result shows that subjects' embodiment remains important, even when an artificially amplified movement of the hand was performed, but provided that correct self-contacts are ensured.
The trade of virtual water: do property rights matter?
NASA Astrophysics Data System (ADS)
Xu, Ankai
2016-04-01
My paper examines the determinants of the virtual water trade - embodied in the trade of agriculture products - by estimating a structural gravity model. In particular, it tests the relationship between property rights and the export of water-intensive agricultural products based on water footprint data in Mekonnen and Hoekstra (2011, 2012). Using two different measures of property rights protection, I show that countries with weaker property rights have an apparent comparative advantage in the trade of water-intensive products. After controlling for the economic size, natural resource endowments, and possible effects of reverse causality, the trade flow of virtual water is negatively and significantly correlated with the property rights index of the exporting country. Holding other factors constant, one point increase in the property rights index of a country is associated with a 24% - 36% decrease in its virtual water export, whereas a 1% increase in the natural resource protection index of a country is associated with a 16% decrease in its virtual water export. This paper is the first empirical work that tests the relationship between property rights and trade of water-intensive products, offering a new perceptive in the debate of virtual water trade. The findings provide a possible explanation on the paradoxical evidence that some countries with scarce water resources export water-intensive products. The result is important not only in terms of its theoretical relevance, but also its policy implications. As prescribed by the model of trade and property rights, when countries with weaker property rights open to international trade, they are more likely to over-exploit and thus expedite the depletion of natural resources.
Virtual water management in the Roman world
NASA Astrophysics Data System (ADS)
Dermody, B.; Van Beek, L. P.; Meeks, E.; Klein Goldewijk, K.; Bierkens, M. F.; Scheidel, W.; Wassen, M. J.; Van der Velde, Y.; Dekker, S. C.
2013-12-01
Climate change can have extreme societal impacts particularly in regions that are water-limited for agriculture. A society's ability to manage its water resources in such environments is critical to its long-term viability. Water management can involve improving agricultural yields through in-situ irrigation or the redistribution of virtual water resources through trade in food. Here, we explore how such water management strategies improve societal resilience by examining virtual water management during the Roman Empire in the water-limited region of the Mediterranean. Climate was prescribed based on previously published reconstructions which show that during the Roman Empire when the Central Mediterranean was wetter, the West and Southeastern Mediterranean became drier and vice-versa. Evidence indicates that these shifts in the climatic seesaw may have occurred relatively rapidly. Using the Global hydrological model PCR GLOBWB and estimates of landcover based on the HYDE dataset we generate potential agricultural yield maps under two extremes of this climatic seesaw. HYDE estimates of population in conjunction with potential yield estimates are used to identify regions of Mediterranean with a yield surplus or deficit. The surplus and deficit regions form nodes on a virtual water redistribution network with transport costs taken from the Stanford Geospatial Network Model of the Roman World (ORBIS). Our demand-driven, virtual water redistribution network allows us to quantitatively explore the importance of water management strategies such as irrigation and food trade for the Romans. By examining virtual water transport cost anomalies between climate scenarios our analysis highlights regions of the Mediterranean that were most vulnerable to climate change during the Roman Period.
A Multi-Paradigm Modeling Framework to Simulate Dynamic Reciprocity in a Bioreactor
Kaul, Himanshu; Cui, Zhanfeng; Ventikos, Yiannis
2013-01-01
Despite numerous technology advances, bioreactors are still mostly utilized as functional black-boxes where trial and error eventually leads to the desirable cellular outcome. Investigators have applied various computational approaches to understand the impact the internal dynamics of such devices has on overall cell growth, but such models cannot provide a comprehensive perspective regarding the system dynamics, due to limitations inherent to the underlying approaches. In this study, a novel multi-paradigm modeling platform capable of simulating the dynamic bidirectional relationship between cells and their microenvironment is presented. Designing the modeling platform entailed combining and coupling fully an agent-based modeling platform with a transport phenomena computational modeling framework. To demonstrate capability, the platform was used to study the impact of bioreactor parameters on the overall cell population behavior and vice versa. In order to achieve this, virtual bioreactors were constructed and seeded. The virtual cells, guided by a set of rules involving the simulated mass transport inside the bioreactor, as well as cell-related probabilistic parameters, were capable of displaying an array of behaviors such as proliferation, migration, chemotaxis and apoptosis. In this way the platform was shown to capture not only the impact of bioreactor transport processes on cellular behavior but also the influence that cellular activity wields on that very same local mass transport, thereby influencing overall cell growth. The platform was validated by simulating cellular chemotaxis in a virtual direct visualization chamber and comparing the simulation with its experimental analogue. The results presented in this paper are in agreement with published models of similar flavor. The modeling platform can be used as a concept selection tool to optimize bioreactor design specifications. PMID:23555740
Baryon masses and σ terms in SU(3) BChPT × 1/Nc
NASA Astrophysics Data System (ADS)
Fernando, I. P.; Alarcón, J. M.; Goity, J. L.
