Spectral Analysis within the Virtual Observatory: The GAVO Service TheoSSA
NASA Astrophysics Data System (ADS)
Ringat, E.
2012-03-01
In the last decade, numerous Virtual Observatory organizations were established. One of these is the German Astrophysical Virtual Observatory (GAVO) that e.g. provides access to spectral energy distributions via the service TheoSSA. In a pilot phase, these are based on the Tübingen NLTE Model-Atmosphere Package (TMAP) and suitable for hot, compact stars. We demonstrate the power of TheoSSA in an application to the sdOB primary of AA Doradus by comparison with a “classical” spectral analysis.
A Virtual Field Trip to the Gemini Observatory
NASA Astrophysics Data System (ADS)
Fisher, R. Scott; Michaud, P. D.
2010-01-01
Live from Gemini (LfG) is a virtual field trip using video conferencing technology to connect primary, secondary and post-secondary students with scientists and educators at the Gemini Observatory. As a pilot project, LfG is rapidly becoming one of the observatory's most often-requested educational programs for learners of all ages. The program aligns exceptionally well with national science (and technology) standards, as well as existing school curricula. This combination makes it easy for teachers to justify participation in the program, especially as the necessary video conferencing technology becomes ever more ubiquitous in classrooms and technology learning centers around the world. In developing and testing this pilot project, a programmatic approach and philosophy evolved that includes post-field-trip educational materials, multi-disciplinary subject matter (astronomy, geology, mathematics, meteorology, engineering and even language - the program is offered in Spanish from Gemini South in Chile), and the establishment of a personal connection and rapport with students. The presenters work to create a comfortable interaction despite the perceived technological barriers. The authors’ experiences with the LfG pilot project convince us that this model is viable for almost any astronomical observatory and should be considered by any dynamic, technology- and education-oriented facility.
NASA Astrophysics Data System (ADS)
Freer, J. E.; Bloomfield, J. P.; Johnes, P. J.; MacLeod, C.; Reaney, S.
2010-12-01
There are many challenges in developing effective and integrated catchment management solutions for hydrology and water quality issues. Such solutions should ideally build on current scientific evidence to inform policy makers and regulators and additionally allow stakeholders to take ownership of local and/or national issues, in effect bringing together ‘communities of practice’. A strategy being piloted in the UK as the Pilot Virtual Observatory (pVO), funded by NERC, is to demonstrate the use of cyber-infrastructure and cloud computing resources to investigate better methods of linking data and models and to demonstrate scenario analysis for research, policy and operational needs. The research will provide new ways the scientific and stakeholder communities come together to exploit current environmental information, knowledge and experience in an open framework. This poster presents the project scope and methodologies for the pVO work dealing with national modelling of hydrology and macro-nutrient biogeochemistry. We evaluate the strategies needed to robustly benchmark our current predictive capability of these resources through ensemble modelling. We explore the use of catchment similarity concepts to understand if national monitoring programs can inform us about the behaviour of catchments. We discuss the challenges to applying these strategies in an open access and integrated framework and finally we consider the future for such virtual observatory platforms for improving the way we iteratively improve our understanding of catchment science.
AstroGrid: the UK's Virtual Observatory Initiative
NASA Astrophysics Data System (ADS)
Mann, Robert G.; Astrogrid Consortium; Lawrence, Andy; Davenhall, Clive; Mann, Bob; McMahon, Richard; Irwin, Mike; Walton, Nic; Rixon, Guy; Watson, Mike; Osborne, Julian; Page, Clive; Allan, Peter; Giaretta, David; Perry, Chris; Pike, Dave; Sherman, John; Murtagh, Fionn; Harra, Louise; Bentley, Bob; Mason, Keith; Garrington, Simon
AstroGrid is the UK's Virtual Observatory (VO) initiative. It brings together the principal astronomical data centres in the UK, and has been funded to the tune of ˜pounds 5M over the next three years, via PPARC, as part of the UK e--science programme. Its twin goals are the provision of the infrastructure and tools for the federation and exploitation of large astronomical (X-ray to radio), solar and space plasma physics datasets, and the delivery of federations of current datasets for its user communities to exploit using those tools. Whilst AstroGrid's work will be centred on existing and future (e.g. VISTA) UK datasets, it will seek solutions to generic VO problems and will contribute to the developing international virtual observatory framework: AstroGrid is a member of the EU-funded Astrophysical Virtual Observatory project, has close links to a second EU Grid initiative, the European Grid of Solar Observations (EGSO), and will seek an active role in the development of the common standards on which the international virtual observatory will rely. In this paper we shall primarily describe the concrete plans for AstroGrid's one-year Phase A study, which will centre on: (i) the definition of detailed science requirements through community consultation; (ii) the undertaking of a ``functionality market survey" to test the utility of existing technologies for the VO; and (iii) a pilot programme of database federations, each addressing different aspects of the general database federation problem. Further information on AstroGrid can be found at AstroGrid .
Implementing an Education and Outreach Program for the Gemini Observatory in Chile.
NASA Astrophysics Data System (ADS)
Garcia, M. A.
2006-08-01
Beginning in 2001, the Gemini Observatory began the development of an innovative and aggressive education and outreach program at its Southern Hemisphere site in northern Chile. A principal focus of this effort is centered on local education and outreach to communities surrounding the observatory and its base facility in La Serena Chile. Programs are now established with local schools using two portable StarLab planetaria, an internet-based teacher exchange called StarTeachers and multiple partnerships with local educational institutions. Other elements include a CD-ROM-based virtual tour that allows students, teachers and the public to experience the observatory's sites in Chile and Hawaii. This virtual environment allows interaction using a variety of immersive scenarios such as a simulated observation using real data from Gemini. Pilot projects like "Live from Gemini" are currently being developed which use internet videoconferencing technologies to bring the observatory's facilities into classrooms at universities and remote institutions. Lessons learned from the implementation of these and other programs will be introduced and the challenges of developing educational programming in a developing country will be shared.
The European Virtual Observatory EURO-VO | Euro-VO
: VOTECH EuroVO-DCA EuroVO-AIDA EuroVO-ICE The European Virtual Observatory EURO-VO The Virtual Observatory news Workshop on Virtual Observatory Tools and their Applications, Krakow, Poland June 16-18, organized present the Astronomical Virtual Observatory at the Copernicus (European Earth Observation Programme) Big
NASA Astrophysics Data System (ADS)
Kroll, Peter
The real heritage of Sonneberg Observatory consists of several buildings with seven domes, a number of telescopes for photographic and photoelectric measurements, a plate archive - which is the second-largest in the world - and a scientific library. While the instruments are today mainly used for public observing tours and to a limited degree for continuing sky patrol, the plate archive is systematically scanned in order to make the whole information stored in the emulsion of the plates accessible to the astronomical community and to allow the scientific study of all stars ever recorded. First pilot studies give a taste of what output can be expected from the digitized plate archive.
Worldwide R&D of Virtual Observatory
NASA Astrophysics Data System (ADS)
Cui, C. Z.; Zhao, Y. H.
2008-07-01
Virtual Observatory (VO) is a data intensive online astronomical research and education environment, taking advantages of advanced information technologies to achieve seamless and uniform access to astronomical information. The concept of VO was introduced in the late 1990s to meet the challenges brought up with data avalanche in astronomy. In the paper, current status of International Virtual Observatory Alliance, technical highlights from world wide VO projects are reviewed, a brief introduction of Chinese Virtual Observatory is given.
Astronomical virtual observatory and the place and role of Bulgarian one
NASA Astrophysics Data System (ADS)
Petrov, Georgi; Dechev, Momchil; Slavcheva-Mihova, Luba; Duchlev, Peter; Mihov, Bojko; Kochev, Valentin; Bachev, Rumen
2009-07-01
Virtual observatory could be defined as a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that combine existing databases from ground-based and orbiting observatories, scientific facility especially equipped to detect and record naturally occurring scientific phenomena. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies has been compiled from observations in a variety of wavelengths-optical, radio, infrared, gamma ray, X-ray and more. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. During the autumn of the 2001 (26.09.2001) six organizations from Europe put the establishment of the Astronomical Virtual Observatory (AVO)-ESO, ESA, Astrogrid, CDS, CNRS, Jodrell Bank (Dolensky et al., 2003). Its aims have been outlined as follows: - To provide comparative analysis of large sets of multiwavelength data; - To reuse data collected by a single source; - To provide uniform access to data; - To make data available to less-advantaged communities; - To be an educational tool. The Virtual observatory includes: - Tools that make it easy to locate and retrieve data from catalogues, archives, and databases worldwide; - Tools for data analysis, simulation, and visualization; - Tools to compare observations with results obtained from models, simulations and theory; - Interoperability: services that can be used regardless of the clients computing platform, operating system and software capabilities; - Access to data in near real-time, archived data and historical data; - Additional information - documentation, user-guides, reports, publications, news and so on. This large growth of astronomical data and the necessity of an easy access to those data led to the foundation of the International Virtual Observatory Alliance (IVOA). IVOA was formed in June 2002. By January 2005, the IVOA has grown to include 15 funded VO projects from Australia, Canada, China, Europe, France, Germany, Hungary, India, Italy, Japan, Korea, Russia, Spain, the United Kingdom, and the United States. At the time being Bulgaria is not a member of European Astronomical Virtual Observatory and as the Bulgarian Virtual Observatory is not a legal entity, we are not members of IVOA. The main purpose of the project is Bulgarian Virtual Observatory to join the leading virtual astronomical institutions in the world. Initially the Bulgarian Virtual Observatory will include: - BG Galaxian virtual observatory; - BG Solar virtual observatory; - Department Star clusters of IA, BAS; - WFPDB group of IA, BAS. All available data will be integrated in the Bulgarian centers of astronomical data, conducted by the Wide Field Plate Archive data centre. For the above purpose POSTGRESQL or/and MySQL will be installed on the server of BG-VO and SAADA tools, ESO-MEX or/and DAL ToolKit to transform our FITS files in standard format for VO-tools. A part of the participants was acquainted with the principles of these products during the "Days of virtual observatory in Sofia" January, 2008.
Archive interoperability in the Virtual Observatory
NASA Astrophysics Data System (ADS)
Genova, Françoise
2003-02-01
Main goals of Virtual Observatory projects are to build interoperability between astronomical on-line services, observatory archives, databases and results published in journals, and to develop tools permitting the best scientific usage from the very large data sets stored in observatory archives and produced by large surveys. The different Virtual Observatory projects collaborate to define common exchange standards, which are the key for a truly International Virtual Observatory: for instance their first common milestone has been a standard allowing exchange of tabular data, called VOTable. The Interoperability Work Area of the European Astrophysical Virtual Observatory project aims at networking European archives, by building a prototype using the CDS VizieR and Aladin tools, and at defining basic rules to help archive providers in interoperability implementation. The prototype is accessible for scientific usage, to get user feedback (and science results!) at an early stage of the project. ISO archive participates very actively to this endeavour, and more generally to information networking. The on-going inclusion of the ISO log in SIMBAD will allow higher level links for users.
Virtual hydrology observatory: an immersive visualization of hydrology modeling
NASA Astrophysics Data System (ADS)
Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas
2009-02-01
The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.
NASA Astrophysics Data System (ADS)
Hanisch, R. J.
2014-11-01
The concept of the Virtual Observatory arose more-or-less simultaneously in the United States and Europe circa 2000. Ten pages of Astronomy and Astrophysics in the New Millennium: Panel Reports (National Academy Press, Washington, 2001), that is, the detailed recommendations of the Panel on Theory, Computation, and Data Exploration of the 2000 Decadal Survey in Astronomy, are dedicated to describing the motivation for, scientific value of, and major components required in implementing the National Virtual Observatory. European initiatives included the Astrophysical Virtual Observatory at the European Southern Observatory, the AstroGrid project in the United Kingdom, and the Euro-VO (sponsored by the European Union). Organizational/conceptual meetings were held in the US at the California Institute of Technology (Virtual Observatories of the Future, June 13-16, 2000) and at ESO Headquarters in Garching, Germany (Mining the Sky, July 31-August 4, 2000; Toward an International Virtual Observatory, June 10-14, 2002). The nascent US, UK, and European VO projects formed the International Virtual Observatory Alliance (IVOA) at the June 2002 meeting in Garching, with yours truly as the first chair. The IVOA has grown to a membership of twenty-one national projects and programs on six continents, and has developed a broad suite of data access protocols and standards that have been widely implemented. Astronomers can now discover, access, and compare data from hundreds of telescopes and facilities, hosted at hundreds of organizations worldwide, stored in thousands of databases, all with a single query.
The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory
NASA Technical Reports Server (NTRS)
Gurman, Joseph B.
2007-01-01
The Virtual Solar Observatory (VSO) is now able to search for solar data ranging from the radio to gamma rays, obtained from space and groundbased observatories, from 26 sources at 12 data providers, and from 1915 to the present. The solar physics community can use a Web interface or an Application Programming Interface (API) that allows integrating VSO searches into other software, including other Web services. Over the next few years, this integration will be especially obvious as the NASA Heliophysics division sponsors the development of a heliophysics-wide virtual observatory (VO), based on existing VO's in heliospheric, magnetospheric, and ionospheric physics as well as the VSO. We examine some of the challenges and potential of such a "meta-VO."
Ten years of the Spanish Virtual Observatory
NASA Astrophysics Data System (ADS)
Solano, E.
2015-05-01
The main objective of the Virtual Observatory (VO) is to guarantee an easy and efficient access and analysis of the information hosted in astronomical archives. The Spanish Virtual Observatory (SVO) is a project that was born in 2004 with the goal of promoting and coordinating the VO-related activities at national level. SVO is also the national contact point for the international VO initiatives, in particular the International Virtual Observatory Alliance (IVOA) and the Euro-VO project. The project, led by Centro de Astrobiología (INTA-CSIC), is structured around four major topics: a) VO compliance of astronomical archives, b) VO-science, c) VO- and data mining-tools, and d) Education and outreach. In this paper I will describe the most important results obtained by the Spanish Virtual Observatory in its first ten years of life as well as the future lines of work.
Running a distributed virtual observatory: U.S. Virtual Astronomical Observatory operations
NASA Astrophysics Data System (ADS)
McGlynn, Thomas A.; Hanisch, Robert J.; Berriman, G. Bruce; Thakar, Aniruddha R.
2012-09-01
Operation of the US Virtual Astronomical Observatory shares some issues with modern physical observatories, e.g., intimidating data volumes and rapid technological change, and must also address unique concerns like the lack of direct control of the underlying and scattered data resources, and the distributed nature of the observatory itself. In this paper we discuss how the VAO has addressed these challenges to provide the astronomical community with a coherent set of science-enabling tools and services. The distributed nature of our virtual observatory-with data and personnel spanning geographic, institutional and regime boundaries-is simultaneously a major operational headache and the primary science motivation for the VAO. Most astronomy today uses data from many resources. Facilitation of matching heterogeneous datasets is a fundamental reason for the virtual observatory. Key aspects of our approach include continuous monitoring and validation of VAO and VO services and the datasets provided by the community, monitoring of user requests to optimize access, caching for large datasets, and providing distributed storage services that allow user to collect results near large data repositories. Some elements are now fully implemented, while others are planned for subsequent years. The distributed nature of the VAO requires careful attention to what can be a straightforward operation at a conventional observatory, e.g., the organization of the web site or the collection and combined analysis of logs. Many of these strategies use and extend protocols developed by the international virtual observatory community. Our long-term challenge is working with the underlying data providers to ensure high quality implementation of VO data access protocols (new and better 'telescopes'), assisting astronomical developers to build robust integrating tools (new 'instruments'), and coordinating with the research community to maximize the science enabled.
Project on Chinese Virtual Solar Observatory
NASA Astrophysics Data System (ADS)
Lin, Gang-Hua
2004-09-01
With going deep into research of solar physics, development of observational instrument and accumulation of obervation data, it urges people to think such things: using data which is observed in different times, places, bands and history data to seek answers of a plenty science problems. In the meanwhile, researcher can easily search the data and analyze data. This is why the project of the virtual solar observatory gained active replies and operation from observatories, institutes and universities in the world. In this article, how we face to the development of the virtual solar observatory and our preliminary project on CVSO are discussed.
NASA Astrophysics Data System (ADS)
Wilkinson, Mark; Beven, Keith; Brewer, Paul; El-khatib, Yehia; Gemmell, Alastair; Haygarth, Phil; Mackay, Ellie; Macklin, Mark; Marshall, Keith; Quinn, Paul; Stutter, Marc; Thomas, Nicola; Vitolo, Claudia
2013-04-01
Today's world is dominated by a wide range of informatics tools that are readily available to a wide range of stakeholders. There is growing recognition that the appropriate involvement of local communities in land and water management decisions can result in multiple environmental, economic and social benefits. Therefore, local stakeholder groups are increasingly being asked to participate in decision making alongside policy makers, government agencies and scientists. As such, addressing flooding issues requires new ways of engaging with the catchment and its inhabitants at a local level. To support this, new tools and approaches are required. The growth of cloud based technologies offers new novel ways to facilitate this process of exchange of information in earth sciences. The Environmental Virtual Observatory Pilot project (EVOp) is a new initiative from the UK Natural Environment Research Council (NERC) designed to deliver proof of concept for new tools and approaches to support the challenges as outlined above (http://www.evo-uk.org/). The long term vision of the Environmental Virtual Observatory is to: • Make environmental data more visible and accessible to a wide range of potential users including public good applications; • Provide tools to facilitate the integrated analysis of data, greater access to added knowledge and expert analysis and visualisation of the results; • Develop new, added-value knowledge from public and private sector data assets to help tackle environmental challenges. As part of the EVO pilot, an interactive cloud based tool has been developed with local stakeholders. The Local Landscape Visualisation Tool attempts to communicate flood risk in local impacted communities. The tool has been developed iteratively to reflect the needs, interests and capabilities of a wide range of stakeholders. This tool (assessable via a web portal) combines numerous cloud based tools and services, local catchment datasets, hydrological models and novel visualisation techniques. This pilot tool has been developed by engaging with different stakeholder groups in three catchments in the UK; the Afon Dyfi (Wales), the River Tarland (Scotland) and the River Eden (England). Stakeholders were interested in accessing live data in their catchments and looking at different land use change scenarios on flood peaks. Visualisation tools have been created which offer access to real time data (such as river level, rainfall and webcam images). Other tools allow land owners to use cloud based models (example presented here uses Topmodel, a rainfall-runoff model, on a custom virtual machine image on Amazon web services) and local datasets to explore future land use scenarios, allowing them to understand the associated flood risk. Different ways to communicate model uncertainty are currently being investigated and discussed with stakeholders. In summary the pilot project has had positive feedback and has evolved into two unique parts; a web based map tool and a model interface tool. Users can view live data from different sources, combine different data types together (data mash-up), develop local scenarios for land use and flood risk and exploit the dynamic, elastic cloud modelling capability. This local toolkit will reside within a wider EVO platform that will include national and global datasets, models and state of the art cloud computer systems.
NASA Astrophysics Data System (ADS)
Rauch, T.; Reindl, N.
2014-04-01
In the framework of the Virtual Observatory (VO), the German Astrophysical Virtual Observatory GAVO project provides easy access to theoretical spectral energy distributions (SEDs) within the registered GAVO service TheoSSA (http://dc.g-vo.org/theossa). TheoSSA is based on the well established Tübingen NLTE Model-Atmosphere Package (TMAP) for hot, compact stars. This includes central stars of planetary nebulae. We show examples of TheoSSA in operation.
World Virtual Observatory Organization
NASA Astrophysics Data System (ADS)
Ignatyev, Mikhail; Pinigin, Gennadij
On the base of experience of our Unoversity and Observatory we investigate the seven blocks model of virtual organization for consolidation of resources. This model consists of the next blocks: 1.Population-scientists students robots and agents. 2.Aspiration of population groups. 3.Territory. 4.Production. 5.Ecology and safety. 6.Finance. 7. External relations - input and output flows of population information resources.The world virtual observatory is the virtual world which consists of three groups of variables - appearances essences and structured uncertainty which defines the number and distribution of arbitrary coefficients in equivalent equations. The consolodation of recources permit to create the large telescopes with distributed structure on our planet and cosmos. Virtual instruments can have the best characteristics by means of collective effects which have investigated in our paper.
Enabling Virtual Access to Latin-American Southern Observatories
NASA Astrophysics Data System (ADS)
Filippi, G.
2010-12-01
EVALSO (Enabling Virtual Access to Latin-American Southern Observatories) is an international consortium of nine astronomical organisations and research network operators, part-funded under the European Commission FP7, to create and exploit high-speed bandwidth connections to South American observatories. A brief description of the project is presented. The EVALSO Consortium inaugurated a fibre link between the Paranal Observatory and international networks on 4 November 2010 capable of 10 Gigabit per second.
The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory
NASA Astrophysics Data System (ADS)
Gurman, J. B.; Hourclé, J. A.; Bogart, R. S.; Tian, K.; Hill, F.; Suàrez-Sola, I.; Zarro, D. M.; Davey, A. R.; Martens, P. C.; Yoshimura, K.; Reardon, K. M.
2006-12-01
The Virtual Solar Observatory (VSO) has survived its infancy and provides metadata search and data identification for measurements from 45 instrument data sets held at 12 online archives, as well as flare and coronal mass ejection (CME) event lists. Like any toddler, the VSO is good at getting into anything and everything, and is now extending its grasp to more data sets, new missions, and new access methods using its application programming interface (API). We discuss and demonstrate recent changes, including developments for STEREO and SDO, and an IDL-callable interface for the VSO API. We urge the heliophysics community to help civilize this obstreperous youngster by providing input on ways to make the VSO even more useful for system science research in its role as part of the growing cluster of Heliophysics Virtual Observatories.
NASA Astrophysics Data System (ADS)
Murphy, M.; Chenaux, A.; Keenaghan, G.; GIbson, V..; Butler, J.; Pybusr, C.
2017-08-01
In this paper the recording and design for a Virtual Reality Immersive Model of Armagh Observatory is presented, which will replicate the historic buildings and landscape with distant meridian markers and position of its principal historic instruments within a model of the night sky showing the position of bright stars. The virtual reality model can be used for educational purposes allowing the instruments within the historic building model to be manipulated within 3D space to demonstrate how the position measurements of stars were made in the 18th century. A description is given of current student and researchers activities concerning on-site recording and surveying and the virtual modelling of the buildings and landscape. This is followed by a design for a Virtual Reality Immersive Model of Armagh Observatory use game engine and virtual learning platforms and concepts.
Current Status of VO Compliant Data Service in Japanese Virtual Observatory
NASA Astrophysics Data System (ADS)
Shirasaki, Y.; Komiya, Y.; Ohishi, M.; Mizumoto, Y.; Ishihara, Y.; Tsutsumi, J.; Hiyama, T.; Nakamoto, H.; Sakamoto, M.
2012-09-01
In these years, standards to build a Virtual Observatory (VO) data service have been established with the efforts in the International Virtual Observatory Alliance (IVOA). We applied these newly established standards (SSAP, TAP) to our VO service toolkit which was developed to implement earlier VO standards SIAP and (deprecated) SkyNode. The toolkit can be easily installed and provides a GUI interface to construct and manage VO service. In this paper, we describes the architecture of our toolkit and how it is used to start hosting VO service.
A Virtual Observatory Approach to Planetary Data for Vesta and Ceres
NASA Astrophysics Data System (ADS)
Giardino, M.; Fonte, S.; Politi, R.; Ivanovski, S.; Longobardo, A.; Capria, M. T.; Erard, S.; De Sanctis, M. C.
2018-04-01
A virtual observatory service for DAWN/VIR spectral dataset is presented, based upon the IVOA standards adapted to the planetary field. Advantages of such an approach will be discussed, especially concerning interoperability and availability.
Interactive 3D visualization for theoretical virtual observatories
NASA Astrophysics Data System (ADS)
Dykes, T.; Hassan, A.; Gheller, C.; Croton, D.; Krokos, M.
2018-06-01
Virtual observatories (VOs) are online hubs of scientific knowledge. They encompass a collection of platforms dedicated to the storage and dissemination of astronomical data, from simple data archives to e-research platforms offering advanced tools for data exploration and analysis. Whilst the more mature platforms within VOs primarily serve the observational community, there are also services fulfilling a similar role for theoretical data. Scientific visualization can be an effective tool for analysis and exploration of data sets made accessible through web platforms for theoretical data, which often contain spatial dimensions and properties inherently suitable for visualization via e.g. mock imaging in 2D or volume rendering in 3D. We analyse the current state of 3D visualization for big theoretical astronomical data sets through scientific web portals and virtual observatory services. We discuss some of the challenges for interactive 3D visualization and how it can augment the workflow of users in a virtual observatory context. Finally we showcase a lightweight client-server visualization tool for particle-based data sets, allowing quantitative visualization via data filtering, highlighting two example use cases within the Theoretical Astrophysical Observatory.
The Role in the Virtual Astronomical Observatory in the Era of Massive Data Sets
NASA Technical Reports Server (NTRS)
Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.
2012-01-01
The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of services and protocols that respond to the growing size and complexity of astronomy data sets. This paper describes how VAO staff are active in such development efforts, especially in innovative strategies and techniques that recognize the limited operating budgets likely available to astronomers even as demand increases. The project has a program of professional outreach whereby new services and protocols are evaluated.
The role in the Virtual Astronomical Observatory in the era of massive data sets
NASA Astrophysics Data System (ADS)
Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.
2012-09-01
The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of services and protocols that respond to the growing size and complexity of astronomy data sets. This paper describes how VAO staff are active in such development efforts, especially in innovative strategies and techniques that recognize the limited operating budgets likely available to astronomers even as demand increases. The project has a program of professional outreach whereby new services and protocols are evaluated.
Theoretical White Dwarf Spectra on Demand: TheoSSA
NASA Astrophysics Data System (ADS)
Ringat, E.; Rauch, T.
2010-11-01
In the last decades, a lot of progress was made in spectral analysis. The quality (e.g. resolution, S/N ratio) of observed spectra has improved much and several model-atmosphere codes were developed. One of these is the ``Tübingen NLTE Model-Atmosphere Package'' (TMAP), that is a highly developed program for the calculation of model atmospheres of hot, compact objects. In the framework of the German Astrophysical Virtual Observatory (GAVO), theoretical spectral energy distributions (SEDs) can be downloaded via TheoSSA. In a pilot phase, TheoSSA is based on TMAP model atmospheres. We present the current state of this VO service.
NASA Astrophysics Data System (ADS)
McGlynn, Thomas; Fabbiano, Giuseppina; Accomazzi, Alberto; Smale, Alan; White, Richard L.; Donaldson, Thomas; Aloisi, Alessandra; Dower, Theresa; Mazzerella, Joseph M.; Ebert, Rick; Pevunova, Olga; Imel, David; Berriman, Graham B.; Teplitz, Harry I.; Groom, Steve L.; Desai, Vandana R.; Landry, Walter
2016-07-01
Since the turn of the millennium a constant concern of astronomical archives have begun providing data to the public through standardized protocols unifying data from disparate physical sources and wavebands across the electromagnetic spectrum into an astronomical virtual observatory (VO). In October 2014, NASA began support for the NASA Astronomical Virtual Observatories (NAVO) program to coordinate the efforts of NASA astronomy archives in providing data to users through implementation of protocols agreed within the International Virtual Observatory Alliance (IVOA). A major goal of the NAVO collaboration has been to step back from a piecemeal implementation of IVOA standards and define what the appropriate presence for the US and NASA astronomy archives in the VO should be. This includes evaluating what optional capabilities in the standards need to be supported, the specific versions of standards that should be used, and returning feedback to the IVOA, to support modifications as needed. We discuss a standard archive model developed by the NAVO for data archive presence in the virtual observatory built upon a consistent framework of standards defined by the IVOA. Our standard model provides for discovery of resources through the VO registries, access to observation and object data, downloads of image and spectral data and general access to archival datasets. It defines specific protocol versions, minimum capabilities, and all dependencies. The model will evolve as the capabilities of the virtual observatory and needs of the community change.
NASA Technical Reports Server (NTRS)
McGlynn, Thomas; Guiseppina, Fabbiano A; Accomazzi, Alberto; Smale, Alan; White, Richard L.; Donaldson, Thomas; Aloisi, Alessandra; Dower, Theresa; Mazzerella, Joseph M.; Ebert, Rick;
2016-01-01
Since the turn of the millennium a constant concern of astronomical archives have begun providing data to the public through standardized protocols unifying data from disparate physical sources and wavebands across the electromagnetic spectrum into an astronomical virtual observatory (VO). In October 2014, NASA began support for the NASA Astronomical Virtual Observatories (NAVO) program to coordinate the efforts of NASA astronomy archives in providing data to users through implementation of protocols agreed within the International Virtual Observatory Alliance (IVOA). A major goal of the NAVO collaboration has been to step back from a piecemeal implementation of IVOA standards and define what the appropriate presence for the US and NASA astronomy archives in the VO should be. This includes evaluating what optional capabilities in the standards need to be supported, the specific versions of standards that should be used, and returning feedback to the IVOA, to support modifications as needed. We discuss a standard archive model developed by the NAVO for data archive presence in the virtual observatory built upon a consistent framework of standards defined by the IVOA. Our standard model provides for discovery of resources through the VO registries, access to observation and object data, downloads of image and spectral data and general access to archival datasets. It defines specific protocol versions, minimum capabilities, and all dependencies. The model will evolve as the capabilities of the virtual observatory and needs of the community change.
The Virtual Astronomical Observatory: Re-engineering access to astronomical data
NASA Astrophysics Data System (ADS)
Hanisch, R. J.; Berriman, G. B.; Lazio, T. J. W.; Emery Bunn, S.; Evans, J.; McGlynn, T. A.; Plante, R.
2015-06-01
The US Virtual Astronomical Observatory was a software infrastructure and development project designed both to begin the establishment of an operational Virtual Observatory (VO) and to provide the US coordination with the international VO effort. The concept of the VO is to provide the means by which an astronomer is able to discover, access, and process data seamlessly, regardless of its physical location. This paper describes the origins of the VAO, including the predecessor efforts within the US National Virtual Observatory, and summarizes its main accomplishments. These accomplishments include the development of both scripting toolkits that allow scientists to incorporate VO data directly into their reduction and analysis environments and high-level science applications for data discovery, integration, analysis, and catalog cross-comparison. Working with the international community, and based on the experience from the software development, the VAO was a major contributor to international standards within the International Virtual Observatory Alliance. The VAO also demonstrated how an operational virtual observatory could be deployed, providing a robust operational environment in which VO services worldwide were routinely checked for aliveness and compliance with international standards. Finally, the VAO engaged in community outreach, developing a comprehensive web site with on-line tutorials, announcements, links to both US and internationally developed tools and services, and exhibits and hands-on training at annual meetings of the American Astronomical Society and through summer schools and community days. All digital products of the VAO Project, including software, documentation, and tutorials, are stored in a repository for community access. The enduring legacy of the VAO is an increasing expectation that new telescopes and facilities incorporate VO capabilities during the design of their data management systems.
Armenian Virtual Observatory: Services and Data Sharing
NASA Astrophysics Data System (ADS)
Knyazyan, A. V.; Astsatryan, H. V.; Mickaelian, A. M.
2016-06-01
The main aim of this article is to introduce the data management and services of the Armenian Virtual Observatory (ArVO), which consists of user friendly data management mechanisms, a new and productive cross-correlation service, and data sharing API based on international standards and protocols.
The Environmental Virtual Observatory: A New Vision for Catchment Science
NASA Astrophysics Data System (ADS)
Gurney, R.; Emmett, B.; McDonald, A.; Blair, G.; Buytaert, W.; Freer, J. E.; Haygarth, P.; Rees, G.; Tetzlaff, D.; EVO Science Team
2011-12-01
Environmental scientists need to make predictions that are increasingly cross-disciplinary, bringing together observations and models in both physical and biological systems, and visualising the results. Observations can be from multiple platforms, and there are often many competing models that could be used. At the same time, catchment managers and policy makers face a challenging future trying to ensure a wide range of ecosystem and hydrological services are delivered from increasingly constrained budgets whilst complying with a range of regulation requirements. There is also a greater requirement for transparency and access to data and making regulatory decision making processes visible to the public. The Environmental Virtual Observatory Pilot project (EVOp) is a new initiative from the UK Natural Environment Research Council (NERC) designed to explore new tools and approaches to support these challenges. The long term vision of the Environmental Virtual Observatory is to: - Make environmental data more visible and accessible to a wide range of scientists and potential users including for public good applications; - Provide tools to facilitate the integrated analysis of data to give greater access to added knowledge and expert analysis and to visualisation of the results; - Develop new, added-value knowledge from public and private sector data assets to help tackle environmental challenges. The EVO will exploit cloud computing to give a shared working space for data, models and analysis tools; in this two year pilot project we will develop five local and national exemplars to demonstrate and test the opportunities and constraints from such an approach. The question-based exemplars being developed are focused on (i) management options for flooding and diffuse pollution at local and national scales, (ii) approaches for transferring hydrological models for both flooding and drought from data rich to data poor areas and (iii) defining the uncertainty bounds of current climate change predictions on change in soil carbon at a global scale. By developing exemplars focussed on some major environmental questions at a local, national and global scale we are able to directly test issues such as data assimilation, adapting and linking models to work in a cloud environment, and portal design for a wide range of end-users. New international standards for model exchange and exchange of analysis tools are desirable to supplement the emerging data exchange standards, and the EVOp will make a contribution here. A working prototype portal will be delivered in December 2012 that examines these issues, for a possible next phase.
UkrVO astronomical WEB services
NASA Astrophysics Data System (ADS)
Mazhaev, A.
2017-02-01
Ukraine Virtual Observatory (UkrVO) has been a member of the International Virtual Observatory Alliance (IVOA) since 2011. The virtual observatory (VO) is not a magic solution to all problems of data storing and processing, but it provides certain standards for building infrastructure of astronomical data center. The astronomical databases help data mining and offer to users an easy access to observation metadata, images within celestial sphere and results of image processing. The astronomical web services (AWS) of UkrVO give to users handy tools for data selection from large astronomical catalogues for a relatively small region of interest in the sky. Examples of the AWS usage are showed.
ISAIA: Interoperable Systems for Archival Information Access
NASA Technical Reports Server (NTRS)
Hanisch, Robert J.
2002-01-01
The ISAIA project was originally proposed in 1999 as a successor to the informal AstroBrowse project. AstroBrowse, which provided a data location service for astronomical archives and catalogs, was a first step toward data system integration and interoperability. The goals of ISAIA were ambitious: '...To develop an interdisciplinary data location and integration service for space science. Building upon existing data services and communications protocols, this service will allow users to transparently query hundreds or thousands of WWW-based resources (catalogs, data, computational resources, bibliographic references, etc.) from a single interface. The service will collect responses from various resources and integrate them in a seamless fashion for display and manipulation by the user.' Funding was approved only for a one-year pilot study, a decision that in retrospect was wise given the rapid changes in information technology in the past few years and the emergence of the Virtual Observatory initiatives in the US and worldwide. Indeed, the ISAIA pilot study was influential in shaping the science goals, system design, metadata standards, and technology choices for the virtual observatory. The ISAIA pilot project also helped to cement working relationships among the NASA data centers, US ground-based observatories, and international data centers. The ISAIA project was formed as a collaborative effort between thirteen institutions that provided data to astronomers, space physicists, and planetary scientists. Among the fruits we ultimately hoped would come from this project would be a central site on the Web that any space scientist could use to efficiently locate existing data relevant to a particular scientific question. Furthermore, we hoped that the needed technology would be general enough to allow smaller, more-focused community within space science could use the same technologies and standards to provide more specialized services. A major challenge to searching for data across a broad community is that information that describe some data products are either not relevant to other data or not applicable in the same way. Some previous metadata standard development efforts (e.g., in the earth science and library communities) have produced standards that are very large and difficult to support. To address this problem, we studied how a standard may be divided into separable pieces. Data providers that wish to participate in interoperable searches can support only those parts of the standard that are relevant to them. We prototyped a top-level metadata standard that was small and applicable to all space science data.
Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory
NASA Astrophysics Data System (ADS)
2001-12-01
N° 73-2001 - Paris, 5 December 2001 The aim of AVO is to give astronomers instant access to the vast databanks now being built up by the world's observatories and forming what is in effect a "digital sky". Using AVO astronomers will be able, for example, to retrieve the elusive traces of the passage of an asteroid as it passes the Earth and so predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded, adding invaluable data to the study of the evolution of stars. Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data -corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being digitally reconstructed in the databanks. The volume and complexity of data and information available to astronomers are overwhelming. Hence the problem of how astronomers can possibly manage, distribute and analyse this great wealth of data. The Astrophysical Virtual Observatory will enable them to meet the challenge and "put the Universe online". AVO is a three-year project, funded by the European Commission under its Research and Technological Development (RTD) scheme, to design and implement a virtual observatory for the European astronomical community. The Commission has awarded a contract valued at EUR 4m for the project, starting on 15 November. AVO will provide software tools to enable astronomers to access the multi-wavelength data archives over the Internet and so give them the capability to resolve fundamental questions about the Universe by probing the digital sky. Equivalent searches of the "real" sky would, in comparison, both be prohibitively costly and take far too long. Towards a Global Virtual Observatory The need for virtual observatories has also been recognised by other astronomical communities. The National Science Foundation in the USA has awarded $10 million (EUR 11.4 m) for a National Virtual Observatory (NVO). The AVO project team has formed a close alliance with the NVO and both teams have representatives on each other's committees. It is clear to the NVO and AVO communities that there are no intrinsic boundaries to the virtual observatory concept and that all astronomers should be working towards a truly global virtual observatory that will enable new science to be carried out on the wealth of astronomical data held in the growing number of first-class international astronomical archives. AVO involves six partner organisations led by the European Southern Observatory (ESO) in Munich. The other partner organisations are the European Space Agency (ESA), the United Kingdom's ASTROGRID consortium, the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS) at the University Louis Pasteur in Strasbourg, the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris and the Jodrell Bank Observatory at the University of Manchester. Note for editors A 13-minute background video (broadcast PAL) is available from ESO PR and the Hubble European Space Agency Information Centre (addresses below). It will also be transmitted via satellite on Wednesday 12 December 2001 from 12:00 to 12:15 CET on the ESA TV Service: http://television.esa.int
The Gran Telescopio Canarias and Calar Alto Virtual Observatory Compliant Archives
NASA Astrophysics Data System (ADS)
Alacid, J. M.; Solano, E.; Jiménez-Esteban, F. M.; Velasco, A.
2014-05-01
The Gran Telescopio Canarias and Calar Alto archives are the result of the collaboration agreements between the Centro de Astrobiología and two entities: GRANTECAN S.A. and the Centro Astronómico Hispano Alemán (CAHA). The archives have been developed in the framework of the Spanish Virtual Observatory and are maintained by the Data Archive Unit at Centro de Astrobiología. The archives contain both raw and science ready data and have been designed in compliance with the standards defined by the International Virtual Observatory Alliance, which guarantees a high level of data accessibility and handling. In this paper we describe the main characteristics and functionalities of both archives.
The Gran Telescopio Canarias and Calar Alto Virtual Observatory compliant archives
NASA Astrophysics Data System (ADS)
Solano, Enrique; Gutiérrez, Raúl; Alacid, José Manuel; Jiménez-Esteban, Francisco; Velasco Trasmonte, Almudena
2012-09-01
The Gran Telescopio Canarias (GTC) and Calar Alto archives are the result of the collaboration agreements between the Centro de Astrobiología (CAB, INTA-CSIC)) and two entities: GRANTECAN S.A. and the Centro Astronómico Hispano Alemán (CAHA). The archives have been developed in the framework of the Spanish Virtual Observatory and are maintained by the Data Archive Unit at CAB. The archives contain both raw and science ready data and have been designed in compliance with the standards defined by the International Virtual Observatory Alliance (IVOA) which guarantees a high level of data accessibility and handling. In this paper we describe the main characteristics and functionalities of both archives.
Handling knowledge via Concept Maps: a space weather use case
NASA Astrophysics Data System (ADS)
Messerotti, Mauro; Fox, Peter
Concept Maps (Cmaps) are powerful means for knowledge coding in graphical form. As flexible software tools exist to manipulate the knowledge embedded in Cmaps in machine-readable form, such complex entities are suitable candidates not only for the representation of ontologies and semantics in Virtual Observatory (VO) architectures, but also for knowledge handling and knowledge discovery. In this work, we present a use case relevant to space weather applications and we elaborate on its possible implementation and adavanced use in Semantic Virtual Observatories dedicated to Sun-Earth Connections. This analysis was carried out in the framework of the Electronic Geophysical Year (eGY) and represents an achievement synergized by the eGY Virtual Observatories Working Group.
Toward a Virtual Solar Observatory: Starting Before the Petabytes Fall
NASA Technical Reports Server (NTRS)
Gurman, J. B.; Fisher, Richard R. (Technical Monitor)
2002-01-01
NASA is currently engaged in the study phase of a modest effort to establish a Virtual Solar Observatory (VSO). The VSO would serve ground- and space-based solar physics data sets from a distributed network of archives through a small number of interfaces to the scientific community. The basis of this approach, as of all planned virtual observatories, is the translation of metadata from the various sources via source-specific dictionaries so the user will not have to distinguish among keyword usages. A single Web interface should give access to all the distributed data. We present the current status of the VSO, its initial scope, and its relation to the European EGSO effort.
The Virtual Solar Observatory: Still a Small Box
NASA Technical Reports Server (NTRS)
Gurman, J. B.; Bogart, R. S.; Davey, A. R.; Dimitoglou, G.; Hill, F.; Hourcle, J. A.; Martens, P. C.; Surez-Sola, I.; Tian, K. Q.; Wampler, S.
2005-01-01
Two and a half years after a design study began, and a year and a half after development commenced, version 1.0 of the Virtual Solar Observatory (VSO) was released at the 2004 Fall AGU meeting. Although internal elements of the VSO have changed, the basic design has remained the same, reflecting the team's belief in the importance of a simple, robust mechanism for registering data provider holdings, initiating queries at the appropriate provider sites, aggregating the responses, allowing the user to iterate before making a final selection, and enabling the delivery of data directly from the providers. In order to make the VSO transparent, lightweight, and portable, the developers employed XML for the registry, SOAP for communication between a VSO instance and data services, and HTML for the graphic user interface (GUI's). We discuss the internal data model, the API, and user responses to various trial GUI's as typical design issues for any virtual observatory. We also discuss the role of the "small box" of data search, identification, and delivery services provided by the VSO in the larger, Sun-Solar System Connection virtual observatory (VxO) scheme.
The Virtual Observatory as Critical Scientific Cyber Infrastructure.
NASA Astrophysics Data System (ADS)
Fox, P.
2006-12-01
Virtual Observatories can provide access to vast stores of scientific data: observations and models as well as services to analyze, visualize and assimilate multiple data sources. As these electronic resource become widely used, there is potential to improve the efficiency, interoperability, collaborative potential, and impact of a wide range of interdisciplinary scientific research. In addition, we know that as the diversity of collaborative science and volume of accompanying data and data generators/consumers grows so do the challenges. In order for Virtual Observatories to realize their potential and become indispensible infrastructure, social, political and technical challenges need to be addressed concerning (at least) roles and responsibilities, data and services policies, representations and interoperability of services, data search, access, and usability. In this presentation, we discuss several concepts and instances of the Virtual Observatory and related projects that may, and may not, be meeting the abovementioned challanges. We also argue that science driven needs and architecture development are critical in the development of sustainable (and thus agile) cyberinfrastructure. Finally we some present or emerging candidate technologies and organizational constructs that will need to be pursued.
Still Virtual After All These Years: Recent Developments in the Virtual Solar Observatory
NASA Astrophysics Data System (ADS)
Gurman, J. B.; Bogart, R. S.; Davey, A. R.; Hill, F.; Martens, P. C.; Zarro, D. M.; Team, T. v.
2008-05-01
While continuing to add access to data from new missions, including Hinode and STEREO, the Virtual Solar Observatory is also being enhanced as a research tool by the addition of new features such as the unified representation of catalogs and event lists (to allow joined searches in two or more catalogs) and workable representation and manipulation of large numbers of search results (as are expected from the Solar Dynamics Observatory database). Working with our RHESSI colleagues, we have also been able to improve the performance of IDL-callable vso_search and vso_get functions, to the point that use of those routines is a practical alternative to reproducing large subsets of mission data on one's own LAN.
Still Virtual After All These Years: Recent Developments in the Virtual Solar Observatory
NASA Technical Reports Server (NTRS)
Gurman, Joseph B.; Bogart; Davey; Hill; Masters; Zarro
2008-01-01
While continuing to add access to data from new missions, including Hinode and STEREO, the Virtual Solar Observatory is also being enhanced as a research tool by the addition of new features such as the unified representation of catalogs and event lists (to allow joined searches in two or more catalogs) and workable representation and manipulation of large numbers of search results (as are expected from the Solar Dynamics Observatory database). Working with our RHESSI colleagues, we have also been able to improve the performance of IDL-callable vso_search and vso_get functions, to the point that use of those routines is a practical alternative to reproducing large subsets of mission data on one's own LAN.
Integrating Virtual Worlds with Tangible User Interfaces for Teaching Mathematics: A Pilot Study.
Guerrero, Graciela; Ayala, Andrés; Mateu, Juan; Casades, Laura; Alamán, Xavier
2016-10-25
This article presents a pilot study of the use of two new tangible interfaces and virtual worlds for teaching geometry in a secondary school. The first tangible device allows the user to control a virtual object in six degrees of freedom. The second tangible device is used to modify virtual objects, changing attributes such as position, size, rotation and color. A pilot study on using these devices was carried out at the "Florida Secundaria" high school. A virtual world was built where students used the tangible interfaces to manipulate geometrical figures in order to learn different geometrical concepts. The pilot experiment results suggest that the use of tangible interfaces and virtual worlds allowed a more meaningful learning (concepts learnt were more durable).
NASA Astrophysics Data System (ADS)
Mackay, E.; Beven, K.; Brewer, P.; M, Haygarth, P.; Macklin, M.; Marshall, K.; Quinn, P.; Stutter, M.; Thomas, N.; Wilkinson, M.
2012-04-01
Public participation in the development of flood risk management and river basin management plans are explicit components of both the Water Framework and Floods Directives. At the local level, involving communities in land and water management has been found to (i) aid better environmental decision making, (ii) enhance social, economic and environmental benefits, and (iii) increase a sense of ownership. Facilitating the access and exchange of information on the local environment is an important part of this new approach to the land and water management process, which also includes local community stakeholders in decisions about the design and content of the information provided. As part of the Natural Environment Research Council's pilot Environment Virtual Observatory (EVO), the Local Level group are engaging with local community stakeholders in three different catchments in the UK (the rivers Eden, Tarland and Dyfi) to start the process of developing prototype visualisation tools to address the specific land and water management issues identified in each area. Through this local collaboration, we will provide novel visualisation tools through which to communicate complex catchment science outcomes and bring together different sources of environmental data in ways that better meet end-user needs as well as facilitate a far broader participatory approach in environmental decision making. The Local Landscape Visualisation Tools are being evolved iteratively during the project to reflect the needs, interests and capabilities of a wide range of stakeholders. The tools will use the latest concepts and technologies to communicate with and provide opportunities for the provision and exchange of information between the public, government agencies and scientists. This local toolkit will reside within a wider EVO platform that will include national datasets, models and state of the art cloud computer systems. As such, local stakeholder groups are assisting the EVO's development and participating in local decision making alongside policy makers, government agencies and scientists.
Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory
NASA Astrophysics Data System (ADS)
2001-12-01
Vast Databanks at the Astronomers' Fingertips Summary A new European initiative called the Astrophysical Virtual Observatory (AVO) is being launched to provide astronomers with a breathtaking potential for new discoveries. It will enable them to seamlessly combine the data from both ground- and space-based telescopes which are making observations of the Universe across the whole range of wavelengths - from high-energy gamma rays through the ultraviolet and visible to the infrared and radio. The aim of the Astrophysical Virtual Observatory (AVO) project, which started on 15 November 2001, is to allow astronomers instant access to the vast databanks now being built up by the world's observatories and which are forming what is, in effect, a "digital sky" . Using the AVO, astronomers will, for example, be able to retrieve the elusive traces of the passage of an asteroid as it passes near the Earth and so enable them to predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded so adding invaluable data to the study of the evolution of stars. Background information on the Astrophysical Virtual Observatory is available in the Appendix. PR Photo 34a/01 : The Astrophysical Virtual Observatory - an artist's impression. The rapidly accumulating database ESO PR Photo 34a/01 ESO PR Photo 34a/01 [Preview - JPEG: 400 x 345 pix - 90k] [Normal - JPEG: 800 x 689 pix - 656k] [Hi-Res - JPEG: 3000 x 2582 pix - 4.3M] ESO PR Photo 34a/01 shows an artist's impression of the Astrophysical Virtual Observatory . Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data - corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being digitally reconstructed in the databanks! The richness and complexity of data and information available to the astronomers is overwhelming. This has created a major problem as to how astronomers can manage, distribute and analyse this great wealth of data . The Astrophysical Virtual Observatory (AVO) will allow astronomers to overcome the challenges and enable them to "put the Universe online". AVO is supported by the European Commission The AVO is a three-year project, funded by the European Commission under its Research and Technological Development (RTD) scheme, to design and implement a virtual observatory for the European astronomical community. The European Commission awarded a contract valued at 4 million Euro for the AVO project , starting 15 November 2001. AVO will provide software tools to enable astronomers to access the multi-wavelength data archives over the Internet and so give them the capability to resolve fundamental questions about the Universe by probing the digital sky. Equivalent searches of the 'real' sky would, in comparison, be both costly and take far too long. Towards a Global Virtual Observatory The need for virtual observatories has also been recognised by other astronomical communities. The National Science Foundation in the USA has awarded 10 million Dollar (approx. 11.4 million Euro) for a National Virtual Observatory (NVO). The AVO project team has formed a close alliance with the NVO and both teams have representatives on their respective committees. It is clear to the NVO and AVO communities that there are no intrinsic boundaries to the virtual observatory concept and that all astronomers should be working towards a truly global virtual observatory that will enable new science to be carried out on the wealth of astronomical data held in the growing number of first class international astronomical archives. The AVO involves six partner organisations led by the European Southern Observatory (ESO) in Munich (Germany). The other partner organisations are the European Space Agency (ESA) , the United Kingdom's ASTROGRID consortium, the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS) at the University Louis Pasteur in Strasbourg (France), the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris and the Jodrell Bank Observatory of the Victoria University of Manchester (UK). Note [1]: This is a joint Press Release issued by the European Southern Observatory (ESO), the Hubble European Space Agency Information Centre, ASTROGRID, CDS, TERAPIX/CNRS and the University of Manchester. A 13 minute background video (broadcast PAL) is available from ESO PR and the Hubble European Space Agency Information Centre (addresses below). This will also be transmitted via satellite Wednesday 12 December 2001 from 12:00 to 12:15 CET on "ESA TV Service", cf. http://television.esa.int. An international conference, "Toward an International Virtual Observatory" will take place at ESO (Garching, Germany) on June 10 - 14, 2002. Contacts AVO Contacts Peter Quinn European Southern Observatory Garching, Germany Tel.: +4989-3200-6509 email: pjq@eso.org Piero Benvenuti Space Telescope-European Coordinating Facility Garching, Germany Tel.: +49-89-3200-6290 email: pbenvenu@eso.org Andy Lawrence (on behalf of The ASTROGRID Consortium) Institute for Astronomy University of Edinburgh United Kingdom Tel.: +44-131-668-8346/56 email: al@roe.ac.uk Francoise Genova Centre de Données Astronomiques de Strasbourg (CDS) France Tel.: +33-390-24-24-76 email: genova@astro.u-strasbg.fr Yannick Mellier CNRS, Delegation Paris A (CNRSDR01-Terapix)/IAP/INSU France Tel.: +33-1-44-32-81-40 email: mellier@iap.fr Phil Diamond University of Manchester/Jodrell Bank Observatory United Kingdom Tel.: +44-147-757-2625 email: pdiamond@jb.man.ac.uk PR Contacts Richard West European Southern Observatory Garching, Germany Tel.: +49-89-3200-6276 email: rwest@eso.org Lars Lindberg Christensen Hubble European Space Agency Information Centre Garching, Germany Tel.: +49-89-3200-6306 or +49-173-38-72-621 email: lars@eso.org Ray Footman The ASTROGRID Consortium/University of Edinburgh United Kingdom Tel.: +44-131-650-2249 email: r.footman@ed.ac.uk Philippe Chauvin Terapix/CDS CNRS, Delegation Paris A, IAP/INSU France Tel.: +33 1 44 96 43 36 email: philippe.chauvin@cnrs-dir.fr Agnes Villanueva University of Strasbourg France Tel.: +33 3 90 24 11 35 email: agnes.villanueva@adm-ulp.u-strasbg.fr Ian Morison University of Manchester/Jodrell Bank Observatory United Kingdom Tel.: +44 1477 572610 email: im@jb.man.ac.uk Appendix: Introduction to Europe's Astrophysical Virtual Observatory (AVO) The Digital Data Revolution Over the past thirty years, astronomers have moved from photographic and analogue techniques towards the use of high-speed, digital instruments connected to specialised telescopes to study the Universe. Whether these instruments are onboard spacecraft or located at terrestrial observatories, the data they produce are stored digitally on computer systems for later analysis. Two Challenges This data revolution has created two challenges for astronomers. Firstly, as the capability of digital detector systems has advanced, the volume of digital data that astronomical facilities are producing has expanded greatly. The rate of growth of the volume of stored data far exceeds the rate of increase in the performance of computer systems or storage devices. Secondly, astronomers have realised that many important insights into the deepest secrets in the Universe can come from combining information obtained at many wavelengths into a consistent and comprehensive physical picture . However, because the datasets from different parts of the spectrum come from different observatories using different instruments, the data are not easily combined. To unite data from different observatories, bridges must be built between digital archives to allow them to share data and "interoperate" - an important and challenging task. The Human Factor These challenges are not only technological. Our brains are not equipped to for instance analyse simultaneously the millions and millions of images available. Astronomers must adapt and learn to deal with such diverse and extensive sets of data. The "digital sky" has the potential to become a vital tool with novel and fascinating capabilities that are essential for astronomers to make progress in their understanding of the Cosmos. But astronomers must be able to find the relevant information quickly and efficiently. Currently the data needed by a particular research program may well be stored in the archives already, but the tools and methods have not yet been developed to extract the relevant information from the flood of images available. A new way of thinking, a new frame of mind and a new approach are needed. The Astrophysical Virtual Observatory The Astrophysical Virtual Observatory (AVO) will allow astronomers to overcome the challenges and extract data from the digital sky, thus "putting the Universe online" . Like a search engine helps us to find information on the Internet, astronomers need sophisticated "search engines" as well as other tools to find and interpret the information. "We're drowning in information and starving for knowledge", a Yale University librarian once said. Or to paraphrase a popular series on TV: "The information is out there, but you have to find it!" Using the latest in computer technology, data storage and analysis techniques, AVO will maximise the potential for new scientific insights from the stored data by making them available in a readily accessible and seamlessly unified form to professional researchers, amateur astronomers and students. Users of AVO will have immense multi-wavelength vistas of the digital Universe at their fingertips and the potential to make breathtaking new discoveries. Virtual observatories signal a new era, where data collected by a multitude of sophisticated telescopes can be used globally and repeatedly to achieve substantial progress in the quest for knowledge. The AVO project, funded by the European Commission, is a three-year study of the design and implementation of a virtual observatory for European astronomy. A virtual observatory is a collection of connected data archives and software tools that utilise the Internet to form a scientific research environment in which new multi-wavelength astronomical research programs can be conducted. In much the same way as a real observatory consists of telescopes, each with a collection of unique astronomical instruments, the virtual observatory consists of a collection of data centres each with unique collections of astronomical data, software systems and processing capabilities. The programme will implement and test a prototype virtual observatory , focussing on the key areas of scientific requirements, interoperability and new technologies such as the GRID, needed to link powerful computers to the newly formed large data repositories. The GRID and the Future of the Internet The technical problems astronomers have to solve are similar to those being worked on by particle physicists, by biologists, and by commercial companies who want to search and fill customer databases across the world. The emerging idea is that of the GRID where computers collaborate across the Internet. The World Wide Web made words and pictures available to anybody at the click of a mouse. The GRID will do the same for data, and for computer processing power. Anybody can have the power of a supercomputer sitting on their desktop. The Astrophysical Virtual Observatory, and GRID projects like the ASTROGRID project in the United Kingdom (funding 5 million UK Pounds or 8 million Euro), are closely linked to these developments.
Environment Study of AGNs at z = 0.3 to 3.0 Using the Japanese Virtual Observatory
NASA Astrophysics Data System (ADS)
Shirasaki, Y.; Ohishi, M.; Mizumoto, Y.; Takata, T.; Tanaka, M.; Yasuda, N.
2010-12-01
We present a science use case of Virtual Observatory, which was achieved to examine an environment of AGN up to redshift of 3.0. We used the Japanese Virtual Observatory (JVO) to obtain Subaru Suprime-Cam images around known AGNs. According to the hierarchical galaxy formation model, AGNs are expected to be found in an environment of higher galaxy density than that of typical galaxies. The current observations, however, indicate that AGNs do not reside in a particularly high density environment. We investigated ˜1000 AGNs, which is about ten times larger samples than the other studies covering the redshifts larger than 0.6. We successfully found significant excess of galaxies around AGNs at redshifts of 0.3 to 1.8. If this work was done in a classical manner, that is, raw data were retrieved from the archive through a form-based web interface in an interactive way, and the data were reduced on a low performance computer, it might take several years to finish it. Since the Virtual Observatory system is accessible through a standard interface, it is easy to query and retrieve data in an automatic way. We constructed a pipeline for retrieving the data and calculating the galaxy number density around a given coordinate. This procedure was executed in parallel on ˜10 quad core PCs, and it took only one day for obtaining the final result. Our result implies that the Virtual Observatory can be a powerful tool to do an astronomical research based on large amount of data.
The Virtual Watershed Observatory: Cyberinfrastructure for Model-Data Integration and Access
NASA Astrophysics Data System (ADS)
Duffy, C.; Leonard, L. N.; Giles, L.; Bhatt, G.; Yu, X.
2011-12-01
The Virtual Watershed Observatory (VWO) is a concept where scientists, water managers, educators and the general public can create a virtual observatory from integrated hydrologic model results, national databases and historical or real-time observations via web services. In this paper, we propose a prototype for automated and virtualized web services software using national data products for climate reanalysis, soils, geology, terrain and land cover. The VWO has the broad purpose of making accessible water resource simulations, real-time data assimilation, calibration and archival at the scale of HUC 12 watersheds (Hydrologic Unit Code) anywhere in the continental US. Our prototype for model-data integration focuses on creating tools for fast data storage from selected national databases, as well as the computational resources necessary for a dynamic, distributed watershed simulation. The paper will describe cyberinfrastructure tools and workflow that attempts to resolve the problem of model-data accessibility and scalability such that individuals, research teams, managers and educators can create a WVO in a desired context. Examples are given for the NSF-funded Shale Hills Critical Zone Observatory and the European Critical Zone Observatories within the SoilTrEC project. In the future implementation of WVO services will benefit from the development of a cloud cyber infrastructure as the prototype evolves to data and model intensive computation for continental scale water resource predictions.
Integrating Virtual Worlds with Tangible User Interfaces for Teaching Mathematics: A Pilot Study
Guerrero, Graciela; Ayala, Andrés; Mateu, Juan; Casades, Laura; Alamán, Xavier
2016-01-01
This article presents a pilot study of the use of two new tangible interfaces and virtual worlds for teaching geometry in a secondary school. The first tangible device allows the user to control a virtual object in six degrees of freedom. The second tangible device is used to modify virtual objects, changing attributes such as position, size, rotation and color. A pilot study on using these devices was carried out at the “Florida Secundaria” high school. A virtual world was built where students used the tangible interfaces to manipulate geometrical figures in order to learn different geometrical concepts. The pilot experiment results suggest that the use of tangible interfaces and virtual worlds allowed a more meaningful learning (concepts learnt were more durable). PMID:27792132
Distributing Variable Star Data to the Virtual Observatory
NASA Astrophysics Data System (ADS)
Kinne, Richard C.; Templeton, M. R.; Henden, A. A.; Zografou, P.; Harbo, P.; Evans, J.; Rots, A. H.; LAZIO, J.
2013-01-01
Effective distribution of data is a core element of effective astronomy today. The AAVSO is the home of several different unique databases. The AAVSO International Database (AID) contains over a century of photometric and time-series data on thousands of individual variable stars comprising over 22 million observations. The AAVSO Photometric All-Sky Survey (APASS) is a new photometric catalog containing calibrated photometry in Johnson B, V and Sloan g', r' and i' filters for stars with magnitudes of 10 < V < 17. The AAVSO is partnering with researchers and technologists at the Virtual Astronomical Observatory (VAO) to solve the data distribution problem for these datasets by making them available via various VO tools. We give specific examples of how these data can be accessed through Virtual Observatory (VO) toolsets and utilized for astronomical research.
Scientific Workflows and the Sensor Web for Virtual Environmental Observatories
NASA Astrophysics Data System (ADS)
Simonis, I.; Vahed, A.
2008-12-01
Virtual observatories mature from their original domain and become common practice for earth observation research and policy building. The term Virtual Observatory originally came from the astronomical research community. Here, virtual observatories provide universal access to the available astronomical data archives of space and ground-based observatories. Further on, as those virtual observatories aim at integrating heterogeneous ressources provided by a number of participating organizations, the virtual observatory acts as a coordinating entity that strives for common data analysis techniques and tools based on common standards. The Sensor Web is on its way to become one of the major virtual observatories outside of the astronomical research community. Like the original observatory that consists of a number of telescopes, each observing a specific part of the wave spectrum and with a collection of astronomical instruments, the Sensor Web provides a multi-eyes perspective on the current, past, as well as future situation of our planet and its surrounding spheres. The current view of the Sensor Web is that of a single worldwide collaborative, coherent, consistent and consolidated sensor data collection, fusion and distribution system. The Sensor Web can perform as an extensive monitoring and sensing system that provides timely, comprehensive, continuous and multi-mode observations. This technology is key to monitoring and understanding our natural environment, including key areas such as climate change, biodiversity, or natural disasters on local, regional, and global scales. The Sensor Web concept has been well established with ongoing global research and deployment of Sensor Web middleware and standards and represents the foundation layer of systems like the Global Earth Observation System of Systems (GEOSS). The Sensor Web consists of a huge variety of physical and virtual sensors as well as observational data, made available on the Internet at standardized interfaces. All data sets and sensor communication follow well-defined abstract models and corresponding encodings, mostly developed by the OGC Sensor Web Enablement initiative. Scientific progress is currently accelerated by an emerging new concept called scientific workflows, which organize and manage complex distributed computations. A scientific workflow represents and records the highly complex processes that a domain scientist typically would follow in exploration, discovery and ultimately, transformation of raw data to publishable results. The challenge is now to integrate the benefits of scientific workflows with those provided by the Sensor Web in order to leverage all resources for scientific exploration, problem solving, and knowledge generation. Scientific workflows for the Sensor Web represent the next evolutionary step towards efficient, powerful, and flexible earth observation frameworks and platforms. Those platforms support the entire process from capturing data, sharing and integrating, to requesting additional observations. Multiple sites and organizations will participate on single platforms and scientists from different countries and organizations interact and contribute to large-scale research projects. Simultaneously, the data- and information overload becomes manageable, as multiple layers of abstraction will free scientists to deal with underlying data-, processing or storage peculiarities. The vision are automated investigation and discovery mechanisms that allow scientists to pose queries to the system, which in turn would identify potentially related resources, schedules processing tasks and assembles all parts in workflows that may satisfy the query.
