Sample records for virtual petrological microscope

  1. A Virtual Petrological Microscope for All Apollo 11 Lunar Samples

    NASA Technical Reports Server (NTRS)

    Pillnger, C. T.; Tindle, A. G.; Kelley, S. P.; Quick, K.; Scott, P.; Gibson, E. K.; Zeigler, R. A.

    2014-01-01

    A means of viewing, over the Internet, polished thin sections of every rock in the Apollo lunar sample collections via software, duplicaing many of the functions of a petrological microscope, is described.

  2. Virtual Microscope Views of the Apollo 11, 12, and 15 Lunar Samples

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; Tindle, A. G.; Kelley, S. P.; Pillinger, J. M.

    2017-01-01

    The Apollo virtual microscope is a means of viewing, over the Internet, polished thin sections of every rock in the Apollo lunar sample collections. It uses software that duplicates many of the functions of a petrological microscope.

  3. Examining the Real Merits of the Virtual Microscope

    NASA Astrophysics Data System (ADS)

    Hennessy, Ronan; Meere, Pat; Ho, Timsie; Menuge, Julian; Tyrrell, Shane; Kamber, Balz; Higgs, Bettie; Kelley, Simon

    2017-04-01

    The Geoscience e-Laboratory (GeoLAB) project is a cooperative digital petrological microscopy technology enhanced learning (TEL) resource development project involving the four main university geoscience teaching centres in Ireland. Collaborating with the Open University (UK), a new digital library of petrographic thin sections has been added to the Virtual Microscope for Earth Sciences (VMfES) online repository. The collection was compiled with a view to introducing high-quality samples to teaching programmes in a manner that hitherto was limited by sample and microscope availability and cost and the temporal limits of laboratory access. The project has proceeded to explore the pedagogical implications of using the Virtual Microscope in teaching programmes. Online assessments and self-guided exercises developed using applications such as Google Forms have been introduced into programmes at each centre, and complimented by tutorial and interactive videos designed to support self-guided learning. The GeoLab project is reporting on the pedagogical implications of providing students with unimpeded access to high-quality petrographic learning resources during the term of semester and in advance of student assessments. Additionally, the project is collating data on the perceptions of both teachers and learners to using online learning media in mineralogy and petrology programmes, and if there are benefits therein to the more traditional styles of petrology and microscopy teaching and learning.

  4. Virtual Microscope Views of the Apollo 11 and 12 Lunar Samples

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; Tindle, A. G.; Kelley, S. P.; Pillinger, J. M.

    2016-01-01

    The Apollo virtual microscope is a means of viewing, over the Internet, polished thin sections of every rock in the Apollo lunar sample collections via software, duplicating many of the functions of a petrological microscope, is described. Images from the Apollo 11 and 12 missions may be viewed at: www.virtualmicroscope.org/content/apollo. Introduction: During the six NASA missions to the Moon from 1969-72 a total of 382 kilograms of rocks and soils, often referred to as "the legacy of Apollo", were collected and returned to Earth. A unique collection of polished thin sections (PTSs) was made from over 400 rocks by the Lunar Sample Curatorial Facility at the Johnson Spacecraft Center (JSC), Houston. These materials have been available for loan to approved PIs but of course they can't be simultaneously investigated by several researchers unless they are co-located or the sample is passed back and forward between them by mail/hand carrying which is inefficient and very risky for irreplaceable material. When The Open University (OU), the world's largest Distance Learning Higher Education Establishment found itself facing a comparable problem (how to supply thousands of undergraduate students with an interactive petrological microscope and a personal set of thin sections), it decided to develop a software tool called the Virtual Microscope (VM). As a result it is now able to make the unique and precious collection of Apollo specimens universally available as a resource for concurrent study by anybody in the world's Earth and Planetary Sciences community. Herein, we describe the first steps of a collaborative project between OU and the Johnson Space Center (JSC) Curatorial Facility to record a PTS for every lunar rock, beginning with those collected by the Apollo 11 and 12 missions. Method: Production of a virtual microscope dedicated to a particular theme divides into four main parts - photography, image processing, building and assembly of virtual microscope components, and publication on a website. Two large research quality microscopes are used to collect all the images required for a virtual microscope. The first is part of an integrated package that utilizes Leica PowerMosaic software and a motorised XYZ stage to generate large area mosaics. It includes a fast acquisition camera and depending on the PTS size normally is used to produce seamless mosaic images consisting of 100-500 individual photographs. If the sample is suitable, three mosaics of each sample are recorded - plane polarised light, between crossed polars and reflected light. In order for the VM to be a true petrological microscope it is necessary to recreate the features of a rotating stage and perform observations using filters to produce polarised light. Thus the petrological VM includes the capability of seeing changes in optical properties (pleochroism and birefringence) during rotation allowing mineral identification. The second microscope in the system provides the functions of the rotating stage. To this microscope we have added a robotically controlled motor to acquire seventy-two images (5 degree intervals) in plane polarised light and between crossed polars. To process the images acquired from the two microscopes involves a combination of proprietary software (Photoshop) and our own in-house code. The final stage involves assembling all the components in an HTML5 environment. Pathfinder investigations: We have undertaken a number of pilot studies to demonstrate the efficacy of the petrological microscope with lunar samples. The first was to make available on-line images collected from the Educational Package of Apollo samples provided by NASA to the UK STFC (Science and Technical Facilities Council) for loan as educational material e.g. for schools. The real PTSs of the samples are now no longer sent out to schools removing the risks associated with transport, accidental breakage and eliminating the possibility of loss. The availability of lunar sample VM-related material was further extended to include twenty-eight specimens from all of the Apollo missions. Some of these samples were made more generally available through an ibook entitled "Moon Rocks: an introduction to the Geology of the Moon," free from the Apple Bookstore. Research possibilities: Although the Virtual Microscope was originally conceived as a teaching aid and was later recognised as a means of public outreach and engagement, we now realize that it also has enormous potential as a high level research tool. Following discussions with the JSC Curators we have received Curation and Analysis Planning Team for Extraterrestrial Materials (CAPTEM) permission to embark on a programme of digitizing the entire lunar sample PTS collection for all three of the above purposes. By the time of the 47th Lunar and Planetary Science Conference (LPSC) we will have completed 81 rocks collected during the Apollo 11 and 12 missions and the data, with cross-links to the Lunar Sample Compendium will go live on the Web at the 47th LPSC. The VM images of the Apollo 11 (41 VM images) and 12 (40 VM images) missions can be viewed at: http:/www.virtualmicroscope.org/content/apollo. The lunar sample VM will enable large numbers of skilled/unskilled microscopists (professional and amateur researchers, educators and students, enthusiasts and the simply curious non-scientists) to share the information from a single sample. It will mean that all the PTSs already cut, even historical ones, could be available for new joint investigations or private study. The scientific return from the collection will increase exponentially as a result of further debate and discussion. Simultaneously the VM will remove the need for making unnecessary multiple samplings, avoid consignment of delicate/breakable specimens (all of which are priceless) to insecure mail/courier services and reduce direct labour and indirect costs, travel budgets and unproductive travelling time necessary for co-location of collaborating researchers. For the future we have already recognized further potential for virtual technology. There is nothing that a petrologist likes more than to see the original rock as a hand specimen. It is entirely possible to recreate virtual hand specimens with 3-D hard and software, already developed for viewing fossils, located within the Curatorial Facility, http://curator.jsc.nasa.gov/lunar/lsc/index.cfm.

  5. Assessment of Petrological Microscopes.

    ERIC Educational Resources Information Center

    Mathison, Charter Innes

    1990-01-01

    Presented is a set of procedures designed to check the design, ergonomics, illumination, function, optics, accessory equipment, and image quality of a microscope being considered for purchase. Functions for use in a petrology or mineralogy laboratory are stressed. (CW)

  6. Teaching contact metamorphism, isograds, and mixed-volatile reactions: A suite-based approach

    NASA Astrophysics Data System (ADS)

    Peck, W. H.

    2003-12-01

    An important goal of teaching Introductory Petrology is to demonstrate how different kinds of approaches are integrated in studying petrologic problems. Depending on the goals of the study data used can be from the field, hand-sample, microscope, electron beam instrument, or mass spectrometer. A suite of samples with a known geographical and geological context can help students in drawing connections between different petrologic approaches, as the `geologic story' of the samples becomes a unifying theme. For teaching a unit on calc-silicates I use a suite of siliceous dolomite samples collected from the Ubehebe contact aureole (Death Valley, NV) as well as published data (Roselle et al., 1997; 1999) in a linked series of laboratory exercises and problem sets. The geology of the contact aureole is introduced in a three-hour laboratory exercise, where students identify the appearance of tremolite, forsterite, and periclase/brucite and the disappearance of quartz as the intrusion is approached. A concurrent problem set uses simplified mineral assemblage maps from the aureole. In the problem set students delineate isograds and determine the balanced metamorphic reactions by which the metamorphic minerals formed. Lecture material during this unit focuses on the physical properties of fluids in the crust and the mineralogical evidence for fluid-flow (with an emphasis on mixed-volatile reactions and T-XCO2 diagrams). A concrete field example helps focus student attention on the interrelation of disparate approaches by which petrologic problems addressed. The Ubehebe suite then becomes a unifying theme throughout the course: the specimens or regional geology are used in subsequent laboratories and lectures when introducing concepts such as grain nucleation and growth, reaction overstepping, and replacement textures. A virtual field trip of the Alta aureole, UT (using field photographs, maps, and photomicrographs) concludes the unit. The geology of the Alta aureole is similar to that of Ubehebe, and the virtual field trip acts as a review that emphases the general usefulness of the approaches discussed.

  7. A Digital Approach to Learning Petrology

    NASA Astrophysics Data System (ADS)

    Reid, M. R.

    2011-12-01

    In the undergraduate igneous and metamorphic petrology course at Northern Arizona University, we are employing petrographic microscopes equipped with relatively inexpensive ( $200) digital cameras that are linked to pen-tablet computers. The camera-tablet systems can assist student learning in a variety of ways. Images provided by the tablet computers can be used for helping students filter the visually complex specimens they examine. Instructors and students can simultaneously view the same petrographic features captured by the cameras and exchange information about them by pointing to salient features using the tablet pen. These images can become part of a virtual mineral/rock/texture portfolio tailored to individual student's needs. Captured digital illustrations can be annotated with digital ink or computer graphics tools; this activity emulates essential features of more traditional line drawings (visualizing an appropriate feature and selecting a representative image of it, internalizing the feature through studying and annotating it) while minimizing the frustration that many students feel about drawing. In these ways, we aim to help a student progress more efficiently from novice to expert. A number of our petrology laboratory exercises involve use of the camera-tablet systems for collaborative learning. Observational responsibilities are distributed among individual members of teams in order to increase interdependence and accountability, and to encourage efficiency. Annotated digital images are used to share students' findings and arrive at an understanding of an entire rock suite. This interdependence increases the individual's sense of responsibility for their work, and reporting out encourages students to practice use of technical vocabulary and to defend their observations. Pre- and post-course student interest in the camera-tablet systems has been assessed. In a post-course survey, the majority of students reported that, if available, they would use camera-tablet systems to capture microscope images (77%) and to make notes on images (71%). An informal focus group recommended introducing the cameras as soon as possible and having them available for making personal mineralogy/petrology portfolios. Because the stakes are perceived as high, use of the camera-tablet systems for peer-peer learning has been progressively modified to bolster student confidence in their collaborative efforts.

  8. Beagle I and II Voyages: Charles Darwin's rocks and the quest for Mars rock; the Open University's virtual microscope has both

    NASA Astrophysics Data System (ADS)

    Schwenzer, S. P.; Tindle, A. G.; Anand, M.; Gibson, E. K.; Pearson, V. K.; Pemberton, D.; Pillinger, C.; Smith, C. L.; Whalley, P.; Kelley, S. P.

    2011-12-01

    Exploration is in itself a fascinating subject, and a strong draw to engaging the public in understanding science. Nearly two hundred years ago Charles Darwin took part in an exploration of the Earth, and more recently we have begun to explore the solar system and in particular the surface of Mars. The engagement is made easier if an element of exploration is involved in the public engagement, using modern internet and even mobile technologies. The Open University combines all those aspects in a series of virtual microscopes for Earth science that are freely available on the web, installed in museums, or built into its teaching material. The basis of the virtual microscope is a mosaic of several hundred microscopic images of each thin section taken in plane polarised light, between crossed polars and in reflected light, which are then assembled into three high resolution images. Rotation movies for selected points in the thin section illustrate changing optical properties such as birefringence. The user is able to pan and zoom around to explore the section, studying the mineralogy and rock texture, and view the rotation movies linked to points in the section to see the changing birefringence colours. We have created several collections of terrestrial rocks, mainly for teaching purposes, and outreach directly linked to exploration: Charles Darwin returned from the Voyage of the Beagle with a large variety of rock samples, and although thin sections were not being made at that time, they were created from his rocks in the late 19th century. The historic material is part of the "Darwin the Geologist" exhibition at the Sedgwick Museum in Cambridge. Our Darwin virtual microscope includes hand specimen illustrations and thin sections together with documentation and an interactive map allow internet users and museum visitors alike to have a close look at Darwin's rocks and study the petrology of them. Charles Darwin explored distant horizons on Earth in the 19th century; in the 20th century the Apollo astronauts set foot on the Moon, returning valuable rock samples to Earth. Through collaboration between NASA and the OU it became possible to show lunar samples as virtual thin sections. The Beagle II mission represented a new voyage, following Charles Darwin's footsteps, to horizons well beyond the Earth - on a journey to investigate the planet Mars. Although no samples have yet been returned from the red planet, we do have access to Martian meteorites. Like Moon rock samples, these meteorites are rare and very valuable. So, one way to make them accessible to the general public is via the internet using our virtual microscope technology. Within the framework of the EUROPLANET project, and in collaboration with the Natural History Museum in London we are making such meteorites freely available to all. We plan to extend this collection and make it openly accessible for teaching and outreach activities anywhere and any time. Our current microscopes are located at http://microscope.open.ac.uk.

  9. Antarctic Meteorite Newsletter, volume 9, no. 2

    NASA Technical Reports Server (NTRS)

    Gooding, J. L. (Editor)

    1986-01-01

    Preliminary description and classifications of meteorites that were completed since publication of the February issue are contained. Most large (greater than 150 g) specimens (regardless of petrologic type) and all pebble sized (less than 150 g) specimens of special petrologic type are represented by separate descriptions. However, specimens of nonspecial petrologic type are listed only as single line entries. For convenience, new specimens are also recast by petrologic type. Each macroscopic description summarizes features that were visible to the eye at the time the meteorite was first examined. Classification is based on microscopic petrography and resonnaissance-level electron-probe microanalysis. The pairing list was updated.

  10. Inquiry based learning with a virtual microscope

    NASA Astrophysics Data System (ADS)

    Kelley, S. P.; Sharples, M.; Tindle, A.; Villasclaras-Fernández, E.

    2012-12-01

    As part of newly funded initiative, the Wolfson OpenScience Laboratory, we are linking a tool for inquiry based learning, nQuire (http://www.nquire.org.uk) with the virtual microscope for Earth science (http://www.virtualmicroscope.co.uk) to allow students to undertake projects and gain from inquiry based study thin sections of rocks without the need for a laboratory with expensive petrological microscopes. The Virtual Microscope (VM) was developed for undergraduate teaching of petrology and geoscience, allowing students to explore rock hand specimens and thin sections in a browser window. The system is based on HTML5 application and allows students to scan and zoom the rocks in a browser window, view in ppl and xpl conditions, and rotate specific areas to view birefringence and pleochroism. Importantly the VM allows students to gain access to rare specimens such as Moon rocks that might be too precious to suffer loss or damage. Experimentation with such specimens can inspire the learners' interest in science and allows them to investigate relevant science questions. Yet it is challenging for learners to engage in scientific processes, as they may lack scientific investigation skills or have problems in planning their activities; for teachers, managing inquiry activities is a demanding task (Quintana et al., 2004). To facilitate the realization of inquiry activities, the VM is being integrated with the nQuire tool. nQuire is a web tool that guides and supports students through the inquiry process (Mulholland et al., 2011). Learners are encouraged to construct their own personally relevant hypothesis, pose scientific questions, and plan the method to answer them. Then, the system enables users to collect and analyze data, and share their conclusions. Teachers can monitor their students' progress through inquiries, and give them access to new parts of inquiries as they advance. By means of the integration of nQuire and the VM, inquiries that involve collecting data through a microscope can be created and supported. To illustrate the possibilities of these tools, we have designed two inquiries that engage learners in the study of Moon rock samples under the microscope, starting from general questions such as comparison of Moon rocks or determining the origin of meteorites. One is aimed at undergraduate Geology students; the second has been conceived for the general public. Science teachers can reuse these inquiries, adapt them as they need, or create completely new inquiries using nQuire's authoring tool. We will report progress and demonstrate the combination of these two on-line tools to create an open educational resource allowing educators to design and run science inquiries for Earth and planetary science in a range of settings from schools to universities. Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., Kyza, E., et al. (2004). A scaffolding design framework for software to support science inquiry. Journal of the Learning Sciences, 13(3), 337-386. Mulholland, P., Anastopoulou, S., Collins, T., FeiBt, M., Gaved, M., Kerawalla, L., Paxton, M., et al. (2011). nQuire: Technological support for personal inquiry learning. IEEE Transactions on Learning Technologies. First published online, December 5, 2011, http://doi.ieeecomputersociety.org/10.1109/TLT.2011.32.

  11. Review and update of the applications of organic petrology: Part 1, geological applications

    USGS Publications Warehouse

    Suárez-Ruiz, Isabel; Flores, Deolinda; Mendonça Filho, João Graciano; Hackley, Paul C.

    2012-01-01

    Organic petrology developed as coal petrology at the beginning of the 20th century dedicated mainly to the study of coals because of their utilization in industry. Coal petrology was then considered a branch of coal science. Later, with the development of specialized nomenclature, classification of coal components, and the standardization and improvement of analytical (microscopical) methods, this discipline expanded in interests and name, becoming organic petrology. Organic petrology carries a broader context, being as well a tool applied in the study of dispersed organic matter in sedimentary rocks due to its importance in exploration for fossil fuel resources. At present, organic petrology is a discipline widely recognized for its role in fundamental and applied research with respect to both coal utilization and in geosciences. Throughout the 20th century several important monographs have been published on the discipline of organic petrology, including “Stach's textbook of coal petrology” (1st edition 1935, 2nd 1975, 3rd 1982), updated as the more general “Organic petrology” by Taylor et al. (1998). More recently, the text “Applied coal petrology: the role of petrology in coal utilization” was published by Suárez-Ruiz and Crelling (2008). This review is the first in a two-part review series that describes and updates the role of organic petrology in geosciences. A second part complementing this one and focused on the applications of organic petrology to other scientific fields will follow.

  12. Semantically Enabling Knowledge Representation of Metamorphic Petrology Data

    NASA Astrophysics Data System (ADS)

    West, P.; Fox, P. A.; Spear, F. S.; Adali, S.; Nguyen, C.; Hallett, B. W.; Horkley, L. K.

    2012-12-01

    More and more metamorphic petrology data is being collected around the world, and is now being organized together into different virtual data portals by means of virtual organizations. For example, there is the virtual data portal Petrological Database (PetDB, http://www.petdb.org) of the Ocean Floor that is organizing scientific information about geochemical data of ocean floor igneous and metamorphic rocks; and also The Metamorphic Petrology Database (MetPetDB, http://metpetdb.rpi.edu) that is being created by a global community of metamorphic petrologists in collaboration with software engineers and data managers at Rensselaer Polytechnic Institute. The current focus is to provide the ability for scientists and researchers to register their data and search the databases for information regarding sample collections. What we present here is the next step in evolution of the MetPetDB portal, utilizing semantically enabled features such as discovery, data casting, faceted search, knowledge representation, and linked data as well as organizing information about the community and collaboration within the virtual community itself. We take the information that is currently represented in a relational database and make it available through web services, SPARQL endpoints, semantic and triple-stores where inferencing is enabled. We will be leveraging research that has taken place in virtual observatories, such as the Virtual Solar Terrestrial Observatory (VSTO) and the Biological and Chemical Oceanography Data Management Office (BCO-DMO); vocabulary work done in various communities such as Observations and Measurements (ISO 19156), FOAF (Friend of a Friend), Bibo (Bibliography Ontology), and domain specific ontologies; enabling provenance traces of samples and subsamples using the different provenance ontologies; and providing the much needed linking of data from the various research organizations into a common, collaborative virtual observatory. In addition to better representing and presenting the actual data, we also look to organize and represent the knowledge information and expertise behind the data. Domain experts hold a lot of knowledge in their minds, in their presentations and publications, and elsewhere. Not only is this a technical issue, this is also a social issue in that we need to be able to encourage the domain experts to share their knowledge in a way that can be searched and queried over. With this additional focus in MetPetDB the site can be used more efficiently by other domain experts, but can also be utilized by non-specialists as well in order to educate people of the importance of the work being done as well as enable future domain experts.

  13. Color Video Petrography.

    ERIC Educational Resources Information Center

    Nagle, Frederick

    1981-01-01

    Describes the production and use of color videocassettes with an inexpensive, conventional TV camera and an ordinary petrographic microscope. The videocassettes are used in optical mineralogy and petrology courses. (Author/WB)

  14. Studies of Brazilian meteorites. XIV - Mineralogy, petrology, and chemistry of the Conquista, Minas Gerais, chondrite

    NASA Technical Reports Server (NTRS)

    Keil, K.; Kirchner, E.; Gomes, C. B.; Jarosewich, E.; Murta, R. L. L.

    1978-01-01

    The Conquista chondrite is described and classified as an H4. The mineral composition is reported. H-group classification is based on described microscopic, electron microprobe, and bulk chemical studies. The evidence for petrologic type 4 classification includes the pronounced well-developed chondritic texture; the slight compositional variations in constituent phases; the high Ca contents of pyroxene and the presence of pigeonite; glassy to microcrystalline interstitial material rich in alkalis and SiO2; and twinned low-Ca clinopyroxene.

  15. Enhancing Learning Objectives by Use of Simple Virtual Microscopic Slides in Cellular Physiology and Histology: Impact and Attitudes

    ERIC Educational Resources Information Center

    Anyanwu, Godson Emeka; Agu, Augustine Uchechukwu; Anyaehie, Ugochukwu Bond

    2012-01-01

    The impact and perception of students on the use of a simple, low technology-driven version of a virtual microscope in teaching and assessments in cellular physiology and histology were studied. Its impact on the time and resources of the faculty were also assessed. Simple virtual slides and conventional microscopes were used to conduct the same…

  16. Applications of virtual reality technology in pathology.

    PubMed

    Grimes, G J; McClellan, S A; Goldman, J; Vaughn, G L; Conner, D A; Kujawski, E; McDonald, J; Winokur, T; Fleming, W

    1997-01-01

    TelePath(SM) a telerobotic system utilizing virtual microscope concepts based on high quality still digital imaging and aimed at real-time support for surgery by remote diagnosis of frozen sections. Many hospitals and clinics have an application for the remote practice of pathology, particularly in the area of reading frozen sections in support of surgery, commonly called anatomic pathology. The goal is to project the expertise of the pathologist into the remote setting by giving the pathologist access to the microscope slides with an image quality and human interface comparable to what the pathologist would experience at a real rather than a virtual microscope. A working prototype of a virtual microscope has been defined and constructed which has the needed performance in both the image quality and human interface areas for a pathologist to work remotely. This is accomplished through the use of telerobotics and an image quality which provides the virtual microscope the same diagnostic capabilities as a real microscope. The examination of frozen sections is performed a two-dimensional world. The remote pathologist is in a virtual world with the same capabilities as a "real" microscope, but response times may be slower depending on the specific computing and telecommunication environments. The TelePath system has capabilities far beyond a normal biological microscope, such as the ability to create a low power image of the entire sample using multiple images digitally matched together; the ability to digitally retrace a viewing trajectory; and the ability to archive images using CD ROM and other mass storage devices.

  17. Virtual microscopes in podiatric medical education.

    PubMed

    Becker, John H

    2006-01-01

    In many medical schools, microscopes are being replaced as teaching tools by computers with software that emulates the use of a light microscope. This article chronicles the adoption of "virtual microscopes" by a podiatric medical school and presents the results of educational research on the effectiveness of this adoption in a histology course. If the trend toward virtual microscopy in education continues, many 21st-century physicians will not be trained to operate a light microscope. The replacement of old technologies by new is discussed. The fundamental question is whether all podiatric physicians should be trained in the use of a particular tool or only those who are likely to use it in their own practice.