2018-06-01
Baryon masses and nucleon σ terms are studied with the effective theory that combines the chiral and 1 /Nc expansions for three flavors. In particular the connection between the deviation of the Gell-Mann-Okubo relation and the σ term associated with the scalar density u bar u + d bar d - 2 s bar s is emphasized. The latter is at lowest order related to a mass combination whose low value has given rise to a σ term puzzle. It is shown that while the nucleon σ terms have a well behaved low energy expansion, that mass combination is affected by large higher order corrections non-analytic in quark masses. Adding to the analysis lattice QCD baryon masses, it is found that σπN = 69 (10) MeV and σs has natural magnitude within its relatively large uncertainty.
Baryon masses and σ terms in SU(3) BChPT×1/N c
Fernando, Ishara P.; Alarcon-Soriano, Jose-Manuel; Goity, Jose Luis
2018-04-27
Baryon masses and nucleonmore » $$\\sigma$$ terms are studied with the effective theory that combines the chiral and $$1/N_c$$ expansions for three flavors. In particular the connection between the deviation of the Gell-Mann-Okubo relation and the $$\\sigma$$ term associated with the scalar density $$\\bar u u+\\bar d d-2\\bar s s$$ is emphasized. The latter is at lowest order related to a mass combination whose low value has given rise to a $$\\sigma$$ term puzzle. It is shown that while the nucleon $$\\sigma$$ terms have a well behaved low energy expansion, that mass combination is affected by large higher order corrections non-analytic in quark masses. Lastly, adding to the analysis lattice QCD baryon masses, it is found that $$\\sigma_{\\pi N}=69(10)$$~MeV and $$\\sigma_s$$ has natural magnitude within its relative large uncertainty.« less
Baryon masses and σ terms in SU(3) BChPT×1/N c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernando, Ishara P.; Alarcon-Soriano, Jose-Manuel; Goity, Jose Luis
Baryon masses and nucleonmore » $$\\sigma$$ terms are studied with the effective theory that combines the chiral and $$1/N_c$$ expansions for three flavors. In particular the connection between the deviation of the Gell-Mann-Okubo relation and the $$\\sigma$$ term associated with the scalar density $$\\bar u u+\\bar d d-2\\bar s s$$ is emphasized. The latter is at lowest order related to a mass combination whose low value has given rise to a $$\\sigma$$ term puzzle. It is shown that while the nucleon $$\\sigma$$ terms have a well behaved low energy expansion, that mass combination is affected by large higher order corrections non-analytic in quark masses. Lastly, adding to the analysis lattice QCD baryon masses, it is found that $$\\sigma_{\\pi N}=69(10)$$~MeV and $$\\sigma_s$$ has natural magnitude within its relative large uncertainty.« less
Flavor-changing Z decays: A window to ultraheavy quarks?
NASA Astrophysics Data System (ADS)
Ganapathi, V.; Weiler, T.; Laermann, E.; Schmitt, I.; Zerwas, P. M.
1983-02-01
We study flavor-changing Z decays into quarks, Z-->Q+q¯, in the standard SU(2)×U(1) theory with sequential generations. Such decays occur in higher-order electroweak interactions, with a probability growing as the fourth power of the mass of the heaviest (virtual) quark mediating the transition. With the possible exception of Z-->bs¯, these decay modes are generally very rare in the three-generation scheme. However, with four generations Z-->b'b¯ is observable if the t' mass is a few hundred GeV. Such decay modes could thus provide a glimpse of the ultraheavy-quark spectrum.
Planetesimal dissolution in the envelopes of the forming, giant planets
NASA Technical Reports Server (NTRS)
Pollack, J. B.; Podolak, M.; Bodenheimer, P.; Christofferson, B.