Press Meeting 20 January 2003: First Light for Europe's Virtual Observatory
NASA Astrophysics Data System (ADS)
2002-12-01
Imagine you are an astronomer with instant, fingertip access to all existing observations of a given object and the opportunity to sift through them at will. In just a few moments, you can have information on all kinds about objects out of catalogues all over the world, including observations taken at different times. Over the next two years this scenario will become reality as Europe's Astrophysical Virtual Observatory (AVO) develops. Established only a year ago (cf. ESO PR 26/01), the AVO already offers astronomers a unique, prototype research tool that will lead the way to many outstanding new discoveries. Journalists are invited to a live demonstration of the capabilities of this exciting new initiative in astronomy. The demonstration will take place at the Jodrell Bank Observatory in Manchester, in the United Kingdom, on 20 January 2003, starting at 11:00. Sophisticated AVO tools will help scientists find the most distant supernovae - objects that reveal the cosmological makeup of our Universe. The tools are also helping astronomers measure the rate of birth of stars in extremely red and distant galaxies. Journalists will also have the opportunity to discuss the project with leading astronomers from across Europe. The new AVO website has been launched today, explaining the progress being made in this European Commission-funded project: URL: http://www.euro-vo.org/ To register your intention to attend the AVO First Light Demonstration, please provide your name and affiliation by January 13, 2003, to: Ian Morison, Jodrell Bank Observatory (full contact details below). Information on getting to the event is included on the webpage above. Programme for the AVO First Light Demonstration 11:00 Welcome, Phil Diamond (University of Manchester/Jodrell Bank Observatory) 11:05 Short introduction to Virtual Observatories, Piero Benvenuti (ESA/ST-ECF) 11:15 Q&A 11:20 Short introduction to the Astrophysical Virtual Observatory, Peter Quinn (ESO) 11:30 Q&A 11:35 Screening of Video News Release 11:40 Demonstration of the AVO prototype, Nicholas Walton (University of Cambridge) 12:00 Q&A, including interview possibilities with the scientists 12:30-13:45 Buffet lunch, including individual hands-on demos 14:00 Science Demo (also open to interested journalists) For more information about Virtual Observatories and the AVO, see the website or the explanation below. Notes to editors The AVO involves several partner organisations led by the European Southern Observatory (ESO). The other partner organisations are the European Space Agency (ESA), AstroGrid (funded by PPARC as part of the UK's E-Science programme), the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS), the University Louis Pasteur in Strasbourg, France, the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris, France, and the Jodrell Bank Observatory of the Victoria University of Manchester, United Kingdom. Note [1]: This is a joint Press Release issued by the European Southern Observatory (ESO), the Hubble European Space Agency Information Centre, AstroGrid, CDS, TERAPIX/CNRS and the University of Manchester. Science Contacts Peter J. Quinn European Southern Observatory (ESO) Garching, Germany Tel: +49-89-3200 -6509 email: pjq@eso.org Phil Diamond University of Manchester/Jodrell Bank Observatory United Kingdom Tel: +44-147-757-26-25 (0147 in the United Kingdom) email: pdiamond@jb.man.ac.uk Press contacts Ian Morison University of Manchester/Jodrell Bank Observatory United Kingdom Tel: +44-147-757-26-10 (0147 in the United Kingdom) E-mail: email: im@jb.man.ac.uk Lars Lindberg Christensen Hubble European Space Agency Information Centre Garching, Germany Tel: +49-89-3200-6306 (089 in Germany) Cellular (24 hr): +49-173-3872-621 (0173 in Germany) email: lars@eso.org Richard West (ESO EPR Dept.) ESO EPR Dept. Garching, Germany Phone: +49-89-3200-6276 email: rwest@eso.org Background information What is a Virtual Observatory? - A short introduction The Virtual Observatory is an international astronomical community-based initiative. It aims to allow global electronic access to the available astronomical data archives of space and ground-based observatories, sky survey databases. It also aims to enable data analysis techniques through a coordinating entity that will provide common standards, wide-network bandwidth, and state-of-the-art analysis tools. It is now possible to have powerful and expensive new observing facilities at wavelengths from the radio to the X-ray and gamma-ray regions. Together with advanced instrumentation techniques, a vast new array of astronomical data sets will soon be forthcoming at all wavelengths. These very large databases must be archived and made accessible in a systematic and uniform manner to realise the full potential of the new observing facilities. The Virtual Observatory aims to provide the framework for global access to the various data archives by facilitating the standardisation of archiving and data-mining protocols. The AVO will also take advantage of state-of-the-art advances in data-handling software in astronomy and in other fields. The Virtual Observatory initiative is currently aiming at a global collaboration of the astronomical communities in Europe, North and South America, Asia, and Australia under the auspices of the recently formed International Virtual Observatory Alliance. The Astrophysical Virtual Observatory - An Introduction The breathtaking capabilities and ultrahigh efficiency of new ground and space observatories have led to a 'data explosion' calling for innovative ways to process, explore, and exploit these data. Researchers must now turn to the GRID paradigm of distributed computing and resources to solve complex, front-line research problems. To implement this new IT paradigm, you have to join existing astronomical data centres and archives into an interoperating and single unit. This new astronomical data resource will form a Virtual Observatory (VO) so that astronomers can explore the digital Universe in the new archives across the entire spectrum. Similarly to how a real observatory consists of telescopes, each with a collection of unique astronomical instruments, the VO consists of a collection of data centres each with unique collections of astronomical data, software systems, and processing capabilities. The Astrophysical Virtual Observatory Project (AVO) will conduct a research and demonstration programme on the scientific requirements and technologies necessary to build a VO for European astronomy. The AVO has been jointly funded by the European Commission (under FP5 - Fifth Framework Programme) with six European organisations participating in a three year Phase-A work programme, valued at 5 million Euro. The partner organisations are the European Southern Observatory (ESO) in Munich, Germany, the European Space Agency (ESA), AstroGrid (funded by PPARC as part of the UK's E-Science programme), the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS), the University Louis Pasteur in Strasbourg, France, the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris, France, and the Jodrell Bank Observatory of the Victoria University of Manchester, United Kingdom. The Phase A program will focus its effort in the following areas: * A detailed description of the science requirements for the AVO will be constructed, following the experience gained in a smaller-scale science demonstration program called ASTROVIRTEL (Accessing Astronomical Archives as Virtual Telescopes). * The difficult issue of data and archive interoperability will be addressed by new standards definitions for astronomical data and trial programmes of "joins" between specific target archives within the project team. * The necessary GRID and database technologies will be assessed and tested for use within a full AVO implementation. The AVO project is currently working in conjunction with other international VO efforts in the United States and Asia-Pacific region. This is part of an International Virtual Observatory Alliance to define essential new data standards so that the VO concept can have a global dimension. The AVO partners will join with all astronomical data centres in Europe to put forward an FP6 IST (Sixth Framework Programme - Information Society Technologies Programme) Integrated Project proposal to make a European VO fully operational by the end of 2007.
Building the Pipeline for Hubble Legacy Archive Grism data
NASA Astrophysics Data System (ADS)
Kümmel, M.; Albrecht, R.; Fosbury, R.; Freudling, W.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Rosa, M.; Stoehr, F.; Walsh, J. R.
2008-10-01
The Pipeline for Hubble Legacy Archive Grism data (PHLAG) is currently being developed as an end-to-end pipeline for the Hubble Legacy Archive (HLA). The inputs to PHLAG are slitless spectroscopic HST data with only the basic calibrations from standard HST pipelines applied; the outputs are fully calibrated, Virtuall Observatory-compatible spectra, which will be made available through a static HLA-archive. We give an overview of the various aspects of PHLAG. The pipeline consists of several subcomponents -- data preparation, data retrieval, image combination, object detection, spectral extraction using the aXe software, quality control -- which is discussed in detail. As a pilot project, PHLAG is currently being applied to NICMOS G141 grism data. Examples of G141 spectra reduced with PHLAG are shown.
Lessons Learned during the Development and Operation of Virtual Observatory
NASA Astrophysics Data System (ADS)
Ohishi, M.; Shirasaki, Y.; Komiya, Y.; Mizumoto, Y.; Yasuda, N.; Tanaka, M.
2010-12-01
In the last a few years several Virtual Observatory (VO) projects have entered from the research and development phase to the operations phase. The VO projects include AstroGrid (UK), Virtual Astronomical Observatory (former National Virtual Observatory, USA), EURO-VO (EU), Japanese Virtual Observatory (Japan), and so on. This successful transition from the development phase to the operations phase owes primarily to the concerted action to develop standard interfaces among the VO projects in the world, that has been conducted in the International Virtual Observatory Alliance. The registry interface has been one of the most important key to share among the VO projects and data centers (data providers) with the observed data and the catalog data. Data access protocols and/or language (SIAP, SSAP, ADQL) and the common data format (VOTable) are other keys. Consequently we are able to find scientific papers so far published. However, we had faced some experience during the implementation process as follows:
NASA Astrophysics Data System (ADS)
Hueso, R.; Juaristi, J.; Legarreta, J.; Sánchez-Lavega, A.; Rojas, J. F.; Erard, S.; Cecconi, B.; Le Sidaner, Pierre
2018-01-01
Since 2003 the Planetary Virtual Observatory and Laboratory (PVOL) has been storing and serving publicly through its web site a large database of amateur observations of the Giant Planets (Hueso et al., 2010a). These images are used for scientific research of the atmospheric dynamics and cloud structure on these planets and constitute a powerful resource to address time variable phenomena in their atmospheres. Advances over the last decade in observation techniques, and a wider recognition by professional astronomers of the quality of amateur observations, have resulted in the need to upgrade this database. We here present major advances in the PVOL database, which has evolved into a full virtual planetary observatory encompassing also observations of Mercury, Venus, Mars, the Moon and the Galilean satellites. Besides the new objects, the images can be tagged and the database allows simple and complex searches over the data. The new web service: PVOL2 is available online in http://pvol2.ehu.eus/.
Distributed Computing for the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Chudoba, J.
2015-12-01
Pierre Auger Observatory operates the largest system of detectors for ultra-high energy cosmic ray measurements. Comparison of theoretical models of interactions with recorded data requires thousands of computing cores for Monte Carlo simulations. Since 2007 distributed resources connected via EGI grid are successfully used. The first and the second versions of production system based on bash scripts and MySQL database were able to submit jobs to all reliable sites supporting Virtual Organization auger. For many years VO auger belongs to top ten of EGI users based on the total used computing time. Migration of the production system to DIRAC interware started in 2014. Pilot jobs improve efficiency of computing jobs and eliminate problems with small and less reliable sites used for the bulk production. The new system has also possibility to use available resources in clouds. Dirac File Catalog replaced LFC for new files, which are organized in datasets defined via metadata. CVMFS is used for software distribution since 2014. In the presentation we give a comparison of the old and the new production system and report the experience on migrating to the new system.
Solar-Terrestrial Ontology Development
NASA Astrophysics Data System (ADS)
McGuinness, D.; Fox, P.; Middleton, D.; Garcia, J.; Cinquni, L.; West, P.; Darnell, J. A.; Benedict, J.
2005-12-01
The development of an interdisciplinary virtual observatory (the Virtual Solar-Terrestrial Observatory; VSTO) as a scalable environment for searching, integrating, and analyzing databases distributed over the Internet requires a higher level of semantic interoperability than here-to-fore required by most (if not all) distributed data systems or discipline specific virtual observatories. The formalization of semantics using ontologies and their encodings for the internet (e.g. OWL - the Web Ontology Language), as well as the use of accompanying tools, such as reasoning, inference and explanation, open up both a substantial leap in options for interoperability and in the need for formal development principles to guide ontology development and use within modern, multi-tiered network data environments. In this presentation, we outline the formal methodologies we utilize in the VSTO project, the currently developed use-cases, ontologies and their relation to existing ontologies (such as SWEET).
Virtual Astronomy: The Legacy of the Virtual Astronomical Observatory
NASA Astrophysics Data System (ADS)
Hanisch, Robert J.; Berriman, G. B.; Lazio, J.; Szalay, A. S.; Fabbiano, G.; Plante, R. L.; McGlynn, T. A.; Evans, J.; Emery Bunn, S.; Claro, M.; VAO Project Team
2014-01-01
Over the past ten years, the Virtual Astronomical Observatory (VAO, http://usvao.org) and its predecessor, the National Virtual Observatory (NVO), have developed and operated a software infrastructure consisting of standards and protocols for data and science software applications. The Virtual Observatory (VO) makes it possible to develop robust software for the discovery, access, and analysis of astronomical data. Every major publicly funded research organization in the US and worldwide has deployed at least some components of the VO infrastructure; tens of thousands of VO-enabled queries for data are invoked daily against catalog, image, and spectral data collections; and groups within the community have developed tools and applications building upon the VO infrastructure. Further, NVO and VAO have helped ensure access to data internationally by co-founding the International Virtual Observatory Alliance (IVOA, http://ivoa.net). The products of the VAO are being archived in a publicly accessible repository. Several science tools developed by the VAO will continue to be supported by the organizations that developed them: the Iris spectral energy distribution package (SAO), the Data Discovery Tool (STScI/MAST, HEASARC), and the scalable cross-comparison service (IPAC). The final year of VAO is focused on development of the data access protocol for data cubes, creation of Python language bindings to VO services, and deployment of a cloud-like data storage service that links to VO data discovery tools (SciDrive). We encourage the community to make use of these tools and services, to extend and improve them, and to carry on with the vision for virtual astronomy: astronomical research enabled by easy access to distributed data and computational resources. Funding for VAO development and operations has been provided jointly by NSF and NASA since May 2010. NSF funding will end in September 2014, though with the possibility of competitive solicitations for VO-based tool development. NASA intends to maintain core VO services such as the resource registry (the index of VO-accessible data collections), monitoring services, and a website as part of the remit of HEASARC, IPAC (IRSA, NED), and MAST.
Global TIE: Developing a Virtual Network of Robotic Observatories for K-12 Education
NASA Astrophysics Data System (ADS)
Mayo, L. A.; Clark, G.
2001-11-01
Astronomy in grades K-12 is traditionally taught (if at all) using textbooks and a few simple hands-on activities. In addition, most students, by High School graduation, will never have even looked through the eyepiece of a telescope. The possibility now exists to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible to schools all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers. The NASA-sponsored Telescopes In Education (TIE, http://tie.jpl.nasa.gov) project has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy activities. Hundreds of schools in the US, Australia, Canada, England, and Japan have participated in the TIE program, remotely controlling the 24-inch telescope at the Mount Wilson Observatory from their classrooms. In recent years, several (approximately 20 to date) other telescopes have been, or are in the process of being, outfitted for remote use as TIE affiliates. Global TIE integrates these telescopes seamlessly into one virtual observatory and provides the services required to operate this facility, including a scheduling service, tools for data manipulation, an online proposal review environment, an online "Virtual TIE Student Ap J" for publication of results, and access to related educational materials provided by the TIE community. Global TIE provides unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns essentially unused observatory facilities into valuable, state-of-the-art teaching centers. This presentation describes the Global TIE Observatory data and organizational systems and details the technology, partnerships, operational capabilities, science applications, and learning opportunities that this powerful virtual observatory network will provide.
Creating Data that Never Die: Building a Spectrograph Data Pipeline in the Virtual Observatory Era
NASA Astrophysics Data System (ADS)
Mink, D. J.; Wyatt, W. F.; Roll, J. B.; Tokarz, S. P.; Conroy, M. A.; Caldwell, N.; Kurtz, M.; Geller, M. J.
2005-12-01
Data pipelines for modern complex astronomical instruments do not begin when the data is taken and end when it is delivered to the user. Information must flow between the observatory and the observer from the time a project is conceived and between the observatory and the world well past the time when the original observers have extracted all the information they want from the data. For the 300-fiber Hectospec low dispersion spectrograph on the MMT, the SAO Telescope Data Center is constructing a data pipeline which provides assistance from preparing and submitting observing proposals through observation, reduction, and analysis to publication and an afterlife in the Virtual Observatory. We will describe our semi-automatic pipeline and how it has evolved over the first nine months of operation.
Education Potential of the National Virtual Observatory
NASA Astrophysics Data System (ADS)
Christian, Carol
2006-12-01
Research in astronomy is blossoming with the availability of sophisticated instrumentation and tools aimed at breakthroughs in our understanding of the physical universe. Researchers can take advantage of the astronomical infrastructure, the National Virtual Observatory (NVO), for their investigations. . As well, data and tools available to the public are increasing through the distributed resources of observatories, academic institutions, computing facilities and educational organizations. Because Astronomy holds the public interest through engaging content and striking a cord with fundamental questions of human interest, it is a perfect context for science and technical education. Through partnerships we are cultivating, the NVO can be tuned for educational purposes.
Space-Time Coordinate Metadata for the Virtual Observatory Version 1.33
NASA Astrophysics Data System (ADS)
Rots, A. H.; Rots, A. H.
2007-10-01
This document provides a complete design description of the Space-Time Coordinate (STC) metadata for the Virtual Observatory. It explains the various components, highlights some implementation considerations, presents a complete set of UML diagrams, and discusses the relation between STC and certain other parts of the Data Model. Two serializations are discussed: XML Schema (STC-X) and String (STC-S); the former is an integral part of this Recommendation.
AstroGrid: Taverna in the Virtual Observatory .
NASA Astrophysics Data System (ADS)
Benson, K. M.; Walton, N. A.
This paper reports on the implementation of the Taverna workbench by AstroGrid, a tool for designing and executing workflows of tasks in the Virtual Observatory. The workflow approach helps astronomers perform complex task sequences with little technical effort. Visual approach to workflow construction streamlines highly complex analysis over public and private data and uses computational resources as minimal as a desktop computer. Some integration issues and future work are discussed in this article.
The Virtual Wave Observatory (VWO): A Portal to Heliophysics Wave Data
NASA Technical Reports Server (NTRS)
Fung, Shing F.
2010-01-01
The Virtual Wave Observatory (VWO) is one of the discipline-oriented virtual observatories that help form the nascent NASA Heliophysics Data environment to support heliophysics research. It focuses on supporting the searching and accessing of distributed heliophysics wave data and information that are available online. Since the occurrence of a natural wave phenomenon often depends on the underlying geophysical -- i.e., context -- conditions under which the waves are generated and propagate, and the observed wave characteristics can also depend on the location of observation, VWO will implement wave-data search-by-context conditions and location, in addition to searching by time and observing platforms (both space-based and ground-based). This paper describes the VWO goals, the basic design objectives, and the key VWO functionality to be expected. Members of the heliophysics community are invited to participate in VWO development in order to ensure its usefulness and success.
NASA Astrophysics Data System (ADS)
Thomas, Zahra; Rousseau-Gueutin, Pauline; Kolbe, Tamara; Abbott, Ben; Marcais, Jean; Peiffer, Stefan; Frei, Sven; Bishop, Kevin; Le Henaff, Geneviève; Squividant, Hervé; Pichelin, Pascal; Pinay, Gilles; de Dreuzy, Jean-Raynald
2017-04-01
The distribution of groundwater residence time in a catchment provides synoptic information about catchment functioning (e.g. nutrient retention and removal, hydrograph flashiness). In contrast with interpreted model results, which are often not directly comparable between studies, residence time distribution is a general output that could be used to compare catchment behaviors and test hypotheses about landscape controls on catchment functioning. In this goal, we created a virtual observatory platform called Catchment Virtual Observatory for Sharing Flow and Transport Model Outputs (COnSOrT). The main goal of COnSOrT is to collect outputs from calibrated groundwater models from a wide range of environments. By comparing a wide variety of catchments from different climatic, topographic and hydrogeological contexts, we expect to enhance understanding of catchment connectivity, resilience to anthropogenic disturbance, and overall functioning. The web-based observatory will also provide software tools to analyze model outputs. The observatory will enable modelers to test their models in a wide range of catchment environments to evaluate the generality of their findings and robustness of their post-processing methods. Researchers with calibrated numerical models can benefit from observatory by using the post-processing methods to implement a new approach to analyzing their data. Field scientists interested in contributing data could invite modelers associated with the observatory to test their models against observed catchment behavior. COnSOrT will allow meta-analyses with community contributions to generate new understanding and identify promising pathways forward to moving beyond single catchment ecohydrology. Keywords: Residence time distribution, Models outputs, Catchment hydrology, Inter-catchment comparison
Estimation of the state of solar activity type stars by virtual observations of CrAVO
NASA Astrophysics Data System (ADS)
Dolgov, A. A.; Shlyapnikov, A. A.
2012-05-01
The results of precosseing of negatives with direct images of the sky from CrAO glass library are presented in this work, which became a part of on-line archive of the Crimean Astronomical Virtual Observatory (CrAVO). Based on the obtained data, the parameters of dwarf stars have been estimated, included in the catalog "Stars with solar-type activity" (GTSh10). The following matters are considered: searching methodology of negatives with positions of studied stars and with calculated limited magnitude; image viewing and reduction with the facilities of the International Virtual Observatory; the preliminary results of the photometry of studied objects.
CubeIndexer: Indexer for regions of interest in data cubes
NASA Astrophysics Data System (ADS)
Chilean Virtual Observatory; Araya, Mauricio; Candia, Gabriel; Gregorio, Rodrigo; Mendoza, Marcelo; Solar, Mauricio
2015-12-01
CubeIndexer indexes regions of interest (ROIs) in data cubes reducing the necessary storage space. The software can process data cubes containing megabytes of data in fractions of a second without human supervision, thus allowing it to be incorporated into a production line for displaying objects in a virtual observatory. The software forms part of the Chilean Virtual Observatory (ChiVO) and provides the capability of content-based searches on data cubes to the astronomical community.
NASA Astrophysics Data System (ADS)
Merka, J.; Dolan, C. F.
2015-12-01
Finding and retrieving space physics data is often a complicated taskeven for publicly available data sets: Thousands of relativelysmall and many large data sets are stored in various formats and, inthe better case, accompanied by at least some documentation. VirtualHeliospheric and Magnetospheric Observatories (VHO and VMO) help researches by creating a single point of uniformdiscovery, access, and use of heliospheric (VHO) and magnetospheric(VMO) data.The VMO and VHO functionality relies on metadata expressed using theSPASE data model. This data model is developed by the SPASE WorkingGroup which is currently the only international group supporting globaldata management for Solar and Space Physics. The two Virtual Observatories(VxOs) have initiated and lead a development of a SPASE-related standardnamed SPASE Query Language for provided a standard way of submittingqueries and receiving results.The VMO and VHO use SPASE and SPASEQL for searches based on various criteria such as, for example, spatial location, time of observation, measurement type, parameter values, etc. The parameter values are represented by their statisticalestimators calculated typically over 10-minute intervals: mean, median, standard deviation, minimum, and maximum. The use of statistical estimatorsenables science driven data queries that simplify and shorten the effort tofind where and/or how often the sought phenomenon is observed, as we will present.
Science Initiatives of the US Virtual Astronomical Observatory
NASA Astrophysics Data System (ADS)
Hanisch, R. J.
2012-09-01
The United States Virtual Astronomical Observatory program is the operational facility successor to the National Virtual Observatory development project. The primary goal of the US VAO is to build on the standards, protocols, and associated infrastructure developed by NVO and the International Virtual Observatory Alliance partners and to bring to fruition a suite of applications and web-based tools that greatly enhance the research productivity of professional astronomers. To this end, and guided by the advice of our Science Council (Fabbiano et al. 2011), we have focused on five science initiatives in the first two years of VAO operations: 1) scalable cross-comparisons between astronomical source catalogs, 2) dynamic spectral energy distribution construction, visualization, and model fitting, 3) integration and periodogram analysis of time series data from the Harvard Time Series Center and NASA Star and Exoplanet Database, 4) integration of VO data discovery and access tools into the IRAF data analysis environment, and 5) a web-based portal to VO data discovery, access, and display tools. We are also developing tools for data linking and semantic discovery, and have a plan for providing data mining and advanced statistical analysis resources for VAO users. Initial versions of these applications and web-based services are being released over the course of the summer and fall of 2011, with further updates and enhancements planned for throughout 2012 and beyond.
The National Virtual Observatory
NASA Astrophysics Data System (ADS)
Hanisch, Robert J.
2001-06-01
The National Virtual Observatory is a distributed computational facility that will provide access to the ``virtual sky''-the federation of astronomical data archives, object catalogs, and associated information services. The NVO's ``virtual telescope'' is a common framework for requesting, retrieving, and manipulating information from diverse, distributed resources. The NVO will make it possible to seamlessly integrate data from the new all-sky surveys, enabling cross-correlations between multi-Terabyte catalogs and providing transparent access to the underlying image or spectral data. Success requires high performance computational systems, high bandwidth network services, agreed upon standards for the exchange of metadata, and collaboration among astronomers, astronomical data and information service providers, information technology specialists, funding agencies, and industry. International cooperation at the onset will help to assure that the NVO simultaneously becomes a global facility. .
Graphics interfaces and numerical simulations: Mexican Virtual Solar Observatory
NASA Astrophysics Data System (ADS)
Hernández, L.; González, A.; Salas, G.; Santillán, A.
2007-08-01
Preliminary results associated to the computational development and creation of the Mexican Virtual Solar Observatory (MVSO) are presented. Basically, the MVSO prototype consists of two parts: the first, related to observations that have been made during the past ten years at the Solar Observation Station (EOS) and at the Carl Sagan Observatory (OCS) of the Universidad de Sonora in Mexico. The second part is associated to the creation and manipulation of a database produced by numerical simulations related to solar phenomena, we are using the MHD ZEUS-3D code. The development of this prototype was made using mysql, apache, java and VSO 1.2. based GNU and `open source philosophy'. A graphic user interface (GUI) was created in order to make web-based, remote numerical simulations. For this purpose, Mono was used, because it is provides the necessary software to develop and run .NET client and server applications on Linux. Although this project is still under development, we hope to have access, by means of this portal, to other virtual solar observatories and to be able to count on a database created through numerical simulations or, given the case, perform simulations associated to solar phenomena.
Using Virtual Observatory Services in Sky View
NASA Technical Reports Server (NTRS)
McGlynn, Thomas A.
2007-01-01
For over a decade Skyview has provided astronomers and the public with easy access to survey and imaging data from all wavelength regimes. SkyView has pioneered many of the concepts that underlie the Virtual Observatory. Recently SkyView has been released as a distributable package which uses VO protocols to access image and catalog services. This chapter describes how to use the Skyview as a local service and how to customize it to access additional VO services and local data.
The Organization and Management of the Virtual Astronomical Observatory
NASA Technical Reports Server (NTRS)
Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.; Szalay, Alexander; Fabbiano, Giussepina
2012-01-01
The U.S. Virtual Astronomical Observatory (VAO; http://www.us-vao.org/) has been in operation since May 2010. Its goal is to enable new science through efficient integration of distributed multi-wavelength data. This paper describes the management and organization of the VAO, and emphasizes the techniques used to ensure efficiency in a distributed organization. Management methods include using an annual program plan as the basis for establishing contracts with member organizations, regular communication, and monitoring of processes.
The organization and management of the Virtual Astronomical Observatory
NASA Astrophysics Data System (ADS)
Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.; Szalay, Alexander; Fabbiano, Giuseppina
2012-09-01
The U.S. Virtual Astronomical Observatory (VAO; http://www.us-vao.org/) has been in operation since May 2010. Its goal is to enable new science through efficient integration of distributed multi-wavelength data. This paper describes the management and organization of the VAO, and emphasizes the techniques used to ensure efficiency in a distributed organization. Management methods include using an annual program plan as the basis for establishing contracts with member organizations, regular communication, and monitoring of processes.
The Virtual Space Physics Observatory: Quick Access to Data and Tools
NASA Technical Reports Server (NTRS)
Cornwell, Carl; Roberts, D. Aaron; McGuire, Robert E.
2006-01-01
The Virtual Space Physics Observatory (VSPO; see http://vspo.gsfc.nasa.gov) has grown to provide a way to find and access about 375 data products and services from over 100 spacecraft/observatories in space and solar physics. The datasets are mainly chosen to be the most requested, and include most of the publicly available data products from operating NASA Heliophysics spacecraft as well as from solar observatories measuring across the frequency spectrum. Service links include a "quick orbits" page that uses SSCWeb Web Services to provide a rapid answer to questions such as "What spacecraft were in orbit in July 1992?" and "Where were Geotail, Cluster, and Polar on 2 June 2001?" These queries are linked back to the data search page. The VSPO interface provides many ways of looking for data based on terms used in a registry of resources using the SPASE Data Model that will be the standard for Heliophysics Virtual Observatories. VSPO itself is accessible via an API that allows other applications to use it as a Web Service; this has been implemented in one instance using the ViSBARD visualization program. The VSPO will become part of the Space Physics Data Facility, and will continue to expand its access to data. A challenge for all VOs will be to provide uniform access to data at the variable level, and we will be addressing this question in a number of ways.
The Virtual Observatory: Retrospective and Prospectus
NASA Astrophysics Data System (ADS)
Hanisch, R. J.
2010-12-01
At the ADASS XV in San Lorenzo de El Escorial, Spain, in October 2005, I gave an overview of the accomplishments of the Virtual Observatory initiatives and discussed the imminent transition from development to operations. That transition remains on the horizon for the US Virtual Observatory, and VO projects worldwide have encountered various programmatic challenges. The successes of the Virtual Observatory are many, but thus far are primarily of a technical nature. We have developed a data discovery and data access infrastructure that has been taken up by data centers and observatories around the world. We have web-based interfaces, downloadable toolkits and applications, a security and restricted access capability, standard vocabularies, a sophisticated messaging and alert system for transient events, and the ability for applications to exchange messages and work together seamlessly. This has been accomplished through a strong collaboration between astronomers and information technology specialists. We have been less successful engaging the astronomical researcher. Relatively few papers have been published based on VO-enabled research, and many astronomers remain unfamiliar with the capabilities of the VO despite active training and tutorial programs hosted by several of the major VO projects. As we (finally!) enter the operational phase of the VO, we need to focus on areas that have contributed to the limited take-up of the VO amongst active scientists, such as ease of use, reliability, and consistency. We need to routinely test VO services for aliveness and adherence to standards, working with data providers to fix errors and otherwise removing non-compliant services from those seen by end-users. Technical developments will need to be motivated and prioritized based on scientific utility. We need to continue to embrace new technology and employ it in a context that focuses on research productivity.
Can virtual reality be used to conduct mass prophylaxis clinic training? A pilot program.
Yellowlees, Peter; Cook, James N; Marks, Shayna L; Wolfe, Daniel; Mangin, Elanor
2008-03-01
To create and evaluate a pilot bioterrorism defense training environment using virtual reality technology. The present pilot project used Second Life, an internet-based virtual world system, to construct a virtual reality environment to mimic an actual setting that might be used as a Strategic National Stockpile (SNS) distribution site for northern California in the event of a bioterrorist attack. Scripted characters were integrated into the system as mock patients to analyze various clinic workflow scenarios. Users tested the virtual environment over two sessions. Thirteen users who toured the environment were asked to complete an evaluation survey. Respondents reported that the virtual reality system was relevant to their practice and had potential as a method of bioterrorism defense training. Computer simulations of bioterrorism defense training scenarios are feasible with existing personal computer technology. The use of internet-connected virtual environments holds promise for bioterrorism defense training. Recommendations are made for public health agencies regarding the implementation and benefits of using virtual reality for mass prophylaxis clinic training.
VESPA: Developing the Planetary Science Virtual Observatory in H2020
NASA Astrophysics Data System (ADS)
Erard, S.; Cecconi, B.; Le Sidaner, P.; Capria, T.; Rossi, A. P.; Schmitt, B.; André, N.; Vandaele, A.-C.; Scherf, M.; Hueso, R.; Maattanen, A.; Thuillot, W.; Achilleos, N.; Marmo, C.; Santolik, O.; Benson, K.; Bollard, Ph.
2015-10-01
The Europlanet H2020 programme will develop a research infrastructure in Horizon 2020. The programme includes a follow-on to the FP7 activity aimed at developing the Planetary Science Virtual Observatory (VO). This activity is called VESPA, which stands for Virtual European Solar and Planetary Access. Building on the IDIS activity of Europlanet FP7, VESPA will distribute more data, will improve the connected tools and infrastructure, and will help developing a community of both users and data providers. One goal of the Europlanet FP7 programme was to set the basis for a European Virtual Observatory in Planetary Science. A prototype has been set up during FP7, most of the activity being dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), plasma physics (SPASE), and space archive services (IPDA). It remains consistent with extensions of IVOA standards.
VESPA: developing the planetary science Virtual Observatory in H2020
NASA Astrophysics Data System (ADS)
Erard, Stéphane; Cecconi, Baptiste; Le Sidaner, Pierre; Capria, Teresa; Rossi, Angelo Pio
2016-04-01
The Europlanet H2020 programme will develop a research infrastructure in Horizon 2020. The programme includes a follow-on to the FP7 activity aimed at developing the Planetary Science Virtual Observatory (VO). This activity is called VESPA, which stands for Virtual European Solar and Planetary Access. Building on the IDIS activity of Europlanet FP7, VESPA will distribute more data, will improve the connected tools and infrastructure, and will help developing a community of both users and data providers. One goal of the Europlanet FP7 programme was to set the basis for a European Virtual Observatory in Planetary Science. A prototype has been set up during FP7, most of the activity being dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), plasma physics (SPASE), and space archive services (IPDA). It remains consistent with extensions of IVOA standards.
Spectroscopic analysis in the virtual observatory environment with SPLAT-VO
NASA Astrophysics Data System (ADS)
Škoda, P.; Draper, P. W.; Neves, M. C.; Andrešič, D.; Jenness, T.
2014-11-01
SPLAT-VO is a powerful graphical tool for displaying, comparing, modifying and analysing astronomical spectra, as well as searching and retrieving spectra from services around the world using Virtual Observatory (VO) protocols and services. The development of SPLAT-VO started in 1999, as part of the Starlink StarJava initiative, sometime before that of the VO, so initial support for the VO was necessarily added once VO standards and services became available. Further developments were supported by the Joint Astronomy Centre, Hawaii until 2009. Since end of 2011 development of SPLAT-VO has been continued by the German Astrophysical Virtual Observatory, and the Astronomical Institute of the Academy of Sciences of the Czech Republic. From this time several new features have been added, including support for the latest VO protocols, along with new visualization and spectra storing capabilities. This paper presents the history of SPLAT-VO, its capabilities, recent additions and future plans, as well as a discussion on the motivations and lessons learned up to now.
A Prototype Publishing Registry for the Virtual Observatory
NASA Astrophysics Data System (ADS)
Williamson, R.; Plante, R.
2004-07-01
In the Virtual Observatory (VO), a registry helps users locate resources, such as data and services, in a distributed environment. A general framework for VO registries is now under development within the International Virtual Observatory Alliance (IVOA) Registry Working Group. We present a prototype of one component of this framework: the publishing registry. The publishing registry allows data providers to expose metadata descriptions of their resources to the VO environment. Searchable registries can harvest the metadata from many publishing registries and make them searchable by users. We have developed a prototype publishing registry that data providers can install at their sites to publish their resources. The descriptions are exposed using the Open Archive Initiative (OAI) Protocol for Metadata Harvesting. Automating the input of metadata into registries is critical when a provider wishes to describe many resources. We illustrate various strategies for such automation, both currently in use and planned for the future. We also describe how future versions of the registry can adapt automatically to evolving metadata schemas for describing resources.
Development of Armenian-Georgian Virtual Observatory
NASA Astrophysics Data System (ADS)
Mickaelian, Areg; Kochiashvili, Nino; Astsatryan, Hrach; Harutyunian, Haik; Magakyan, Tigran; Chargeishvili, Ketevan; Natsvlishvili, Rezo; Kukhianidze, Vasil; Ramishvili, Giorgi; Sargsyan, Lusine; Sinamyan, Parandzem; Kochiashvili, Ia; Mikayelyan, Gor
2009-10-01
The Armenian-Georgian Virtual Observatory (ArGVO) project is the first initiative in the world to create a regional VO infrastructure based on national VO projects and regional Grid. The Byurakan and Abastumani Astrophysical Observatories are scientific partners since 1946, after establishment of the Byurakan observatory . The Armenian VO project (ArVO) is being developed since 2005 and is a part of the International Virtual Observatory Alliance (IVOA). It is based on the Digitized First Byurakan Survey (DFBS, the digitized version of famous Markarian survey) and other Armenian archival data. Similarly, the Georgian VO will be created to serve as a research environment to utilize the digitized Georgian plate archives. Therefore, one of the main goals for creation of the regional VO is the digitization of large amounts of plates preserved at the plate stacks of these two observatories. The total amount of plates is more than 100,000 units. Observational programs of high importance have been selected and some 3000 plates will be digitized during the next two years; the priority is being defined by the usefulness of the material for future science projects, like search for new objects, optical identifications of radio, IR, and X-ray sources, study of variability and proper motions, etc. Having the digitized material in VO standards, a VO database through the regional Grid infrastructure will be active. This partnership is being carried out in the framework of the ISTC project A-1606 "Development of Armenian-Georgian Grid Infrastructure and Applications in the Fields of High Energy Physics, Astrophysics and Quantum Physics".
Evaluating a NoSQL Alternative for Chilean Virtual Observatory Services
NASA Astrophysics Data System (ADS)
Antognini, J.; Araya, M.; Solar, M.; Valenzuela, C.; Lira, F.
2015-09-01
Currently, the standards and protocols for data access in the Virtual Observatory architecture (DAL) are generally implemented with relational databases based on SQL. In particular, the Astronomical Data Query Language (ADQL), language used by IVOA to represent queries to VO services, was created to satisfy the different data access protocols, such as Simple Cone Search. ADQL is based in SQL92, and has extra functionality implemented using PgSphere. An emergent alternative to SQL are the so called NoSQL databases, which can be classified in several categories such as Column, Document, Key-Value, Graph, Object, etc.; each one recommended for different scenarios. Within their notable characteristics we can find: schema-free, easy replication support, simple API, Big Data, etc. The Chilean Virtual Observatory (ChiVO) is developing a functional prototype based on the IVOA architecture, with the following relevant factors: Performance, Scalability, Flexibility, Complexity, and Functionality. Currently, it's very difficult to compare these factors, due to a lack of alternatives. The objective of this paper is to compare NoSQL alternatives with SQL through the implementation of a Web API REST that satisfies ChiVO's needs: a SESAME-style name resolver for the data from ALMA. Therefore, we propose a test scenario by configuring a NoSQL database with data from different sources and evaluating the feasibility of creating a Simple Cone Search service and its performance. This comparison will allow to pave the way for the application of Big Data databases in the Virtual Observatory.
Virtual Energetic Particle Observatory for the Heliospheric Data Environment
NASA Technical Reports Server (NTRS)
Cooper, J. F.; Armstrong, T. P.; Hill, M. E.; Lal, N.; McGuire, R. E.; McKibben, R. B.; Narock, T. W.; Szabo, A.; Tranquille, C.
2007-01-01
The heliosphere is pervaded by interplanetary energetic particles, traditionally also called cosmic rays, from solar, internal heliospheric, and galactic sources. The particles species of interest to heliophysics extend from plasma energies to the GeV energies of galactic cosmic rays still measurably affected by heliospheric modulation and the still higher energies contributing to atmospheric ionization. The NASA and international Heliospheric Network of operational and legacy spacecraft measures interplanetary fluxes of these particles. Spatial coverage extends from the inner heliosphere and geospace to the heliosheath boundary region now being traversed by Voyager 1 and soon by Voyager 2. Science objectives include investigation of solar flare and coronal mass ejection events, acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. The Virtual Energetic Particle Observatory (VEPO) will improve access and usability of selected spacecraft and sub-orbital NASA heliospheric energetic particle data sets as a newly approved effort within the evolving heliophysics virtual observatory environment. In this presentation, we will describe current VEPO science requirements, our initial priorities and an overview of our strategy to implement VEPO rapidly and at minimal cost by working within the high-level framework of the Virtual Heliospheric Observatory (VHO). VEPO will also leverage existing data services of NASA's Space Physics Data Facility and other existing capabilities of the U.S. and international heliospheric research communities.
The Role of the Virtual Astronomical Observatory in the Era of Big Data
NASA Astrophysics Data System (ADS)
Berriman, G. B.; Hanisch, R. J.; Lazio, T. J.
2013-01-01
The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. The rapid growth in the size and complexity of data sets is transforming the computing landscape in astronomy. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of an information backbone that responds to this growth. Such a backbone will, when complete, provide innovative mechanisms for fast discovery of, and access to, massive data sets, and services that enable distributed storage, publication processing of large datasets. All these services will be built so that new projects can incorporate them as part of their data management and processing plans. Services under development to date include a general purpose indexing scheme for fast access to data sets, a cross-comparison engine that operate on catalogs of 1 billion records or more, and an interface for managing distributed data sets and connecting them to data discovery and analysis tools. The VAO advises projects on technology solutions for their data access and processing needs, and recently advised the Sagan Workshop on using cloud computing to support hands-on data analysis sessions for 150+ participants. Acknowledgements: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.
Virtual Observatory and Colitec Software: Modules, Features, Methods
NASA Astrophysics Data System (ADS)
Pohorelov, A. V.; Khlamov, S. V.; Savanevych, V. E.; Briukhovetskyi, A. B.; Vlasenko, V. P.
In this article we described complex processing system created by the CoLiTec project. This system includes features, user-friendly tools for processing control, results reviewing, integration with online catalogs and a lot of different computational modules that are based on the developed methods. Some of them are described in the article.The main directions of the CoLiTec software development are the Virtual Observatory, software for automated asteroids and comets detection and software for brightness equalization.The CoLiTec software is widely used in a number of observatories in the CIS. It has been used in about 700 000 observations, during which 1560 asteroids, including 5 NEO, 21 Trojan asteroids of Jupiter, 1 Centaur and four comets were discovered.
Leveraging Emerging Technologies in Outreach for JWST
NASA Astrophysics Data System (ADS)
Meinke, Bonnie K.; Green, Joel D.; Smith, Louis Chad; Smith, Denise A.; Lawton, Brandon L.; Gough, Michael
2017-10-01
The James Webb Space Telescope (JWST) is NASA’s next great observatory, launching in October 2018. How will we maintain the prestige and cultural impact of the Hubble Space Telescope as the torch passes to Webb? Emerging technologies such as augmented (AR) and virtual reality (VR) bring the viewer into the data and introduce the telescope in previously unimaginable immersive detail. Adoption of mobile devices, many of which easily support AR and VR, has expanded access to information for wide swaths of the public. From software like Worldwide Telescope to hardware like the HTC Vive, immersive environments are providing new avenues for learning. If we develop materials properly tailored to these media, we can reach more diverse audiences than ever before. STScI is piloting tools related to JWST to showcase at DPS, and in local events, which I highlight here.
VizieR Online Data Catalog: NLTE spectral analysis of white dwarf G191-B2B (Rauch+, 2013)
NASA Astrophysics Data System (ADS)
Rauch, T.; Werner, K.; Bohlin, R.; Kruk, J. W.
2013-08-01
In the framework of the Virtual Observatory, the German Astrophysical Virtual Observatory developed the registered service TheoSSA. It provides easy access to stellar spectral energy distributions (SEDs) and is intended to ingest SEDs calculated by any model-atmosphere code. In case of the DA white dwarf G191-B2B, we demonstrate that the model reproduces not only its overall continuum shape but also the numerous metal lines exhibited in its ultraviolet spectrum. (3 data files).
The Sky is for Everyone — Outreach and Education with the Virtual Observatory
NASA Astrophysics Data System (ADS)
Freistetter, F.; Iafrate, G.; Ramella, M.; Aida-Wp5 Team
2010-12-01
The Virtual Observatory (VO) is an international project to collect astronomical data (images, spectra, simulations, mission-logs, etc.), organise them and develop tools that let astronomers access this huge amount of information. The VO not only simplifies the work of professional astronomers, it is also a valuable tool for education and public outreach. For teachers and astronomers who actively promote astronomy to the public, the VO is a great opportunity to access and use real astronomical data, and have a taste of the daily life of astronomers.
The Virtual Solar Observatory: Progress and Diversions
NASA Astrophysics Data System (ADS)
Gurman, Joseph B.; Bogart, R. S.; Amezcua, A.; Hill, Frank; Oien, Niles; Davey, Alisdair R.; Hourcle, Joseph; Mansky, E.; Spencer, Jennifer L.
2017-08-01
The Virtual Solar Observatory (VSO) is a known and useful method for identifying and accessing solar physics data online. We review current "behind the scenes" work on the VSO, including the addition of new data providers and the return of access to data sets to which service was temporarily interrupted. We also report on the effect on software development efforts when government IT “security” initiatives impinge on finite resoruces. As always, we invite SPD members to identify data sets, services, and interfaces they would like to see implemented in the VSO.
NASA Astrophysics Data System (ADS)
Alacid, J. Manuel; Solano, Enrique
2015-12-01
The Gran Telescopio Canarias (GTC) archive is operational since November 2011. The archive, maintained by the Data Archive Unit at CAB in the framework of the Spanish Virtual Observatory project, provides access to both raw and science ready data and has been designed in compliance with the standards defined by the International Virtual Observatory Alliance (IVOA) to guarantee a high level of data accessibility and handling. In this presentation I will describe the main capabilities the GTC archive offers to the community, in terms of functionalities and data collections, to carry out an efficient scientific exploitation of GTC data.
Virtual Golden Foods Corporation: Generic Skills in a Virtual Crisis Environment (A Pilot Study)
ERIC Educational Resources Information Center
Godat, Meredith
2007-01-01
Workplace learning in a crisis-rich environment is often difficult if not impossible to integrate into programs so that students are able to experience and apply crisis management practices and principles. This study presents the results of a pilot project that examined the effective use of a virtual reality (VR) environment as a tool to teach…
Davidson, Dennisa; Evans, Lois
2018-03-01
To explore online study groups as augmentation tools in preparing for the Royal Australian and New Zealand College of Psychiatrists Observed Structured Clinical Examinations (OSCE) for fellowship. An online survey of New Zealand trainees was carried out to assess exam preparedness and openness to virtual study groups and results analysed. Relevant material around virtual study groups for fellowship examinations was reviewed and used to inform a pilot virtual study group. Four New Zealand trainees took part in the pilot project, looking at using a virtual platform to augment OSCE preparation. Of the 50 respondents 36% felt adequately prepared for the OSCE. Sixty-four per cent were interested in using a virtual platform to augment their study. Virtual study groups were noted to be especially important for rural trainees, none of whom felt able to form study groups for themselves. The pilot virtual study group was trialled successfully. All four trainees reported the experience as subjectively beneficial to their examination preparation. Virtual platforms hold promise as an augmentation strategy for exam preparation, especially for rural trainees who are more geographically isolated and less likely to have peers preparing for the same examinations.
Working Group Proposed to Preserve Archival Records
NASA Astrophysics Data System (ADS)
Bartlett, Jennifer L.
2013-01-01
The AAS and AIP co-hosted a Workshop in April 2012 with NSF support (AST-1110231) that recommends establishing a Working Group on Time Domain Astronomy (WGTDA) to encourage and advise on preserving historical observations in a form meaningful for future scientific analysis. Participants specifically considered archival observations that could describe how astronomical objects change over time. Modern techniques and increased storage capacity enable extracting additional information from older media. Despite the photographic plate focus, other formats also concerned participants. To prioritize preservation efforts, participants recommended considering the information density, the amount of previously published data, their format and associated materials, their current condition, and their expected deterioration rate. Because the best digitization still produces an observation of an observation, the originals should be retained. For accessibility, participants recommended that observations and their metadata be available digitally and on-line. Standardized systems for classifying, organizing, and listing holdings should enable discovery of historical observations through the Virtual Astronomical Observatory. Participants recommended pilot projects that produce scientific results, demonstrate the dependence of some advances on heritage data, and open new avenues of exploration. Surveying a broad region of the sky with a long time-base and high cadence should reveal new phenomena and improve statistics for rare events. Adequate financial support is essential. While their capacity to produce new science is the primary motivation for preserving astronomical records, their potential for historical research and citizen science allows targeting cultural institutions and other private sources. A committee was elected to prepare the WGTDA proposal. The WGTDA executive committee should be composed of ~10 members representing modern surveys, heritage materials, data management, data standardization and integration, follow-up of time-domain discoveries, and virtual observatories. The Working Group on the Preservation of Astronomical Heritage Web page includes a full report.
Using Virtual Astronomical Observatory Tools for Astronomy 101
NASA Astrophysics Data System (ADS)
Mighell, Kenneth J.; Garmany, K.; Larson, K.; Eastwood, K. D.
2009-01-01
The Virtual Observatory provides several tools that are useful for educators. With these tools, instructors can easily provide real data to students in an environment that engages student curiosity and builds student understanding. In this poster we demonstrate how the tools Aladin and TOPCAT can be used to enhance astronomy education. The Aladin Sky Atlas is a Virtual Observatory portal from the CDS that displays images, superimposes catalogs, and provides interactive access to data. For illustration, we show an exercise for non-science majors in a college-level astronomy course that introduces students to the HR diagram of star clusters. After launching the pre-loaded Aladin applet, students select their own stars, connecting visual cues of brightness and color to the conceptual meaning behind a quantitative HR diagram. TOPCAT can be linked with Aladin on the desktop to let students analyze their data, perform calculations, and create professional-quality graphs. The basic exercise can be easily expanded to address other learning objectives and provides a launching point for students to access, visualize, and explore multi-wavelength data as they continue in astronomy. As a second example, we show an exercise that uses TOPCAT to do three-dimensional plotting of the positions of open and globular cluster to illustrate galactic structure. Detailed information is available at the following website: http://www.noao.edu/staff/mighell/nvoss2008/ . This research was done at the 2008 U.S. National Virtual Observatory Summer School which was held in Santa Fe, New Mexico on September 3 - 11, 2008 and was sponsored by the National Science Foundation.
NASA Astrophysics Data System (ADS)
Protsyuk, Yu.; Pinigin, G.; Shulga, A.
2005-06-01
Results of the development and organization of the digital database of the Nikolaev Astronomical Observatory (NAO) are presented. At present, three telescopes are connected to the local area network of NAO. All the data obtained, and results of data processing are entered into the common database of NAO. The daily average volume of new astronomical information obtained from the CCD instruments ranges from 300 MB up to 2 GB, depending on the purposes and conditions of observations. The overwhelming majority of the data are stored in the FITS format. Development and further improvement of storage standards, procedures of data handling and data processing are being carried out. It is planned to create an astronomical web portal with the possibility to have interactive access to databases and telescopes. In the future, this resource may become a part of an international virtual observatory. There are the prototypes of search tools with the use of PHP and MySQL. Efforts for getting more links to the Internet are being made.
The Virtual Solar Observatory: What Are We Up To Now?
NASA Technical Reports Server (NTRS)
Gurman, J. B.; Hill, F.; Suarez-Sola, F.; Bogart, R.; Amezcua, A.; Martens, P.; Hourcle, J.; Hughitt, K.; Davey, A.
2012-01-01
In the nearly ten years of a functional Virtual Solar Observatory (VSO), http://virtualsolar.org/ we have made it possible to query and access sixty-seven distinct solar data products and several event lists from nine spacecraft and fifteen observatories or observing networks. We have used existing VSO technology, and developed new software, for a distributed network of sites caching and serving SDO HMI and/ or AlA data. We have also developed an application programming interface (API) that has enabled VSO search and data access capabilities in IDL, Python, and Java. We also have quite a bit of work yet to do, including completion of the implementation of access to SDO EVE data, and access to some nineteen other data sets from space- and ground-based observatories. In addition, we have been developing a new graphic user interface that will enable the saving of user interface and search preferences. We solicit advice from the community input prioritizing our task list, and adding to it
International Virtual Observatory System for Water Resources Information
NASA Astrophysics Data System (ADS)
Leinenweber, Lewis; Bermudez, Luis
2013-04-01
Sharing, accessing, and integrating hydrologic and climatic data have been identified as a critical need for some time. The current state of data portals, standards, technologies, activities, and expertise can be leverage to develop an initial operational capability for a virtual observatory system. This system will allow to link observations data with stream networks and models, and to solve semantic inconsistencies among communities. Prototyping a virtual observatory system is an inter-disciplinary, inter-agency and international endeavor. The Open Geospatial Consortium (OGC) within the OGC Interoperability Program provides the process and expertise to run such collaborative effort. The OGC serves as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The project coordinated by OGC that is advancing an international virtual observatory system for water resources information is called Climatology-Hydrology Information Sharing Pilot, Phase 1 (CHISP-1). It includes observations and forecasts in the U.S. and Canada levering current networks and capabilities. It is designed to support the following use cases: 1) Hydrologic modeling for historical and near-future stream flow and groundwater conditions. Requires the integration of trans-boundary stream flow and groundwater well data, as well as national river networks (US NHD and Canada NHN) from multiple agencies. Emphasis will be on time series data and real-time flood monitoring. 2) Modeling and assessment of nutrient load into the lakes. Requires accessing water-quality data from multiple agencies and integrating with stream flow information for calculating loads. Emphasis on discrete sampled water quality observations, linking those to specific NHD stream reaches and catchments, and additional metadata for sampled data. The key objectives of these use cases are: 1) To link observations data to the stream network, enabling queries of conditions upstream from a given location to return all relevant gages and well locations. This is currently not practical with the data sources available. 2) To bridge differences in semantics across information models and processes used by the various data producers, to improve the hydrologic and water quality modeling capabilities. Other expected benefits to be derived from this project include: - Leverage a large body of existing data holdings and related activities of multiple agencies in the US and Canada. - Influence data and metadata standards used internationally for web-based information sharing, through multiple agency cooperation and OGC standards setting process. - Reduction of procurement risk through partnership-based development of an initial operating capability verses the cost for building a fully operational system using a traditional "waterfall approach". - Identification and clarification of what is possible, and of the key technical and non-technical barriers to continued progress in sharing and integrating hydrologic and climatic information. - Promote understanding and strengthen ties within the hydro-climatic community. This is anticipated to be the first phase of a multi-phase project, with future work on forecasting the hydrologic consequences of extreme weather events, and enabling more sophisticated water quality modeling.
Euro-VO-Coordination of virtual observatory activities in Europe
NASA Astrophysics Data System (ADS)
Genova, Françoise; Allen, Mark G.; Arviset, Christophe; Lawrence, Andy; Pasian, Fabio; Solano, Enrique; Wambsganss, Joachim
2015-06-01
The European Virtual Observatory Euro-VO has been coordinating European VO activities through a series of projects co-funded by the European Commission over the last 15 years. The bulk of VO work in Europe is ensured by the national VO initiatives and those of intergovernmental agencies. VO activities at the European level coordinate the work in support of the three "pillars" of the Virtual Observatory: support to the scientific community, take-up by the data providers, and technological activities. Several Euro-VO projects have also provided direct support to selected developments and prototyping. This paper explains the methodology used by Euro-VO over the years. It summarises the activities which were performed and their evolutions at different stages of the development of the VO, explains the Euro-VO role with respect to the international and national levels of VO activities, details the lessons learnt for best practices for the coordination of the VO building blocks, and the liaison with other European initiatives, documenting the added-value of European coordination. Finally, the current status and next steps of Euro-VO are briefly addressed.
NASA Technical Reports Server (NTRS)
Roberts, Aaron
2005-01-01
New tools for data access and visualization promise to make the analysis of space plasma data both more efficient and more powerful, especially for answering questions about the global structure and dynamics of the Sun-Earth system. We will show how new existing tools (particularly the Virtual Space Physics Observatory-VSPO-and the Visual System for Browsing, Analysis and Retrieval of Data-ViSBARD; look for the acronyms in Google) already provide rapid access to such information as spacecraft orbits, browse plots, and detailed data, as well as visualizations that can quickly unite our view of multispacecraft observations. We will show movies illustrating multispacecraft observations of the solar wind and magnetosphere during a magnetic storm, and of simulations of 3 0-spacecraft observations derived from MHD simulations of the magnetosphere sampled along likely trajectories of the spacecraft for the MagCon mission. An important issue remaining to be solved is how best to integrate simulation data and services into the Virtual Observatory environment, and this talk will hopefully stimulate further discussion along these lines.
The development, deployment, and impact of the virtual observatory, Part II
NASA Astrophysics Data System (ADS)
Hanisch, R. J.
2015-06-01
This is the second special issue of Astronomy and Computing devoted to the Virtual Observatory, and we again see a combination of papers covering various aspects of the VO, from infrastructure to applications to programmatics. The critical role of data models is described by Louys, and the method by which applications communicate amongst each other through the Simple Applications Messaging Protocol (SAMP) is described by Taylor et al. Demleitner et al. explain the client interfaces to the VO registry, that is, how applications developers can query the registry for information about VO-compliant data collections and services.1
NASA Astrophysics Data System (ADS)
Reindl, N.; Rauch, T.
2015-06-01
The registered German Astrophysical Virtual Observatory (GAVO) service TheoSSA provides easy access to synthetic stellar spectra. This GAVO database contains already ten thousands of these, which were calculated with different chemical compositions of the elements H to Ni. In addition to the database, it is possible to calculate individual spectra for hot, compact stars based on the Tübingen NLTE Model-Atmosphere Package (TMAP) via the TMAW service. The TMAW models were, in the pilot phase, restricted to the elements H, He, C, N, and O. Now, TMAW is extended to additionally consider opacities from Ne, Na, and Mg. Soon, TMAW will also be able to include the opacities from the so-called iron-group elements (Ca - Ni). We describe the improvements and show the impact of Ne, Na, Mg, and iron-group elements on the Balmer lines.
Integrated Access to Heliospheric and Magnetospheric Data
NASA Astrophysics Data System (ADS)
Merka, J.; Szabo, A.; Narock, T. W.
2007-05-01
Heliospheric and magnetospheric data are provided by a variety of diverse sources. For space physics scientists, knowing that such data sources exist and where they are located are only the first hurdles to overcome before they can utilize the data for research. As a solution, the NASA Heliophysics Division has established a group of virtual observatories (VOs) to provide the scientific community with integrated access to well documented data and related services. The VOs are organized by scientific discipline and yet their essential characteristic is cross-discipline data discovery and exchange. In this talk, we will demonstrate the architecture and features of two distributed data systems, the Virtual Heliospheric Observatory (VHO) and the Virtual Magnetospheric Observatory at NASA Goddard Space Flight Center (VMO/G). The VHO and VMO/G are designed to share most of the components to facilitate faster development and to ease communication between the two VxOs. Since different communities are served by the two observatories, slightly, and sometimes even significantly, different terms and expectations must be accommodated and correctly processed. In our approach the interfaces are tuned for a particular community while the standard SPASE data model is employed internally. Together with other VxOs, we are also developing a standard query language for metadata exchange among the VxOs, data providers, and VxO-related services. Specific examples will be given. http:vho.nasa.gov
Back to the future: virtualization of the computing environment at the W. M. Keck Observatory
NASA Astrophysics Data System (ADS)
McCann, Kevin L.; Birch, Denny A.; Holt, Jennifer M.; Randolph, William B.; Ward, Josephine A.
2014-07-01
Over its two decades of science operations, the W.M. Keck Observatory computing environment has evolved to contain a distributed hybrid mix of hundreds of servers, desktops and laptops of multiple different hardware platforms, O/S versions and vintages. Supporting the growing computing capabilities to meet the observatory's diverse, evolving computing demands within fixed budget constraints, presents many challenges. This paper describes the significant role that virtualization is playing in addressing these challenges while improving the level and quality of service as well as realizing significant savings across many cost areas. Starting in December 2012, the observatory embarked on an ambitious plan to incrementally test and deploy a migration to virtualized platforms to address a broad range of specific opportunities. Implementation to date has been surprisingly glitch free, progressing well and yielding tangible benefits much faster than many expected. We describe here the general approach, starting with the initial identification of some low hanging fruit which also provided opportunity to gain experience and build confidence among both the implementation team and the user community. We describe the range of challenges, opportunities and cost savings potential. Very significant among these was the substantial power savings which resulted in strong broad support for moving forward. We go on to describe the phasing plan, the evolving scalable architecture, some of the specific technical choices, as well as some of the individual technical issues encountered along the way. The phased implementation spans Windows and Unix servers for scientific, engineering and business operations, virtualized desktops for typical office users as well as more the more demanding graphics intensive CAD users. Other areas discussed in this paper include staff training, load balancing, redundancy, scalability, remote access, disaster readiness and recovery.
GAIA virtual observatory - development and practices
NASA Astrophysics Data System (ADS)
Syrjäsuo, Mikko; Marple, Steve
2010-05-01
The Global Auroral Imaging Access, or GAIA, is a virtual observatory providing quick access to summary data from satellite and ground-based instruments that remote sense auroral precipitation (http://gaia-vxo.org). This web-based service facilitates locating data relevant to particular events by simultaneously displaying summary images from various data sets around the world. At the moment, there are GAIA server nodes in Canada, Finland, Norway and the UK. The development is an international effort and the software and metadata are freely available. The GAIA system is based on a relational database which is queried by a dedicated software suite that also creates the graphical end-user interface if such is needed. Most commonly, the virtual observatory is used interactively by using a web browser: the user provides the date and the type of data of interest. As the summary data from multiple instruments are displayed simultaneously, the user can conveniently explore the recorded data. The virtual observatory provides essentially instant access to the images originating from all major auroral instrument networks including THEMIS, NORSTAR, GLORIA and MIRACLE. The scientific, educational and outreach use is limited by creativity rather than access. The first version of the GAIA was developed at the University of Calgary (Alberta, Canada) in 2004-2005. This proof-of-concept included mainly THEMIS and MIRACLE data, which comprised of millions of summary plots and thumbnail images. However, it was soon realised that a complete re-design was necessary to increase flexibility. In the presentation, we will discuss the early history and motivation of GAIA as well as how the development continued towards the current version. The emphasis will be on practical problems and their solutions. Relevant design choices will also be highlighted.
NASA Astrophysics Data System (ADS)
Cecconi, Baptiste; Hess, Sebastien; Le Sidaner, Pierre; Savalle, Renaud; Stéphane, Erard; Coffre, Andrée; Thétas, Emmanuel; André, Nicolas; Génot, Vincent; Thieman, Jim; Typinski, Dave; Sky, Jim; Higgins, Chuck; Imai, Masafumi
2016-04-01
In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.
Developing a Virtual Network of Research Observatories
NASA Astrophysics Data System (ADS)
Hooper, R. P.; Kirschtl, D.
2008-12-01
The hydrologic community has been discussing the concept of a network of observatories for the advancement of hydrologic science in areas of scaling processes, in testing generality of hypotheses, and in examining non-linear couplings between hydrologic, biotic, and human systems. The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is exploring the formation of a virtual network of observatories, formed from existing field studies without regard to funding source. Such a network would encourage sharing of data, metadata, field methods, and data analysis techniques to enable multidisciplinary synthesis, meta-analysis, and scientific collaboration in hydrologic and environmental science and engineering. The virtual network would strive to provide both the data and the environmental context of the data through advanced cyberinfrastructure support. The foundation for this virtual network is Water Data Services that enable the publication of time-series data collected at fixed points using a services-oriented architecture. These publication services, developed in the CUAHSI Hydrologic Information Systems project, permit the discovery of data from both academic and government sources through a single portal. Additional services under consideration are publication of geospatial data sets, immersive environments based upon site digital elevation models, and a common web portal to member sites populated with structured data about the site (such as land use history and geologic setting) to permit understanding the environmental context of the data being shared.
Networking of Bibliographical Information: Lessons learned for the Virtual Observatory
NASA Astrophysics Data System (ADS)
Genova, Françoise; Egret, Daniel
Networking of bibliographic information is particularly remarkable in astronomy. On-line journals, the ADS bibliographic database, SIMBAD and NED are everyday tools for research, and provide easy navigation from one resource to another. Tables are published on line, in close collaboration with data centers. Recent new developments include the links between observatory archives and the ADS, as well as the large scale prototyping of object links between Astronomy and Astrophysics and SIMBAD, following those implemented a few years ago with New Astronomy and the International Bulletin of Variable stars . This networking has been made possible by close collaboration between the ADS, data centers such as the CDS and NED, and the journals, and this partnership being now extended to observatory archives. Simple, de facto exchange standards, like the bibcode to refer to a published paper, have been the key for building links and exchanging data. This partnership, in which practitioners from different disciplines agree to link their resources and to work together to define useful and usable standards, has produced a revolution in scientists' practice. It is an excellent model for the Virtual Observatory projects.
Space-Borne Radio-Sounding Investigations Facilitated by the Virtual Wave Observatory (VWO)
NASA Technical Reports Server (NTRS)
Benson, Robert F.; Fung, Shing F.; Bilitza,Dieter; Garcia, Leonard N.; Shao, Xi; Galkin, Ivan A.