  18. Highly Sophisticated Virtual Laboratory Instruments in Education

    NASA Astrophysics Data System (ADS)

    Gaskins, T.

    2006-12-01

    Many areas of Science have advanced or stalled according to the ability to see what can not normally be seen. Visual understanding has been key to many of the world's greatest breakthroughs, such as discovery of DNAs double helix. Scientists use sophisticated instruments to see what the human eye can not. Light microscopes, scanning electron microscopes (SEM), spectrometers and atomic force microscopes are employed to examine and learn the details of the extremely minute. It's rare that students prior to university have access to such instruments, or are granted full ability to probe and magnify as desired. Virtual Lab, by providing highly authentic software instruments and comprehensive imagery of real specimens, provides them this opportunity. Virtual Lab's instruments let explorers operate virtual devices on a personal computer to examine real specimens. Exhaustive sets of images systematically and robotically photographed at thousands of positions and multiple magnifications and focal points allow students to zoom in and focus on the most minute detail of each specimen. Controls on each Virtual Lab device interactively and smoothly move the viewer through these images to display the specimen as the instrument saw it. Users control position, magnification, focal length, filters and other parameters. Energy dispersion spectrometry is combined with SEM imagery to enable exploration of chemical composition at minute scale and arbitrary location. Annotation capabilities allow scientists, teachers and students to indicate important features or areas. Virtual Lab is a joint project of NASA and the Beckman Institute at the University of Illinois at Urbana- Champaign. Four instruments currently compose the Virtual Lab suite: A scanning electron microscope and companion energy dispersion spectrometer, a high-power light microscope, and a scanning probe microscope that captures surface properties to the level of atoms. Descriptions of instrument operating principles and uses are also part of Virtual Lab. The Virtual Lab software and its increasingly rich collection of specimens are free to anyone. This presentation describes Virtual Lab and its uses in formal and informal education.

  19. Inert gases in twelve particles and one 'dust' sample from Luna 16.

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Lakatos, S.; Yaniv, A.

    1972-01-01

    The inert gases were measured mass-spectrometrically in 12 fragments and one dust sample from Luna 16. The fragments were classified petrologically by microscopic inspection. The major petrologic types were breccias and basalts. The He-4/Ne-20 ratio of the breccias (average 49) was systematically smaller than that of the basalts (average 78), probably because of He-Ne fractionation during or after the formation of the breccias. We suggest that the He-4/Ne-20 ratios of bulk fines in general may reflect the proportions of basaltic and breccia (plus cindery glasses) fragments in the fines. Exposure ages of four fragments are several hundred million years. The Ar-40/Ar-36 slopes of breccias and basalts are identical: 0.65.

  20. Five years of experience teaching pathology to dental students using the WebMicroscope

    PubMed Central

    2011-01-01

    Background We describe development and evaluation of the user-friendly web based virtual microscopy - WebMicroscope for teaching and learning dental students basic and oral pathology. Traditional students microscopes were replaced by computer workstations. Methods The transition of the basic and oral pathology courses from light to virtual microscopy has been completed gradually over a five-year period. A pilot study was conducted in academic year 2005/2006 to estimate the feasibility of integrating virtual microscopy into a traditional light microscopy-based pathology course. The entire training set of glass slides was subsequently converted to virtual slides and placed on the WebMicroscope server. Giving access to fully digitized slides on the web with a browser and a viewer plug-in, the computer has become a perfect companion of the student. Results The study material consists now of over 400 fully digitized slides which covering 15 entities in basic and systemic pathology and 15 entities in oral pathology. Digitized slides are linked with still macro- and microscopic images, organized with clinical information into virtual cases and supplemented with text files, syllabus, PowerPoint presentations and animations on the web, serving additionally as material for individual studies. After their examinations, the students rated the use of the software, quality of the images, the ease of handling the images, and the effective use of virtual slides during the laboratory practicals. Responses were evaluated on a standardized scale. Because of the positive opinions and support from the students, the satisfaction surveys had shown a progressive improvement over the past 5 years. The WebMicroscope as a didactic tool for laboratory practicals was rated over 8 on a 1-10 scale for basic and systemic pathology and 9/10 for oral pathology especially as various students’ suggestions were implemented. Overall, the quality of the images was rated as very good. Conclusions An overwhelming majority of our students regarded a possibility of using virtual slides at their convenience as highly desirable. Our students and faculty consider the use of the virtual microscope for the study of basic as well as oral pathology as a significant improvement over the light microscope. PMID:21489183

  1. Optical versus virtual: teaching assistant perceptions of the use of virtual microscopy in an undergraduate human anatomy course.

    PubMed

    Collier, Larissa; Dunham, Stacey; Braun, Mark W; O'Loughlin, Valerie Dean

    2012-01-01

    Many studies that evaluate the introduction of technology in the classroom focus on student performance and student evaluations. This study focuses on instructor evaluation of the introduction of virtual microscopy into an undergraduate anatomy class. Semi-structured interviews were conducted with graduate teaching assistants (TA) and analyzed through qualitative methods. This analysis showed that the teaching assistants found the virtual microscope to be an advantageous change in the classroom. They cite the ease of use of the virtual microscope, access to histology outside of designated laboratory time, and increasing student collaboration in class as the primary advantages. The teaching assistants also discuss principal areas where the use of the virtual microscope can be improved from a pedagogical standpoint, including requiring students to spend more time working on histology in class. Copyright © 2011 American Association of Anatomists.

  2. The petrographic microscope: Evolution of a mineralogical research instrument

    USGS Publications Warehouse

    Kile, D.E.

    2003-01-01

    The petrographic microscope, designed to observe and measure the optical properties of minerals as a means of identifying them, has provided a foundation for mineralogical and petrological research for more than 120 years. Much of what is known today in these fields is attributable to this instrument, the development of which paralleled an evolution of fundamental optical theory and its correlation with mineral structure and composition. This instrument and its related accessories have evolved through a range of models and designs, which are in themselves distinctive for their scientific function and elegant construction, and are today prized by collectors of scientific instruments.

  3. Factors to keep in mind when introducing virtual microscopy.

    PubMed

    Glatz-Krieger, Katharina; Spornitz, Udo; Spatz, Alain; Mihatsch, Michael J; Glatz, Dieter

    2006-03-01

    Digitization of glass slides and delivery of so-called virtual slides (VS) emulating a real microscope over the Internet have become reality due to recent improvements in technology. We have implemented a virtual microscope for instruction of medical students and for continuing medical education. Up to 30,000 images per slide are captured using a microscope with an automated stage. The images are post-processed and then served by a plain hypertext transfer protocol (http)-server. A virtual slide client (vMic) based on Macromedia's Flash MX, a highly accepted technology available on every modern Web browser, has been developed. All necessary virtual slide parameters are stored in an XML file together with the image. Evaluation of the courses by questionnaire indicated that most students and many but not all pathologists regard virtual slides as an adequate replacement for traditional slides. All our virtual slides are publicly accessible over the World Wide Web (WWW) at http://vmic.unibas.ch . Recently, several commercially available virtual slide acquisition systems (VSAS) have been developed that use various technologies to acquire and distribute virtual slides. These systems differ in speed, image quality, compatibility, viewer functionalities and price. This paper gives an overview of the factors to keep in mind when introducing virtual microscopy.

  4. Petrographic and petrological study of lunar rock materials

    NASA Technical Reports Server (NTRS)

    Winzer, S. R.

    1977-01-01

    Impact melts and breccias from the Apollo 15 and 16 landing sites were examined optically and by electron microscope/microprobe. Major and trace element abundances were determined for selected samples. Apollo 16 breccias contained impact melts, metamorphic and primary igneous rocks. Metamorphic rocks may be the equivalents of the impact melts. Apollo 15 breccias studied were fragment-laden melts derived from gabbro and more basalt target rocks.

  5. APPLICATIONS OF CATHODOLUMINESCENCE OF QUARTZ AND FELDSPAR TO SEDIMENTARY PETROLOGY.

    USGS Publications Warehouse

    Ruppert, Leslie F.

    1987-01-01

    Cathodoluminescence (CL), the emission of visible light during electron bombardment, was first used in sandstone petrology in the mid-1960's. CL techniques are especially useful for determining the origin and source of quartz and feldspar, two of the most common constituents in clastic rocks. CL properties of both minerals are dependent on their temperature of crystallization, duration of cooling, and/or history of deformation. Detrital quartz and feldspar are typically derived from igneous and metamorphic sources and luminesce in the visible range whereas authigenic quartz and feldspar form at low temperatures and do not luminesce. Quantification of luminescent and non-luminescent quartz and feldspar with the scanning electron microscope, electron microprobe, or a commercial CL device can allow for the determination of origin, diagenesis, and source of clastic rocks when used in conjunction with field and other petrographic analyses.

  6. Transition of a dental histology course from light to virtual microscopy.

    PubMed

    Weaker, Frank J; Herbert, Damon C

    2009-10-01

    The transition of the dental histology course at the University of Texas Health Science Center at San Antonio Dental School was completed gradually over a five-year period. A pilot project was initially conducted to study the feasibility of integrating virtual microscopy into a traditional light microscopic lecture and laboratory course. Because of the difficulty of procuring quality calcified and decalcified sections of teeth, slides from the student loan collection in the oral histology block of the course were outsourced for conversion to digital images and placed on DVDs along with a slide viewer. The slide viewer mimicked the light microscope, allowing horizontal and vertical movement and changing of magnification, and, in addition, a feature to capture static images. In a survey, students rated the ease of use of the software, quality of the images, maneuverability of the images, and questions regarding use of the software, effective use of laboratory, and faculty time. Because of the positive support from the students, our entire student loan collection of 153 glass slides was subsequently converted to virtual images and distributed on an Apricorn pocket external hard drive. Students were asked to assess the virtual microscope over a four-year period. As a result of the surveys, light microscopes have been totally eliminated, and microscope exams have been replaced with project slide examinations. In the future, we plan to expand our virtual slides and incorporate computer testing.

  7. Quantitative and qualitative changes in teaching histology by means of virtual microscopy in an introductory course in human anatomy.

    PubMed

    Husmann, Polly R; O'Loughlin, Valerie Dean; Braun, Mark W

    2009-10-01

    This study compares overall laboratory averages and individual test scores along with a student survey to determine the effects of using virtual microscopy in place of optical microscopes in a large undergraduate human anatomy course. T-tests revealed that the first two laboratory examinations (of four) and the overall laboratory averages were significantly increased compared with the previous year. We hypothesize that this is due to students' ability to use and understand the technology quickly as opposed to learning how to maneuver an optical microscope. Students also responded positively in a survey about the virtual microscope, indicating that increased accessibility, ease of use, and the ability to understand the material were important components of the virtual microscope. In addition, an increase in student collaboration was noted because multiple students were able to view the image at a time. This level of acceptance of virtual microscopy has been reported in previous studies, though this level of increased examination scores is rare. We attribute this to differences between the medical students, with whom this technology has been researched in the past, and undergraduate introductory students.

  8. [Clinical pathology on the verge of virtual microscopy].

    PubMed

    Tolonen, Teemu; Näpänkangas, Juha; Isola, Jorma

    2015-01-01

    For more than 100 years, examinations of pathology specimens have relied on the use of the light microscope. The technological progress of the last few years is enabling the digitizing of histologic specimen slides and application of the virtual microscope in diagnostics. Virtual microscopy will facilitate consultation possibilities, and digital image analysis serves to enhance the level of diagnostics. Organizing and monitoring clinicopathological meetings will become easier. Digital archive of histologic specimens and the virtual microscopy network are expected to benefit training and research as well, particularly what applies to the Finnish biobank network which is currently being established.

  9. The virtual microscopy database-sharing digital microscope images for research and education.

    PubMed

    Lee, Lisa M J; Goldman, Haviva M; Hortsch, Michael

    2018-02-14

    Over the last 20 years, virtual microscopy has become the predominant modus of teaching the structural organization of cells, tissues, and organs, replacing the use of optical microscopes and glass slides in a traditional histology or pathology laboratory setting. Although virtual microscopy image files can easily be duplicated, creating them requires not only quality histological glass slides but also an expensive whole slide microscopic scanner and massive data storage devices. These resources are not available to all educators and researchers, especially at new institutions in developing countries. This leaves many schools without access to virtual microscopy resources. The Virtual Microscopy Database (VMD) is a new resource established to address this problem. It is a virtual image file-sharing website that allows researchers and educators easy access to a large repository of virtual histology and pathology image files. With the support from the American Association of Anatomists (Bethesda, MD) and MBF Bioscience Inc. (Williston, VT), registration and use of the VMD are currently free of charge. However, the VMD site is restricted to faculty and staff of research and educational institutions. Virtual Microscopy Database users can upload their own collection of virtual slide files, as well as view and download image files for their own non-profit educational and research purposes that have been deposited by other VMD clients. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.

  10. The trace element chemistry of CaS in enstatite chondrites and some implications regarding its origin

    NASA Technical Reports Server (NTRS)

    Larimer, John W.; Ganapathy, R.

    1987-01-01

    The trace element distribution in oldhamite (CaS) extracted from enstatite chondrites was determined by INAA. Prior to extraction, the petrologic setting of the grains was studied microscopically, and their minor element contents determined by microprobe analysis; samples that displayed a wide range of minor element contents were selected for detailed elementary analysis. Those samples of CaS suspected to be more primitive on the basis of their minor element and petrologic siting contain the entire inventory of the host meteorite's light REE (LREE) and Eu, plus 30-50 percent of the heavy-REE inventory. In less primitive samples, the LREE are less enriched although Eu remains highly concentrated. Several other elements, including lithophiles and chalcophiles, are most enriched in the most primitive CaS. It is suggested that oldhamite played a key role in the redistribution of these elements during the metamorphism and evolution of enstatite-rich material.

  11. Virtual microscopy-The future of teaching histology in the medical curriculum?

    PubMed

    Paulsen, Friedrich P; Eichhorn, Michael; Bräuer, Lars

    2010-12-20

    Conventional continuing education in microscopic anatomy, histopathology, hematology and microbiology has hitherto been carried out using numerous sets of sectioned tissue specimens in a microscopy laboratory. In comparison, after digitalization of the sections it would be possible to access teaching specimens via virtual microscopy and the internet at any time and place. This would make it possible to put innumerable new learning scenarios into practice. The present article elucidates the advantages of virtual microscopy in histology instruction and presents a concept of how virtual microscopy could be introduced into the teaching of microscopic anatomy in several steps. Initially, the presently existing microscopic teaching specimens would be digitalized and made available on-line without restriction. In a second step, instruction would be shifted to an emphasis on virtual microscopy, utilizing all of the advantages offered by the technique. In a third step, the microscopic contents could be networked with other anatomical, radiological and clinical content on-line, thus opening new learning perspectives for students of human and dental medicine as well as those of medically related courses of study. The advantages and disadvantages of such a concept as well as some possibly arising consequences are discussed in the following. 2010 Elsevier GmbH. All rights reserved.

  12. Virtual Laboratory in the Role of Dynamic Visualisation for Better Understanding of Chemistry in Primary School

    ERIC Educational Resources Information Center

    Herga, Nataša Rizman; Cagran, Branka; Dinevski, Dejan

    2016-01-01

    Understanding chemistry includes the ability to think on three levels: the macroscopic level, the symbolic level, and the level of particles--sub-microscopic level. Pupils have the most difficulty when trying to understand the sub-microscopic level because it is outside their range of experience. A virtual laboratory enables a simultaneous…

  13. Virtual Microscopic Simulation (VMS) to Promote Students' Conceptual Change: A Case Study of Heat Transfer

    ERIC Educational Resources Information Center

    Wibowo, Firmanul Catur; Suhandi, Andi; Nahadi; Samsudin, Achmad; Darman, Dina Rahmi; Suherli, Zulmiswal; Hasani, Aceng; Leksono, Sroso Mukti; Hendrayana, Aan; Suherman; Hidayat, Soleh; Hamdani, Dede; Costu, Bayram

    2017-01-01

    Most students cannot understand the concepts of science concepts. The abstract concepts that require visualization help students to promote to the understanding about the concept. The aim of this study was to develop Virtual Microscopic Simulation (VMS) in terms of encouraging conceptual change and to promote its effectiveness connected to…

  14. Virtual Microscopy: A Useful Tool for Meeting Evolving Challenges in the Veterinary Medical Curriculum

    NASA Astrophysics Data System (ADS)

    Kogan, Lori R.; Dowers, Kristy L.; Cerda, Jacey R.; Schoenfeld-Tacher, Regina M.; Stewart, Sherry M.

    2014-12-01

    Veterinary schools, similar to many professional health programs, face a myriad of evolving challenges in delivering their professional curricula including expansion of class size, costs to maintain expensive laboratories, and increased demands on veterinary educators to use curricular time efficiently and creatively. Additionally, exponential expansion of the knowledge base through ongoing biomedical research, educational goals to increase student engagement and clinical reasoning earlier in the curriculum, and students' desire to access course materials and enhance their educational experience through the use of technology all support the need to reassess traditional microscope laboratories within Professional Veterinary Medical (PVM) educational programs. While there is clear justification for teaching veterinary students how to use a microscope for clinical evaluation of cytological preparations (i.e., complete blood count, urinalysis, fecal analysis, fine needle aspirates, etc.), virtual microscopy may be a viable alternative to using light microscopy for teaching and learning fundamental histological concepts. This article discusses results of a survey given to assess Professional Veterinary Medical students' perceptions of using virtual microscope for learning basic histology/microscopic anatomy and implications of these results for using virtual microscopy as a pedagogical tool in teaching first-year Professional Veterinary Medical students' basic histology.

  15. Comparison of a virtual microscope laboratory to a regular microscope laboratory for teaching histology.

    PubMed

    Harris, T; Leaven, T; Heidger, P; Kreiter, C; Duncan, J; Dick, F

    2001-02-01

    Emerging technology now exists to digitize a gigabyte of information from a glass slide, save it in a highly compressed file format, and deliver it over the web. By accessing these images with a standard web browser and viewer plug-in, a computer can emulate a real microscope and glass slide. Using this new technology, the immediate aims of our project were to digitize the glass slides from urinary tract, male genital, and endocrine units and implement them in the Spring 2000 Histology course at the University of Iowa, and to carry out a formative evaluation of the virtual slides of these three units in a side-by-side comparison with the regular microscope laboratory. The methods and results of this paper will describe the technology employed to create the virtual slides, and the formative evaluation carried out in the course. Anat Rec (New Anat) 265:10-14, 2001. Copyright 2001 Wiley-Liss, Inc.

  16. Traditional microscopy instruction versus process-oriented virtual microscopy instruction: a naturalistic experiment with control group.

    PubMed

    Helle, Laura; Nivala, Markus; Kronqvist, Pauliina; Gegenfurtner, Andreas; Björk, Pasi; Säljö, Roger

    2011-03-30

    Virtual microscopy is being introduced in medical education as an approach for learning how to interpret information in microscopic specimens. It is, however, far from evident how to incorporate its use into existing teaching practice. The aim of the study was to explore the consequences of introducing virtual microscopy tasks into an undergraduate pathology course in an attempt to render the instruction more process-oriented. The research questions were: 1) How is virtual microscopy perceived by students? 2) Does work on virtual microscopy tasks contribute to improvement in performance in microscopic pathology in comparison with attending assistant-led demonstrations only? During a one-week period, an experimental group completed three sets of virtual microscopy homework assignments in addition to attending demonstrations. A control group attended the demonstrations only. Performance in microscopic pathology was measured by a pre-test and a post-test. Student perceptions of regular instruction and virtual microscopy were collected one month later by administering the Inventory of Intrinsic Motivation and open-ended questions. The students voiced an appreciation for virtual microscopy for the purposes of the course and for self-study. As for learning gains, the results indicated that learning was speeded up in a subgroup of students consisting of conscientious high achievers. The enriched instruction model may be suited as such for elective courses following the basic course. However, the instructional model needs further development to be suited for basic courses.

  17. The e-evolution of microscopy in dental education.

    PubMed

    Farah, Camile S; Maybury, Terrence S

    2009-08-01

    Recent technological innovation has now made it possible to turn the computer into a microscope. This has entailed a shift from light microscopy to virtual microscopy. This development then foregrounds the issue of the pedagogy involved in this move from the analogue technology of the light microscope to the digital, computerized instance of virtual microscopy. In order to address this issue, undergraduate students enrolled in the Bachelor of Dental Science program at the University of Queensland School of Dentistry were surveyed to ascertain their preference for light or virtual microscopy. The value of this study is that it was conducted on the same cohort of students in two separate courses in 2006 and 2008, giving it longitudinal validity. The responses were overwhelmingly in favor of virtual microscopy. When it came to completely replacing the light microscope with virtual microscopy, however, students were much more ambivalent about such a wholesale change although this was less of an issue in the senior year. This shift from light to virtual microscopy signals larger changes in the tertiary sector from print-literate to electronic forms of knowledge and from teacher-centered to student-focused frames of learning. In short, we are in the midst of the e-evolution of microscopy in dental education.

  18. Diagnosis of major cancer resection specimens with virtual slides: impact of a novel digital pathology workstation.

    PubMed

    Randell, Rebecca; Ruddle, Roy A; Thomas, Rhys G; Mello-Thoms, Claudia; Treanor, Darren

    2014-10-01

    Digital pathology promises a number of benefits in efficiency in surgical pathology, yet the longer time required to review a virtual slide than a glass slide currently represents a significant barrier to the routine use of digital pathology. We aimed to create a novel workstation that enables pathologists to view a case as quickly as on the conventional microscope. The Leeds Virtual Microscope (LVM) was evaluated using a mixed factorial experimental design. Twelve consultant pathologists took part, each viewing one long cancer case (12-25 slides) on the LVM and one on a conventional microscope. Total time taken and diagnostic confidence were similar for the microscope and LVM, as was the mean slide viewing time. On the LVM, participants spent a significantly greater proportion of the total task time viewing slides and revisited slides more often. The unique design of the LVM, enabling real-time rendering of virtual slides while providing users with a quick and intuitive way to navigate within and between slides, makes use of digital pathology in routine practice a realistic possibility. With further practice with the system, diagnostic efficiency on the LVM is likely to increase yet more. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Virtual reality microscope versus conventional microscope regarding time to diagnosis: an experimental study.

    PubMed

    Randell, Rebecca; Ruddle, Roy A; Mello-Thoms, Claudia; Thomas, Rhys G; Quirke, Phil; Treanor, Darren

    2013-01-01

      To create and evaluate a virtual reality (VR) microscope that is as efficient as the conventional microscope, seeking to support the introduction of digital slides into routine practice.   A VR microscope was designed and implemented by combining ultra-high-resolution displays with VR technology, techniques for fast interaction, and high usability. It was evaluated using a mixed factorial experimental design with technology and task as within-participant variables and grade of histopathologist as a between-participant variable. Time to diagnosis was similar for the conventional and VR microscopes. However, there was a significant difference in the mean magnification used between the two technologies, with participants working at a higher level of magnification on the VR microscope.   The results suggest that, with the right technology, efficient use of digital pathology for routine practice is a realistic possibility. Further work is required to explore what magnification is required on the VR microscope for histopathologists to identify diagnostic features, and the effect on this of the digital slide production process. © 2012 Blackwell Publishing Limited.

  20. Implementing digital technology to enhance student learning of pathology.

    PubMed

    Farah, C S; Maybury, T

    2009-08-01

    The introduction of digital technologies into the dental curriculum is an ongoing feature of broader changes going on in tertiary education. This report examines the introduction of digital virtual microscopy technology into the curriculum of the School of Dentistry at the University of Queensland (UQ) in Brisbane, Australia. Sixty students studying a course in pathology in 2005 were introduced to virtual microscopy technology alongside the more traditional light microscope and then asked to evaluate their own learning outcomes from this technology via a structured 5-point LIKART survey. A wide variety of questions dealing the pedagogic implications of the introduction of virtual microscopy into pathology were asked of students with the overall result being that it positively enhanced their learning of pathology via digital microscopic means. The success of virtual microscopy in dentistry at UQ is then discussed in the larger context of changes going on in tertiary education. In particular, the change from the print-literate tradition to the electronic one, that is from 'literacy to electracy'. Virtual microscopy is designated as a component of this transformation to electracy. Whilst traditional microscopic skills may still be valued in dental curricula, the move to virtual microscopy and computer-assisted, student-centred learning of pathology appears to enhance the learning experience in relation to its effectiveness in helping students engage and interact with the course material.

  1. [Whole slide imaging technology: from digitization to online applications].