1986-01-01
An evaluation is made of the capacity of planetesimals to penetrate the envelopes of giant planets during their growth phase, by means of a core instability mechanism in which the growing core becomes gradually more adept in the gravitational concentration of gas from its solar nebula environment, until a runaway gas accretion occurs. If most of the accreted mass is contained in planetesimals larger that about 1 km, the critical core mass for runaway accretion will not significantly change when planetesimal dissolution is taken into account; it is accordingly suggested that giant planet envelopes should contain above-solar proportions of virtually all elements, relative to hydrogen.
The micrometeoroid complex and evolution of the lunar regolith
NASA Technical Reports Server (NTRS)
Hoerz, F.; Morrison, D. A.; Gault, D. E.; Oberbeck, V. R.; Quaide, W. L.; Vedder, J. F.; Brownlee, D. E.; Hartung, J. B.
1974-01-01
The interaction of the micrometeoroid complex with the lunar surface is evidenced by numerous glass-lined microcraters on virtually every lunar surface exposed to space. Such craters range in size from less than .1 micron to approximately 2 sq cm diameter. Using small scale laboratory cratering experiments for calibration, the observed crater-sized frequency distributions may be converted into micrometeoroid mass distributions. These lunar mass distributions are in essential agreement with satellite data. Some physical properties of micrometeoroids may be deduced by comparing lunar crater geometries with those obtained in laboratory experiments. The proponderance of circular outlines of lunar microcraters necessitates equidimensional, if not spherical, micrometeoroids.
Measuring Aerosol Size Distributions from the NASA DC-8 in SOLVE II
NASA Technical Reports Server (NTRS)
Reeves, Michael
2003-01-01
The University of Denver Focused Cavity Aerosol Spectrometer (FCAS 11) and Nucleation-Mode Aerosol Size Spectrometer (N-MASS) were successfully integrated and flown aboard NASA s DC-8 for the second SAGE I11 Ozone Loss and Validation Experiment (SOLVE 11). Both instruments performed well during SOLVE, with virtually complete data coverage for all mission and test flights. The few exceptions to this were the occasional simultaneous zero-check for the instruments, and some data loss for channel 4 of the N-MASS. The only consequence of the latter is reduced resolution in the 15 to 60 nm range for the affected size distributions.
Modelisation of an unspecialized quadruped walking mammal.
Neveu, P; Villanova, J; Gasc, J P
2001-12-01
Kinematics and structural analyses were used as basic data to elaborate a dynamic quadruped model that may represent an unspecialized mammal. Hedgehogs were filmed on a treadmill with a cinefluorographic system providing trajectories of skeletal elements during locomotion. Body parameters such as limb segments mass and length, and segments centre of mass were checked from cadavers. These biological parameters were compiled in order to build a virtual quadruped robot. The robot locomotor behaviour was compared with the actual hedgehog to improve the model and to disclose the necessary changes. Apart from use in robotics, the resulting model may be useful to simulate the locomotion of extinct mammals.
Endoscopic ultrasound: Elastographic lymph node evaluation.
Dietrich, Christoph F; Jenssen, Christian; Arcidiacono, Paolo G; Cui, Xin-Wu; Giovannini, Marc; Hocke, Michael; Iglesias-Garcia, Julio; Saftoiu, Adrian; Sun, Siyu; Chiorean, Liliana
2015-01-01
Different imaging techniques can bring different information which will contribute to the final diagnosis and further management of the patients. Even from the time of Hippocrates, palpation has been used in order to detect and characterize a body mass. The so-called virtual palpation has now become a reality due to elastography, which is a recently developed technique. Elastography has already been proving its added value as a complementary imaging method, helpful to better characterize and differentiate between benign and malignant masses. The current applications of elastography in lymph nodes (LNs) assessment by endoscopic ultrasonography will be further discussed in this paper, with a review of the literature and future perspectives.
ERIC Educational Resources Information Center
Association for Education in Journalism and Mass Communication.
The Communication Technology and Policy section of the Proceedings contains the following 15 papers: "The Virtual Sphere: The Internet as a Public Sphere" (Zizi Papacharissi); "Toward a Typology of Internet Users and Online Privacy Concerns" (Kim Bartel Sheehan); "Blind Spots of the Communications Decency Act Debate: A…