2011-01-01
The goal of the Virtual Wave Observatory (VWO) is to provide userfriendly access to heliophysics wave data. While the VWO initially emphasized the vast quantity of wave data obtained from passive receivers, the VWO infrastructure can also be used to access active sounder data sets. Here we use examples from some half-million Alouette-2, ISIS-1, and ISIS-2 digital topside-sounder ionograms to demonstrate the desirability of such access to the actual ionograms for investigations of both natural and sounder-stimulated plasma-wave phenomena. By this demonstration, we wish to encourage investigators to make other valuable space-borne sounder data sets accessible via the VWO.
AstroCloud, a Cyber-Infrastructure for Astronomy Research: Overview
NASA Astrophysics Data System (ADS)
Cui, C.; Yu, C.; Xiao, J.; He, B.; Li, C.; Fan, D.; Wang, C.; Hong, Z.; Li, S.; Mi, L.; Wan, W.; Cao, Z.; Wang, J.; Yin, S.; Fan, Y.; Wang, J.
2015-09-01
AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Tasks such as proposal submission, proposal peer-review, data archiving, data quality control, data release and open access, Cloud based data processing and analyzing, will be all supported on the platform. It will act as a full lifecycle management system for astronomical data and telescopes. Achievements from international Virtual Observatories and Cloud Computing are adopted heavily. In this paper, backgrounds of the project, key features of the system, and latest progresses are introduced.
NASA Astrophysics Data System (ADS)
Aberasturi, M.; Solano, E.; Martín, E.
2015-05-01
Low-mass stars and brown dwarfs (with spectral types M, L, T and Y) are the most common objects in the Milky Way. A complete census of these objects is necessary to understand the theories about their complex structure and formation processes. In order to increase the number of known objects in the Solar neighborhood (d<30 pc), we have made use of the Virtual Observatory which allows an efficient handling of the huge amount of information available in astronomical databases. We also used the WFC3 installed in the Hubble Space Telescope to look for T5+ dwarfs binaries.
ASCOT: A Collaborative Platform for the Virtual Observatory
NASA Astrophysics Data System (ADS)
Marcos, D.; Connolly, A. J.; Krughoff, K. S.; Smith, I.; Wallace, S. C.
2012-09-01
The digital networks are changing the way that knowledge is created, structured, curated, consumed, archived and referenced. Projects like Wikipedia, Github or Galaxy Zoo have shown the potential of online communities to develop and communicate ideas. ASCOT is a web based framework that facilitates collaboration among astronomers providing a simple way to share, explore, interact and analyze large amounts of data from a broad range of sources available trough the Virtual Observatories (VO). Designed with a strong emphasis on usability, ASCOT takes advantage of the latest generation of web standards and cloud technologies to implement an extendable and customizable stack of web tools and services.
ESO Advanced Data Products for the Virtual Observatory
NASA Astrophysics Data System (ADS)
Retzlaff, J.; Delmotte, N.; Rite, C.; Rosati, P.; Slijkhuis, R.; Vandame, B.
2006-07-01
Advanced Data Products, that is, completely reduced, fully characterized science-ready data sets, play a crucial role for the success of the Virtual Observatory as a whole. We report on on-going work at ESO towards the creation and publication of Advanced Data Products in compliance with present VO standards on resource metadata. The new deep NIR multi-color mosaic of the GOODS/CDF-S region is used to showcase different aspects of the entire process: data reduction employing our MVM-based reduction pipeline, calibration and data characterization procedures, standardization of metadata content, and, finally, a prospect of the scientific potential illustrated by new results on deep galaxy number counts.
A Security-façade Library for Virtual-observatory Software
NASA Astrophysics Data System (ADS)
Rixon, G.
2009-09-01
The security-façade library implements, for Java, IVOA's security standards. It supports the authentication mechanisms for SOAP and REST web-services, the sign-on mechanisms (with MyProxy, AstroGrid Accounts protocol or local credential-caches), the delegation protocol, and RFC3820-enabled HTTPS for Apache Tomcat. Using the façade, a developer who is not a security specialist can easily add access control to a virtual-observatory service and call secured services from an application. The library has been an internal part of AstroGrid software for some time and it is now offered for use by other developers.
Identification of binary and multiple systems in TGAS using the Virtual Observatory
NASA Astrophysics Data System (ADS)
Jiménez-Esteban, F.; Solano, E.
2018-04-01
Binary and multiple stars have long provided an effective method of testing stellar formation and evolution theories. In particular, wide binary systems with separations > 20,000 au are particularly challenging as their physical separations are beyond the typical size of a collapsing cloud core (5,000 - 10,000 au). We present here a preliminary work in which we make use of the TGAS catalogue and Virtual Observatory tools and services (Aladin, TOPCAT, STILTS, VOSA, VizieR) to identify binary and multiple star candidate systems. The catalogue will be available from the Spanish VO portal (http://svo.cab.inta-csic.es) in the coming months.
Extending Iris: The VAO SED Analysis Tool
NASA Astrophysics Data System (ADS)
Laurino, O.; Busko, I.; Cresitello-Dittmar, M.; D'Abrusco, R.; Doe, S.; Evans, J.; Pevunova, O.
2013-10-01
Iris is a tool developed by the Virtual Astronomical Observatory (VAO) for building and analyzing Spectral Energy Distributions (SEDs). Iris was designed to be extensible, so that new components and models can be developed by third parties and then included at runtime. Iris can be extended in different ways: new file readers allow users to integrate data in custom formats into Iris SEDs; new models can be fitted to the data, in the form of template libraries for template fitting, data tables, and arbitrary Python functions. The interoperability-centered design of Iris and the Virtual Observatory standards and protocols can enable new science functionalities involving SED data.
Transient Science from Diverse Surveys
NASA Astrophysics Data System (ADS)
Mahabal, A.; Crichton, D.; Djorgovski, S. G.; Donalek, C.; Drake, A.; Graham, M.; Law, E.
2016-12-01
Over the last several years we have moved closer to being able to make digital movies of the non-static sky with wide-field synoptic telescopes operating at a variety of depths, resolutions, and wavelengths. For optimal combined use of these datasets, it is crucial that they speak and understand the same language and are thus interoperable. Initial steps towards such interoperability (e.g. the footprint service) were taken during the two five-year Virtual Observatory projects viz. National Virtual Observatory (NVO), and later Virtual Astronomical Observatory (VAO). Now with far bigger datasets and in an era of resource excess thanks to the cloud-based workflows, we show how the movement of data and of resources is required - rather than just one or the other - to combine diverse datasets for applications such as real-time astronomical transient characterization. Taking the specific example of ElectroMagnetic (EM) follow-up of Gravitational Wave events and EM transients (such as CRTS but also other optical and non-optical surveys), we discuss the requirements for rapid and flexible response. We show how the same methodology is applicable to Earth Science data with its datasets differing in spatial and temporal resolution as well as differing time-spans.
Creation of an instrument maintenance program at W. M. Keck Observatory
NASA Astrophysics Data System (ADS)
Hill, G. M.; Kwok, S. H.; Mader, J. A.; Wirth, G. D.; Dahm, S. E.; Goodrich, R. W.
2014-08-01
Until a few years ago, the W. M. Keck Observatory (WMKO) did not have a systematic program of instrument maintenance at a level appropriate for a world-leading observatory. We describe the creation of such a program within the context of WMKO's lean operations model which posed challenges but also guided the design of the system and resulted in some unique and notable capabilities. These capabilities and the flexibility of the system have led to its adoption across the Observatory for virtually all PM's. The success of the Observatory in implementing the program and its impact on instrument reliability are presented. Lessons learned are reviewed and strategic implications discussed.
Virtual Action Learning: A Pilot in Building Leadership Capacity
ERIC Educational Resources Information Center
Radcliff, Phil
2017-01-01
This account of practice encompasses a pilot virtual action learning programme with a small group of learners. This was an 18-month extension to the one-week Leadership Open Programme that the participants had previously completed at the Business School. It includes insights from an evaluation study completed in early 2016. It considers in…
Chicago's Dearborn Observatory: a study in survival
NASA Astrophysics Data System (ADS)
Bartky, Ian R.
2000-12-01
The Dearborn Observatory, located on the Old University of Chicago campus from 1863 until 1888, was America's most promising astronomical facility when it was founded. Established by the Chicago Astronomical Society and directed by one of the country's most gifted astronomers, it boasted the largest telescope in the world and virtually unlimited operating funds. The Great Chicago Fire of 1871 destroyed its funding and demolished its research programme. Only via the sale of time signals and the heroic efforts of two amateur astronomers did the Dearborn Observatory survive.
Virtual planets atlas 1.0 freeware
NASA Astrophysics Data System (ADS)
Legrand, C.; Chevalley, P.
2015-10-01
Since 2002, we develop the "Virtual Moon Atlas -http://www.ap-i.net/avl/en/start" a freeware to help Moon observing and to improve interest for Moon in general public. VMA freeware has been downloaded near 900000 times all over the world and is or has been used by several professional organizations such as Kitt Peak Observatory, National Japan Observatory, Birkbeck College / University College London (K. Joy), BBC Sky at night, several French astronomy magazines and astronomy writers (P. Harrington, S. French...) . Recommended by ESA, registered as educational software by French ministry for education, it has also yet been presented at 2006 & 2007 LPSC and PCC2 in 2011 We have declined this freeware in a new tool with the same goals, but for the telluric planets and satellites, the "Virtual Planets Atlas (VPA / http://www.ap-i.net/avp/en/start") now in version 1.0.
NASA Astrophysics Data System (ADS)
Stagni, F.; McNab, A.; Luzzi, C.; Krzemien, W.; Consortium, DIRAC
2017-10-01
In the last few years, new types of computing models, such as IAAS (Infrastructure as a Service) and IAAC (Infrastructure as a Client), gained popularity. New resources may come as part of pledged resources, while others are in the form of opportunistic ones. Most but not all of these new infrastructures are based on virtualization techniques. In addition, some of them, present opportunities for multi-processor computing slots to the users. Virtual Organizations are therefore facing heterogeneity of the available resources and the use of an Interware software like DIRAC to provide the transparent, uniform interface has become essential. The transparent access to the underlying resources is realized by implementing the pilot model. DIRAC’s newest generation of generic pilots (the so-called Pilots 2.0) are the “pilots for all the skies”, and have been successfully released in production more than a year ago. They use a plugin mechanism that makes them easily adaptable. Pilots 2.0 have been used for fetching and running jobs on every type of resource, being it a Worker Node (WN) behind a CREAM/ARC/HTCondor/DIRAC Computing element, a Virtual Machine running on IaaC infrastructures like Vac or BOINC, on IaaS cloud resources managed by Vcycle, the LHCb High Level Trigger farm nodes, and any type of opportunistic computing resource. Make a machine a “Pilot Machine”, and all diversities between them will disappear. This contribution describes how pilots are made suitable for different resources, and the recent steps taken towards a fully unified framework, including monitoring. Also, the cases of multi-processor computing slots either on real or virtual machines, with the whole node or a partition of it, is discussed.
Douglass, Mark A; Casale, Jillian P; Skirvin, J Andrew; DiVall, Margarita V
2013-10-14
To implement and assess the impact of a virtual patient pilot program on pharmacy students' clinical competence skills. Pharmacy students completed interactive software-based patient case scenarios embedded with drug-therapy problems as part of a course requirement at the end of their third year. Assessments included drug-therapy problem competency achievement, performance on a pretest and posttest, and pilot evaluation survey instrument. Significant improvements in students' posttest scores demonstrated advancement of clinical skills involving drug-therapy problem solving. Students agreed that completing the pilot program improved their chronic disease management skills and the program summarized the course series well. Using virtual patient technology allowed for assessment of student competencies and improved learning outcomes.
VESPA: A community-driven Virtual Observatory in Planetary Science
NASA Astrophysics Data System (ADS)
Erard, S.; Cecconi, B.; Le Sidaner, P.; Rossi, A. P.; Capria, M. T.; Schmitt, B.; Génot, V.; André, N.; Vandaele, A. C.; Scherf, M.; Hueso, R.; Määttänen, A.; Thuillot, W.; Carry, B.; Achilleos, N.; Marmo, C.; Santolik, O.; Benson, K.; Fernique, P.; Beigbeder, L.; Millour, E.; Rousseau, B.; Andrieu, F.; Chauvin, C.; Minin, M.; Ivanoski, S.; Longobardo, A.; Bollard, P.; Albert, D.; Gangloff, M.; Jourdane, N.; Bouchemit, M.; Glorian, J.-M.; Trompet, L.; Al-Ubaidi, T.; Juaristi, J.; Desmars, J.; Guio, P.; Delaa, O.; Lagain, A.; Soucek, J.; Pisa, D.
2018-01-01
The VESPA data access system focuses on applying Virtual Observatory (VO) standards and tools to Planetary Science. Building on a previous EC-funded Europlanet program, it has reached maturity during the first year of a new Europlanet 2020 program (started in 2015 for 4 years). The infrastructure has been upgraded to handle many fields of Solar System studies, with a focus both on users and data providers. This paper describes the broad lines of the current VESPA infrastructure as seen by a potential user, and provides examples of real use cases in several thematic areas. These use cases are also intended to identify hints for future developments and adaptations of VO tools to Planetary Science.
VisIVO: A Tool for the Virtual Observatory and Grid Environment
NASA Astrophysics Data System (ADS)
Becciani, U.; Comparato, M.; Costa, A.; Larsson, B.; Gheller, C.; Pasian, F.; Smareglia, R.
2007-10-01
We present the new features of VisIVO, software for the visualization and analysis of astrophysical data which can be retrieved from the Virtual Observatory framework and used for cosmological simulations running both on Windows and GNU/Linux platforms. VisIVO is VO standards compliant and supports the most important astronomical data formats such as FITS, HDF5 and VOTables. It is free software and can be downloaded from the web site http://visivo.cineca.it. VisIVO can interoperate with other astronomical VO compliant tools through PLASTIC (PLatform for AStronomical Tool InterConnection). This feature allows VisIVO to share data with many other astronomical packages to further analyze the loaded data.
VO-compliant libraries of high resolution spectra of cool stars
NASA Astrophysics Data System (ADS)
Montes, D.
2008-10-01
In this contribution we describe a Virtual Observatory (VO) compliant version of the libraries of high resolution spectra of cool stars described by Montes et al. (1997; 1998; and 1999). Since their publication the fully reduced spectra in FITS format have been available via ftp and in the World Wide Web. However, in the VO all the spectra will be accessible using a common web interface following the standards of the International Virtual Observatory Alliance (IVOA). These libraries include F, G, K and M field stars, from dwarfs to giants. The spectral coverage is from 3800 to 10000 Å, with spectral resolution ranging from 0.09 to 3.0 Å.
Building a Virtual Solar Observatory: I Look Around and There's a Petabyte Following Me
NASA Technical Reports Server (NTRS)
Gurman, J. B.; Bogart, R.; Hill. F.; Martens, P.; Oergerle, William (Technical Monitor)
2002-01-01
The 2001 July NASA Senior Review of Sun-Earth Connections missions and data centers directed the Solar Data Analysis Center (SDAC) to proceed in studying and implementing a Virtual Solar Observatory (VSO) to ease the identification of and access to distributed archives of solar data. Any such design (cf. the National Virtual Observatory and NASA's Planetary Data System) consists of three elements: the distributed archives, a "broker" facility that translates metadata from all partner archives into a single standard for searches, and a user interface to allow searching, browsing, and download of data. Three groups are now engaged in a six-month study that will produce a candidate design and implementation roadmap for the VSO. We hope to proceed with the construction of a prototype VSO in US fiscal year 2003, with fuller deployment dependent on community reaction to and use of the capability. We therefore invite as broad as possible public comment and involvement, and invite interested parties to a "birds of a feather" session at this meeting. VSO is partnered with the European Grid of Solar Observations (EGSO), and if successful, we hope to be able to offer the VSO as the basis for the solar component of a Living With a Star data system.
A Pilot and Feasibility Study of Virtual Reality as a Distraction for Children with Cancer
ERIC Educational Resources Information Center
Gershon, Jonathan; Zimand, Elana; Pickering, Melissa; Rothbaum, Barbara Olasov; Hodges, Larry
2004-01-01
Objective: To pilot and test the feasibility of a novel technology to reduce anxiety and pain associated with an invasive medical procedure in children with cancer. Method: Children with cancer (ages 7-19) whose treatment protocols required access of their subcutaneous venous port device (port access) were randomly assigned to a virtual reality…
VirtualSpace: A vision of a machine-learned virtual space environment
NASA Astrophysics Data System (ADS)
Bortnik, J.; Sarno-Smith, L. K.; Chu, X.; Li, W.; Ma, Q.; Angelopoulos, V.; Thorne, R. M.
2017-12-01
Space borne instrumentation tends to come and go. A typical instrument will go through a phase of design and construction, be deployed on a spacecraft for several years while it collects data, and then be decommissioned and fade into obscurity. The data collected from that instrument will typically receive much attention while it is being collected, perhaps in the form of event studies, conjunctions with other instruments, or a few statistical surveys, but once the instrument or spacecraft is decommissioned, the data will be archived and receive progressively less attention with every passing year. This is the fate of all historical data, and will be the fate of data being collected by instruments even at the present time. But what if those instruments could come alive, and all be simultaneously present at any and every point in time and space? Imagine the scientific insights, and societal gains that could be achieved with a grand (virtual) heliophysical observatory that consists of every current and historical mission ever deployed? We propose that this is not just fantasy but is imminently doable with the data currently available, with the present computational resources, and with currently available algorithms. This project revitalizes existing data resources and lays the groundwork for incorporating data from every future mission to expand the scope and refine the resolution of the virtual observatory. We call this project VirtualSpace: a machine-learned virtual space environment.
Casale, Jillian P.; Skirvin, J. Andrew; DiVall, Margarita V.
2013-01-01
Objective. To implement and assess the impact of a virtual patient pilot program on pharmacy students’ clinical competence skills. Design. Pharmacy students completed interactive software-based patient case scenarios embedded with drug-therapy problems as part of a course requirement at the end of their third year. Assessment. Assessments included drug-therapy problem competency achievement, performance on a pretest and posttest, and pilot evaluation survey instrument. Significant improvements in students’ posttest scores demonstrated advancement of clinical skills involving drug-therapy problem solving. Students agreed that completing the pilot program improved their chronic disease management skills and the program summarized the course series well. Conclusion. Using virtual patient technology allowed for assessment of student competencies and improved learning outcomes. PMID:24159213
Jordan, Melissa; Richardson, Elizabeth J
2016-05-01
Previous studies have shown that virtual walking to treat spinal cord injury-related neuropathic pain (SCI-NP) can be beneficial, although the type of SCI-NP that may benefit the most is unclear. This study's aims were to (1) determine the effect of location of SCI-NP on pain outcomes after virtual walking treatment and (2) examine the potential relationship between neuronal hyperexcitability, as measured by quantitative sensory testing, and pain reduction after virtual walking treatment. Participants were recruited from a larger ongoing trial examining the benefits of virtual walking in SCI-NP. Neuropathic pain was classified according to location of pain (at- or below-level). In addition, quantitative sensory testing was performed on a subset of individuals at a nonpainful area corresponding to the level of their injury before virtual walking treatment and was used to characterize treatment response. These pilot results suggest that when considered as a group, SCI-NP was responsive to treatment irrespective of the location of pain (F1, 44 = 4.82, P = 0.03), with a trend for the greatest reduction occurring in at-level SCI-NP (F1, 44 = 3.18, P = 0.08). These pilot results also potentially implicate cold, innocuous cool, and pressure hypersensitivity at the level of injury in attenuating the benefits of virtual walking to below-level pain, suggesting certain SCI-NP sensory profiles may be less responsive to virtual walking.
NASA Technical Reports Server (NTRS)
Randle, R. J.; Roscoe, S. N.; Petitt, J. C.
1980-01-01
Twenty professional pilots observed a computer-generated airport scene during simulated autopilot-coupled night landing approaches and at two points (20 sec and 10 sec before touchdown) judged whether the airplane would undershoot or overshoot the aimpoint. Visual accommodation was continuously measured using an automatic infrared optometer. Experimental variables included approach slope angle, display magnification, visual focus demand (using ophthalmic lenses), and presentation of the display as either a real (direct view) or a virtual (collimated) image. Aimpoint judgments shifted predictably with actual approach slope and display magnification. Both pilot judgments and measured accommodation interacted with focus demand with real-image displays but not with virtual-image displays. With either type of display, measured accommodation lagged far behind focus demand and was reliably less responsive to the virtual images. Pilot judgments shifted dramatically from an overwhelming perceived-overshoot bias 20 sec before touchdown to a reliable undershoot bias 10 sec later.
ESO Reflex: a graphical workflow engine for data reduction
NASA Astrophysics Data System (ADS)
Hook, Richard; Ullgrén, Marko; Romaniello, Martino; Maisala, Sami; Oittinen, Tero; Solin, Otto; Savolainen, Ville; Järveläinen, Pekka; Tyynelä, Jani; Péron, Michèle; Ballester, Pascal; Gabasch, Armin; Izzo, Carlo
ESO Reflex is a prototype software tool that provides a novel approach to astronomical data reduction by integrating a modern graphical workflow system (Taverna) with existing legacy data reduction algorithms. Most of the raw data produced by instruments at the ESO Very Large Telescope (VLT) in Chile are reduced using recipes. These are compiled C applications following an ESO standard and utilising routines provided by the Common Pipeline Library (CPL). Currently these are run in batch mode as part of the data flow system to generate the input to the ESO/VLT quality control process and are also exported for use offline. ESO Reflex can invoke CPL-based recipes in a flexible way through a general purpose graphical interface. ESO Reflex is based on the Taverna system that was originally developed within the UK life-sciences community. Workflows have been created so far for three VLT/VLTI instruments, and the GUI allows the user to make changes to these or create workflows of their own. Python scripts or IDL procedures can be easily brought into workflows and a variety of visualisation and display options, including custom product inspection and validation steps, are available. Taverna is intended for use with web services and experiments using ESO Reflex to access Virtual Observatory web services have been successfully performed. ESO Reflex is the main product developed by Sampo, a project led by ESO and conducted by a software development team from Finland as an in-kind contribution to joining ESO. The goal was to look into the needs of the ESO community in the area of data reduction environments and to create pilot software products that illustrate critical steps along the road to a new system. Sampo concluded early in 2008. This contribution will describe ESO Reflex and show several examples of its use both locally and using Virtual Observatory remote web services. ESO Reflex is expected to be released to the community in early 2009.
The STS-93 crew takes part in payload familiarization of the Chandra X-ray Observatory
NASA Technical Reports Server (NTRS)
1999-01-01
A TRW technician joins STS-93 Commander Eileen Collins (center) and Pilot Jeffrey S. Ashby (right) as they observe the Chandra X- ray Observatory on its work stand inside the Vertical Processing Facility. Other members of the STS-93 crew who are at KSC for payload familiarization are Mission Specialists Catherine G. Coleman and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a shuttle mission commander. She was the first woman pilot of a Space Shuttle, on mission STS-63, and also served as pilot on mission STS-84. The fifth member of the crew is Mission Specialist Steven A. Hawley. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.
Development of a virtual flight simulator.
Kuntz Rangel, Rodrigo; Guimarães, Lamartine N F; de Assis Correa, Francisco
2002-10-01
We present the development of a flight simulator that allows the user to interact in a created environment by means of virtual reality devices. This environment simulates the sight of a pilot in an airplane cockpit. The environment is projected in a helmet visor and allows the pilot to see inside as well as outside the cockpit. The movement of the airplane is independent of the movement of the pilot's head, which means that the airplane might travel in one direction while the pilot is looking at a 30 degrees angle with respect to the traveled direction. In this environment, the pilot will be able to take off, fly, and land the airplane. So far, the objects in the environment are geometrical figures. This is an ongoing project, and only partial results are available now.
A virtual reality environment for telescope operation
NASA Astrophysics Data System (ADS)
Martínez, Luis A.; Villarreal, José L.; Ángeles, Fernando; Bernal, Abel
2010-07-01
Astronomical observatories and telescopes are becoming increasingly large and complex systems, demanding to any potential user the acquirement of great amount of information previous to access them. At present, the most common way to overcome that information is through the implementation of larger graphical user interfaces and computer monitors to increase the display area. Tonantzintla Observatory has a 1-m telescope with a remote observing system. As a step forward in the improvement of the telescope software, we have designed a Virtual Reality (VR) environment that works as an extension of the remote system and allows us to operate the telescope. In this work we explore this alternative technology that is being suggested here as a software platform for the operation of the 1-m telescope.
Overview of Virtual Observatory Tools
NASA Astrophysics Data System (ADS)
Allen, M. G.
2009-07-01
I provide a brief introduction and tour of selected Virtual Observatory tools to highlight some of the core functions provided by the VO, and the way that astronomers may use the tools and services for doing science. VO tools provide advanced functions for searching and using images, catalogues and spectra that have been made available in the VO. The tools may work together by providing efficient and innovative browsing and analysis of data, and I also describe how many VO services may be accessed by a scripting or command line environment. Early science usage of the VO provides important feedback on the development of the system, and I show how VO portals try to address early user comments about the navigation and use of the VO.
NASA Astrophysics Data System (ADS)
Fox, P.; McGuinness, D.; Cinquini, L.; West, P.; Garcia, J.; Zednik, S.; Benedict, J.
2008-05-01
This presentation will demonstrate how users and other data providers can utilize the Virtual Solar-Terrestrial Observatory (VSTO) to find, access and use diverse data holdings from the disciplines of solar, solar-terrestrial and space physics. VSTO provides a web portal, web services and a native applications programming interface for various levels of users. Since these access methods are based on semantic web technologies and refer to the VSTO ontology, users also have the option of taking advantage of value added services when accessing and using the data. We present example of both conventional use of VSTO as well as the advanced semantics use. Finally, we present our future directions for VSTO and semantic data frameworks in general.
NASA Astrophysics Data System (ADS)
Fox, P.
2007-05-01
This presentation will demonstrate how users and other data providers can utilize the Virtual Solar-Terrestrial Observatory (VSTO) to find, access and use diverse data holdings from the disciplines of solar, solar-terrestrial and space physics. VSTO provides a web portal, web services and a native applications programming interface for various levels of users. Since these access methods are based on semantic web technologies and refer to the VSTO ontology, users also have the option of taking advantage of value added services when accessing and using the data. We present example of both conventional use of VSTO as well as the advanced semantics use. Finally, we present our future directions for VSTO and semantic data frameworks in general.
NASA Astrophysics Data System (ADS)
Davis, A. J.; Kanekal, S. G.; Looper, M. D.; Mason, G. M.; Mewaldt, R. A.
2006-12-01
The SAMPEX Resident Archive is currently under construction, and will be co-hosted at Caltech with the ACE Science Center. With SAMPEX in low earth orbit, and ACE at L1, and a suite of instruments on each spacecraft, the combined data cover a very broad range in species, energy, location, and time. The data include solar wind, solar energetic particle, and galactic cosmic ray intensity and composition data, as well as solar wind and magnetic field parameters on a variety of time scales. We describe our recent efforts to provide enhanced access to these data via the emerging virtual observatory system, including work with the Space Physics Archive Search and Extract (SPASE) Consortium to ensure that the ACE and SAMPEX data can be adequately described using the SPASE data model, development of a SOAP web services interface between the ACE Science Center and the virtual observatories, and ideas for combining the ACE and SAMPEx data in useful ways.
The Virtual Observatory Powered PhD Thesis
NASA Astrophysics Data System (ADS)
Zolotukhin, I. Yu.
2010-12-01
The Virtual Observatory has reached sufficient maturity for its routine scientific exploitation by astronomers. To prove this statement, here I present a brief description of the complete VO-powered PhD thesis entitled “Galactic and extragalactic research with modern surveys and the Virtual Observatory” comprising 4 science cases covering various aspects of astrophysical research. These comprize: (1) homogeneous search and measurement of main physical parameters of Galactic open star clusters in huge multi-band photometric surveys; (2) study of optical-to-NIR galaxy colors using a large homogeneous dataset including spectroscopy and photometry from SDSS and UKIDSS; (3) study of faint low-mass X-ray binary population in modern observational archives; (4) search for optical counterparts of unidentified X-ray objects with large positional uncertainties in the Galactic Plane. All these projects make heavy use of the VO technologies and tools and would not be achievable without them. So refereed papers published in the frame of this thesis can undoubtedly be added to the growing list of VO-based research works.
Education about Hallucinations Using an Internet Virtual Reality System: A Qualitative Survey
ERIC Educational Resources Information Center
Yellowlees, Peter M.; Cook, James N.
2006-01-01
Objective: The authors evaluate an Internet virtual reality technology as an education tool about the hallucinations of psychosis. Method: This is a pilot project using Second Life, an Internet-based virtual reality system, in which a virtual reality environment was constructed to simulate the auditory and visual hallucinations of two patients…
Iris: Constructing and Analyzing Spectral Energy Distributions with the Virtual Observatory
NASA Astrophysics Data System (ADS)
Laurino, O.; Budynkiewicz, J.; Busko, I.; Cresitello-Dittmar, M.; D'Abrusco, R.; Doe, S.; Evans, J.; Pevunova, O.
2014-05-01
We present Iris 2.0, the latest release of the Virtual Astronomical Observatory application for building and analyzing Spectral Energy Distributions (SEDs). With Iris, users may read in and display SEDs inspect and edit any selection of SED data, fit models to SEDs in arbitrary spectral ranges, and calculate confidence limits on best-fit parameters. SED data may be loaded into the application from VOTable and FITS files compliant with the International Virtual Observatoy Alliance interoperable data models, or retrieved directly from NED or the Italian Space Agency Science Data Center; data in non-standard formats may also be converted within the application. Users may seamlessy exchange data between Iris and other Virtual Observatoy tools using the Simple Application Messaging Protocol. Iris 2.0 also provides a tool for redshifting, interpolating, and measuring integratd fluxes, and allows simple aperture corrections for individual points and SED segments. Custom Python functions, template models and template libraries may be imported into Iris for fitting SEDs. Iris may be extended through Java plugins; users can install third-party packages, or develop their own plugin using Iris' Software Development Kit. Iris 2.0 is available for Linux and Mac OS X systems.
Pilots 2.0: DIRAC pilots for all the skies
NASA Astrophysics Data System (ADS)
Stagni, F.; Tsaregorodtsev, A.; McNab, A.; Luzzi, C.
2015-12-01
In the last few years, new types of computing infrastructures, such as IAAS (Infrastructure as a Service) and IAAC (Infrastructure as a Client), gained popularity. New resources may come as part of pledged resources, while others are opportunistic. Most of these new infrastructures are based on virtualization techniques. Meanwhile, some concepts, such as distributed queues, lost appeal, while still supporting a vast amount of resources. Virtual Organizations are therefore facing heterogeneity of the available resources and the use of an Interware software like DIRAC to hide the diversity of underlying resources has become essential. The DIRAC WMS is based on the concept of pilot jobs that was introduced back in 2004. A pilot is what creates the possibility to run jobs on a worker node. Within DIRAC, we developed a new generation of pilot jobs, that we dubbed Pilots 2.0. Pilots 2.0 are not tied to a specific infrastructure; rather they are generic, fully configurable and extendible pilots. A Pilot 2.0 can be sent, as a script to be run, or it can be fetched from a remote location. A pilot 2.0 can run on every computing resource, e.g.: on CREAM Computing elements, on DIRAC Computing elements, on Virtual Machines as part of the contextualization script, or IAAC resources, provided that these machines are properly configured, hiding all the details of the Worker Nodes (WNs) infrastructure. Pilots 2.0 can be generated server and client side. Pilots 2.0 are the “pilots to fly in all the skies”, aiming at easy use of computing power, in whatever form it is presented. Another aim is the unification and simplification of the monitoring infrastructure for all kinds of computing resources, by using pilots as a network of distributed sensors coordinated by a central resource monitoring system. Pilots 2.0 have been developed using the command pattern. VOs using DIRAC can tune pilots 2.0 as they need, and extend or replace each and every pilot command in an easy way. In this paper we describe how Pilots 2.0 work with distributed and heterogeneous resources providing the necessary abstraction to deal with different kind of computing resources.
SPASE, Metadata, and the Heliophysics Virtual Observatories
NASA Technical Reports Server (NTRS)
Thieman, James; King, Todd; Roberts, Aaron
2010-01-01
To provide data search and access capability in the field of Heliophysics (the study of the Sun and its effects on the Solar System, especially the Earth) a number of Virtual Observatories (VO) have been established both via direct funding from the U.S. National Aeronautics and Space Administration (NASA) and through other funding agencies in the U.S. and worldwide. At least 15 systems can be labeled as Virtual Observatories in the Heliophysics community, 9 of them funded by NASA. The problem is that different metadata and data search approaches are used by these VO's and a search for data relevant to a particular research question can involve consulting with multiple VO's - needing to learn a different approach for finding and acquiring data for each. The Space Physics Archive Search and Extract (SPASE) project is intended to provide a common data model for Heliophysics data and therefore a common set of metadata for searches of the VO's. The SPASE Data Model has been developed through the common efforts of the Heliophysics Data and Model Consortium (HDMC) representatives over a number of years. We currently have released Version 2.1 of the Data Model. The advantages and disadvantages of the Data Model will be discussed along with the plans for the future. Recent changes requested by new members of the SPASE community indicate some of the directions for further development.
Recent Evolution of the CDS Services - SIMBAD, VizieR and Aladin
NASA Astrophysics Data System (ADS)
Genova, F.; Allen, M. G.; Bienayme, O.; Boch, T.; Bonnarel, F.; Cambresy, L.; Derriere, S.; Dubois, P.; Fernique, P.; Lesteven, S.; Loup, C.; Ochsenbein, F.; Schaaff, A.; Vollmer, B.; Wenger, M.; Louys, M.; Jasniewicz, G.; Davoust, E.
2005-12-01
The Centre de Donnees astronomiques de Strasbourg (CDS) maintains several widely used databases and services. Among significant recent evolutions: - a new version of SIMBAD (SIMBAD 4), based on the PostgreSQL database system, has been developed, to replace the current version which has been operational since 1990. It allows new query and sampling possibilities. For accessing SIMBAD from other applications, a full Web Service will be made available in addition to the client-server program which is presently used as name resolver by many services. - VizieR, which gives access to major surveys, observation logs and tables published in journals, is continuously updated in collaboration with journals and ground- and space-based observatories. The diversity of information in VizieR makes it an excellent test-bed for the Virtual Observatory, in particular for the definition of astronomy semantics and of query language, and the implementation of registries. - a major update of Aladin (Aladin V3 Multiview) was released in April 2005. It integrates in particular a multiview display, image resampling, blinking, access to real pixel values (not only 8 bits), compatibility with common image formats such as GIF, JPEG and PNG, scaling functions for better pixel contrasts, a 'Region of Interest Generator' which automatically builds small views around catalog objects, a cross-match function, the possibility to compute new catalog colums via algebraic expressions, extended script commands for batch mode use, and access to additional data such as SDSS. Aladin is routinely used as a portal to the Virtual Observatory. Many of the new functions have been prototyped in the frame of the European Astrophysical Virtual Observatory project, and other are tested for the VO-TECH project.
The Virtual Earth-Solar Observatory of the SCiESMEX
NASA Astrophysics Data System (ADS)
De la Luz, V.; Gonzalez-Esparza, A.; Cifuentes-Nava, G.
2015-12-01
The Mexican Space Weather Service (SCiESMEX, http://www.sciesmex.unam.mx) started operations in October 2014. The project includes the Virtual Earth-Solar Observatory (VESO, http://www.veso.unam.mx). The VESO is a improved project wich objetive is integrate the space weather instrumentation network from the National Autonomous University of Mexico (UNAM). The network includes the Mexican Array Radiotelescope (MEXART), the Callisto receptor (MEXART), a Neutron Telescope, a Cosmic Ray Telescope. the Schumann Antenna, the National Magnetic Service, and the mexican GPS network (TlalocNet). The VESO facility is located at the Geophysics Institute campus Michoacan (UNAM). We offer the service of data store, real-time data, and quasi real-time data. The hardware of VESO includes a High Performance Computer (HPC) dedicated specially to big data storage.
NASA Astrophysics Data System (ADS)
Aktas, Mehmet; Aydin, Galip; Donnellan, Andrea; Fox, Geoffrey; Granat, Robert; Grant, Lisa; Lyzenga, Greg; McLeod, Dennis; Pallickara, Shrideep; Parker, Jay; Pierce, Marlon; Rundle, John; Sayar, Ahmet; Tullis, Terry
2006-12-01
We describe the goals and initial implementation of the International Solid Earth Virtual Observatory (iSERVO). This system is built using a Web Services approach to Grid computing infrastructure and is accessed via a component-based Web portal user interface. We describe our implementations of services used by this system, including Geographical Information System (GIS)-based data grid services for accessing remote data repositories and job management services for controlling multiple execution steps. iSERVO is an example of a larger trend to build globally scalable scientific computing infrastructures using the Service Oriented Architecture approach. Adoption of this approach raises a number of research challenges in millisecond-latency message systems suitable for internet-enabled scientific applications. We review our research in these areas.
A population of compact elliptical galaxies detected with the Virtual Observatory.
Chilingarian, Igor; Cayatte, Véronique; Revaz, Yves; Dodonov, Serguei; Durand, Daniel; Durret, Florence; Micol, Alberto; Slezak, Eric
2009-12-04
Compact elliptical galaxies are characterized by small sizes and high stellar densities. They are thought to form through tidal stripping of massive progenitors. However, only a handful of them were known, preventing us from understanding the role played by this mechanism in galaxy evolution. We present a population of 21 compact elliptical galaxies gathered with the Virtual Observatory. Follow-up spectroscopy and data mining, using high-resolution images and large databases, show that all the galaxies exhibit old metal-rich stellar populations different from those of dwarf elliptical galaxies of similar masses but similar to those of more massive early-type galaxies, supporting the tidal stripping scenario. Their internal properties are reproduced by numerical simulations, which result in compact, dynamically hot remnants resembling the galaxies in our sample.
The International Outer Planets Watch atmospheres node database of giant-planet images
NASA Astrophysics Data System (ADS)
Hueso, R.; Legarreta, J.; Sánchez-Lavega, A.; Rojas, J. F.; Gómez-Forrellad, J. M.
2011-10-01
The Atmospheres Node of the International Outer Planets Watch (IOPW) is aimed to encourage the observations and study of the atmospheres of the Giant Planets. One of its main activities is to provide an interaction between the professional and amateur astronomical communities maintaining an online and fully searchable database of images of the giant planets obtained from amateur astronomers and available to both professional and amateurs [1]. The IOPW database contains about 13,000 image observations of Jupiter and Saturn obtained in the visible range with a few contributions of Uranus and Neptune. We describe the organization and structure of the database as posted in the Internet and in particular the PVOL software (Planetary Virtual Observatory & Laboratory) designed to manage the site and based in concepts from Virtual Observatory projects.
Wilkening, G Lucy; Gannon, Jessica M; Ross, Clint; Brennan, Jessica L; Fabian, Tanya J; Marcsisin, Michael J; Benedict, Neal J
2017-02-01
This pilot study evaluated the utility of branched-narrative virtual patients in an interprofessional education series for psychiatry residents. Third-year psychiatry residents attended four interprofessional education advanced psychopharmacology sessions that involved completion of a branched-narrative virtual patient and a debriefing session with a psychiatric pharmacist. Pre- and post-assessments analyzed resident learning and were administered around each virtual patient. Simulation 4 served as a comprehensive review. The primary outcome was differences in pre- and post-assessment scores. Secondary outcomes included resident satisfaction with the virtual patient format and psychiatric pharmacist involvement. Post-test scores for simulations 1, 2, and 3 demonstrated significant improvement (p < 0.05) from pre-test scores. Scores for simulation 4 did not retain significance. Resident satisfaction with the branched-narrative virtual patient format and psychiatric pharmacist involvement was high throughout the series (100 %; n = 18). Although there are important methodological limitations to this study including a small sample size and absence of a comparator group, this pilot study supports the use of branched-narrative virtual patients in an interprofessional education series for advanced learners.
The Optokinetic Cervical Reflex (OKCR) in Pilots of High-Performance Aircraft.
1997-04-01
Coupled System virtual reality - the attempt to create a realistic, three-dimensional environment or synthetic immersive environment in which the user ...factors interface between the pilot and the flight environment. The final section is a case study of head- and helmet-mounted displays (HMD) and the impact...themselves as actually moving (flying) through a virtual environment. However, in the studies of Held, et al. (1975) and Young, et al. (1975) the
Proof-of-Concept Part Task Trainer for Close Air Support Procedures
2016-06-01
TVDL Tactical Video Down Link VE Virtual Environment VR Virtual Reality WTI Weapons and Tactics Instructor xvii ACKNOWLEDGMENTS I would first...in training of USMC pilots for close air support operations? • What is the feasibility of developing a prototype virtual reality (VR) system that...Chapter IV provides a review of virtual reality (VR)/ virtual environment (VE) and part-task trainers currently used in military training
Mixed virtual reality simulation--taking endoscopic simulation one step further.
Courteille, O; Felländer-Tsai, L; Hedman, L; Kjellin, A; Enochsson, L; Lindgren, G; Fors, U
2011-01-01
This pilot study aimed to assess medical students' appraisals of a "mixed" virtual reality simulation for endoscopic surgery (with a virtual patient case in addition to a virtual colonoscopy) as well as the impact of this simulation set-up on students' performance. Findings indicate that virtual patients can enhance contextualization of simulated endoscopy and thus facilitate an authentic learning environment, which is important in order to increase motivation.
Astroinformatics as a New Research Field. UkrVO Astroinformation Resources: Tasks and Prospective
NASA Astrophysics Data System (ADS)
Vavilova, I. B.
The data-oriented astronomy has allowed classifying the Astroinformatics as a new academic research field, which covers various multi-disciplinary applications of the e-Astronomy. Among them are the data modeling, data mining, metadata standards development, data access, digital astronomical databases, image archives and visualization, machine learning, statistics and other computational methods and software for work with astronomical survey and catalogues with their teta- topeta-scale astroinformation resource. In this review we describe briefly the astroinformatics applications and software/services performed for different astronomical tasks in frame of the VIrtual Roentgen and Gamma Observatory (VIRGO) and Ukrainian VirtualObservatory (UkrVO). Among them there are projects based on the archival space-born data of X-ray and gamma space observatories and on the Joint Digitized Archive (JDA) database of astroplate network collections. The UkrVO JDA DR1 deals with the star catalogues (FON, Polar zone, open clusters, GRB star fields) as well as the UkrVO JDA DR2 deals with the Solar System bodies (giant and small planets, satellites, astronomical heritage images).
Social anxiety in virtual environments: results of a pilot study.
James, Laura K; Lin, Chien-Yu; Steed, Anthony; Swapp, David; Slater, Mel
2003-06-01
This paper reports on a pilot study of the extent to which social anxiety can be generated within a virtual environment. Ten subjects were exposed to a virtual reality experience depicting a London underground train and also a wine bar. The first provided a social setting with virtual characters (avatars) that had relatively neutral behaviors towards the subject, and the second was more socially demanding--with subjects required to interact with relatively disinterested avatars. The purpose was to assess whether social anxiety would be greater for the wine bar experience than the train journey experience, taking into account prior tendencies to social anxiety, and the order of presentation. The results suggest that social anxiety was higher for the wine bar experience, but lower for the second exposure.
NASA Astrophysics Data System (ADS)
Smith, D.; Barnes, R. J.; Morrison, D.; Talaat, E. R.; Potter, M.; Patrone, D.; Weiss, M.; Sarris, T.
2013-12-01
Virtual Observatories are more than data portals that span multiple missions and data sets. They need to provide a system that is useable by a broad swath of people with different backgrounds. The great promise of Virtual Observatories is the ability to perform complex search operations on a large variety of different data sets. This allows the researcher to isolate and select the relevant measurements for their topic of study. The Virtual ITM Observatory (VITMO) is unique in having many diverse datasets that cover a large temporal and spatial range that present a unique search problem. VITMO provides many methods by which the user can search for and select data of interest including restricting selections based on geophysical conditions (solar wind speed, Kp, etc) as well as finding those datasets that overlap in time and/or space. We are developing a series of light-weight web services that will provide a new data search capability for VITMO and other VxOs. The services will consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that will map in situ and ground based measurements to the equatorial plane in magnetic coordinates for a number of field models and geophysical conditions. Each service on their own provides a useful new capability for virtual observatories; operating together they will provide a powerful new search tool. The ephemerides service is being built using the Navigation and Ancillary Information Facility (NAIF) SPICE toolkit (http://naif.jpl.nasa.gov/naif/index.html) allowing them to be extended to support any Earth orbiting satellite with the addition of the appropriate SPICE kernels or two-line element sets (TLE). An instrument kernel (IK) file will be used to describe the observational geometry of the instrument (e.g., Field-of-view size, shape, and orientation). The overlap calculator uses techniques borrowed from computer graphics to identify overlapping measurements in space and time. The calculator will allow a user defined uncertainty to be selected to allow 'near misses' to be found. The magnetic field tracing service will feature a database of pre-calculated field line tracings of ground stations but will also allow dynamic tracing of arbitrary coordinates. These services will allow the non-specialist user of VITMO to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and making it much easier for future students who come into the field.
The Galics Project: Virtual Galaxy: from Cosmological N-body Simulations
NASA Astrophysics Data System (ADS)
Guiderdoni, B.
The GalICS project develops extensive semi-analytic post-processing of large cosmological simulations to describe hierarchical galaxy formation. The multiwavelength statistical properties of high-redshift and local galaxies are predicted within the large-scale structures. The fake catalogs and mock images that are generated from the outputs are used for the analysis and preparation of deep surveys. The whole set of results is now available in an on-line database that can be easily queried. The GalICS project represents a first step towards a 'Virtual Observatory of virtual galaxies'.
Developing interprofessional health competencies in a virtual world
King, Sharla; Chodos, David; Stroulia, Eleni; Carbonaro, Mike; MacKenzie, Mark; Reid, Andrew; Torres, Lisa; Greidanus, Elaine
2012-01-01
Background Virtual worlds provide a promising means of delivering simulations for developing interprofessional health skills. However, developing and implementing a virtual world simulation is a challenging process, in part because of the novelty of virtual worlds as a simulation platform and also because of the degree of collaboration required among technical and subject experts. Thus, it can be difficult to ensure that the simulation is both technically satisfactory and educationally appropriate. Methods To address this challenge, we propose the use of de Freitas and Oliver's four-dimensional framework as a means of guiding the development process. We give an overview of the framework and describe how its principles can be applied to the development of virtual world simulations. Results We present two virtual world simulation pilot projects that adopted this approach, and describe our development experience in these projects. We directly connect this experience to the four-dimensional framework, thus validating the framework's applicability to the projects and to the context of virtual world simulations in general. Conclusions We present a series of recommendations for developing virtual world simulations for interprofessional health education. These recommendations are based on the four-dimensional framework and are also informed by our experience with the pilot projects. PMID:23195649
Flight Testing the X-36: The Test Pilots Perspective
NASA Technical Reports Server (NTRS)
Walker, Laurence A.
1997-01-01
The X-36 is a 28% scale, remotely piloted research aircraft, designed to demonstrate tailless fighter agility. Powered by a modified Williams International F-112 jet engine, the X-36 uses thrust vectoring and a fly-by-wire control system. Although too small for an onboard pilot, a full-sized remote cockpit was designed to virtually place the test pilot into the aircraft using a variety of innovative techniques. To date, 22 flights have been flown, successfully completing the second phase of testing. Handling qualities have been matching predictions; the test operation is flown similarly to that for full sized manned aircraft. All takeoffs, test maneuvers and landings are flown by the test pilot, affording a greater degree of flexibility and the ability to handle the inevitable unknowns which may occur during highly experimental test programs. The cockpit environment, cues, and display techniques used in this effort have proven to enhance the 'virtual' test pilot's awareness and have helped ensure a successful RPV test program.
Accessing Multi-Dimensional Images and Data Cubes in the Virtual Observatory
NASA Astrophysics Data System (ADS)
Tody, Douglas; Plante, R. L.; Berriman, G. B.; Cresitello-Dittmar, M.; Good, J.; Graham, M.; Greene, G.; Hanisch, R. J.; Jenness, T.; Lazio, J.; Norris, P.; Pevunova, O.; Rots, A. H.
2014-01-01
Telescopes across the spectrum are routinely producing multi-dimensional images and datasets, such as Doppler velocity cubes, polarization datasets, and time-resolved “movies.” Examples of current telescopes producing such multi-dimensional images include the JVLA, ALMA, and the IFU instruments on large optical and near-infrared wavelength telescopes. In the near future, both the LSST and JWST will also produce such multi-dimensional images routinely. High-energy instruments such as Chandra produce event datasets that are also a form of multi-dimensional data, in effect being a very sparse multi-dimensional image. Ensuring that the data sets produced by these telescopes can be both discovered and accessed by the community is essential and is part of the mission of the Virtual Observatory (VO). The Virtual Astronomical Observatory (VAO, http://www.usvao.org/), in conjunction with its international partners in the International Virtual Observatory Alliance (IVOA), has developed a protocol and an initial demonstration service designed for the publication, discovery, and access of arbitrarily large multi-dimensional images. The protocol describing multi-dimensional images is the Simple Image Access Protocol, version 2, which provides the minimal set of metadata required to characterize a multi-dimensional image for its discovery and access. A companion Image Data Model formally defines the semantics and structure of multi-dimensional images independently of how they are serialized, while providing capabilities such as support for sparse data that are essential to deal effectively with large cubes. A prototype data access service has been deployed and tested, using a suite of multi-dimensional images from a variety of telescopes. The prototype has demonstrated the capability to discover and remotely access multi-dimensional data via standard VO protocols. The prototype informs the specification of a protocol that will be submitted to the IVOA for approval, with an operational data cube service to be delivered in mid-2014. An associated user-installable VO data service framework will provide the capabilities required to publish VO-compatible multi-dimensional images or data cubes.
Social Interaction Development through Immersive Virtual Environments
ERIC Educational Resources Information Center
Beach, Jason; Wendt, Jeremy
2014-01-01
The purpose of this pilot study was to determine if participants could improve their social interaction skills by participating in a virtual immersive environment. The participants used a developing virtual reality head-mounted display to engage themselves in a fully-immersive environment. While in the environment, participants had an opportunity…
Telemedicine, virtual reality, and surgery
NASA Technical Reports Server (NTRS)
Mccormack, Percival D.; Charles, Steve
1994-01-01
Two types of synthetic experience are covered: virtual reality (VR) and surgery, and telemedicine. The topics are presented in viewgraph form and include the following: geometric models; physiological sensors; surgical applications; virtual cadaver; VR surgical simulation; telesurgery; VR Surgical Trainer; abdominal surgery pilot study; advanced abdominal simulator; examples of telemedicine; and telemedicine spacebridge.
NASA Technical Reports Server (NTRS)
Beckman, Brian C. (Inventor)
1995-01-01
A virtual reality flight control system displays to the pilot the image of a scene surrounding a vehicle or pod having six degrees of freedom of acceleration or velocity control by the pilot and traveling through inertial space, the image itself including a superimposed figure providing the pilot an instant reference of orientation consisting of superimposed sets of geometric figures whose relative orientations provide the pilot an instantaneous feel or sense of orientation changes with respect to some fixed coordinate system. They include a first set of geometric figures whose orientations are fixed to the pilot's vehicle and a second set of geometric figures whose orientations are fixed with respect to a fixed or interstellar coordinate system. The first set of figures is a first set of orthogonal great circles about the three orthogonal axes of the flight vehicle or pod and centered at and surrounding the pilot's head, while the second set of figures is a second set of orthogonal great circles about the three orthogonal axes of a fixed or interstellar coordinate system, also centered at and surrounding the pilot's head.
NASA Astrophysics Data System (ADS)
Pelz, M.; Hoeberechts, M.; Ewing, N.; Davidson, E.; Riddell, D. J.
2014-12-01
Schools on Canada's west coast and in the Canadian Arctic are participating in the pilot year of a novel educational program based on analyzing, understanding and sharing ocean data collected by cabled observatories. The core of the program is "local observations, global connections." First, students develop an understanding of ocean conditions at their doorstep through the analysis of community-based observatory data. Then, they connect that knowledge with the health of the global ocean by engaging with students at other schools participating in the educational program and through supplemental educational resources. Ocean Networks Canada (ONC), an initiative of the University of Victoria, operates cabled ocean observatories which supply continuous power and Internet connectivity to a broad suite of subsea instruments from the coast to the deep sea. This Internet connectivity permits researchers, students and members of the public to download freely available data on their computers anywhere around the globe, in near real-time. In addition to the large NEPTUNE and VENUS cabled observatories off the coast of Vancouver Island, British Columbia, ONC has been installing smaller, community-based cabled observatories. Currently two are installed: one in Cambridge Bay, Nunavut and one at Brentwood College School, on Mill Bay in Saanich Inlet, BC. Several more community-based observatories are scheduled for installation within the next year. The observatories support a variety of subsea instruments, such as a video camera, hydrophone and water quality monitor and shore-based equipment including a weather station and a video camera. Schools in communities hosting an observatory are invited to participate in the program, alongside schools located in other coastal and inland communities. Students and teachers access educational material and data through a web portal, and use video conferencing and social media tools to communicate their findings. A series of lesson plans introduces the teachers and students to cabled observatory technology and instrumentation, including technical aspects and their value in monitoring changing ocean conditions. This presentation will describe the program in more detail and report on our experiences in the first months of the pilot year.
Astronomy from the chair - the application of the Internet in promoting of Astronomy
NASA Astrophysics Data System (ADS)
Tomic, Zoran
2014-05-01
Internet and modern communication technologies are an indispensable part of modern life. The use of the Internet makes it possible to enhance the education and expand opportunities for acquiring new knowledge. One example is Astronomy, where today thanks to the Internet, we can control telescopes that are distant from us and listen to lectures from Universities in other countries. "Astronomy from the chair" is the name for a concept where amateur astronomers can deal with astronomy from their homes using the Internet. The concept can be divided into four sections depending on the content being offered: Robotic Observatory, Virtual Observatory, Online astronomy broadcasting and Online courses. Robotic observatory is defined as an astronomical instrument and detection system that enables efficient observation without the need of a person's physical intervention. Virtual Observatory is defined as a collection of databases and software tools that use the Internet as a platform for scientific research. Online astronomy broadcasting is part of concept "Astronomy from the chair" which gives users the opportunity to get directly involved in astronomical observation organized by an amateur astronomer from somewhere in the world. Online courses are groups of sites and organizations that provide the opportunity to amateur astronomers to attend lectures, save and watch video materials from lectures, do homework, communicate with other seminar participants and in that way become familiar with the various areas of Astronomy. This paper discusses a new concept that describes how the Internet can be applied in modern education. In this paper will be described projects that allows a large number of astronomy lovers to do their own research without the need to own a large and expensive set of astronomical equipment (Virtual Telescope from Italy, Observatory "Night Hawk" from Serbia and project "Astronomy from an armchair" at Faculty of Sciences and Mathematics in Nis), to help professional astronomers in research of galaxies, extrasolar systems, Moon etc. without the need of owning the official certificate in Astronomy (Planet Hunters, Moon Zoo) and the possibility to attend online courses in Astronomy (Introduction to Astronomy from the site Coursera). In the end, will be discussion about economic analysis of using robotic observatory in contemporary education and the implementation of research projects, rather than Institutions to invest huge amounts of funds in the purchase and maintenance of the same astronomical equipment.
Global TIE Observatories: Real Time Observational Astronomy Through a Robotic Telescope Network
NASA Astrophysics Data System (ADS)
Clark, G.; Mayo, L. A.
2001-12-01
Astronomy in grades K-12 is traditionally taught (if at all) using textbooks and a few simple hands-on activities. Teachers are generally not trained in observational astronomy techniques and are unfamiliar with the most basic astronomical concepts. In addition, most students, by High School graduation, will never have even looked through the eyepiece of a telescope. The problem becomes even more challenging in inner cities, remote rural areas and low socioeconomic communities where educational emphasis on topics in astronomy as well as access to observing facilities is limited or non existent. Access to most optical telescope facilities is limited to monthly observing nights that cater to a small percentage of the general public living near the observatory. Even here, the observing experience is a one-time event detached from the process of scientific enquiry and sustained educational application. Additionally, a number of large, "research grade" observatory facilities are largely unused, partially due to the slow creep of light pollution around the facilities as well as the development of newer, more capable telescopes. Though cutting edge science is often no longer possible at these sights, real research opportunities in astronomy remain numerous for these facilities as educational tools. The possibility now exists to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible through classrooms, after school, and community based programs all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers. The NASA sponsored Telescopes In Education project has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy activities. Hundreds of schools in the US, Australia, Canada, England, and Japan have participated in the TIE program, remotely controlling the 24-inch telescope at the Mount Wilson Observatory from their classrooms. In recent years, several (approximately 20 to date) other telescopes have been, or are in the process of being, outfitted for remote use as TIE affiliates. Global TIE integrates these telescopes seamlessly into one virtual observatory and provides the services required to operate this facility, including a scheduling service, tools for data manipulation, an online proposal review environment, an online "Virtual TIE Student Ap J" for publication of results, and access to related educational materials provided by the TIE community. This presentation describes the Global TIE Observatory data and organizational systems and details the technology, partnerships, operational capabilities, science applications, and learning opportunities that this powerful virtual observatory network will provide.
VirGO: A Visual Browser for the ESO Science Archive Facility
NASA Astrophysics Data System (ADS)
Hatziminaoglou, Evanthia; Chéreau, Fabien
2009-03-01
VirGO is the next generation Visual Browser for the ESO Science Archive Facility (SAF) developed in the Virtual Observatory Project Office. VirGO enables astronomers to discover and select data easily from millions of observations in a visual and intuitive way. It allows real-time access and the graphical display of a large number of observations by showing instrumental footprints and image previews, as well as their selection and filtering for subsequent download from the ESO SAF web interface. It also permits the loading of external FITS files or VOTables, as well as the superposition of Digitized Sky Survey images to be used as background. All data interfaces are based on Virtual Observatory (VO) standards that allow access to images and spectra from external data centres, and interaction with the ESO SAF web interface or any other VO applications.
Heliophysics Data and Modeling Research Using VSPO
NASA Technical Reports Server (NTRS)
Roberts, D. Aaron; Hesse, Michael; Cornwell, Carl
2007-01-01
The primary advantage of Virtual Observatories in scientific research is efficiency: rapid searches for and access to data in convenient forms makes it possible to explore scientific questions without spending days or weeks on ancilary tasks. The Virtual Space Physics Observatory provides a general portal to Heliophysics data for this task. Here we will illustrate the advantages of the VO approach by examining specific geomagnetically active times and tracing the activity through the Sun-Earth system. In addition to previous and additional data sources, we will demonstrate an extension of the capabilities to allow searching for model run results from the range of CCMC models. This approach allows the user to quickly compare models and observations at a qualitative level; considerably more work will be needed to develop more seamless connections to data streams and the equivalent numerical output from simulations.
Asteroseismology and the Virtual Observatory
NASA Astrophysics Data System (ADS)
Suárez, J. C.
2010-12-01
Virtual Observatory is an international project aiming at solving the problem of interoperability among astronomical archives and the scalability in the classical methods of retrieving and analyzing astronomical data in order to deal with huge amounts of datasets. This is being tackled thanks to the standardization of astronomical archives favoring their access in a efficient manner. This project, which is nowadays a reality, is more and more adopted by many fields of Science. In the present paper I will describe the origin of a new era in Stellar Physics whose main role is played by the relationship between asteroseismology and V.O. I will summarize the main concerns of both fields and the current development of VO tools for the development of what we could name as asteroseismology online, in which not only observed datasets are concerned but also the management of model databases.
Virtual Solar Observatory Distributed Query Construction
NASA Technical Reports Server (NTRS)
Gurman, J. B.; Dimitoglou, G.; Bogart, R.; Davey, A.; Hill, F.; Martens, P.
2003-01-01
Through a prototype implementation (Tian et al., this meeting) the VSO has already demonstrated the capability of unifying geographically distributed data sources following the Web Services paradigm and utilizing mechanisms such as the Simple Object Access Protocol (SOAP). So far, four participating sites (Stanford, Montana State University, National Solar Observatory and the Solar Data Analysis Center) permit Web-accessible, time-based searches that allow browse access to a number of diverse data sets. Our latest work includes the extension of the simple, time-based queries to include numerous other searchable observation parameters. For VSO users, this extended functionality enables more refined searches. For the VSO, it is a proof of concept that more complex, distributed queries can be effectively constructed and that results from heterogeneous, remote sources can be synthesized and presented to users as a single, virtual data product.
Virtual Observatory Science Applications
NASA Technical Reports Server (NTRS)
McGlynn, Tom
2005-01-01
Many Virtual-Observatory-based applications are now available to astronomers for use in their research. These span data discovery, access, visualization and analysis. Tools can quickly gather and organize information from sites around the world to help in planning a response to a gamma-ray burst, help users pick filters to isolate a desired feature, make an average template for z=2 AGN, select sources based upon information in many catalogs, or correlate massive distributed databases. Using VO protocols, the reach of existing software tools and packages can be greatly extended, allowing users to find and access remote information almost as conveniently as local data. The talk highlights just a few of the tools available to scientists, describes how both large and small scale projects can use existing tools, and previews some of the new capabilities that will be available in the next few years.
Connecting the time domain community with the Virtual Astronomical Observatory
NASA Astrophysics Data System (ADS)
Graham, Matthew J.; Djorgovski, S. G.; Donalek, Ciro; Drake, Andrew J.; Mahabal, Ashish A.; Plante, Raymond L.; Kantor, Jeffrey; Good, John C.
2012-09-01
The time domain has been identied as one of the most important areas of astronomical research for the next decade. The Virtual Observatory is in the vanguard with dedicated tools and services that enable and facilitate the discovery, dissemination and analysis of time domain data. These range in scope from rapid notications of time-critical astronomical transients to annotating long-term variables with the latest modelling results. In this paper, we will review the prior art in these areas and focus on the capabilities that the VAO is bringing to bear in support of time domain science. In particular, we will focus on the issues involved with the heterogeneous collections of (ancilllary) data associated with astronomical transients, and the time series characterization and classication tools required by the next generation of sky surveys, such as LSST and SKA.
Lessons Learned to Date in Developing the Virtual Space Physics Observatory
NASA Astrophysics Data System (ADS)
Cornwell, C.; Roberts, D. A.; King, J.; Smith, A.
2005-12-01
We now have an operational Virtual Space Physics Observatory that provides users the ability to search for and retrieve data from hundreds of space and solar physics data products based on specific terms or a Google-like interface. Lessons learned in building VSPO include: (a) A very close and highly interactive collaboration between scientists and information technologists in the definition and development of services is essential. (b) Constructing a Data Model acceptable to a broad community is very important but very difficult. Variations in usage are inevitable and must be dealt with through translations; this is especially true for the description of variables within data products. (c) Higher-order queries (searches based on events, positions, comparisons of measurements, etc.) are possible, and have been implemented in various systems; currently we see these as being separate from the basic data finding and retrieval services. (d) Building a Virtual Observatory is often more a matter of the tedious details of product descriptions than an exercise in implementing fancy middleware. Paying a knowledgeable third party to build registries can be more efficient than working directly with providers, and automated tools can help but do not solve all the problems. (e) The success of the VO effort in space and solar physics, as elsewhere, will depend on whether the scientific communities involved use and critique the services so that they will come to meet a real need for the integration of resources to solve new scientific problems of perceived importance.
Taming the data wilderness with the VHO: Integrating heliospheric data sets
NASA Astrophysics Data System (ADS)
Schroeder, P.; Szabo, A.; Narock, T.