    PubMed

    Ameisen, David; Le Naour, Gilles; Daniel, Christel

    2012-11-01

    As e-health becomes essential to modern care, whole slide images (virtual slides) are now an important clinical, teaching and research tool in pathology. Virtual microscopy consists of digitizing a glass slide by acquiring hundreds of tiles of regions of interest at different zoom levels and assembling them into a structured file. This gigapixel image can then be remotely viewed over a terminal, exactly the way pathologists use a microscope. In this article, we will first describe the key elements of this technology, from the acquisition, using a scanner or a motorized microscope, to the broadcasting of virtual slides through a local or distant viewer over an intranet or Internet connection. As virtual slides are now commonly used in virtual classrooms, clinical data and research databases, we will highlight the main issues regarding its uses in modern pathology. Emphasis will be made on quality assurance policies, standardization and scaling. © 2012 médecine/sciences – Inserm / SRMS.

  2. Microscopic Virtual Media (MVM) in Physics Learning: Case Study on Students Understanding of Heat Transfer

    NASA Astrophysics Data System (ADS)

    Wibowo, F. C.; Suhandi, A.; Rusdiana, D.; Darman, D. R.; Ruhiat, Y.; Denny, Y. R.; Suherman; Fatah, A.

    2016-08-01

    A Study area in physics learning is purposeful on the effects of various types of learning interventions to help students construct the basic of scientific conception about physics. Microscopic Virtual Media (MVM) are applications for physics learning to support powerful modelling microscopic involving physics concepts and processes. In this study groups (experimental) of 18±20 years old, students were studied to determine the role of MVM in the development of functional understanding of the concepts of thermal expansion in heat transfer. The experimental group used MVM in learning process. The results show that students who learned with virtual media exhibited significantly higher scores in the research tasks. Our findings proved that the MVM may be used as an alternative instructional tool, in order to help students to confront and constructed their basic of scientific conception and developed their understanding.

  3. Applications and challenges of digital pathology and whole slide imaging.

    PubMed

    Higgins, C

    2015-07-01

    Virtual microscopy is a method for digitizing images of tissue on glass slides and using a computer to view, navigate, change magnification, focus and mark areas of interest. Virtual microscope systems (also called digital pathology or whole slide imaging systems) offer several advantages for biological scientists who use slides as part of their general, pharmaceutical, biotechnology or clinical research. The systems usually are based on one of two methodologies: area scanning or line scanning. Virtual microscope systems enable automatic sample detection, virtual-Z acquisition and creation of focal maps. Virtual slides are layered with multiple resolutions at each location, including the highest resolution needed to allow more detailed review of specific regions of interest. Scans may be acquired at 2, 10, 20, 40, 60 and 100 × or a combination of magnifications to highlight important detail. Digital microscopy starts when a slide collection is put into an automated or manual scanning system. The original slides are archived, then a server allows users to review multilayer digital images of the captured slides either by a closed network or by the internet. One challenge for adopting the technology is the lack of a universally accepted file format for virtual slides. Additional challenges include maintaining focus in an uneven sample, detecting specimens accurately, maximizing color fidelity with optimal brightness and contrast, optimizing resolution and keeping the images artifact-free. There are several manufacturers in the field and each has not only its own approach to these issues, but also its own image analysis software, which provides many options for users to enhance the speed, quality and accuracy of their process through virtual microscopy. Virtual microscope systems are widely used and are trusted to provide high quality solutions for teleconsultation, education, quality control, archiving, veterinary medicine, research and other fields.

  4. Transition to Virtual Microscopy in Medical Undergraduate Pathology Education: First Experience of Turkey in Dokuz Eylül University Hospital.

    PubMed

    Sağol, Özgül; Yörükoğlu, Kutsal; Lebe, Banu; Durak, Merih Güray; Ulukuş, Çağnur; Tuna, Burçin; Musal, Berna; Canda, Tülay; Özer, Erdener

    2015-01-01

    Pathology education includes an important visual part supporting a wide range of theoretical knowledge. However, the use of traditional microscopes in pathology education has declined over the last decade and there is a lack of interest for microscopy. Virtual microscopy, which was first described in 1985 and has experienced a revolution since 2000, is an alternative technique to conventional microscopy, in which microscopic slides are scanned to form digital images and stored in the web. The aim of this study was to evaluate the use of virtual microscopy in practical pathology sessions and its effects on our students and undergraduate education at our faculty. Second and third year medical students who were used to conventional microscopes were included in the study. The practical sessions were carried out via virtual slides and the effect of the new technique was investigated by a scale at the end of each session. Academic staff from the pathology department joined sessions to promote discussion and respond to questions. Student ratings were analysed statistically. The evaluation of the ratings showed that the students were easily adapted to the use of virtual microscopy. They found it user-friendly and thought that the opportunity of viewing slides at home was advantageous. Collaboration between students and interactive discussions was also improved with this technique. It was concluded that the use of virtual microscopy could contribute to the pathology education of our students.

  5. Construction of a Virtual Scanning Electron Microscope (VSEM)

    NASA Technical Reports Server (NTRS)

    Fried, Glenn; Grosser, Benjamin

    2004-01-01

    The Imaging Technology Group (ITG) proposed to develop a Virtual SEM (VSEM) application and supporting materials as the first installed instrument in NASA s Virtual Laboratory Project. The instrument was to be a simulator modeled after an existing SEM, and was to mimic that real instrument as closely as possible. Virtual samples would be developed and provided along with the instrument, which would be written in Java.

  6. Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Virtual mode

    NASA Astrophysics Data System (ADS)

    Lapshin, Rostislav V.

    2016-08-01

    A method of distributed calibration of a probe microscope scanner is suggested. The main idea consists in a search for a net of local calibration coefficients (LCCs) in the process of automatic measurement of a standard surface, whereby each point of the movement space of the scanner can be characterized by a unique set of scale factors. Feature-oriented scanning (FOS) methodology is used as a basis for implementation of the distributed calibration permitting to exclude in situ the negative influence of thermal drift, creep and hysteresis on the obtained results. Possessing the calibration database enables correcting in one procedure all the spatial systematic distortions caused by nonlinearity, nonorthogonality and spurious crosstalk couplings of the microscope scanner piezomanipulators. To provide high precision of spatial measurements in nanometer range, the calibration is carried out using natural standards - constants of crystal lattice. One of the useful modes of the developed calibration method is a virtual mode. In the virtual mode, instead of measurement of a real surface of the standard, the calibration program makes a surface image ;measurement; of the standard, which was obtained earlier using conventional raster scanning. The application of the virtual mode permits simulation of the calibration process and detail analysis of raster distortions occurring in both conventional and counter surface scanning. Moreover, the mode allows to estimate the thermal drift and the creep velocities acting while surface scanning. Virtual calibration makes possible automatic characterization of a surface by the method of scanning probe microscopy (SPM).

  7. In Vivo Near Infrared Virtual Intraoperative Surgical Photoacoustic Optical Coherence Tomography

    PubMed Central

    Lee, Donghyun; Lee, Changho; Kim, Sehui; Zhou, Qifa; Kim, Jeehyun; Kim, Chulhong

    2016-01-01

    Since its first implementation in otolaryngological surgery nearly a century ago, the surgical microscope has improved the accuracy and the safety of microsurgeries. However, the microscope shows only a magnified surface view of the surgical region. To overcome this limitation, either optical coherence tomography (OCT) or photoacoustic microscopy (PAM) has been independently combined with conventional surgical microscope. Herein, we present a near-infrared virtual intraoperative photoacoustic optical coherence tomography (NIR-VISPAOCT) system that combines both PAM and OCT with a conventional surgical microscope. Using optical scattering and absorption, the NIR-VISPAOCT system simultaneously provides surgeons with real-time comprehensive biological information such as tumor margins, tissue structure, and a magnified view of the region of interest. Moreover, by utilizing a miniaturized beam projector, it can back-project 2D cross-sectional PAM and OCT images onto the microscopic view plane. In this way, both microscopic and cross-sectional PAM and OCT images are concurrently displayed on the ocular lens of the microscope. To verify the usability of the NIR-VISPAOCT system, we demonstrate simulated surgeries, including in vivo image-guided melanoma resection surgery and in vivo needle injection of carbon particles into a mouse thigh. The proposed NIR-VISPAOCT system has potential applications in neurosurgery, ophthalmological surgery, and other microsurgeries. PMID:27731390

  8. Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography

    PubMed Central

    Lee, Changho; Kim, Kyungun; Han, Seunghoon; Kim, Sehui; Lee, Jun Hoon; Kim, Hong kyun; Kim, Chulhong; Jung, Woonggyu; Kim, Jeehyun

    2014-01-01

    Abstract. An intraoperative surgical microscope is an essential tool in a neuro- or ophthalmological surgical environment. Yet, it has an inherent limitation to classify subsurface information because it only provides the surface images. To compensate for and assist in this problem, combining the surgical microscope with optical coherence tomography (OCT) has been adapted. We developed a real-time virtual intraoperative surgical OCT (VISOCT) system by adapting a spectral-domain OCT scanner with a commercial surgical microscope. Thanks to our custom-made beam splitting and image display subsystems, the OCT images and microscopic images are simultaneously visualized through an ocular lens or the eyepiece of the microscope. This improvement helps surgeons to focus on the operation without distraction to view OCT images on another separate display. Moreover, displaying the OCT live images on the eyepiece helps surgeon’s depth perception during the surgeries. Finally, we successfully processed stimulated penetrating keratoplasty in live rabbits. We believe that these technical achievements are crucial to enhance the usability of the VISOCT system in a real surgical operating condition. PMID:24604471

  9. Mind Over Magma: The Story of Igneous Petrology

    NASA Astrophysics Data System (ADS)

    Snyder, Don

    2004-01-01

    In the centuries that enquiring minds have studied and theorized about igneous rocks, much progress has been made, both in accumulating observations and in developing theories. Yet, writing a history of this progress is a daunting undertaking. The volume of the literature is vast and in multiple languages; the various lines of inquiry are diverse and complex; and the nomenclature is sometimes abstruse. On top of these challenges, many of its principal issues have yet to find a definitive consensus. With the exception of a few topical studies, historians of science have virtually avoided the subject. In Mind Over Magma: The Story of Igneous Petrology, Davis Young has taken on the challenge of writing a comprehensive survey of the study of igneous rocks, and the result has been a remarkable book of meticulous scholarship. Igneous petrology is a vast subject, and it is not obvious how best to organize its history. Young takes a topical approach, generally grouping together various studies by either the problem being investigated or the method of attack. These topics span the earliest times to the present, with an emphasis on recurring themes, such as the causes of magmatic diversity and the origins of the granitic rocks. The range of topics includes most of the subjects central to the field over its history. As much as is practical, topics are discussed in chronological order, and along the way, the reader is treated to biographical sketches of many of the key contributors. This organization proves effective in dealing with the multitude of concepts.

  10. Innovative Strategies for Clinical Microscopy Instruction: Virtual Versus Light Microscopy.

    PubMed

    McDaniel, M Jane; Russell, Gregory B; Crandall, Sonia J

    2018-06-01

    The purpose of the study was to compare virtual microscopy with light microscopy to determine differences in learning outcomes and learner attitudes in teaching clinical microscopy to physician assistant (PA) students. A prospective, randomized, crossover design study was conducted with a convenience sample of 67 first-year PA students randomized to 2 groups. One group used light microscopes to find microscopic structures, whereas the other group used instructor-directed video streaming of microscopic elements. At the midpoint of the study, the groups switched instructional strategies. Learning outcomes were assessed via posttest after each section of the study, with comparison of final practical examination results to previous cohorts. Attitudes about the 2 educational strategies were assessed through a postcourse questionnaire with a Likert scale. Analysis of the first posttest demonstrated that students in the video-streamed group had significantly better learning outcomes than those in the light microscopy group (P = .004; Cohen's d = 0.74). Analysis of the posttest after crossover showed no differences between the 2 groups (P = .48). Between the 2 posttests, students first assigned to the light microscopy group scored a 6.6 mean point increase (±10.4 SD; p = .0011), whereas students first assigned to the virtual microscopy group scored a 1.3 mean point increase (±7.1 SD; p = .29). The light microscopy group improved more than the virtual microscopy group (P = .019). Analysis of practical examination data revealed higher scores for the study group compared with 5 previous cohorts of first-year students (P < .0001; Cohen's d = 0.66). Students preferred virtual microscopy to traditional light microscopy. Virtual microscopy is an effective educational strategy, and students prefer this method when learning to interpret images of clinical specimens.

  11. Active Learning: A Small Group Histology Laboratory Exercise in a Whole Class Setting Utilizing Virtual Slides and Peer Education

    ERIC Educational Resources Information Center

    Bloodgood, Robert A.

    2012-01-01

    Histology laboratory instruction is moving away from the sole use of the traditional combination of light microscopes and glass slides in favor of virtual microscopy and virtual slides. At the same time, medical curricula are changing so as to reduce scheduled time for basic science instruction as well as focusing on student-centered learning…

  12. Impact of virtual microscopy with conventional microscopy on student learning in dental histology.

    PubMed

    Hande, Alka Harish; Lohe, Vidya K; Chaudhary, Minal S; Gawande, Madhuri N; Patil, Swati K; Zade, Prajakta R

    2017-01-01

    In dental histology, the assimilation of histological features of different dental hard and soft tissues is done by conventional microscopy. This traditional method of learning prevents the students from screening the entire slide and change of magnification. To address these drawbacks, modification in conventional microscopy has evolved and become motivation for changing the learning tool. Virtual microscopy is the technique in which there is complete digitization of the microscopic glass slide, which can be analyzed on a computer. This research is designed to evaluate the effectiveness of virtual microscopy with conventional microscopy on student learning in dental histology. A cohort of 105 students were included and randomized into three groups: A, B, and C. Group A students studied the microscopic features of oral histologic lesions by conventional microscopy, Group B by virtual microscopy, and Group C by both conventional and virtual microscopy. The students' understanding of the subject was evaluated by a prepared questionnaire. The effectiveness of the study designs on knowledge gains and satisfaction levels was assessed by statistical assessment of differences in mean test scores. The difference in score between Groups A, B, and C at pre- and post-test was highly significant. This enhanced understanding of the subject may be due to benefits of using virtual microscopy in teaching histology. The augmentation of conventional microscopy with virtual microscopy shows enhancement of the understanding of the subject as compared to the use of conventional microscopy and virtual microscopy alone.

  13. Petrological features of selected components of the Cergowa sandstones (Outer Carpathians) recorded by scanning electron microscopy - preliminary study

    NASA Astrophysics Data System (ADS)

    Pszonka, Joanna

    2017-11-01

    The scanning electron microscope analysis of the Cergowa sandstones brings new data on their petrological features and chemical composition. Previous work in standard petrographic examination, e.g. polarising (PL) or cathodoluminescence (CL) microscopy, displayed limited information on grain surface topography and only assumptions to their geochemistry. Both identification and characterisation of minerals are fundamental in the progress of mining and minerals processing systems. Detrital grains of the Cergowa sandstones are bound by calcite and dolomitic cement and commonly corroded by diagenetic fluids, however, in varying degrees, which is illustrated here by feldspar, quartz and dolomite minerals. Dissolution processes of marginal parts of these mineral grains resulted in corrosion, which increased the contact surface between the grains and the cement. The difference in resistance to these processes was observed not only among distinct groups of minerals, but also within the group of feldspars: between K-feldspars and minerals of plagioclase. That combination resulted in exceptionally strong cementation of the Cergowa sandstones, which is expressed by their high hardness and resistance to abrasion, freezing, and thawing. Inherent parameters of sandstones are characterised by their petrographical properties.

  14. The Role of the Virtual Microscope in Distance Learning

    ERIC Educational Resources Information Center

    Whalley, Peter; Kelley, Simon; Tindle, Andrew

    2011-01-01

    Screen-based microscopes allow for a shared visualisation and task-directed conversations that offer significant pedagogic advantages for the science disciplines involving observation of natural samples such as the geosciences and biosciences, and particularly for distance education in these disciplines. The role and development of a virtual…

  15. Fast parallel 3D profilometer with DMD technology

    NASA Astrophysics Data System (ADS)

    Hou, Wenmei; Zhang, Yunbo

    2011-12-01

    Confocal microscope has been a powerful tool for three-dimensional profile analysis. Single mode confocal microscope is limited by scanning speed. This paper presents a 3D profilometer prototype of parallel confocal microscope based on DMD (Digital Micromirror Device). In this system the DMD takes the place of Nipkow Disk which is a classical parallel scanning scheme to realize parallel lateral scanning technique. Operated with certain pattern, the DMD generates a virtual pinholes array which separates the light into multi-beams. The key parameters that affect the measurement (pinhole size and the lateral scanning distance) can be configured conveniently by different patterns sent to DMD chip. To avoid disturbance between two virtual pinholes working at the same time, a scanning strategy is adopted. Depth response curve both axial and abaxial were extract. Measurement experiments have been carried out on silicon structured sample, and axial resolution of 55nm is achieved.

  16. The 2003 phreatomagmatic eruptions of Anatahan volcano - Textural and petrologic features of deposits at an emergent island volcano

    USGS Publications Warehouse

    Pallister, J.S.; Trusdell, F.A.; Brownfield, I.K.; Siems, D.F.; Budahn, J.R.; Sutley, S.F.

    2005-01-01

    Stratigraphic and field data are used in conjunction with textural and chemical evidence (including data from scanning electron microscope, electron microprobe, X-ray fluorescence, X-ray diffraction, and instrumental neutron activation analysis) to establish that the 2003 eruption of Anatahan volcano was mainly phreatomagmatic, dominated by explosive interaction of homogeneous composition low-viscosity crystal-poor andesite magma with water. The hydromagmatic mode of eruption contributed to the significant height of initial eruptive columns and to the excavation and eruption of altered rock debris from the sub-volcanic hydrothermal system. Volatile contents of glass inclusions in equilibrium phenocrysts less abundances of these constituents in matrix glass times the estimated mass of juvenile magma indicate minimum emissions of 19 kt SO2 and 13 kt Cl. This petrologic estimate of SO2 emission is an order-of-magnitude less than an estimate from TOMS. Similarly, inferred magma volumes from the petrologic data are an order of magnitude greater than those modeled from deformation data. Both discrepancies indicate additional sources of volatiles, likely derived from a separate fluid phase in the magma. The paucity of near-source volcanic-tectonic earthquakes preceding the eruption, and the dominance of sustained long-period tremor are attributed to the ease of ascent of the hot low-viscosity andesite, followed by a shallow phreatomagmatic mode of eruption. Phreatomagmatic eruptions are probably more common at emergent tropical island volcanoes, where shallow fresh-water lenses occur at near-sea-level vents. These relations suggest that phreatomagmatic explosions contributed to the formation of many of the near-sea-level craters and possibly even to the small calderas at the other Mariana islands.

  17. Electronic Blending in Virtual Microscopy

    ERIC Educational Resources Information Center

    Maybury, Terrence S.; Farah, Camile S.

    2010-01-01

    Virtual microscopy (VM) is a relatively new technology that transforms the computer into a microscope. In essence, VM allows for the scanning and transfer of glass slides from light microscopy technology to the digital environment of the computer. This transition is also a function of the change from print knowledge to electronic knowledge, or as…

  18. Fostering Student Engagement with Digital Microscopic Images Using ThingLink, an Image Annotation Program

    ERIC Educational Resources Information Center

    Appasamy, Pierette

    2018-01-01

    The teaching of histology has changed dramatically with virtual microscopy. Fewer students of histology spend significant time viewing slides on a microscope and instead study images available in digital slide sets, generally accessible via the internet. However, students must still be able to correctly identify the defining characteristics of…

  19. Virtual tape measure for the operating microscope: system specifications and performance evaluation.

    PubMed

    Kim, M Y; Drake, J M; Milgram, P

    2000-01-01

    The Virtual Tape Measure for the Operating Microscope (VTMOM) was created to assist surgeons in making accurate 3D measurements of anatomical structures seen in the surgical field under the operating microscope. The VTMOM employs augmented reality techniques by combining stereoscopic video images with stereoscopic computer graphics, and functions by relying on an operator's ability to align a 3D graphic pointer, which serves as the end-point of the virtual tape measure, with designated locations on the anatomical structure being measured. The VTMOM was evaluated for its baseline and application performances as well as its application efficacy. Baseline performance was determined by measuring the mean error (bias) and standard deviation of error (imprecision) in measurements of non-anatomical objects. Application performance was determined by comparing the error in measuring the dimensions of aneurysm models with and without the VTMOM. Application efficacy was determined by comparing the error in selecting the appropriate aneurysm clip size with and without the VTMOM. Baseline performance indicated a bias of 0.3 mm and an imprecision of 0.6 mm. Application bias was 3.8 mm and imprecision was 2.8 mm for aneurysm diameter. The VTMOM did not improve aneurysm clip size selection accuracy. The VTMOM is a potentially accurate tool for use under the operating microscope. However, its performance when measuring anatomical objects is highly dependent on complex visual features of the object surfaces. Copyright 2000 Wiley-Liss, Inc.

  20. Journal of Mineralogical and Petrological Sciences

    NASA Astrophysics Data System (ADS)

    Official journal of Japan Association of Mineralogical Sciences (JAMS), focusing on mineralogical and petrological sciences and their related fields. Journal of Mineralogical and Petrological Sciences (JMPS) is the successor journal to both “Journal of Mineralogy, Petrology and Economic Geology” and “Mineralogical Journal”. Journal of Mineralogical and Petrological Sciences (JMPS) is indexed in the ISI database (Thomson Reuters), the Science Citation Index-Expanded, Current Contents/Physical, Chemical & Earth Sciences, and ISI Alerting Services.

  1. Proceedings of the twentieth annual meeting of the society for organic petrology

    USGS Publications Warehouse

    Bragg, Linda J.; Lentz, Erika E.; Warwick, Peter D.; Finkelman, Robert B.; Trippi, Michael H.; Karlsen, Alex W.

    2004-01-01

    The Society for Organic Petrology (TSOP; pronounced "Tee'-sop") was established in 1984 to consolidate and foster the organizational activities of scientists and engineers involved with coal petrology, kerogen petrology, organic geochemistry, and related disciplines. The following report, "Proceedings of the Twentieth Annual Meeting of The Society for Organic Petrology" (ISSN 1060-7250), features technical talks, poster presentations, business meetings, short courses, and field trips from the Fall 2003 annual meeting held in Washington, D.C.

  2. State of the art of teledermatopathology.

    PubMed

    Massone, Cesare; Brunasso, Alexandra M G; Campbell, Terri M; Soyer, H Peter

    2008-10-01

    Teledermatopathology may involve real-time transmission of images from distant locations to consulting pathologists by the remote manipulation of a robotic microscope. Alternatively, the static store-and-forward option involves the single-file transmission of subjectively preselected and captured areas of microscopic images by a referring physician. The recent introduction of virtual slide systems (VSS) involves the digitization of whole slides at high resolution thus enabling the user to view any part of the specimen at any magnification. Such technology has surmounted previous restrictions caused by the size of preselected areas and specimen sampling for telepathology. In terms of client access, these VSS may be stored on a virtual slide server, made available on the Web for remote consultation by pathologists via an integrated virtual slide client network. Despite store-and-forward teledermatopathology being the most frequently used and less expensive approach to teledermatopathology, VSS represents the future in this discipline. The recent pilot studies suggest that the use of remote expert consultants in diagnostic dermatopathology can be integrated into daily routine, teleconsultation, and teleteaching. The new technology enables rapid and reproducible diagnoses, but despite its usability, VSS is not completely feasible for teledermatopathology of inflammatory skin diseases as the performance seems to be influenced by the availability of complete clinical data. Improvements in the diagnostic facility will no doubt follow from further development of the VSS, the slide processor, and of course training in the use of virtual microscope. Undoubtedly, as technology becomes even more sophisticated in the future, VSS will overcome the present drawbacks and find its place in all facets of teledermatopathology.

  3. [Virtual microscopy in pathology teaching and postgraduate training (continuing education)].

    PubMed

    Sinn, H P; Andrulis, M; Mogler, C; Schirmacher, P

    2008-11-01

    As with conventional microscopy, virtual microscopy permits histological tissue sections to be viewed on a computer screen with a free choice of viewing areas and a wide range of magnifications. This, combined with the possibility of linking virtual microscopy to E-Learning courses, make virtual microscopy an ideal tool for teaching and postgraduate training in pathology. Uses of virtual microscopy in pathology teaching include blended learning with the presentation of digital teaching slides in the internet parallel to presentation in the histology lab, extending student access to histology slides beyond the lab. Other uses are student self-learning in the Internet, as well as the presentation of virtual slides in the classroom with or without replacing real microscopes. Successful integration of virtual microscopy depends on its embedding in the virtual classroom and the creation of interactive E-learning content. Applications derived from this include the use of virtual microscopy in video clips, podcasts, SCORM modules and the presentation of virtual microscopy using interactive whiteboards in the classroom.