Currently space physicists are faced with a bewildering array of heliospheric missions experiments and data sets available at archives distributed around the world Daunting even for those most familiar with the field physicists in other concentrations solar physics magnetospheric physics etc find locating the heliospheric data that they need extremely challenging if not impossible The Virtual Heliospheric Observatory VHO will help to solve this problem by creating an Application Programming Interface API and web portal that integrates these data sets to find the highest quality data for a given task The VHO will locate the best available data often found only at PI institutions rather than at national archives like the NSSDC The VHO will therefore facilitate a dynamic data environment where improved data products are made available immediately In order to accomplish this the VHO will enforce a metadata standard on participating data providers with sufficient depth to allow for meaningful scientific evaluation of similar data products The VHO will provide an automated way for secondary sites to keep mirrors of data archives up to date and encouraging the generation of secondary or added-value data products The VHO will interact seamlessly with the Virtual Solar Observatory VSO and other Virtual Observatories VxO s to allow for inter-disciplinary data searching Software tools for these data sets will also be available through the VHO Finally the VHO will provide linkages to the modeling community and will develop metadata standards for the
Managing distributed software development in the Virtual Astronomical Observatory
NASA Astrophysics Data System (ADS)
Evans, Janet D.; Plante, Raymond L.; Boneventura, Nina; Busko, Ivo; Cresitello-Dittmar, Mark; D'Abrusco, Raffaele; Doe, Stephen; Ebert, Rick; Laurino, Omar; Pevunova, Olga; Refsdal, Brian; Thomas, Brian
2012-09-01
The U.S. Virtual Astronomical Observatory (VAO) is a product-driven organization that provides new scientific research capabilities to the astronomical community. Software development for the VAO follows a lightweight framework that guides development of science applications and infrastructure. Challenges to be overcome include distributed development teams, part-time efforts, and highly constrained schedules. We describe the process we followed to conquer these challenges while developing Iris, the VAO application for analysis of 1-D astronomical spectral energy distributions (SEDs). Iris was successfully built and released in less than a year with a team distributed across four institutions. The project followed existing International Virtual Observatory Alliance inter-operability standards for spectral data and contributed a SED library as a by-product of the project. We emphasize lessons learned that will be folded into future development efforts. In our experience, a well-defined process that provides guidelines to ensure the project is cohesive and stays on track is key to success. Internal product deliveries with a planned test and feedback loop are critical. Release candidates are measured against use cases established early in the process, and provide the opportunity to assess priorities and make course corrections during development. Also key is the participation of a stakeholder such as a lead scientist who manages the technical questions, advises on priorities, and is actively involved as a lead tester. Finally, frequent scheduled communications (for example a bi-weekly tele-conference) assure issues are resolved quickly and the team is working toward a common vision.
NASA Astrophysics Data System (ADS)
Lodieu, N.; Espinoza Contreras, M.; Zapatero Osorio, M. R.; Solano, E.; Aberasturi, M.; Martín, E. L.
2017-01-01
Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 084.C-0928A.Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.
Visualizing Compound Rotations with Virtual Reality
ERIC Educational Resources Information Center
Flanders, Megan; Kavanagh, Richard C.
2013-01-01
Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…
Feasibility Pilot Study: Training Soft Skills in Virtual Worlds.
Abshier, Patricia
2012-04-01
In a world where funding is limited, training for healthcare professionals is turning more and more to distance learning in an effort to maintain a knowledgeable and skilled work force. In 2010, Cicatelli Associates, Inc. began exploring the feasibility of using games and virtual worlds as an alternative means to teach skills-training in a distance-learning environment. The pilot study was conducted with six individuals familiar with general counseling and communication skills used by the healthcare industry to promote behavior change. Participants reported that the venue, although challenging at first, showed great potential for use with healthcare providers, as it allowed for more interaction and activities than traditional Webinars. However, there are significant limitations that must be overcome in order for this healthcare training modality to be utilized on a large scale. These limitations included a lack of microgestures and issues regarding the technology being used. In spite of the limitations, however, the potential use of virtual worlds for the training of healthcare providers exists and should be researched further. This article discusses the need and intended benefits of virtual world training as well as the results and conclusions of the pilot study.
Horizontal Curves Virtual Peer Exchange
DOT National Transportation Integrated Search
2012-05-01
This report provides a summary of a peer-to-peer videoconference sponsored by : the Federal Highway Administration (FHWA) Office of Safety. The : videoconference, which piloted a virtual event format, is part of a series of : roadway departure-focuse...
2007-05-31
The SOFIA flight crew, consisting of Co-pilot Gordon Fullerton; DFRC, Pilot Bill Brocket; DFRC, Test Conductor Marty Trout; DFRC, Test Engineer Don Stonebrook; L-3, and Flight Engineer Larry Larose; JSC, descend the stairs after ferrying the 747SP airborne observatory from Waco, Texas, to its new home at NASA's Dryden Flight Research Center in California. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.
Stanton, Neville A; Plant, Katherine L; Roberts, Aaron P; Allison, Craig K
2017-12-15
Flight within degraded visual conditions is a great challenge to pilots of rotary-wing craft. Environmental cues typically used to guide interpretation of speed, location and approach can become obscured, forcing the pilots to rely on data available from in-cockpit instrumentation. To ease the task of flight during degraded visual conditions, pilots require easy access to flight critical information. The current study examined the effect of 'Highways in the Sky' symbology and a conformal virtual pad for landing presented using a Head Up Display (HUD) on pilots' workload and situation awareness for both clear and degraded conditions across a series of simulated rotary-wing approach and landings. Results suggest that access to the HUD lead to significant improvements to pilots' situation awareness, especially within degraded visual conditions. Importantly, access to the HUD facilitated pilot awareness in all conditions. Results are discussed in terms of future HUD development. Practitioner Summary: This paper explores the use of a novel Heads Up Display, to facilitate rotary-wing pilots' situation awareness and workload for simulated flights in both clear and degraded visual conditions. Results suggest that access to HUD facilitated pilots' situation awareness, especially when flying in degraded conditions.
Serious games for screening pre-dementia conditions: from virtuality to reality? A pilot project.
Zucchella, Chiara; Sinforiani, Elena; Tassorelli, Cristina; Cavallini, Elena; Tost-Pardell, Daniela; Grau, Sergi; Pazzi, Stefania; Puricelli, Stefano; Bernini, Sara; Bottiroli, Sara; Vecchi, Tomaso; Sandrini, Giorgio; Nappi, Giuseppe
2014-01-01
Conventional cognitive assessment is based on a pencil-and-paper neuropsychological evaluation, which is time consuming, expensive and requires the involvement of several professionals. Information and communication technology could be exploited to allow the development of tools that are easy to use, reduce the amount of data processing, and provide controllable test conditions. Serious games (SGs) have the potential to be new and effective tools in the management and treatment of cognitive impairments Serious games for screening pre-dementia conditions: from virtuality to reality? A pilot project in the elderly. Moreover, by adopting SGs in 3D virtual reality settings, cognitive functions might be evaluated using tasks that simulate daily activities, increasing the "ecological validity" of the assessment. In this commentary we report our experience in the creation of the Smart Aging platform, a 3D SGand virtual environment-based platform for the early identification and characterization of mild cognitive impairment.
ERIC Educational Resources Information Center
Dyrberg, Nadia Rahbek; Treusch, Alexander H.; Wiegand, Claudia
2017-01-01
Potential benefits of simulations and virtual laboratory exercises in natural sciences have been both theorised and studied recently. This study reports findings from a pilot study on student attitude, motivation and self-efficacy when using the virtual laboratory programme Labster. The programme allows interactive learning about the workflows and…
2017-03-20
NASA Solar Dynamics Observatory sees the sun has been virtually spotless, as in no sunspots, a 11-day spotless stretch not seen since the last solar minimum many years ago. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21582
AVOCADO: A Virtual Observatory Census to Address Dwarfs Origins
NASA Astrophysics Data System (ADS)
Sánchez-Janssen, Rubén; Sánchez-Janssen
2011-12-01
Dwarf galaxies are by far the most abundant of all galaxy types, yet their properties are still poorly understood-especially due to the observational challenge that their intrinsic faintness represents. AVOCADO aims at establishing firm conclusions on their formation and evolution by constructing a homogeneous, multiwavelength dataset for a statistically significant sample of several thousand nearby dwarfs (-18 < Mi < -14). Using public data and Virtual Observatory tools, we have built GALEX+SDSS+2MASS spectral energy distributions that are fitted by a library of single stellar population models. Star formation rates, stellar masses, ages and metallicities are further complemented with structural parameters that can be used to classify them morphologically. This unique dataset, coupled with a detailed characterization of each dwarf's environment, allows for a fully comprehensive investigation of their origins and to track the (potential) evolutionary paths between the different dwarf types.
Digital data preservation for scholarly publications in astronomy
NASA Astrophysics Data System (ADS)
Choudhury, Sayeed; di Lauro, Tim; Szalay, Alex; Vishniac, Ethan; Hanisch, Robert; Steffen, Julie; Milkey, Robert; Ehling, Teresa; Plante, Ray
2007-11-01
Astronomy is similar to other scientific disciplines in that scholarly publication relies on the presentation and interpretation of data. But although astronomy now has archives for its primary research telescopes and associated surveys, the highly processed data that is presented in the peer-reviewed journals and is the basis for final analysis and interpretation is generally not archived and has no permanent repository. We have initiated a project whose goal is to implement an end-to-end prototype system which, through a partnership of a professional society, that society's scholarly publications/publishers, research libraries, and an information technology substrate provided by the Virtual Observatory, will capture high-level digital data as part of the publication process and establish a distributed network of curated, permanent data repositories. The data in this network will be accessible through the research journals, astronomy data centers, and Virtual Observatory data discovery portals.
NASA Astrophysics Data System (ADS)
Diago, P. D.; Gutiérrez-Soto, J.; Ruiz, J. E.; Solano, E.
2013-05-01
The Astronomy and Astrophysics Master, running at the Valencian International University (VIU, http://www.viu.es) since march 2010, is a clear example of how development of infor- mation and communication technologies (ICTs) and new e-learning methods are changing the traditional distance learning. In the context of the European Space for Higher Edu- cation (ESHE) we present how the Virtual Observatory (VO) tools can be an important part in the Astronomy and Astrophysics teaching. The described tasks has been carried out during the last three courses. These tasks are representative of the state of the art in Astrophysics research. We attach a description and a learning results list of each one of the presented tasks. The tasks can be downloaded at the Spanish VO website: http://svo.cab.inta-csic.es/docs/index.php?pagename=Education/VOcases
Reprint of: Client interfaces to the Virtual Observatory Registry
NASA Astrophysics Data System (ADS)
Demleitner, M.; Harrison, P.; Taylor, M.; Normand, J.
2015-06-01
The Virtual Observatory Registry is a distributed directory of information systems and other resources relevant to astronomy. To make it useful, facilities to query that directory must be provided to humans and machines alike. This article reviews the development and status of such facilities, also considering the lessons learnt from about a decade of experience with Registry interfaces. After a brief outline of the history of the standards development, it describes the use of Registry interfaces in some popular clients as well as dedicated UIs for interrogating the Registry. It continues with a thorough discussion of the design of the two most recent Registry interface standards, RegTAP on the one hand and a full-text-based interface on the other hand. The article finally lays out some of the less obvious conventions that emerged in the interaction between providers of registry records and Registry users as well as remaining challenges and current developments.
Client interfaces to the Virtual Observatory Registry
NASA Astrophysics Data System (ADS)
Demleitner, M.; Harrison, P.; Taylor, M.; Normand, J.
2015-04-01
The Virtual Observatory Registry is a distributed directory of information systems and other resources relevant to astronomy. To make it useful, facilities to query that directory must be provided to humans and machines alike. This article reviews the development and status of such facilities, also considering the lessons learnt from about a decade of experience with Registry interfaces. After a brief outline of the history of the standards development, it describes the use of Registry interfaces in some popular clients as well as dedicated UIs for interrogating the Registry. It continues with a thorough discussion of the design of the two most recent Registry interface standards, RegTAP on the one hand and a full-text-based interface on the other hand. The article finally lays out some of the less obvious conventions that emerged in the interaction between providers of registry records and Registry users as well as remaining challenges and current developments.
Europlanet/IDIS: Combining Diverse Planetary Observations and Models
NASA Astrophysics Data System (ADS)
Schmidt, Walter; Capria, Maria Teresa; Chanteur, Gerard
2013-04-01
Planetary research involves a diversity of research fields from astrophysics and plasma physics to atmospheric physics, climatology, spectroscopy and surface imaging. Data from all these disciplines are collected from various space-borne platforms or telescopes, supported by modelling teams and laboratory work. In order to interpret one set of data often supporting data from different disciplines and other missions are needed while the scientist does not always have the detailed expertise to access and utilize these observations. The Integrated and Distributed Information System (IDIS) [1], developed in the framework of the Europlanet-RI project, implements a Virtual Observatory approach ([2] and [3]), where different data sets, stored in archives around the world and in different formats, are accessed, re-formatted and combined to meet the user's requirements without the need of familiarizing oneself with the different technical details. While observational astrophysical data from different observatories could already earlier be accessed via Virtual Observatories, this concept is now extended to diverse planetary data and related model data sets, spectral data bases etc. A dedicated XML-based Europlanet Data Model (EPN-DM) [4] was developed based on data models from the planetary science community and the Virtual Observatory approach. A dedicated editor simplifies the registration of new resources. As the EPN-DM is a super-set of existing data models existing archives as well as new spectroscopic or chemical data bases for the interpretation of atmospheric or surface observations, or even modeling facilities at research institutes in Europe or Russia can be easily integrated and accessed via a Table Access Protocol (EPN-TAP) [5] adapted from the corresponding protocol of the International Virtual Observatory Alliance [6] (IVOA-TAP). EPN-TAP allows to search catalogues, retrieve data and make them available through standard IVOA tools if the access to the archive is compatible with IVOA standards. For some major data archives with different standards adaptation tools are available to make the access transparent to the user. EuroPlaNet-IDIS has contributed to the definition of PDAP, the Planetary Data Access Protocol of the International Planetary Data Alliance (IPDA) [7] to access the major planetary data archives of NASA in the USA [8], ESA in Europe [9] and JAXA in Japan [10]. Acknowledgement: Europlanet-RI was funded by the European Commission under the 7th Framework Program, grant 228319 "Capacities Specific Programme" - Research Infrastructures Action. Reference: [1] Details to IDIS and the Europlanet-RI via Web-site: http://www.idis.europlanet-ri.eu/ [2] Demonstrator implementation for Plasma-VO AMDA: http://cdpp-amda.cesr.fr/DDHTML/index.html [3] Demonstrator implementation for the IDIS-VO: http://www.idis-dyn.europlanet-ri.eu/vodev.shtml [4] Europlanet Data Model EPN-DM: http://www.europlanet-idis.fi/documents/public_documents/EPN-DM-v2.0.pdf [5] Europlanet Table Access Protocol EPN-TAP: http://www.europlanet-idis.fi/documents/public_documents/EPN-TAPV_0.26.pdf [6] International Virtual Observatory Alliance IVOA: http://www.ivoa.net [7] International Planetary Data Alliance IPDA: http://planetarydata.org/ [8] NASA's Planetary Data System: http://pds.jpl.nasa.gov/ [9] ESA's Planetary Science Archive PSA: http://www.sciops.esa.int/index.php?project=PSA [10] JAXAs Data Archive and Transmission System DARTS: http://darts.isas.jaxa.jp/
Semantically Enabling Knowledge Representation of Metamorphic Petrology Data
NASA Astrophysics Data System (ADS)
West, P.; Fox, P. A.; Spear, F. S.; Adali, S.; Nguyen, C.; Hallett, B. W.; Horkley, L. K.
2012-12-01
More and more metamorphic petrology data is being collected around the world, and is now being organized together into different virtual data portals by means of virtual organizations. For example, there is the virtual data portal Petrological Database (PetDB, http://www.petdb.org) of the Ocean Floor that is organizing scientific information about geochemical data of ocean floor igneous and metamorphic rocks; and also The Metamorphic Petrology Database (MetPetDB, http://metpetdb.rpi.edu) that is being created by a global community of metamorphic petrologists in collaboration with software engineers and data managers at Rensselaer Polytechnic Institute. The current focus is to provide the ability for scientists and researchers to register their data and search the databases for information regarding sample collections. What we present here is the next step in evolution of the MetPetDB portal, utilizing semantically enabled features such as discovery, data casting, faceted search, knowledge representation, and linked data as well as organizing information about the community and collaboration within the virtual community itself. We take the information that is currently represented in a relational database and make it available through web services, SPARQL endpoints, semantic and triple-stores where inferencing is enabled. We will be leveraging research that has taken place in virtual observatories, such as the Virtual Solar Terrestrial Observatory (VSTO) and the Biological and Chemical Oceanography Data Management Office (BCO-DMO); vocabulary work done in various communities such as Observations and Measurements (ISO 19156), FOAF (Friend of a Friend), Bibo (Bibliography Ontology), and domain specific ontologies; enabling provenance traces of samples and subsamples using the different provenance ontologies; and providing the much needed linking of data from the various research organizations into a common, collaborative virtual observatory. In addition to better representing and presenting the actual data, we also look to organize and represent the knowledge information and expertise behind the data. Domain experts hold a lot of knowledge in their minds, in their presentations and publications, and elsewhere. Not only is this a technical issue, this is also a social issue in that we need to be able to encourage the domain experts to share their knowledge in a way that can be searched and queried over. With this additional focus in MetPetDB the site can be used more efficiently by other domain experts, but can also be utilized by non-specialists as well in order to educate people of the importance of the work being done as well as enable future domain experts.
Bringing the Virtual Astronomical Observatory to the Education Community
NASA Astrophysics Data System (ADS)
Lawton, B.; Eisenhamer, B.; Mattson, B. J.; Raddick, M. J.
2012-08-01
The Virtual Observatory (VO) is an international effort to bring a large-scale electronic integration of astronomy data, tools, and services to the global community. The Virtual Astronomical Observatory (VAO) is the U.S. NSF- and NASA-funded VO effort that seeks to put efficient astronomical tools in the hands of U.S. astronomers, students, educators, and public outreach leaders. These tools will make use of data collected by the multitude of ground- and space-based missions over the previous decades. The Education and Public Outreach (EPO) program for the VAO will be led by the Space Telescope Science Institute in collaboration with the High Energy Astrophysics Science Archive Research Center (HEASARC) EPO program and Johns Hopkins University. VAO EPO efforts seek to bring technology, real-world astronomical data, and the story of the development and infrastructure of the VAO to the general public and education community. Our EPO efforts will be structured to provide uniform access to VAO information, enabling educational and research opportunities across multiple wavelengths and time-series data sets. The VAO team recognizes that the VO has already built many tools for EPO purposes, such as Microsoft's World Wide Telescope, SDSS Sky Server, Aladin, and a multitude of citizen-science tools available from Zooniverse. However, it is not enough to simply provide tools. Tools must meet the needs of the education community and address national education standards in order to be broadly utilized. To determine which tools the VAO will incorporate into the EPO program, needs assessments will be conducted with educators across the U.S.
NASA Astrophysics Data System (ADS)
Pasian, F.
2015-06-01
The origins of the Italian contribution to the international Virtual Observatory (VO) were mainly tied to the definition and implementation of a Data Grid using Grid standards. From there on, by means of a step-wise evolution, activities started including the implementation of VO-aware tools and facilities, or the production of services accessing data archives in ways compliant to the international VO standards. An important activity the Italian VO community has carried out is the dissemination of the VO capabilities to professionals, students and amateurs: in particular, an important and maybe unique success has been bringing to the classrooms the VO, and using it as a powerful tool to teach astronomy at all levels, from junior high school to undergraduate courses. Lately, there has been also direct involvement of the Italian community in the definition of standards and services within the framework of the International Virtual Observatory Alliance (IVOA), and participation and leadership in the IVOA Working Groups. Along this path, the national funding for these activities has been rather low, although essential to carry the activities on. There were no bursts of funding to allow a quick rise in activities leading to the fast realisation of tools and systems. Rather, the manpower involved in VObs.it has been always fairly low but steady. In the view of managing a national VO initiative with a low budget, strategic choices were made to exploit the available resources and to guarantee a constant background activity, mainly geared at providing services to the community, development in lower-priority VO areas, dissemination and support.
The Virtual World Presence of the International Year of Astronomy 2009
NASA Astrophysics Data System (ADS)
Gauthier, Adrienne J.; Huber, D.; Gay, P. L.; New Media Task Group IYA2009
2010-01-01
From January 2009 to January 2010, the virtual celebration of the International Year of Astronomy 2009 has come full circle side-by-side with the real world celebrations. Throughout the year, the 'Astronomy 2009' island promoted the IYA2009 within the virtual world of Second Life(R) with the goal to engage and inspire the general public in astronomy. This island is situated in the group area called SciLands, a science and technology focused mini-continent of over 60 islands. We are host to immersive exhibits for the real life projects: From Earth to the Universe, The World at Night, Dark Skies Awareness, Let There Be Night, IAAA The Artists' Universe, 365 Days of Astronomy podcast, Spitzer's MIPSGAL/GLIMPSE walkable image, and Adler Planetarium's Far Out Fridays lecture series. Spitzer Space Telescope, Chandra X-ray Observatory, and the Hubble Heritage project provided over 300 free textures in a gift pack to visitors. Other exhibits include a replica of the Lord Rosse Leviathan telescope, an astrophotography grotto featuring Adam Block, David Malin, and John Gleason's work, a functional planetarium donated by Rob Knop, and live star party events from Chico Observatory. We'll review the exhibits and live events presented throughout the past year and speak towards the plans for the future. Formative evaluation strategies and first impressions of the summative evaluation of the first year of the project will be presented. Special thanks to our sponsors: Interstellar Studios/400 Years of the Telescope, Department of Astronomy University of Arizona, Spitzer Space Telescope, Chandra X-Ray Observatory, and Helio Huet.
NASA Astrophysics Data System (ADS)
2018-01-01
The large amount of data generated by modern space missions calls for a change of organization of data distribution and access procedures. Although long term archives exist for telescopic and space-borne observations, high-level functions need to be developed on top of these repositories to make Planetary Science and Heliophysics data more accessible and to favor interoperability. Results of simulations and reference laboratory data also need to be integrated to support and interpret the observations. Interoperable software and interfaces have recently been developed in many scientific domains. The Virtual Observatory (VO) interoperable standards developed for Astronomy by the International Virtual Observatory Alliance (IVOA) can be adapted to Planetary Sciences, as demonstrated by the VESPA (Virtual European Solar and Planetary Access) team within the Europlanet-H2020-RI project. Other communities have developed their own standards: GIS (Geographic Information System) for Earth and planetary surfaces tools, SPASE (Space Physics Archive Search and Extract) for space plasma, PDS4 (NASA Planetary Data System, version 4) and IPDA (International Planetary Data Alliance) for planetary mission archives, etc, and an effort to make them interoperable altogether is starting, including automated workflows to process related data from different sources.
Virtually-augmented interfaces for tactical aircraft.
Haas, M W
1995-05-01
The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and non-virtual concepts and devices across the visual, auditory and haptic sensory modalities. A fusion interface is a multi-sensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion-interface concepts. One of the virtual concepts to be investigated in the Fusion Interfaces for Tactical Environments facility (FITE) is the application of EEG and other physiological measures for virtual control of functions within the flight environment. FITE is a specialized flight simulator which allows efficient concept development through the use of rapid prototyping followed by direct experience of new fusion concepts. The FITE facility also supports evaluation of fusion concepts by operational fighter pilots in a high fidelity simulated air combat environment. The facility was utilized by a multi-disciplinary team composed of operational pilots, human-factors engineers, electronics engineers, computer scientists, and experimental psychologists to prototype and evaluate the first multi-sensory, virtually-augmented cockpit. The cockpit employed LCD-based head-down displays, a helmet-mounted display, three-dimensionally localized audio displays, and a haptic display. This paper will endeavor to describe the FITE facility architecture, some of the characteristics of the FITE virtual display and control devices, and the potential application of EEG and other physiological measures within the FITE facility.
Virtual reality: a reality for future military pilotage?
NASA Astrophysics Data System (ADS)
McIntire, John P.; Martinsen, Gary L.; Marasco, Peter L.; Havig, Paul R.
2009-05-01
Virtual reality (VR) systems provide exciting new ways to interact with information and with the world. The visual VR environment can be synthetic (computer generated) or be an indirect view of the real world using sensors and displays. With the potential opportunities of a VR system, the question arises about what benefits or detriments a military pilot might incur by operating in such an environment. Immersive and compelling VR displays could be accomplished with an HMD (e.g., imagery on the visor), large area collimated displays, or by putting the imagery on an opaque canopy. But what issues arise when, instead of viewing the world directly, a pilot views a "virtual" image of the world? Is 20/20 visual acuity in a VR system good enough? To deliver this acuity over the entire visual field would require over 43 megapixels (MP) of display surface for an HMD or about 150 MP for an immersive CAVE system, either of which presents a serious challenge with current technology. Additionally, the same number of sensor pixels would be required to drive the displays to this resolution (and formidable network architectures required to relay this information), or massive computer clusters are necessary to create an entirely computer-generated virtual reality with this resolution. Can we presently implement such a system? What other visual requirements or engineering issues should be considered? With the evolving technology, there are many technological issues and human factors considerations that need to be addressed before a pilot is placed within a virtual cockpit.
Rejuvenation of the Innocent Bystander: Results from a Pilot X-ray Study of Dwarf Carbon Stars
NASA Astrophysics Data System (ADS)
Mazzoni, Fernando; Montez, Rodolfo; Green, Paul
2018-01-01
We present the results of a pilot study by the Chandra X-ray Observatory of X-ray emission from dwarf Carbon (dC) stars. Carbon stars were thought to be exclusively AGB stars but main sequence dwarfs showing carbon molecular bands appear to be the dominant variety. The existence of dC stars is surprising since dwarf stars cannot intrinsically produce carbon as an AGB star can. It is hypothesized that dC stars are polluted by an evolved companion star. Evidence of past pollution can appear in X-ray emission where increased coronal activity (“spin-up”) or mass accretion via a disk can be detected. Using the Chandra X-ray Observatory we detected X-ray photons in the vicinity of all the dC stars in our a pilot sample. For each detection we characterized the X-ray emission and compared to the emission expected from potential emission scenarios. Although the process that produces the X-ray emission from dC stars is presently unclear and our pilot sample is small, our results suggest that X-ray emission might be a universal characteristic of dC stars. Further examination of the X-ray emission plus future X-ray and multiwavelength observations will help us better understand the nature of these intriguing stars.
Sutton, Jennifer E; Buset, Melanie; Keller, Mikayla
2014-01-01
A number of careers involve tasks that place demands on spatial cognition, but it is still unclear how and whether skills acquired in such applied experiences transfer to other spatial tasks. The current study investigated the association between pilot training and the ability to form a mental survey representation, or cognitive map, of a novel, ground-based, virtual environment. Undergraduate students who were engaged in general aviation pilot training and controls matched to the pilots on gender and video game usage freely explored a virtual town. Subsequently, participants performed a direction estimation task that tested the accuracy of their cognitive map representation of the town. In addition, participants completed the Object Perspective Test and rated their spatial abilities. Pilots were significantly more accurate than controls at estimating directions but did not differ from controls on the Object Perspective Test. Locations in the town were visited at a similar rate by the two groups, indicating that controls' relatively lower accuracy was not due to failure to fully explore the town. Pilots' superior performance is likely due to better online cognitive processing during exploration, suggesting the spatial updating they engage in during flight transfers to a non-aviation context.
Sutton, Jennifer E.; Buset, Melanie; Keller, Mikayla
2014-01-01
A number of careers involve tasks that place demands on spatial cognition, but it is still unclear how and whether skills acquired in such applied experiences transfer to other spatial tasks. The current study investigated the association between pilot training and the ability to form a mental survey representation, or cognitive map, of a novel, ground-based, virtual environment. Undergraduate students who were engaged in general aviation pilot training and controls matched to the pilots on gender and video game usage freely explored a virtual town. Subsequently, participants performed a direction estimation task that tested the accuracy of their cognitive map representation of the town. In addition, participants completed the Object Perspective Test and rated their spatial abilities. Pilots were significantly more accurate than controls at estimating directions but did not differ from controls on the Object Perspective Test. Locations in the town were visited at a similar rate by the two groups, indicating that controls' relatively lower accuracy was not due to failure to fully explore the town. Pilots' superior performance is likely due to better online cognitive processing during exploration, suggesting the spatial updating they engage in during flight transfers to a non-aviation context. PMID:24603608
ERIC Educational Resources Information Center
Bricken, Meredith; Byrne, Chris M.
The goal of this study was to take a first step in evaluating the potential of virtual reality (VR) as a learning environment. The context of the study was The Technology Academy, a technology-oriented summer day camp for students ages 5-18, where student activities center around hands-on exploration of new technology (e.g., robotics, MIDI digital…
Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI
2015-04-01
virtual reality driving simulator data acquisition. Data collection for the pilot study is nearly complete and data analyses are currently under way...Training for primary study procedures including neuropsychological testing, eye- tracking, virtual reality driving simulator, and EEG data acquisition is...the virtual reality driving simulator. Participants are instructed to drive along a coastal highway while performing the target detection task
Integrating the IA2 Astronomical Archive in the VO: The VO-Dance Engine
NASA Astrophysics Data System (ADS)
Molinaro, M.; Laurino, O.; Smareglia, R.
2012-09-01
Virtual Observatory (VO) protocols and standards are getting mature and the astronomical community asks for astrophysical data to be easily reachable. This means data centers have to intensify their efforts to provide the data they manage not only through proprietary portals and services but also through interoperable resources developed on the basis of the IVOA (International Virtual Observatory Alliance) recommendations. Here we present the work and ideas developed at the IA2 (Italian Astronomical Archive) data center hosted by the INAF-OATs (Italian Institute for Astrophysics - Trieste Astronomical Observatory) to reach this goal. The core point is the development of an application that from existing DB and archive structures can translate their content to VO compliant resources: VO-Dance (written in Java). This application, in turn, relies on a database (potentially DBMS independent) to store the translation layer information of each resource and auxiliary content (UCDs, field names, authorizations, policies, etc.). The last token is an administrative interface (currently developed using the Django python framework) to allow the data center administrators to set up and maintain resources. This deployment, platform independent, with database and administrative interface highly customizable, means the package, when stable and easily distributable, can be also used by single astronomers or groups to set up their own resources from their public datasets.
Development of a low-cost virtual reality workstation for training and education
NASA Technical Reports Server (NTRS)
Phillips, James A.
1996-01-01
Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) it involves 3-dimensional computer graphics; (2) it includes real-time feedback and response to user actions; and (3) it must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, but the high cost of VR technology has limited its practical application to fields with big budgets, such as military combat simulation, commercial pilot training, and certain projects within the space program. However, in the last year there has been a revolution in the cost of VR technology. The speed of inexpensive personal computers has increased dramatically, especially with the introduction of the Pentium processor and the PCI bus for IBM-compatibles, and the cost of high-quality virtual reality peripherals has plummeted. The result is that many public schools, colleges, and universities can afford a PC-based workstation capable of running immersive virtual reality applications. My goal this summer was to assemble and evaluate such a system.
NASA Technical Reports Server (NTRS)
Daiker, Ron; Schnell, Thomas
2010-01-01
A human motor model was developed on the basis of performance data that was collected in a flight simulator. The motor model is under consideration as one component of a virtual pilot model for the evaluation of NextGen crew alerting and notification systems in flight decks. This model may be used in a digital Monte Carlo simulation to compare flight deck layout design alternatives. The virtual pilot model is being developed as part of a NASA project to evaluate multiple crews alerting and notification flight deck configurations. Model parameters were derived from empirical distributions of pilot data collected in a flight simulator experiment. The goal of this model is to simulate pilot motor performance in the approach-to-landing task. The unique challenges associated with modeling the complex dynamics of humans interacting with the cockpit environment are discussed, along with the current state and future direction of the model.
Autoplot: a Browser for Science Data on the Web
NASA Astrophysics Data System (ADS)
Faden, J.; Weigel, R. S.; West, E. E.; Merka, J.
2008-12-01
Autoplot (www.autoplot.org) is software for plotting data from many different sources and in many different file formats. Data from CDF, CEF, Fits, NetCDF, and OpenDAP can be plotted, along with many other sources such as ASCII tables and Excel spreadsheets. This is done by adapting these various data formats and APIs into a common data model that borrows from the netCDF and CDF data models. Autoplot uses a web browser metaphor to simplify use. The user specifies a parameter URL, for example a CDF file accessible via http with a parameter name appended, and the file resource is downloaded and the parameter is rendered in a scientifically meaningful way. When data span multiple files, the user can use a file name template in the URL to aggregate (combine) a set of remote files. So the problem of aggregating data across file boundaries is handled on the client side, allowing simple web servers to be used. The das2 graphics library provides rich controls for exploring the data. Scripting is supported through Python, providing not just programmatic control, but for calculating new parameters in a language that will look familiar to IDL and Matlab users. Autoplot is Java-based software, and will run on most computers without a burdensome installation process. It can also used as an applet or as a servlet that serves static images. Autoplot was developed as part of the Virtual Radiation Belt Observatory (ViRBO) project, and is also being used for the Virtual Magnetospheric Observatory (VMO). It is expected that this flexible, general-purpose plotting tool will be useful for allowing a data provider to add instant visualization capabilities to a directory of files or for general use in the Virtual Observatory environment.
Education and Outreach with the Virtual Astronomical Observatory
NASA Astrophysics Data System (ADS)
Lawton, Brandon L.; Eisenhamer, B.; Raddick, M. J.; Mattson, B. J.; Harris, J.
2012-01-01
The Virtual Observatory (VO) is an international effort to bring a large-scale electronic integration of astronomy data, tools, and services to the global community. The Virtual Astronomical Observatory (VAO) is the U.S. NSF- and NASA-funded VO effort that seeks to put efficient astronomical tools in the hands of U.S. astronomers, students, educators, and public outreach leaders. These tools will make use of data collected by the multitude of ground- and space-based missions over the previous decades. Many future missions will also be incorporated into the VAO tools when they launch. The Education and Public Outreach (E/PO) program for the VAO is led by the Space Telescope Science Institute in collaboration with the HEASARC E/PO program and Johns Hopkins University. VAO E/PO efforts seek to bring technology, real-world astronomical data, and the story of the development and infrastructure of the VAO to the general public, formal education, and informal education communities. Our E/PO efforts will be structured to provide uniform access to VAO information, enabling educational opportunities across multiple wavelengths and time-series data sets. The VAO team recognizes that many VO programs have built powerful tools for E/PO purposes, such as Microsoft's World Wide Telescope, SDSS Sky Server, Aladin, and a multitude of citizen-science tools available from Zooniverse. We are building partnerships with Microsoft, Zooniverse, and NASA's Night Sky Network to leverage the communities and tools that already exist to meet the needs of our audiences. Our formal education program is standards-based and aims to give teachers the tools to use real astronomical data to teach the STEM subjects. To determine which tools the VAO will incorporate into the formal education program, needs assessments will be conducted with educators across the U.S.
Towards a virtual observatory for ecosystem services and poverty alleviation
NASA Astrophysics Data System (ADS)
Buytaert, W.; Baez, S.; Cuesta, F.; Veliz Rosas, C.
2010-12-01
Over the last decades, near real-time environmental observation, technical advances in computer power and cyber-infrastructure, and the development of environmental software algorithms have increased dramatically. The integration of these evolutions, which is commonly referred to as the establishment of a virtual observatory, is one of the major challenges of the next decade for environmental sciences. Worldwide, many coordinated activities are ongoing to make this integration a reality. However, far less attention is paid to the question of how these developments can benefit environmental services management in a poverty alleviation context. Such projects are typically faced with issues of large predictive uncertainties, limited resources, limited local scientific capacity. At the same time, the complexity of the socio-economic contexts requires a very strong bottom-up oriented and interdisciplinary approach to environmental data collection and processing. In this study, we present three natural resources management cases in the Andes and the Amazon basin, and investigate how "virtual observatory" technology can improve ecosystem management. Each of these case studies present scientific challenges in terms of model coupling, real-time data assimilation and visualisation for management purposes. The first project deals with water resources management in the Peruvian Andes. Using a rainfall-runoff model, novel visualisations are used to give farmers insight in the water production and regulation capacity of their catchments, which can then be linked to land management practices such as conservation agriculture, wetland protection and grazing density control. In a project in the Amazonian floodplains, optimal allocation of the nesting availability and quality of the giant freshwater turtle are determined using a combined hydraulic model and weather forecasts. Finally, in the rainforest of the Yasuní Biosphere Reserve, Ecuador, biodiversity models are used to quantify the impacts of hunting and logging on community composition and wildlife populations.
The Heliophysics Data Environment, Virtual Observatories, NSSDC, and SPASE
NASA Technical Reports Server (NTRS)
Thieman, James; Grayzeck, Edwin; Roberts, Aaron; King, Todd
2010-01-01
Heliophysics (the study of the Sun and its effects on the Solar System, especially the Earth) has an interesting data environment in that the data are often to be found in relatively small data sets widely scattered in archives around the world. Within the last decade there have been more concentrated efforts to organize the data access methods and create a Heliophysics Data and Model Consortium (HDMC). To provide data search and access capability a number of Virtual Observatories (VO's) have been established both via funding from the U.S. National Aeronautics and Space Administration (NASA) and through other funding agencies in the U.S. and worldwide. At least 15 systems can be labeled as Heliophysics Virtual Observatories, 9 of them funded by NASA. Other parts of this data environment include Resident Archives, and the final, or "deep" archive at the National Space Science Data Center (NSSDC). The problem is that different data search and access approaches are used by all of these elements of the HDMC and a search for data relevant to a particular research question can involve consulting with multiple VO's - needing to learn a different approach for finding and acquiring data for each. The Space Physics Archive Search and Extract (SPASE) project is intended to provide a common data model for Heliophysics data and therefore a common set of metadata for searches of the VO's and other data environment elements. The SPASE Data Model has been developed through the common efforts of the HDMC representatives over a number of years. We currently have released Version 2.1. of the Data Model. The advantages and disadvantages of the Data Model will be discussed along with the plans for the future. Recent changes requested by new members of the SPASE community indicate some of the directions for further development.
NASA Astrophysics Data System (ADS)
Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.
2015-12-01
Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.
NASA Technical Reports Server (NTRS)
Jones, Jeremy; Grosvenor, Sandy; Wolf, Karl; Li, Connie; Koratkar, Anuradha; Powers, Edward I. (Technical Monitor)
2001-01-01
In the Virtual Observatory (VO), software tools will perform the functions that have traditionally been performed by physical observatories and their instruments. These tools will not be adjuncts to VO functionality but will make up the very core of the VO. Consequently, the tradition of observatory and system independent tools serving a small user base is not valid for the VO. For the VO to succeed, we must improve software collaboration and code sharing between projects and groups. A significant goal of the Scientist's Expert Assistant (SEA) project has been promoting effective collaboration and code sharing between groups. During the past three years, the SEA project has been developing prototypes for new observation planning software tools and strategies. Initially funded by the Next Generation Space Telescope, parts of the SEA code have since been adopted by the Space Telescope Science Institute. SEA has also supplied code for SOFIA, the SIRTF planning tools, and the JSky Open Source Java library. The potential benefits of sharing code are clear. The recipient gains functionality for considerably less cost. The provider gains additional developers working with their code. If enough users groups adopt a set of common code and tools, defacto standards can emerge (as demonstrated by the success of the FITS standard). Code sharing also raises a number of challenges related to the management of the code. In this talk, we will review our experiences with SEA - both successes and failures - and offer some lessons learned that may promote further successes in collaboration and re-use.
NASA Technical Reports Server (NTRS)
Korathkar, Anuradha; Grosvenor, Sandy; Jones, Jeremy; Li, Connie; Mackey, Jennifer; Neher, Ken; Obenschain, Arthur F. (Technical Monitor)
2001-01-01
In the Virtual Observatory (VO), software tools will perform the functions that have traditionally been performed by physical observatories and their instruments. These tools will not be adjuncts to VO functionality but will make up the very core of the VO. Consequently, the tradition of observatory and system independent tools serving a small user base is not valid for the VO. For the VO to succeed, we must improve software collaboration and code sharing between projects and groups. A significant goal of the Scientist's Expert Assistant (SEA) project has been promoting effective collaboration and code sharing among groups. During the past three years, the SEA project has been developing prototypes for new observation planning software tools and strategies. Initially funded by the Next Generation Space Telescope, parts of the SEA code have since been adopted by the Space Telescope Science Institute. SEA has also supplied code for the SIRTF (Space Infrared Telescope Facility) planning tools, and the JSky Open Source Java library. The potential benefits of sharing code are clear. The recipient gains functionality for considerably less cost. The provider gains additional developers working with their code. If enough users groups adopt a set of common code and tools, de facto standards can emerge (as demonstrated by the success of the FITS standard). Code sharing also raises a number of challenges related to the management of the code. In this talk, we will review our experiences with SEA--both successes and failures, and offer some lessons learned that might promote further successes in collaboration and re-use.
CosmoQuest - Scientist Engagement with the Public and Schools via a Virtual Research Facility
NASA Astrophysics Data System (ADS)
Noel-Storr, Jacob; Buxner, Sanlyn; Gay, Pamela L.; Grier, Jennifer A.; Lehan, Cory; CosmoQuest Team
2016-06-01
CosmoQuest is a virtual research facility where science data can be analyzed by teams of interested citizen scientists from across the world. Scientists can apply to have their data analyzed through crowdsourcing in our online observatory, which generates validated and publishable results (Robbins et al 2014). Scientists have the opportunity to provide connections to teachers in classrooms so that students can analyze original data and understand the process that astronomers go through from image to result. Scientists can also teach online classes for different audiences including formal classroom teachers, informal educators, and lifelong learners to further the broader impacts of their work and increase engagement in their scientific endeavors. We provide training, through online and in-person workshops, on how to incorporate your datasets into the observatory and how to deliver online classes through our CosmoAcademy. This work is funded in part by NASA Cooperative Agreement Notice number NNX16AC68A. For more information, visit http://cosmoquest.org/.
Web Services for Astronomical Databases: Connecting AIPS++ to the Virtual Observatory
NASA Astrophysics Data System (ADS)
Douthit, M. C.
2002-12-01
In the year 2010, the NRAO will be operating four of the world's most powerful radio telescopes: GBT, EVLA, VLBA, and ALMA (with international partnership). Multi-Terabyte data sets will quickly accumulate with a rate of twenty-five to fifty Megabytes of data per second generated by ALMA and EVLA each. It will be imperative for scientists to possess software capable of automated data reduction, image synthesis, and archiving. With the evolution of AIPS++ and the recently developed concepts of the image pipeline, the participation of the NRAO in the virtual observatories of the future is now on the horizon giving birth to the need for fast archive access and web service development in AIPS++. When the software package began over 10 years ago, it was not designed for data transfer via the web. In response to the demands of the NVO, we have designed and implemented an application layer that will allow our system to communicate with others. Sponsored by the NRAO and California State University, San Marcos.
NASA Astrophysics Data System (ADS)
Cooper, John F.; Papitashvili, Natalia E.; Johnson, Rita C.; Lal, Nand; McGuire, Robert E.
2015-04-01
NASA now has a large collection of solar, heliospheric, and local interstellar (Voyager 1) cosmic ray particle data sets that can be accessed through the data system services of the NASA Virtual Energetic Particle Observatory (VEPO) in collaboration with the NASA Space Physics Data Facility SPDF), respectively led by the first and last authors. The VEPO services were developed to enhance the long-existing OMNIWeb solar wind and energetic particle services of SPDF for on-line browse, correlative, and statistical analysis of NASA and ESA mission fields, plasma, and energetic particle data. In this presentation we take of tour through VEPO and SPDF of SEP reservoir events, the outer heliosphere earlier surveyed by the Pioneer, Voyager, and Ulysses spacecraft and now being probed by New Horizons, and the heliosheath-heliopause-interstellar regions now being explored by the Voyagers and IBEX. Implications of the latter measurements are also considered for the flux spectra of low to high energy cosmic rays in interstellar space.
Simple force feedback for small virtual environments
NASA Astrophysics Data System (ADS)
Schiefele, Jens; Albert, Oliver; van Lier, Volker; Huschka, Carsten
1998-08-01
In today's civil flight training simulators only the cockpit and all its interaction devices exist as physical mockups. All other elements such as flight behavior, motion, sound, and the visual system are virtual. As an extension to this approach `Virtual Flight Simulation' tries to subsidize the cockpit mockup by a 3D computer generated image. The complete cockpit including the exterior view is displayed on a Head Mounted Display (HMD), a BOOM, or a Cave Animated Virtual Environment. In most applications a dataglove or virtual pointers are used as input devices. A basic problem of such a Virtual Cockpit simulation is missing force feedback. A pilot cannot touch and feel buttons, knobs, dials, etc. he tries to manipulate. As a result, it is very difficult to generate realistic inputs into VC systems. `Seating Bucks' are used in automotive industry to overcome the problem of missing force feedback. Only a seat, steering wheel, pedal, stick shift, and radio panel are physically available. All other geometry is virtual and therefore untouchable but visible in the output device. In extension to this concept a `Seating Buck' for commercial transport aircraft cockpits was developed. Pilot seat, side stick, pedals, thrust-levers, and flaps lever are physically available. All other panels are simulated by simple flat plastic panels. They are located at the same location as their real counterparts only lacking the real input devices. A pilot sees the entire photorealistic cockpit in a HMD as 3D geometry but can only touch the physical parts and plastic panels. In order to determine task performance with the developed Seating Buck, a test series was conducted. Users press buttons, adapt dials, and turn knobs. In a first test, a complete virtual environment was used. The second setting had a plastic panel replacing all input devices. Finally, as cross reference the participants had to repeat the test with a complete physical mockup of the input devices. All panels and physical devices can be easily relocated to simulate a different type of cockpit. Maximal 30 minutes are needed for a complete adaptation. So far, an Airbus A340 and a generic cockpit are supported.
LAMOST CCD camera-control system based on RTS2
NASA Astrophysics Data System (ADS)
Tian, Yuan; Wang, Zheng; Li, Jian; Cao, Zi-Huang; Dai, Wei; Wei, Shou-Lin; Zhao, Yong-Heng
2018-05-01
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device (CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2nd Version (RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-framework-based control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.
Llnking the EarthScope Data Virtual Catalog to the GEON Portal
NASA Astrophysics Data System (ADS)
Lin, K.; Memon, A.; Baru, C.
2008-12-01
The EarthScope Data Portal provides a unified, single-point of access to EarthScope data and products from USArray, Plate Boundary Observatory (PBO), and San Andreas Fault Observatory at Depth (SAFOD) experiments. The portal features basic search and data access capabilities to allow users to discover and access EarthScope data using spatial, temporal, and other metadata-based (data type, station specific) search conditions. The portal search module is the user interface implementation of the EarthScope Data Search Web Service. This Web Service acts as a virtual catalog that in turn invokes Web services developed by IRIS (Incorporated Research Institutions for Seismology), UNAVCO (University NAVSTAR Consortium), and GFZ (German Research Center for Geosciences) to search for EarthScope data in the archives at each of these locations. These Web Services provide information about all resources (data) that match the specified search conditions. In this presentation we will describe how the EarthScope Data Search Web service can be integrated into the GEONsearch application in the GEON Portal (see http://portal.geongrid.org). Thus, a search request issued at the GEON Portal will also search the EarthScope virtual catalog thereby providing users seamless access to data in GEON as well as the Earthscope via a common user interface.
The NASA Goddard Space Flight Center Virtual Science Fair
NASA Technical Reports Server (NTRS)
Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report include the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.
A virtual radiation belt observatory: Looking forward to the electronic geophysical year
NASA Astrophysics Data System (ADS)
Baker, D. N.; Green, J. C.; Kroehl, H. W.; Kihn, E.; Virbo Team
During the International Geophysical Year (1957-1958), member countries established many new capabilities pursuing the major IGY objectives of collecting geophysical data as widely as possible and providing free access to these data for all scientists around the globe. A key achievement of the IGY was the establishment of a worldwide system of data centers and physical observatories. The worldwide scientific community has now endorsed and is promoting an electronic Geophysical Year (eGY) initiative. The proposed eGY concept would both commemorate the 50th anniversary of the IGY in 2007-2008 and would provide a forward impetus to geophysics in the 21st century, similar to that provide by the IGY fifty years ago. The eGY concept advocates the establishment of a series of virtual geophysical observatories now being deployed in cyberspace. We are developing the concept of a Virtual Radiation Belt Observatory (ViRBO) that will bring together near-earth particle and field measurements acquired by NASA, NOAA, DoD, DOE, and other spacecraft. We discuss plans to aggregate these measurements into a readily accessible database along with analysis, visualization, and display tools that will make radiation belt information available and useful both to the scientific community and to the user community. We envision that data from the various agencies along with models being developed under the auspices of the National Science Foundation Center for Integrated Space Weather Modeling (CISM) will help us to provide an excellent `climatology' of the radiation belts over the past several decades. In particular, we would plan to use these data to drive physical models of the radiation belts to form a gridded database which would characterize particle and field properties on solar-cycle (11-year) time scales. ViRBO will also provide up-to-date specification of conditions for event analysis and anomaly resolution. We are even examining the possibilities for near-realtime acquisition of data and utilization of CISM-developed forecast tools in order to provide users with advanced space weather capabilities.
Productive Mess: First-Year Composition Takes the University's Agonism Online
ERIC Educational Resources Information Center
Rivers, Nathaniel A.; Santos, Marc C.; Weber, Ryan P.
2009-01-01
This webtext describes a pilot course that united four first-year composition courses around shared readings and online discussion addressing the physical and virtual university. The goal of the pilot was to foster previously impossible student interactions by exploring how discrete discussion roles shaped interaction and reputations among…
Virtual Service, Real Data: Results of a Pilot Study.
ERIC Educational Resources Information Center
Kibbee, Jo; Ward, David; Ma, Wei
2002-01-01
Describes a pilot project at the University of Illinois at Urbana-Champaign reference and undergraduate libraries to test the feasibility of offering real-time online reference service via their Web site. Discusses software selection, policies and procedures, promotion and marketing, user interface, training and staffing, data collection, and…
Overview of SOFIA's General Capabilities and Project Status
NASA Astrophysics Data System (ADS)
Tielens, A.
2005-12-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5-meter telescope installed in a Boeing 747-SP to be flown at altitudes higher than ˜12 km. This allows observations in the stratosphere above virtually all of the atmosphere's water vapor. SOFIA's first generation scientific instruments span wavelengths from 0.3 to 700 microns. Upcoming engineering test flights will be followed by scientific test flights commissioning the observatory and instruments. In regular operations there are planned more than 120 research flights per year with as much as 8 to 10 hours of observing time per flight.
Teaching undergraduate astrophysics with PIRATE
NASA Astrophysics Data System (ADS)
Brodeur, M. S.; Kolb, U.; Minocha, S.; Braithwaite, N.
2014-12-01
PIRATE is a 0.43m semi-autonomous research and teaching observatory owned by The Open University, UK. Since 2010, it has been reserved for several months of each year for teaching astronomy in the OU's undergraduate programme. As students in these courses operate PIRATE remotely rather than travelling to the observatory itself, we chose to investigate whether effective learning was adversely affected by the absence of a more traditional `hands on' experience. We discuss student perspectives on the technologies employed (i.e., remote and virtual investigations), the impact these had on perceived course outcomes, and consider implications for future teaching and outreach.
Virtual reality 3D headset based on DMD light modulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Evans, Allan; Tang, Edward
We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the user’s own eye lens forms a real image on the user’s retina.
NASA Astrophysics Data System (ADS)
Saturnino, Diana; Langlais, Benoit; Amit, Hagay; Mandea, Mioara; Civet, François; Beucler, Éric
2017-04-01
A complete description of the main geomagnetic field temporal variation is crucial to understand dynamics in the core. This variation, termed secular variation (SV), is known with high accuracy at ground magnetic observatory locations. However the description of its spatial variability is hampered by the globally uneven distribution of the observatories. For the past two decades a global coverage of the field changes has been allowed by satellites. Their surveys of the geomagnetic field have been used to derive and improve global spherical harmonic (SH) models through some strict data selection schemes to minimise external field contributions. But discrepancies remain between ground measurements and field predictions by these models. Indeed, the global models do not reproduce small spatial scales of the field temporal variations. To overcome this problem we propose a modified Virtual Observatory (VO) approach by defining a globally homogeneous mesh of VOs at satellite altitude. With this approach we directly extract time series of the field and its temporal variation from satellite measurements as it is done at observatory locations. As satellite measurements are acquired at different altitudes a correction for the altitude is needed. Therefore, we apply an Equivalent Source Dipole (ESD) technique for each VO and each given time interval to reduce all measurements to a unique location, leading to time series similar to those available at ground magnetic observatories. Synthetic data is first used to validate the new VO-ESD approach. Then, we apply our scheme to measurements from the Swarm mission. For the first time, a 2.5 degrees resolution global mesh of VO times series is built. The VO-ESD derived time series are locally compared to ground observations as well as to satellite-based model predictions. The approach is able to describe detailed temporal variations of the field at local scales. The VO-ESD time series are also used to derive global SH models. Without regularization these models describe well the secular trend of the magnetic field. The derivation of longer VO-ESD time series, as more data will be made available, will allow the study of field temporal variations features such as geomagnetic jerks.
Image Processing for Educators in Global Hands-On Universe
NASA Astrophysics Data System (ADS)
Miller, J. P.; Pennypacker, C. R.; White, G. L.
2006-08-01
A method of image processing to find time-varying objects is being developed for the National Virtual Observatory as part of Global Hands-On Universe(tm) (Lawrence Hall of Science; University of California, Berkeley). Objects that vary in space or time are of prime importance in modern astronomy and astrophysics. Such objects include active galactic nuclei, variable stars, supernovae, or moving objects across a field of view such as an asteroid, comet, or extrasolar planet transiting its parent star. The search for these objects is undertaken by acquiring an image of the region of the sky where they occur followed by a second image taken at a later time. Ideally, both images are taken with the same telescope using the same filter and charge-coupled device. The two images are aligned and subtracted with the subtracted image revealing any changes in light during the time period between the two images. We have used a method of Christophe Alard using the image processing software IDL Version 6.2 (Research Systems, Inc.) with the exception of the background correction, which is done on the two images prior to the subtraction. Testing has been extensive, using images provided by a number of National Virtual Observatory and collaborating projects. They include the Supernovae Trace Cosmic Expansion (Cerro Tololo Inter-American Observatory), Supernovae/ Acceleration Program (Lawrence Berkeley National Laboratory), Lowell Observatory Near-Earth Object Search (Lowell Observatory), and the Centre National de la Recherche Scientifique (Paris, France). Further testing has been done with students, including a May 2006 two week program at the Lawrence Berkeley National Laboratory. Students from Hardin-Simmons University (Abilene, TX) and Jackson State University (Jackson, MS) used the subtraction method to analyze images from the Cerro Tololo Inter-American Observatory (CTIO) searching for new asteroids and Kuiper Belt objects. In October 2006 students from five U.S. high schools will use the subtraction method in an asteroid search campaign using CTIO images with 7-day follow-up images to be provided by the Las Cumbres Observatory (Santa Barbara, CA). During the Spring 2006 semester, students from Cape Fear High School used the method to search for near-Earth objects and supernovae. Using images from the Astronomical Research Institute (Charleston, IL) the method contributed to the original discovery of two supernovae, SN 2006al and SN 2006bi.
1991-01-28
This is the STS-37 Crew portrait. Pictured from left to right are Kenneth D. (Ken) Cameron, pilot; Jay Apt, mission specialist; Steven R. Nagel, commander; and Jerry L. Ross and Linda M. Godwin, mission specialists. Launched aboard the Space Shuttle Atlantis on April 5, 1991 at 9:22:44am (EST), the crew’s major objective was the deployment of the Gamma Ray Observatory (GRO). Included in the observatory were the Burst and Transient Source Experiment (BATSE); the Imaging Compton Telescope (COMPTEL); the Energetic Gamma Ray Experiment Telescope (EGRET); and the Oriented Scintillation Spectrometer Telescope (OSSEE).
1991-04-05
Launched aboard the Space Shuttle Atlantis on April 5, 1991 at 9:22:44am (EST), the STS-37 mission hurtles toward space. Her crew included Steven R. Nagel, commander; Kenneth D. (Ken) Cameron, pilot; and Jay Apt, Jerry L. Ross, and Linda M. Godwin, all mission specialists. The crew’s major objective was the deployment of the Gamma Ray Observatory (GRO). Included in the observatory were the Burst and Transient Source Experiment (BATSE); the Imaging Compton Telescope (COMPTEL); the Energetic Gamma Ray Experiment Telescope (EGRET); and the Oriented Scintillation Spectrometer Telescope (OSSEE).
Pilot Line Development of High-Performance Thermal Insulation
1989-09-01
with the fiber blend described, full attention was given to the problems of pilot pro- duction. C. Assembly of the Pilot Production Line and Initial...that virtually all possible static control steps had been taken, we presented the problem to the fiber manufacturer, TeiJin. They re- sponded by...1988. The line was operated continuously during production of the 5-roll sample se, as static generation within the fiber was no longer a problem
NASA Astrophysics Data System (ADS)
Bykov, O. P.
Any CCD frames with stars or galaxies or clusters and other images must be studied for a searching of moving celestial objects, namely asteroids, comets, artificial Earth satellites inside them. At Pulkovo Astronomical Observatory, new methods and software were elaborated to solve this problem.
The NASA Goddard Space Flight Center Virtual Science Fair
NASA Technical Reports Server (NTRS)
Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)
2001-01-01
This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report contain supporting documentation, including the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.
FixO3 project results, legacy and module migration to EMSO
NASA Astrophysics Data System (ADS)
Lampitt, Richard
2017-04-01
The fixed point open ocean observatory network (FixO3) project is an international project aimed at integrating in a single network all fixed point open ocean observatories operated by European organisations and to harmonise and coordinate technological, procedural and data management across the stations. The project is running for four years since September 2013 with 29 partners across Europe and a budget of 7M Euros and is now coming to its final phase. In contrast to several past programmes, the opportunity has arisen to ensure that many of the project achievements can migrate into the newly formed European Multidisciplinary Seafloor and water column Observatory (EMSO) research infrastructure. The final phase of the project will focus on developing a strategy to transfer the results in an efficient way to maintain their relevance and maximise their use. In this presentation, we will highlight the significant achievements of FixO3 over the past three years focussing on the modules which will be transferred to EMSO in the coming 9 months. These include: 1. Handbook of best practices for operating fixed point observatories 2. Metadata catalogue 3. Earth Virtual Observatory (EarthVO) for data visualisation and comparison 4. Open Ocean Observatory Yellow Pages (O3YP) 5. Training material for hardware, data and data products used
Building a Cloud Infrastructure for a Virtual Environmental Observatory
NASA Astrophysics Data System (ADS)
El-khatib, Y.; Blair, G. S.; Gemmell, A. L.; Gurney, R. J.
2012-12-01
Environmental science is often fragmented: data is collected by different organizations using mismatched formats and conventions, and models are misaligned and run in isolation. Cloud computing offers a lot of potential in the way of resolving such issues by supporting data from different sources and at various scales, and integrating models to create more sophisticated and collaborative software services. The Environmental Virtual Observatory pilot (EVOp) project, funded by the UK Natural Environment Research Council, aims to demonstrate how cloud computing principles and technologies can be harnessed to develop more effective solutions to pressing environmental issues. The EVOp infrastructure is a tailored one constructed from resources in both private clouds (owned and managed by us) and public clouds (leased from third party providers). All system assets are accessible via a uniform web service interface in order to enable versatile and transparent resource management, and to support fundamental infrastructure properties such as reliability and elasticity. The abstraction that this 'everything as a service' principle brings also supports mashups, i.e. combining different web services (such as models) and data resources of different origins (in situ gauging stations, warehoused data stores, external sources, etc.). We adopt the RESTful style of web services in order to draw a clear line between client and server (i.e. cloud host) and also to keep the server completely stateless. This significantly improves the scalability of the infrastructure and enables easy infrastructure management. For instance, tasks such as load balancing and failure recovery are greatly simplified without the need for techniques such as advance resource reservation or shared block devices. Upon this infrastructure, we developed a web portal composed of a bespoke collection of web-based visualization tools to help bring out relationships or patterns within the data. The portal was designed for use without any programming prerequisites by stakeholders from different backgrounds such as scientists, policy makers, local communities, and the general public. The development of the portal was carried out using an iterative behaviour-driven approach. We have developed six distinct storyboards to determine the requirements of different users. From these, we identified two storyboards to implement during the pilot phase. The first explores flooding at a local catchment scale for farmers and the public. We simulate hydrological interactions to determine where saturated land-surface areas develop. Model parameter values resembling catchment characteristics could be specified either explicitly (for domain specialists) or indirectly using one of several predefined land use scenarios (for less familiar audiences). The second storyboard investigates the diffuse of agricultural pollution at a national level, with regulators as users. We study the flux of Nitrogen and Phosphorus from land to rivers and coastal regions at various scales of drainage and reporting units. This is particularly useful to uncover the impact of existing policy instruments or risk from future environmental changes on the levels of N and P flux.
RapidSplint: virtual splint generation for orthognathic surgery - results of a pilot series.
Adolphs, Nicolai; Liu, Weichen; Keeve, Erwin; Hoffmeister, Bodo
2014-01-01
Within the domain of craniomaxillofacial surgery, orthognathic surgery is a special field dedicated to the correction of dentofacial anomalies resulting from skeletal malocclusion. Generally, in such cases, an interdisciplinary orthodontic and surgical treatment approach is required. After initial orthodontic alignment of the dental arches, skeletal discrepancies of the jaws can be corrected by distinct surgical strategies and procedures in order to achieve correct occlusal relations, as well as facial balance and harmony within individualized treatment concepts. To transfer the preoperative surgical planning and reposition the mobilized dental arches with optimal occlusal relations, surgical splints are typically used. For this purpose, different strategies have been described which use one or more splints. Traditionally, these splints are manufactured by a dental technician based on patient-specific dental casts; however, computer-assisted technologies have gained increasing importance with respect to preoperative planning and its subsequent surgical transfer. In a pilot study of 10 patients undergoing orthognathic corrections by a one-splint strategy, two final occlusal splints were produced for each patient and compared with respect to their clinical usability. One splint was manufactured in the traditional way by a dental technician according to the preoperative surgical planning. After performing a CBCT scan of the patient's dental casts, a second splint was designed virtually by an engineer and surgeon working together, according to the desired final occlusion. For this purpose, RapidSplint, a custom-made software platform, was used. After post-processing and conversion of the datasets into .stl files, the splints were fabricated by the PolyJet procedure using photo polymerization. During surgery, both splints were inserted after mobilization of the dental arches then compared with respect to their clinical usability according to the occlusal fitting. Using the workflow described above, virtual splints could be designed and manufactured for all patients in this pilot study. Eight of 10 virtual splints could be used clinically to achieve and maintain final occlusion after orthognathic surgery. In two cases virtual splints were not usable due to insufficient occlusal fitting, and even two of the traditional splints were not clinically usable. In five patients where both types of splints were available, their occlusal fitting was assessed as being equivalent, and in one case the virtual splint showed even better occlusal fitting than the traditional splint. In one case where no traditional splint was available, the virtual splint proved to be helpful in achieving the final occlusion. In this pilot study it was demonstrated that clinically usable splints for orthognathic surgery can be produced by computer-assisted technology. Virtual splint design was realized by RapidSplint®, an in-house software platform which might contribute in future to shorten preoperative workflows for the production of orthognathic surgical splints.
The Feasibility of Virtual Home Visits to Provide Early Intervention: A Pilot Study
ERIC Educational Resources Information Center
Kelso, Ginger L.; Fiechtl, Barbara J.; Olsen, Susan T.; Rule, Sarah
2009-01-01
Although videoconferencing has been used to deliver distance education, tutoring for children, and telemedicine observations, there is limited information on the efficacy of its use in delivering part C early intervention services. Four families receiving early intervention services in a rural program participated in a pilot study to test the…
Botts, Nathan; Bouhaddou, Omar; Bennett, Jamie; Pan, Eric; Byrne, Colene; Mercincavage, Lauren; Olinger, Lois; Hunolt, Elaine; Cullen, Theresa
2014-01-01
Authors studied the United States (U.S.) Department of Veterans Affairs' (VA) Virtual Lifetime Electronic Record (VLER) Health pilot phase relative to two attributes of data quality - the adoption of eHealth Exchange data standards, and clinical content exchanged. The VLER Health pilot was an early effort in testing implementation of eHealth Exchange standards and technology. Testing included evaluation of exchange data from the VLER Health pilot sites partners: VA, U.S. Department of Defense (DoD), and private sector health care organizations. Domains assessed data quality and interoperability as it relates to: 1) conformance with data standards related to the underlying structure of C32 Summary Documents (C32) produced by eHealth Exchange partners; and 2) the types of C32 clinical content exchanged. This analysis identified several standards non-conformance issues in sample C32 files and informed further discourse on the methods needed to effectively monitor Health Information Exchange (HIE) data content and standards conformance.
A Process Study of the Development of Virtual Research Environments
NASA Astrophysics Data System (ADS)
Ahmed, I.; Cooper, K.; McGrath, R.; Griego, G.; Poole, M. S.; Hanisch, R. J.
2014-05-01
In recent years, cyberinfrastructures have been deployed to create virtual research environments (VREs) - such as the Virtual Astronomical Observatory (VAO) - to enhance the quality and speed of scientific research, and to foster global scientific communities. Our study utilizes process methodology to study the evolution of VREs. This approach focuses on a series of events that bring about or lead to some outcome, and attempts to specify the generative mechanism that could produce the event series. This paper briefly outlines our approach and describes initial results of a case study of the VAO, one of the participating VREs. The case study is based on interviews with seven individuals participating in the VAO, and analysis of project documents and online resources. These sources are hand tagged to identify events related to the thematic tracks, to yield a narrative of the project. Results demonstrate the event series of an organization through traditional methods augmented by virtual sources.
ERIC Educational Resources Information Center
Gupta, Akriti; Singh, Satendra; Khaliq, Farah; Dhaliwal, Upreet; Madhu, S. V.
2018-01-01
In the country presently, preclinical medical students are not routinely exposed to real patients. Thus, when they start clinical postings, they are found to have poor clinical reasoning skills. Simulated virtual patients (SVPs) can improve clinical skills without endangering real patients. This pilot study describes the development of two SVPs in…
Fostering Collaboration in CALL: Benefits and Challenges of Using Virtual Language Resource Centres
ERIC Educational Resources Information Center
Medina, Liliana Cuesta; Alvarez, Claudia Patricia
2014-01-01
This paper presents the findings from a qualitative study on collaborative CALL design and implementation carried out with two groups of postgraduate language-teacher trainees who designed and piloted nine virtual language resource centres (VLRC) at 16 educational institutions of different levels and contents for an academic year. The project was…
Virtual Reality for Life Skills Education: Program Evaluation
ERIC Educational Resources Information Center
Vogel, Jennifer; Bowers, Clint; Meehan, Cricket; Hoeft, Raegan; Bradley, Kristy
2004-01-01
A program evaluation was completed for a Virtual Reality (VR) pilot project intended to aid deaf children in learning various life skills which they may be at risk of not adequately learning. Such skills include crossing the street safely, exiting a building during a fire drill, and avoiding situations in which strangers may harm them. The VR was…
Brief Report: A Pilot Study of the Use of a Virtual Reality Headset in Autism Populations
ERIC Educational Resources Information Center
Newbutt, Nigel; Sung, Connie; Kuo, Hung-Jen; Leahy, Michael J.; Lin, Chien-Chun; Tong, Boyang
2016-01-01
The application of virtual reality technologies (VRTs) for users with autism spectrum disorder (ASD) has been studied for decades. However, a gap remains in our understanding surrounding VRT head-mounted displays (HMDs). As newly designed HMDs have become commercially available (in this study the Oculus Rift[superscript TM]) the need to…
Avatars Go to Class: A Virtual Environment Soil Science Activity
ERIC Educational Resources Information Center
Mamo, M.; Namuth-Covert, D.; Guru, A.; Nugent, G.; Phillips, L.; Sandall, L.; Kettler, T.; McCallister, D.
2011-01-01
Web 2.0 technology is expanding rapidly from social and gaming uses into the educational applications. Specifically, the multi-user virtual environment (MUVE), such as SecondLife, allows educators to fill the gap of first-hand experience by creating simulated realistic evolving problems/games. In a pilot study, a team of educators at the…
Creating and Nurturing a Community of Practice for Language Teachers in Higher Education
ERIC Educational Resources Information Center
MacKinnon, Teresa
2013-01-01
This case study investigates the implementation of a virtual learning environment designed for language teachers for an institution-wide language programme in a UK higher education institution. This development has taken place over a 3 year period and included a pilot virtual learning environment for 300, followed by a full implementation to more…
ERIC Educational Resources Information Center
Juma, Magdallen N.
This booklet describes the African Virtual University (AVU), an interactive instructional telecommunications network established to provide distance education to the countries of sub-Saharan Africa. The AVU was piloted in 1997-1998, and in the 1998-1999 academic year, 27 institutions were slated to offer AVU courses. Supported by the World Bank,…
The Global Classroom Project: Learning a Second Language in a Virtual Environment
ERIC Educational Resources Information Center
Knutzen, Brant; Kennedy, David
2012-01-01
This paper reports the progress of a pilot project exploring the integration of a collaborative virtual learning environment (Second Life) with the instruction of English courses at Lingnan University in Hong Kong. An educational partnership was developed with two TESOL teacher-training courses at Texas A&M University in the US. The project…
Socialisation for Learning at a Distance in a 3-D Multi-User Virtual Environment
ERIC Educational Resources Information Center
Edirisingha, Palitha; Nie, Ming; Pluciennik, Mark; Young, Ruth
2009-01-01
This paper reports findings of a pilot study that examined the pedagogical potential of "Second Life" (SL), a popular three-dimensional multi-user virtual environment (3-D MUVE) developed by the Linden Lab. The study is part of a 1-year research and development project titled "Modelling of Secondlife Environments"…
STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training
2010-08-27
JSC2010-E-121056 (27 Aug. 2010) --- NASA astronaut Gregory H. Johnson, STS-134 pilot, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration
2014-01-01
Virtual worlds (VWs), in which participants navigate as avatars through three-dimensional, computer-generated, realistic-looking environments, are emerging as important new technologies for distance health education. However, there is relatively little documented experience using VWs for international healthcare training. The Geneva Foundation for Medical Education and Research (GFMER) conducted a VW training for healthcare professionals enrolled in a GFMER training course. This paper describes the development, delivery, and results of a pilot project undertaken to explore the potential of VWs as an environment for distance healthcare education for an international audience that has generally limited access to conventionally delivered education. PMID:24555833
Crushing virtual cigarettes reduces tobacco addiction and treatment discontinuation.
Girard, Benoit; Turcotte, Vincent; Bouchard, Stéphane; Girard, Bruno
2009-10-01
Pilot studies revealed promising results regarding crushing virtual cigarettes to reduce tobacco addiction. In this study, 91 regular smokers were randomly assigned to two treatment conditions that differ only by the action performed in the virtual environment: crushing virtual cigarettes or grasping virtual balls. All participants also received minimal psychosocial support from nurses during each of 12 visits to the clinic. An affordable virtual reality system was used (eMagin HMD) with a virtual environment created by modifying a 3D game. Results revealed that crushing virtual cigarettes during 4 weekly sessions led to a statistically significant reduction in nicotine addiction (assessed with the Fagerström test), abstinence rate (confirmed with exhaled carbon monoxide), and drop-out rate from the 12-week psychosocial minimal-support treatment program. Increased retention in the program is discussed as a potential explanation for treatment success, and hypotheses are raised about self-efficacy, motivation, and learning.
Accessing SDO data in a pipeline environment using the VSO WSDL/SOAP interface
NASA Astrophysics Data System (ADS)
Suarez Sola, F. I.; Hourcle, J. A.; Amezcua, A.; Bogart, R.; Davey, A. R.; Gurman, J. B.; Hill, F.; Hughitt, V. K.; Martens, P. C.; Spencer, J.; Vso Team
2010-12-01
As part of the Virtual Solar Observatory (VSO) effort to support the Solar Dynamics Observatory (SDO) data, the VSO has worked on bringing up to date its WSDL document and SOAP interface to make it compatible with most widely used web services core engines. (E.g. axis2, jws, etc.) In this presentation we will explore the possibilities available for searching and/or fetching data within pipeline code. We will explain some of the WSDL/VSO-SDO interface intricacies and show how the vast amount of data that is available via the VSO can be tapped via IDL, Java, Perl or C in an uncomplicated way.
Pietrzak, Eva; Pullman, Stephen; McGuire, Annabel
2014-08-01
This article reviews the available literature about the use of novel methods of rehabilitation using virtual reality interventions for people living with posttraumatic brain injuries. The MEDLINE, EMBASE, SCOPUS, and Cochrane Library databases were searched using the terms "virtual reality" OR "video games" AND "traumatic brain injury." Included studies investigated therapeutic use of virtual reality in adults with a brain trauma resulting from acquired closed head injury, reported outcomes that included measures of motor or cognitive functionality, and were published in a peer-reviewed journal written in English. Eighteen articles fulfilled inclusion criteria. Eight were case studies, five studies had a quasi-experimental design with a pre-post comparison, and five were pilot randomized control trials or comparative studies. The virtual reality systems used were commercial or custom designed for the study and ranged from expensive, fully immersive systems to cheap online games or videogames. In before-after comparisons, improvements in balance were seen in four case studies and two small randomized control trials. Between-group comparisons in these randomized control trials showed no difference between virtual reality and traditional therapy. Post-training improvements were also seen for upper extremity functions (five small studies) and for various cognitive function measures (four case studies and one pilot randomized control trial). Attitudes of participants toward virtual reality interventions was more positive than for traditional therapy (three studies). The evidence that the use of virtual reality in rehabilitation of traumatic brain injury improves motor and cognitive functionality is currently very limited. However, this approach has the potential to provide alternative, possibly more affordable and available rehabilitation therapy for traumatic brain injury in settings where access to therapy is limited by geographical or financial constraints.
Design and Implement of Astronomical Cloud Computing Environment In China-VO
NASA Astrophysics Data System (ADS)
Li, Changhua; Cui, Chenzhou; Mi, Linying; He, Boliang; Fan, Dongwei; Li, Shanshan; Yang, Sisi; Xu, Yunfei; Han, Jun; Chen, Junyi; Zhang, Hailong; Yu, Ce; Xiao, Jian; Wang, Chuanjun; Cao, Zihuang; Fan, Yufeng; Liu, Liang; Chen, Xiao; Song, Wenming; Du, Kangyu
2017-06-01
Astronomy cloud computing environment is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on virtualization technology, astronomy cloud computing environment was designed and implemented by China-VO team. It consists of five distributed nodes across the mainland of China. Astronomer can get compuitng and storage resource in this cloud computing environment. Through this environments, astronomer can easily search and analyze astronomical data collected by different telescopes and data centers , and avoid the large scale dataset transportation.
Showing Complex Astrophysical Settings Through Virtual Reality
NASA Astrophysics Data System (ADS)
Green, Joel; Smith, Denise; Smith, Louis Chad; Lawton, Brandon; Lockwood, Alexandra; Jirdeh, Hussein
2018-01-01
The James Webb Space Telescope (JWST), NASA’s next great observatory launching in spring 2019, will routinely showcase astrophysical concepts that will challenge the public's understanding. Emerging technologies such as virtual reality bring the viewer into the data and the concept in previously unimaginable immersive detail. For example, we imagine a spacefarer inside a protoplanetary disk, seeing the accretion process directly. STScI is pioneering some tools related to JWST for showcasing at AAS, and in local events, which I highlight here. If we develop materials properly tailored to this medium, we can reach more diverse audiences than ever before.
NASA Astrophysics Data System (ADS)
Gutiérrez, R.; Solano, E.
2011-11-01
At present, data management in telescopes ofclass 8-10 meters is very inefficient. The Gran Telescopio Canarias(GTC) scientific archive that is being developed by the Centro deAstrobiología (CAB) in the framework of the Spanish Virtual Observatoryis aimed at avoiding this situation, providing the telescope with anarchive accessible via internet, guaranteeing the accessibility,efficiency, visibility and data security demanded by a telescope of itsentity. The GTC archive will also be adapted to the standards defined bythe International Virtual Observatory, maximizing the visibility of thedata produced by the telescope. The main characteristics of the GTCscientific archive are described in this poster.
VirGO: A Visual Browser for the ESO Science Archive Facility
NASA Astrophysics Data System (ADS)
Chéreau, Fabien
2012-04-01
VirGO is the next generation Visual Browser for the ESO Science Archive Facility developed by the Virtual Observatory (VO) Systems Department. It is a plug-in for the popular open source software Stellarium adding capabilities for browsing professional astronomical data. VirGO gives astronomers the possibility to easily discover and select data from millions of observations in a new visual and intuitive way. Its main feature is to perform real-time access and graphical display of a large number of observations by showing instrumental footprints and image previews, and to allow their selection and filtering for subsequent download from the ESO SAF web interface. It also allows the loading of external FITS files or VOTables, the superimposition of Digitized Sky Survey (DSS) background images, and the visualization of the sky in a `real life' mode as seen from the main ESO sites. All data interfaces are based on Virtual Observatory standards which allow access to images and spectra from external data centers, and interaction with the ESO SAF web interface or any other VO applications supporting the PLASTIC messaging system.
Social Media, Education and Data Sharing
NASA Astrophysics Data System (ADS)
King, T. A.; Walker, R. J.; Masters, A.
2011-12-01
Social media is a blending of technology and social interactions which allows for the creation and exchange of user-generated content. Social media started as conversations between groups of people, now companies are using social media to communicate with customers and politicians use it to communicate with their constituents. Social media is now finding uses in the science communities. This adoption is driven by the expectation of students that technology will be an integral part of their research and that it will match the technology they use in their social lifes. Students are using social media to keep informed and collaborate with others. They have also replaced notepads with smart mobile devices. We have been introducing social media components into Virtual Observatories as a way to quickly access and exchange information with a tap or a click. We discuss the use of Quick Response (QR) codes, Digital Object Identifiers (DOIs), unique identifiers, Twitter, Facebook and tiny URL redirects as ways to enable easier sharing of data and information. We also discuss what services and features are needed in a Virtual Observatory to make data sharing with social media possible.
A Simple and Customizable Web Interface to the Virtual Solar Observatory
NASA Astrophysics Data System (ADS)
Hughitt, V. Keith; Hourcle, J.; Suarez-Sola, I.; Davey, A.
2010-05-01
As the variety and number of solar data sources continue to increase at a rapid rate, the importance of providing methods to search through these sources becomes increasingly important. By taking advantage of the power of modern JavaScript libraries, a new version of the Virtual Solar Observatory's web interface aims to provide a significantly faster and simpler way to explore the multitude of data repositories available. Querying asynchroniously serves not only to eliminates bottlenecks resulting from slow or unresponsive data providers, but also allows for displaying of results as soon as they are returned. Implicit pagination and post-query filtering enables users to work with large result-sets, while a more modular and customizable UI provides a mechanism for customizing both the look-and-feel and behavior of the VSO web interface. Finally, the new web interface features a custom widget system capable of displaying additional tools and information along-side of the standard VSO search form. Interested users can also write their own widgets and submit them for future incorporation into VSO.
VO-KOREL: A Fourier Disentangling Service of the Virtual Observatory
NASA Astrophysics Data System (ADS)
Škoda, Petr; Hadrava, Petr; Fuchs, Jan
2012-04-01
VO-KOREL is a web service exploiting the technology of the Virtual Observatory for providing astronomers with the intuitive graphical front-end and distributed computing back-end running the most recent version of the Fourier disentangling code KOREL. The system integrates the ideas of the e-shop basket, conserving the privacy of every user by transfer encryption and access authentication, with features of laboratory notebook, allowing the easy housekeeping of both input parameters and final results, as well as it explores a newly emerging technology of cloud computing. While the web-based front-end allows the user to submit data and parameter files, edit parameters, manage a job list, resubmit or cancel running jobs and mainly watching the text and graphical results of a disentangling process, the main part of the back-end is a simple job queue submission system executing in parallel multiple instances of the FORTRAN code KOREL. This may be easily extended for GRID-based deployment on massively parallel computing clusters. The short introduction into underlying technologies is given, briefly mentioning advantages as well as bottlenecks of the design used.
Improving Existing EPO Efforts with Data Access through the National Virtual Observatory
NASA Astrophysics Data System (ADS)
Raddick, M. J.; Christian, C. A.; O'Mullane, W. J.
2005-05-01
The National Virtual Observatory (NVO) is developing tools to enable astronomy data to be shared seamlessly across the Internet. The goal of the NVO is to allow anyone on the Internet to access all astronomy data ever measured, with any instrument, in any wavelength. The NVO's research efforts focus on allowing scientists to access existing online data, adding value to each dataset by virtue of its connection to others. Similarly, the NVO's Education and Public Outreach (EPO) efforts focus on connecting existing projects with the our seamless access to real, modern astronomy data from thousands of research projects. We hope that this connection will provide countless opportunities to expand and enhance existing EPO projects. Some of the projects currently working with NVO are the CLEA labs at Gettysburg College, Project LITE at Boston University, and Adler Planetarium. In this poster, I will describe the current EPO efforts that incorporate the NVO's data access tools. I will also provide a tutorial for EPO developers, with practical suggestions on how to incorporate NVO tools into existing projects. I will also give contact information for further help.
Building a VO-compliant Radio Astronomical DAta Model for Single-dish radio telescopes (RADAMS)
NASA Astrophysics Data System (ADS)
Santander-Vela, Juan de Dios; García, Emilio; Leon, Stephane; Espigares, Victor; Ruiz, José Enrique; Verdes-Montenegro, Lourdes; Solano, Enrique
2012-11-01
The Virtual Observatory (VO) is becoming the de-facto standard for astronomical data publication. However, the number of radio astronomical archives is still low in general, and even lower is the number of radio astronomical data available through the VO. In order to facilitate the building of new radio astronomical archives, easing at the same time their interoperability with VO framework, we have developed a VO-compliant data model which provides interoperable data semantics for radio data. That model, which we call the Radio Astronomical DAta Model for Single-dish (RADAMS) has been built using standards of (and recommendations from) the International Virtual Observatory Alliance (IVOA). This article describes the RADAMS and its components, including archived entities and their relationships to VO metadata. We show that by using IVOA principles and concepts, the effort needed for both the development of the archives and their VO compatibility has been lowered, and the joint development of two radio astronomical archives have been possible. We plan to adapt RADAMS to be able to deal with interferometry data in the future.
A Solar Data Model for Use in Virtual Observatories
NASA Astrophysics Data System (ADS)
Reardon, K. P.; Bentley, R. D.; Messerotti, M.; Giordano, S.
2004-05-01
The creation of a virtual solar observatories relies heavily on the merging of the metadata describing different datasets into a common form so that it can be handled in a standard way for all associated resources. In order to bring together the varied data descriptions that already exist, it is necessary to have a common framework on which all the different datasets can be represented. The definition of this framework is done through a data model which attempts to provide a simplified but realistic description of the various entities that make up a data set or solar resource. We present the solar data model which has been developed as part of the European Grid of Solar Observations (EGSO) project. This model attempts to include many of the different elements in the field of solar physics, including data producers, data sets, event lists, and data providers. This global picture can then be used to focus on the particular elements required for a specific implementation. We present the different aspects of the model and describe some systems in which portions of this model have been implemented.
Virtual Reality Exposure and Imaginal Exposure in the Treatment of Fear of Flying: A Pilot Study
ERIC Educational Resources Information Center
Rus-Calafell, Mar; Gutierrez-Maldonado, Jose; Botella, Cristina; Banos, Rosa M.
2013-01-01
Fear of flying (FF) is an impairing psychological disorder that is extremely common in developed countries. The most effective treatment for this particular type of phobia is exposure therapy. However, there are few studies comparing imaginal exposure (IE) and virtual reality (VR) exposure for the treatment of FF. The present study compared the…
ERIC Educational Resources Information Center
Williams, M. Scott
2008-01-01
Virtual reality (VR) has been demonstrated to offer learning benefits over traditional instructional methods in many technical and occupational areas. However, in the framework of Rogers' innovation diffusion theory, adoption of VR in Career and Technical Education and occupational programs appears to be lagging. This study used experimental…
STS-105 Crew Training in VR Lab
2001-03-15
JSC2001-00758 (15 March 2001) --- Astronaut Frederick W. Sturckow, STS-105 pilot, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with International Space Station (ISS) elements.
2005-06-07
JSC2005-E-21192 (7 June 2005) --- Astronauts Christopher J. Ferguson (left), STS-115 pilot, and Daniel C. Burbank, mission specialist, use the virtual reality lab at the Johnson Space Center to train for their duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
CyberDeutsch: Language Production and User Preferences in a Moodle Virtual Learning Environment
ERIC Educational Resources Information Center
Stickler, Ursula; Hampel, Regine
2010-01-01
This case study focuses on two learners who took part in an intensive online German course offered to intermediate level students in the Department of Languages of the Open University. The course piloted the use of a Moodle-based virtual learning environment and a range of new online tools which lend themselves to different types of language…
English as a Second Language on a Virtual Platform--Tradition and Innovation in a New Medium
ERIC Educational Resources Information Center
Hansson, Thomas
2005-01-01
A pilot study at a local school explores a virtual world during English lessons. The objective of applying a Vygotskian experimental design to the study is to investigate the potential of software, interaction and integration related to problem-solving defined as text composition in a foreign language. Focus of research and practices is on the…
NASA Astrophysics Data System (ADS)
Schaefer, R. K.; Morrison, D.; Potter, M.; Barnes, R. J.; Nylund, S. R.; Patrone, D.; Aiello, J.; Talaat, E. R.; Sarris, T.
2015-12-01
The great promise of Virtual Observatories is the ability to perform complex search operations across the metadata of a large variety of different data sets. This allows the researcher to isolate and select the relevant measurements for their topic of study. The Virtual ITM Observatory (VITMO) has many diverse geophysical datasets that cover a large temporal and spatial range that present a unique search problem. VITMO provides many methods by which the user can search for and select data of interest including restricting selections based on geophysical conditions (solar wind speed, Kp, etc) as well as finding those datasets that overlap in time. One of the key challenges in improving discoverability is the ability to identify portions of datasets that overlap in time and in location. The difficulty is that location data is not contained in the metadata for datasets produced by satellites and would be extremely large in volume if it were available, making searching for overlapping data very time consuming. To solve this problem we have developed a series of light-weight web services that can provide a new data search capability for VITMO and others. The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements to the equatorial plane in magnetic coordinates for a number of field models and geophysical conditions. These services run in real-time when the user queries for data. These services will allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists, making it easier for future students who come into the field.
The Research Tools of the Virtual Astronomical Observatory
NASA Astrophysics Data System (ADS)
Hanisch, Robert J.; Berriman, G. B.; Lazio, T. J.; Project, VAO
2013-01-01
Astronomy is being transformed by the vast quantities of data, models, and simulations that are becoming available to astronomers at an ever-accelerating rate. The U.S. Virtual Astronomical Observatory (VAO) has been funded to provide an operational facility that is intended to be a resource for discovery and access of data, and to provide science services that use these data. Over the course of the past year, the VAO has been developing and releasing for community use five science tools: 1) "Iris", for dynamically building and analyzing spectral energy distributions, 2) a web-based data discovery tool that allows astronomers to identify and retrieve catalog, image, and spectral data on sources of interest, 3) a scalable cross-comparison service that allows astronomers to conduct pair-wise positional matches between very large catalogs stored remotely as well as between remote and local catalogs, 4) time series tools that allow astronomers to compute periodograms of the public data held at the NASA Star and Exoplanet Database (NStED) and the Harvard Time Series Center, and 5) A VO-aware release of the Image Reduction and Analysis Facility (IRAF) that provides transparent access to VO-available data collections and is SAMP-enabled, so that IRAF users can easily use tools such as Aladin and Topcat in conjuction with IRAF tasks. Additional VAO services will be built to make it easy for researchers to provide access to their data in VO-compliant ways, to build VO-enabled custom applications in Python, and to respond generally to the growing size and complexity of astronomy data. Acknowledgements: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.
NASA Technical Reports Server (NTRS)
Wheeler, Kevin; Jorgensen, Charles
2000-01-01
This paper presents recent results in neuroelectric pattern recognition of electromyographic (EMG) signals used to control virtual computer input devices. The devices are designed to substitute for the functions of both a traditional joystick and keyboard entry method. We demonstrate recognition accuracy through neuroelectric control of a 757 class simulation aircraft landing at San Francisco International Airport using a virtual joystick as shown. This is accomplished by a pilot closing his fist in empty air and performing control movements that are captured by a dry electrode array on the arm which are then analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. We then demonstrate finer grain motor pattern recognition through a virtual keyboard by having a typist tap his traders on a typical desk in a touch typist position. The EMG signals are then translated to keyboard presses and displayed. The paper describes the bioelectric pattern recognition methodology common to both examples. Figure 2 depicts raw EMG data from typing, the numeral '8' and the numeral '9'. These two gestures are very close in appearance and statistical properties yet are distinguishable by our hidden Kharkov model algorithms. Extensions of this work to NASA emissions and robotic control are considered.
NASA Astrophysics Data System (ADS)
Hill, C. N.; Schools, H.; Research Team Members
2012-12-01
This presentation will report on a classroom pilot study in which we teamed with school teachers in four middle school classes to develop and deploy course modules that connect the real-world to virtual forms of laboratory experiments.The broad goal is to help students realize that seemingly complex Earth system processes can be connected to basic properties of the planet and that this can be illustrated through idealized experiment. Specifically the presentation will describe virtual modules based on on-demand cloud computing technologies that allow students to test the notion that pole equator gradients in radiative forcing together with rotation can explain characteristic patterns of flow in the atmosphere. The module developed aligns with new Massachusetts science standard requirements regarding understanding of weather and climate processes. These new standards emphasize an appreciation of differential solar heating and a qualitative understanding of the significance of rotation. In our preliminary classroom pilot studies we employed pre and post evaluation tests to establish that the modules had increased student knowledge of phenomenology and terms. We will describe the results of these tests as well as results from anecdotal measures of student response. This pilot study suggests that one way to help make Earth science concepts more tractable to a wider audience is through virtual experiments that distill phenomena down, but still retain enough detail that students can see the connection to the real world. Modern computer technology and developments in research models appear to provide an opportunity for more work in this area. We will describe some follow-up possibilities that we envisage.
Bell, Brooke M; Martinez, Lauren; Gotsis, Marientina; Lane, H Chad; Davis, Jaimie N; Antunez-Castillo, Luz; Ragusa, Gisele; Spruijt-Metz, Donna
2018-04-01
To examine the effect of the Virtual Sprouts intervention, an interactive multiplatform mobile gardening game, on dietary intake and psychosocial determinants of dietary behavior in minority youth. In this quasi-experimental pilot intervention, 180 third-, fourth-, and fifth-grade students in Los Angeles Unified School District participated in a 3-week program that included three Virtual Sprouts gaming sessions, three in-school lessons, and three in-home activities, using a nutrition- and gardening-focused curriculum. Pre- and postintervention questionnaires were used to assess psychosocial determinants of dietary behavior, including knowledge about and self-efficacy to eat fruits and vegetables (FV). Data were collected on FV, whole grains, fiber, total sugar, added sugar, and energy from sugary beverages through the Block Kids Food Screener ("last week" version) for Ages 2-17. Repeated measures analysis of covariance models was used for continuous outcomes, controlling for age, sex, ethnicity, school, and free school lunch. After the intervention, the intervention group (n = 116) compared with the control group (n = 64) had a significantly improved self-efficacy to eat FV score (+1.6% vs. -10.3%, P = 0.01), and an improved self-efficacy to cook FV score (+2.9% vs. -5.0%, P = 0.05). There were no significant differences in dietary intake or self-efficacy to garden scores between intervention and control groups. The results from this 3-week pilot study suggest that an interactive mobile game with a nutrition- and gardening-focused curriculum can improve psychosocial determinants of dietary behavior in minority youth.
The Human Dimension of Closing the Training Gap for Fifth-Generation Fighters
NASA Technical Reports Server (NTRS)
Hoke, Jaclyn; Postnikov, Alex; Schnell, Thomas
2012-01-01
Based on a review of the recent technical literature there is little question that a serious training gap exists for fifth-generation fighters, primarily arising from the need to provide their own red-air. There are several methods for reducing this gap, including injecting virtual and constructive threats into the live cockpit. This live-virtual-constructive (LVC) training approach provides a cost effective means for addressing training needs but faces several challenges. Technical challenges include data links and information assurance. A more serious challenge may be the human factors dimension of representing virtual and constructive entities in the cockpit while ensuring safety-of-flight. This also needs to happen without increasing pilot workload. This paper discusses the methods Rockwell Collins and the University of Iowa's Operator Performance Lab use to assess pilot workload and training fidelity measures in an LVC training environment and the research we are conducting in safety-of-flight requirements of integrated LVC symbology.
The National Astronomical Observatory of Japan and Post-war Japanese Optical Astronomy
NASA Astrophysics Data System (ADS)
Tajima, Toshiyuki
This paper depicts some aspects of the formative process of the Japanese optical and infrared astronomical community in the post-war period, featuring the transition of the National Astronomical Observatory of Japan(NAOJ). We take up three cases of telescope construction, examining their background and their contribution to the Japanese astronomical community. Through these cases, the characteristics of traditions and cultures of optical and infrared astronomy in Japan are considered. Although the Tokyo Astronomical Observatory (TAO) of the University of Tokyo, the predecessor of NAOJ, was originally founded as an agency for practical astronomical observation such as time and almanac service, it has become an international centre for all types of astrophysical research. Research and development of telescopes and observational instruments have become an important part of the astronomers' practice. Now, however, a number of Japanese universities are planning to have their own large to middle-sized telescopes, and a new style of astronomical research is emerging involving astrophysical studies utilising data acquired from the Virtual Observatory, so there is a distinct possibility that the status of the NAOJ will change even further in the future.
A Proposed Framework for Collaborative Design in a Virtual Environment
NASA Astrophysics Data System (ADS)
Breland, Jason S.; Shiratuddin, Mohd Fairuz
This paper describes a proposed framework for a collaborative design in a virtual environment. The framework consists of components that support a true collaborative design in a real-time 3D virtual environment. In support of the proposed framework, a prototype application is being developed. The authors envision the framework will have, but not limited to the following features: (1) real-time manipulation of 3D objects across the network, (2) support for multi-designer activities and information access, (3) co-existence within same virtual space, etc. This paper also discusses a proposed testing to determine the possible benefits of a collaborative design in a virtual environment over other forms of collaboration, and results from a pilot test.
NASA Astrophysics Data System (ADS)
Craig, N.; Mendez, B. J.; Hanisch, R. J.; Christian, C. A.; Summers, F.; Haisch, B.; Lindblom, J.
2005-05-01
We will describe the development of protocols to make Astronomy press-release quality images from HST and other sources publicly available through compatibility with the National Virtual Observatory (NVO). We will present the designs for a public portal to these resources, based on a robust evaluation of our intended audience. The availability of press-release quality materials via the NVO through a simplified interface will greatly enhance the utility of these materials for the public. Behind any portal to NVO data there is a standard registry and data structures that allow collections of data (such as the press release images) to be located and acquired. We will describe our design of the necessary protocols and metadata being used within the NVO framework for this project. We base our meta-tags on the considerable existing work done in the science community as well as the NASA education community. These refined metadata are applied to new HST press-release images as they are produced and registered with the NVO. We will describe methods for retrofitting pre-existing imagery with the metadata standards. The rich media, 3D navigation and visualization capabilities of the browser created by ManyOne Network Inc. are particularly well suited to the presentation of astronomical information and ever more detailed models of the local neighborhood, the Milky Way, etc. We will discuss the 3D navigation and visualization capabilities of the browser with particular focus on the Milky Way Galaxy. Development of an online encyclopedia to accompany the ManyOne portals as part of the Virtual Cosmos will also be described. Support from NASA's AISR Program is gratefully acknowledged.
Report on the ''ESO Python Boot Camp — Pilot Version''
NASA Astrophysics Data System (ADS)
Dias, B.; Milli, J.
2017-03-01
The Python programming language is becoming very popular within the astronomical community. Python is a high-level language with multiple applications including database management, handling FITS images and tables, statistical analysis, and more advanced topics. Python is a very powerful tool both for astronomical publications and for observatory operations. Since the best way to learn a new programming language is through practice, we therefore organised a two-day hands-on workshop to share expertise among ESO colleagues. We report here the outcome and feedback from this pilot event.
Notice and Credits Page - NOAA's National Weather Service
- Visolve is a software application (free for personal use) that transforms colors of the computer display Mac OS X 10.2 or later. (Purchase) - A 30-day free trial of eyePilot is available from eyePilot web site - http://www.colorhelper.com/ Java Java Virtual Machine - free download from java.com Adobe Reader
Photometric Monitoring of Triton at Sommers-Bausch Observatory in 2000
NASA Technical Reports Server (NTRS)
Young, L. A.; Bullock, M. A.; Colwell, W. B.; Durda, D. D.; Gleason, K.; Parker, J. W.; Stern, S. A.; Terrell, D.; Young, E. F.
2001-01-01
We undertook pilot program to develop an observing and analysis strategy that can be used to measure Triton's B and V albedos with 0.05 magnitude accuracy at moderate-to-small telescopes, under moderate-to-poor seeing conditions. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Saturnino, Diana; Langlais, Benoit; Amit, Hagay; Civet, François; Mandea, Mioara; Beucler, Éric
2018-03-01
A detailed description of the main geomagnetic field and of its temporal variations (i.e., the secular variation or SV) is crucial to understanding the geodynamo. Although the SV is known with high accuracy at ground magnetic observatory locations, the globally uneven distribution of the observatories hampers the determination of a detailed global pattern of the SV. Over the past two decades, satellites have provided global surveys of the geomagnetic field which have been used to derive global spherical harmonic (SH) models through some strict data selection schemes to minimise external field contributions. However, discrepancies remain between ground measurements and field predictions by these models; indeed the global models do not reproduce small spatial scales of the field temporal variations. To overcome this problem we propose to directly extract time series of the field and its temporal variation from satellite measurements as it is done at observatory locations. We follow a Virtual Observatory (VO) approach and define a global mesh of VOs at satellite altitude. For each VO and each given time interval we apply an Equivalent Source Dipole (ESD) technique to reduce all measurements to a unique location. Synthetic data are first used to validate the new VO-ESD approach. Then, we apply our scheme to data from the first two years of the Swarm mission. For the first time, a 2.5° resolution global mesh of VO time series is built. The VO-ESD derived time series are locally compared to ground observations as well as to satellite-based model predictions. Our approach is able to describe detailed temporal variations of the field at local scales. The VO-ESD time series are then used to derive global spherical harmonic models. For a simple SH parametrization the model describes well the secular trend of the magnetic field both at satellite altitude and at the surface. As more data will be made available, longer VO-ESD time series can be derived and consequently used to study sharp temporal variation features, such as geomagnetic jerks.
ERIC Educational Resources Information Center
Hautala, Jarkko; Baker, Doris Luft; Keurulainen, Aleksi; Ronimus, Miia; Richardson, Ulla; Cole, Ronald
2018-01-01
The purpose of this pilot study with a within-subject design was to gain a deeper understanding about the promise and restrictions of a virtual tutoring system designed to teach science to first grade students in Finland. Participants were 61 students who received six tutoring science sessions of approximately 20 min each. Sessions consisted of a…
ERIC Educational Resources Information Center
Cheng, Yufang; Ye, Jun
2010-01-01
Social reciprocity deficits are a core feature of the autism spectrum conditions (ASCs). Many individual with ASCs have difficulty with social interaction due to a frequent lack of social competence. This study focuses on using a virtual learning environment to help the deficiencies of social competence for people with ASCs, and to increase their…
Space-weather assets developed by the French space-physics community
NASA Astrophysics Data System (ADS)
Rouillard, A. P.; Pinto, R. F.; Brun, A. S.; Briand, C.; Bourdarie, S.; Dudok De Wit, T.; Amari, T.; Blelly, P.-L.; Buchlin, E.; Chambodut, A.; Claret, A.; Corbard, T.; Génot, V.; Guennou, C.; Klein, K. L.; Koechlin, L.; Lavarra, M.; Lavraud, B.; Leblanc, F.; Lemorton, J.; Lilensten, J.; Lopez-Ariste, A.; Marchaudon, A.; Masson, S.; Pariat, E.; Reville, V.; Turc, L.; Vilmer, N.; Zucarello, F. P.
2016-12-01
We present a short review of space-weather tools and services developed and maintained by the French space-physics community. They include unique data from ground-based observatories, advanced numerical models, automated identification and tracking tools, a range of space instrumentation and interconnected virtual observatories. The aim of the article is to highlight some advances achieved in this field of research at the national level over the last decade and how certain assets could be combined to produce better space-weather tools exploitable by space-weather centres and customers worldwide. This review illustrates the wide range of expertise developed nationally but is not a systematic review of all assets developed in France.
Woodham, Luke A; Ellaway, Rachel H; Round, Jonathan; Vaughan, Sophie; Poulton, Terry; Zary, Nabil
2015-06-18
The impact of the use of video resources in primarily paper-based problem-based learning (PBL) settings has been widely explored. Although it can provide many benefits, the use of video can also hamper the critical thinking of learners in contexts where learners are developing clinical reasoning. However, the use of video has not been explored in the context of interactive virtual patients for PBL. A pilot study was conducted to explore how undergraduate medical students interpreted and evaluated information from video- and text-based materials presented in the context of a branched interactive online virtual patient designed for PBL. The goal was to inform the development and use of virtual patients for PBL and to inform future research in this area. An existing virtual patient for PBL was adapted for use in video and provided as an intervention to students in the transition year of the undergraduate medicine course at St George's, University of London. Survey instruments were used to capture student and PBL tutor experiences and perceptions of the intervention, and a formative review meeting was run with PBL tutors. Descriptive statistics were generated for the structured responses and a thematic analysis was used to identify emergent themes in the unstructured responses. Analysis of student responses (n=119) and tutor comments (n=18) yielded 8 distinct themes relating to the perceived educational efficacy of information presented in video and text formats in a PBL context. Although some students found some characteristics of the videos beneficial, when asked to express a preference for video or text the majority of those that responded to the question (65%, 65/100) expressed a preference for text. Student responses indicated that the use of video slowed the pace of PBL and impeded students' ability to review and critically appraise the presented information. Our findings suggest that text was perceived to be a better source of information than video in virtual patients for PBL. More specifically, the use of video was perceived as beneficial for providing details, visual information, and context where text was unable to do so. However, learner acceptance of text was higher in the context of PBL, particularly when targeting clinical reasoning skills. This pilot study has provided the foundation for further research into the effectiveness of different virtual patient designs for PBL.
AstroCloud, a Cyber-Infrastructure for Astronomy Research: Data Access and Interoperability
NASA Astrophysics Data System (ADS)
Fan, D.; He, B.; Xiao, J.; Li, S.; Li, C.; Cui, C.; Yu, C.; Hong, Z.; Yin, S.; Wang, C.; Cao, Z.; Fan, Y.; Mi, L.; Wan, W.; Wang, J.
2015-09-01
Data access and interoperability module connects the observation proposals, data, virtual machines and software. According to the unique identifier of PI (principal investigator), an email address or an internal ID, data can be collected by PI's proposals, or by the search interfaces, e.g. conesearch. Files associated with the searched results could be easily transported to cloud storages, including the storage with virtual machines, or several commercial platforms like Dropbox. Benefitted from the standards of IVOA (International Observatories Alliance), VOTable formatted searching result could be sent to kinds of VO software. Latter endeavor will try to integrate more data and connect archives and some other astronomical resources.
Yasuda, Kazuhiro; Muroi, Daisuke; Ohira, Masahiro; Iwata, Hiroyasu
2017-10-01
Unilateral spatial neglect (USN) is defined as impaired ability to attend and see on one side, and when present, it interferes seriously with daily life. These symptoms can exist for near and far spaces combined or independently, and it is important to provide effective intervention for near and far space neglect. The purpose of this pilot study was to propose an immersive virtual reality (VR) rehabilitation program using a head-mounted display that is able to train both near and far space neglect, and to validate the immediate effect of the VR program in both near and far space neglect. Ten USN patients underwent the VR program with a pre-post design and no control. In the virtual environment, we developed visual searching and reaching tasks using an immersive VR system. Behavioral inattention test (BIT) scores obtained pre- and immediate post-VR program were compared. BIT scores obtained pre- and post-VR program revealed that far space neglect but not near space neglect improved promptly after the VR program. This effect for far space neglect was observed in the cancelation task, but not in the line bisection task. Positive effects of the immersive VR program for far space neglect are suggested by the results of the present pilot study. However, further studies with rigorous designs are needed to validate its clinical effectiveness.
A Theoretical Framework for a Virtual Diabetes Self-Management Community Intervention
Vorderstrasse, Allison; Shaw, Ryan J.; Blascovich, Jim; Johnson, Constance M.
2015-01-01
Due to its high prevalence, chronic nature, potential complications, and self-management challenges for patients, diabetes presents significant health education and support issues. We developed and pilot-tested a virtual community for adults with type 2 diabetes to promote self-management education and provide social support. Although digital-based programs such as virtual environments can address significant barriers to reaching patients (i.e., child care, transportation, location), they must be strongly grounded in a theoretical basis to be well-developed and effective. In this article, we discuss how we synthesized behavioral and virtual environment theoretical frameworks to guide the development of SLIDES (Second Life Impacts Diabetes Education and Support). PMID:24451083
A collaborative molecular modeling environment using a virtual tunneling service.
Lee, Jun; Kim, Jee-In; Kang, Lin-Woo
2012-01-01
Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments.
NASA Team Collaboration Pilot: Enabling NASA's Virtual Teams
NASA Technical Reports Server (NTRS)
Prahst, Steve
2003-01-01
Most NASA projects and work activities are accomplished by teams of people. These teams are often geographically distributed - across NASA centers and NASA external partners, both domestic and international. NASA "virtual" teams are stressed by the challenge of getting team work done - across geographic boundaries and time zones. To get distributed work done, teams rely on established methods - travel, telephones, Video Teleconferencing (NASA VITS), and email. Time is our most critical resource - and team members are hindered by the overhead of travel and the difficulties of coordinating work across their virtual teams. Modern, Internet based team collaboration tools offer the potential to dramatically improve the ability of virtual teams to get distributed work done.
A theoretical framework for a virtual diabetes self-management community intervention.
Vorderstrasse, Allison; Shaw, Ryan J; Blascovich, Jim; Johnson, Constance M
2014-10-01
Due to its high prevalence, chronic nature, potential complications, and self-management challenges for patients, diabetes presents significant health education and support issues. We developed and pilot-tested a virtual community for adults with type 2 diabetes to promote self-management education and provide social support. Although digital-based programs such as virtual environments can address significant barriers to reaching patients (i.e., child care, transportation, location), they must be strongly grounded in a theoretical basis to be well-developed and effective. In this article, we discuss how we synthesized behavioral and virtual environment theoretical frameworks to guide the development of SLIDES (Second Life Impacts Diabetes Education and Support). © The Author(s) 2014.
Integrated disease management pilot for diabetes.
Clarke, David; Rowe, Ian; Gribben, Barry; Brimacombe, Phil; Engel, Thorsten
2002-01-01
A New Zealand diabetes program integrates management systems for hospitals and physician practices through a shared integrated care server (ICS), which supports collaborative patient management, virtual consults, and clinical feedback.
Virtual reality for dermatologic surgery: virtually a reality in the 21st century.
Gladstone, H B; Raugi, G J; Berg, D; Berkley, J; Weghorst, S; Ganter, M
2000-01-01
In the 20th century, virtual reality has predominantly played a role in training pilots and in the entertainment industry. Despite much publicity, virtual reality did not live up to its perceived potential. During the past decade, it has also been applied for medical uses, particularly as training simulators, for minimally invasive surgery. Because of advances in computer technology, virtual reality is on the cusp of becoming an effective medical educational tool. At the University of Washington, we are developing a virtual reality soft tissue surgery simulator. Based on fast finite element modeling and using a personal computer, this device can simulate three-dimensional human skin deformations with real-time tactile feedback. Although there are many cutaneous biomechanical challenges to solve, it will eventually provide more realistic dermatologic surgery training for medical students and residents than the currently used models.
Annerstedt, Matilda; Jönsson, Peter; Wallergård, Mattias; Johansson, Gerd; Karlson, Björn; Grahn, Patrik; Hansen, Ase Marie; Währborg, Peter
2013-06-13
Experimental research on stress recovery in natural environments is limited, as is study of the effect of sounds of nature. After inducing stress by means of a virtual stress test, we explored physiological recovery in two different virtual natural environments (with and without exposure to sounds of nature) and in one control condition. Cardiovascular data and saliva cortisol were collected. Repeated ANOVA measurements indicated parasympathetic activation in the group subjected to sounds of nature in a virtual natural environment, suggesting enhanced stress recovery may occur in such surroundings. The group that recovered in virtual nature without sound and the control group displayed no particular autonomic activation or deactivation. The results demonstrate a potential mechanistic link between nature, the sounds of nature, and stress recovery, and suggest the potential importance of virtual reality as a tool in this research field. Copyright © 2013 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Fluke, Christopher J.
2009-01-01
I report on a pilot study on the use of Google Maps to provide virtual field trips as a component of a wholly online graduate course on the history of astronomy. The Astronomical Tourist Web site (http://astronomy.swin.edu.au/sao/tourist), themed around the role that specific locations on Earth have contributed to the development of astronomical…
ERIC Educational Resources Information Center
Luealamai, Sutha; Panijpan, Bhinyo
2012-01-01
The authors have developed a computer-based learning module on the unit cell of various types of crystal. The module has two components: the virtual unit cell (VUC) part and the subsequent unit cell hunter part. The VUC is a virtual reality simulation for students to actively arrive at the unit cell from exploring, from a broad view, the crystal…
NASA Astrophysics Data System (ADS)
Velasco, Almudena; Gutiérrez, Raúl; Solano, Enrique; García-Torres, Miguel; López, Mauro; Sarro, Luis Manuel
We describe here the main capabilities of the COROT archive. The archive (http://sdc.laeff.inta.es/corotfa/jsp/searchform.jsp), managed at LAEFF in the framework of the Spanish Virtual Observatory (http://svo.laeff.inta.es), has been developed following the standards and requirements defined by IVOA (http://www.ivoa.net). The COROT archive at LAEFF will be publicly available by the end of 2008.
Nebula observations. Catalogues and archive of photoplates
NASA Astrophysics Data System (ADS)
Shlyapnikov, A. A.; Smirnova, M. A.; Elizarova, N. V.
2017-12-01
A process of data systematization based on "Academician G.A. Shajn's Plan" for studying the Galaxy structure related to nebula observations is considered. The creation of digital versions of catalogues of observations and publications is described, as well as their presentation in HTML, VOTable and AJS formats and basic principles of work in the interactive application of International Virtual Observatory the Aladin Sky Atlas.
A Virtual Tour of the Radio Astronomy Process
NASA Astrophysics Data System (ADS)
Conrad, S. B.; Finley, D. G.; Claussen, M. J.; Ulvestad, J. S.
2000-12-01
In the summer of 2000, two teachers working on a Masters of Science Teaching Degree at New Mexico Tech and participating in the Research Experience for Teachers (RET) program sponsored by the National Science Foundation, spent eight weeks as interns researching and working on projects at the National Radio Astronomy Observatory (NRAO) which will directly benefit students in their classrooms and also impact other science educators. One of the products of the interships is a set of web pages for NRAO's web page educational section. The purpose of these web pages is to familiarize students, teachers, and other people with the process that a radio astronomer goes through to do radio astronomy science. A virtual web tour was created of this process. This required interviewing radio astronomers and other professionals involved with this process at the NRAO (e.g. engineers, data analysts, and operations people), and synthesizing the interviews into a descriptive, visual-based set of web pages. These pages do meet the National as well as New Mexico Standards and Benchmarks for Science Education. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The NSF's RET program is gratefully acknowledged.
Tagliaferri, Roberto; Longo, Giuseppe; Milano, Leopoldo; Acernese, Fausto; Barone, Fabrizio; Ciaramella, Angelo; De Rosa, Rosario; Donalek, Ciro; Eleuteri, Antonio; Raiconi, Giancarlo; Sessa, Salvatore; Staiano, Antonino; Volpicelli, Alfredo
2003-01-01
In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).
VirGO: A Visual Browser for the ESO Science Archive Facility
NASA Astrophysics Data System (ADS)
Chéreau, F.
2008-08-01
VirGO is the next generation Visual Browser for the ESO Science Archive Facility developed by the Virtual Observatory (VO) Systems Department. It is a plug-in for the popular open source software Stellarium adding capabilities for browsing professional astronomical data. VirGO gives astronomers the possibility to easily discover and select data from millions of observations in a new visual and intuitive way. Its main feature is to perform real-time access and graphical display of a large number of observations by showing instrumental footprints and image previews, and to allow their selection and filtering for subsequent download from the ESO SAF web interface. It also allows the loading of external FITS files or VOTables, the superimposition of Digitized Sky Survey (DSS) background images, and the visualization of the sky in a `real life' mode as seen from the main ESO sites. All data interfaces are based on Virtual Observatory standards which allow access to images and spectra from external data centers, and interaction with the ESO SAF web interface or any other VO applications supporting the PLASTIC messaging system. The main website for VirGO is at http://archive.eso.org/cms/virgo.
Multiband Study of Radio Sources of the Rcr Catalogue with Virtual Observatory Tools
NASA Astrophysics Data System (ADS)
Zhelenkova, O. P.; Soboleva, N. S.; Majorova, E. K.; Temirova, A. V.
We present early results of our multiband study of the RATAN Cold Revised (RCR) catalogue obtained from seven cycles of the ``Cold'' survey carried with the RATAN-600 radio telescope at 7.6 cm in 1980--1999, at the declination of the SS 433 source. We used the 2MASS and LAS UKIDSS infrared surveys, the DSS-II and SDSS DR7 optical surveys, as well as the USNO-B1 and GSC-II catalogues, the VLSS, TXS, NVSS, FIRST and GB6 radio surveys to accumulate information about the sources. For radio sources that have no detectable optical candidate in optical or infrared catalogues, we additionally looked through images in several bands from the SDSS, LAS UKIDSS, DPOSS, 2MASS surveys and also used co-added frames in different bands. We reliably identified 76% of radio sources of the RCR catalogue. We used the ALADIN and SAOImage DS9 scripting capabilities, interoperability services of ALADIN and TOPCAT, and also other Virtual Observatory (VO) tools and resources, such as CASJobs, NED, Vizier, and WSA, for effective data access, visualization and analysis. Without VO tools it would have been problematic to perform our study.
Things That Work: Roles and Services of SPDF
NASA Technical Reports Server (NTRS)
McGuire, R. E.; Bilitza, D.; Candey, R. M.; Chimiak, R. A.; Cooper, J. F.; Garcia, L. N.; Han, D. B.; Harris, B. T.; Johnson, R. C.; King, J. H.;
2010-01-01
The current Heliophysics Science Data Management Policy (HpSDMP) defines the roles of the Space Physics Data Facility (SPDF) project as a heliophysics active Final Archive (aFA), a focus for critical data infrastructure services and a center of excellence for data and ancillary information services. This presentation will highlight (1) select current SPDF activities, (2) the lessons we are continuing to learn in how to usefully serve the the heliophysics science community and (3)SPDF's programmatic emphasis in the coming year. In cooperation with the Heliophysics Virtual discipline Observatories (VxOs), we are working closely with current, and with upcoming missions such as RBSP and MMS, to define effective approaches to ensure the long-term availability and archiving of mission data, as well as how SPDF services can complement active mission capabilities. We are working to make the Virtual Space Physics Observatory (VSPO) service comprehensive in all significant and NASA relevant heliophysics data. We will highlight a new CDAWeb interface, a faster SSCWeb, availability of our data through VxO services such as Autoplot, a new capability to easily access our data from within IDL and continuing improvements to CDF including better handling of leap seconds.
NASA Astrophysics Data System (ADS)
Morgado, A.; Sánchez-Lavega, A.; Rojas, J. F.; Hueso, R.
2005-08-01
The collaboration between amateurs astronomers and the professional community has been fruitful on many areas of astronomy. The development of the Internet has allowed a better than ever capability of sharing information worldwide and access to other observers data. For many years now the International Jupiter Watch (IJW) Atmospheric discipline has coordinated observational efforts for long-term studies of the atmosphere of Jupiter. The International Outer Planets Watch (IOPW) has extended its labours to the four Outer Planets. Here we present the Planetary Virtual Observatory & Laboratory (PVOL), a website database where we integer IJW and IOPW images. At PVOL observers can submit their data and professionals can search for images under a wide variety of useful criteria such as date and time, filters used, observer, or central meridian longitude. PVOL is aimed to grow as an organized easy to use database of amateur images of the Outer Planets. The PVOL web address is located at http://www.pvol.ehu.es/ and coexists with the traditional IOPW site: http://www.ehu.es/iopw/ Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.
1972-04-16
The sixth marned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 continued the broad-scale geological, geochemical, and geophysical mapping of the Moon's crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph. It photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle was also used. The mission ended on April 27, 1972.
Services, Perspective and Directions of the Space Physics Data Facility
NASA Technical Reports Server (NTRS)
McGuire, Robert E.; Bilitza, Dieter; Candey, Reine A.; Chimiak, Reine A.; Cooper, John F.; Fung, Shing F.; Harris, Bernard T.; Johnson, Rita C.; King, Joseph H.; Kovalick, Tamara;
2008-01-01
The multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer unique capabilities supporting science of the Heliophysics Great Observatory and that are highly complementary to other services now evolving in the international heliophysics data environment. The VSPO (Virtual Space Physics Observatory) service is an active portal to a wide rage of distributed data sources. CDAWeb (Coordinated Data Analysis Web) offers plots, listings and file downloads for current data from many missions across the boundaries of missions and instrument types. CDAWeb now includes extensive new data from STEREO and THEMIS, plus new ROCSAT IPEI data, the latest data from all four TIMED instruments and high-resolution data from all DE-2 experiments. SSCWeb, Helioweb and out 3D Animated Orbit Viewer (TIPSOD) provide position data and identification of spacecraft and ground conjunctions. OMNI Web, with its new extension to 1- and 5-minute resolution, provides interplanetary parameters at the Earth's bow shock. SPDF maintains NASA's CDF (Common Data Format) standard and a range of associated tools including format translation services. These capabilities are all now available through web services based APIs, one element in SPDF's ongoing work to enable heliophysics community development of Virtual discipline Observatories (e.g. VITMO). We will demonstrate out latest data and capabilities, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.
Fusion interfaces for tactical environments: An application of virtual reality technology
NASA Technical Reports Server (NTRS)
Haas, Michael W.
1994-01-01
The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and nonvirtual concepts and devices across the visual, auditory, and haptic sensory modalities. A fusion interface is a multisensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion interface concepts. This new facility, the Fusion Interfaces for Tactical Environments (FITE) Facility is a specialized flight simulator enabling efficient concept development through rapid prototyping and direct experience of new fusion concepts. The FITE Facility also supports evaluation of fusion concepts by operation fighter pilots in an air combat environment. The facility is utilized by a multidisciplinary design team composed of human factors engineers, electronics engineers, computer scientists, experimental psychologists, and oeprational pilots. The FITE computational architecture is composed of twenty-five 80486-based microcomputers operating in real-time. The microcomputers generate out-the-window visuals, in-cockpit and head-mounted visuals, localized auditory presentations, haptic displays on the stick and rudder pedals, as well as executing weapons models, aerodynamic models, and threat models.
Exploring remote operation for ALMA Observatory
NASA Astrophysics Data System (ADS)
Shen, Tzu-Chiang; Soto, Ruben; Ovando, Nicolás.; Velez, Gaston; Fuica, Soledad; Schemrl, Anton; Robles, Andres; Ibsen, Jorge; Filippi, Giorgio; Pietriga, Emmanuel
2014-08-01
The Atacama Large Millimeter /submillimeter Array (ALMA) will be a unique research instrument composed of at least 66 reconfigurable high-precision antennas, located at the Chajnantor plain in the Chilean Andes at an elevation of 5000 m. The observatory has another office located in Santiago of Chile, 1600 km from the Chajnantor plain. In the Atacama desert, the wonderful observing conditions imply precarious living conditions and extremely high operation costs: i.e: flight tickets, hospitality, infrastructure, water, electricity, etc. It is clear that a purely remote operational model is impossible, but we believe that a mixture of remote and local operation scheme would be beneficial to the observatory, not only in reducing the cost but also in increasing the observatory overall efficiency. This paper describes the challenges and experience gained in such experimental proof of the concept. The experiment was performed over the existing 100 Mbps bandwidth, which connects both sites through a third party telecommunication infrastructure. During the experiment, all of the existent capacities of the observing software were validated successfully, although room for improvement was clearly detected. Network virtualization, MPLS configuration, L2TPv3 tunneling, NFS adjustment, operational workstations design are part of the experiment.
Pilot-in-the-Loop CFD Method Development
2016-02-01
Contract # N00014-14-C-0020 Pilot-in-the-Loop CFD Method Development Progress Report (CDRL A001) Progress Report for Period: October 21...of the aircraft from the rest of its external environment. For example, ship airwake are calculated using CFD solutions without the presence of the...approaches with the goal of real time, fully coupled CFD for virtual dynamic interface modeling & simulation. Penn State is supporting the project
Pilot-in-the Loop CFD Method Development
2016-04-27
Contract # N00014-14-C-0020 Pilot-in-the-Loop CFD Method Development Progress Report (CDRL A001) Progress Report for Period: January 21...aerodynamics of the aircraft from the rest of its external environment. For example, ship airwake are calculated using CFD solutions without the presence of...hardware approaches with the goal of real time, fully coupled CFD for virtual dynamic interface modeling & simulation. Penn State is supporting the project
A Pilot Study of Motivational Interviewing Training in a Virtual World
Heyden, Robin; Heyden, Neil; Schroy, Paul; Andrew, Stephen; Sadikova, Ekaterina; Wiecha, John
2011-01-01
Background Motivational interviewing (MI) is an evidence-based, patient-centered counseling strategy proven to support patients seeking health behavior change. Yet the time and travel commitment for MI training is often a barrier to the adoption of MI by health care professionals. Virtual worlds such as Second Life (SL) are rapidly becoming part of the educational technology landscape and offer not only the potential to improve access to MI training but also to deepen the MI training experience through the use of immersive online environments. Despite SL’s potential for medical education applications, little work is published studying its use for this purpose and still less is known of educational outcomes for physician training in MI using a virtual-world platform. Objective Our aims were to (1) explore the feasibility, acceptability, and effectiveness of a virtual-world platform for delivering MI training designed for physicians and (2) pilot test instructional designs using SL for MI training. Methods We designed and pilot tested an MI training program in the SL virtual world. We trained and enrolled 13 primary care physicians in a two-session, interactive program in SL on the use of MI for counseling patients about colorectal cancer screening. We measured self-reported changes in confidence and clinical practice patterns for counseling on colorectal cancer screening, and acceptability of the virtual-world learning environment and the MI instructional design. Effectiveness of the MI training was assessed by coding and scoring tape-recorded interviews with a blinded mock patient conducted pre- and post-training. Results A total of 13 physicians completed the training. Acceptability ratings for the MI training ranged from 4.1 to 4.7 on a 5-point scale. The SL learning environment was also highly rated, with 77% (n = 10) of the doctors reporting SL to be an effective educational medium. Learners’ confidence and clinical practice patterns for colorectal cancer screening improved after training. Pre- to post-training mean confidence scores for the ability to elicit and address barriers to colorectal cancer screening (4.5 to 6.2, P = .004) and knowledge of decision-making psychology (4.5 to 5.7, P = .02) and behavior change psychology (4.9 to 6.2, P = .02) increased significantly. Global MI skills scores increased significantly and component scores for the MI skills also increased, with statistically significant improvements in 4 of the 5 component skills: empathy (3.12 to 3.85, P = .001), autonomy (3.07 to 3.85, P < .001), collaboration (2.88 to 3.46, P = .02), and evocative response (2.80 to 3.61, P = .008). Conclusions The results of this pilot study suggest that virtual worlds offer the potential for a new medical education pedagogy that will enhance learning outcomes for patient-centered communication skills training. PMID:21946183
Footprint Database and web services for the Herschel space observatory
NASA Astrophysics Data System (ADS)
Verebélyi, Erika; Dobos, László; Kiss, Csaba
2015-08-01
Using all telemetry and observational meta-data, we created a searchable database of Herschel observation footprints. Data from the Herschel space observatory is freely available for everyone but no uniformly processed catalog of all observations has been published yet. As a first step, we unified the data model for all three Herschel instruments in all observation modes and compiled a database of sky coverage information. As opposed to methods using a pixellation of the sphere, in our database, sky coverage is stored in exact geometric form allowing for precise area calculations. Indexing of the footprints allows for very fast search among observations based on pointing, time, sky coverage overlap and meta-data. This enables us, for example, to find moving objects easily in Herschel fields. The database is accessible via a web site and also as a set of REST web service functions which makes it usable from program clients like Python or IDL scripts. Data is available in various formats including Virtual Observatory standards.
A Collaborative Molecular Modeling Environment Using a Virtual Tunneling Service
Lee, Jun; Kim, Jee-In; Kang, Lin-Woo
2012-01-01
Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments. PMID:22927721
A Toolkit for Eye Recognition of LAMOST Spectroscopy
NASA Astrophysics Data System (ADS)
Yuan, H.; Zhang, H.; Zhang, Y.; Lei, Y.; Dong, Y.; Zhao, Y.
2014-05-01
The Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST, also named the Guo Shou Jing Telescope) has finished the pilot survey and now begun the normal survey by the end of 2012 September. There have already been millions of targets observed, including thousands of quasar candidates. Because of the difficulty in the automatic identification of quasar spectra, eye recognition is always necessary and efficient. However massive spectra identification by eye is a huge job. In order to improve the efficiency and effectiveness of spectra , a toolkit for eye recognition of LAMOST spectroscopy is developed. Spectral cross-correlation templates from the Sloan Digital Sky Survey (SDSS) are applied as references, including O star, O/B transition star, B star, A star, F/A transition star, F star, G star, K star, M1 star, M3 star,M5 star,M8 star, L1 star, magnetic white dwarf, carbon star, white dwarf, B white dwarf, low metallicity K sub-dwarf, "Early-type" galaxy, galaxy, "Later-type" galaxy, Luminous Red Galaxy, QSO, QSO with some BAL activity and High-luminosity QSO. By adjusting the redshift and flux ratio of the template spectra in an interactive graphic interface, the spectral type of the target can be discriminated in a easy and feasible way and the redshift is estimated at the same time with a precision of about millesimal. The advantage of the tool in dealing with low quality spectra is indicated. Spectra from the Pilot Survey of LAMSOT are applied as examples and spectra from SDSS are also tested from comparison. Target spectra in both image format and fits format are supported. For convenience several spectra accessing manners are provided. All the spectra from LAMOST pilot survey can be located and acquired via the VOTable files on the internet as suggested by International Virtual Observatory Alliance (IVOA). After the construction of the Simple Spectral Access Protocol (SSAP) service by the Chinese Astronomical Data Center (CAsDC), spectra can be obtained and analyzed in a more efficient way.
The VTIE telescope resource management system
NASA Astrophysics Data System (ADS)
Busschots, B.; Keating, J. G.
2005-06-01
The VTIE Telescope Resource Management System (TRMS) provides a frame work for managing a distributed group of internet telescopes as a single "Virtual Observatory". The TRMS provides hooks which allow for it to be connected to any Java Based web portal and for a Java based scheduler to be added to it. The TRMS represents each telescope and observatory in the system with a software agent and then allows the scheduler and web portal to communicate with these distributed resources in a simple transparent way, hence allowing the scheduler and portal designers to concentrate only on what they wish to do with these resources rather than how to communicate with them. This paper outlines the structure and implementation of this frame work.
Autonomous Infrastructure for Observatory Operations
NASA Astrophysics Data System (ADS)
Seaman, R.