  4. Quantitative and Qualitative Changes in Teaching Histology by Means of Virtual Microscopy in an Introductory Course in Human Anatomy

    ERIC Educational Resources Information Center

    Husmann, Polly R.; O'Loughlin, Valerie Dean; Braun, Mark W.

    2009-01-01

    This study compares overall laboratory averages and individual test scores along with a student survey to determine the effects of using virtual microscopy in place of optical microscopes in a large undergraduate human anatomy course. T-tests revealed that the first two laboratory examinations (of four) and the overall laboratory averages were…

  5. High-resolution digital brain atlases: a Hubble telescope for the brain.

    PubMed

    Jones, Edward G; Stone, James M; Karten, Harvey J

    2011-05-01

    We describe implementation of a method for digitizing at microscopic resolution brain tissue sections containing normal and experimental data and for making the content readily accessible online. Web-accessible brain atlases and virtual microscopes for online examination can be developed using existing computer and internet technologies. Resulting databases, made up of hierarchically organized, multiresolution images, enable rapid, seamless navigation through the vast image datasets generated by high-resolution scanning. Tools for visualization and annotation of virtual microscope slides enable remote and universal data sharing. Interactive visualization of a complete series of brain sections digitized at subneuronal levels of resolution offers fine grain and large-scale localization and quantification of many aspects of neural organization and structure. The method is straightforward and replicable; it can increase accessibility and facilitate sharing of neuroanatomical data. It provides an opportunity for capturing and preserving irreplaceable, archival neurohistological collections and making them available to all scientists in perpetuity, if resources could be obtained from hitherto uninterested agencies of scientific support. © 2011 New York Academy of Sciences.

  6. Virtual microscopy in a veterinary curriculum.

    PubMed

    Sims, Michael H; Mendis-Handagama, Chamindrani; Moore, Robert N

    2007-01-01

    Teaching faculty in the University of Tennessee College of Veterinary Medicine assist students in their professional education by providing a new way of viewing microscopic slides digitally. Faculty who teach classes in which glass slides are used participate in a program called Virtual Microscopy. Glass slides are digitized using a state-of-the-art integrated system, and a personal computer functions as the "microscope." Additionally, distribution of the interactive images is enhanced because they are available to students online. The digital slide offers equivalent quality and resolution to the original glass slide viewed on a microscope and has several additional advantages over microscopes. Students can choose to examine the entire slide at any of several objectives; they are able to access the slides (called WebSlides) from the college's server, using either Internet Explorer or a special browser developed by Bacus Laboratories, Inc.,(a) called the WebSlide browser, which lets the student simultaneously view a low-objective image and one or two high-objective images of the same slide. The student can "move the slide" by clicking and dragging the image to a new location. Easy archiving, annotation of images, and Web conferencing are additional features of the system.

  7. Lunar breccias, petrology, and earth planetary structure

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.

    1978-01-01

    Topics covered include: (1) petrologic studies of poikiloblastic textured rocks; (2) petrology of aluminous mare basalts in breccia 14063; (3) petrology of Apollo 15 breccia 15459; (4) high-alumina mare basalts; (5) some petrological aspects of imbrium stratigraphy; (6) petrology of lunar rocks and implication to lunar evolution; (7) the crystallization trends of spinels in Tertiary basalts from Rhum and Muck and their petrogenetic significance; (8) the geology and evolution of the Cayman Trench; (9) The petrochemistry of igneous rocks from the Cayman Trench and the Captains Bay Pluton, Unalaska Island and their relation to tectonic processes at plate margins; and (10) the oxide and silicate mineral chemistry of a Kimberlite from the Premier Mine with implications for the evolution of kimberlitic magma.

  8. Microscope and method of use

    DOEpatents

    Bongianni, Wayne L.

    1984-01-01

    A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers.

  9. Microscope and method of use

    DOEpatents

    Bongianni, W.L.

    1984-04-17

    A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers. 7 figs.

  10. Evaluation of Usage of Virtual Microscopy for the Study of Histology in the Medical, Dental, and Veterinary Undergraduate Programs of a UK University

    ERIC Educational Resources Information Center

    Gatumu, Margaret K.; MacMillan, Frances M.; Langton, Philip D.; Headley, P. Max; Harris, Judy R.

    2014-01-01

    This article describes the introduction of a virtual microscope (VM) that has allowed preclinical histology teaching to be fashioned to better suit the needs of approximately 900 undergraduate students per year studying medicine, dentistry, or veterinary science at the University of Bristol, United Kingdom. Features of the VM implementation…

  11. The Beginnings of Experimental Petrology

    ERIC Educational Resources Information Center

    Eugster, Hans P.

    1971-01-01

    An account of Van't Hoff's change from theoretical chemistry to petrology provides data on the European intellectual climate of the early 1900's and shows how his work laid the foundation for experimental petrology of hard rocks." (AL)

  12. Three-Dimensional (3D) Nanometrology Based on Scanning Electron Microscope (SEM) Stereophotogrammetry.

    PubMed

    Tondare, Vipin N; Villarrubia, John S; Vlada R, András E

    2017-10-01

    Three-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. Nowadays, there exist several commercially available stereophotogrammetry software packages. For testing these software packages, in this study we used Monte Carlo simulated SEM images of virtual samples. A virtual sample is a model in a computer, and its true dimensions are known exactly, which is impossible for real SEM samples due to measurement uncertainty. The simulated SEM images can be used for algorithm testing, development, and validation. We tested two stereophotogrammetry software packages and compared their reconstructed 3D models with the known geometry of the virtual samples used to create the simulated SEM images. Both packages performed relatively well with simulated SEM images of a sample with a rough surface. However, in a sample containing nearly uniform and therefore low-contrast zones, the height reconstruction error was ≈46%. The present stereophotogrammetry software packages need further improvement before they can be used reliably with SEM images with uniform zones.

  13. Comprehensive modelling and simulation of cylindrical nanoparticles manipulation by using a virtual reality environment.

    PubMed

    Korayem, Moharam Habibnejad; Hoshiar, Ali Kafash; Ghofrani, Maedeh

    2017-08-01

    With the expansion of nanotechnology, robots based on atomic force microscope (AFM) have been widely used as effective tools for displacing nanoparticles and constructing nanostructures. One of the most limiting factors in AFM-based manipulation procedures is the inability of simultaneously observing the controlled pushing and displacing of nanoparticles while performing the operation. To deal with this limitation, a virtual reality environment has been used in this paper for observing the manipulation operation. In the simulations performed in this paper, first, the images acquired by the atomic force microscope have been processed and the positions and dimensions of nanoparticles have been determined. Then, by dynamically modelling the transfer of nanoparticles and simulating the critical force-time diagrams, a controlled displacement of nanoparticles has been accomplished. The simulations have been further developed for the use of rectangular, V-shape and dagger-shape cantilevers. The established virtual reality environment has made it possible to simulate the manipulation of biological particles in a liquid medium. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The virtual case: a new method to completely digitize cytological and histological slides.

    PubMed

    Demichelis, F; Barbareschi, M; Dalla Palma, P; Forti, S

    2002-08-01

    The purpose of this study was to present a new method for handling histological/cytological cases. Thanks to the introduction of information technology in pathology, including the amenities afforded by robotic microscopes and digital imaging, tissue slides can be represented and evaluated using digital techniques in order to construct virtual cases through completely automated procedures. A virtual case (VC) is composed of a collection of digital images representing a histological/cytological slide at all magnification levels together with all relevant clinical data. In the present study, we describe an automated system to manage robotic microscope and image acquisition for the proper construction of VCs. These can then be viewed on a computer by means of an interface ("user-friendly") that allows one to select the more appropriate fields and to examine them at different magnifications, rapidly going from panoramic views to high resolution and vice versa. In comparison with glass slides, VCs have several advantages arising from their digital nature and can be considered a common platform for a wide range of applications such as teleconsultation, education, research, and quality control and proficiency tests.

  15. Virtual k -Space Modulation Optical Microscopy

    NASA Astrophysics Data System (ADS)

    Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Zheng, Guoan; Fang, Yue; Xu, Yingke; Liu, Xu; So, Peter T. C.

    2016-07-01

    We report a novel superresolution microscopy approach for imaging fluorescence samples. The reported approach, termed virtual k -space modulation optical microscopy (VIKMOM), is able to improve the lateral resolution by a factor of 2, reduce the background level, improve the optical sectioning effect and correct for unknown optical aberrations. In the acquisition process of VIKMOM, we used a scanning confocal microscope setup with a 2D detector array to capture sample information at each scanned x -y position. In the recovery process of VIKMOM, we first modulated the captured data by virtual k -space coding and then employed a ptychography-inspired procedure to recover the sample information and correct for unknown optical aberrations. We demonstrated the performance of the reported approach by imaging fluorescent beads, fixed bovine pulmonary artery endothelial (BPAE) cells, and living human astrocytes (HA). As the VIKMOM approach is fully compatible with conventional confocal microscope setups, it may provide a turn-key solution for imaging biological samples with ˜100 nm lateral resolution, in two or three dimensions, with improved optical sectioning capabilities and aberration correcting.

  16. Virtual microscopy in virtual tumor banking.

    PubMed

    Isabelle, M; Teodorovic, I; Oosterhuis, J W; Riegman, P H J; Passioukov, A; Lejeune, S; Therasse, P; Dinjens, W N M; Lam, K H; Oomen, M H A; Spatz, A; Ratcliffe, C; Knox, K; Mager, R; Kerr, D; Pezzella, F; Van Damme, B; Van de Vijver, M; Van Boven, H; Morente, M M; Alonso, S; Kerjaschki, D; Pammer, J; López-Guerrero, J A; Llombart-Bosch, A; Carbone, A; Gloghini, A; Van Veen, E B

    2006-01-01

    Many systems have already been designed and successfully used for sharing histology images over large distances, without transfer of the original glass slides. Rapid evolution was seen when digital images could be transferred over the Internet. Nowadays, sophisticated virtual microscope systems can be acquired, with the capability to quickly scan large batches of glass slides at high magnification and compress and store the large images on disc, which subsequently can be consulted through the Internet. The images are stored on an image server, which can give simple, easy to transfer pictures to the user specifying a certain magnification on any position in the scan. This offers new opportunities in histology review, overcoming the necessity of the dynamic telepathology systems to have compatible software systems and microscopes and in addition, an adequate connection of sufficient bandwidth. Consulting the images now only requires an Internet connection and a computer with a high quality monitor. A system of complete pathology review supporting biorepositories is described, based on the implementation of this technique in the European Human Frozen Tumor Tissue Bank (TuBaFrost).

  17. TuBaFrost 6: virtual microscopy in virtual tumour banking.

    PubMed

    Teodorovic, I; Isabelle, M; Carbone, A; Passioukov, A; Lejeune, S; Jaminé, D; Therasse, P; Gloghini, A; Dinjens, W N M; Lam, K H; Oomen, M H A; Spatz, A; Ratcliffe, C; Knox, K; Mager, R; Kerr, D; Pezzella, F; van Damme, B; van de Vijver, M; van Boven, H; Morente, M M; Alonso, S; Kerjaschki, D; Pammer, J; Lopez-Guerrero, J A; Llombart Bosch, A; van Veen, E-B; Oosterhuis, J W; Riegman, P H J

    2006-12-01

    Many systems have already been designed and successfully used for sharing histology images over large distances, without transfer of the original glass slides. Rapid evolution was seen when digital images could be transferred over the Internet. Nowadays, sophisticated Virtual Microscope systems can be acquired, with the capability to quickly scan large batches of glass slides at high magnification and compress and store the large images on disc, which subsequently can be consulted through the Internet. The images are stored on an image server, which can give simple, easy to transfer pictures to the user specifying a certain magnification on any position in the scan. This offers new opportunities in histology review, overcoming the necessity of the dynamic telepathology systems to have compatible software systems and microscopes and in addition, an adequate connection of sufficient bandwidth. Consulting the images now only requires an Internet connection and a computer with a high quality monitor. A system of complete pathology review supporting bio-repositories is described, based on the implementation of this technique in the European Human Frozen Tumor Tissue Bank (TuBaFrost).

  18. Petrology and In Situ Trace Element Chemistry of a Suite of R Chondrites

    NASA Astrophysics Data System (ADS)

    Mittlefehldt, D. W.; Peng, Z. X.; Torrano, Z. A.

    2015-07-01

    Your eyes are not deceiving you: Duck has submitted an abstract to a chondrite session. We will present the results of our petrological and compositional studies of R chondrites of diverse petrological type.

  19. Handheld Micromanipulation with Vision-Based Virtual Fixtures

    PubMed Central

    Becker, Brian C.; MacLachlan, Robert A.; Hager, Gregory D.; Riviere, Cameron N.

    2011-01-01

    Precise movement during micromanipulation becomes difficult in submillimeter workspaces, largely due to the destabilizing influence of tremor. Robotic aid combined with filtering techniques that suppress tremor frequency bands increases performance; however, if knowledge of the operator's goals is available, virtual fixtures have been shown to greatly improve micromanipulator precision. In this paper, we derive a control law for position-based virtual fixtures within the framework of an active handheld micromanipulator, where the fixtures are generated in real-time from microscope video. Additionally, we develop motion scaling behavior centered on virtual fixtures as a simple and direct extension to our formulation. We demonstrate that hard and soft (motion-scaled) virtual fixtures outperform state-of-the-art tremor cancellation performance on a set of artificial but medically relevant tasks: holding, move-and-hold, curve tracing, and volume restriction. PMID:23275860

  20. Modular Scanning Confocal Microscope with Digital Image Processing.

    PubMed

    Ye, Xianjun; McCluskey, Matthew D

    2016-01-01

    In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength.

  1. Microscopic endometrial perivascular epithelioid cell nodules: a case report with the earliest presentation of a uterine perivascular epithelioid cell tumor

    PubMed Central

    2012-01-01

    Abstract Perivascular epithelioid cell (PEC) tumors (PEComas) are a family of related mesenchymal tumors composed of PECs which co-express melanocytic and smooth muscle markers. Although their distinctive histologic, immunohistochemical, ultrastructural, and genetic features have been clearly demonstrated, their histogenesis and normal counterpart remain largely unknown. Precursor lesions of PEComas have rarely been reported. We herein describe a tuberous sclerosis patient with microscopic PEC nodules in the endometrium of adenomyosis, pelvic endometriosis, an ovarian endometriotic cyst, and the endometrium of the uterine cavity. The nodules showed a mixture of spindle-shaped and epithelioid cells concentrically arranged around small arteries. The cells exhibited uniform nuclei, light eosinophilic cytoplasm, and immunoreactivity with HMB-45 and CD10. Some nodules revealed continuity with a PEComa in the myometrium. These findings support microscopic endometrial PEC nodules possibly being precursor lesions of uterine PEComas. The wide distribution of the nodules in the pelvis may be related to the multicentricity of PEComas in tuberous sclerosis patients. Owing to the immunoreactivity with CD10, microscopic endometrial PEC nodules may be misinterpreted as endothelial stromal cells unless melanocytic markers are stained. To the best of our knowledge, this is a case with the earliest manifestation of PEC lesions occurring in the endometrium. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9658280017862643 PMID:22937790

  2. Microscopic endometrial perivascular epithelioid cell nodules: a case report with the earliest presentation of a uterine perivascular epithelioid cell tumor.

    PubMed

    Fang, Chia-Lang; Lin, Yun-Ho; Chen, Wei-Yu

    2012-09-03

    Perivascular epithelioid cell (PEC) tumors (PEComas) are a family of related mesenchymal tumors composed of PECs which co-express melanocytic and smooth muscle markers. Although their distinctive histologic, immunohistochemical, ultrastructural, and genetic features have been clearly demonstrated, their histogenesis and normal counterpart remain largely unknown. Precursor lesions of PEComas have rarely been reported. We herein describe a tuberous sclerosis patient with microscopic PEC nodules in the endometrium of adenomyosis, pelvic endometriosis, an ovarian endometriotic cyst, and the endometrium of the uterine cavity. The nodules showed a mixture of spindle-shaped and epithelioid cells concentrically arranged around small arteries. The cells exhibited uniform nuclei, light eosinophilic cytoplasm, and immunoreactivity with HMB-45 and CD10. Some nodules revealed continuity with a PEComa in the myometrium. These findings support microscopic endometrial PEC nodules possibly being precursor lesions of uterine PEComas. The wide distribution of the nodules in the pelvis may be related to the multicentricity of PEComas in tuberous sclerosis patients. Owing to the immunoreactivity with CD10, microscopic endometrial PEC nodules may be misinterpreted as endothelial stromal cells unless melanocytic markers are stained. To the best of our knowledge, this is a case with the earliest manifestation of PEC lesions occurring in the endometrium. Virtual slides: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9658280017862643.

  3. Two-photon calcium imaging in mice navigating a virtual reality environment.

    PubMed

    Leinweber, Marcus; Zmarz, Pawel; Buchmann, Peter; Argast, Paul; Hübener, Mark; Bonhoeffer, Tobias; Keller, Georg B

    2014-02-20

    In recent years, two-photon imaging has become an invaluable tool in neuroscience, as it allows for chronic measurement of the activity of genetically identified cells during behavior(1-6). Here we describe methods to perform two-photon imaging in mouse cortex while the animal navigates a virtual reality environment. We focus on the aspects of the experimental procedures that are key to imaging in a behaving animal in a brightly lit virtual environment. The key problems that arise in this experimental setup that we here address are: minimizing brain motion related artifacts, minimizing light leak from the virtual reality projection system, and minimizing laser induced tissue damage. We also provide sample software to control the virtual reality environment and to do pupil tracking. With these procedures and resources it should be possible to convert a conventional two-photon microscope for use in behaving mice.

  4. Perspective: Electronic systems of knowledge in the world of virtual microscopy.

    PubMed

    Maybury, Terrence; Farah, Camile S

    2009-09-01

    Across a broad range of medical disciplines, learning how to use an optical or light microscope has been a mandatory inclusion in the undergraduate curriculum. The development of virtual microscopy (VM) technology during the past 10 years has called into question the use of the optical microscope in educational contexts. VM allows slide specimens to be digitized, which, in turn, allows the computer to mimic the workings of the light microscope. This move from analog technology (the light microscope) to digital technology (the computer as microscope) is part of the many significant changes going on in education, a singular manifestation of the broader move from print-literate traditions of knowledge (requiring literacy) to an electronics-literate, or "electrate," mode (requiring "electracy"). VM is here used as an exemplar of this broad transition from literacy to electracy, some components of which include data deluge, a multimodal structure, and modularity. Understandably, this transition is important to clarify educationally, especially in a global context mediated via digital means. A related aspect of these educational changes is the move from teacher-directed learning to student-centered learning, or "user-led education," which points to a redefinition of "pedagogy" as "andragogy." The dissemination of the specific value of VM, then, is critical to both learners and teachers and to a more coherent understanding of electracy. A practical consequence of this clarity might be a better application of this knowledge in the evolving fields of computer simulation and telemedicine, areas in which today's medical students will need future expertise.

  5. NASA AMES Remote Operations Center for 2001

    NASA Technical Reports Server (NTRS)

    Sims, M.; Marshall, J.; Cox, S.; Galal, K.

    1999-01-01

    There is a Memorandum of Agreement between NASA Ames, JPL, West Virginia University and University of Arizona which led to funding for the MECA microscope and to the establishment of an Ames facility for science analysis of microscopic and other data. The data and analysis will be by agreement of the Mars Environmental Compatibility Assessment (MECA), Robotic Arm Camera (RAC) and other PI's. This facility is intended to complement other analysis efforts with one objective of this facility being to test the latest information technologies in support of actual mission science operations. Additionally, it will be used as a laboratory for the exploration of collaborative science activities. With a goal of enhancing the science return for both Human Exploration and Development of Space (HEDS) and Astrobiology we shall utilize various tools such as superresolution and the Virtual Environment Vehicle Interface (VEVI) virtual reality visualization tools. In this presentation we will describe the current planning for this facility.

  6. ReportTutor – An Intelligent Tutoring System that Uses a Natural Language Interface

    PubMed Central

    Crowley, Rebecca S.; Tseytlin, Eugene; Jukic, Drazen

    2005-01-01

    ReportTutor is an extension to our work on Intelligent Tutoring Systems for visual diagnosis. ReportTutor combines a virtual microscope and a natural language interface to allow students to visually inspect a virtual slide as they type a diagnostic report on the case. The system monitors both actions in the virtual microscope interface as well as text created by the student in the reporting interface. It provides feedback about the correctness, completeness, and style of the report. ReportTutor uses MMTx with a custom data-source created with the NCI Metathesaurus. A separate ontology of cancer specific concepts is used to structure the domain knowledge needed for evaluation of the student’s input including co-reference resolution. As part of the early evaluation of the system, we collected data from 4 pathology residents who typed in their reports without the tutoring aspects of the system, and compared responses to an expert dermatopathologist. We analyzed the resulting reports to (1) identify the error rates and distribution among student reports, (2) determine the performance of the system in identifying features within student reports, and (3) measure the accuracy of the system in distinguishing between correct and incorrect report elements. PMID:16779024

  7. The Pathologist 2.0: An Update on Digital Pathology in Veterinary Medicine.

    PubMed

    Bertram, Christof A; Klopfleisch, Robert

    2017-09-01

    Using light microscopy to describe the microarchitecture of normal and diseased tissues has changed very little since the middle of the 19th century. While the premise of histologic analysis remains intact, our relationship with the microscope is changing dramatically. Digital pathology offers new forms of visualization, and delivery of images is facilitated in unprecedented ways. This new technology can untether us entirely from our light microscopes, with many pathologists already performing their jobs using virtual microscopy. Several veterinary colleges have integrated virtual microscopy in their curriculum, and some diagnostic histopathology labs are switching to virtual microscopy as their main tool for the assessment of histologic specimens. Considering recent technical advancements of slide scanner and viewing software, digital pathology should now be considered a serious alternative to traditional light microscopy. This review therefore intends to give an overview of the current digital pathology technologies and their potential in all fields of veterinary pathology (ie, research, diagnostic service, and education). A future integration of digital pathology in the veterinary pathologist's workflow seems to be inevitable, and therefore it is proposed that trainees should be taught in digital pathology to keep up with the unavoidable digitization of the profession.

  8. Modular Scanning Confocal Microscope with Digital Image Processing

    PubMed Central

    McCluskey, Matthew D.

    2016-01-01

    In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength. PMID:27829052

  9. Virtual Interactive Classroom: A New Technology for Distance Learning Developed

    NASA Technical Reports Server (NTRS)

    York, David W.; Babula, Maria

    1999-01-01

    The Virtual Interactive Classroom (VIC) allows Internet users, specifically students, to remotely control and access data from scientific equipment. This is a significant advantage to school systems that cannot afford experimental equipment, have Internet access, and are seeking to improve science and math scores with current resources. A VIC Development Lab was established at Lewis to demonstrate that scientific equipment can be controlled by remote users over the Internet. Current projects include a wind tunnel, a room camera, a science table, and a microscope.

  10. Splint coals of the Central Appalachians: Petrographic and geochemical facies of the Peach Orchard No. 3 split coal bed, southern Magoffin County, Kentucky

    USGS Publications Warehouse

    Hower, James C.; Ruppert, Leslie F.

    2011-01-01

    The Bolsovian (Middle Pennsylvanian) Peach Orchard coal bed is one of the splint coals of the Central Appalachians. Splint coal is a name for the dull, inertinite-rich lithologies typical of coals of the region. The No. 3 Split was sampled at five locations in Magoffin County, Kentucky and analyzed for petrography and major and minor elements. The No. 3 Split coals contain semifusinite-rich lithologies, up to 48% (mineral-free basis) in one case. The nature of the semifusinite varies with position in the coal bed, containing more mineral matter of detrital origin in the uppermost durain. The maceral assemblage of these terminal durains is dominated by detrital fusinite and semifusinite, suggesting reworking of the maceral assemblage coincident with the deposition of the detrital minerals. However, a durain in the middle of the coal bed, while lithologically similar to the uppermost durains, has a degraded, macrinite-rich, texture. The inertinite macerals in the middle durain have less distinct edges than semifusinites in the uppermost terminal durains, suggesting degradation as a possible path to inertinite formation. The uppermost durain has higher ash and semifusinite contents at the eastern sites than at the western sites. The difference in the microscopic petrology indicates that megascopic petrology alone can be a deceptive indicator of depositional environments and that close attention must be paid to the individual macerals and their implications for the depositional setting, especially within the inertinite group.

  11. Presentations - Lande, Lauren and others, 2015 | Alaska Division of

    Science.gov Websites

    Details Title: A petrological model for emplacement of the ultramafic Ni-Cu-PGE Alpha complex, eastern , Newberry, R.J., and Twelker, Evan, 2015, A petrological model for emplacement of the ultramafic Ni-Cu-PGE Sheets Maps & Other Oversized Sheets Sheet 1 A petrological model for emplacement of the ultramafic

  12. Journey to the centre of the cell: Virtual reality immersion into scientific data.

    PubMed

    Johnston, Angus P R; Rae, James; Ariotti, Nicholas; Bailey, Benjamin; Lilja, Andrew; Webb, Robyn; Ferguson, Charles; Maher, Sheryl; Davis, Thomas P; Webb, Richard I; McGhee, John; Parton, Robert G

    2018-02-01

    Visualization of scientific data is crucial not only for scientific discovery but also to communicate science and medicine to both experts and a general audience. Until recently, we have been limited to visualizing the three-dimensional (3D) world of biology in 2 dimensions. Renderings of 3D cells are still traditionally displayed using two-dimensional (2D) media, such as on a computer screen or paper. However, the advent of consumer grade virtual reality (VR) headsets such as Oculus Rift and HTC Vive means it is now possible to visualize and interact with scientific data in a 3D virtual world. In addition, new microscopic methods provide an unprecedented opportunity to obtain new 3D data sets. In this perspective article, we highlight how we have used cutting edge imaging techniques to build a 3D virtual model of a cell from serial block-face scanning electron microscope (SBEM) imaging data. This model allows scientists, students and members of the public to explore and interact with a "real" cell. Early testing of this immersive environment indicates a significant improvement in students' understanding of cellular processes and points to a new future of learning and public engagement. In addition, we speculate that VR can become a new tool for researchers studying cellular architecture and processes by populating VR models with molecular data. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. The Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana

    USGS Publications Warehouse

    Christiansen, Robert L.

    2001-01-01

    This region of Yellowstone National Park has been the active focus of one of the Earth's largest magmatic systems for more than 2 million years. The resulting volcanism has been characterized by the eruption of voluminous rhyolites and subordinate basalts but virtually no lavas of intermediate composition. The magmatic system at depth remains active and drives the massive hydrothermal circulation for which the park is widely known. Studies of the volcanic field using geologic mapping and petrology have defined three major cycles of rhyolitic volcanism, each climaxed by the eruption of a rhyolitic ash-flow sheet having a volume of hundreds of thousands of cubic kilometers. The field also has been analyzed in terms of its magmatic and tectonic evolution, including its regional relation to the Snake River plain and to basin-range tectonic extension.

  14. Carbon petrology in cometary dust

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1992-01-01

    Chondritic porous (CP) interplanetary dust particles (IDP's) are collected in the Earth's stratosphere. There exists an extensive database on major and minor element chemistry, stable isotopes, noble gas abundances and mineralogy of many CP IDP's, as well as infrared and Raman spectroscopic properties. For details on the mineralogy, chemistry and physical properties of IDP's, I refer to the reviews by Mackinnon and Rietmeijer (1987), Bradley et al. (1988) and Sandford (1987). Texture, mineralogy (Mackinnon and Rietmeijer, 1987) and chemistry (Schramm et al., 1989; Flynn and Sutton, 1991) support the notion that CP IDP's are a unique group of ultrafine-grained extraterrestiral materials that are distinct from any known meteorite class. Their fluffy, or porous, morphology suggests that CP IDP's probably endured minimal alteration by protoplanetary processes since their formation. It is generally accepted that CP IDP's are solid debris from short-period comets. The evidence is mostly circumstantial but this notion gained significant support based on the comet Halley dust data (Brownlee, 1990). In this paper, I will accept that CP IDP's are indeed cometary dust. The C/Si ratio in CP IDP's is 3.3 times higher than in CI carbonaceous chondrites (Schramm et al. 1989). The intraparticle carbon distribution is heteorogeneous (Rietmeijer and McKay, 1986). Carbon occurs both in oxidized and reduced forms. Analytical electron microscope (AEM) and Raman spectroscopic analyses have shown the presence of several carbon forms in CP IDP's but the data are scattered in the literature. Carbons in cometary CP IDP's are among the most pristine Solar System carbons available for laboratory study. Similar to a recently developed petrological model for the diversity of layer silicates in CP IDP's (Zolensky, 1991) that is useful to constrain in situ aqueous alteration in comets (Rietmeijer and Mackinnon, 1987a), I here present the first effort to develop a petrological concept of carbons in CP IDP's. This concept is useful to constrain comet evolution. I also present the philosophical constraint facing Earth Scientists in studies of protoplanets that require a new approach to cometary dust studies.

  15. Vision-Based Control of a Handheld Surgical Micromanipulator with Virtual Fixtures

    PubMed Central

    Becker, Brian C.; MacLachlan, Robert A.; Lobes, Louis A.; Hager, Gregory D.; Riviere, Cameron N.

    2012-01-01

    Performing micromanipulation and delicate operations in submillimeter workspaces is difficult because of destabilizing tremor and imprecise targeting. Accurate micromanipulation is especially important for microsurgical procedures, such as vitreoretinal surgery, to maximize successful outcomes and minimize collateral damage. Robotic aid combined with filtering techniques that suppress tremor frequency bands increases performance; however, if knowledge of the operator’s goals is available, virtual fixtures have been shown to further improve performance. In this paper, we derive a virtual fixture framework for active handheld micromanipulators that is based on high-bandwidth position measurements rather than forces applied to a robot handle. For applicability in surgical environments, the fixtures are generated in real-time from microscope video during the procedure. Additionally, we develop motion scaling behavior around virtual fixtures as a simple and direct extension to the proposed framework. We demonstrate that virtual fixtures significantly outperform tremor cancellation algorithms on a set of synthetic tracing tasks (p < 0.05). In more medically relevant experiments of vein tracing and membrane peeling in eye phantoms, virtual fixtures can significantly reduce both positioning error and forces applied to tissue (p < 0.05). PMID:24639624

  16. The Mineralogy and Petrology of Anomalous Eucrite Emmaville

    NASA Technical Reports Server (NTRS)

    Barrett, T. J.; Mittlefehldt, D. W.; Ross, D. K.; Greenwood, R. C.; Anand, M.; Franchi, I. A.; Grady, M. M.; Charlier, B. L. A.

    2015-01-01

    It has long been known that certain basaltic achondrites share similarities with eucrites. These eucrite-like achondrites have distinct isotopic compositions and petrologic characteristics indicative of formation on a separate parent body from the howardite-eucrite-diogenite (HED) clan (e.g., Ibitira, Northwest Africa (NWA) 011). Others show smaller isotopic variations but are otherwise petrologically and compositionally indistinguishable from basaltic eucrites (e.g., Pasamonte, Pecora Escarpment (PCA) 91007). The Emmaville eucrite has a delta O-17 value of -0.137 plus or minus 0.024 per mille (1 sigma), which is substantially different from the eucrite mean of -0.246 plus or minus 0.014 per mille (2 sigma), but similar to those of A-881394 and Bunburra Rockhole (BR). Currently little data exist for Emmaville in terms of petrology or bulk composition. Studying anomalous eucrites allows us to more completely understand the numbers of asteroids represented by eucrite- like basalts and thus constrain the heterogeneity of the HED suite. In this study, we present our preliminary petrological and mineral composition results for Emmaville.

  17. Augmented reality in the surgery of cerebral arteriovenous malformations: technique assessment and considerations.

    PubMed

    Cabrilo, Ivan; Bijlenga, Philippe; Schaller, Karl

    2014-09-01

    Augmented reality technology has been used for intraoperative image guidance through the overlay of virtual images, from preoperative imaging studies, onto the real-world surgical field. Although setups based on augmented reality have been used for various neurosurgical pathologies, very few cases have been reported for the surgery of arteriovenous malformations (AVM). We present our experience with AVM surgery using a system designed for image injection of virtual images into the operating microscope's eyepiece, and discuss why augmented reality may be less appealing in this form of surgery. N = 5 patients underwent AVM resection assisted by augmented reality. Virtual three-dimensional models of patients' heads, skulls, AVM nidi, and feeder and drainage vessels were selectively segmented and injected into the microscope's eyepiece for intraoperative image guidance, and their usefulness was assessed in each case. Although the setup helped in performing tailored craniotomies, in guiding dissection and in localizing drainage veins, it did not provide the surgeon with useful information concerning feeder arteries, due to the complexity of AVM angioarchitecture. The difficulty in intraoperatively conveying useful information on feeder vessels may make augmented reality a less engaging tool in this form of surgery, and might explain its underrepresentation in the literature. Integrating an AVM's hemodynamic characteristics into the augmented rendering could make it more suited to AVM surgery.

  18. Recent Trends and Advances in Sedimentology.

    ERIC Educational Resources Information Center

    Suttner, Lee J.

    1979-01-01

    Briefly surveys recent trends and developments in sedimentology. Includes Clastic sedimentary petrology, petrology of argillaceous rocks, terrigenous depositional environments, and chemical sedimentology. (MA)

  19. A digital atlas of breast histopathology: an application of web based virtual microscopy

    PubMed Central

    Lundin, M; Lundin, J; Helin, H; Isola, J

    2004-01-01

    Aims: To develop an educationally useful atlas of breast histopathology, using advanced web based virtual microscopy technology. Methods: By using a robotic microscope and software adopted and modified from the aerial and satellite imaging industry, a virtual microscopy system was developed that allows fully automated slide scanning and image distribution via the internet. More than 150 slides were scanned at high resolution with an oil immersion ×40 objective (numerical aperture, 1.3) and archived on an image server residing in a high speed university network. Results: A publicly available website was constructed, http://www.webmicroscope.net/breastatlas, which features a comprehensive virtual slide atlas of breast histopathology according to the World Health Organisation 2003 classification. Users can view any part of an entire specimen at any magnification within a standard web browser. The virtual slides are supplemented with concise textual descriptions, but can also be viewed without diagnostic information for self assessment of histopathology skills. Conclusions: Using the technology described here, it is feasible to develop clinically and educationally useful virtual microscopy applications. Web based virtual microscopy will probably become widely used at all levels in pathology teaching. PMID:15563669

  20. Optimized graph-based mosaicking for virtual microscopy

    NASA Astrophysics Data System (ADS)

    Steckhan, Dirk G.; Wittenberg, Thomas

    2009-02-01

    Virtual microscopy has the potential to partially replace traditional microscopy. For virtualization, the slide is scanned once by a fully automatized robotic microscope and saved digitally. Typically, such a scan results in several hundreds to thousands of fields of view. Since robotic stages have positioning errors, these fields of view have to be registered locally and globally in an additional step. In this work we propose a new global mosaicking method for the creation of virtual slides based on sub-pixel exact phase correlation for local alignment in combination with Prim's minimum spanning tree algorithm for global alignment. Our algorithm allows for a robust reproduction of the original slide even in the presence of views with little to no information content. This makes it especially suitable for the mosaicking of cervical smears. These smears often exhibit large empty areas, which do not contain enough information for common stitching approaches.

  1. A sparse representation of the pathologist's interaction with whole slide images to improve the assigned relevance of regions of interest

    NASA Astrophysics Data System (ADS)

    Santiago, Daniel; Corredor, Germán.; Romero, Eduardo

    2017-11-01

    During a diagnosis task, a Pathologist looks over a Whole Slide Image (WSI), aiming to find out relevant pathological patterns. Nonetheless, a virtual microscope captures these structures, but also other cellular patterns with different or none diagnostic meaning. Annotation of these images depends on manual delineation, which in practice becomes a hard task. This article contributes a new method for detecting relevant regions in WSI using the routine navigations in a virtual microscope. This method constructs a sparse representation or dictionary of each navigation path and determines the hidden relevance by maximizing the incoherence between several paths. The resulting dictionaries are then projected onto each other and relevant information is set to the dictionary atoms whose similarity is higher than a custom threshold. Evaluation was performed with 6 pathological images segmented from a skin biopsy already diagnosed with basal cell carcinoma (BCC). Results show that our proposal outperforms the baseline by more than 20%.

  2. Turning Microscopy in the Medical Curriculum Digital: Experiences from The Faculty of Health and Medical Sciences at University of Copenhagen

    PubMed Central

    Vainer, Ben; Mortensen, Niels Werner; Poulsen, Steen Seier; Sørensen, Allan Have; Olsen, Jørgen; Saxild, Hans Henrik; Johansen, Flemming Fryd

    2017-01-01

    Familiarity with the structure and composition of normal tissue and an understanding of the changes that occur during disease is pivotal to the study of the human body. For decades, microscope slides have been central to teaching pathology in medical courses and related subjects at the University of Copenhagen. Students had to learn how to use a microscope and envisage three-dimensional processes that occur in the body from two-dimensional glass slides. Here, we describe how a PathXL virtual microscopy system for teaching pathology and histology at the Faculty has recently been implemented, from an administrative, an economic, and a teaching perspective. This fully automatic digital microscopy system has been received positively by both teachers and students, and a decision was made to convert all courses involving microscopy to the virtual microscopy format. As a result, conventional analog microscopy will be phased out from the fall of 2016. PMID:28382225

  3. G12V Kras mutations in cervical cancer under virtual microscope of molecular dynamics simulations.

    PubMed

    Chen, X P; Xu, W H; Xu, D F; Fu, S M; Ma, Z C

    2016-01-01

    Kras mutations and cancers are common and their role in the progression of cancer is well known and elucidated. The present work is searching for the most deleterious mutation of the four found at codon 12 and 13 of Kras in cervical cancers using prediction servers; different servers were used to look into different factors that govern the protein function. The in silico results predicted G12V to be the most devastating; this particular mutation was then subjected to molecular dynamics simulation (MDS) for further analysis. The authors' approach of MDSs helped them to place the native and mutant structure under virtual microscope and observe their dynamics over time. The results generated are enlightening the effect of G12V variation on the dynamics of Kras. The structural variation between the native and mutant Kras over 50 nanoseconds (ns) run varied at every parameter checked and the results are in excellent agreement with the available experimental data.

  4. Comparative evaluation of monocular augmented-reality display for surgical microscopes.

    PubMed

    Rodriguez Palma, Santiago; Becker, Brian C; Lobes, Louis A; Riviere, Cameron N

    2012-01-01

    Medical augmented reality has undergone much development recently. However, there is a lack of studies quantitatively comparing the different display options available. This paper compares the effects of different graphical overlay systems in a simple micromanipulation task with "soft" visual servoing. We compared positioning accuracy in a real-time visually-guided task using Micron, an active handheld tremor-canceling microsurgical instrument, using three different displays: 2D screen, 3D screen, and microscope with monocular image injection. Tested with novices and an experienced vitreoretinal surgeon, display of virtual cues in the microscope via an augmented reality injection system significantly decreased 3D error (p < 0.05) compared to the 2D and 3D monitors when confounding factors such as magnification level were normalized.

  5. Miniaturized video-rate epi-third-harmonic-generation fiber-microscope.

    PubMed

    Chia, Shih-Hsuan; Yu, Che-Hang; Lin, Chih-Han; Cheng, Nai-Chia; Liu, Tzu-Ming; Chan, Ming-Che; Chen, I-Hsiu; Sun, Chi-Kuang

    2010-08-02

    With a micro-electro-mechanical system (MEMS) mirror, we successfully developed a miniaturized epi-third-harmonic-generation (epi-THG) fiber-microscope with a video frame rate (31 Hz), which was designed for in vivo optical biopsy of human skin. With a large-mode-area (LMA) photonic crystal fiber (PCF) and a regular microscopic objective, the nonlinear distortion of the ultrafast pulses delivery could be much reduced while still achieving a 0.4 microm lateral resolution for epi-THG signals. In vivo real time virtual biopsy of the Asian skin with a video rate (31 Hz) and a sub-micron resolution was obtained. The result indicates that this miniaturized system was compact enough for the least invasive hand-held clinical use.

  6. KLASS: Kennedy Launch Academy Simulation System

    NASA Technical Reports Server (NTRS)

    Garner, Lesley C.

    2007-01-01

    Software provides access to many sophisticated scientific instrumentation (Scanning Electron Microscope (SEM), a Light Microscope, a Scanning Probe Microscope (covering Scanning Tunneling, Atomic Force, and Magnetic Force microscopy), and an Energy Dispersive Spectrometer for the SEM). Flash animation videos explain how each of the instruments work. Videos on how they are used at NASA and the sample preparation. Measuring and labeling tools provided with each instrument. Hands on experience of controlling the virtual instrument to conduct investigations, much like the real scientists at NASA do. Very open architecture. Open source on SourceForge. Extensive use of XML Target audience is high school and entry-level college students. "Many beginning students never get closer to an electron microscope than the photos in their textbooks. But anyone can get a sense of what the instrument can do by downloading this simulator from NASA's Kennedy Space Center." Science Magazine, April 8th, 2005

  7. Chemical characteristics and origin of H chondrite regolith breccias

    NASA Technical Reports Server (NTRS)

    Lipschutz, M. E.; Biswas, S.; Mcsween, H. Y., Jr.

    1983-01-01

    Petrologic data and contents of Ag, Bi, Cd, Co, Cs, Ga, In, Rb, Se, Te, Tl and Zn-trace elements spanning the volatility/mobility range-in light and dark portions of H chondrite regolith breccias and L chondrite fragmental breccias are reported. The chemical/petrologic characteristics of H chondrite regolith breccias differ from those of nonbrecciated chondrites or fragmental breccias. Petrologic characteristics and at least some trace element contents of H chondrite regolith breccias reflect primary processes; contents of the most volatile/mobile elements may reflect either primary or secondary processing, possibly within layered H chondrite parent object(s). Chemical/petrologic differences existed in different regions of the parent(s). Regoligh formation and gardening and meteoroid compaction were not so severe as to alter compositions markedly.

  8. The Microscopic World of Diatoms

    ERIC Educational Resources Information Center

    Sultany, Molly; Bixby, Rebecca

    2016-01-01

    For students in biology, chemistry, or environmental science, diatoms offer excellent insight into watershed health and human impact on the environment. Diatoms are found globally in virtually every habitat that has sunlight and moisture, including polar seas, tropical streams, and on moist soils and mosses. Studying diatoms as biological…

  9. Petrology of the Crystalline Rocks Hosting the Santa Fe Impact Structure

    NASA Technical Reports Server (NTRS)

    Schrader, C. M.; Cohen, B. A.

    2010-01-01

    We collected samples from within the area of shatter cone occurrence and for approximately 8 kilometers (map distance) along the roadway. Our primary goal is to date the impact. Our secondary goal is to use the petrology and Ar systematics to provide further insight into size and scale of the impact. Our approach is to: Conduct a detailed petrology study to identify lithologies that share petrologic characteristics and tectonic histories but with differing degrees of shock. Obtain micro-cores of K-bearing minerals from multiple samples for Ar-40/Ar-39 analysis. Examine the Ar diffusion patterns for multiple minerals in multiple shocked and control samples. This will help us to better understand outcrop and regional scale relationships among rocks and their responses to the impact event.

  10. Petrology and In Situ Trace Element Chemistry of a Suite of R Chondrites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Peng, Z. X.; Torrano, Z. A.

    2015-01-01

    Rumuruti (R) chondrites are characterized by low chondrule/matrix modal ratios, high oxidation state, small mean chondrule size, abundant sulfides and low metal contents, and are of petrologic types 3 to 6 [1, 2]. LAP 04840 (R5, [3]) and MIL 11207 (R6), contain the high-T hydrous phases amphibole and mica [3, 4]; not all equilibrated R chondrites contain these [2]. R chondrites thus can provide evidence on whether there are compositional effects caused by high-T, high-fluid metamorphism of nebular materials. We are investigating a suite of R chondrites of diverse petrologic grades to further understand the nature of the metamorphic processes that engendered them [5]. We report on our petrological studies, plus preliminary in situ analyses of trace elements in amphibole-bearing R chondrites.

  11. Spectral characteristics of iron-bearing phyllosilicates: Comparison to Orgueil (CI1), Murchison and Murray (CM2)

    USGS Publications Warehouse

    Calvin, W.M.; King, T.V.V.

    1997-01-01

    Phyllosilicate alteration minerals are commonly found in low petrologic types of carbonaceous chondrites. Previous spectral studies have examined Mg-bearing phyllosilicates with limited success in matching the spectral properties of CM and CI chondrites. Transmission electron microscope and other analytical techniques suggest that Fe-bearing clays are more abundant in CI and CM chondrites than magnesian varieties. Here, we present the results of an examination of the reflectance spectra of Fe-phyllosilicates, including serpentines and berthierines, of which the latter were formerly known as septechlorites. We have measured the diffuse reflectance spectra of powdered samples from 0.3 to 25 ??m. We find that these minerals provide a better spectral match to many of the features seen in CI and CM chondrites, and simple linear combinations of the spectra of both Fe- and Mg-phyllosilicates closely approximate the spectra of CM and CI chondrites.

  12. Virtual embryology: a 3D library reconstructed from human embryo sections and animation of development process.

    PubMed

    Komori, M; Miura, T; Shiota, K; Minato, K; Takahashi, T

    1995-01-01

    The volumetric shape of a human embryo and its development is hard to comprehend as they have been viewed as a 2D schemes in a textbook or microscopic sectional image. In this paper, a CAI and research support system for human embryology using multimedia presentation techniques is described. In this system, 3D data is acquired from a series of sliced specimens. Its 3D structure can be viewed interactively by rotating, extracting, and truncating its whole body or organ. Moreover, the development process of embryos can be animated using a morphing technique applied to the specimen in several stages. The system is intended to be used interactively, like a virtual reality system. Hence, the system is called Virtual Embryology.

  13. Color Swapping to Enhance Breast Cancer Digital Images Qualities Using Stain Normalization

    NASA Astrophysics Data System (ADS)

    Muhimmah, Izzati; Puspasari Wijaya, Dhina; Indrayanti

    2017-03-01

    Histopathology is the disease diagnosis by means of the visual examination of tissues under the microscope. The virtually transparent tissue sections were prepared using a number of colored histochemical stains bound selectively to the cellular components. A variation of colors comes to be a problem in histopathology based upon the microscope lighting for the range of factors. This research aimed to investigate an image enhancement by applying a nonlinear mapping approach to stain normalization and histogram equalization for contrast enhancement. Validation was carried out in 59 datasets with 96.6% accordance and expert justification.

  14. Publications - GMC 37 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 37 Publication Details Title: Petrologic description of AMOCO Cathedral River Unit #1 sands for more information. Bibliographic Reference Dutrow & Associates, 1982, Petrologic description of

  15. Publications - GMC 252 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 252 Publication Details Title: Kemik sandstone - petrology, physical properties, and facies of Continental Margins Program, 1995, Kemik sandstone - petrology, physical properties, and facies of outcrop

  16. Interactive Volume Exploration of Petascale Microscopy Data Streams Using a Visualization-Driven Virtual Memory Approach.

    PubMed

    Hadwiger, M; Beyer, J; Jeong, Won-Ki; Pfister, H

    2012-12-01

    This paper presents the first volume visualization system that scales to petascale volumes imaged as a continuous stream of high-resolution electron microscopy images. Our architecture scales to dense, anisotropic petascale volumes because it: (1) decouples construction of the 3D multi-resolution representation required for visualization from data acquisition, and (2) decouples sample access time during ray-casting from the size of the multi-resolution hierarchy. Our system is designed around a scalable multi-resolution virtual memory architecture that handles missing data naturally, does not pre-compute any 3D multi-resolution representation such as an octree, and can accept a constant stream of 2D image tiles from the microscopes. A novelty of our system design is that it is visualization-driven: we restrict most computations to the visible volume data. Leveraging the virtual memory architecture, missing data are detected during volume ray-casting as cache misses, which are propagated backwards for on-demand out-of-core processing. 3D blocks of volume data are only constructed from 2D microscope image tiles when they have actually been accessed during ray-casting. We extensively evaluate our system design choices with respect to scalability and performance, compare to previous best-of-breed systems, and illustrate the effectiveness of our system for real microscopy data from neuroscience.

  17. Petrologic Characteristics of the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Wang, Xianmin; Pedrycz, Witold

    2015-11-01

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface.

  18. Petrologic Characteristics of the Lunar Surface

    PubMed Central

    Wang, Xianmin; Pedrycz, Witold

    2015-01-01

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface. PMID:26611148

  19. Petrologic Characteristics of the Lunar Surface.

    PubMed

    Wang, Xianmin; Pedrycz, Witold

    2015-11-27

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface.

  20. Learning Activities for an Undergraduate Mineralogy/Petrology Course-"I Am/We Are."

    ERIC Educational Resources Information Center

    Goodell, Philip C.