This is an era of rapid change from ancient human-mediated modes of astronomical practice to a vision of ever larger time domain surveys, ever bigger "big data", to increasing numbers of robotic telescopes and astronomical automation on every mountaintop. Over the past decades, facets of a new autonomous astronomical toolkit have been prototyped and deployed in support of numerous space missions. Remote and queue observing modes have gained significant market share on the ground. Archives and data-mining are becoming ubiquitous; astroinformatic techniques and virtual observatory standards and protocols are areas of active development. Astronomers and engineers, planetary and solar scientists, and researchers from communities as diverse as particle physics and exobiology are collaborating on a vast range of "multi-messenger" science. What then is missing?
STS-126 crew during preflight VR LAB MSS EVA2 training
2008-04-14
JSC2008-E-033771 (14 April 2008) --- Astronaut Eric A. Boe, STS-126 pilot, uses the virtual reality lab in the Space Vehicle Mockup Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
ESONET , a milestone towards sustained multidisciplinary ocean observation.
NASA Astrophysics Data System (ADS)
Rolin, J.-F.
2012-04-01
At the end of a 4 year project dedicated to the constitution of a Network of Excellence (NoE) on subsea observatories in Europe, large expectations are still in the agenda. The economical crisis changes the infrastructure construction planning in many ways but the objectives are quite clear and may be reached at European scale. The overall objective of the ESONET NoE was to create an organisation able to implement, operate and maintain a sustainable underwater observation network, extending into deep water, capable of monitoring biological, geo-chemical, geological, geophysical and physical processes occurring throughout the water column, sea floor interface and solid earth below. This main objective of ESONET has been met by creating the network of 11 permanent underwater observation sites together with the "ESONET Vi" Virtual Institute organising the exchange of staff and joint experiments on EMSO large research infrastructure observatories. The development of recommendations on best practices, standardization and interoperability concepts concerning underwater observatory equipment, as synthetized by the so called ESONET Label document has been created. The ESONET Label is a set of criteria to be met by the deep-sea observatory equipment as well as recommended solutions and options to guarantee their optimal operation in the ocean over long time periods. ESONET contributes to the fixed point sustained observatory community which extends worldwide, is fully multidisciplinary and in its way may open a new page in ocean sciences history.
Stochastic targeted (STAR) glycemic control: design, safety, and performance.
Evans, Alicia; Le Compte, Aaron; Tan, Chia-Siong; Ward, Logan; Steel, James; Pretty, Christopher G; Penning, Sophie; Suhaimi, Fatanah; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey
2012-01-01
Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. STAR (Stochastic TARgeted) is a flexible, model-based TGC approach that directly accounts for intra- and interpatient variability with a stochastically derived maximum 5% risk of blood glucose (BG) below 72 mg/dl. This research assesses the safety, efficacy, and clinical burden of a STAR TGC controller modulating both insulin and nutrition inputs in virtual and clinical pilot trials. Clinically validated virtual trials using data from 370 patients in the SPRINT (Specialized Relative Insulin and Nutrition Titration) study were used to design the STAR protocol and test its safety, performance, and required clinical effort prior to clinical pilot trials. Insulin and nutrition interventions were given every 1-3 h as chosen by the nurse to allow them to manage workload. Interventions were designed to maximize the overlap of the model-predicted (5-95(th) percentile) range of BG outcomes with the 72-117 mg/dl band and thus provide a maximum 5% risk of BG <72 mg/dl. Interventions were calculated using clinically validated computer models of human metabolism and its variability in critical illness. Carbohydrate intake (all sources) was selected to maximize intake up to 100% of the American College of Chest Physicians/Society of Critical Care Medicine (ACCP/SCCM) goal (25 kg/kcal/h). Insulin doses were limited (8 U/h maximum), with limited increases based on current rate (0.5-2.0 U/h). Initial clinical pilot trials involved 3 patients covering ~450 h. Approval was granted by the Upper South A Regional Ethics Committee. Virtual trials indicate that STAR provides similar glycemic control performance to SPRINT with 2-3 h (maximum) measurement intervals. Time in the 72-126 mg/dl and 72-145 mg/dl bands was equivalent for all controllers, indicating that glycemic outcome differences between protocols were only shifted in this range. Safety from hypoglycemia was improved. Importantly, STAR using 2-3 h (maximum) intervention intervals reduced clinical burden up to 30%, which is clinically very significant. Initial clinical trials showed glycemic performance, safety, and management of inter- and intrapatient variability that matched or exceeded the virtual trial results. In virtual trials, STAR TGC provided tight control that maximized the likelihood of BG in a clinically specified glycemic band and reduced hypoglycemia with a maximum 5% (or lower) expected risk of light hypoglycemia (BG <72 mg/dl) via model-based management of intra- and interpatient variability. Clinical workload was self-managed and reduced up to 30% compared with SPRINT. Initial pilot clinical trials matched or exceeded these virtual results. © 2012 Diabetes Technology Society.
NASA Technical Reports Server (NTRS)
Neuhaus, Jason R.
2018-01-01
This document describes the heads-up display (HUD) used in a piloted lifting-body entry, approach and landing simulation developed for the simulator facilities of the Simulation Development and Analysis Branch (SDAB) at NASA Langley Research Center. The HUD symbology originated with the piloted simulation evaluations of the HL-20 lifting body concept conducted in 1989 at NASA Langley. The original symbology was roughly based on Shuttle HUD symbology, as interpreted by Langley researchers. This document focuses on the addition of the precision approach path indicator (PAPI) lights to the HUD overlay.
Villalar, J L; Arredondo, M T; Meneu, T; Traver, V; Cabrera, M F; Guillen, S; Del Pozo, F
2002-01-01
Centralized testing demands costly laboratories, which are inefficient and may provide poor services. Recent advances make it feasible to move clinical testing nearer to patients and the requesting physicians, thus reducing the time to treatment. Internet technologies can be used to create a virtual laboratory information system in a distributed health-care environment. This allows clinical testing to be transferred to a cooperative scheme of several point-of-care testing (POCT) nodes. Two pilot virtual laboratories were established, one in Italy (AUSL Modena) and one in Greece (Athens Medical Centre). They were constructed on a three-layer model to allow both technical and clinical verification. Different POCT devices were connected. The pilot sites produced good preliminary results in relation to user acceptance, efficiency, convenience and costs. Decentralized laboratories can be expected to become cost-effective.
Team Collaboration: Lessons Learned Report
NASA Technical Reports Server (NTRS)
Arterberrie, Rhonda Y.; Eubanks, Steven W.; Kay, Dennis R.; Prahst, Stephen E.; Wenner, David P.
2005-01-01
An Agency team collaboration pilot was conducted from July 2002 until June 2003 and then extended for an additional year. The objective of the pilot was to assess the value of collaboration tools and adoption processes as applied to NASA teams. In an effort to share knowledge and experiences, the lessons that have been learned thus far are documented in this report. Overall, the pilot has been successful. An entire system has been piloted - tools, adoption, and support. The pilot consisted of two collaboration tools, a team space and a virtual team meeting capability. Of the two tools that were evaluated, the team meeting tool has been more widely accepted. Though the team space tool has been met with a lesser degree of acceptance, the need for such a tool in the NASA environment has been evidenced. Both adoption techniques and support were carefully developed and implemented in a way that has been well received by the pilot participant community.
Indexing data cubes for content-based searches in radio astronomy
NASA Astrophysics Data System (ADS)
Araya, M.; Candia, G.; Gregorio, R.; Mendoza, M.; Solar, M.
2016-01-01
Methods for observing space have changed profoundly in the past few decades. The methods needed to detect and record astronomical objects have shifted from conventional observations in the optical range to more sophisticated methods which permit the detection of not only the shape of an object but also the velocity and frequency of emissions in the millimeter-scale wavelength range and the chemical substances from which they originate. The consolidation of radio astronomy through a range of global-scale projects such as the Very Long Baseline Array (VLBA) and the Atacama Large Millimeter/submillimeter Array (ALMA) reinforces the need to develop better methods of data processing that can automatically detect regions of interest (ROIs) within data cubes (position-position-velocity), index them and facilitate subsequent searches via methods based on queries using spatial coordinates and/or velocity ranges. In this article, we present the development of an automatic system for indexing ROIs in data cubes that is capable of automatically detecting and recording ROIs while reducing the necessary storage space. The system is able to process data cubes containing megabytes of data in fractions of a second without human supervision, thus allowing it to be incorporated into a production line for displaying objects in a virtual observatory. We conducted a set of comprehensive experiments to illustrate how our system works. As a result, an index of 3% of the input size was stored in a spatial database, representing a compression ratio equal to 33:1 over an input of 20.875 GB, achieving an index of 773 MB approximately. On the other hand, a single query can be evaluated over our system in a fraction of second, showing that the indexing step works as a shock-absorber of the computational time involved in data cube processing. The system forms part of the Chilean Virtual Observatory (ChiVO), an initiative which belongs to the International Virtual Observatory Alliance (IVOA) that seeks to provide the capability of content-based searches on data cubes to the astronomical community.
NASA Technical Reports Server (NTRS)
Rauch, T.; Werner, K.; Bohlin, R.; Kruk, J. W.
2013-01-01
Hydrogen-rich, DA-type white dwarfs are particularly suited as primary standard stars for flux calibration. State-of-the-art NLTE models consider opacities of species up to trans-iron elements and provide reliable synthetic stellar-atmosphere spectra to compare with observations. Aims. We will establish a database of theoretical spectra of stellar flux standards that are easily accessible via a web interface. Methods. In the framework of the Virtual Observatory, the German Astrophysical Virtual Observatory developed the registered service TheoSSA. It provides easy access to stellar spectral energy distributions (SEDs) and is intended to ingest SEDs calculated by any model-atmosphere code. In case of the DA white dwarf G191-B2B, we demonstrate that the model reproduces not only its overall continuum shape but also the numerous metal lines exhibited in its ultraviolet spectrum. Results. TheoSSA is in operation and contains presently a variety of SEDs for DA-type white dwarfs. It will be extended in the near future and can host SEDs of all primary and secondary flux standards. The spectral analysis of G191-B2B has shown that our hydrostatic models reproduce the observations best at Teff =60 000 +/- 2000K and log g=7.60 +/- 0.05.We newly identified Fe vi, Ni vi, and Zn iv lines. For the first time, we determined the photospheric zinc abundance with a logarithmic mass fraction of -4.89 (7.5 × solar). The abundances of He (upper limit), C, N, O, Al, Si, O, P, S, Fe, Ni, Ge, and Sn were precisely determined. Upper abundance limits of about 10% solar were derived for Ti, Cr, Mn, and Co. Conclusions. The TheoSSA database of theoretical SEDs of stellar flux standards guarantees that the flux calibration of all astronomical data and cross-calibration between different instruments can be based on the same models and SEDs calculated with different model-atmosphere codes and are easy to compare.
Ellaway, Rachel H; Round, Jonathan; Vaughan, Sophie; Poulton, Terry; Zary, Nabil
2015-01-01
Background The impact of the use of video resources in primarily paper-based problem-based learning (PBL) settings has been widely explored. Although it can provide many benefits, the use of video can also hamper the critical thinking of learners in contexts where learners are developing clinical reasoning. However, the use of video has not been explored in the context of interactive virtual patients for PBL. Objective A pilot study was conducted to explore how undergraduate medical students interpreted and evaluated information from video- and text-based materials presented in the context of a branched interactive online virtual patient designed for PBL. The goal was to inform the development and use of virtual patients for PBL and to inform future research in this area. Methods An existing virtual patient for PBL was adapted for use in video and provided as an intervention to students in the transition year of the undergraduate medicine course at St George’s, University of London. Survey instruments were used to capture student and PBL tutor experiences and perceptions of the intervention, and a formative review meeting was run with PBL tutors. Descriptive statistics were generated for the structured responses and a thematic analysis was used to identify emergent themes in the unstructured responses. Results Analysis of student responses (n=119) and tutor comments (n=18) yielded 8 distinct themes relating to the perceived educational efficacy of information presented in video and text formats in a PBL context. Although some students found some characteristics of the videos beneficial, when asked to express a preference for video or text the majority of those that responded to the question (65%, 65/100) expressed a preference for text. Student responses indicated that the use of video slowed the pace of PBL and impeded students’ ability to review and critically appraise the presented information. Conclusions Our findings suggest that text was perceived to be a better source of information than video in virtual patients for PBL. More specifically, the use of video was perceived as beneficial for providing details, visual information, and context where text was unable to do so. However, learner acceptance of text was higher in the context of PBL, particularly when targeting clinical reasoning skills. This pilot study has provided the foundation for further research into the effectiveness of different virtual patient designs for PBL. PMID:26088435
Preservation and maintenance of the astronomical sites in Armenia
NASA Astrophysics Data System (ADS)
Mickaelian, A. M.
2008-01-01
Astronomy in Armenia was popular since ancient times. There are signs of astronomical observations coming from a few thousands years ago. Two ancient observatories, Karahunge and Metzamor are especially well known. Karahunge is the Armenian twin of the Stonehenge and is even older. However, there is no proper attention from the state authorities and efforts are needed for preservation of such historical-astronomical monuments. The Byurakan Astrophysical Observatory (BAO) is the modern famous Armenian observatory founded in 1946 by the outstanding scientist Victor Ambartsumian. It was one of the world astronomical centres in 1950-s to 1970-s, and at present is the largest observatory in the Middle East area. As the ancient astronomical sites, Byurakan also needs a proper attitude from the state authorities and corresponding international organizations to preserve its values and importance for the present and future astronomical activities in the region, including its rich observational archive, telescopes, and human resources. Despite all the difficulties, the Armenian astronomers keep high international level of research and display various activities organizing international meetings and schools, preparing new young generation for the future research. The Armenian Astronomical Society (ArAS) is an affiliated member of EAS. Armenia has its Virtual Observatory project (ArVO) as well. The next Joint European and National Astronomy Meeting (JENAM-2007) will be held in Yerevan, Armenia, in August 2007. There are plans to organize astronomical tours to Armenia for making observations from various sites, including the ancient observatories. The future of astronomy in Armenia strongly depends on all of this activities and the proper attention both from state authorities and society.
The Feasibility and Impact of Delivering a Mind-Body Intervention in a Virtual World
Hoch, Daniel B.; Watson, Alice J.; Linton, Deborah A.; Bello, Heather E.; Senelly, Marco; Milik, Mariola T.; Baim, Margaret A.; Jethwani, Kamal; Fricchione, Gregory L.; Benson, Herbert; Kvedar, Joseph C.
2012-01-01
Introduction Mind-body medical approaches may ameliorate chronic disease. Stress reduction is particularly helpful, but face-to-face delivery systems cannot reach all those who might benefit. An online, 3-dimensional virtual world may be able to support the rich interpersonal interactions required of this approach. In this pilot study, we explore the feasibility of translating a face-to-face stress reduction program into an online virtual setting and estimate the effect size of the intervention. Methods and Findings Domain experts in virtual world technology joined with mind body practitioners to translate an existing 8 week relaxation response-based resiliency program into an 8-week virtual world-based program in Second Life™ (SL). Twenty-four healthy volunteers with at least one month's experience in SL completed the program. Each subject filled out the Perceived Stress Scale (PSS) and the Symptom Checklist 90- Revised (SCL-90-R) before and after taking part. Participants took part in one of 3 groups of about 10 subjects. The participants found the program to be helpful and enjoyable. Many reported that the virtual environment was an excellent substitute for the preferred face-to-face approach. On quantitative measures, there was a general trend toward decreased perceived stress, (15.7 to 15.0), symptoms of depression, (57.6 to 57.0) and anxiety (56.8 to 54.8). There was a significant decrease of 2.8 points on the SCL-90-R Global Severity Index (p<0.05). Conclusions This pilot project showed that it is feasible to deliver a typical mind-body medical intervention through a virtual environment and that it is well received. Moreover, the small reduction in psychological distress suggests further research is warranted. Based on the data collected for this project, a randomized trial with less than 50 subjects would be appropriately powered if perceived stress is the primary outcome. PMID:22470483
The feasibility and impact of delivering a mind-body intervention in a virtual world.
Hoch, Daniel B; Watson, Alice J; Linton, Deborah A; Bello, Heather E; Senelly, Marco; Milik, Mariola T; Baim, Margaret A; Jethwani, Kamal; Fricchione, Gregory L; Benson, Herbert; Kvedar, Joseph C
2012-01-01
Mind-body medical approaches may ameliorate chronic disease. Stress reduction is particularly helpful, but face-to-face delivery systems cannot reach all those who might benefit. An online, 3-dimensional virtual world may be able to support the rich interpersonal interactions required of this approach. In this pilot study, we explore the feasibility of translating a face-to-face stress reduction program into an online virtual setting and estimate the effect size of the intervention. Domain experts in virtual world technology joined with mind body practitioners to translate an existing 8 week relaxation response-based resiliency program into an 8-week virtual world-based program in Second Life™ (SL). Twenty-four healthy volunteers with at least one month's experience in SL completed the program. Each subject filled out the Perceived Stress Scale (PSS) and the Symptom Checklist 90- Revised (SCL-90-R) before and after taking part. Participants took part in one of 3 groups of about 10 subjects. The participants found the program to be helpful and enjoyable. Many reported that the virtual environment was an excellent substitute for the preferred face-to-face approach. On quantitative measures, there was a general trend toward decreased perceived stress, (15.7 to 15.0), symptoms of depression, (57.6 to 57.0) and anxiety (56.8 to 54.8). There was a significant decrease of 2.8 points on the SCL-90-R Global Severity Index (p<0.05). This pilot project showed that it is feasible to deliver a typical mind-body medical intervention through a virtual environment and that it is well received. Moreover, the small reduction in psychological distress suggests further research is warranted. Based on the data collected for this project, a randomized trial with less than 50 subjects would be appropriately powered if perceived stress is the primary outcome.
Virtual reality 3D headset based on DMD light modulators
NASA Astrophysics Data System (ADS)
Bernacki, Bruce E.; Evans, Allan; Tang, Edward
2014-06-01
We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micromirror devices (DMD). Current methods for presenting information for virtual reality are focused on either polarizationbased modulators such as liquid crystal on silicon (LCoS) devices, or miniature LCD or LED displays often using lenses to place the image at infinity. LCoS modulators are an area of active research and development, and reduce the amount of viewing light by 50% due to the use of polarization. Viewable LCD or LED screens may suffer low resolution, cause eye fatigue, and exhibit a "screen door" or pixelation effect due to the low pixel fill factor. Our approach leverages a mature technology based on silicon micro mirrors delivering 720p resolution displays in a small form-factor with high fill factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high-definition resolution and low power consumption, and many of the design methods developed for DMD projector applications can be adapted to display use. Potential applications include night driving with natural depth perception, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design concept is described in which light from the DMD is imaged to infinity and the user's own eye lens forms a real image on the user's retina resulting in a virtual retinal display.
Operating a production pilot factory serving several scientific domains
NASA Astrophysics Data System (ADS)
Sfiligoi, I.; Würthwein, F.; Andrews, W.; Dost, J. M.; MacNeill, I.; McCrea, A.; Sheripon, E.; Murphy, C. W.
2011-12-01
Pilot infrastructures are becoming prominent players in the Grid environment. One of the major advantages is represented by the reduced effort required by the user communities (also known as Virtual Organizations or VOs) due to the outsourcing of the Grid interfacing services, i.e. the pilot factory, to Grid experts. One such pilot factory, based on the glideinWMS pilot infrastructure, is being operated by the Open Science Grid at University of California San Diego (UCSD). This pilot factory is serving multiple VOs from several scientific domains. Currently the three major clients are the analysis operations of the HEP experiment CMS, the community VO HCC, which serves mostly math, biology and computer science users, and the structural biology VO NEBioGrid. The UCSD glidein factory allows the served VOs to use Grid resources distributed over 150 sites in North and South America, in Europe, and in Asia. This paper presents the steps taken to create a production quality pilot factory, together with the challenges encountered along the road.
The ASSERT Virtual Machine Kernel: Support for Preservation of Temporal Properties
NASA Astrophysics Data System (ADS)
Zamorano, J.; de la Puente, J. A.; Pulido, J. A.; Urueña
2008-08-01
A new approach to building embedded real-time software has been developed in the ASSERT project. One of its key elements is the concept of a virtual machine preserving the non-functional properties of the system, and especially real-time properties, all the way down from high- level design models down to executable code. The paper describes one instance of the virtual machine concept that provides support for the preservation of temporal properties both at the source code level —by accept- ing only "legal" entities, i.e. software components with statically analysable real-tim behaviour— and at run-time —by monitoring the temporal behaviour of the system. The virtual machine has been validated on several pilot projects carried out by aerospace companies in the framework of the ASSERT project.
1972-04-16
The sixth manned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission Commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 mission continued the broad-scale geological, geochemical, and geophysical mapping of the Moon’s crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used. The mission ended on April 27, 1972.
NASA Astrophysics Data System (ADS)
Yuen, K.; Chang, G.; Basilio, R. R.; Hatfield, J.; Cox, E. L.
2017-12-01
The prevalence and availability of NASA remote sensing data over the last 40+ years have produced many opportunities for the development of science derived data applications. However, extending and systematically integrating the applications into decision support models and tools have been sporadic and incomplete. Despite efforts among the research communities and external partners, implementation challenges exist and still remain to be addressed. In order to effectively address the systemic gap between the research and applications communities, steps must be taken to effectively bridge that gap: specific goals, a clear plan, and a concerted and diligent effort are needed to produce the desired results. The Orbiting Carbon Observatory-2 (OCO-2) mission sponsored a pilot effort on science data applications with the specific intent of building strategic partnerships, so that organizations and individuals could effectively use OCO-2 data products for application development. The successful partnership with the USDA/ARS National Laboratory for Agriculture and the Environment (NLAE) has laid the foundation for: 1) requirements and lessons for establishing a strategic partnership for application development, 2) building opportunities and growing partnerships for new missions such as OCO-3, and 3) the development of a methodology and approach for integrating application development into a mission life cycle. This presentation will provide an overview of the OCO-2 pilot effort, deliverables, the methodology, implementation, and best practices.
NASA Astrophysics Data System (ADS)
Rodway, K.; DeForest, C. E.; Diller, J.; Vilas, F.; Sollitt, L. S.; Reyes, M. F.; Filo, A. S.; Anderson, E.
2014-12-01
Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. The new commercial space industry is developing suborbital reusable launch vehicles (sRLV's) to provide low-cost, flexible, and frequent access to space at ~100 km altitude. In the case of XCOR Aerospace's Lynx spacecraft, the vehicle design and capabilities work well for hosting specially designed experiments that can be flown with a human-tended researcher or alone with the pilot on a customized mission. Some of the first-generation instruments and facilities that will conduct solar observations on dedicated Lynx science missions include the SwRI Solar Instrument Pointing Platform (SSIPP) and Atsa Suborbital Observatory, as well as KickSat sprites, which are picosatellites for in situ atmospheric and solar phenomena measurements. The SSIPP is a demonstration two-stage pointed solar observatory that operates inside the Lynx cockpit. The coarse pointing stage includes the pilot in the feedback loop, and the fine stage stabilizes the solar image to achieve arcsecond class pointing. SSIPP is a stepping-stone to future external instruments that can operate with larger apertures and shorter wavelengths in the solar atmosphere. The Planetary Science Institute's Atsa Suborbital Observatory combines the strengths of ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with either in-house facility instruments or user-provided instruments. The Atsa prototype is a proof of concept, hand-guided camera that mounts on the interior of the Lynx cockpit to test target acquisition and tracking for human-operated suborbital astronomy. KickSat sprites are mass-producible, one inch printed circuit boards (PCBs) populated by programmable off the shelf microprocessors and radios for real time data transmission. The sprite PCBs can integrate chip-based radiometers, magnetometers, accelerometers, etc. This low-cost, customizable platform provides researchers the ability to design immediately responsive, repeatable, high resolution experiments.
Armenia as a Regional Centre for Astronomy for Development activities
NASA Astrophysics Data System (ADS)
Mickaelian, A.
2015-03-01
The Byurakan Astrophysical Observatory (BAO, Armenia, http://www.bao.am) are among the candidate IAU Regional Nodes for Astronomy for Development activities. It is one of the main astronomical centers of the former Soviet Union and the Middle East region. At present there are 48 qualified researchers at BAO, including six Doctors of Science and 30 PhDs. Five important observational instruments are installed at BAO, the larger ones being 2.6m Cassegrain (ZTA-2.6) and 1m Schmidt (the one that provided the famous Markarian survey). BAO is regarded as a national scientific-educational center, where a number of activities are being organized, such as: international conferences (4 IAU symposia and 1 IAU colloquium, JENAM-2007, etc.), small workshops and discussions, international summer schools (1987, 2006, 2008 and 2010), and Olympiads. BAO collaborates with scientists from many countries. The Armenian Astronomical Society (ArAS, http://www.aras.am/) is an NGO founded in 2001; it has 93 members and it is rather active in the organization of educational, amateur, popular, promotional and other matters. The Armenian Virtual Observatory (ArVO, http://www.aras.am/Arvo/arvo.htm) is one of the 17 national VO projects forming the International Virtual Observatories Alliance (IVOA) and is the only VO project in the region serving also for educational purposes. A number of activities are planned, such as management, coordination and evaluation of the IAU programs in the area of development and education, establishment of the new IAU endowed lectureship program and organization of seminars and public lectures, coordination and initiation of fundraising activities for astronomy development, organization of regional scientific symposia, conferences and workshops, support to Galileo Teacher Training Program (GTTP), production/publication of educational and promotional materials, etc.
LHCb experience with running jobs in virtual machines
NASA Astrophysics Data System (ADS)
McNab, A.; Stagni, F.; Luzzi, C.
2015-12-01
The LHCb experiment has been running production jobs in virtual machines since 2013 as part of its DIRAC-based infrastructure. We describe the architecture of these virtual machines and the steps taken to replicate the WLCG worker node environment expected by user and production jobs. This relies on the uCernVM system for providing root images for virtual machines. We use the CernVM-FS distributed filesystem to supply the root partition files, the LHCb software stack, and the bootstrapping scripts necessary to configure the virtual machines for us. Using this approach, we have been able to minimise the amount of contextualisation which must be provided by the virtual machine managers. We explain the process by which the virtual machine is able to receive payload jobs submitted to DIRAC by users and production managers, and how this differs from payloads executed within conventional DIRAC pilot jobs on batch queue based sites. We describe our operational experiences in running production on VM based sites managed using Vcycle/OpenStack, Vac, and HTCondor Vacuum. Finally we show how our use of these resources is monitored using Ganglia and DIRAC.
Enabling Astronony Research in High Schools with the START Collaboratory
NASA Astrophysics Data System (ADS)
Greenberg, G. J.; Pennypacker, C. R.
2005-12-01
The START Collaboratory is a three-year, NSF funded project to create a Web-based national astronomy research collaboratory for high school students that will bring authentic scientific research to classrooms across the country. The project brings together the resources and experience of Hands-On Universe at the University of California at Berkeley, the Sloan Digital Sky Survey / National Virtual Observatory at Johns Hopkins University and the Northwestern University Collaboratory Project. The START Collaboratory seamlessly integrates access to gigabytes of searchable data and images from the Sloan Digital Sky Survey and the NVO into Web-based research notebooks and research reports that can be shared and discussed online. Requests for observations can be made through the START Telescope Request Broker. These observations can be viewed with the START Web Visualization Tool for visualization and measurement of FITS files. The project has developed a set of research scenarios to introduce students to the resources and tools available through the START Collaboratory, and to provide a model for network-based collaboration that engages students, teachers and professional scientists. Great attention has been paid to ensuring that the research scenarios result in accurate and authentic research products that are of real interest to working astronomers. In this panel presentation, we will describe the educational benefits and opportunities being seen in pilot testing with teachers and students, and in preparations for a teacher professional development project with the Adler Planetarium.
The turbulence study in the astronomical observatory in the North Caucasus
NASA Astrophysics Data System (ADS)
Nosov, V. V.; Nosov, E. V.; Lukin, V. P.; Torgaev, A. V.
2017-09-01
In the Special Astrophysical Observatory (SAO) continued pilot studies and research astroclimate coherent turbulence, similar to those given by us to the CAO in October 2012. To this end, under the dome of the Big Telescope Altazimuthal (BTA) has been measured astroclimate parameters. Measurements made throughout the volume of the dome of the specialized facilities BTA using ultrasonic weather station AMC-03 is fastened to the structure of the rotating telescope and dome. Also construction of temperature measurements of the telescope and the dome (and their size) used a thermometer and a laser rangefinder.Along with the state of the atmosphere measurements dome of the telescope is controlled ultrasonic meteosystems Meteo-2, mounted on 20-meter meteorological mast at the telescope site. Meteo-2 was used for the registration of long-term observations of atmospheric turbulence parameters for the expedition in order to clarify the conditions of the emergence of coherent areas of turbulence over the observatory territory.
Accessing eSDO Solar Image Processing and Visualization through AstroGrid
NASA Astrophysics Data System (ADS)
Auden, E.; Dalla, S.
2008-08-01
The eSDO project is funded by the UK's Science and Technology Facilities Council (STFC) to integrate Solar Dynamics Observatory (SDO) data, algorithms, and visualization tools with the UK's Virtual Observatory project, AstroGrid. In preparation for the SDO launch in January 2009, the eSDO team has developed nine algorithms covering coronal behaviour, feature recognition, and global / local helioseismology. Each of these algorithms has been deployed as an AstroGrid Common Execution Architecture (CEA) application so that they can be included in complex VO workflows. In addition, the PLASTIC-enabled eSDO "Streaming Tool" online movie application allows users to search multi-instrument solar archives through AstroGrid web services and visualise the image data through galleries, an interactive movie viewing applet, and QuickTime movies generated on-the-fly.
TREPS, a tool for coordinate and time transformations in space physics
NASA Astrophysics Data System (ADS)
Génot, V.; Renard, B.; Dufourg, N.; Bouchemit, M.; Lormant, N.; Beigbeder, L.; Popescu, D.; Toniutti, J.-P.; André, N.; Pitout, F.; Jacquey, C.; Cecconi, B.; Gangloff, M.
2018-01-01
We present TREPS (Transformation de REpères en Physique Spatiale) an online tool to perform coordinate transformations commonly used in planetology and heliophysics. It is based on SPICE kernels developed by NASA/NAIF. Its usage is straightforward, with a 4-step process, including various import/export options. Interoperability with external services is available through Virtual Observatory technology which is illustrated in a use case.
DaCHS: Data Center Helper Suite
NASA Astrophysics Data System (ADS)
Demleitner, Markus
2018-04-01
DaCHS, the Data Center Helper Suite, is an integrated package for publishing astronomical data sets to the Virtual Observatory. Network-facing, it speaks the major VO protocols (SCS, SIAP, SSAP, TAP, Datalink, etc). Operator-facing, many input formats, including FITS/WCS, ASCII files, and VOTable, can be processed to publication-ready data. DaCHS puts particular emphasis on integrated metadata handling, which facilitates a tight integration with the VO's Registry
NASA Technical Reports Server (NTRS)
Koschny, D.; Gritsevich, M.; Barentsen, G.
2011-01-01
Different authors have produced models for the physical properties of meteoroids based on the shape of a meteor's light curve, typically from short observing campaigns. We here analyze the height profiles and light curves of approx.200 double-station meteors from the Leonids and Perseids using data from the Virtual Meteor Observatory, to demonstrate that with this web-based meteor database it is possible to analyze very large datasets from different authors in a consistent way. We compute the average heights for begin point, maximum luminosity, and end heights for Perseids and Leonids. We also compute the skew of the light curve, usually called the F-parameter. The results compare well with other author's data. We display the average light curve in a novel way to assess the light curve shape in addition to using the F-parameter. While the Perseids show a peaked light curve, the average Leonid light curve has a more flat peak. This indicates that the particle distribution of Leonid meteors can be described by a Gaussian distribution; the Perseids can be described with a power law. The skew for Leonids is smaller than for Perseids, indicating that the Leonids are more fragile than the Perseids.
NASA Astrophysics Data System (ADS)
Knapic, C.; Zanichelli, A.; Dovgan, E.; Nanni, M.; Stagni, M.; Righini, S.; Sponza, M.; Bedosti, F.; Orlati, A.; Smareglia, R.
2016-07-01
Radio Astronomical Data models are becoming very complex since the huge possible range of instrumental configurations available with the modern Radio Telescopes. What in the past was the last frontiers of data formats in terms of efficiency and flexibility is now evolving with new strategies and methodologies enabling the persistence of a very complex, hierarchical and multi-purpose information. Such an evolution of data models and data formats require new data archiving techniques in order to guarantee data preservation following the directives of Open Archival Information System and the International Virtual Observatory Alliance for data sharing and publication. Currently, various formats (FITS, MBFITS, VLBI's XML description files and ancillary files) of data acquired with the Medicina and Noto Radio Telescopes can be stored and handled by a common Radio Archive, that is planned to be released to the (inter)national community by the end of 2016. This state-of-the-art archiving system for radio astronomical data aims at delegating as much as possible to the software setting how and where the descriptors (metadata) are saved, while the users perform user-friendly queries translated by the web interface into complex interrogations on the database to retrieve data. In such a way, the Archive is ready to be Virtual Observatory compliant and as much as possible user-friendly.
Singh, D K A; Rahman, N N A; Seffiyah, R; Chang, S Y; Zainura, A K; Aida, S R; Rajwinder, K H S
2017-04-01
There is limited information regarding the effects of interactive virtual reality (VR) games on psychological and physical well-being among adults with physical disabilities. We aimed to examine the impact of VR games on psychological well-being, upper limb motor function and reaction time in adults with physical disabilities. Fifteen participants completed the intervention using Wii VR games in this pilot study. Depressive, Anxiety and Stress Scales (DASS) and Capabilities of Upper Extremity (CUE) questionnaires were used to measure psychological well-being and upper limb motor function respectively. Upper limb reaction time was measured using reaction time test. Results showed that there was a significant difference (p<0.05) in DASS questionnaire and average reaction time score after intervention. There is a potential for using interactive VR games as an exercise tool to improve psychological wellbeing and upper limb reaction time among adults with disabilities.
Pilot Investigation of a Virtual Gastric Band Hypnotherapy Intervention.
Greetham, Stephanie; Goodwin, Sarah; Wells, Liz; Whitham, Claire; Jones, Huw; Rigby, Alan; Sathyapalan, Thozhukat; Reid, Marie; Atkin, Stephen
2016-01-01
This 24-week-long pilot investigation of 30 men and women with a BMI > 27 kg/m(2) aimed to determine whether virtual gastric band (VGB) hypnotherapy has an effect on weight loss in overweight adults, compared to relaxation hypnotherapy and a self-directed diet. Levels of weight loss and gain ranged from -17 kg to +4.7 kg in the VGB hypnotherapy group and -9.3 kg to +7.8 kg in the relaxation group. There was no significant difference between VGB hypnotherapy as a main effect on weight loss, (X(2) = 0.67, p = .41, df = 1) and there was no evidence of differential weight loss over time, (X(2) = 4.2, p = .64, df = 6). Therefore, the authors conclude that there was no significant difference between VGB hypnotherapy and the relaxation hypnotherapy.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Ellis, Kyle E.; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel
2017-01-01
A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that the lack of external visual references was associated with a flight crew's loss of attitude awareness or energy state awareness in 17 of these events. Therefore, CAST recommended development and implementation of virtual day-Visual Meteorological Condition (VMC) display systems, such as synthetic vision systems, which can promote flight crew attitude awareness similar to a day-VMC environment. This paper describes the results of a high-fidelity, large transport aircraft simulation experiment that evaluated virtual day-VMC displays and a "background attitude indicator" concept as an aid to pilots in recovery from unusual attitudes. Twelve commercial airline pilots performed multiple unusual attitude recoveries and both quantitative and qualitative dependent measures were collected. Experimental results and future research directions under this CAST initiative and the NASA "Technologies for Airplane State Awareness" research project are described.
Monitoring Boreal Forest Owls in Ontario using tape playback surveys with volunteers
Charles M. Francis; Michael S. W. Bradstreet
1997-01-01
Long Point Bird Observatory ran pilot surveys in 1995 and 1996 to monitor boreal forest owls in Ontario using roadside surveys with tape playback of calls. A minimum of 791 owls on 84 routes in 1995, and 392 owls on 88 routes in 1996; nine different species were detected. Playback improved the response rate for Barred (Strix varia), Boreal (...
Do Magnetic Fields Drive High-Energy Explosive Transients?
NASA Astrophysics Data System (ADS)
Mundell, Carole
2017-10-01
I will review the current state-of-the-art in real-time, rapid response optical imaging and polarimetric followup of transient sources such as Gamma Ray Bursts. I will interpret current results within the context of the external shock model and present predictions for future mm- and cm-wave radio observatories. Recent observational results from new radio pilot studies will also be presented.
STS-134 crew and Expedition 24/25 crew member Shannon Walker
2010-03-25
JSC2010-E-043673 (25 March 2010) --- NASA astronauts Gregory H. Johnson, STS-134 pilot; and Shannon Walker, Expedition 24/25 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.
STS-134 crew and Expedition 24/25 crew member Shannon Walker
2010-03-25
JSC2010-E-043661 (25 March 2010) --- NASA astronauts Gregory H. Johnson, STS-134 pilot; and Shannon Walker, Expedition 24/25 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.
NASA Astrophysics Data System (ADS)
Sik Lányi, Cecília
We describe an investigation of memory colours. For this investigation Flash test software was developed. 75 observers used this test software in 4 groups: average elementary school children (aged: 8-9 years), intellectually disabled children (age: 9-15), virtual game addict university students (average age: 20) and university students who play with VR games rarely or never (average age: 20). In this pilot test we investigated the difference of memory colours of these 4 groups.
STS-132 crew during their MSS/SIMP EVA3 OPS 4 training
2010-01-28
JSC2010-E-014956 (28 Jan. 2010) --- NASA astronauts Ken Ham (left foreground), STS-132 commander; Michael Good, mission specialist; and Tony Antonelli (right), pilot, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.
STS-132 crew during their MSS/SIMP EVA3 OPS 4 training
2010-01-28
JSC2010-E-014951 (28 Jan. 2010) --- NASA astronauts Michael Good (seated), Garrett Reisman (right foreground), both STS-132 mission specialists; and Tony Antonelli, pilot, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.
STS-134 crew and Expedition 24/25 crew member Shannon Walker
2010-03-25
JSC2010-E-043662 (25 March 2010) --- NASA astronauts Gregory H. Johnson, STS-134 pilot; and Shannon Walker, Expedition 24/25 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.
STS-131 crew during VR Lab MSS/EVAB SUPT3 Team 91016 training
2009-09-25
JSC2009-E-214321 (25 Sept. 2009) --- NASA astronauts James P. Dutton Jr., STS-131 pilot; and Stephanie Wilson, mission specialist, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
Washburn, Micki; Bordnick, Patrick; Rizzo, Albert Skip
2016-10-01
This study presents preliminary feasibility and acceptability data on the use of virtual patient (VP) simulations to develop brief assessment skills within an interdisciplinary care setting. Results support the acceptability of technology-enhanced simulations and offer preliminary evidence for an association between engagement in VP practice simulations and improvements in diagnostic accuracy and clinical interviewing skills. Recommendations and next steps for research on technology-enhanced simulations within social work are discussed.
Reengineering observatory operations for the time domain
NASA Astrophysics Data System (ADS)
Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.
2014-07-01
Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.
1999-08-19
STS-93 Pilot Jeffrey S. Ashby signs autographs after a mission presentation for KSC employees. The five-day mission primarily released the Chandra X-ray Observatory, allowing scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. STS-93 was also the first mission to have a woman, Eileen M. Collins, serving as Shuttle commander
Effects of movement imitation training in Parkinson's disease: A virtual reality pilot study.
Robles-García, Verónica; Corral-Bergantiños, Yoanna; Espinosa, Nelson; García-Sancho, Carlos; Sanmartín, Gabriel; Flores, Julián; Cudeiro, Javier; Arias, Pablo
2016-05-01
Hypometria is a clinical motor sign in Parkinson's disease. Its origin likely emerges from basal ganglia dysfunction, leading to an impaired control of inhibitory intracortical motor circuits. Some neurorehabilitation approaches include movement imitation training; besides the effects of motor practice, there might be a benefit due to observation and imitation of un-altered movement patterns. In this sense, virtual reality facilitates the process by customizing motor-patterns to be observed and imitated. To evaluate the effect of a motor-imitation therapy focused on hypometria in Parkinson's disease using virtual reality. We carried out a randomized controlled pilot-study. Sixteen patients were randomly assigned in experimental and control groups. Groups underwent 4-weeks of training based on finger-tapping with the dominant hand, in which imitation was the differential factor (only the experimental group imitated). We evaluated self-paced movement features and cortico-spinal excitability (recruitment curves and silent periods in both hemispheres) before, immediately after, and two weeks after the training period. Movement amplitude increased significantly after the therapy in the experimental group for the trained and un-trained hands. Motor thresholds and silent periods evaluated with transcranial magnetic stimulation were differently modified by training in the two groups; although the changes in the input-output recruitment were similar. This pilot study suggests that movement imitation therapy enhances the effect of motor practice in patients with Parkinson's disease; imitation-training might be helpful for reducing hypometria in these patients. These results must be clarified in future larger trials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Magnitude of visual accommodation to a head-up display
NASA Technical Reports Server (NTRS)
Leitner, E. F.; Haines, R. F.
1981-01-01
The virtual image symbology of head-up displays (HUDs) is presented at optical infinity to the pilot. This design feature is intended to help pilots maintain visual focus distance at optical infinity. However, the accommodation response could be nearer than optical infinity, due to an individual's dark focus response. Accommodation responses were measured of two age groups of airline pilots to: (1) static symbology on a HUD; (2) a landing site background at optical infinity; (3) the combination of the HUD symbology and the landing site background; and (4) complete darkness. Results indicate that magnitude of accommodation to HUD symbology, with and without the background, is not significantly different from an infinity focus response for either age group. The dark focus response is significantly closer than optical infinity for the younger pilots, but not the older pilots, a finding consistent with previous research.
Stroke rehabilitation at home using virtual reality, haptics and telemedicine.
Rydmark, Martin; Broeren, Jörgen; Pascher, Ragnar
2002-01-01
The objective of this pilot study is to identify the level of difficulty in which subjects with left hemisphere damage in the acute phase after stroke can start practicing in a virtual environment. Second, to test an application of Virtual Reality technology to existing occupational treatment methods in stroke rehabilitation and develop a platform for home rehabilitation controlled telemedically. The findings indicate that the system shows potential as an assessment and training device. The feasibility study setup is working well likewise the assessment method. Developing and increasing the complexity of the tasks must be based on the patient individual neurology, and that the cinematic motion patterns of the patient's are the basis for exercise design.
Exploring the Unknown: Cabled Ocean Observatory Data and Discovery in University Education
NASA Astrophysics Data System (ADS)
Pelz, M.; Scherwath, M.; Riddell, D. J.; Hoeberechts, M.; Bourdeault-Fournier, A.; Schine, J.; Sammarco, P. M. P.
2016-12-01
Cabled ocean observatories, which supply continuous power and Internet connectivity to subsea instruments from the coast to the deep sea, enable us to extend our reach into unexplored regions of the ocean. Sensors become our eyes and ears in this mysterious world, allowing instructors and students to have a virtual presence in an environment that is otherwise inaccessible for human study. Networks of always-on sensors in habitats as diverse as submarine canyons, hypoxic marine basins, and active hydrothermal vent systems provide unprecedented opportunities for students to ask real scientific questions and to answer those questions with real data. Ocean Networks Canada (ONC), an initiative of the University of Victoria, operates coastal and deep ocean cabled observatories, including VENUS and NEPTUNE off the west coast of British Columbia, Canada. ONC supports instructors in the creation of lab and course materials using observatory data. Data from the observatories are freely accessible through a web-based interface, which allows students to continue their investigations beyond the in-class activities. Here, we present three examples of the application of data from Ocean Networks Canada's cabled observatories in post-secondary education: an undergraduate lab in marine ecology in which students investigate the factors affecting spatial variation in benthic animal diversity using ocean sensor data and video footage from cameras on the seafloor; an undergraduate field course in acoustic ethnography in which students incorporate recordings from ONC's hydrophone arrays; and a graduate student "research derby" in which students propose hypotheses that can be investigated using ONC data in whole or in part, with rewards for those successful in publishing the results of their study in a peer-reviewed journal within two years.
Visualizing astronomy data using VRML
NASA Astrophysics Data System (ADS)
Beeson, Brett; Lancaster, Michael; Barnes, David G.; Bourke, Paul D.; Rixon, Guy T.
2004-09-01
Visualisation is a powerful tool for understanding the large data sets typical of astronomical surveys and can reveal unsuspected relationships and anomalous regions of parameter space which may be difficult to find programatically. Visualisation is a classic information technology for optimising scientific return. We are developing a number of generic on-line visualisation tools as a component of the Australian Virtual Observatory project. The tools will be deployed within the framework of the International Virtual Observatory Alliance (IVOA), and follow agreed-upon standards to make them accessible by other programs and people. We and our IVOA partners plan to utilise new information technologies (such as grid computing and web services) to advance the scientific return of existing and future instrumentation. Here we present a new tool - VOlume - which visualises point data. Visualisation of astronomical data normally requires the local installation of complex software, the downloading of potentially large datasets, and very often time-consuming and tedious data format conversions. VOlume enables the astronomer to visualise data using just a web browser and plug-in. This is achieved using IVOA standards which allow us to pass data between Web Services, Java Servlet Technology and Common Gateway Interface programs. Data from a catalogue server can be streamed in eXtensible Mark-up Language format to a servlet which produces Virtual Reality Modeling Language output. The user selects elements of the catalogue to map to geometry and then visualises the result in a browser plug-in such as Cortona or FreeWRL. Other than requiring an input VOTable format file, VOlume is very general. While its major use will likely be to display and explore astronomical source catalogues, it can easily render other important parameter fields such as the sky and redshift coverage of proposed surveys or the sampling of the visibility plane by a rotation-synthesis interferometer.
The Canadian Astronomy Data Centre
NASA Astrophysics Data System (ADS)
Ball, Nicholas M.; Schade, D.; Astronomy Data Centre, Canadian
2011-01-01
The Canadian Astronomy Data Centre (CADC) is the world's largest astronomical data center, holding over 0.5 Petabytes of information, and serving nearly 3000 astronomers worldwide. Its current data collections include BLAST, CFHT, CGPS, FUSE, Gemini, HST, JCMT, MACHO, MOST, and numerous other archives and services. It provides extensive data archiving, curation, and processing expertise, via projects such as MegaPipe, and enables substantial day-to-day collaboration between resident astronomers and computer specialists. It is a stable, powerful, persistent, and properly supported environment for the storage and processing of large volumes of data, a condition that is now absolutely vital for their science potential to be exploited by the community. Through initiatives such as the Common Archive Observation Model (CAOM), the Canadian Virtual Observatory (CVO), and the Canadian Advanced Network for Astronomical Research (CANFAR), the CADC is at the global forefront of advancing astronomical research through improved data services. The CAOM aims to provide homogeneous data access, and hence viable interoperability between a potentially unlimited number of different data collections, at many wavelengths. It is active in the definition of numerous emerging standards within the International Virtual Observatory, and several datasets are already available. The CANFAR project is an initiative to make cloud computing for storage and data-intensive processing available to the community. It does this via a Virtual Machine environment that is equivalent to managing a local desktop. Several groups are already processing science data. CADC is also at the forefront of advanced astronomical data analysis, driven by the science requirements of astronomers both locally and further afield. The emergence of 'Astroinformatics' promises to provide not only utility items like object classifications, but to directly enable new science by accessing previously undiscovered or intractable information. We are currently in the early stages of implementing Astroinformatics tools, such as machine learning, on CANFAR.
Designing Hydrologic Observatories as a Community Resource
NASA Astrophysics Data System (ADS)
Hooper, R. P.; Duncan, J. M.
2004-12-01
CUAHSI convened a workshop in August 2004 to explore what makes a successful hydrologic observatory. Because of their high cost, only a small number of observatories will be operated, at least initially. (CUAHSI has recommended a pilot network of 5 observatories to develop operational experience and an eventual network of approximately 15 sites.) Because hydrologic scientists can work "in their backyard" (unlike oceanographers or astronomers), hydrologic observatories must offer significant advantages over current methods of field work to successfully attract researchers. Twenty-four teams of scientists submitted "prospectuses" of potential locations for hydrologic observatories for consideration by network attendees. These documents (available at http://www.cuahsi.org) were marketing documents to the workshop participants, who voted for a hypothetical network of 5 observatories from the 24 proposed sites. This network formed the basis for a day of discussions on necessary attributes of core data and how to form a network of observatories from a collection of sites that are designed and implemented individually. Key findings included: 1) Core data must be balanced among disciplines. Although the hydrologic cycle is an organizing principle for the design of HOs, physical data cannot dominate the core data; chemical and biological data, although more expensive to collect, must be given equal footing. 2) New data collection must strategically leverage existing data. Resources are always limited, so that a successful HO must carefully target gaps in existing data, as determined by an explicitly stated conceptual model, and fill them rather than designing an independent study. 3) Site logistics must support remote researchers. Significant resources will be necessary for on-site staff to handle housing, transportation, permitting and other needs. 4) Network-level hypotheses are required early in the implementation of HOs. A network will only emerge around hypotheses. Network-level hypotheses are currently being solicited by CUAHSI to help inform proposing team of important community questions.
Gabyzon, M Elboim; Engel-Yeger, B; Tresser, S; Springer, S
2016-01-01
Virtual reality gaming environments may be used as a supplement to the motor performance assessment tool box by providing clinicians with quantitative information regarding motor performance in terms of movement accuracy and speed, as well as sensory motor integration under different levels of dual tasking. To examine the feasibility of using the virtual reality game `Timocco' as an assessment tool for evaluating goal-directed hand movements among typically developing children. In this pilot study, 47 typically-developing children were divided into two age groups, 4-6 years old and 6-8 years old. Performance was measured using two different virtual environment games (Bubble Bath and Falling Fruit), each with two levels of difficulty. Discriminative validity (age effect) was examined by comparing the performance of the two groups, and by comparing the performance between levels of the games for each group (level effect). Test-retest reliability was examined by reassessing the older children 3-7 days after the first session. The older children performed significantly better in terms of response time, action time, game duration, and efficiency in both games compared to the younger children. Both age groups demonstrated poorer performance at the higher game level in the Bubble Bath game compared to the lower level. A similar level effect was found in the Falling Fruit game for both age groups in response time and efficiency, but not in action time. The performance of the older children was not significantly different between the two sessions at both game levels. The discriminative validity and test-retest reliability indicate the feasibility of using the Timocco virtual reality game as a tool for assessing goal-directed hand movements in children. Further studies should examine its feasibility for use in children with disabilities.
Allaire, Joanna L
2015-09-01
Dental hygiene educators must determine which educational practices best promote critical thinking, a quality necessary to translate knowledge into sound clinical decision making. The aim of this small pilot study was to determine whether virtual patient simulation had an effect on the critical thinking of dental hygiene students. A pretest-posttest design using the Health Science Reasoning Test was used to evaluate the critical thinking skills of senior dental hygiene students at The University of Texas School of Dentistry at Houston Dental Hygiene Program before and after their experience with computer-based patient simulation cases. Additional survey questions sought to identify the students' perceptions of whether the experience had helped develop their critical thinking skills and improved their ability to provide competent patient care. A convenience sample of 31 senior dental hygiene students completed both the pretest and posttest (81.5% of total students in that class); 30 senior dental hygiene students completed the survey on perceptions of the simulation (78.9% response rate). Although the results did not show a significant increase in mean scores, the students reported feeling that the use of virtual patients was an effective teaching method to promote critical thinking, problem-solving, and confidence in the clinical realm. The results of this pilot study may have implications to support the use of virtual patient simulations in dental hygiene education. Future research could include a larger controlled study to validate findings from this study.
White Dwarf Model Atmospheres: Synthetic Spectra for Supersoft Sources
NASA Astrophysics Data System (ADS)
Rauch, Thomas
2013-01-01
The Tübingen NLTE Model-Atmosphere Package (TMAP) calculates fully metal-line blanketed white dwarf model atmospheres and spectral energy distributions (SEDs) at a high level of sophistication. Such SEDs are easily accessible via the German Astrophysical Virtual Observatory (GAVO) service TheoSSA. We discuss applications of TMAP models to (pre) white dwarfs during the hottest stages of their stellar evolution, e.g. in the parameter range of novae and supersoft sources.
Planetary Sciences Interoperability at VO Paris Data Centre
NASA Astrophysics Data System (ADS)
Le Sidaner, P.; Aboudarham, J.; Birlan, M.; Briot, D.; Bonnin, X.; Cecconi, B.; Chauvin, C.; Erard, S.; Henry, F.; Lamy, L.; Mancini, M.; Normand, J.; Popescu, F.; Roques, F.; Savalle, R.; Schneider, J.; Shih, A.; Thuillot, W.; Vinatier, S.
2015-10-01
The Astronomy community has been developing interoperability since more than 10 years, by standardizing data access, data formats, and metadata. This international action is led by the International Virtual Observatory Alliance (IVOA). Observatoire de Paris is an active participant in this project. All actions on interoperability, data and service provision are centralized in and managed by VOParis Data Centre (VOPDC). VOPDC is a coordinated project from all scientific departments of Observatoire de Paris..
1973-08-01
SL3-115-1837 (August 1973) --- Astronaut Owen K. Garriott, Skylab 3 science pilot, retrieves an imagery experiment from the Apollo Telescope Mount (ATM) attached to the Skylab in Earth orbit. Garriott’s was a special extravehicular activity (EVA) to remove from the attached ATM/orbiting observatory magazines which will be returned to Earth when the second manning of the Skylab space station has been completed. Photo credit: NASA
2007-09-26
NASA Dryden Flight Research Center's two T-38A Talon mission support aircraft flew together for the first time on Sept. 26, 2007 while conducting pitot-static airspeed calibration checks during routine pilot proficiency flights. The two aircraft, flown by NASA research pilots Kelly Latimer and Frank Batteas, joined up with a NASA Dryden F/A-18 flown by NASA research pilot Dick Ewers to fly the airspeed calibrations at several speeds and altitudes that would be flown by the Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP during its initial flight test phase. The T-38s, along with F/A-18s, serve in a safety chase role during those test missions, providing critical instrument and visual monitoring for the flight test series.
Navarro-Haro, María V; López-Del-Hoyo, Yolanda; Campos, Daniel; Linehan, Marsha M; Hoffman, Hunter G; García-Palacios, Azucena; Modrego-Alarcón, Marta; Borao, Luis; García-Campayo, Javier
2017-01-01
Regular mindfulness practice benefits people both mentally and physically, but many populations who could benefit do not practice mindfulness. Virtual Reality (VR) is a new technology that helps capture participants' attention and gives users the illusion of "being there" in the 3D computer generated environment, facilitating sense of presence. By limiting distractions from the real world, increasing sense of presence and giving people an interesting place to go to practice mindfulness, Virtual Reality may facilitate mindfulness practice. Traditional Dialectical Behavioral Therapy (DBT®) mindfulness skills training was specifically designed for clinical treatment of people who have trouble focusing attention, however severe patients often show difficulties or lack of motivation to practice mindfulness during the training. The present pilot study explored whether a sample of mindfulness experts would find useful and recommend a new VR Dialectical Behavioral Therapy (DBT®) mindfulness skills training technique and whether they would show any benefit. Forty four participants attending a mindfulness conference put on an Oculus Rift DK2 Virtual Reality helmet and floated down a calm 3D computer generated virtual river while listening to digitized DBT® mindfulness skills training instructions. On subjective questionnaires completed by the participants before and after the VR DBT® mindfulness skills training session, participants reported increases/improvements in state of mindfulness, and reductions in negative emotional states. After VR, participants reported significantly less sadness, anger, and anxiety, and reported being significantly more relaxed. Participants reported a moderate to strong illusion of going inside the 3D computer generated world (i.e., moderate to high "presence" in VR) and showed high acceptance of VR as a technique to practice mindfulness. These results show encouraging preliminary evidence of the feasibility and acceptability of using VR to practice mindfulness based on clinical expert feedback. VR is a technology with potential to increase computerized dissemination of DBT® skills training modules. Future research is warranted.
Navarro-Haro, María V.; López-del-Hoyo, Yolanda; Campos, Daniel; Linehan, Marsha M.; Hoffman, Hunter G.; García-Palacios, Azucena; Modrego-Alarcón, Marta; Borao, Luis; García-Campayo, Javier
2017-01-01
Regular mindfulness practice benefits people both mentally and physically, but many populations who could benefit do not practice mindfulness. Virtual Reality (VR) is a new technology that helps capture participants’ attention and gives users the illusion of “being there” in the 3D computer generated environment, facilitating sense of presence. By limiting distractions from the real world, increasing sense of presence and giving people an interesting place to go to practice mindfulness, Virtual Reality may facilitate mindfulness practice. Traditional Dialectical Behavioral Therapy (DBT®) mindfulness skills training was specifically designed for clinical treatment of people who have trouble focusing attention, however severe patients often show difficulties or lack of motivation to practice mindfulness during the training. The present pilot study explored whether a sample of mindfulness experts would find useful and recommend a new VR Dialectical Behavioral Therapy (DBT®) mindfulness skills training technique and whether they would show any benefit. Forty four participants attending a mindfulness conference put on an Oculus Rift DK2 Virtual Reality helmet and floated down a calm 3D computer generated virtual river while listening to digitized DBT® mindfulness skills training instructions. On subjective questionnaires completed by the participants before and after the VR DBT® mindfulness skills training session, participants reported increases/improvements in state of mindfulness, and reductions in negative emotional states. After VR, participants reported significantly less sadness, anger, and anxiety, and reported being significantly more relaxed. Participants reported a moderate to strong illusion of going inside the 3D computer generated world (i.e., moderate to high “presence” in VR) and showed high acceptance of VR as a technique to practice mindfulness. These results show encouraging preliminary evidence of the feasibility and acceptability of using VR to practice mindfulness based on clinical expert feedback. VR is a technology with potential to increase computerized dissemination of DBT® skills training modules. Future research is warranted. PMID:29166665
O'Connor, Mary-Frances; Arizmendi, Brian J; Kaszniak, Alfred W
2014-08-01
Caregiver support groups effectively reduce stress from caring for someone with dementia. These same demands can prevent participation in a group. The present feasibility study investigated a virtual online caregiver support group to bring the support group into the home. While online groups have been shown to be helpful, submissions to a message board (vs. live conversation) can feel impersonal. By using avatars, participants interacted via real-time chat in a virtual environment in an 8-week support group. Data indicated lower levels of perceived stress, depression and loneliness across participants. Importantly, satisfaction reports also indicate that caregivers overcame the barriers to participation, and had a strong sense of the group's presence. This study provides the framework for an accessible and low cost online support group for a dementia caregiver. The study demonstrates the feasibility of interactive group in a virtual environment for engaging members in meaningful interaction. Copyright © 2014 Elsevier Inc. All rights reserved.
Automated telescope scheduling
NASA Technical Reports Server (NTRS)
Johnston, Mark D.
1988-01-01
With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.
NASA Astrophysics Data System (ADS)
Kauristie, K.; Mälkki, A.; Pulkkinen, A.; Nevanlinna, H.; Ketola, A.; Tulkki, V.; Raita, T.; Blanco, A.
2004-12-01
European Space Agency is currently supporting 17 Service Development Activities (SDA) within its Space Weather Pilot Project. Auroras Now!, one of the SDAs, has been operated during November 2003 - March 2004 as its pilot season. The service includes a public part freely accessible in Internet (http://aurora.fmi.fi) and a private part visible only to the customers of two hotels in the Finnish Lapland through the hotels' internal TV-systems. The nowcasting system is based on the magnetic recordings of two geophysical observatories, Sodankylä (SOD, MLAT ~64 N) and Nurmijärvi (NUR, MLAT ~57 N). The probability of auroral occurrence is continuously characterised with an empirically determined three-level scale. The index is updated once per hour and based on the magnetic field variations recorded at the observatories. During dark hours the near-real time auroral images acquired at SOD are displayed. The hotel service also includes cloudiness predictions for the coming night. During the pilot season the reliability of the three-level magnetic alarm system was weekly evaluated by comparing its prediction with auroral observations by the nearby all-sky camera. Successful hits and failures were scored according to predetermined rules. The highest credit points when it managed to spot auroras in a timely manner and predict their brightness correctly. Maximum penalty points were given when the alarm missed clear bright auroras lasting for more than one hour. In this presentation we analyse the results of the evaluation, present some ideas to further sharpen the procedure, and discuss more generally the correlation between local auroral and magnetic activity.
An experiment on fear of public speaking in virtual reality.
Pertaub, D P; Slater, M; Barker, C
2001-01-01
Can virtual reality exposure therapy be used to treat people with social phobia? To answer this question it is vital to known if people will respond to virtual humans (avatars) in a virtual social setting in the same way they would to real humans. If someone is extremely anxious with real people, will they also be anxious when faced with simulated people, despite knowing that the avatars are computer generated? In [17] we described a small pilot study that placed 10 people before a virtual audience. The purpose was to assess the extent to which social anxiety, specifically fear of public speaking, was induced by the virtual audience and the extent of influence of degree of immersion (head mounted display or desktop monitor. The current paper describes a follow up study conducted with 40 subjects and the results clearly show that not only is social anxiety induced by the audience, but the degree of anxiety experienced is directly related to the type of virtual audience feedback the speaker receives. In particular, a hostile negative audience scenario was found to generate strong affect in speakers, regardless of whether or not they normally suffered from fear of public speaking.
AstroCloud, a Cyber-Infrastructure for Astronomy Research: Cloud Computing Environments
NASA Astrophysics Data System (ADS)
Li, C.; Wang, J.; Cui, C.; He, B.; Fan, D.; Yang, Y.; Chen, J.; Zhang, H.; Yu, C.; Xiao, J.; Wang, C.; Cao, Z.; Fan, Y.; Hong, Z.; Li, S.; Mi, L.; Wan, W.; Wang, J.; Yin, S.
2015-09-01
AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on CloudStack, an open source software, we set up the cloud computing environment for AstroCloud Project. It consists of five distributed nodes across the mainland of China. Users can use and analysis data in this cloud computing environment. Based on GlusterFS, we built a scalable cloud storage system. Each user has a private space, which can be shared among different virtual machines and desktop systems. With this environments, astronomer can access to astronomical data collected by different telescopes and data centers easily, and data producers can archive their datasets safely.
NASA Astrophysics Data System (ADS)
Duffy, Christopher; Leonard, Lorne; Shi, Yuning; Bhatt, Gopal; Hanson, Paul; Gil, Yolanda; Yu, Xuan
2015-04-01
Using a series of recent examples and papers we explore some progress and potential for virtual (cyber-) collaboration inspired by access to high resolution, harmonized public-sector data at continental scales [1]. The first example describes 7 meso-scale catchments in Pennsylvania, USA where the watershed is forced by climate reanalysis and IPCC future climate scenarios (Intergovernmental Panel on Climate Change). We show how existing public-sector data and community models are currently able to resolve fine-scale eco-hydrologic processes regarding wetland response to climate change [2]. The results reveal that regional climate change is only part of the story, with large variations in flood and drought response associated with differences in terrain, physiography, landuse and/or hydrogeology. The importance of community-driven virtual testbeds are demonstrated in the context of Critical Zone Observatories, where earth scientists from around the world are organizing hydro-geophysical data and model results to explore new processes that couple hydrologic models with land-atmosphere interaction, biogeochemical weathering, carbon-nitrogen cycle, landscape evolution and ecosystem services [3][4]. Critical Zone cyber-research demonstrates how data-driven model development requires a flexible computational structure where process modules are relatively easy to incorporate and where new data structures can be implemented [5]. From the perspective of "Big-Data" the paper points out that extrapolating results from virtual observatories to catchments at continental scales, will require centralized or cloud-based cyberinfrastructure as a necessary condition for effectively sharing petabytes of data and model results [6]. Finally we outline how innovative cyber-science is supporting earth-science learning, sharing and exploration through the use of on-line tools where hydrologists and limnologists are sharing data and models for simulating the coupled impacts of catchment hydrology on lake eco-hydrology (NSF-INSPIRE, IIS1344272). The research attempts to use a virtual environment (www.organicdatascience.org) to break down disciplinary barriers and support emergent communities of science. [1] Source: Leonard and Duffy, 2013, Environmental Modelling & Software; [2] Source: Yu et al, 2014, Computers in Geoscience; [3] Source: Duffy et al, 2014, Procedia Earth and Planetary Science; [4] Source: Shi et al, Journal of Hydrometeorology, 2014; [5] Source: Bhatt et al, 2014, Environmental Modelling & Software ; [6] Leonard and Duffy, 2014, Environmental Modelling and Software.