    2001-01-01

    Introduces an entry level mineralogy/igneous petrology course designed for undergraduate students and presents a series of learning activities based on individual and cooperative learning. Includes 18 references. (Author/YDS)

  1. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation

    PubMed Central

    Dombeck, Daniel A.; Harvey, Christopher D.; Tian, Lin; Looger, Loren L.; Tank, David W.

    2010-01-01

    Spatial navigation is a widely employed behavior in rodent studies of neuronal circuits underlying cognition, learning and memory. In vivo microscopy combined with genetically-encoded indicators provides important new tools to study neuronal circuits, but has been technically difficult to apply during navigation. We describe methods to image the activity of hippocampal CA1 neurons with sub-cellular resolution in behaving mice. Neurons expressing the genetically encoded calcium indicator GCaMP3 were imaged through a chronic hippocampal window. Head-fixed mice performed spatial behaviors within a setup combining a virtual reality system and a custom built two-photon microscope. Populations of place cells were optically identified, and the correlation between the location of their place fields in the virtual environment and their anatomical location in the local circuit was measured. The combination of virtual reality and high-resolution functional imaging should allow for a new generation of studies to probe neuronal circuit dynamics during behavior. PMID:20890294

  2. Virtual microscopy: an evaluation of its validity and diagnostic performance in routine histologic diagnosis of skin tumors.

    PubMed

    Nielsen, Patricia Switten; Lindebjerg, Jan; Rasmussen, Jan; Starklint, Henrik; Waldstrøm, Marianne; Nielsen, Bjarne

    2010-12-01

    Digitization of histologic slides is associated with many advantages, and its use in routine diagnosis holds great promise. Nevertheless, few articles evaluate virtual microscopy in routine settings. This study is an evaluation of the validity and diagnostic performance of virtual microscopy in routine histologic diagnosis of skin tumors. Our aim is to investigate whether conventional microscopy of skin tumors can be replaced by virtual microscopy. Ninety-six skin tumors and skin-tumor-like changes were consecutively gathered over a 1-week period. Specimens were routinely processed, and digital slides were captured on Mirax Scan (Carl Zeiss MicroImaging, Göttingen, Germany). Four pathologists evaluated the 96 virtual slides and the associated 96 conventional slides twice with intermediate time intervals of at least 3 weeks. Virtual slides that caused difficulties were reevaluated to identify possible reasons for this. The accuracy was 89.2% for virtual microscopy and 92.7% for conventional microscopy. All κ coefficients expressed very good intra- and interobserver agreement. The sensitivities were 85.7% (78.0%-91.0%) and 92.0% (85.5%-95.7%) for virtual and conventional microscopy, respectively. The difference between the sensitivities was 6.3% (0.8%-12.6%). The subsequent reevaluation showed that virtual slides were as useful as conventional slides when rendering a diagnosis. Differences seen are presumed to be due to the pathologists' lack of experience using the virtual microscope. We conclude that it is feasible to make histologic diagnosis on the skin tumor types represented in this study using virtual microscopy after pathologists have completed a period of training. Larger studies should be conducted to verify whether virtual microscopy can replace conventional microscopy in routine practice. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Chemistry Teacher Candidates' Acceptance and Opinions about Virtual Reality Technology for Molecular Geometry

    ERIC Educational Resources Information Center

    Saritas, M. T.

    2015-01-01

    The meaningful knowledge creation about molecular geometry has always been the challenge of chemistry learning. In particular, microscopic world of chemistry science (example, atoms, molecules, structures) used in traditional two dimensional way of chemistry teaching can lead to such problem as students create misconceptions. In recent years,…

  4. Interactive Visual Tools as Triggers of Collaborative Reasoning in Entry-Level Pathology

    ERIC Educational Resources Information Center

    Nivala, Markus; Rystedt, Hans; Saljo, Roger; Kronqvist, Pauliina; Lehtinen, Erno

    2012-01-01

    The growing importance of medical imaging in everyday diagnostic practices poses challenges for medical education. While the emergence of novel imaging technologies offers new opportunities, many pedagogical questions remain. In the present study, we explore the use of a new tool, a virtual microscope, for the instruction and the collaborative…

  5. Probing Electron-Phonon Interaction through Two-Photon Interference in Resonantly Driven Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Reigue, Antoine; Iles-Smith, Jake; Lux, Fabian; Monniello, Léonard; Bernard, Mathieu; Margaillan, Florent; Lemaitre, Aristide; Martinez, Anthony; McCutcheon, Dara P. S.; Mørk, Jesper; Hostein, Richard; Voliotis, Valia

    2017-06-01

    We investigate the temperature dependence of photon coherence properties through two-photon interference (TPI) measurements from a single quantum dot (QD) under resonant excitation. We show that the loss of indistinguishability is related only to the electron-phonon coupling and is not affected by spectral diffusion. Through these measurements and a complementary microscopic theory, we identify two independent separate decoherence processes, both of which are associated with phonons. Below 10 K, we find that the relaxation of the vibrational lattice is the dominant contribution to the loss of TPI visibility. This process is non-Markovian in nature and corresponds to real phonon transitions resulting in a broad phonon sideband in the QD emission spectra. Above 10 K, virtual phonon transitions to higher lying excited states in the QD become the dominant dephasing mechanism, this leads to a broadening of the zero phonon line, and a corresponding rapid decay in the visibility. The microscopic theory we develop provides analytic expressions for the dephasing rates for both virtual phonon scattering and non-Markovian lattice relaxation.

  6. Petrology and Geochemistry of the NWA 3368 Eucrite

    NASA Astrophysics Data System (ADS)

    Gardner, K. G.; Lauretta, D. S.; Hill, D. H.; Goreva, J. S.; Domanik, K. J.; Franchi, I. A.; Drake, M. J.

    2006-03-01

    We report the petrology and geochemistry of NWA 3368, a new non-cumulate, monomict eucrite breccia with a variety of clast sizes and a pink-tinted matrix. Analytical techniques include electron microprobe, INAA, and ICP-MS.

  7. Review and update of the applications of organic petrology: Part 2, geological and multidisciplinary applications

    USGS Publications Warehouse

    Suarez-Ruiz, Isabel; Flores, Deolinda; Mendonça Filho, João Graciano; Hackley, Paul C.

    2012-01-01

    The present paper is focused on organic petrology applied to unconventional and multidisciplinary investigations and is the second part of a two part review that describes the geological applications and uses of this branch of earth sciences. Therefore, this paper reviews the use of organic petrology in investigations of: (i) ore genesis when organic matter occurs associated with mineralization; (ii) the behavior of organic matter in coal fires (self-heating and self-combustion); (iii) environmental and anthropogenic impacts associated with the management and industrial utilization of coal; (iv) archeology and the nature and geographical provenance of objects of organic nature such as jet, amber, other artifacts and coal from archeological sites; and (v) forensic science connected with criminal behavior or disasters. This second part of the review outlines the most recent research and applications of organic petrology in those fields.

  8. Toward a Virtual Laboratory to Assess Biodiversity from Data Produced by an Underwater Microscope

    NASA Astrophysics Data System (ADS)

    Beaulieu, S.; Ball, M.; Futrelle, J.; Sosik, H. M.

    2016-12-01

    Real-time data from sensors deployed in the ocean are increasingly available online for broad use by scientists, educators, and the public. Such data have previously been limited to physical parameters, but data for biological parameters are becoming more prevalent with the development of new submersible instruments. Imaging FlowCytobot (IFCB), for example, automatically and rapidly acquires images of microscopic algae (phytoplankton) at the base of the food web in marine ecosystems. These images and products from image processing and automated classification are accessible via web services from an IFCB dashboard. However, until now, to process these data further into results representing the biodiversity of the phytoplankton required a complex workflow that could only be executed by scientists involved in the instrument development. Also, because these data have been collected near continuously for a decade, a number of "big data" challenges arise in attempting to implement and reproduce the workflow. Our research is geared toward the development of a virtual laboratory to enable other scientists and educators, as new users of data from this underwater microscope, to generate biodiversity data products. Our solution involves an electronic notebook (Jupyter Notebook) that can be re-purposed by users with some Python programming experience. However, when we scaled the virtual laboratory to accommodate a 2-month example time series (thousands of binned files each representing thousands of images), we needed to expand the execution environment to include batch processing outside of the notebook. We will share how we packaged these tools to share with other scientists to perform their own biodiversity assessment from data available on an IFCB dashboard. Additional outcomes of software development in this project include a prototype for time-series visualizations to be generated in near-real-time and recommendations for new products accessible via web services from the IFCB dashboard.

  9. Interactive stereo electron microscopy enhanced with virtual reality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, E.Wes; Bastacky, S.Jacob; Schwartz, Kenneth S.

    2001-12-17

    An analytical system is presented that is used to take measurements of objects perceived in stereo image pairs obtained from a scanning electron microscope (SEM). Our system operates by presenting a single stereo view that contains stereo image data obtained from the SEM, along with geometric representations of two types of virtual measurement instruments, a ''protractor'' and a ''caliper''. The measurements obtained from this system are an integral part of a medical study evaluating surfactant, a liquid coating the inner surface of the lung which makes possible the process of breathing. Measurements of the curvature and contact angle of submicronmore » diameter droplets of a fluorocarbon deposited on the surface of airways are performed in order to determine surface tension of the air/liquid interface. This approach has been extended to a microscopic level from the techniques of traditional surface science by measuring submicrometer rather than millimeter diameter droplets, as well as the lengths and curvature of cilia responsible for movement of the surfactant, the airway's protective liquid blanket. An earlier implementation of this approach for taking angle measurements from objects perceived in stereo image pairs using a virtual protractor is extended in this paper to include distance measurements and to use a unified view model. The system is built around a unified view model that is derived from microscope-specific parameters, such as focal length, visible area and magnification. The unified view model ensures that the underlying view models and resultant binocular parallax cues are consistent between synthetic and acquired imagery. When the view models are consistent, it is possible to take measurements of features that are not constrained to lie within the projection plane. The system is first calibrated using non-clinical data of known size and resolution. Using the SEM, stereo image pairs of grids and spheres of known resolution are created to calibrate the measurement system. After calibration, the system is used to take distance and angle measurements of clinical specimens.« less

  10. Modeling and Databases for Teaching Petrology

    NASA Astrophysics Data System (ADS)

    Asher, P.; Dutrow, B.

    2003-12-01

    With the widespread availability of high-speed computers with massive storage and ready transport capability of large amounts of data, computational and petrologic modeling and the use of databases provide new tools with which to teach petrology. Modeling can be used to gain insights into a system, predict system behavior, describe a system's processes, compare with a natural system or simply to be illustrative. These aspects result from data driven or empirical, analytical or numerical models or the concurrent examination of multiple lines of evidence. At the same time, use of models can enhance core foundations of the geosciences by improving critical thinking skills and by reinforcing prior knowledge gained. However, the use of modeling to teach petrology is dictated by the level of expectation we have for students and their facility with modeling approaches. For example, do we expect students to push buttons and navigate a program, understand the conceptual model and/or evaluate the results of a model. Whatever the desired level of sophistication, specific elements of design should be incorporated into a modeling exercise for effective teaching. These include, but are not limited to; use of the scientific method, use of prior knowledge, a clear statement of purpose and goals, attainable goals, a connection to the natural/actual system, a demonstration that complex heterogeneous natural systems are amenable to analyses by these techniques and, ideally, connections to other disciplines and the larger earth system. Databases offer another avenue with which to explore petrology. Large datasets are available that allow integration of multiple lines of evidence to attack a petrologic problem or understand a petrologic process. These are collected into a database that offers a tool for exploring, organizing and analyzing the data. For example, datasets may be geochemical, mineralogic, experimental and/or visual in nature, covering global, regional to local scales. These datasets provide students with access to large amount of related data through space and time. Goals of the database working group include educating earth scientists about information systems in general, about the importance of metadata about ways of using databases and datasets as educational tools and about the availability of existing datasets and databases. The modeling and databases groups hope to create additional petrologic teaching tools using these aspects and invite the community to contribute to the effort.

  11. Rethinking how Undergraduate ``Hard Rock'' Petrology is Taught

    NASA Astrophysics Data System (ADS)

    Reid, M. R.

    2010-12-01

    A course in "hard rock" petrology forms a core component of undergraduate training in the geosciences. In most cases, the subjects of igneous and metamorphic petrology are combined in a single course and the course is traditionally structured so that the two subjects are covered in series. This approach enables students to focus on each subject separately, with knowledge of igneous rocks helping students to understand metamorphic rock protoliths. Student assessment shows, however, that this approach tends to compartmentalize learning and the two main subjects might just as well be taught in separate courses. In practical applications such as fieldwork, students must be able to access their understanding of igneous and metamorphic rocks virtually simultaneously. To better integrate student learning, I developed a spiral learning approach to teaching petrology (e.g., Bruner, 1990; Dyar et al., 2004) so that commonalities could be revisited several times over the course of a semester and, in so doing, students' grasp of the fundamental insights provided by igneous and metamorphic rocks could be scaffolded into greater understanding. The course initially focuses on the dynamics of the environments in which igneous and metamorphic rocks form: heat flow, fluid flow, and plate tectonics. Several subsequent weeks explore topics relevant to identifying and understanding igneous and metamorphic rocks in the field: crystal nucleation and growth, the roles of pressure and heat, and field classification. Laboratory exercises parallel this structure, also emphasizing observations that are valuable in the field: the relationship between minerals and rocks, textural observations, and general rock classification. The final portion of the course explores “hard rocks” in more detail with a greater emphasis on the interplay between chemistry and mineralogy. A variety of learner-centered activities in the course help students bridge the gap between novice and expert and include more explicit emphasis on visualization and on helping students become comfortable with interpreting data numerically and graphically. Pen tablet computers are used extensively in the laboratory for visualization, photomicrograph capture, and annotation. Cooperative learning activities developed for this course make use of learning methods such as pair share, round-robin, small group explorations case studies, and jigsaw exercises (sometimes as introduction to, sometimes as review of material), and Jeopardy-style review sessions. On an assessment questionnaire at the end of the semester students ranked the in-class cooperative learning activities as on par with lectures and homework exercises in facilitating their learning. Students reported satisfactory attainment of three major goals identified for the course even though they were not explicitly reminded of these goals at the time of assessment. References cited: Bruner, J., 1990. Acts of Meaning. Harvard University Press.; Dyar, M.D., Gunter, M.E., Davis, J.C., and Odell, M.R., 2004. Integration of new methods into teaching mineralogy; Huba, M.E. and Freed, J.E., 2000. Learner-centered Assessment on College Campus: Shifting the Focus from Teaching to Learning. Allyn and Bacon.

  12. Fiber optic light collection system for scanning-tunneling-microscope-induced light emission.

    PubMed

    Watkins, Neil J; Long, James P; Kafafi, Zakya H; Mäkinen, Antti J

    2007-05-01

    We report a compact light collection scheme suitable for retrofitting a scanning tunneling microscope (STM) for STM-induced light emission experiments. The approach uses a pair of optical fibers with large core diameters and high numerical apertures to maximize light collection efficiency and to moderate the mechanical precision required for alignment. Bench tests indicate that efficiency reduction is almost entirely due to reflective losses at the fiber ends, while losses due to fiber misalignment have virtually been eliminated. Photon-map imaging with nanometer features is demonstrated on a stepped Au(111) surface with signal rates exceeding 10(4) counts/s.

  13. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars.

    PubMed

    Núñez, Jorge I; Farmer, Jack D; Sellar, R Glenn; Swayze, Gregg A; Blaney, Diana L

    2014-02-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Mars-Microscopic imager-Multispectral imaging-Spectroscopy-Habitability-Arm instrument.

  14. Athena Microscopic Imager investigation

    NASA Astrophysics Data System (ADS)

    Herkenhoff, K. E.; Squyres, S. W.; Bell, J. F.; Maki, J. N.; Arneson, H. M.; Bertelsen, P.; Brown, D. I.; Collins, S. A.; Dingizian, A.; Elliott, S. T.; Goetz, W.; Hagerott, E. C.; Hayes, A. G.; Johnson, M. J.; Kirk, R. L.; McLennan, S.; Morris, R. V.; Scherr, L. M.; Schwochert, M. A.; Shiraishi, L. R.; Smith, G. H.; Soderblom, L. A.; Sohl-Dickstein, J. N.; Wadsworth, M. V.

    2003-11-01

    The Athena science payload on the Mars Exploration Rovers (MER) includes the Microscopic Imager (MI). The MI is a fixed-focus camera mounted on the end of an extendable instrument arm, the Instrument Deployment Device (IDD). The MI was designed to acquire images at a spatial resolution of 30 microns/pixel over a broad spectral range (400-700 nm). The MI uses the same electronics design as the other MER cameras but has optics that yield a field of view of 31 × 31 mm across a 1024 × 1024 pixel CCD image. The MI acquires images using only solar or skylight illumination of the target surface. A contact sensor is used to place the MI slightly closer to the target surface than its best focus distance (about 66 mm), allowing concave surfaces to be imaged in good focus. Coarse focusing (~2 mm precision) is achieved by moving the IDD away from a rock target after the contact sensor has been activated. The MI optics are protected from the Martian environment by a retractable dust cover. The dust cover includes a Kapton window that is tinted orange to restrict the spectral bandpass to 500-700 nm, allowing color information to be obtained by taking images with the dust cover open and closed. MI data will be used to place other MER instrument data in context and to aid in petrologic and geologic interpretations of rocks and soils on Mars.

  15. Widespread hydrothermal alteration minerals in the fine-grained matrices of the Tieschitz unequilibrated ordinary chondrite

    NASA Astrophysics Data System (ADS)

    Dobricǎ, E.; Brearley, A. J.

    2014-08-01

    Mineralogic, textural, and compositional studies of black and white matrices in the unequilibrated ordinary chondrite Tieschitz (H/L, 3.6) show, for the first time in an ordinary chondrite, the presence of widespread, randomly distributed geode-like voids and veins. Scanning electron microscope (SEM) and transmission electron microscope (TEM) studies show that these voids and veins are partially or completely filled by sodic-calcic amphiboles (winchite and barroisite). The occurrence of amphiboles provides unequivocal evidence of the involvement of fluids in the metamorphic evolution of the parent body of Tieschitz. The presence of amphiboles as the main hydrous phases, rather than phyllosilicates, indicates that aqueous fluids were present at or close to the peak of thermal metamorphism, rather than during the waning stages of the cooling history of the parent body. In addition, ferrous olivine crystals, in association with the amphibole, also establish an important link between thermal metamorphism and hydrous phases formed at high temperatures. Mineralogic and textural evidence suggests that the white matrix and amphibole formed contemporaneously from the same hydrous fluid, prior to the formation of ferrous olivine crystals. Additionally, a dark inclusion identified in the host chondrite has mineralogic, petrologic, and bulk chemical characteristics that are similar to the black matrix of host Tieschitz, suggesting that this dark inclusion was emplaced before or during parent body metamorphism.

  16. Use of Interactive Live Digital Imaging to Enhance Histology Learning in Introductory Level Anatomy and Physiology Classes

    ERIC Educational Resources Information Center

    Higazi, Tarig B.

    2011-01-01

    Histology is one of the main subjects in introductory college-level Human Anatomy and Physiology classes. Institutions are moving toward the replacement of traditional microscope-based histology learning with virtual microscopy learning amid concerns of losing the valuable learning experience of traditional microscopy. This study used live digital…

  17. Millikan's Oil-Drop Experiment: A Centennial Setup Revisited in Virtual World

    ERIC Educational Resources Information Center

    Gagnon, Michel

    2012-01-01

    Early in the last century, Robert Millikan developed a precise method of determining the electric charge carried by oil droplets. Using a microscope and a small incandescent lamp, he observed the fall of charged droplets under the influence of an electric field inside a small observation chamber. In so doing, Millikan demonstrated the existence of…

  18. Vapor saturation and accumulation in magmas of the 1989-1990 eruption of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Gerlach, Terrance M.; Westrich, Henry R.; Casadevall, Thomas J.; Finnegan, David L.

    1994-01-01

    The 1989–1990 eruption of Redoubt Volcano, Alaska, provided an opportunity to compare petrologic estimates of SO2 and Cl emissions with estimates of SO2 emissions based on remote sensing data and estimates of Cl emissions based on plume sampling. In this study, we measure the sulfur and chlorine contents of melt inclusions and matrix glasses in the eruption products to determine petrologic estimates of SO2 and Cl emissions. We compare the results with emission estimates based on COSPEC and TOMS data for SO2 and data for Cl/SO2 in plume samples. For the explosive vent clearing period (December 14–22, 1989), the petrologic estimate for SO2 emission is 21,000 tons, or ~12% of a TOMS estimate of 175,000 tons. For the dome growth period (December 22, 1989 to mid-June 1990), the petrologic estimate for SO2 emission is 18,000 tons, or ~3% of COSPEC-based estimates of 572,000–680,000 tons. The petrologic estimates give a total SO2 emission of only 39,000 tons compared to an integrated TOMS/COSPEC emission estimate of ~1,000,000 tons for the whole eruption, including quiescent degassing after mid-June 1990. Petrologic estimates also appear to underestimate Cl emissions, but apparent HCl scavenging in the plume complicates Cl emission comparisons. Several potential sources of ‘excess sulfur’ often invoked to explain petrologic SO2 deficits are concluded to be unlikely for the 1989–1990 Redoubt eruption — e.g., breakdown of sulfides, breakdown of anhydrite, release of SO2 from a hydrothermal system, degassing of commingled infusions of basalt in the magma chamber, and syn-eruptive degassing of sulfur from melt present in non-erupted magma. Leakage and/or diffusion of sulfur from melt inclusions do not provide convincing explanations for the petrologic SO2 deficits either. The main cause of low petrologic estimates for SO2 is that melt inclusions do not represent the total sulfur content of the Redoubt magmas, which were vapor-saturated magmas carrying most of their sulfur in an accumulated vapor phase. Almost all the sulfur of the SO2 emissions was present prior to emission as accumulated magmatic vapor at 6–10 km depth in the magma that supplied the eruption; whole-rock normalized concentrations of gaseous excess S in these magmas remained at ~0.2 wt.% throughout the eruption, equivalent to ~0.7 vol.% at depth. Data for CO2 emissions during the eruption indicate that CO2 at whole-rock concentrations of ~0.6 wt.% in the erupted magma was a key factor in creating the vapor saturation and accumulation condition making a vapor phase source of excess sulfur possible at depth. When explosive volcanism involves magma with accumulated vapor, melt inclusions do not provide a sufficient basis for predicting SO2 emissions. Thus, petrologic estimates made for SO2 emissions during explosive eruptions of the past may be too low and may significantly underestimate impacts on climate and the chemistry of the atmosphere.

  19. Physical Properties Data for Rock Salt

    DTIC Science & Technology

    1981-01-01

    11 M ineralogy and Petrology ..................................................... 14 Fluid Inclusions...14 1.4. Mineralog and Petrology ........................................................... 14...StatesGulfCoast arealso poorly known. Most oil- before it is no longer considered to be halite is a subject- well drilling is terminated when the salt beds are

  20. Concurrent access to a virtual microscope using a web service oriented architecture

    NASA Astrophysics Data System (ADS)

    Corredor, Germán.; Iregui, Marcela; Arias, Viviana; Romero, Eduardo

    2013-11-01

    Virtual microscopy (VM) facilitates visualization and deployment of histopathological virtual slides (VS), a useful tool for education, research and diagnosis. In recent years, it has become popular, yet its use is still limited basically because of the very large sizes of VS, typically of the order of gigabytes. Such volume of data requires efficacious and efficient strategies to access the VS content. In an educative or research scenario, several users may require to access and interact with VS at the same time, so, due to large data size, a very expensive and powerful infrastructure is usually required. This article introduces a novel JPEG2000-based service oriented architecture for streaming and visualizing very large images under scalable strategies, which in addition need not require very specialized infrastructure. Results suggest that the proposed architecture enables transmission and simultaneous visualization of large images, while it is efficient using resources and offering users proper response times.

  1. 3-D Imaging In Virtual Environment: A Scientific Clinical and Teaching Tool

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; DeVincenzi, Donald L. (Technical Monitor)

    1996-01-01

    The advent of powerful graphics workstations and computers has led to the advancement of scientific knowledge through three-dimensional (3-D) reconstruction and imaging of biological cells and tissues. The Biocomputation Center at NASA Ames Research Center pioneered the effort to produce an entirely computerized method for reconstruction of objects from serial sections studied in a transmission electron microscope (TEM). The software developed, ROSS (Reconstruction of Serial Sections), is now being distributed to users across the United States through Space Act Agreements. The software is in widely disparate fields such as geology, botany, biology and medicine. In the Biocomputation Center, ROSS serves as the basis for development of virtual environment technologies for scientific and medical use. This report will describe the Virtual Surgery Workstation Project that is ongoing with clinicians at Stanford University Medical Center, and the role of the Visible Human data in the project.

  2. Detailed Mineralogy and Petrology of Intermediate Martian Lherzolitic Shergottite Northwest Africa 6342

    NASA Astrophysics Data System (ADS)

    Kizovski, T. V.; Tait, K. T.

    2017-07-01

    NWA 6342 is a 35.5 g lherzolitic shergottite that was found in Algeria in 2010. The purpose of this work is to complete a detailed mineralogical, petrological, and geochemical analysis of NWA 6342 and compare it to other lherzolitic sherogottites.

  3. Shock metamorphism of ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Stoeffler, Dieter; Keil, Klaus; Scott, Edward R. D.

    1991-01-01

    This study proposes a revised petrographic classification of progressive stages of shock metamorphism of 26 ordinary chondrites. Six stages of shock (S1 to S6) are defined on the basis of shock effects in olivine and plagioclase as recognized by thin section microscopy, and the characteristic shock effects of each shock stage are described. It is concluded that shock effects and the sequence of progressively increasing degrees of shock metamorphosis are very similar in H, L, and LL groups. Differences in the frequency distribution of shock stages are relatively minor. It is suggested that the collisional histories of the H, L, and LL parent bodies were similar. Petrologic type-3 chondrites are deficient in stages S4 and S6 and, with increasing petrologic type, the frequency of stages S4 to S6 increases. It is suggested that the more porous and volatile-rich Type-3 chondrites are subject to melting at a lower shock pressure than the nonporous chondrites of higher petrologic type. Stage S3 is the most abundant in nearly all petrologic types.

  4. Petrographic, mineralogical, and chemical characterization of certain Alaskan coals and washability products. Final report, July 11, 1978-October 11, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, P.D.; Wolff, E.N.

    1981-05-01

    Petrological, mineralogical and chemical characterization provides basic information needed for proper utilization of coals. Since many of these coals are likely to be beneficiated to reduce ash, the influence of coal washing on the characteristics of the washed product is important. Twenty samples of Alaskan coal seams were used for this study. The coals studied ranged in rank from lignite to high volatile A bituminous with vitrinite/ulminite reflectance ranging from 0.25 to 1.04. Fifteen raw coals were characterized for proximate and ultimate analysis reflectance rank, petrology, composition of mineral matter, major oxides and trace elements in coal ash. Washability productsmore » of three coals from Nenana, Beluga and Matanuska coal fields were used for characterization of petrology, mineral matter and ash composition. Petrological analysis of raw coals and float-sink products showed that humodetrinite was highest in top seam in a stratigraphic sequence« less

  5. Inexpensive Monocular Pico-Projector-based Augmented Reality Display for Surgical Microscope

    PubMed Central

    Shi, Chen; Becker, Brian C.; Riviere, Cameron N.

    2013-01-01

    This paper describes an inexpensive pico-projector-based augmented reality (AR) display for a surgical microscope. The system is designed for use with Micron, an active handheld surgical tool that cancels hand tremor of surgeons to improve microsurgical accuracy. Using the AR display, virtual cues can be injected into the microscope view to track the movement of the tip of Micron, show the desired position, and indicate the position error. Cues can be used to maintain high performance by helping the surgeon to avoid drifting out of the workspace of the instrument. Also, boundary information such as the view range of the cameras that record surgical procedures can be displayed to tell surgeons the operation area. Furthermore, numerical, textual, or graphical information can be displayed, showing such things as tool tip depth in the work space and on/off status of the canceling function of Micron. PMID:25264542

  6. High-Efficiency and High-Power Mid-Wave Infrared Cascade Lasers

    DTIC Science & Technology

    2012-10-01

    internal quantum efficiency () and factor (2) is usually called the optical extraction efficiency (). The optical extraction efficiency ... quantum efficiency involves more fundamental parameters corresponding to the microscopic processes of the device operation, nevertheless, it can be...deriving parameters such as the internal quantum efficiency of a QC laser, the entire injector miniband can be treated as a single virtual state

  7. Increasing the Transfer of Simulation Technology from R&D into School Settings: An Approach to Evaluation from Overarching Vision to Individual Artifact in Education

    ERIC Educational Resources Information Center

    Blasi, Laura; Alfonso, Berta

    2006-01-01

    Building and evaluating artifacts specifically for K-12 education, technologists committed to design sciences are needed along with an approach to evaluation increasing the systemic transfer from research and development into school settings. The authors describe THE VIRTUAL LAB scanning electronic microscope simulation, including (a) its…

  8. Quantitative Predictions of Binding Free Energy Changes in Drug-Resistant Influenza Neuraminidase

    DTIC Science & Technology

    2012-08-30

    drug resistance to two antiviral drugs, zanamivir and oseltamivir. We augmented molecular dynamics (MD) with Hamiltonian Replica Exchange and...conformations that are virtually identical to WT [10]. Molecular simulations that rigorously model the microscopic structure and thermodynamics PLOS...influenza neuraminidase (NA) that confer drug resistance to two antiviral drugs, zanamivir and oseltamivir. We augmented molecular dynamics (MD) with

  9. A Simulated Research Problem for Undergraduate Metamorphic Petrology.

    ERIC Educational Resources Information Center

    Amenta, Roddy V.

    1984-01-01

    Presents a laboratory problem in metamorphic petrology designed to simulate a research experience. The problem deals with data on scales ranging from a geologic map to hand specimens to thin sections. Student analysis includes identifying metamorphic index minerals, locating their isograds on the map, and determining the folding sequence. (BC)

  10. UNIT, PETROLOGY.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THIS TEACHER'S GUIDE FOR A UNIT ON PETROLOGY IS SUITABLE FOR ADAPTATION AT EITHER THE UPPER ELEMENTARY OR THE JUNIOR HIGH SCHOOL LEVELS. THE UNIT BEGINS WITH A STORY THAT INTRODUCES VOLCANIC ACTION AND IGNEOUS ROCK FORMATION. SELECTED CONCEPTS ARE LISTED FOLLOWED BY SUGGESTED ACTIVITIES. A BIBLIOGRAPHY, FILM LIST, VOCABULARY LIST, AND QUESTION AND…

  11. Breccia dikes from the Beaverhead Impact structure, southwest Montana

    NASA Technical Reports Server (NTRS)

    Fiske, P. S.; Hougen, S. B.; Hargraves, R. B.

    1992-01-01

    While shatter cones are generally accepted as indicators of meteorite impact, older petrologic features are not widely recognized in the geologic community. Breccia dikes are one such feature. They are found in many large impact structures occurring over an area at least as extensively as shatter cones. Breccia dikes will survive moderate degrees of metamorphism and tectonism, unlike many other microscopic features (shocked quartz grains, high-pressure polymorphs, etc.) and even large-scale features such as annular or bowl-shaped topographic features. Thus, they are important diagnostic criteria, especially for large, poorly preserved impact structures. The Beaverhead Impact structure is a recently discovered, deeply eroded impact structure in southwestern Montana. The remains of the structure are delineated by the occurrence of shatter cones, found in an area greater than 200 sq km, occurring within the Cabin thrust plate, part of the Cretaceous Sevier fold and thrust system. The distribution of shatter cones is further truncated by Tertiary normal faults. The present remains represent an allochthonous fragment of a larger structure.

  12. Monte-Carlo Geant4 numerical simulation of experiments at 247-MeV proton microscope

    NASA Astrophysics Data System (ADS)

    Kantsyrev, A. V.; Skoblyakov, A. V.; Bogdanov, A. V.; Golubev, A. A.; Shilkin, N. S.; Yuriev, D. S.; Mintsev, V. B.

    2018-01-01

    A radiographic facility for an investigation of fast dynamic processes with areal density of targets up to 5 g/cm2 is under development on the basis of high-current proton linear accelerator at the Institute for Nuclear Research (Troitsk, Russia). A virtual model of the proton microscope developed in a software toolkit Geant4 is presented in the article. Fullscale Monte-Carlo numerical simulation of static radiographic experiments at energy of a proton beam 247 MeV was performed. The results of simulation of proton radiography experiments with static model of shock-compressed xenon are presented. The results of visualization of copper and polymethyl methacrylate step wedges static targets also described.

  13. A method for fast automated microscope image stitching.

    PubMed

    Yang, Fan; Deng, Zhen-Sheng; Fan, Qiu-Hong

    2013-05-01

    Image stitching is an important technology to produce a panorama or larger image by combining several images with overlapped areas. In many biomedical researches, image stitching is highly desirable to acquire a panoramic image which represents large areas of certain structures or whole sections, while retaining microscopic resolution. In this study, we develop a fast normal light microscope image stitching algorithm based on feature extraction. At first, an algorithm of scale-space reconstruction of speeded-up robust features (SURF) was proposed to extract features from the images to be stitched with a short time and higher repeatability. Then, the histogram equalization (HE) method was employed to preprocess the images to enhance their contrast for extracting more features. Thirdly, the rough overlapping zones of the images preprocessed were calculated by phase correlation, and the improved SURF was used to extract the image features in the rough overlapping areas. Fourthly, the features were corresponded by matching algorithm and the transformation parameters were estimated, then the images were blended seamlessly. Finally, this procedure was applied to stitch normal light microscope images to verify its validity. Our experimental results demonstrate that the improved SURF algorithm is very robust to viewpoint, illumination, blur, rotation and zoom of the images and our method is able to stitch microscope images automatically with high precision and high speed. Also, the method proposed in this paper is applicable to registration and stitching of common images as well as stitching the microscope images in the field of virtual microscope for the purpose of observing, exchanging, saving, and establishing a database of microscope images. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Petrologic and Chemical Characterization of a Suite of Antarctic Diogenites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Mertzman, S. A.; Peng, Z. X.; Mertzman, K. R.

    2013-01-01

    The origin of diogenites, ultramafic cumulates related to eucrites, is an unresolved problem [1]. Most diogenites are orthopyroxenites, a few are harzburgites [2], and some are transitional to cumulate eucrites [1, 3]. Cumulate eucrites are gabbros formed by crystal fractionation from basaltic eucrites [4]. The consensus view is that basaltic eucrites are residual melts from global-magma-ocean crystallization on their parent asteroid [4] which is plausibly Vesta [5]. However, the petrologic and compositional characteristics of diogenites seem to preclude a magma ocean origin [1, 4]. We are doing a petrologic and chemical study of new or unusual diogenites with the ultimate goals of constraining their genesis, and the geologic evolution of Vesta.

  15. Origin of New Faculty in Sedimentary Petrology at Ph.D.-Granting Universities in the United States and Canada.

    ERIC Educational Resources Information Center

    Thornton, Scott E.

    1981-01-01

    To aid prospective graduate students in sedimentary petrology who wish to teach at colleges or universities, 121 doctoral graduates in this field are traced to their present appointments in higher education. Only 31 percent of these graduates attained this career goal. (Author/WB)

  16. Geometry Processing of Conventionally Produced Mouse Brain Slice Images.

    PubMed

    Agarwal, Nitin; Xu, Xiangmin; Gopi, M

    2018-04-21

    Brain mapping research in most neuroanatomical laboratories relies on conventional processing techniques, which often introduce histological artifacts such as tissue tears and tissue loss. In this paper we present techniques and algorithms for automatic registration and 3D reconstruction of conventionally produced mouse brain slices in a standardized atlas space. This is achieved first by constructing a virtual 3D mouse brain model from annotated slices of Allen Reference Atlas (ARA). Virtual re-slicing of the reconstructed model generates ARA-based slice images corresponding to the microscopic images of histological brain sections. These image pairs are aligned using a geometric approach through contour images. Histological artifacts in the microscopic images are detected and removed using Constrained Delaunay Triangulation before performing global alignment. Finally, non-linear registration is performed by solving Laplace's equation with Dirichlet boundary conditions. Our methods provide significant improvements over previously reported registration techniques for the tested slices in 3D space, especially on slices with significant histological artifacts. Further, as one of the application we count the number of neurons in various anatomical regions using a dataset of 51 microscopic slices from a single mouse brain. To the best of our knowledge the presented work is the first that automatically registers both clean as well as highly damaged high-resolutions histological slices of mouse brain to a 3D annotated reference atlas space. This work represents a significant contribution to this subfield of neuroscience as it provides tools to neuroanatomist for analyzing and processing histological data. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Telescopic multi-resolution augmented reality

    NASA Astrophysics Data System (ADS)

    Jenkins, Jeffrey; Frenchi, Christopher; Szu, Harold

    2014-05-01

    To ensure a self-consistent scaling approximation, the underlying microscopic fluctuation components can naturally influence macroscopic means, which may give rise to emergent observable phenomena. In this paper, we describe a consistent macroscopic (cm-scale), mesoscopic (micron-scale), and microscopic (nano-scale) approach to introduce Telescopic Multi-Resolution (TMR) into current Augmented Reality (AR) visualization technology. We propose to couple TMR-AR by introducing an energy-matter interaction engine framework that is based on known Physics, Biology, Chemistry principles. An immediate payoff of TMR-AR is a self-consistent approximation of the interaction between microscopic observables and their direct effect on the macroscopic system that is driven by real-world measurements. Such an interdisciplinary approach enables us to achieve more than multiple scale, telescopic visualization of real and virtual information but also conducting thought experiments through AR. As a result of the consistency, this framework allows us to explore a large dimensionality parameter space of measured and unmeasured regions. Towards this direction, we explore how to build learnable libraries of biological, physical, and chemical mechanisms. Fusing analytical sensors with TMR-AR libraries provides a robust framework to optimize testing and evaluation through data-driven or virtual synthetic simulations. Visualizing mechanisms of interactions requires identification of observable image features that can indicate the presence of information in multiple spatial and temporal scales of analog data. The AR methodology was originally developed to enhance pilot-training as well as `make believe' entertainment industries in a user-friendly digital environment We believe TMR-AR can someday help us conduct thought experiments scientifically, to be pedagogically visualized in a zoom-in-and-out, consistent, multi-scale approximations.

  18. Athena microscopic Imager investigation

    USGS Publications Warehouse

    Herkenhoff, K. E.; Squyres, S. W.; Bell, J.F.; Maki, J.N.; Arneson, H.M.; Bertelsen, P.; Brown, D.I.; Collins, S.A.; Dingizian, A.; Elliott, S.T.; Goetz, W.; Hagerott, E.C.; Hayes, A.G.; Johnson, M.J.; Kirk, R.L.; McLennan, S.; Morris, R.V.; Scherr, L.M.; Schwochert, M.A.; Shiraishi, L.R.; Smith, G.H.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Wadsworth, M.V.

    2003-01-01

    The Athena science payload on the Mars Exploration Rovers (MER) includes the Microscopic Imager (MI). The MI is a fixed-focus camera mounted on the end of an extendable instrument arm, the Instrument Deployment Device (IDD). The MI was designed to acquire images at a spatial resolution of 30 microns/pixel over a broad spectral range (400-700 nm). The MI uses the same electronics design as the other MER cameras but has optics that yield a field of view of 31 ?? 31 mm across a 1024 ?? 1024 pixel CCD image. The MI acquires images using only solar or skylight illumination of the target surface. A contact sensor is used to place the MI slightly closer to the target surface than its best focus distance (about 66 mm), allowing concave surfaces to be imaged in good focus. Coarse focusing (???2 mm precision) is achieved by moving the IDD away from a rock target after the contact sensor has been activated. The MI optics are protected from the Martian environment by a retractable dust cover. The dust cover includes a Kapton window that is tinted orange to restrict the spectral bandpass to 500-700 nm, allowing color information to be obtained by taking images with the dust cover open and closed. MI data will be used to place other MER instrument data in context and to aid in petrologic and geologic interpretations of rocks and soils on Mars. Copyright 2003 by the American Geophysical Union.

  19. Using a Differential Scanning Calorimeter to Teach Phase Equilibria to Students of Igneous and Metamorphic Petrology

    ERIC Educational Resources Information Center

    Maria, Anton H.; Millam, Evan L.; Wright, Carrie L.

    2011-01-01

    As an aid for teaching phase equilibria to undergraduate students of igneous and metamorphic petrology, we have designed a laboratory exercise that allows them to create a phase diagram from data produced by differential scanning calorimetry. By preparing and analyzing samples of naphthalene and phenanthrene, students acquire hands-on insight into…

  20. PETRO.CALC.PLOT, Microsoft Excel macros to aid petrologic interpretation

    USGS Publications Warehouse

    Sidder, G.B.

    1994-01-01

    PETRO.CALC.PLOT is a package of macros which normalizes whole-rock oxide data to 100%, calculates the cation percentages and molecular proportions used for normative mineral calculations, computes the apices for ternary diagrams, determines sums and ratios of specific elements of petrologic interest, and plots 33 X-Y graphs and five ternary diagrams. PETRO.CALC.PLOT also may be used to create other diagrams as desired by the user. The macros run in Microsoft Excel 3.0 and 4.0 for Macintosh computers and in Microsoft Excel 3.0 and 4.0 for Windows. Macros provided in PETRO.CALC.PLOT minimize repetition and time required to recalculate and plot whole-rock oxide data for petrologic analysis. ?? 1994.

  1. Martian Igneous Geochemistry: The Nature of the Martian Mantle

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Elkins-Tanton, L. T.; Peng, Z. X.; Herrin, J. S.

    2012-01-01

    Mafic igneous rocks probe the interiors of their parent objects, reflecting the compositions and mineralogies of their source regions, and the magmatic processes that engendered them. Incompatible trace element contents of mafic igneous rocks are widely used to constrain the petrologic evolution of planets. We focus on incompatible element ratios of martian meteorites to constrain the petrologic evolution of Mars in the context of magma ocean/cumulate overturn models [1]. Most martian meteorites contain some cumulus grains, but regardless, their incompatible element ratios are close to those of their parent magmas. Martian meteorites form two main petrologic/ age groupings; a 1.3 Ga group composed of clinopyroxenites (nakhlites) and dunites (chassignites), and a <1 Ga group composed of basalts and lherzolites (shergottites).

  2. The Athena Microscopic Imager on the Mars Exploration Rovers

    NASA Astrophysics Data System (ADS)

    Herkenhoff, K. E.; Squyres, S. W.; Bell, J. F.; Maki, J. N.; Schwochert, M. A.

    2002-12-01

    The Athena science payload on the Mars Exploration Rovers (MER) includes the Microscopic Imager (MI). The MI is a fixed-focus camera mounted on the end of the Instrument Deployment Device (IDD). The MI was designed to acquire images at a spatial resolution of 30 microns/pixel over a broad spectral range (400-700 nm). Technically speaking, the ''microscopic'' imager is not a microscope: it has a fixed magnification of 0.4, and is intended to produce images that simulate a geologist's view when using a common hand lens. The MI uses the same electronics design as the other MER cameras, but has optics that yield a field of view of 31 x 31 mm. The MI will acquire images using only solar or skylight illumination of the target surface. A contact sensor will be used to place the MI slightly closer to the target surface than its best focus distance (about 66 mm), allowing concave surfaces to be imaged in good focus. Because the MI has a relatively small depth of field (+/- 3 mm), a single MI image of a rough surface will contain both focused and unfocused areas. Coarse (~2 mm precision) focusing will be achieved by moving the IDD away from a target after the contact sensor is activated. Multiple images taken at various distances will be acquired to ensure good focus on all parts of rough surfaces. By combining a set of images acquired in this way, a completely focused image will be assembled. The MI optics will be protected from the martian environment by a dust cover. The dust cover includes a polycarbonate window that is tinted yellow to restrict the spectral bandpass to 500-700 nm and allow color information to be obtained by taking images with the dust cover open and closed. The MI will be used to image the same materials measured by other Athena instruments, as well as targets of opportunity (before rover traverses). The resulting images will be used to place other instrumental data in context and to aid in the petrologic interpretation of rocks and soils on Mars.

  3. Virtual immunology: software for teaching basic immunology.

    PubMed

    Berçot, Filipe Faria; Fidalgo-Neto, Antônio Augusto; Lopes, Renato Matos; Faggioni, Thais; Alves, Luiz Anastácio

    2013-01-01

    As immunology continues to evolve, many educational methods have found difficulty in conveying the degree of complexity inherent in its basic principles. Today, the teaching-learning process in such areas has been improved with tools such as educational software. This article introduces "Virtual Immunology," a software program available free of charge in Portuguese and English, which can be used by teachers and students in physiology, immunology, and cellular biology classes. We discuss the development of the initial two modules: "Organs and Lymphoid Tissues" and "Inflammation" and the use of interactive activities to provide microscopic and macroscopic understanding in immunology. Students, both graduate and undergraduate, were questioned along with university level professors about the quality of the software and intuitiveness of use, facility of navigation, and aesthetic organization using a Likert scale. An overwhelmingly satisfactory result was obtained with both students and immunology teachers. Programs such as "Virtual Immunology" are offering more interactive, multimedia approaches to complex scientific principles that increase student motivation, interest, and comprehension. © 2013 by The International Union of Biochemistry and Molecular Biology.

  4. Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color THG imaging.

    PubMed

    Du, Yu; Zhuang, Ziwei; He, Jiexing; Liu, Hongji; Qiu, Ping; Wang, Ke

    2018-05-16

    With tunable excitation light, multiphoton microscopy (MPM) is widely used for imaging biological structures at subcellular resolution. Axial chromatic dispersion, present in virtually every transmissive optical system including the multiphoton microscope, leads to focal (and the resultant image) plane separation. Here we demonstrate experimentally a technique to measure the axial chromatic dispersion in a multiphoton microscope, using simultaneous 2-color third-harmonic generation (THG) imaging excited by a 2-color soliton source with tunable wavelength separation. Our technique is self-referenced, eliminating potential measurement error when 1-color tunable excitation light is used which necessitates reciprocating motion of the mechanical translation stage. Using this technique, we demonstrate measured axial chromatic dispersion with 2 different objective lenses in a multiphoton microscope. Further measurement in a biological sample also indicates that this axial chromatic dispersion, in combination with 2-color imaging, may open up opportunity for simultaneous imaging of two different axial planes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. A high-resolution, confocal laser-scanning microscope and flash photolysis system for physiological studies.

    PubMed

    Parker, I; Callamaras, N; Wier, W G

    1997-06-01

    We describe the construction of a high-resolution confocal laser-scanning microscope, and illustrate its use for studying elementary Ca2+ signalling events in cells. An avalanche photodiode module and simple optical path provide a high efficiency system for detection of fluorescence signals, allowing use of a small confocal aperture giving near diffraction-limited spatial resolution (< 300 nm lateral and < 400 nm axial). When operated in line-scan mode, the maximum temporal resolution is 1 ms, and the associated computer software allows complete flexibility to record line-scans continuously for long (minutes) periods or to obtain any desired pixel resolution in x-y scans. An independent UV irradiation system permits simultaneous photolysis of caged compounds over either a uniform, wide field (arc lamp source) or at a tightly focussed spot (frequency-tripled Nd:YAG laser). The microscope thus provides a versatile tool for optical studies of dynamic cellular processes, as well as excellent resolution for morphological studies. The confocal scanner can be added to virtually any inverted microscope for a component cost that is only a small fraction of that of comparable commercial instruments, yet offers better performance and greater versatility.

  6. An integrated model for the natural flow regime in the Cerro Prieto hydrothermal system based upon petrological and isotope geochemical criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elders, W.A.; Williams, A.E.; Hoagland, J..

    1981-01-01

    Studies of cuttings and cores at Cerro Prieto have now been extended to more than 50 boreholes. The aims of this petrological and isotopic work are to determine the shape of the reservoir, its physical properties, and its temperature distribution and flow regime before the steam field was produced.

  7. Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of the Martian Meteorites

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This volume contains abstracts that have been accepted for presentation at the conference on Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of Martian Meteorites, September 11-12, 2002, in Houston, Texas. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.

  8. Petrologic model of the northern Mississippi Embayment based on satellite magnetic and ground-based geophysical data

    NASA Technical Reports Server (NTRS)

    Thomas, H. H.

    1984-01-01

    A petrologic model of the northern Mississippi Embayment, derived from gravity, seismic and rift data, is evaluated by converting the model to a magnetization model which is compared with satellite magnetic anomaly models. A magnetization contrast of approximately -0.54 A/m, determined from the petrologic model of the embayment compares favorably to values of -0.62 A/m and -0.45 A/m from a Magsat United States Apparent Magnetization Contrast Map and a published POGO magnetization contrast model, respectively. The petrologic model suggests that the magnetic anomaly low associated with the Mississippi Embayment may be largely due to the intrusion under non-oxidizing conditions of low Curie temperature gabbroic material at the base of the crust of the embayment. Near-surface mafic plutons, bordering the Mississippi Valley Graben, appear from aeromagnetic data to have higher magnetizations than the deeper gabbroic material; however, it is impossible to ascertain if this is due to compositional differences or similar material at shallower (lower temperature) depths. These results indicate that variations in the Curie temperatures of intrusions accompanying rifting may account for a large part of the wide range of magnetic anomalies associated with presently inactive rifts with normal heat flow.