NASA Technical Reports Server (NTRS)
1999-01-01
The training for the crew members of the STS-96 Discovery Shuttle is presented. Crew members are Kent Rominger, Commander; Rick Husband, Pilot; Mission Specialists, Tamara Jernigan, Ellen Ochoa, and Daniel Barry; Julie Payette, Mission Specialist (CSA); and Valery Ivanovich Tokarev, Mission Specialist (RSA). Scenes show the crew sitting and talking about the Electrical Power System; actively taking part in virtual training in the EVA Training VR (Virtual Reality) Lab; using the Orbit Space Vision Training System; being dropped in water as a part of the Bail-Out Training Program; and taking part in the crew photo session.
A serious gaming/immersion environment to teach clinical cancer genetics.
Nosek, Thomas M; Cohen, Mark; Matthews, Anne; Papp, Klara; Wolf, Nancy; Wrenn, Gregg; Sher, Andrew; Coulter, Kenneth; Martin, Jessica; Wiesner, Georgia L
2007-01-01
We are creating an interactive, simulated "Cancer Genetics Tower" for the self-paced learning of Clinical Cancer Genetics by medical students (go to: http://casemed.case.edu/cancergenetics). The environment uses gaming theory to engage the students into achieving specific learning objectives. The first few levels contain virtual laboratories where students achieve the basic underpinnings of Cancer Genetics. The next levels apply these principles to clinical practice. A virtual attending physician and four virtual patients, available for questioning through virtual video conferencing, enrich each floor. The pinnacle clinical simulation challenges the learner to integrate all information and demonstrate mastery, thus "winning" the game. A pilot test of the program by 17 medical students yielded very favorable feedback; the students found the Tower a "great way to teach", it held their attention, and it made learning fun. A majority of the students preferred the Tower over other resources to learn Cancer Genetics.
Designing for Virtual Windows in a Deep Space Habitat
NASA Technical Reports Server (NTRS)
Howe, A. Scott; Howard, Robert L.; Moore, Nathan; Amoroso, Michael
2013-01-01
This paper discusses configurations and test analogs toward the design of a virtual window capability in a Deep Space Habitat. Long-duration space missions will require crews to remain in the confines of a spacecraft for extended periods of time, with possible harmful effects if a crewmember cannot cope with the small habitable volume. Virtual windows expand perceived volume using a minimal amount of image projection equipment and computing resources, and allow a limited immersion in remote environments. Uses for the virtual window include: live or augmented reality views of the external environment; flight deck, piloting, observation, or other participation in remote missions through live transmission of cameras mounted to remote vehicles; pre-recorded background views of nature areas, seasonal occurrences, or cultural events; and pre-recorded events such as birthdays, anniversaries, and other meaningful events prepared by ground support and families of the crewmembers.
STS-109/Columbia/HST Pre-Launch Activities/Launch On Orbit-Landing-Crew Egress
NASA Technical Reports Server (NTRS)
2002-01-01
The STS-109 Space Shuttle Mission begins with introduction of the seven crew members: Commander Scott D. Altman, pilot Duane G. Carey, payload commander John M. Grunsfeld, mission specialists: Nancy J. Currie, James H. Newman, Richard M. Linnehan, and Michael J. Massimino. Spacewalking NASA astronauts revive the Hubble Space Telescope's (HST) sightless infrared eyes, outfitting the observatory with an experimental refrigerator designed to resuscitate a comatose camera. During this video presentation John Grunsfeld and Rick Linnehan bolt the new cryogenic cooler inside HST and hung a huge radiator outside the observatory and replaces the telescope power switching station. In the video we can see how the shuttle robot arm operator, Nancy Currie, releases the 13-ton HST. Also, the landing of the Space Shuttle Columbia is presented.
Pereira, D; Gomes, P; Faria, S; Cruz-Correia, R; Coimbra, M
2016-08-01
Auscultation is currently both a powerful screening tool, providing a cheap and quick initial assessment of a patient's clinical condition, and a hard skill to master. The teaching of auscultation in Universities is today reduced to an unsuitable number of hours. Virtual patient simulators can potentially mitigate this problem, by providing an interesting high-quality alternative to teaching with real patients or patient simulators. In this paper we evaluate the pedagogical impact of using a virtual patient simulation technology in a short workshop format for medical students, training them to detect cardiac pathologies. Results showed a significant improvement (+16%) in the differentiation between normal and pathological cases, although longer duration formats seem to be needed to accurately identify specific pathologies.
Virtual hospital--a computer-aided platform to evaluate the sense of direction.
Jiang, Ching-Fen; Li, Yuan-Shyi
2007-01-01
This paper presents a computer-aided platform, named Virtual Hospital (VH), to evaluate the wayfinding ability that is found impaired in senile people with early dementia. The development of the VH takes the advantage of virtual reality technology to make the evaluation of the sense of direction more convenient and accurate then the conventional way. A pilot study was carried out to test its feasibility in differentiating the sense of direction between different genders. The results with significant differences in the response time (p<0.05) and the pointing error (p<0.01) between genders suggest the potential of the VH for clinical uses. Further improvement on the human-machine interface is necessary to make it easy for geriatric people to use.
The Relationship between Virtual Self Similarity and Social Anxiety.
Aymerich-Franch, Laura; Kizilcec, René F; Bailenson, Jeremy N
2014-01-01
In virtual reality (VR), it is possible to embody avatars that are dissimilar to the physical self. We examined whether embodying a dissimilar self in VR would decrease anxiety in a public speaking situation. We report the results of an observational pilot study and two laboratory experiments. In the pilot study (N = 252), participants chose an avatar to use in a public speaking task. Trait public speaking anxiety correlated with avatar preference, such that anxious individuals preferred dissimilar self-representations. In Study 1 (N = 82), differences in anxiety during a speech in front of a virtual audience were compared among participants embodying an assigned avatar whose face was identical to their real self, an assigned avatar whose face was other than their real face, or embodied an avatar of their choice. Anxiety differences were not significant, but there was a trend for lower anxiety with the assigned dissimilar avatar compared to the avatar looking like the real self. Study 2 (N = 105) was designed to explicate that trend, and further investigated anxiety differences with an assigned self or dissimilar avatar. The assigned dissimilar avatar reduced anxiety relative to the assigned self avatar for one measure of anxiety. We discuss implications for theories of self-representation as well as for applied uses of VR to treat social anxiety.
The Relationship between Virtual Self Similarity and Social Anxiety
Aymerich-Franch, Laura; Kizilcec, René F.; Bailenson, Jeremy N.
2014-01-01
In virtual reality (VR), it is possible to embody avatars that are dissimilar to the physical self. We examined whether embodying a dissimilar self in VR would decrease anxiety in a public speaking situation. We report the results of an observational pilot study and two laboratory experiments. In the pilot study (N = 252), participants chose an avatar to use in a public speaking task. Trait public speaking anxiety correlated with avatar preference, such that anxious individuals preferred dissimilar self-representations. In Study 1 (N = 82), differences in anxiety during a speech in front of a virtual audience were compared among participants embodying an assigned avatar whose face was identical to their real self, an assigned avatar whose face was other than their real face, or embodied an avatar of their choice. Anxiety differences were not significant, but there was a trend for lower anxiety with the assigned dissimilar avatar compared to the avatar looking like the real self. Study 2 (N = 105) was designed to explicate that trend, and further investigated anxiety differences with an assigned self or dissimilar avatar. The assigned dissimilar avatar reduced anxiety relative to the assigned self avatar for one measure of anxiety. We discuss implications for theories of self-representation as well as for applied uses of VR to treat social anxiety. PMID:25477810
Wijma, Eva M; Veerbeek, Marjolein A; Prins, Marleen; Pot, Anne Margriet; Willemse, Bernadette M
2017-07-10
Informal caregivers often experience psychological distress due to the changing functioning of the person with dementia they care for. Improved understanding of the person with dementia reduces psychological distress. To enhance understanding and empathy in caregivers, an innovative technology virtual reality intervention Through the D'mentia Lens (TDL) was developed to experience dementia, consisting of a virtual reality simulation movie and e-course. A pilot study of TDL was conducted. A pre-test-post-test design was used. Informal caregivers filled out questionnaires assessing person-centeredness, empathy, perceived pressure from informal care, perceived competence and quality of the relationship. At post-test, additional questions about TDL's feasibility were asked. Thirty-five caregivers completed the pre-test and post-test. Most participants were satisfied with TDL and stated that TDL gave more insight in the perception of the person with dementia. The simulation movie was graded 8.03 out of 10 and the e-course 7.66. Participants significantly improved in empathy, confidence in caring for the person with dementia, and positive interactions with the person with dementia. TDL is feasible for informal caregivers and seems to lead to understanding of and insight in the experience of people with dementia. Therefore, TDL could support informal caregivers in their caregiving role.
John, Sheila; Premila, M; Javed, Mohd; Vikas, G; Wagholikar, Amol
2015-01-01
To inform about a very unique and first of its kind telehealth pilot study in India that has provided virtual telehealth consultation to eye care patients in low resource at remote villages. Provision of Access to eye care services in remote population is always challenging due to pragmatic reasons. Advances in Telehealth technologies have provided an opportunity to improve access to remote population. However, current Telehealth technologies are limited to face-to-face video consultation only. We inform about a pilot study that illustrates real-time imaging access to ophthalmologists. Our innovative software led technology solution allowed screening of patients with varying ocular conditions. Eye camps were conducted in 2 districts in South India over a 12-month period in 2014. Total of 196 eye camps were conducted. Total of 19,634 patients attended the eye camps. Innovative software was used to conduct consultation with the ophthalmologist located in the city hospital. The software enabled virtual visit and allowed instant sharing of fundus camera images for assessment and diagnosis. About 71% of the patients were found to have Refractive Error problems, 15% of them were found to have cataract, 7% of the patients were diagnosed to have Retina problems and 7% of the patients were found to have other ocular diseases. The patients requiring cataract surgery were immediately transferred to city hospital for treatment. Software led assessment of fundus camera images assisted in identifying retinal eye diseases. Our real-time virtual visit software assisted in specialist care provision and illustrated a novel tele health solution for low resource population.
Virtual decoupling flight control via real-time trajectory synthesis and tracking
NASA Astrophysics Data System (ADS)
Zhang, Xuefu
The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.
NASA Astrophysics Data System (ADS)
Mickaelian, A. M.
2014-10-01
A report is given on the achievements of the Armenian astronomy during the last years and on the present activities of the Armenian Astronomical Society (ArAS). ArAS membership, ArAS electronic newsletters (ArASNews), ArAS webpage, international collaboration, Armenian Virtual Observatory (ArVO), membership in international organizations, grants, prizes, meetings, summer schools, astronomical Olympiads, other matters related to astronomical education, archaeoastronomy, astronomy outreach and ArAS further projects are discussed.
NASA Astrophysics Data System (ADS)
Kokott, Wolfgang
The Astronomisches Jahrbuch, published from 1776 onwards by the Royal Academy of Sciences at Berlin, was to include ``a collection of the most recent observations, news, remarks and contributions''. Established by J.H. Lambert and edited for five decades by J.E. Bode, this almanac became from the start a high ranking international publication, with Bode's modest Berlin Observatory serving as a clearinghouse of information originating from virtually all European countries.
New NED XML/VOtable Services and Client Interface Applications
NASA Astrophysics Data System (ADS)
Pevunova, O.; Good, J.; Mazzarella, J.; Berriman, G. B.; Madore, B.
2005-12-01
The NASA/IPAC Extragalactic Database (NED) provides data and cross-identifications for over 7 million extragalactic objects fused from thousands of survey catalogs and journal articles. The data cover all frequencies from radio through gamma rays and include positions, redshifts, photometry and spectral energy distributions (SEDs), sizes, and images. NED services have traditionally supplied data in HTML format for connections from Web browsers, and a custom ASCII data structure for connections by remote computer programs written in the C programming language. We describe new services that provide responses from NED queries in XML documents compliant with the international virtual observatory VOtable protocol. The XML/VOtable services support cone searches, all-sky searches based on object attributes (survey names, cross-IDs, redshifts, flux densities), and requests for detailed object data. Initial services have been inserted into the NVO registry, and others will follow soon. The first client application is a Style Sheet specification for rendering NED VOtable query results in Web browsers that support XML. The second prototype application is a Java applet that allows users to compare multiple SEDs. The new XML/VOtable output mode will also simplify the integration of data from NED into visualization and analysis packages, software agents, and other virtual observatory applications. We show an example SED from NED plotted using VOPlot. The NED website is: http://nedwww.ipac.caltech.edu.
Virtual Global Magnetic Observatory - Concept and Implementation
NASA Astrophysics Data System (ADS)
Papitashvili, V.; Clauer, R.; Petrov, V.; Saxena, A.
2002-12-01
The existing World Data Centers (WDC) continue to serve excellently the worldwide scientific community in providing free access to a huge number of global geophysical databases. Various institutions at different geographic locations house these Centers, mainly organized by a scientific discipline. However, population of the Centers requires mandatory or voluntary submission of locally collected data. Recently many digital geomagnetic datasets have been placed on the World Wide Web and some of these sets have not been even submitted to any data center. This has created an urgent need for more sophisticated search engines capable of identifying geomagnetic data on the Web and then retrieving a certain amount of data for the scientific analysis. In this study, we formulate a concept of the virtual global magnetic observatory (VGMO) that currently uses a pre-set list of the Web-based geomagnetic data holders (including WDC) as retrieving a requested case-study interval. Saving the retrieved data locally over the multiple requests, a VGMO user begins to build his/her own data sub-center, which does not need to search the Web if the newly requested interval will be within a span of the earlier retrieved data. At the same time, this self-populated sub-center becomes available to other VGMO users down on the requests chain. Some aspects of the Web``crawling'' helping to identify the newly ``webbed'' digital geomagnetic data are also considered.
Virtual Observatory Interfaces to the Chandra Data Archive
NASA Astrophysics Data System (ADS)
Tibbetts, M.; Harbo, P.; Van Stone, D.; Zografou, P.
2014-05-01
The Chandra Data Archive (CDA) plays a central role in the operation of the Chandra X-ray Center (CXC) by providing access to Chandra data. Proprietary interfaces have been the backbone of the CDA throughout the Chandra mission. While these interfaces continue to provide the depth and breadth of mission specific access Chandra users expect, the CXC has been adding Virtual Observatory (VO) interfaces to the Chandra proposal catalog and observation catalog. VO interfaces provide standards-based access to Chandra data through simple positional queries or more complex queries using the Astronomical Data Query Language. Recent development at the CDA has generalized our existing VO services to create a suite of services that can be configured to provide VO interfaces to any dataset. This approach uses a thin web service layer for the individual VO interfaces, a middle-tier query component which is shared among the VO interfaces for parsing, scheduling, and executing queries, and existing web services for file and data access. The CXC VO services provide Simple Cone Search (SCS), Simple Image Access (SIA), and Table Access Protocol (TAP) implementations for both the Chandra proposal and observation catalogs within the existing archive architecture. Our work with the Chandra proposal and observation catalogs, as well as additional datasets beyond the CDA, illustrates how we can provide configurable VO services to extend core archive functionality.
NASA Astrophysics Data System (ADS)
Berthier, J.; Carry, B.; Vachier, F.; Eggl, S.; Santerne, A.
2016-05-01
All the fields of the extended space mission Kepler/K2 are located within the ecliptic. Many Solar system objects thus cross the K2 stellar masks on a regular basis. We aim at providing to the entire community a simple tool to search and identify Solar system objects serendipitously observed by Kepler. The sky body tracker (SkyBoT) service hosted at Institut de mécanique céleste et de calcul des éphémérides provides a Virtual Observatory compliant cone search that lists all Solar system objects present within a field of view at a given epoch. To generate such a list in a timely manner, ephemerides are pre-computed, updated weekly, and stored in a relational data base to ensure a fast access. The SkyBoT web service can now be used with Kepler. Solar system objects within a small (few arcminutes) field of view are identified and listed in less than 10 s. Generating object data for the entire K2 field of view (14°) takes about a minute. This extension of the SkyBoT service opens new possibilities with respect to mining K2 data for Solar system science, as well as removing Solar system objects from stellar photometric time series.
VOClient: Application Integration in the Virtual Observatory
NASA Astrophysics Data System (ADS)
Fitzpatrick, Michael J.; Tody, D.
2007-12-01
We present VOClient, a new software package that provides a high-level, easy-to-use, programmable interface between desktop applications and the distributed VO framework, providing access to remote VO data and services, reference implementations for VO data-providers and end-user applications. Applications have traditionally been written to deal directly with local images, catalogs or spectra; VOClient allows these applications to use remote VO data and services without requiring a developer to know the details of the underlying and evolving VO technologies. The programmable interface provides equivalent functionality for a wide variety of both legacy and modern development languages and environments and can be easily extended to add new functionality. The server component of the project provides a reference implementation and toolkit which can be used to build VO data services, and the commandline tools provide ready-to-use applications to access VO data and services from the desktop or scripting environment. The use of VOClient to integrate VO technologies with legacy systems such as IRAF is examined as a case-study, and the use of these techniques in other environments, especially their applicability to legacy code and systems, is also discussed. VOClient is meant both for the astronomer wishing to revive an old and trusted task with new VO capabiities, as well as the institutional project providing data or services to the Virtual Observatory.
NASA Technical Reports Server (NTRS)
Benson, Robert F.; Fung, Shing F.
2008-01-01
Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).
VizieR Online Data Catalog: CNSS pilot survey (Mooley+, 2016)
NASA Astrophysics Data System (ADS)
Mooley, K. P.; Hallinan, G.; Bourke, S.; Horesh, A.; Myers, S. T.; Frail, D. A.; Kulkarni, S. R.; Levitan, D. B.; Kasliwal, M. M.; Cenko, S. B.; Cao, Y.; Bellm, E.; Laher, R. R.
2017-11-01
The radio observations were carried out across four epochs (E1-E4) with the Jansky VLA in B array configuration, and S band was chosen to maximize survey speed. The optical survey, designed to be contemporaneous with the radio survey, was carried out with the 1.2-m (48-inch) Samuel Oschin Telescope at the Palomar Observatory as part of the Palomar Transient Factory (PTF). (1 data file).
1999-02-09
Before leaving KSC, STS-93 Commander Eileen M. Collins poses by a T-38 jet trainer aircraft at the Shuttle Landing Facility. She and the rest of the STS-93 crew spent two days visiting mission-related sites, including the Vertical Processing Facility where the Chandra X-ray Observatory is undergoing testing. STS-93 is scheduled to launch July 9 aboard Space Shuttle Columbia and has the primary mission of the deployment of the observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Collins is the first woman to serve as commander of a Space Shuttle. Other STS-93 crew members are Pilot Jeffrey S. Ashby and Mission Specialists Catherine G. Coleman, Steven A. Hawley, and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES)
Chow, Ronald
2016-11-01
Traditional classroom teaching is the standard of education. However, there may be some students who feel uncomfortable approaching their teachers and may feel more at ease if they ask for assistance from their peers. There are two types of student-to-student tutoring methods that are supplements to classroom learning: peer tutoring between same-age students and cross-age tutoring between different-age children. Cross-age tutoring programs in which the tutor is 2-3 years older than the tutee have been reported to be more effective than those between same-age students in promoting student responsibility, empowerment and academic performance. A pilot online cross-age tutoring program was launched in September 2014 at Crescent School. A new website was designed, created and implemented with the permission and regular monitoring of the Student Services faculty for the online program - Crescent School Virtual Learning (vLearning). The program was well received and will undergo evaluation in the future.
1994-05-01
actuel. Trois types de contraintes ont pu 8tre distingu6s A chaque avion pr6sent dans le secteur a~rien du contr~leur, on associe toutes les...assurant la s6curit6 des vols. simulateur implique en g6n6ral la prdsencc dc trois catdgories d’acteurs Los 6changyes entre contr~leur et pilote se...d’informations suivants interventions en phonic des pilotes d’avions presents dans le secteur de contr-blc. Pour cc faire, 1) utilisant des liaisons de donn
Effects of Promethazine on Performance During Simulated Shuttle Landings
NASA Technical Reports Server (NTRS)
Harm, D. L.; Putcha, L.; Sekula, B. K.; Berens, K. L.
1999-01-01
Promethazine (PMZ) is the antimotion sickness drug of choice in the U.S. Space Shuttle program; however, virtually nothing is known about the bioavailability and performance effects of this drug in the microgravity environment. PMZ has detrimental side effects on human performance on Earth that could affect Shuttle operations. In a recent ground-based study we examined: 1) the effects of promethazine (PMZ) on Shuttle landing performance using the portable inflight landing operations trainer (PILOT), and 2) saliva and urine samples to determine the pharmacokinetics of PMZ. The PILOT performance data is presented here.
Youngblood, Patricia; Harter, Phillip M; Srivastava, Sakti; Moffett, Shannon; Heinrichs, Wm LeRoy; Dev, Parvati
2008-01-01
Training interdisciplinary trauma teams to work effectively together using simulation technology has led to a reduction in medical errors in emergency department, operating room, and delivery room contexts. High-fidelity patient simulators (PSs)-the predominant method for training healthcare teams-are expensive to develop and implement and require that trainees be present in the same place at the same time. In contrast, online computer-based simulators are more cost effective and allow simultaneous participation by students in different locations and time zones. In this pilot study, the researchers created an online virtual emergency department (Virtual ED) for team training in crisis management, and compared the effectiveness of the Virtual ED with the PS. We hypothesized that there would be no difference in learning outcomes for graduating medical students trained with each method. In this pilot study, we used a pretest-posttest control group, experimental design in which 30 subjects were randomly assigned to either the Virtual ED or the PS system. In the Virtual ED each subject logged into the online environment and took the role of a team member. Four-person teams worked together in the Virtual ED, communicating in real time with live voice over Internet protocol, to manage computer-controlled patients who exhibited signs and symptoms of physical trauma. Each subject had the opportunity to be the team leader. The subjects' leadership behavior as demonstrated in both a pretest case and a posttest case was assessed by 3 raters, using a behaviorally anchored scale. In the PS environment, 4-person teams followed the same research protocol, using the same clinical scenarios in a Simulation Center. Guided by the Emergency Medicine Crisis Resource Management curriculum, both the Virtual ED and the PS groups applied the basic principles of team leadership and trauma management (Advanced Trauma Life Support) to manage 6 trauma cases-a pretest case, 4 training cases, and a posttest case. The subjects in each group were assessed individually with the same simulation method that they used for the training cases. Subjects who used either the Virtual ED or the PS showed significant improvement in performance between pretest and posttest cases (P < 0.05). In addition, there was no significant difference in subjects' performance between the 2 types of simulation, suggesting that the online Virtual ED may be as effective for learning team skills as the PS, the method widely used in Simulation Centers. Data on usability and attitudes toward both simulation methods as learning tools were equally positive. This study shows the potential value of using virtual learning environments for developing medical students' and resident physicians' team leadership and crisis management skills.
1972-04-27
The Apollo 16 Command Module splashed down in the Pacific Ocean on April 27, 1972 after an 11-day moon exploration mission. The sixth manned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission Commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 continued the broad-scale geological, geochemical, and geophysical mapping of the Moon’s crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used.
1972-04-18
This view of the back side of the Moon was captured by the Apollo 16 mission crew. The sixth manned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission Commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 continued the broad-scale geological, geochemical, and geophysical mapping of the Moon’s crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used. The mission ended on April 27, 1972.
STS-93 Crew Interview: Michel Tognini
NASA Technical Reports Server (NTRS)
1999-01-01
This NASA Johnson Space Center (JSC) video release presents a one-on-one interview with Mission Specialist 3, Michel Tognini (Col., French Air Force and Centre Nacional Etudes Spatiales (CNES) Astronaut). Subjects discussed include early influences that made Michel want to be a pilot and astronaut, his experience as a French military pilot and his flying history. Also discussed were French participation in building the International Space Station (ISS), the STS-93 primary mission objective, X-ray observation using the Advanced X-ray Astrophysics Facility (AXAF), and failure scenarios associated with AXAF deployment. The STS-93 mission objective was to deploy the Advanced X-ray Astrophysics Facility (AXAF), later renamed the Chandra X-Ray Observatory in honor of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar.
NASA Astrophysics Data System (ADS)
Alsabti, A. W.
2006-08-01
The history of modern Iraqi astronomy is reviewed. During the early 1970's Iraqi astronomy witnessed significant growth through the introduction of the subject at university level and extensively within the school curriculum. In addition, astronomy was popularised in the media, a large planetarium was built in Baghdad, plus a smaller one in Basra. Late 1970 witnessed the construction of the Iraqi National Observatory at Mount Korek in Iraqi Kurdistan. The core facilities of the Observatory included 3.5-meter and 1.25-meter optical telescopes, and a 30-meter radio telescope for millimetre wavelength astronomy. The Iraqi Astronomical Society was founded and Iraq joined the IAU in 1976. During the regime of Saddam Hussain in the 1980's, the Observatory was attacked by Iranian artillery during the Iraq-Iran war, and then again during the second Gulf war by the US air force. Years of sanctions during the 1990's left Iraq cut off from the rest of the international scientific community. Subscriptions to astronomical journals were halted and travel to conferences abroad was virtually non-existent. Most senior astronomers left the country for one reason or another. Support from expatriate Iraqi astronomers existed (and still exists) however, this is not sufficient. Recent changes in Iraq, and the fall of Saddam's regime, has meant that scientific communication with the outside world has resumed to a limited degree. The Ministry of Higher Education in Baghdad, Baghdad University and the Iraqi National Academy of Science, have all played active roles in re-establishing Iraqi astronomy and re-building the damaged Observatory at Mount Korek. More importantly the University of Sallahudin in Erbil, capital of Iraqi Kurdistan, has taken particular interest in astronomy and the Observatory. Organized visits to the universities, and also to the Observatory, have given us a first-hand assessment of the scale of the damage to the Observatory, as well as the needs of astronomy teaching and research. Joint supervision for postgraduate level research was organized between local and Iraqi expatriate astronomers. The IAU was among the first international organizations to offer assistance. Many observatories worldwide have also given support. Plans will be proposed for re-building the Observatory, supporting teaching and research, and establishing an institute for astronomy in Erbil, together with further suggestions on how the international astronomical community can assist Iraqi astronomers.
NASA Astrophysics Data System (ADS)
Mickaelian, Areg; Azatyan, Naira; Farmanyan, Sona; Mikayelyan, Gor
2016-10-01
Armenia is hosting the IAU South West Asian (SWA) Regional Office of Astronomy for Development (ROAD). It is a county of ancient astronomy and is also rich in modern astronomical facilities and infrastructures, hence may successfully serve as a regional center for various activities. Byurakan Astrophysical Observatory (BAO) has 2.6m and 1m Schmidt, as well as a number of smaller telescopes that are an observational basis for joint projects and collaborations. Armenian Virtual Observatory (ArVO) is hosting astronomical databases, such as the Digitized First Byurakan Survey (DFBS) and may also serve as a basis for development of VO structures in this region. Recently we have conducted a number of new activities; a meeting on ``Relation of Astronomy to other Sciences, Culture and Society" (RASCS) was organized by BAO and Armenian Astronomical Society (ArAS) in Oct 2014 in Byurakan. Activities related to Archaeoastronomy and Astronomy in Culture (AAC) were initiated as well. Discussions on future Armenian-Iranian collaboration in astronomy were carried out, including an Armenian-Iranian Astronomical Workshop held in Oct 2015 in Byurakan. Similar workshops have been carried out between BAO and Abastumani Astronomical Observatory (AbAO, Georgia) since 1974.
The igmspec database of public spectra probing the intergalactic medium
NASA Astrophysics Data System (ADS)
Prochaska, J. X.
2017-04-01
We describe v02 of igmspec, a database of publicly available ultraviolet, optical, and near-infrared spectra that probe the intergalactic medium (IGM). This database, a child of the specdb repository in the specdb github organization, comprises 403 277 unique sources and 434 686 spectra obtained with the world's greatest observatories. All of these data are distributed in a single ≈ 25GB HDF5 file maintained at the University of California Observatories and the University of California, Santa Cruz. The specdb software package includes Python scripts and modules for searching the source catalog and spectral datasets, and software links to the linetools package for spectral analysis. The repository also includes software to generate private spectral datasets that are compliant with International Virtual Observatory Alliance (IVOA) protocols and a Python-based interface for IVOA Simple Spectral Access queries. Future versions of igmspec will ingest other sources (e.g. gamma-ray burst afterglows) and other surveys as they become publicly available. The overall goal is to include every spectrum that effectively probes the IGM. Future databases of specdb may include publicly available galaxy spectra (exgalspec) and published supernovae spectra (snspec). The community is encouraged to join the effort on github: https://github.com/specdb.
RTS2: a powerful robotic observatory manager
NASA Astrophysics Data System (ADS)
Kubánek, Petr; Jelínek, Martin; Vítek, Stanislav; de Ugarte Postigo, Antonio; Nekola, Martin; French, John
2006-06-01
RTS2, or Remote Telescope System, 2nd Version, is an integrated package for remote telescope control under the Linux operating system. It is designed to run in fully autonomous mode, picking targets from a database table, storing image meta data to the database, processing images and storing their WCS coordinates in the database and offering Virtual-Observatory enabled access to them. It is currently running on various telescope setups world-wide. For control of devices from various manufacturers we developed an abstract device layer, enabling control of all possible combinations of mounts, CCDs, photometers, roof and cupola controllers. We describe the evolution of RTS2 from Python-based RTS to C and later C++ based RTS2, focusing on the problems we faced during development. The internal structure of RTS2, focusing on object layering, which is used to uniformly control various devices and provides uniform reporting layer, is also discussed.
iRODS: A Distributed Data Management Cyberinfrastructure for Observatories
NASA Astrophysics Data System (ADS)
Rajasekar, A.; Moore, R.; Vernon, F.
2007-12-01
Large-scale and long-term preservation of both observational and synthesized data requires a system that virtualizes data management concepts. A methodology is needed that can work across long distances in space (distribution) and long-periods in time (preservation). The system needs to manage data stored on multiple types of storage systems including new systems that become available in the future. This concept is called infrastructure independence, and is typically implemented through virtualization mechanisms. Data grids are built upon concepts of data and trust virtualization. These concepts enable the management of collections of data that are distributed across multiple institutions, stored on multiple types of storage systems, and accessed by multiple types of clients. Data virtualization ensures that the name spaces used to identify files, users, and storage systems are persistent, even when files are migrated onto future technology. This is required to preserve authenticity, the link between the record and descriptive and provenance metadata. Trust virtualization ensures that access controls remain invariant as files are moved within the data grid. This is required to track the chain of custody of records over time. The Storage Resource Broker (http://www.sdsc.edu/srb) is one such data grid used in a wide variety of applications in earth and space sciences such as ROADNet (roadnet.ucsd.edu), SEEK (seek.ecoinformatics.org), GEON (www.geongrid.org) and NOAO (www.noao.edu). Recent extensions to data grids provide one more level of virtualization - policy or management virtualization. Management virtualization ensures that execution of management policies can be automated, and that rules can be created that verify assertions about the shared collections of data. When dealing with distributed large-scale data over long periods of time, the policies used to manage the data and provide assurances about the authenticity of the data become paramount. The integrated Rule-Oriented Data System (iRODS) (http://irods.sdsc.edu) provides the mechanisms needed to describe not only management policies, but also to track how the policies are applied and their execution results. The iRODS data grid maps management policies to rules that control the execution of the remote micro-services. As an example, a rule can be created that automatically creates a replica whenever a file is added to a specific collection, or extracts its metadata automatically and registers it in a searchable catalog. For the replication operation, the persistent state information consists of the replica location, the creation date, the owner, the replica size, etc. The mechanism used by iRODS for providing policy virtualization is based on well-defined functions, called micro-services, which are chained into alternative workflows using rules. A rule engine, based on the event-condition-action paradigm executes the rule-based workflows after an event. Rules can be deferred to a pre-determined time or executed on a periodic basis. As the data management policies evolve, the iRODS system can implement new rules, new micro-services, and new state information (metadata content) needed to manage the new policies. Each sub- collection can be managed using a different set of policies. The discussion of the concepts in rule-based policy virtualization and its application to long-term and large-scale data management for observatories such as ORION and NEON will be the basis of the paper.
28 CFR 105.10 - Definitions, purpose, and scope.
Code of Federal Regulations, 2010 CFR
2010-07-01
... foreign pilot or flight engineer license issued by a member of the Assembly of the International Civil Aviation Organization, as established by Article 43 of the Convention on International Civil Aviation..., and flight schools. Virtually all private providers of instruction in the operation of aircraft with a...
Going Prime Time with Live Chat Reference.
ERIC Educational Resources Information Center
Hoag, Tara J.; Cichanowicz, Edana McCaffrey
2001-01-01
Describes the development of the Suffolk Cooperative Library System's live, online chat reference service, a pilot project for public libraries in Suffolk County (New York). Topics include chat software selection; a virtual reference collection; marketing; funding; staffing; evaluation; expanded hours of service; email; and extracting data from…
NASA Astrophysics Data System (ADS)
Pearson, V. K.; Greenwood, R. C.; Bridges, J.; Watson, J.; Brooks, V.
The Rocks From Space outreach initiative and The Space Safari: the development of virtual learning environments for planetary science outreach in the UK. V.K. Pearson (1), R.C. Greenwood (1), J. Bridges (1), J. Watson (2) and V. Brooks (2) (1) Plantetary and Space Sciences Research Institute (PSSRI), The Open University, Milton Keynes, MK7 6AA. (2) Stockton-on-Tees City Learning Centre, Marsh House Avenue, Billingham, TS23 3QJ. (v.k.pearson@open.ac.uk Fax: +44 (0) 858022 Phone: +44 (0) 1908652814 The Rocks From Space (RFS) project is a PPARC and Open University supported planetary science outreach initiative. It capitalises on the successes of Open University involvement in recent space missions such as Genesis and Stardust which have brought planetary science to the forefront of public attention.Our traditional methods of planetary science outreach have focussed on activities such as informal school visits and public presentations. However, these traditional methods are often limited to a local area to fit within time and budget constraints and therefore RFS looks to new technologies to reach geographically dispersed audiences. In collaboration with Stockton-on-Tees City Learning Centre, we have conducted a pilot study into the use of Virtual Learning Environments (VLEs) for planetary science outreach. The pilot study was undertaken under the guise of a "Space Safari" in which pupils dispersed across the Teesside region of the UK could collaboratively explore the Solar System. Over 300 students took part in the pilot from 11 primary schools (ages 6-10). Resources for their exploration were provided by Open University scientists in Milton Keynes and hosted on the VLE. Students were encouraged to post their findings, ideas and questions via wikis and a VLE forum. This combination of contributions from students, teachers and scientists encouraged a collaborative learning environment. These asynchronous activities were complemented by synchronous virtual classroom activities using Elluminate Live! facilities where students could attend "drop-in" sessions with scientists to discuss their exploration. Following these activities, schools were asked to produce a collaborative piece of work about their exploration that could be hosted on the Rocks From Space website (www.rocksfromspace.open.ac.uk; designed by Milton Keynes HE college students) as a resource for future projects and wider public access. Submissions included powerpoint presentations, animations, poems and murals and illustrates the cross curriculum nature of this project. We present the outcomes and evaluation of this pilot study with recommendations for the future use of VLEs in planetary science outreach.
Social interactions in virtual reality exposure therapy: A proof-of-concept pilot study.
Morina, Nexhmedin; Brinkman, Willem-Paul; Hartanto, Dwi; Kampmann, Isabel L; Emmelkamp, Paul M G
2015-01-01
Research on virtual reality exposure therapy (VRET) has demonstrated good treatment efficacy with regards to several anxiety disorders. Yet, there is lack of knowledge about the value of integrating interaction between clients and virtual humans in VRET. Such interaction might prove effective in treating psychological complaints that involve social interactions, such as social anxiety. A VRET system specifically designed to expose clients with social anxiety disorder to anxiety provoking social situations was applied to 16 and 18 individuals with high and low levels of social anxiety, respectively. Participants engaged in two exposure sessions in several free speech dialogues with virtual humans while being monitored by a therapist. Participants with high levels of social anxiety reported significantly lower levels of social anxiety three months after exposure to two virtual reality interaction sessions than before treatment (p < 0.01). In the group with low levels of social anxiety, no significant change of social anxiety was reported between pre-treatment and follow-up. Additionally, participants in both groups reported higher self-efficacy three months after treatment than before treatment (ps ≤ 0.001). These findings indicate that virtual reality technology that incorporates social interactions may be successfully applied for therapeutic purposes.
Tactile feedback for relief of deafferentation pain using virtual reality system: a pilot study.
Sano, Yuko; Wake, Naoki; Ichinose, Akimichi; Osumi, Michihiro; Oya, Reishi; Sumitani, Masahiko; Kumagaya, Shin-Ichiro; Kuniyoshi, Yasuo
2016-06-28
Previous studies have tried to relieve deafferentation pain (DP) by using virtual reality rehabilitation systems. However, the effectiveness of multimodal sensory feedback was not validated. The objective of this study is to relieve DP by neurorehabilitation using a virtual reality system with multimodal sensory feedback and to validate the efficacy of tactile feedback on immediate pain reduction. We have developed a virtual reality rehabilitation system with multimodal sensory feedback and applied it to seven patients with DP caused by brachial plexus avulsion or arm amputation. The patients executed a reaching task using the virtual phantom limb manipulated by their real intact limb. The reaching task was conducted under two conditions: one with tactile feedback on the intact hand and one without. The pain intensity was evaluated through a questionnaire. We found that the task with the tactile feedback reduced DP more (41.8 ± 19.8 %) than the task without the tactile feedback (28.2 ± 29.5 %), which was supported by a Wilcoxon signed-rank test result (p < 0.05). Overall, our findings indicate that the tactile feedback improves the immediate pain intensity through rehabilitation using our virtual reality system.
Virtual reality therapy in aid of senior citizens' psychological disorders.
North, Max M; Rives, Jason
2003-01-01
The treatment for senior citizens suffering from psychological disorders seems to be different from therapeutic procedures used for other populations. This pilot study is the first known in-depth case study of the effectiveness of virtual reality therapy (VRT) as a treatment for senior citizens. The fear of flying treatment was chosen for this study. The subject of the study was a 62-year-old married female, whose anxiety and avoidance behavior was interfering with her normal activities. For treatment, she was placed in the cabin of a virtual commercial aircraft environment accompanied by a virtual therapist. After a few sessions in which she spent time in a virtual airport scene, she spent four sessions in which she was flown over a simulated city. While under the virtual reality treatment, the subject experienced a number of physical and emotional anxiety-related symptoms. These symptoms included sweaty palms, loss of balance, weakness in the knees, etc. In this study, the virtual reality treatment caused a significant reduction in the anxiety symptoms in the subject and enhanced her ability to face phobic situations in the real world. Since termination of the treatment, she has taken several flights to professional conferences and reported feeling more comfortable and has fewer symptoms than those experienced prior to the VRT treatment.
E-virtual reality exposure therapy in acrophobia: A pilot study.
Levy, Fanny; Leboucher, Pierre; Rautureau, Gilles; Jouvent, Roland
2016-06-01
Virtual reality therapy is already used for anxiety disorders as an alternative to in vivo and in imagino exposure. To our knowledge, however, no one has yet proposed using remote virtual reality (e-virtual reality). The aim of the present study was to assess e-virtual reality in an acrophobic population. Six individuals with acrophobia each underwent six sessions (two sessions per week) of virtual reality exposure therapy. The first three were remote sessions, while the last three were traditional sessions in the physical presence of the therapist. Anxiety (STAI form Y-A, visual analog scale, heart rate), presence, technical difficulties and therapeutic alliance (Working Alliance Inventory) were measured. In order to control the conditions in which these measures were made, all the sessions were conducted in hospital. None of the participants dropped out. The remote sessions were well accepted. None of the participants verbalized reluctance. No major technical problems were reported. None of the sessions were cancelled or interrupted because of software incidents. Measures (anxiety, presence, therapeutic alliance) were comparable across the two conditions. e-Virtual reality can therefore be used to treat acrophobic disorders. However, control studies are needed to assess online feasibility, therapeutic effects and the mechanisms behind online presence. © The Author(s) 2015.
MASER: Measuring, Analysing, Simulating low frequency Radio Emissions.
NASA Astrophysics Data System (ADS)
Cecconi, B.; Le Sidaner, P.; Savalle, R.; Bonnin, X.; Zarka, P. M.; Louis, C.; Coffre, A.; Lamy, L.; Denis, L.; Griessmeier, J. M.; Faden, J.; Piker, C.; André, N.; Genot, V. N.; Erard, S.; King, T. A.; Mafi, J. N.; Sharlow, M.; Sky, J.; Demleitner, M.
2017-12-01
The MASER (Measuring, Analysing and Simulating Radio Emissions) project provides a comprehensive infrastructure dedicated to low frequency radio emissions (typically < 50 to 100 MHz). The four main radio sources observed in this frequency are the Earth, the Sun, Jupiter and Saturn. They are observed either from ground (down to 10 MHz) or from space. Ground observatories are more sensitive than space observatories and capture high resolution data streams (up to a few TB per day for modern instruments). Conversely, space-borne instruments can observe below the ionospheric cut-off (10 MHz) and can be placed closer to the studied object. Several tools have been developed in the last decade for sharing space physcis data. Data visualization tools developed by The CDPP (http://cdpp.eu, Centre de Données de la Physique des Plasmas, in Toulouse, France) and the University of Iowa (Autoplot, http://autoplot.org) are available to display and analyse space physics time series and spectrograms. A planetary radio emission simulation software is developed in LESIA (ExPRES: Exoplanetary and Planetary Radio Emission Simulator). The VESPA (Virtual European Solar and Planetary Access) provides a search interface that allows to discover data of interest for scientific users, and is based on IVOA standards (astronomical International Virtual Observatory Alliance). The University of Iowa also develops Das2server that allows to distribute data with adjustable temporal resolution. MASER is making use of all these tools and standards to distribute datasets from space and ground radio instruments available from the Observatoire de Paris, the Station de Radioastronomie de Nançay and the CDPP deep archive. These datasets include Cassini/RPWS, STEREO/Waves, WIND/Waves, Ulysses/URAP, ISEE3/SBH, Voyager/PRA, Nançay Decameter Array (Routine, NewRoutine, JunoN), RadioJove archive, swedish Viking mission, Interball/POLRAD... MASER also includes a Python software library for reading raw data.
NASA Astrophysics Data System (ADS)
Veras, D.
2017-09-01
I have created an online clickable and zoom-enabled world map - now viewed over 5,400 times - that contains weblinks to institutions where astronomy is either researched professionally and / or and taught in classrooms at the university level. Not included are stand-alone museums, planetariums, amateur astronomical societies, virtual institutes, nor observatories which do not fulfill this criteria. One can click on a marker to access the relevant institute. The map currently contains 697 institutes, and has multiple potential uses for undergraduate students, graduate students, postdocs, faculty and journal editors.
Wood, Dennis Patrick; Murphy, Jennifer; McLay, Robert; Koffman, Robert; Spira, James; Obrecht, Robert E; Pyne, Jeff; Wiederhold, Brenda K
2009-01-01
Virtual Reality Graded Exposure Therapy (VRGET) is an effective treatment for combat-related PTSD. We summarize the outcomes of a VRGET pilot study with 12 participants who completed one to multiple combat tours in support of the War on Terrorism and who were subsequently diagnosed with combat-related PTSD. Details of the collaborative program amongst the Virtual Reality Medical Center (VRMC), Office of Naval Research, the Naval Medical Center San Diego (NMCSD) and the Navy Hospital Camp Pendleton are discussed as is the VRGET outcomes of significant reductions in PTSD symptoms severity. We also described the estimated cost-effectiveness of VRGET for the treatment of combat-related PTSD, as contrasted to Treatment as Usual (TAU) for combat-related PTSD.
E-learning for laurea in biomedical laboratory technicians: presentation of a pilote study.
Giansanti, D; Castrichella, L; Giovagnoli, M R
2007-01-01
The aim of the paper is to afford the design and construction of an e-learning model answering to these requirements for the LHCP in Technician of Biomedical Laboratory. The SCENARIO of work for the technician in biomedical laboratory (TBL) is radically changed and e-learning should answer to these new challenges. In particular today He or She should be able to mange in tele-pathology applications the tissue on the so called virtual glass. An architecture for the e-learning based on Web-Dav and a Light software for the virtual glass tele-pathology consultation has been designed with also a special care for the teachers' and students' platforms. At the moment we are investigating Telepathology platforms for the extranet consulting of virtual glasses.
Reaction time for processing visual stimulus in a computer-assisted rehabilitation environment.
Sanchez, Yerly; Pinzon, David; Zheng, Bin
2017-10-01
To examine the reaction time when human subjects process information presented in the visual channel under both a direct vision and a virtual rehabilitation environment when walking was performed. Visual stimulus included eight math problems displayed on the peripheral vision to seven healthy human subjects in a virtual rehabilitation training (computer-assisted rehabilitation environment (CAREN)) and a direct vision environment. Subjects were required to verbally report the results of these math calculations in a short period of time. Reaction time measured by Tobii Eye tracker and calculation accuracy were recorded and compared between the direct vision and virtual rehabilitation environment. Performance outcomes measured for both groups included reaction time, reading time, answering time and the verbal answer score. A significant difference between the groups was only found for the reaction time (p = .004). Participants had more difficulty recognizing the first equation of the virtual environment. Participants reaction time was faster in the direct vision environment. This reaction time delay should be kept in mind when designing skill training scenarios in virtual environments. This was a pilot project to a series of studies assessing cognition ability of stroke patients who are undertaking a rehabilitation program with a virtual training environment. Implications for rehabilitation Eye tracking is a reliable tool that can be employed in rehabilitation virtual environments. Reaction time changes between direct vision and virtual environment.
Debnath, Mithu; Iungo, Giacomo Valerio; Brewer, W. Alan; ...
2017-03-29
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign, which was carried out at the Boulder Atmospheric Observatory (BAO) in spring 2015, multiple-Doppler scanning strategies were carried out with scanning wind lidars and Ka-band radars. Specifically, step–stare measurements were collected simultaneously with three scanning Doppler lidars, while two scanning Ka-band radars carried out simultaneous range height indicator (RHI) scans. The XPIA experiment provided the unique opportunity to compare directly virtual-tower measurements performed simultaneously with Ka-band radars and Doppler wind lidars. Furthermore, multiple-Doppler measurements were assessed against sonic anemometer data acquired from the meteorological tower (met-tower) present at the BAOmore » site and a lidar wind profiler. As a result, this survey shows that – despite the different technologies, measurement volumes and sampling periods used for the lidar and radar measurements – a very good accuracy is achieved for both remote-sensing techniques for probing horizontal wind speed and wind direction with the virtual-tower scanning technique.« less
"We Are Not Criminals": Social Work Advocacy and Unauthorized Migrants
ERIC Educational Resources Information Center
Cleaveland, Carol
2010-01-01
Using semistructured interviews and participant observation, this two-year pilot study of male Mexican migrants in Freehold, New Jersey, explored how day laborers perceive their struggles to support families despite escalating anti-immigrant legislation at virtually all levels of government. In particular, the author looks at efforts by Mexican…
2013-09-01
Width Modulation QuarC Quanser Real-time Control RC Remote Controlled RPV Remotely Piloted Vehicles SLAM Simultaneous Localization and Mapping UAV...development of the following systems: 1. Navigation (GPS, Lidar , etc.) 2. Communication (Datalink) 3. Ground Control Station (GUI, software programming
Virtual Classroom: Reflections of Online Learning
ERIC Educational Resources Information Center
Michael, Kathy
2012-01-01
Purpose: The purpose of this study is to identify student and staff experiences with online learning at higher education (HE) using the software Elluminate Live! Design/methodology/approach: This paper adopts a qualitative approach, focusing on the reflections of participants (student and teacher) collated over a 12 month period of piloting online…
Assessing the Virtual Depository Program: The Arizona Experience
ERIC Educational Resources Information Center
Rawan, Atifa; Malone, Cheryl Knott; Bender, Laura J.
2004-01-01
A decade after passage of the Government Printing Office Electronic Information Access Enhancement Act of 1993, a pilot study at the University of Arizona examined the impact of one selective depository library's decision to select, whenever possible, Web-based government information instead of tangible formats such as print and microfiche. The…
Cultivating Student Global Competence: A Pilot Experimental Study
ERIC Educational Resources Information Center
Li, Yulong
2013-01-01
Although student global competence has been recognized as an important learning outcome by more and more colleges and universities, campus internationalization efforts remain fragmented and largely ineffective. We proposed a pedagogical intervention that provided students from China and the U.S. with opportunities to establish virtual contact and…
Managing virtual machines with Vac and Vcycle
NASA Astrophysics Data System (ADS)
McNab, A.; Love, P.; MacMahon, E.
2015-12-01
We compare the Vac and Vcycle virtual machine lifecycle managers and our experiences in providing production job execution services for ATLAS, CMS, LHCb, and the GridPP VO at sites in the UK, France and at CERN. In both the Vac and Vcycle systems, the virtual machines are created outside of the experiment's job submission and pilot framework. In the case of Vac, a daemon runs on each physical host which manages a pool of virtual machines on that host, and a peer-to-peer UDP protocol is used to achieve the desired target shares between experiments across the site. In the case of Vcycle, a daemon manages a pool of virtual machines on an Infrastructure-as-a-Service cloud system such as OpenStack, and has within itself enough information to create the types of virtual machines to achieve the desired target shares. Both systems allow unused shares for one experiment to temporarily taken up by other experiements with work to be done. The virtual machine lifecycle is managed with a minimum of information, gathered from the virtual machine creation mechanism (such as libvirt or OpenStack) and using the proposed Machine/Job Features API from WLCG. We demonstrate that the same virtual machine designs can be used to run production jobs on Vac and Vcycle/OpenStack sites for ATLAS, CMS, LHCb, and GridPP, and that these technologies allow sites to be operated in a reliable and robust way.
First Light for ASTROVIRTEL Project
NASA Astrophysics Data System (ADS)
2000-04-01
Astronomical data archives increasingly resemble virtual gold mines of information. A new project, known as ASTROVIRTEL aims to exploit these astronomical treasure troves by allowing scientists to use the archives as virtual telescopes. The competition for observing time on large space- and ground-based observatories such as the ESA/NASA Hubble Space Telescope and the ESO Very Large Telescope (VLT) is intense. On average, less than a quarter of applications for observing time are successful. The fortunate scientist who obtains observing time usually has one year of so-called proprietary time to work with the data before they are made publicly accessible and can be used by other astronomers. Precious data from these large research facilities retain their value far beyond their first birthday and may still be useful decades after they were first collected. The enormous quantity of valuable astronomical data now stored in the archives of the European Southern Observatory (ESO) and the Space Telescope-European Coordinating Facility (ST-ECF) is increasingly attracting the attention of astronomers. Scientists are aware that one set of observations can serve many different scientific purposes, including some that were not considered at all when the observations were first made. Data archives as "gold mines" for research [ASTROVIRTEL Logo; JPEG - 184 k] Astronomical data archives increasingly resemble virtual gold mines of information. A new project, known as ASTROVIRTEL or "Accessing Astronomical Archives as Virtual Telescopes" aims to exploit these astronomical treasure troves. It is supported by the European Commission (EC) within the "Access to Research Infrastructures" action under the "Improving Human Potential & the Socio-economic Knowledge Base" of the EC (under EU Fifth Framework Programme). ASTROVIRTEL has been established on behalf of the European Space Agency (ESA) and the European Southern Observatory (ESO) in response to rapid developments currently taking place in the fields of telescope and detector construction, computer hardware, data processing, archiving, and telescope operation. Nowadays astronomical telescopes can image increasingly large areas of the sky. They use more and more different instruments and are equipped with ever-larger detectors. The quantity of astronomical data collected is rising dramatically, generating a corresponding increase in potentially interesting research projects. These large collections of valuable data have led to the useful concept of "data mining", whereby large astronomical databases are exploited to support original research. However, it has become obvious that scientists need additional support to cope efficiently with the massive amounts of data available and so to exploit the true potential of the databases. The strengths of ASTROVIRTEL ASTROVIRTEL is the first virtual astronomical telescope dedicated to data mining. It is currently being established at the joint ESO/Space Telescope-European Coordinating Facility Archive in Garching (Germany). Scientists from EC member countries and associated states will be able to apply for support for a scientific project based on access to and analysis of data from the Hubble Space Telescope (HST), Very Large Telescope (VLT), New Technology Telescope (NTT), and Wide Field Imager (WFI) archives, as well as a number of other related archives, including the Infrared Space Observatory (ISO) archive. Scientists will be able to visit the archive site and collaborate with the archive specialists there. Special software tools that incorporate advanced methods for exploring the enormous quantities of information available will be developed. Statements The project co-ordinator, Piero Benvenuti , Head of ST-ECF, elaborates on the advantages of ASTROVIRTEL: "The observations by the ESA/NASA Hubble Space Telescope and, more recently, by the ESO Very Large Telescope, have already been made available on-line to the astronomical community, once the proprietary period of one year has elapsed. ASTROVIRTEL is different, in that astronomers are now invited to regard the archive as an "observatory" in its own right: a facility that, when properly used, may provide an answer to their specific scientific questions. The architecture of the archives as well as their suite of software tools may have to evolve to respond to the new demand. ASTROVIRTEL will try to drive this evolution on the basis of the scientific needs of its users." Peter Quinn , the Head of ESO's Data Management and Operations Division, is of the same opinion: "The ESO/HST Archive Facility at ESO Headquarters in Garching is currently the most rapidly growing astronomical archive resource in the world. This archive is projected to contain more than 100 Terabytes (100,000,000,000,000 bytes) of data within the next four years. The software and hardware technologies for the archive will be jointly developed and operated by ESA and ESO staff and will be common to both HST and ESO data archives. The ASTROVIRTEL project will provide us with real examples of scientific research programs that will push the capabilities of the archive and allow us to identify and develop new software tools for data mining. The growing archive facility will provide the European astronomical community with new digital windows on the Universe." Note [1] This is a joint Press Release by the European Southern Observatory (ESO) and the Space Telescope European Coordinating Facility (ST-ECF). Additional information More information about ASTROVIRTEL can be found at the dedicated website at: http://www.stecf.org/astrovirtel The European Southern Observatory (ESO) is an intergovernmental organisation, supported by eight European countries: Belgium, Denmark, France, Germany, Italy, The Netherlands, Sweden and Switzerland. The European Space Agency is an intergovernmental organisation supported by 15 European countries: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom. The Space Telescope European Coordinating Facility (ST-ECF) is a co-operation between the European Space Agency and the European Southern Observatory. The Hubble Space Telescope (HST) is a project of international co-operation between NASA and ESA.
Oliveira, Camila R; Lopes Filho, Brandel José P; Sugarman, Michael A; Esteves, Cristiane S; Lima, Margarida Maria B M P; Moret-Tatay, Carmen; Irigaray, Tatiana Q; Argimon, Irani Iracema L
2016-12-13
Cognitive assessment with virtual reality (VR) may have superior ecological validity for older adults compared to traditional pencil-and-paper cognitive assessment. However, few studies have reported the development of VR tasks. The aim of this study was to present the development, feasibility, content validity, and preliminary evidence of construct validity of an ecological task of cognitive assessment for older adults in VR (ECO-VR). The tasks were prepared based on theoretical and clinical backgrounds. We had 29 non-expert judges identify virtual visual stimuli and three-dimensional scenarios, and five expert judges assisted with content analysis and developing instructions. Finally, six older persons participated in three pilot studies and thirty older persons participated in the preliminary study to identify construct validity evidence. Data were analyzed by descriptive statistics and partial correlation. Target stimuli and three-dimensional scenarios were judged adequate and the content analysis demonstrated that ECO-VR evaluates temporo-spatial orientation, memory, language and executive functioning. We made significant changes to the instructions after the pilot studies to increase comprehensibility and reduce the completion time. The total score of ECO-VR was positively correlated mainly with performance in executive function (r = .172, p < .05) and memory tests (r = .488, p ≤ .01). The ECO-VR demonstrated feasibility for cognitive assessment in older adults, as well as content and construct validity evidences.
Viana, R T; Laurentino, G E C; Souza, R J P; Fonseca, J B; Silva Filho, E M; Dias, S N; Teixeira-Salmela, L F; Monte-Silva, K K
2014-01-01
Upper limb (UL) impairment is the most common disabling deficit following a stroke. Previous studies have suggested that transcranial direct current stimulation (tDCS) enhances the effect of conventional therapies. This pilot double-blind randomized control trial aimed to determine whether or not tDCS, combined with Wii virtual reality therapy (VRT), would be superior to Wii therapy alone in improving upper limb function and quality of life in chronic stroke individuals. Twenty participants were randomly assigned either to an experimental group that received VRT and tDCS, or a control group that received VRT and sham tDCS. The therapy was delivered over 15 sessions with 13 minutes of active or sham anodal tDCS, and one hour of virtual reality therapy. The outcomes included were determined using the Fugl-Meyer scale, the Wolf motor function test, the modified Ashworth scale (MAS), grip strength, and the stroke specific quality of life scale (SSQOL). Minimal clinically important differences (MCID) were observed when assessing outcome data. Both groups demonstrated gains in all evaluated areas, except for the SSQOL-UL domain. Differences between groups were only observed in wrist spasticity levels in the experimental group, where more than 50% of the participants achieved the MCID. These findings support that tDCS, combined with VRT therapy, should be investigated and clarified further.
Virtual geotechnical laboratory experiments using a simulator
NASA Astrophysics Data System (ADS)
Penumadu, Dayakar; Zhao, Rongda; Frost, David
2000-04-01
The details of a test simulator that provides a realistic environment for performing virtual laboratory experimentals in soil mechanics is presented. A computer program Geo-Sim that can be used to perform virtual experiments, and allow for real-time observations of material response is presented. The results of experiments, for a given set of input parameters, are obtained with the test simulator using well-trained artificial neural-network-based soil models for different soil types and stress paths. Multimedia capabilities are integrated in Geo-Sim, using software that links and controls a laser disc player with a real-time parallel processing ability. During the simulation of a virtual experiment, relevant portions of the video image of a previously recorded test on an actual soil specimen are dispalyed along with the graphical presentation of response from the feedforward ANN model predictions. The pilot simulator developed to date includes all aspects related to performing a triaxial test on cohesionless soil under undrained and drained conditions. The benefits of the test simulator are also presented.
Zary, Nabil; Johnson, Gunilla; Boberg, Jonas; Fors, Uno GH
2006-01-01
Background The Web-based Simulation of Patients (Web-SP) project was initiated in order to facilitate the use of realistic and interactive virtual patients (VP) in medicine and healthcare education. Web-SP focuses on moving beyond the technology savvy teachers, when integrating simulation-based education into health sciences curricula, by making the creation and use of virtual patients easier. The project strives to provide a common generic platform for design/creation, management, evaluation and sharing of web-based virtual patients. The aim of this study was to evaluate if it was possible to develop a web-based virtual patient case simulation environment where the entire case authoring process might be handled by teachers and which would be flexible enough to be used in different healthcare disciplines. Results The Web-SP system was constructed to support easy authoring, management and presentation of virtual patient cases. The case authoring environment was found to facilitate for teachers to create full-fledged patient cases without the assistance of computer specialists. Web-SP was successfully implemented at several universities by taking into account key factors such as cost, access, security, scalability and flexibility. Pilot evaluations in medical, dentistry and pharmacy courses shows that students regarded Web-SP as easy to use, engaging and to be of educational value. Cases adapted for all three disciplines were judged to be of significant educational value by the course leaders. Conclusion The Web-SP system seems to fulfil the aim of providing a common generic platform for creation, management and evaluation of web-based virtual patient cases. The responses regarding the authoring environment indicated that the system might be user-friendly enough to appeal to a majority of the academic staff. In terms of implementation strengths, Web-SP seems to fulfil most needs from course directors and teachers from various educational institutions and disciplines. The system is currently in use or under implementation in several healthcare disciplines at more than ten universities worldwide. Future aims include structuring the exchange of cases between teachers and academic institutions by building a VP library function. We intend to follow up the positive results presented in this paper with other studies looking at the learning outcomes, critical thinking and patient management. Studying the potential of Web-SP as an assessment tool will also be performed. More information about Web-SP: PMID:16504041
Zary, Nabil; Johnson, Gunilla; Boberg, Jonas; Fors, Uno G H
2006-02-21
The Web-based Simulation of Patients (Web-SP) project was initiated in order to facilitate the use of realistic and interactive virtual patients (VP) in medicine and healthcare education. Web-SP focuses on moving beyond the technology savvy teachers, when integrating simulation-based education into health sciences curricula, by making the creation and use of virtual patients easier. The project strives to provide a common generic platform for design/creation, management, evaluation and sharing of web-based virtual patients. The aim of this study was to evaluate if it was possible to develop a web-based virtual patient case simulation environment where the entire case authoring process might be handled by teachers and which would be flexible enough to be used in different healthcare disciplines. The Web-SP system was constructed to support easy authoring, management and presentation of virtual patient cases. The case authoring environment was found to facilitate for teachers to create full-fledged patient cases without the assistance of computer specialists. Web-SP was successfully implemented at several universities by taking into account key factors such as cost, access, security, scalability and flexibility. Pilot evaluations in medical, dentistry and pharmacy courses shows that students regarded Web-SP as easy to use, engaging and to be of educational value. Cases adapted for all three disciplines were judged to be of significant educational value by the course leaders. The Web-SP system seems to fulfil the aim of providing a common generic platform for creation, management and evaluation of web-based virtual patient cases. The responses regarding the authoring environment indicated that the system might be user-friendly enough to appeal to a majority of the academic staff. In terms of implementation strengths, Web-SP seems to fulfil most needs from course directors and teachers from various educational institutions and disciplines. The system is currently in use or under implementation in several healthcare disciplines at more than ten universities worldwide. Future aims include structuring the exchange of cases between teachers and academic institutions by building a VP library function. We intend to follow up the positive results presented in this paper with other studies looking at the learning outcomes, critical thinking and patient management. Studying the potential of Web-SP as an assessment tool will also be performed. More information about Web-SP: http://websp.lime.ki.se.
Sense of presence and anxiety during virtual social interactions between a human and virtual humans.
Morina, Nexhmedin; Brinkman, Willem-Paul; Hartanto, Dwi; Emmelkamp, Paul M G
2014-01-01
Virtual reality exposure therapy (VRET) has been shown to be effective in treatment of anxiety disorders. Yet, there is lack of research on the extent to which interaction between the individual and virtual humans can be successfully implanted to increase levels of anxiety for therapeutic purposes. This proof-of-concept pilot study aimed at examining levels of the sense of presence and anxiety during exposure to virtual environments involving social interaction with virtual humans and using different virtual reality displays. A non-clinical sample of 38 participants was randomly assigned to either a head-mounted display (HMD) with motion tracker and sterescopic view condition or a one-screen projection-based virtual reality display condition. Participants in both conditions engaged in free speech dialogues with virtual humans controlled by research assistants. It was hypothesized that exposure to virtual social interactions will elicit moderate levels of sense of presence and anxiety in both groups. Further it was expected that participants in the HMD condition will report higher scores of sense of presence and anxiety than participants in the one-screen projection-based display condition. Results revealed that in both conditions virtual social interactions were associated with moderate levels of sense of presence and anxiety. Additionally, participants in the HMD condition reported significantly higher levels of presence than those in the one-screen projection-based display condition (p = .001). However, contrary to the expectations neither the average level of anxiety nor the highest level of anxiety during exposure to social virtual environments differed between the groups (p = .97 and p = .75, respectively). The findings suggest that virtual social interactions can be successfully applied in VRET to enhance sense of presence and anxiety. Furthermore, our results indicate that one-screen projection-based displays can successfully activate levels of anxiety in social virtual environments. The outcome can prove helpful in using low-cost projection-based virtual reality environments for treating individuals with social phobia.
Virtual communities of practice: can they support the prevention agenda in public health?
Ford, Jennifer; Korjonen, Helena; Keswani, Asha; Hughes, Emma
2015-01-01
Background Virtual Communities of Practice (CoPs) are flexible communication and knowledge management tools enabling collaboration, sharing of best practice and professional development. There have been few studies that have looked at the use and usefulness of virtual CoPs in public health. Methods This project sought to gather the evidence and develop recommendations for the value of virtual CoPs in public health through a literature review, and through piloting two CoPs in obesity. The research aimed to find out how useful CoPs are in obesity prevention, what makes a CoP successful and what evaluation methods are appropriate. Results CoPs are composed of observers, passive and active contributors with a small group of 'super-users'. All users learn through reading and listening, even if they do not post. The CoPs had higher levels of reading activity as opposed to low levels of posting activity. Longer existence of CoPs usually means more active membership. There are complex reasons why users fail to engage in knowledge sharing. Success of a CoP is creating an online environment where users feel comfortable. CoPs need administrative support and facilitation. Champions play a vital role. Conclusions Evidence shows some encouraging results about the value of CoPs in enabling collaboration and information sharing. Despite low membership numbers of the obesity CoPs piloted, members see value and suggest improvements. Findings suggest that success comes from leadership, champions, and larger networks with more posting activity. Mixed methods of quantitative and qualitative research are appropriate in measuring the use and impact of CoPs. PMID:26284150
Gupta, Anita; Scott, Kevin; Dukewich, Matthew
2018-01-01
Virtual reality (VR) is an exciting new technology with almost endless possible uses in medicine. One area it has shown promise is pain management. This selective review focused on studies that gave evidence to the distraction or nondistraction mechanisms by which VR leads to the treatment of pain. The review looked at articles from 2000 to July 29, 2016, focusing on studies concerning mechanisms by which virtual reality can augment pain relief. The data was collected through a search of MEDLINE and Web of Science using the key words of "virtual reality" and "pain" or "distraction." Six studies were identified: four small randomized controlled studies and two prospective/pilot studies. The search results provided evidence that distraction is a technique by which VR can have benefits in the treatment of pain. Both adult and pediatric populations were included in these studies. In addition to acute pain, several studies looked at chronic pain states such as headaches or fibromyalgia. These studies also combined VR with other treatment modalities such as biofeedback mechanisms and cognitive behavioral therapy. These results demonstrate that in addition to distraction, there are novel mechanisms for VR treatment in pain, such as producing neurophysiologic changes related to conditioning and exposure therapies. If these new mechanisms can lead to new treatment options for patients with chronic pain, VR may have the ability to help reduce opioid use and misuse among chronic pain patients. More studies are needed to reproduce results from prospective/pilot studies in large randomized control studies. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Saposnik, G; Mamdani, M; Bayley, M; Thorpe, K E; Hall, J; Cohen, L G; Teasell, R
2010-02-01
Evidence suggests that increasing intensity of rehabilitation results in better motor recovery. Limited evidence is available on the effectiveness of an interactive virtual reality gaming system for stroke rehabilitation. EVREST was designed to evaluate feasibility, safety and efficacy of using the Nintendo Wii gaming virtual reality (VRWii) technology to improve arm recovery in stroke patients. Pilot randomized study comparing, VRWii versus recreational therapy (RT) in patients receiving standard rehabilitation within six months of stroke with a motor deficit of > or =3 on the Chedoke-McMaster Scale (arm). In this study we expect to randomize 20 patients. All participants (age 18-85) will receive customary rehabilitative treatment consistent of a standardized protocol (eight sessions, 60 min each, over a two-week period). The primary feasibility outcome is the total time receiving the intervention. The primary safety outcome is the proportion of patients experiencing intervention-related adverse events during the study period. Efficacy, a secondary outcome measure, will be measured by the Wolf Motor Function Test, Box and Block Test, and Stroke Impact Scale at the four-week follow-up visit. From November, 2008 to September, 2009 21 patients were randomized to VRWii or RT. Mean age, 61 (range 41-83) years. Mean time from stroke onset 25 (range 10-56) days. EVREST is the first randomized parallel controlled trial assessing the feasibility, safety, and efficacy of virtual reality using Wii gaming technology in stroke rehabilitation. The results of this study will serve as the basis for a larger multicentre trial. ClinicalTrials.gov registration# NTC692523.
Precovery of near-Earth asteroids by a citizen-science project of the Spanish Virtual Observatory
NASA Astrophysics Data System (ADS)
Solano, E.; Rodrigo, C.; Pulido, R.; Carry, B.
2014-02-01
This article describes a citizen-science project conducted by the Spanish Virtual Observatory (SVO) to improve the orbits of near-Earth asteroids (NEAs) using data from astronomical archives. The list of NEAs maintained at the Minor Planet Center (MPC) is checked daily to identify new objects or changes in the orbital parameters of already catalogued objects. Using NEODyS we compute the position and magnitude of these objects at the observing epochs of the 938 046 images comprising the Eigth Data Release of the Sloan Digitised Sky Survey (SDSS). If the object lies within the image boundaries and the magnitude is brighter than the limiting magnitude, then the associated image is visually inspected by the project's collaborators ({the citizens}) to confirm or discard the presence of the NEA. If confirmed, accurate coordinates and, sometimes, magnitudes are submitted to the MPC. Using this methodology, 3226 registered users have made during the first fifteen months of the project more than 167 000 measurements which have improved the orbital elements of 551 NEAs (6 % of the total number of this type of asteroids). Even more remarkable is the fact that these results have been obtained at zero cost to telescope time as NEAs were serendipitously observed while the survey was being carried out. This demonstrates the enormous scientific potential hidden in astronomical archives. The great reception of the project as well as the results obtained makes it a valuable and reliable tool for improving the orbital parameters of near-Earth asteroids.
The VO-Dance web application at the IA2 data center
NASA Astrophysics Data System (ADS)
Molinaro, Marco; Knapic, Cristina; Smareglia, Riccardo
2012-09-01
Italian center for Astronomical Archives (IA2, http://ia2.oats.inaf.it) is a national infrastructure project of the Italian National Institute for Astrophysics (Istituto Nazionale di AstroFisica, INAF) that provides services for the astronomical community. Besides data hosting for the Large Binocular Telescope (LBT) Corporation, the Galileo National Telescope (Telescopio Nazionale Galileo, TNG) Consortium and other telescopes and instruments, IA2 offers proprietary and public data access through user portals (both developed and mirrored) and deploys resources complying the Virtual Observatory (VO) standards. Archiving systems and web interfaces are developed to be extremely flexible about adding new instruments from other telescopes. VO resources publishing, along with data access portals, implements the International Virtual Observatory Alliance (IVOA) protocols providing astronomers with new ways of analyzing data. Given the large variety of data flavours and IVOA standards, the need for tools to easily accomplish data ingestion and data publishing arises. This paper describes the VO-Dance tool, that IA2 started developing to address VO resources publishing in a dynamical way from already existent database tables or views. The tool consists in a Java web application, potentially DBMS and platform independent, that stores internally the services' metadata and information, exposes restful endpoints to accept VO queries for these services and dynamically translates calls to these endpoints to SQL queries coherent with the published table or view. In response to the call VO-Dance translates back the database answer in a VO compliant way.
NASA Astrophysics Data System (ADS)
Rauch, T.; Demleitner, M.; Hoyer, D.; Werner, K.
2018-04-01
The German Astrophysical Virtual Observatory (GAVO) developed the registered service TheoSSA (theoretical stellar spectra access) and the supporting registered VO tool TMAW (Tübingen Model-Atmosphere WWW interface). These allow individual spectral analyses of hot, compact stars with state-of-the-art non-local thermodynamical equilibrium (NLTE) stellar-atmosphere models that presently consider opacities of the elements H, He, C, N, O, Ne, Na, and Mg, without requiring detailed knowledge about the involved background codes and procedures. Presently, TheoSSA provides easy access to about 150 000 pre-calculated stellar spectral energy distributions (SEDs) and is intended to ingest SEDs calculated by any model-atmosphere code. In the case of the exciting star of PN PRTM 1, we demonstrate the easy way to calculate individual NLTE stellar model-atmospheres to reproduce an observed optical spectrum. We measured T_eff = 98 000± 5 000 K, log (g / cm/s^2) = 5.0^{+0.3}_{-0.2}, and photospheric mass fractions of H =7.5 × 10-1 (1.02 times solar), He =2.4 × 10-1 (0.96), C =2.0 × 10-3 (0.84), N =3.2 × 10-4 (0.46), and O =8.5 × 10-3 (1.48) with uncertainties of ±0.2 dex. We determined the stellar mass and luminosity of 0.73^{+0.16}_{-0.15} M_{⊙} and log (L/L⊙) = 4.2 ± 0.4, respectively.
Hydrological models as web services: Experiences from the Environmental Virtual Observatory project
NASA Astrophysics Data System (ADS)
Buytaert, W.; Vitolo, C.; Reaney, S. M.; Beven, K.
2012-12-01
Data availability in environmental sciences is expanding at a rapid pace. From the constant stream of high-resolution satellite images to the local efforts of citizen scientists, there is an increasing need to process the growing stream of heterogeneous data and turn it into useful information for decision-making. Environmental models, ranging from simple rainfall - runoff relations to complex climate models, can be very useful tools to process data, identify patterns, and help predict the potential impact of management scenarios. Recent technological innovations in networking, computing and standardization may bring a new generation of interactive models plugged into virtual environments closer to the end-user. They are the driver of major funding initiatives such as the UK's Virtual Observatory program, and the U.S. National Science Foundation's Earth Cube. In this study we explore how hydrological models, being an important subset of environmental models, have to be adapted in order to function within a broader environment of web-services and user interactions. Historically, hydrological models have been developed for very different purposes. Typically they have a rigid model structure, requiring a very specific set of input data and parameters. As such, the process of implementing a model for a specific catchment requires careful collection and preparation of the input data, extensive calibration and subsequent validation. This procedure seems incompatible with a web-environment, where data availability is highly variable, heterogeneous and constantly changing in time, and where the requirements of end-users may be not necessarily align with the original intention of the model developer. We present prototypes of models that are web-enabled using the web standards of the Open Geospatial Consortium, and implemented in online decision-support systems. We identify issues related to (1) optimal use of available data; (2) the need for flexible and adaptive structures; (3) quantification and communication of uncertainties. Lastly, we present some road maps to address these issues and discuss them in the broader context of web-based data processing and "big data" science.
Recommendations for the Implementation of the LASSO Workflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, William I; Vogelmann, Andrew M; Cheng, Xiaoping
The U. S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Research Fa-cility began a pilot project in May 2015 to design a routine, high-resolution modeling capability to complement ARM’s extensive suite of measurements. This modeling capability, envisioned in the ARM Decadal Vision (U.S. Department of Energy 2014), subsequently has been named the Large-Eddy Simu-lation (LES) ARM Symbiotic Simulation and Observation (LASSO) project, and it has an initial focus of shallow convection at the ARM Southern Great Plains (SGP) atmospheric observatory. This report documents the recommendations resulting from the pilot project to be considered by ARM for imple-mentation into routinemore » operations. During the pilot phase, LASSO has evolved from the initial vision outlined in the pilot project white paper (Gustafson and Vogelmann 2015) to what is recommended in this report. Further details on the overall LASSO project are available at https://www.arm.gov/capabilities/modeling/lasso. Feedback regarding LASSO and the recommendations in this report can be directed to William Gustafson, the project principal investigator (PI), and Andrew Vogelmann, the co-principal investigator (Co-PI), via lasso@arm.gov.« less
ERIC Educational Resources Information Center
Ekeland, Anders; Tomlinson, Mark
This document reports a study of the possibility of making indicators of demand and supply of high skilled labor based on the Labor Force Survey (LFS), a data source available in all European countries. Part 1 is a summary of a pilot study of three countries: United Kingdom (UK), Netherlands, and Norway. It concludes LFS is a limited data source…
Development of a clean optical telescope
NASA Technical Reports Server (NTRS)
Brown, R. A.
1983-01-01
Particulate contamination on astronomical mirrors degrades performance in two ways: by information loss by extinction of light; and background and noise from scattering, especially forward or Fraunhofer scattering. These effects were not generally understood, and an ambitious pilot program was outlined to measure particulate effects on telescope optical performance; develop prophylactic and cleaning procedures suitable for groundbased observatories; investigate by computational modelling the effects on telescopes in space; and communicate the results and concerns within the astronomical community.
NASA Astrophysics Data System (ADS)
Eparvier, F. G.; McCaffrey, M. S.; Buhr, S. M.
2008-12-01
With the aim of meeting NASA goals for education and public outreach as well as support education reform efforts including the National Science Education Standards, a suite of education materials and strategies have been developed by the Cooperative Institute for Environmental Sciences (CIRES) with the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado for the Extreme Ultraviolet Variability Experiment (EVE), which is an instrument aboard the Solar Dynamic Observatory. This paper will examine the education materials that have been developed for teachers in the classroom and scientists who are conducting outreach, including handouts, a website on space weather for teachers, a slideshow presentation about the overall Solar Dynamic Observatory mission, and a DVD with videos explaining the construction and goals of the EVE instrument, a tour of LASP, and an overview of space science careers. The results and potential transferability of a pilot project developed through this effort that engaged English Second Language learners in a semester-long course on space weather that incorporated the used of a Sudden Ionospheric Disturbance (SID) Monitor will be highlighted.
A cloud based tool for knowledge exchange on local scale flood risk.
Wilkinson, M E; Mackay, E; Quinn, P F; Stutter, M; Beven, K J; MacLeod, C J A; Macklin, M G; Elkhatib, Y; Percy, B; Vitolo, C; Haygarth, P M
2015-09-15
There is an emerging and urgent need for new approaches for the management of environmental challenges such as flood hazard in the broad context of sustainability. This requires a new way of working which bridges disciplines and organisations, and that breaks down science-culture boundaries. With this, there is growing recognition that the appropriate involvement of local communities in catchment management decisions can result in multiple benefits. However, new tools are required to connect organisations and communities. The growth of cloud based technologies offers a novel way to facilitate this process of exchange of information in environmental science and management; however, stakeholders need to be engaged with as part of the development process from the beginning rather than being presented with a final product at the end. Here we present the development of a pilot Local Environmental Virtual Observatory Flooding Tool. The aim was to develop a cloud based learning platform for stakeholders, bringing together fragmented data, models and visualisation tools that will enable these stakeholders to make scientifically informed environmental management decisions at the local scale. It has been developed by engaging with different stakeholder groups in three catchment case studies in the UK and a panel of national experts in relevant topic areas. However, these case study catchments are typical of many northern latitude catchments. The tool was designed to communicate flood risk in locally impacted communities whilst engaging with landowners/farmers about the risk of runoff from the farmed landscape. It has been developed iteratively to reflect the needs, interests and capabilities of a wide range of stakeholders. The pilot tool combines cloud based services, local catchment datasets, a hydrological model and bespoke visualisation tools to explore real time hydrometric data and the impact of flood risk caused by future land use changes. The novel aspects of the pilot tool are; the co-evolution of tools on a cloud based platform with stakeholders, policy and scientists; encouraging different science disciplines to work together; a wealth of information that is accessible and understandable to a range of stakeholders; and provides a framework for how to approach the development of such a cloud based tool in the future. Above all, stakeholders saw the tool and the potential of cloud technologies as an effective means to taking a whole systems approach to solving environmental issues. This sense of community ownership is essential in order to facilitate future appropriate and acceptable land use management decisions to be co-developed by local catchment communities. The development processes and the resulting pilot tool could be applied to local catchments globally to facilitate bottom up catchment management approaches. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Berlin Kompass: Multimodal Gameful Empowerment for Foreign Language Learning
ERIC Educational Resources Information Center
Kallioniemi, Pekka; Posti, Laura-Pihkala; Hakulinen, Jaakko; Turunen, Markku; Keskinen, Tuuli; Raisamo, Roope
2015-01-01
This article presents an innovative, gameful, multimodal, and authentic learning environment for training of oral communication in a foreign language--a virtual adventure called Berlin Kompass. After a brief presentation of the pedagogical and technological backgrounds, the system is described. Central results of a series of pilots in autumn 2013…
ERIC Educational Resources Information Center
Peters, Phil; Katsaros, Alex; Howard, Rosalyn; Lindgren, Robb
2012-01-01
This pilot project conducted by researchers from the University of Central Florida (UCF) seeks to answer the question: Does a real-time, two-way, mobile, remote webcasting system have special properties for learning compared with traditional distance learning platforms? Students enrolled in two online, undergraduate UCF courses explored South…
New Teacher Induction--In and out of Cyberspace
ERIC Educational Resources Information Center
Berry, Barnett; Byrd, Ann
2012-01-01
In this chapter, the authors draw on their experiences with working in building virtual communities of teachers and a pilot program to examine the prospects for increasing consistency in the effectiveness of new teacher support through online networks. Although not intended as a substitute for high-quality face-to-face mentoring experiences,…
Avatar-Based Therapy within Prison Settings: Pilot Evaluation
ERIC Educational Resources Information Center
van Rijn, Biljana; Cooper, Mick; Jackson, Andrew; Wild, Ciara
2017-01-01
The paper presents an introduction of a newly developed, avatar-based virtual reality therapy, as an addition to the therapeutic programme, within a therapeutic community prison in the UK. The participants had six group sessions facilitated by a counsellor. The aim of the project was to investigate whether this approach would improve mental health…
Modern Learning Methods for HRD: The Clinical Legal Education (CLE) Approach[C
ERIC Educational Resources Information Center
Wootton, Danielle; Stone, Barras Kenneth
2010-01-01
Purpose: The purpose of this paper is to explore how professional skills training in making ethical decisions for redundancy selection, can be utilised though interactive role play, in a virtual learning environment. Design/methodology/approach: A pilot study was undertaken with a group of part time mature students pursuing a professional…
ERIC Educational Resources Information Center
Shin, Mikyung; Bryant, Diane P.
2017-01-01
Students with mathematics learning disabilities (MLD) have a weak understanding of fraction concepts and skills, which are foundations of algebra. Such students might benefit from computer-assisted instruction that utilizes evidence-based instructional components (cognitive strategies, feedback, virtual manipulatives). As a pilot study using a…
Augmentation of Cognition and Perception Through Advanced Synthetic Vision Technology
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.; Arthur, Jarvis J.; Williams, Steve P.; McNabb, Jennifer
2005-01-01
Synthetic Vision System technology augments reality and creates a virtual visual meteorological condition that extends a pilot's cognitive and perceptual capabilities during flight operations when outside visibility is restricted. The paper describes the NASA Synthetic Vision System for commercial aviation with an emphasis on how the technology achieves Augmented Cognition objectives.
Flight Test Overview for UAS Integration in the NAS Project
NASA Technical Reports Server (NTRS)
Murphy, James R.; Hayes, Peggy S.; Kim, Sam K.; Bridges, Wayne; Marston, Michael
2016-01-01
The National Aeronautics and Space Administration is conducting a series of flight tests intended to support the reduction of barriers that prevent unmanned aircraft from flying without the required waivers from the Federal Aviation Administration. The most recent testing supported two separate test configurations. The first investigated the timing of Detect and Avoid (DAA) alerting thresholds using a radar-equipped unmanned vehicle and multiple live intruders flown at varying encounter geometries. The second configuration included a surrogate unmanned vehicle (flown from a ground control station, with a safety pilot on board) flying a mission in a virtual air traffic control airspace sector using research pilot displays and DAA advisories to maintain separation from live and virtual aircraft. The test was conducted over a seven-week span in the summer of 2015. The data from over 100 encounter sorties will be used to inform the RTCA Phase 1 Detect and Avoid and Command and Control Minimum Operating Performance Standards (MOPS) intended to be completed by the summer of 2016. Follow-on flight-testing is planned for the spring of 2016 to capture remaining encounters and support validation of the MOPS.
NASA Astrophysics Data System (ADS)
Moschini, Elena
Academics are beginning to explore the educational potential of Second LifeTM (SL) by setting up inworld educational activities and projects. Given the relative novelty of the use of virtual world environments in higher education many such projects are still at pilot stage. However the initial pilot and experimentation stage will have to be followed by a rigorous evaluation process as for more traditional teaching projects. The chapter addresses issues about SL research tools and research methods. It introduces a "researcher toolkit" that includes: the various stages in the evaluation of SL educational projects and the theoretical framework that can inform such projects; an outline of the inworld tools that can be utilised or customised for academic research purposes; a review of methods for collecting feedback from participants and of the main ethical issues involved in researching virtual world environments; a discussion on the technical skills required to operate a research project in SL. The chapter also offers an indication of the inworld opportunities for the dissemination of SL research findings.
Validation and verification of a virtual environment for training naval submarine officers
NASA Astrophysics Data System (ADS)
Zeltzer, David L.; Pioch, Nicholas J.
1996-04-01
A prototype virtual environment (VE) has been developed for training a submarine officer of the desk (OOD) to perform in-harbor navigation on a surfaced submarine. The OOD, stationed on the conning tower of the vessel, is responsible for monitoring the progress of the boat as it negotiates a marked channel, as well as verifying the navigational suggestions of the below- deck piloting team. The VE system allows an OOD trainee to view a particular harbor and associated waterway through a head-mounted display, receive spoken reports from a simulated piloting team, give spoken commands to the helmsman, and receive verbal confirmation of command execution from the helm. The task analysis of in-harbor navigation, and the derivation of application requirements are briefly described. This is followed by a discussion of the implementation of the prototype. This implementation underwent a series of validation and verification assessment activities, including operational validation, data validation, and software verification of individual software modules as well as the integrated system. Validation and verification procedures are discussed with respect to the OOD application in particular, and with respect to VE applications in general.
New Tools to Search for Data in the European Space Agency's Planetary Science Archive
NASA Astrophysics Data System (ADS)
Grotheer, E.; Macfarlane, A. J.; Rios, C.; Arviset, C.; Heather, D.; Fraga, D.; Vallejo, F.; De Marchi, G.; Barbarisi, I.; Saiz, J.; Barthelemy, M.; Docasal, R.; Martinez, S.; Besse, S.; Lim, T.
2016-12-01
The European Space Agency's (ESA) Planetary Science Archive (PSA), which can be accessed at http://archives.esac.esa.int/psa, provides public access to the archived data of Europe's missions to our neighboring planets. These datasets are compliant with the Planetary Data System (PDS) standards. Recently, a new interface has been released, which includes upgrades to make PDS4 data available from newer missions such as ExoMars and BepiColombo. Additionally, the PSA development team has been working to ensure that the legacy PDS3 data will be more easily accessible via the new interface as well. In addition to a new querying interface, the new PSA also allows access via the EPN-TAP and PDAP protocols. This makes the PSA data sets compatible with other archive-related tools and projects, such as the Virtual European Solar and Planetary Access (VESPA) project for creating a virtual observatory.
VIGOR: Virtual Interaction with Gravitational Waves to Observe Relativity
NASA Astrophysics Data System (ADS)
Kitagawa, Midori; Kesden, Michael; Tranm, Ngoc; Venlayudam, Thulasi Sivampillai; Urquhart, Mary; Malina, Roger
2017-05-01
In 2015, a century after Albert Einstein published his theory of general relativity, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected gravitational waves from binary black holes fully consistent with this theory. Our goal for VIGOR (Virtual-reality Interaction with Gravitational waves to Observe Relativity) is to communicate this revolutionary discovery to the public by visualizing the gravitational waves emitted by binary black holes. VIGOR has been developed using the Unity game engine and VR headsets (Oculus Rift DK2 and Samsung Gear VR). Wearing a VR headset, VIGOR users control an avatar to "fly" around binary black holes, experiment on the black holes by manipulating their total mass, mass ratio, and orbital separation, and witness how gravitational waves emitted by the black holes stretch and squeeze the avatar. We evaluated our prototype of VIGOR with high school students in 2016 and are further improving VIGOR based on our findings.
Ma, Hui-Ing; Hwang, Wen-Juh; Fang, Jing-Jing; Kuo, Jui-Kun; Wang, Ching-Yi; Leong, Iat-Fai; Wang, Tsui-Ying
2011-10-01
To investigate whether practising reaching for virtual moving targets would improve motor performance in people with Parkinson's disease. Randomized pretest-posttest control group design. A virtual reality laboratory in a university setting. Thirty-three adults with Parkinson's disease. The virtual reality training required 60 trials of reaching for fast-moving virtual balls with the dominant hand. The control group had 60 practice trials turning pegs with their non-dominant hand. Pretest and posttest required reaching with the dominant hand to grasp real stationary balls and balls moving at different speeds down a ramp. Success rates and kinematic data (movement time, peak velocity and percentage of movement time for acceleration phase) from pretest and posttest were recorded to determine the immediate transfer effects. Compared with the control group, the virtual reality training group became faster (F = 9.08, P = 0.005) and more forceful (F = 9.36, P = 0.005) when reaching for real stationary balls. However, there was no significant difference in success rate or movement kinematics between the two groups when reaching for real moving balls. A short virtual reality training programme improved the movement speed of discrete aiming tasks when participants reached for real stationary objects. However, the transfer effect was minimal when reaching for real moving objects.
1999-02-09
In the Solid Motor Assembly Building, Cape Canaveral Air Station, looking over the Inertial Upper Stage booster being readied for their mission are (left to right) STS-93 Pilot Jeffrey S. Ashby and Mission Specialists Michel Tognini, who represents the Centre National d'Etudes Spatiales (CNES), and Steven A. Hawley. On the far right is Eric Herrburger, with Boeing. Other crew members (not shown) are Commander Eileen Collins and Mission Specialist Catherine G. Coleman. STS-93, scheduled to launch July 9 aboard Space Shuttle Columbia, has the primary mission of the deployment of the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-09
In the Solid Motor Assembly Building, Cape Canaveral Air Station, STS-93 Mission Specialist Catherine G. Coleman kneels next to the Inertial Upper Stage booster being readied for the mission. Other crew members (not shown) are Commander Eileen Collins, Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). STS-93, scheduled to launch July 9 aboard Space Shuttle Columbia, has the primary mission of the deployment of the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-09
In the Solid Motor Assembly Building, Cape Canaveral Air Station, STS-93 Pilot Jeffrey S. Ashby and Mission Specialist Steven A. Hawley look over the Inertial Upper Stage booster being readied for their mission. Other crew members (not shown) are Commander Eileen Collins and Mission Specialists Catherine G. Coleman and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). STS-93, scheduled to launch July 9 aboard Space Shuttle Columbia, has the primary mission of the deployment of the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
Cytopathology whole slide images and virtual microscopy adaptive tutorials: A software pilot
Van Es, Simone L.; Pryor, Wendy M.; Belinson, Zack; Salisbury, Elizabeth L.; Velan, Gary M.
2015-01-01
Background: The constant growth in the body of knowledge in medicine requires pathologists and pathology trainees to engage in continuing education. Providing them with equitable access to efficient and effective forms of education in pathology (especially in remote and rural settings) is important, but challenging. Methods: We developed three pilot cytopathology virtual microscopy adaptive tutorials (VMATs) to explore a novel adaptive E-learning platform (AeLP) which can incorporate whole slide images for pathology education. We collected user feedback to further develop this educational material and to subsequently deploy randomized trials in both pathology specialist trainee and also medical student cohorts. Cytopathology whole slide images were first acquired then novel VMATs teaching cytopathology were created using the AeLP, an intelligent tutoring system developed by Smart Sparrow. The pilot was run for Australian pathologists and trainees through the education section of Royal College of Pathologists of Australasia website over a period of 9 months. Feedback on the usability, impact on learning and any technical issues was obtained using 5-point Likert scale items and open-ended feedback in online questionnaires. Results: A total of 181 pathologists and pathology trainees anonymously attempted the three adaptive tutorials, a smaller proportion of whom went on to provide feedback at the end of each tutorial. VMATs were perceived as effective and efficient E-learning tools for pathology education. User feedback was positive. There were no significant technical issues. Conclusion: During this pilot, the user feedback on the educational content and interface and the lack of technical issues were helpful. Large scale trials of similar online cytopathology adaptive tutorials were planned for the future. PMID:26605119
Divided attention and driving: a pilot study using virtual reality technology.
Lengenfelder, Jean; Schultheis, Maria T; Al-Shihabi, Talal; Mourant, Ronald; DeLuca, John
2002-02-01
Virtual reality (VR) was used to investigate the influence of divided attention (simple versus complex) on driving performance (speed control). Three individuals with traumatic brain injury (TBI) and three healthy controls (HC), matched for age, education, and gender, were examined. Preliminary results revealed no differences on driving speed between TBI and HC. In contrast, TBI subjects demonstrated a greater number of errors on a secondary task performed while driving. The findings suggest that VR may provide an innovative medium for direct evaluation of basic cognitive functions (ie, divided attention) and its impact on everyday tasks (ie, driving) not previously available through traditional neuropsychological measures.
Virtual Reality Training System for Anytime/Anywhere Acquisition of Surgical Skills: A Pilot Study.
Zahiri, Mohsen; Booton, Ryan; Nelson, Carl A; Oleynikov, Dmitry; Siu, Ka-Chun
2018-03-01
This article presents a hardware/software simulation environment suitable for anytime/anywhere surgical skills training. It blends the advantages of physical hardware and task analogs with the flexibility of virtual environments. This is further enhanced by a web-based implementation of training feedback accessible to both trainees and trainers. Our training system provides a self-paced and interactive means to attain proficiency in basic tasks that could potentially be applied across a spectrum of trainees from first responder field medical personnel to physicians. This results in a powerful training tool for surgical skills acquisition relevant to helping injured warfighters.
Assessing the mental frame syncing in the elderly: a virtual reality protocol.
Serino, Silvia; Cipresso, Pietro; Gaggioli, Andrea; Riva, Giuseppe
2014-01-01
Decline in spatial memory in the elderly is often underestimated, and it is crucial to fully investigate the cognitive underpinnings of early spatial impairment. A virtual reality-based procedure was developed to assess deficit in the "mental frame syncing", namely the cognitive ability that allows an effective orientation by synchronizing the allocentric view-point independent representation with the allocentric view-point dependent representation. A pilot study was carried out to evaluate abilities in the mental frame syncing in a sample of 16 elderly participants. Preliminary results indicated that the general cognitive functioning was associated with the ability in the synchronization between these two allocentric references frames.
NASA Astrophysics Data System (ADS)
Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.
2015-12-01
During the last years, several Grid computing centres chose virtualization as a better way to manage diverse use cases with self-consistent environments on the same bare infrastructure. The maturity of control interfaces (such as OpenNebula and OpenStack) opened the possibility to easily change the amount of resources assigned to each use case by simply turning on and off virtual machines. Some of those private clouds use, in production, copies of the Virtual Analysis Facility, a fully virtualized and self-contained batch analysis cluster capable of expanding and shrinking automatically upon need: however, resources starvation occurs frequently as expansion has to compete with other virtual machines running long-living batch jobs. Such batch nodes cannot relinquish their resources in a timely fashion: the more jobs they run, the longer it takes to drain them and shut off, and making one-job virtual machines introduces a non-negligible virtualization overhead. By improving several components of the Virtual Analysis Facility we have realized an experimental “Docked” Analysis Facility for ALICE, which leverages containers instead of virtual machines for providing performance and security isolation. We will present the techniques we have used to address practical problems, such as software provisioning through CVMFS, as well as our considerations on the maturity of containers for High Performance Computing. As the abstraction layer is thinner, our Docked Analysis Facilities may feature a more fine-grained sizing, down to single-job node containers: we will show how this approach will positively impact automatic cluster resizing by deploying lightweight pilot containers instead of replacing central queue polls.
Jabar, Ardil; Oni, Tolu; Engel, Mark E; Cvetkovic, Nemanja; Matzopoulos, Richard
2017-12-22
The establishment of violence and injury observatories elsewhere has been found to reduce the burden within a relatively short period. Currently no integrated system exists in South Africa to provide collated data on violence, to allow for targeted interventions and routine monitoring and evaluation.This research seeks to identify if bringing multiple data sources, including but not limited to data from the South African Police Service (SAPS), Forensic Pathology Services (FPS), Emergency Medical Services (EMS) and local hospital clinical databases, together are (1) feasible; (2) able to generate data for action, that is valid, reliable and robust and (3) able to lead to interventions.The violence, injury and trauma observatory (VITO) is a planned collaborative, multicentre study of clinical, police and forensic data for violence and injury in the City of Cape Town, where a local context exists of access to multiple source of health and non-health data. The VITO will initially be piloted in Khayelitsha, a periurban community characterised by increased rates of violence, where fatal and non-fatal injury data will be sourced from within the community for the period 2012-2015 and subjected to descriptive statistics and time-trend analyses. Analysed data will be visualised using story maps, data clocks, web maps and other geographical information systems-related products.This study has been approved by the University of Cape Town's Human Research Ethics Committee (HREC 861/2016). We intend to disseminate our findings among stakeholders within the local government safety cluster, non-governmental organisations working within the violence prevention sector and the afflicted communities through the SAPS and violence prevention through urban upgrading community forums. Findings from this work will serve to identify important issues and trends, influence public policy and develop evidence-based interventions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Interstellar extinction from photometric surveys: application to four high-latitude areas
NASA Astrophysics Data System (ADS)
Malkov, Oleg; Karpov, Sergey; Kilpio, Elena; Sichevsky, Sergey; Chulkov, Dmitry; Dluzhnevskaya, Olga; Kovaleva, Dana; Kniazev, Alexei; Mickaelian, Areg; Mironov, Alexey; Murthy, Jayant; Sytov, Alexey; Zhao, Gang; Zhukov, Aleksandr
2018-04-01
Information on interstellar extinction and dust properties may be obtained from modern large photometric surveys data. Virtual Observatory facilities allow users to make a fast and correct cross-identification of objects from various surveys. It yields a multicolor photometry data on detected objects and makes it possible to estimate stellar parameters and calculate interstellar extinction. A 3D extinction map then can be constructed. The method was applied to 2MASS, SDSS, GALEX and UKIDSS surveys. Results for several high-latitude areas are obtained, compared with independent sources and discussed here.
CSU's MWV Observatory: A Facility for Research, Education and Outreach
NASA Astrophysics Data System (ADS)
Hood, John; Carpenter, N. D.; McCarty, C. B.; Samford, J. H.; Johnson, M.; Puckett, A. W.; Williams, R. N.; Cruzen, S. T.
2014-01-01
The Mead Westvaco Observatory (MWVO), located in Columbus State University's Coca-Cola Space Science Center, is dedicated to education and research in astronomy through hands-on engagement and public participation. The MWVO has recently received funding to upgrade from a 16-inch Meade LX-200 telescope to a PlaneWave CDK 24-inch Corrected Dall-Kirkham Astrograph telescope. This and other technological upgrades will allow this observatory to stream live webcasts for astronomical events, allowing a worldwide public audience to become a part of the growing astronomical community. This poster will explain the upgrades that are currently in progress as well as the results from the current calibrations. The goal of these upgrades is to provide facilities capable of both research-class projects and widespread use in education and public outreach. We will present our initial calibration and tests of the observatory equipment, as well as its use in webcasts of astronomical events, in solar observing through the use of specialized piggy-backed telescopes, and in research into such topics as asteroids, planetary and nebula imaging. We will describe a pilot research project on asteroid orbit refinement and light curves, to be carried out by Columbus State University students. We will also outline many of the K-12 educational and public outreach activities we have designed for these facilities. Support and funding for the acquisition and installation of the new PlaneWave CDK 24 has been provided by the International Museum and Library Services via the Museums for America Award.
vTrain: a novel curriculum for patient surge training in a multi-user virtual environment (MUVE).
Greci, Laura S; Ramloll, Rameshsharma; Hurst, Samantha; Garman, Karen; Beedasy, Jaishree; Pieper, Eric B; Huang, Ricky; Higginbotham, Erin; Agha, Zia
2013-06-01
During a pandemic influenza, emergency departments will be overwhelmed with a large influx of patients seeking care. Although all hospitals should have a written plan for dealing with this surge of health care utilization, most hospitals struggle with ways to educate the staff and practice for potentially catastrophic events. Hypothesis/Problem To better prepare hospital staff for a patient surge, a novel educational curriculum was developed utilizing an emergency department for a patient surge functional drill. A multidisciplinary team of medical educators, evaluators, emergency preparedness experts, and technology specialists developed a curriculum to: (1) train novice users to function in their job class in a multi-user virtual environment (MUVE); (2) obtain appropriate pre-drill disaster preparedness training; (3) perform functional team exercises in a MUVE; and (4) reflect on their performance after the drill. A total of 14 students participated in one of two iterations of the pilot training program; seven nurses completed the emergency department triage course, and seven hospital administrators completed the Command Post (CP) course. All participants reported positive experiences in written course evaluations and structured verbal debriefings, and self-reported increase in disaster preparedness knowledge. Students also reported improved team communication, planning, team decision making, and the ability to visualize and reflect on their performance. Data from this pilot program suggest that the immersive, virtual teaching method is well suited to team-based, reflective practice and learning of disaster management skills.
NASA Astrophysics Data System (ADS)
Hueso, R.; Sánchez-Lavega, A.; Iñurrigarro, P.; Rojas, J. F.; Pérez-Hoyos, S.; Mendikoa, I.; Gómez-Forrellad, J. M.; Go, C.; Peach, D.; Colas, F.; Vedovato, M.
2017-05-01
We analyze Jupiter observations between December 2015 and August 2016 in the 0.38-1.7 μm wavelength range from the PlanetCam instrument at the 2.2 m telescope at Calar Alto Observatory and in the optical range by amateur observers contributing to the Planetary Virtual Observatory Laboratory. Over this time Jupiter was in a quiescent state without notable disturbances. Analysis of ground-based images and Hubble Space Telescope observations in February 2016 allowed the retrieval of mean zonal winds from -74.5° to +73.2°. These winds did not change over 2016 or when compared with winds from previous years with the sole exception of intense zonal winds at the North Temperate Belt. We also present results concerning the major wave systems in the North Equatorial Belt and in the upper polar hazes visible in methane absorption bands, a description of the planet's overall cloud morphology and observations of Jupiter hours before Juno's orbit insertion.
NASA Astrophysics Data System (ADS)
Ortiz-Correa, Z. M.; Lautenbach, J.; Franco-Diaz, E.; Raizada, S.; Ghosh, T.; Rivera-Valentín, E.; Ortiz, A.
2017-12-01
This project was developed to encourage secondary students to pursue STEM related careers through exposure to the interdisciplinary nature of the Arecibo Observatory (AO) in Puerto Rico. The idea for this project was initiated due to the NSF-funded Research Experience for Teachers (RET) Summer Program. The AO RET summer program allows teaching faculty from public schools to collaborate with scientist on their ongoing research or instrument development projects at the AO for five weeks. Subsequently, the research is disseminated among secondary students through several workshops and hands-on activities. Through the workshops and hands-on activities underrepresented secondary students will learn about the research conducted at the AO to study Earth's upper atmosphere, asteroids and other Solar System bodies, as well as stars and galaxies beyond. Afterwards, students will develop virtual worlds simulating the different AO facilities (Lidar Laboratory, Radio Telescope, Planetary Radar System, HF Facility, Visitor Center, among others) and showing their functions using digital game-based learning.
CCD TV focal plane guider development and comparison to SIRTF applications
NASA Technical Reports Server (NTRS)
Rank, David M.
1989-01-01
It is expected that the SIRTF payload will use a CCD TV focal plane fine guidance sensor to provide acquisition of sources and tracking stability of the telescope. Work has been done to develop CCD TV cameras and guiders at Lick Observatory for several years and have produced state of the art CCD TV systems for internal use. NASA decided to provide additional support so that the limits of this technology could be established and a comparison between SIRTF requirements and practical systems could be put on a more quantitative basis. The results of work carried out at Lick Observatory which was designed to characterize present CCD autoguiding technology and relate it to SIRTF applications is presented. Two different design types of CCD cameras were constructed using virtual phase and burred channel CCD sensors. A simple autoguider was built and used on the KAO, Mt. Lemon and Mt. Hamilton telescopes. A video image processing system was also constructed in order to characterize the performance of the auto guider and CCD cameras.
Herschel spectroscopic observations of PPNe and PNe
NASA Astrophysics Data System (ADS)
García-Lario, Pedro; Ramos-Medina, J.; Sánchez-Contreras, C.
2017-10-01
We are building a catalogue of interactively reprocessed observations of evolved stars observed with Herschel. The catalogue will offer not only the PACS and SPIRE spectroscopic data for each observation, but also complementary information from other infrared space observatories. As a first step, we are concentrating our efforts on two main activities: 1) the interactive data-reduction of more than 500 individual spectra obtained with PACS in the 55-210 μm range, available in the Herschel Science Archive; 2) the creation of a catalogue, accesible via a web-based interface and through the Virtual Observatory. Our ultimate goal is to carry out a comprehensive and systematic study of the far infrared properties of low-and intermediate-mass evolved stars using these data and enable science based on Herschel archival data. The objects cover the whole range of possible evolutionary stages in this short-lived phase of stellar evolution, from the AGB to the PN stage, displaying a wide variety of chemical and physical properties.
Responses to a virtual reality grocery store in persons with and without vestibular dysfunction.
Whitney, Susan L; Sparto, Patrick J; Hodges, Larry F; Babu, Sabarish V; Furman, Joseph M; Redfern, Mark S
2006-04-01
People with vestibular dysfunction often complain of having difficulty walking in visually complex environments. Virtual reality (VR) may serve as a useful therapeutic tool for providing physical therapy to these people. The purpose of this pilot project was to explore the ability of people with and without vestibular dysfunction to use and tolerate virtual environments that can be used in physical therapy. We have chosen grocery store environments, which often elicit complaints from patients. Two patients and three control subjects were asked to stand and navigate in VR grocery stores while finding products. Perceived discomfort, simulator sickness symptoms, distance traveled, and speed of head movement were recorded. Symptoms and discomfort increased in one subject with vestibular dysfunction. The older subjects traveled a shorter distance and had greater speed of head movements compared with young subjects. Environments with a greater number of products resulted in more head movements and a shorter distance traveled.
A Scenario-Based Virtual Patient Program to Support Substance Misuse Education.
Zlotos, Leon; Power, Ailsa; Hill, Duncan; Chapman, Paul
2016-04-25
Objective. To evaluate virtual patient (VP) programs for injecting equipment provision (IEP) and opiate substitution therapy (OST) services with respect to confidence and knowledge among preregistration pharmacist trainees. Methods. Preregistration trainee pharmacists pilot-tested the VP programs and were invited to complete pre/post and 6-month assessments of knowledge and perceived confidence. Results. One hundred six trainees participated and completed the pre/postassessments. Forty-six (43.4%) participants repeated the assessments at six months. Scores in perceived confidence increased in all domains at both time points postprogram. Knowledge scores were greater posteducation than preeducation. Knowledge scores were also greater six months after education than preeducation. Knowledge scores at six months were lower than posteducation for both programs. Conclusion. Virtual patients programs increased preregistration pharmacists' knowledge and confidence with regard to IEP and OST immediately after use and at six months postprogram. There was a loss of clinical knowledge over time but confidence change was sustained.
Acquisition of Fire Safety Knowledge and Skills With Virtual Reality Simulation.
Rossler, Kelly L; Sankaranarayanan, Ganesh; Duvall, Adrianne
2018-05-25
Prelicensure nursing students seeking to enter perioperative nursing need preparatory fire safety knowledge and skills training to participate as a member of an operating room (OR) team. This pilot study examined the effectiveness of the Virtual Electrosurgery Skill Trainer (VEST) on OR fire safety skills among prelicensure nursing students. An experimental pretest-posttest design was used in this study. Twenty nursing students were randomized to a control or an intervention group. Knowledge and skills acquisition of OR fire safety were assessed. There were no statistically significant findings in knowledge for either group. Fisher exact test demonstrated significant relationships between the skills performance criteria of following emergency procedures for a fire and demonstrating PASS (pull-aim-squeeze-sweep) technique (P = .001). Academic and hospital educators may consider incorporating virtual reality simulation to teach fire safety education or reinforce general fire safety practices to nursing students and novice nurses.
Assessment of Visuospatial Neglect in Stroke Patients Using Virtual Reality: A Pilot Study
ERIC Educational Resources Information Center
Jannink, Michiel J. A.; Aznar, Miguel; de Kort, Alexander Cornelis; van de Vis, Wim; Veltink, Peter; van der Kooij, Herman
2009-01-01
One of the neuropsychological deficits that can result from a stroke is the neglect phenomenon. Neglect has traditionally been assessed with paper-and-pencil tasks, which are administered within the reaching space of a person. The purpose of this explorative study is to investigate whether it is possible to assess neglect in the extrapersonal…
The Virtual History Museum: Learning U.S. History in Diverse Eighth Grade Classrooms
ERIC Educational Resources Information Center
Okolo, Cynthia M.; Englert, Carol Sue; Bouck, Emily C.; Heutsche, Anne; Wang, Hequn
2011-01-01
History is an important but often overlooked content area for all students in this current era of accountability. Yet instruction in history can help students become problem solvers and learn to make interpretations from multiple perspectives. This article reports the results of a pilot study examining history learning across three groups of…
ERIC Educational Resources Information Center
Burchett, Shayna; Hayes, Jack; Pfaff, Annalise; Satterfield, Emmalou T.; Skyles, Amy; Woelk, Klaus
2016-01-01
Laboratory capacity is an issue that has plagued education for more than a century. New buildings, late night classes, and virtual laboratories have offered transitory relief at great expense. Missouri University of Science and Technology is employing blended strategies to increase capacity and student success. Blended strategies expand learning…
ERIC Educational Resources Information Center
Williams-Gray, Brenda
2014-01-01
This article examines how to prepare professional social workers for real-world nonprofit leadership roles. A pilot course assignment that incorporates a quasi-organization fieldwork simulation developed by the author is described. Development and application of critical thinking skills are reviewed, the course objective is explained, and methods…
1962-04-27
The Apollo 16 Command Module splashed down in the Pacific Ocean on April 27, 1972 after an 11-day moon exploration mission. The 3-man crew is shown here aboard the rescue ship, USS Horton. From left to right are: Mission Commander John W. Young, Lunar Module pilot Charles M. Duke, and Command Module pilot Thomas K. Mattingly II. The sixth manned lunar landing mission, the Apollo 16 (SA-511) lifted off on April 16, 1972. The Apollo 16 mission continued the broad-scale geological, geochemical, and geophysical mapping of the Moon’s crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used.
Williams, Grace; Sarig-Bahat, Hilla; Williams, Katrina; Tyrrell, Ryan; Treleaven, Julia
2017-01-01
Research has consistently shown cervical kinematic impairments in subjects with persistent neck pain (NP). It could be reasoned that those with vestibular pathology (VP) may also have altered kinematics since vestibular stimulation via head movement can cause dizziness and visual disturbances. However, this has not been examined to date. This pilot study investigated changes in cervical kinematics between asymptomatic control, NP and VP subjects using a Virtual Reality (VR) system. It was hypothesised that there would be altered kinematics in VP subjects, which might be associated with dizziness and visual symptoms. Pilot cross sectional observational study. Twenty control, 14 VP and 20 NP subjects. Not applicable. Measures included questionnaires (neck disability index, pain on movement, dizziness and pain intensity, visual disturbances) and cervical kinematics (range, peak and mean velocity, smoothness, symmetry, and accuracy of cervical motion) using a virtual reality system. Results revealed significantly decreased mean velocity and symmetry of motion in both planes in those with NP but no differences in accuracy or range of motion. No significant differences were seen between VP subjects and asymptomatic controls. However, correlation analysis showed some moderate correlations between dizziness to selected kinematics in both the NP and the VP groups. These results support that cervical kinematics are altered in NP patients, with velocity most affected. There is potential for VP subjects to also have altered kinematics, especially those who experience dizziness. More research is required.
What can virtual patient simulation offer mental health nursing education?
Guise, V; Chambers, M; Välimäki, M
2012-06-01
This paper discusses the use of simulation in nursing education and training, including potential benefits and barriers associated with its use. In particular, it addresses the hitherto scant application of diverse simulation devices and dedicated simulation scenarios in psychiatric and mental health nursing. It goes on to describe a low-cost, narrative-based virtual patient simulation technique which has the potential for wide application within health and social care education. An example of the implementation of this technology in a web-based pilot course for acute mental health nurses is given. This particular virtual patient technique is a simulation type ideally suited to promoting essential mental health nursing skills such as critical thinking, communication and decision making. Furthermore, it is argued that it is particularly amenable to e-learning and blended learning environments, as well as being an apt tool where multilingual simulations are required. The continued development, implementation and evaluation of narrative virtual patient simulations across a variety of health and social care programmes would help ascertain their success as an educational tool. © 2011 Blackwell Publishing.
Virtual reality for health care: the status of research.
Riva, Giuseppe
2002-06-01
As information technology has advanced and costs have declined over the past decade, there has been a steady growth in the use of virtual reality (VR) in health care. According to the data of the two leading clinical databases--MEDLINE and PSYCINFO--the research in the virtual reality field is moving fast: under the "virtual reality" keyword, there are 739 papers listed in MEDLINE and 569 in PSYCINFO (accessed 6 December 2001). Much of this growth, however, has been in the form of feasibility studies and pilot trials. In fact, many researchers tried to use VR, but only a few were able to deepen their study. According to MEDLINE, only 16 research groups published more than three papers related to health care applications of VR. This number lowers to 12 for papers included in PSYCLIT. Therefore, apart from surgical training and some behavioral treatments, there is little convincing evidence coming from controlled studies of the clinical and economical advantages of this approach. This paper discusses recent evidence and outlines some guidelines for future research in this area.
An intersubject variable regional anesthesia simulator with a virtual patient architecture.
Ullrich, Sebastian; Grottke, Oliver; Fried, Eduard; Frommen, Thorsten; Liao, Wei; Rossaint, Rolf; Kuhlen, Torsten; Deserno, Thomas M
2009-11-01
The main purpose is to provide an intuitive VR-based training environment for regional anesthesia (RA). The research question is how to process subject-specific datasets, organize them in a meaningful way and how to perform the simulation for peripheral regions. We propose a flexible virtual patient architecture and methods to process datasets. Image acquisition, image processing (especially segmentation), interactive nerve modeling and permutations (nerve instantiation) are described in detail. The simulation of electric impulse stimulation and according responses are essential for the training of peripheral RA and solved by an approach based on the electric distance. We have created an XML-based virtual patient database with several subjects. Prototypes of the simulation are implemented and run on multimodal VR hardware (e.g., stereoscopic display and haptic device). A first user pilot study has confirmed our approach. The virtual patient architecture enables support for arbitrary scenarios on different subjects. This concept can also be used for other simulators. In future work, we plan to extend the simulation and conduct further evaluations in order to provide a tool for routine training for RA.
Creation of a virtual triage exercise: an interprofessional communication strategy.
Farra, Sharon; Nicely, Stephanie; Hodgson, Eric
2014-10-01
Virtual reality simulation as a teaching method is gaining increased acceptance and presence in institutions of higher learning. This study presents an innovative strategy using the interdisciplinary development of a nonimmersive virtual reality simulation to facilitate interprofessional communication. The purpose of this pilot project was to describe nursing students' attitudes related to interprofessional communication following the collaborative development of a disaster triage virtual reality simulation. Collaboration between and among professionals is integral in enhancing patient outcomes. In addition, ineffective communication is linked to detrimental patient outcomes, especially during times of high stress. Poor communication has been identified as the root cause of the majority of negative sentinel events occurring in hospitals. The simulation-development teaching model proved useful in fostering interprofessional communication and mastering course content. Mean scores on the KidSIM Attitudes Towards Teamwork in Training Undergoing Designed Educational Simulation survey demonstrated that nursing students, after simulation experience,had agreement to strong agreement inall areas surveyed including interprofessional education, communication, roles and responsibilities of team members, and situational awareness. The findings indicate that students value interprofessional teamwork and the opportunity to work with other disciplines.
Impact Through Outreach and Education with Europlanet 2020 Research Infrastructure
NASA Astrophysics Data System (ADS)
Heward, A.; Barrosa, M.; Miller, S.
2015-10-01
Since 2005, Europlanet has provided a framework to bring together Europe's fragmented planetary science community. The project has evolved through a number of phases into a self-sustaining membership organization. Now, Europlanet is launching a new Research Infrastructure (RI) funded through the European Commission's Horizon 2020 programme that, for the next four years, will provide support, services, access to facilities, new research tools and a virtual planetary observatory. Europlanet 2020 RI's Impact Through Outreach and Education (IOE) activities aim to ensure that the work of Europlanet and the community it supports is known, understood and used by stakeholders, and that their inputs are taken into account by the project. We will engage citizens, policy makers and potential industrial partners across Europe with planetary science and the opportunities that it provides for innovation, inspiration and job creation. We will reach out to educators and students, both directly and through partner networks, to provide an interactive showcase of Europlanet's activities e.g through live link-ups with scientists participating in planetary analogue field trips, educational video "shorts" and through using real planetary data from the virtual observatory in comparative planetology educational activities. We will support outreach providers within the planetary science community (e.g. schools liaison officers, press officers, social media managers and scientists active in communicating their work) through meetings and best practice workshops, communication training sessions, an annual prize for public engagement and a seed-funding scheme for outreach activities. We will use traditional and social media channels to communicate newsworthy results and activities to diverse audiences not just in Europe but also around the globe.
NASA Astrophysics Data System (ADS)
Merka, J.; Sibeck, D. G.; Narock, T. W.
2011-12-01
Fast transient plasma flows in the magnetosphere are usually associated with magnetic reconnection and/or rapid changes in the magnetospheric configuration. Using a common methodology to analyze data from the THEMIS satellites we map the statistical occurrence rate of bursty bulk flows (BBFs) in the magnetosphere. Such a task involves obtaining and processing of large amount of data (5 THEMIS satellites provide measurements since spring of 2007), then writing custom code and searching for intervals of interests. The existence of a Virtual Magnetospheric Observatory (VMO) offers, however, a less laborious alternative. We discuss how the VMO made our research faster and easier and also point out the inherent limitations of the VMO use. The VMO's goal is to help researches by creating a single point of uniform discovery, access, and use of magnetospheric data. Available data can be searched based on various criteria as, for example, spatial location, time of observation, measurement type, parameter values, etc. The results can then be saved, downloaded or displayed as, for example, spatial-temporal plots that quickly reveal where and how often was the searched-for phenomenon observed. Our analysis revealed that the BBFs were found more frequently with increasing distance from Earth and the peak occurrence rate of earthward BBFs was at Xgsm = 29 Re and Ygsm = -2 Re. The tailward BBFs were very rarely observed even between Xgsm = -20 and -30 Re but they occurred over a wide range of local times. The positions with highest BBF occurrence rates differ from previous reports that used IRM and ISEE2 data.
VESPA: Developing the Planetary Science Virtual Observatory in H2020
NASA Astrophysics Data System (ADS)
Erard, S.; Cecconi, B.; Le Sidaner, P.; Capria, M. T.; Rossi, A. P.; Schmitt, B.; Andre, N.; Vandaele, A. C.; Scherf, M.; Hueso, R.; Maattanen, A. E.; Thuillot, W.; Achilleos, N.; Marmo, C.; Santolik, O.; Benson, K.
2015-12-01
In the frame of the Europlanet-RI program, a prototype Virtual Observatory dedicated to Planetary Science has been set up. Most of the activity was dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), and space archive services (IPDA). A general standard has been devised to handle the specific complexity of Planetary Science, e.g. in terms of measurement types and coordinate frames [1]. A procedure has been identified to install small data services, and several hands-on sessions have been organized already. A specific client (VESPA) has been developed at VO-Paris (http://vespa.obspm.fr), using a resolver for target names. Selected data can be sent to VO visualization tools such as TOPCAT or Aladin though the SAMP protocol. The Europlanet H2020 program started in Sept 2015 will provide support to new data services in Europe (30 to 50 expected), and focus on the improvement of the infrastructure. Future steps will include the development of a connection between the VO world and GIS tools, and integration of heliophysics, planetary plasma and reference spectroscopic data. The Europlanet H2020 project is funded by the European Commission under the H2020 Program, grant 654208. [1] Erard et al Astron & Comp 2014
Automated X-ray and Optical Analysis of the Virtual Observatory and Grid Computing
NASA Technical Reports Server (NTRS)
Ptak, A.; Krughoff, S.; Connolly, A.
2011-01-01
We are developing a system to combine the Web Enabled Source Identification with X-Matching (WESIX) web service, which emphasizes source detection on optical images,with the XAssist program that automates the analysis of X-ray data. XAssist is continuously processing archival X-ray data in several pipelines. We have established a workflow in which FITS images and/or (in the case of X ray data) an X-ray field can be input to WESIX. Intelligent services return available data (if requested fields have been processed) or submit job requests to a queue to be performed asynchronously. These services will be available via web services (for non-interactive use by Virtual Observatory portals and applications) and through web applications (written in the Django web application framework). We are adding web services for specific XAssist functionality such as determining .the exposure and limiting flux for a given position on the sky and extracting spectra and images for a given region. We are improving the queuing system in XAssist to allow for "watch lists" to be specified by users, and when X-ray fields in a user's watch list become publicly available they will be automatically added to the queue. XAssist is being expanded to be used as a survey planning 1001 when coupled with simulation software, including functionality for NuStar, eRosita, IXO, and the Wide Field Xray Telescope (WFXT), as part of an end to end simulation/analysis system. We are also investigating the possibility of a dedicated iPhone/iPad app for querying pipeline data, requesting processing, and administrative job control.
NASA Astrophysics Data System (ADS)
Aberasturi, Miriam
2015-11-01
Context: Two thirds of the stars in our galactic neighborhood (d < 10 pc) are M-dwarfs which also constitute the most common stellar objects in the Milky Way. This property, combined with their small stellar masses and radii, increases the likelihood of detecting terrestrial planets through radial velocity and transit techniques, making them very adequate targets for the exoplanet hunting projects. Nevertheless, M dwarfs have associated different observational difficulties. They are cool objects whose emission radiation peaks at infrared wavelengths and, thus, with a low surface brightness in the optical range. Also, the photometric variability as well as the significant chromospheric activity hinder the radial velocity and transit determinations. It is necessary, therefore, to carry out a detailed characterization of M-dwarfs before building a shortlist with the best possible candidates for exoplanet searches. Brown dwarfs (BDs) are self-gravitating objects that do not get enough mass to maintain a sufficiently high temperature in their core for stable hydrogen fusion. They represent the link between low-mass stars and giant planets. Due to their low temperatures, BDs emit significant flux at mid-infrared wavelength which makes this range very adequate to look for this type of objects. The Virtual Observatory (VO) is an international initiative designed to help the astronomical community in the exploitation of the multi-wavelength information that resides in data archives. In the last years the Spanish Virtual Observatory is conducting a number of projects focused on the study of substellar objects taking advantage of Virtual Observatory tools for an easy data access and analysis of large area surveys. This is the framework where this thesis has been carried out. This dissertation addresses three problems in the framework of low-mass stars and brown dwarfs, namely, the search for brown dwarf candidates crossmatching catalogues (Chapter 4), the search for nearby bright M dwarfs and the subsequent spectroscopic characterization (Chapter 5), and a study of binarity in mid to late-T brown dwarfs (Chapter 6); the first two topics use Virtual Observatory tools. Aims and methodology:In the first paper we carried out a search of brown dwarfs in the sky area in common to the WISE, 2MASS Point Source and SDSS catalogues. A VO-workflow with the criteria that must accomplish our candidates was built using STILTS. The workflow returned 138 sources that were visually inspected. For the six new candidates that passed the inspection, proper motions were calculated using the positions and the different observing epochs of the catalogues previously quoted. Effective temperatures were estimated using VOSA and spectral types and distances using appropriate photometric calibrations. In the second publication we conducted an all-sky photometric search by cross correlating the Carlsberg Meridian Catalogue (CMC14) and the 2MASS Point Source Catalogue with the aim of increasing the number of known, nearby M dwarfs that could be used as targets for exoplanet searches in general and CARMENES in particular. This VO search was combined with low-resolution spectroscopic followup of 27 objects using the IDS spectrograph at the Isaac Newton telescope at La Palma, as well as with an astrometric and photometric study. In the third paper we attempted to refine the multiplicity properties of T dwarfs studying the largest sample so far observed with high angular resolution imaging. We undertook two parallel programs using the Wide Field Camera 3 (WFC3) installed on the Hubble Space Telescope (HST). We used a PSF-fitting subtraction technique to reveal the presence of any close companion to the sources in our sample. Monte Carlo simulations were carried out to estimate the capability of WFC3 to detect close binaries in terms of angular separation and magnitude difference. Simulations were also used to determine the fraction of binaries that would have been detected around each source based on assumed separations, mass ratio distributions and orientations of the systems. Results: The main conclusion from this dissertation is that the Virtual Observatory has proved to be an excellent research methodology in the field of low mass stars and brown dwarfs. In particular, it allowed an efficient management of the queries to different catalogues and archives as well as the estimation of physical parameters through VO-tools. In the first publication we present the identification of 31 brown dwarf (25 known and 6 strong candidates not previously reported in the literature) identified in the sky area in common toWISE, 2MASS and SDSS. This is a remarkable number considering that 2MASS has been extensively searched for ultracool dwarfs and clearly show how new surveys and the use of VO tools can help to mine older surveys. The robustness of our methodology was confirmed with the spectroscopic confirmation of our candidate targets making it an ideal technique to identify brown dwarfs and, by extension, other rare objects. In the second paper, we show the potential of the VO and a purely photometric approach for finding new bright, nearby M dwarfs that escaped previous surveys mostly based on proper motions. We discover 24 new potential targets for exoplanet hunting (7 at less than 20 pc), 12 of which have been included in the CARMENES input catalogue of M dwarfs. We also identify three young very low-mass stars (M4-M5 spectral types) in the Taurus-Auriga region and a wide (110 AU) binary system. In the third paper we infer an upper limit for the binary fraction of >T5 dwarfs of <16 - < 25% depending of the underlying mass ratio distribution. This binary fraction is consistent with previous estimations. From this work we also conclude that theWFC3 is more sensitive to cool companions than otherHST instruments like NICMOS or WFPC2 but its lower angular resolution makes it unsuitable to detect tight brown dwarf binary systems.
NASA Astrophysics Data System (ADS)
Saurel, Jean-Marie; Randriamora, Frédéric; Bosson, Alexis; Kitou, Thierry; Vidal, Cyril; Bouin, Marie-Paule; de Chabalier, Jean-Bernard; Clouard, Valérie
2010-05-01
Lesser Antilles observatories are in charge of monitoring the volcanoes and earthquakes in the Eastern Caribbean region. During the past two years, our seismic networks have evolved toward a full digital technology. These changes, which include modern three components sensors, high dynamic range digitizers, high speed terrestrial and satellite telemetry, improve data quality but also increase the data flows to process and to store. Moreover, the generalization of data exchange to build a wide virtual seismic network around the Caribbean domain requires a great flexibility to provide and receive data flows in various formats. As many observatories, we have decided to use the most popular and robust open source data acquisition systems in use in today observatories community : EarthWorm and SeisComP. The first is renowned for its ability to process real time seismic data flows, with a high number of tunable modules (filters, triggers, automatic pickers, locators). The later is renowned for its ability to exchange seismic data using the international SEED standard (Standard for Exchange of Earthquake Data), either by producing archive files, or by managing output and input SEEDLink flows. French Antilles Seismological and Volcanological Observatories have chosen to take advantage of the best features of each software to design a new data flow scheme and to integrate it in our global observatory data management system, WebObs [Beauducel et al., 2004]1, see the companion paper (Part 2). We assigned the tasks to the different softwares, regarding their main abilities : - EarthWorm first performs the integration of data from different heterogeneous sources; - SeisComP takes all this homogeneous EarthWorm data flow, adds other sources and produces SEED archives and SEED data flow; - EarthWorm is then used again to process this clean and complete SEEDLink data flow, mainly producing triggers, automatic locations and alarms; - WebObs provides a friendly human interface, both to the administrator for station management, and to the regular user for real time everyday analysis of the seismic data (event classification database, location scripts, automatic shakemaps and regional catalog with associated hypocenter maps).