  9. Virtual environment for training in microsurgery

    NASA Astrophysics Data System (ADS)

    Montgomery, Kevin N.; Stephanides, Michael; Brown, Joel; Latombe, Jean-Claude; Schendel, Stephen A.

    1999-05-01

    Microsurgery is a well-established medical field, and involves repair of approximately 1mm vessels and nerves under an operating microscope in order to reattach severed fingers or transfer tissue for reconstruction. Initial skill sin microvascular surgery are usually developed in the animal lab and subsequently in the operating room. Development of these skills typically requires about 6 months of animal based training before additional learning takes place in the operating room.

  10. Web-based virtual microscopy at the RWTH Aachen University: didactic concept, methods and analysis of acceptance by the students.

    PubMed

    Merk, Magdalene; Knuechel, Ruth; Perez-Bouza, Alberto

    2010-12-20

    Fundamental knowledge of microscopic anatomy and pathology has always been an essential part in medical education. The traditional didactic concept comprises theoretical and practical lessons using a light microscope and glass slides. High-speed Internet connections and technical improvement in whole-slide digital microscopy (commonly termed "virtual microscopy") provide a new and attractive approach for both teachers and students. High picture quality and unlimited temporal and spatial availability of histology samples from different fields are key advantages of web-based digital microscopy. In this report we discuss the technical requirements, system efficiency, optical resolution and didactic concept. Furthermore, we present a review of the experience gained in the course of one year based on an analysis of student acceptance. Three groups with a total of 192 students between the 3rd and 5th year of medical studies attending the practical courses of general and advanced histopathology had access to both glass-mounted and digitalized slides. Prior to exams, students were asked to answer an anonymous questionnaire. The results of the study reflect the high acceptance and intensive use of the web-based digital histology by students, thus encouraging the development of further Web-based learning strategies for the teaching of histology and pathology. 2010 Elsevier GmbH. All rights reserved.

  11. Three-dimensional registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation.

    PubMed

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Brandt, Eric; Wen, Di; van Ditzhuijzen, Nienke S; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Alian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G; Wilson, David L

    2016-04-01

    Evidence suggests high-resolution, high-contrast, [Formula: see text] intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and three-dimensional (3-D) registration methods to provide validation of IVOCT pullback volumes using microscopic, color, and fluorescent cryo-image volumes with optional registered cryo-histology. A specialized registration method matched IVOCT pullback images acquired in the catheter reference frame to a true 3-D cryo-image volume. Briefly, an 11-parameter registration model including a polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Multiple assessments suggested that the registration error was better than the [Formula: see text] spacing between IVOCT image frames. Tests on a digital synthetic phantom gave a registration error of only [Formula: see text] (signed distance). Visual assessment of randomly presented nearby frames suggested registration accuracy within 1 IVOCT frame interval ([Formula: see text]). This would eliminate potential misinterpretations confronted by the typical histological approaches to validation, with estimated 1-mm errors. The method can be used to create annotated datasets and automated plaque classification methods and can be extended to other intravascular imaging modalities.

  12. Mineralogy, petrology and geochemistry of carbonaceous chondritic clasts in the LEW 85300 polymict eucrite

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Hewins, R. H.; Mittlefehldt, D. W.; Lindstrom, M. M.; Xiao, X.; Lipschutz, M. E.

    1992-01-01

    We have performed a detailed petrologic and mineralogic study of two chondritic clasts from the polymict eucrite Lewis Cliff (LEW) 85300, and performed chemical analyses by INAA and RNAA on one of these. Petrologically, the clasts are identified and are composed of dispersed aggregates, chondrules, and chondrule fragments supported by matrix. The aggregates and chondrules are composed of olivine, orthopyroxene, plus some diopside. The matrix consists of fine-grained olivine, and lesser orthopyroxene and augite. Fine-grained saponite is common in the matrix. The bulk major composition of the clast studied by INAA and RNAA shows unusual abundance patterns for lithophile, siderophile and chalcophile elements but is basically chondritic. The INAA/RNAA data preclude assignment of the LEW 85300,15 clast to any commonly accepted group of carbonaceous chondrite.

  13. Northwest Africa 1401: A Polymict Cumulate Eucrite with a Unique Ferroan Heteradcumulate Mafic Clast

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Killgore, Marvin

    2003-01-01

    The howardite, eucrite and diogenite (HED) clan is the largest suite of achondrites available for study. The suite gives us a unique view of the magmatism that affected some asteroids early in solar system history. One problem with mining the HED clan for petrogenetic information is that there is only limited petrologic diversity among the rock types. Thus, discovering unusual HED materials holds the potential for revealing new insights into the petrologic evolution of the HED parent asteroid. Here we report on petrologic study of an unusual, 27 gram polymict eucrite, Northwest Africa (NWA) 1401. The thin section studied (approx. 20 x 10 mm) contains one large, ferroan clast described separately. The remainder of the rock, including mineral fragments and other, smaller lithic clasts, forms the host breccia.

  14. Effects of Short-Term Thermal Alteration on Organic Matter in Experimentally-Heated Tagish Lake Observed by Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Nakato, A.; Zolensky, M. E.; Nakamura, T.; Kebukawa, Y.; Maisano, J.; Colbert, M.; Martinez, J. E.

    2017-01-01

    Carbonaceous chondrites exhibit a wide range of aqueous and thermal alteration characteristics, while some are known to demonstrate mineralogical and petrologic evidence of having been thermally metamorphosed after aqueous alteration. This group of meteorites are commonly referred as thermally met-amorphosed carbonaceous chondrites (TMCCs), and their reflectance spectra show resemblances to that of C-type asteroids which typically have low albedos. This suggests that the surfaces of the C-type asteroids are also composed of both hydrous and dehydrated minerals, and thus TMCCs are among the best samples that can be studied in laboratory to reveal the true nature of the C-type asteroids. Although TMCCs are usually meteorites that were previously categorized as CI and CM chondrites, they are not strictly CI/CM because they exhibit isotopic and petrographic characteristics that significantly deviate from typical CI/CM. More appropriately, they are called CI-like and/or CM-like chondrites. Typical examples of TMCCs include the C2-ung/CM2TIV Belgica (B)-7904 and Yamato (Y) 86720. Thermal alteration is virtually complete in these meteorites and thus they are considered typical end-members of TMCCs exhibiting complete dehydration of matrix phyllosilicates. The estimated heating conditions are 10 to 103 days at 700 C to 1 to 100 hours at 890 C, i.e. short-term heating induced by impact and/or solar radiation. While the petrology and chemistry of TMCCs have only recently been extensively characterized, we have just begun to study in detail their organic contents. In order to understand how short-term heating affects the maturity of insoluble organic matter (IOM) in hydrous chondrites, we investigated experimentally-heated Tagish Lake meteorite using Raman spectroscopy, as the chemical and bulk oxygen isotopic compositions of the matrix of the carbonate (CO3)-poor lithology of the Tagish Lake (hereafter Tag) meteorite bears similarities to the TMCCs.

  15. Petrologic Constraints on Magma Plumbing Systems Beneath Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Li, Y.; Peterman, K. J.; Scott, J. L.; Barton, M.

    2016-12-01

    We have calculated the pressures of partial crystalliztion of basaltic magmas from Hawaii using a petrological method. A total of 1576 major oxide analyses of glasses from four volcanoes (Kilauea and the Puna Ridge, Loihi, Mauna Loa, and Mauna Kea, on the Big Island) were compiled and used as input data. Glasses represent quenched liquid compositions and are ideal for calculation of pressures of partial crystallization. The results were filtered to exclude samples that yielded unrealistic high errors associated with the calculated pressure or negative value of pressure, and to exclude samples with non-basaltic compositions. Calculated pressures were converted to depths of partial crystallization. The majority (68.2%) of pressures for the shield-stage subaerial volcanoes Kilauea, Mauna Loa, and Mauna Kea, fall in the range 0-140 MPa, corresponding to depths of 0-5 km. Glasses from the Puna Ridge yield pressures ranging from 18 to 126 MPa and are virtually identical to pressures determined from glasses from Kilauea (0 to 129 MPa). These results are consistent with the presence of magma reservoirs at depths of 0-5 km beneath the large shield volcanoes. The inferred depth of the magma reservoir beneath the summit of Kilauea (average = 1.8 km, maximum = 5 km) agrees extremely well with depths ( 2-6 km) estimated from seismic studies. The results for Kilauea and Mauna Kea indicate that significant partial crystallization also occurs beneath the summit reservoirs at depths up to 11 km. These results are consistent with seismic evidence for the presence of a magma reservoir at 8-11 km beneath Kilauea at the base of the volcanic pile. The results for Loihi indicate crystallization at higher average pressures (100-400 MPa) and depths (3-14 km) than the large shield volcanoes, suggesting that the plumbing system is not yet fully developed, and that the Hawaiian volcanic plumbing systems evolve over time.

  16. Petrology and Geochemistry of D'Orbigny, Geochemistry of Sahara 99555, and the Origin of Angrites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Killgore, Marvin; Lee, Michael T.

    2001-01-01

    We have done detailed petrologic study of the angrite, D'Orbigny, and geochemical study of it and Sahara 99555. D'Orbigny is an igneous-textured rock composed of Ca-rich olivine, Al-Ti-diopside-hedenbergite, subcalcic kirschsteinite, two generations of hercynitic spinel and anorthite, with the mesostasis phases ulv6spinel, Ca-phosphate, a silicophosphate phase and Fe-sulfide. We report an unknown Fe-Ca-Al-Ti-silicate phase in the mesostasis not previously found in angrites. One hercynitic spinel is a large, rounded homogeneous grain of a different composition than the euhedral and zoned grains. We believe the former is a xenocryst, the first such described from angrites. The mafic phases are highly zoned; mg# of cores for olivine are approx.64, and for clinopyroxene approx.58, and both are zoned to Mg-free rims. The Ca content of olivine increases with decreasing mg#, until olivine with approx.20 mole% Ca is overgrown by subcalcic kirschsteinite with Ca approx.30-35 mole%. Detailed zoning sequences in olivine-subcalcic kirschsteinite and clinopyroxene show slight compositional reversals. There is no mineralogic control that can explain these reversals, and we believe they were likely caused by local additions of more primitive melt during crystallization of D'Orbigny. D'Orbigny is the most ferroan angrite with a bulk rock mg# of 32. Compositionally, it is virtually identical to Sahara 99555; the first set of compositionally identical angrites. Comparison with the other angrites shows that there is no simple petrogenetic sequence, partial melting with or without fractional crystallization, that can explain the angrite suite. Angra dos Reis remains a very anomalous angrite. Angrites show no evidence for the brecciation, shock, or impact or thermal metamorphism that affected the HED suite and ordinary chondrites. This suggests the angrite parent body may have followed a fundamentally different evolutionary path than did these other parent bodies.

  17. Analysis of slide exploration strategy of cytologists when reading digital slides

    NASA Astrophysics Data System (ADS)

    Pantanowitz, Liron; Parwani, Anil; Tseytlin, Eugene; Mello-Thoms, Claudia

    2012-02-01

    Cytology is the sub-domain of Pathology that deals mainly with the diagnosis of cellular changes caused by disease. Current clinical practice involves a cytotechnologist that manually screens glass slides containing fixed cytology material using a light microscope. Screened slides are then forwarded to a specialized pathologist, a cytopathologist, for microscopic review and final diagnostic interpretation. If no abnormalities are detected, the specimen is interpreted as "normal", otherwise the abnormalities are marked with a pen on the glass slide by the cytotechnologist and then are used to render a diagnosis. As Pathology is migrating towards a digital environment it is important to determine whether these crucial screening and diagnostic tasks can be performed as well using digital slides as the current practice with glass slides. The purpose of this work is to make this assessment, by using a set of digital slides depicting cytological materials of different disease processes in several organs, and then to analyze how different cytologists including cytotechnologists, cytopathologists and cytotechnology-trainees explored the digital slides. We will (1) collect visual search data from the cytologists as they navigate the digital slides, as well as record any electronic marks (annotations) made by the cytologists; (2) convert the dynamic visual search data into a static representation of the observers' exploration strategy using 'search maps'; and (3) determine slide coverage, per viewing magnification range, for each group. We have developed a virtual microscope to collect this data, and this interface allows for interactive navigation of the virtual slide (including panning and zooming), as well as annotation of reportable findings. Furthermore, all interactions with the interface are time stamped, which allows us to recreate the cytologists' search strategy.

  18. Trees and Weathering: Using Soil Petrographic and Chemical Analyses to Compare the Relative Weathering Effects of Gymnosperms and Angiosperms in the Cascade Mountains of Washington State, USA

    NASA Astrophysics Data System (ADS)

    Andrews, M. Y.; Ague, J. J.; Berner, R. A.

    2006-12-01

    Knowledge of the long-term carbon cycle and its control on atmospheric carbon dioxide levels over the Phanerozoic is crucial to understanding the impending dynamics of contemporary anthropogenic carbon contributions to the atmosphere. One aspect of the long-term carbon cycle that is poorly understood is the role of large vascular plants (trees) in contributing to the chemical weathering of silicate minerals. In particular, little is known about the differences in weathering rates between gymnosperms and angiosperms and how these dissimilarities may have impacted the carbon cycle subsequent to the evolution of angiosperm trees in the Mesozoic. One approach to evaluating these potential differences in weathering is to examine and quantitatively compare the chemistry and petrology of the soil mineral constituents from beneath modern groves of each broad tree type, where the groves have been subject to nearly identical environmental and geological conditions. This particular study focuses on field samples collected along transects through adjacent groves of angiosperms and gymnosperms in the Cascade Mountains of Washington State. Preliminary data demonstrate a significant difference in the soil texture and composition beneath the two types of trees. While soil at each field site has been generated from a homogeneous parent material, and subjected to similar inorganic environmental phenomena, soil density, particle size, and organic content vary across the transects. Soils beneath the angiosperms are denser and have a more clay-like texture, while soils beneath the gymnosperms are more organic-rich and have a sandy texture. Additional macroscopic and microscopic differences in the chemistry and petrology of these soils will illuminate the varied impacts these trees have on the silicate minerals in their immediate environment, and therefore lend insight into the potential impact these groups of organisms have had on the long-term carbon cycle over the past five hundred million years.

  19. Exploring Chondrule and CAI Rims Using Micro- and Nano-Scale Petrological and Compositional Analysis

    NASA Astrophysics Data System (ADS)

    Cartwright, J. A.; Perez-Huerta, A.; Leitner, J.; Vollmer, C.

    2017-12-01

    As the major components within chondrites, chondrules (mm-sized droplets of quenched silicate melt) and calcium-aluminum-rich inclusions (CAI, refractory) represent the most abundant and the earliest materials that solidified from the solar nebula. However, the exact formation mechanisms of these clasts, and whether these processes are related, remains unconstrained, despite extensive petrological and compositional study. By taking advantage of recent advances in nano-scale tomographical techniques, we have undertaken a combined micro- and nano-scale study of CAI and chondrule rim morphologies, to investigate their formation mechanisms. The target lithologies for this research are Wark-Lovering rims (WLR), and fine-grained rims (FGR) around CAIs and chondrules respectively, present within many chondrites. The FGRs, which are up to 100 µm thick, are of particular interest as recent studies have identified presolar grains within them. These grains predate the formation of our Solar System, suggesting FGR formation under nebular conditions. By contrast, WLRs are 10-20 µm thick, made of different compositional layers, and likely formed by flash-heating shortly after CAI formation, thus recording nebular conditions. A detailed multi-scale study of these respective rims will enable us to better understand their formation histories and determine the potential for commonality between these two phases, despite reports of an observed formation age difference of up to 2-3 Myr. We are using a combination of complimentary techniques on our selected target areas: 1) Micro-scale characterization using standard microscopic and compositional techniques (SEM-EBSD, EMPA); 2) Nano-scale characterization of structures using transmission electron microscopy (TEM) and elemental, isotopic and tomographic analysis with NanoSIMS and atom probe tomography (APT). Preliminary nano-scale APT analysis of FGR morphologies within the Allende carbonaceous chondrite has successfully discerned complex chondritic mineralogies and compositional differences across boundaries, which is one of the first applications of in-situ APT techniques to chondrites. Further data reduction will allow us to characterize the exact phases present, and further chondrite analyses are in progress.

  20. Virtual slides in peer reviewed, open access medical publication

    PubMed Central

    2011-01-01

    Background Application of virtual slides (VS), the digitalization of complete glass slides, is in its infancy to be implemented in routine diagnostic surgical pathology and to issues that are related to tissue-based diagnosis, such as education and scientific publication. Approach Electronic publication in Pathology offers new features of scientific communication in pathology that cannot be obtained by conventional paper based journals. Most of these features are based upon completely open or partly directed interaction between the reader and the system that distributes the article. One of these interactions can be applied to microscopic images allowing the reader to navigate and magnify the presented images. VS and interactive Virtual Microscopy (VM) are a tool to increase the scientific value of microscopic images. Technology and Performance The open access journal Diagnostic Pathology http://www.diagnosticpathology.org has existed for about five years. It is a peer reviewed journal that publishes all types of scientific contributions, including original scientific work, case reports and review articles. In addition to digitized still images the authors of appropriate articles are requested to submit the underlying glass slides to an institution (DiagnomX.eu, and Leica.com) for digitalization and documentation. The images are stored in a separate image data bank which is adequately linked to the article. The normal review process is not involved. Both processes (peer review and VS acquisition) are performed contemporaneously in order to minimize a potential publication delay. VS are not provided with a DOI index (digital object identifier). The first articles that include VS were published in March 2011. Results and Perspectives Several logistic constraints had to be overcome until the first articles including VS could be published. Step by step an automated acquisition and distribution system had to be implemented to the corresponding article. The acceptance of VS by the reader is high as well as by the authors. Of specific value are the increased confidence to and reputation of authors as well as the presented information to the reader. Additional associated functions such as access to author-owned related image collections, reader-controlled automated image measurements and image transformations are in preparation. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1232133347629819. PMID:22182763

  1. Image Montaging for Creating a Virtual Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image

    PubMed Central

    Pandurangappa, Rohit; Annavajjula, Saileela; Rajashekaraiah, Premalatha Bidadi

    2016-01-01

    Background. Microscopes are omnipresent throughout the field of biological research. With microscopes one can see in detail what is going on at the cellular level in tissues. Though it is a ubiquitous tool, the limitation is that with high magnification there is a small field of view. It is often advantageous to see an entire sample at high magnification. Over the years technological advancements in optics have helped to provide solutions to this limitation of microscopes by creating the so-called dedicated “slide scanners” which can provide a “whole slide digital image.” These scanners can provide seamless, large-field-of-view, high resolution image of entire tissue section. The only disadvantage of such complete slide imaging system is its outrageous cost, thereby hindering their practical use by most laboratories, especially in developing and low resource countries. Methods. In a quest for their substitute, we tried commonly used image editing software Adobe Photoshop along with a basic image capturing device attached to a trinocular microscope to create a digital pathology slide. Results. The seamless image created using Adobe Photoshop maintained its diagnostic quality. Conclusion. With time and effort photomicrographs obtained from a basic camera-microscope set up can be combined and merged in Adobe Photoshop to create a whole slide digital image of practically usable quality at a negligible cost. PMID:27747147

  2. Image Montaging for Creating a Virtual Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image.

    PubMed

    Banavar, Spoorthi Ravi; Chippagiri, Prashanthi; Pandurangappa, Rohit; Annavajjula, Saileela; Rajashekaraiah, Premalatha Bidadi

    2016-01-01

    Background . Microscopes are omnipresent throughout the field of biological research. With microscopes one can see in detail what is going on at the cellular level in tissues. Though it is a ubiquitous tool, the limitation is that with high magnification there is a small field of view. It is often advantageous to see an entire sample at high magnification. Over the years technological advancements in optics have helped to provide solutions to this limitation of microscopes by creating the so-called dedicated "slide scanners" which can provide a "whole slide digital image." These scanners can provide seamless, large-field-of-view, high resolution image of entire tissue section. The only disadvantage of such complete slide imaging system is its outrageous cost, thereby hindering their practical use by most laboratories, especially in developing and low resource countries. Methods . In a quest for their substitute, we tried commonly used image editing software Adobe Photoshop along with a basic image capturing device attached to a trinocular microscope to create a digital pathology slide. Results . The seamless image created using Adobe Photoshop maintained its diagnostic quality. Conclusion . With time and effort photomicrographs obtained from a basic camera-microscope set up can be combined and merged in Adobe Photoshop to create a whole slide digital image of practically usable quality at a negligible cost.

  3. Mars Environmental Compatibility Assessment (MECA): Identifying the Hazards of the Martian Soil

    NASA Technical Reports Server (NTRS)

    Meloy, T. P.; Hecht, M. H.; Anderson, M. S.; Frant, M. A.; Fuerstenau, S. D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.; Pike, W. T.; Quate, C. F.

    1999-01-01

    Sometime in the next decade NASA will decide whether to send a human expedition to explore the planet Mars. The Mars Environmental Compatibility Assessment (MECA) has been selected by NASA to evaluate the Martian environment for soil and dust hazards to human exploration. The integrated MECA payload contains three elements: a wet-chemistry laboratory, a microscopy station, and enhancements to a lander robot-arm system incorporating arrays of material patches and an electrometer to identify triboelectric charging during soil excavation. The wet-chemistry laboratory will evaluate samples of Martian soil in water to determine the total dissolved solids, redox potential, pH, and quantify the concentration of many soluble ions using ion-selective electrodes. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential. MECA's microscopy station combines optical and atomic-force microscopy with a robot-arm camera to provide imaging over nine orders of magnitude, from meters to nanometers. Soil particle properties including size, shape, color, hardness, adhesive potential (electrostatic and magnetic), will be determined on the microscope stage using an ar-ray of sample receptacles and collection substrates, and an abrasion tool,. The simple, rugged atomic-force microscope will image in the submicron size range and has the capability of performing a particle-by-particle analysis of the dust and soil. Although selected by NASA's Human Exploration and Development of Space Enterprise, the MECA instrument suite also has the capability to address basic geology, paleoclimate, and exobiology issues. To understand both contemporaneous and ancient processes on Mars, the mineralogical, petrological, and reactivity of Martian surface materials should be constrained: the NMCA experiment will shed light on these quantities through its combination of chemistry and microscopy. On Earth, the earliest forms of life are preserved as microfossils. The atomic-force microscope will have the required resolution to image down to the scale of terrestrial microfossils and beyond.

  4. Science Applications of a Multispectral Microscopic Imager for the Astrobiological Exploration of Mars

    PubMed Central

    Farmer, Jack D.; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Abstract Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Key Words: Mars—Microscopic imager—Multispectral imaging—Spectroscopy—Habitability—Arm instrument. Astrobiology 14, 132–169. PMID:24552233

  5. Hardgrove grindability index and petrology used as an enhanced predictor of coal feed rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hower, J.C.

    1990-01-01

    An improved predictor of coal pulverization behavior and coal feed rate is under development at the CAER based upon the interaction between Hardgrove Grindability Index (HGI) and coal petrology. With educated attention, this interaction may be a useful tool to enhance coal feed rates if cautiously extended to the mining environment where blends of coal lithotypes are produced.

  6. Petrological Mapping of the Crater Boguslawsky

    NASA Astrophysics Data System (ADS)

    Wöhler, C.; Evdokimova, N. A.; Feoktistova, E. A.; Grumpe, A.; Kapoor, K.; Berezhnoy, A. A.; Shevchenko, V. V.

    2015-10-01

    An analysis of orbital spectral data of the crater Boguslawsky, the intended target region of the Russian Luna-Glob mission, is performed. We have constructed a high- resolution DEM of the crater Boguslawsky, based on which the temperature regime on the surface is investigated. The depth of the OH absorption feature is analysed.The content of the main elements is estimated, and a petrologic map is constructed accordingly.

  7. Petrology of Anomalous Eucrites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Peng, Z. X.; Ross, D. K.

    2015-01-01

    Most mafic achondrites can be broadly categorized as being "eucritic", that is, they are composed of a ferroan low-Ca clinopyroxene, high-Ca plagioclase and a silica phase. They are petrologically distinct from angritic basalts, which are composed of high-Ca, Al-Ti-rich clinopyroxene, Carich olivine, nearly pure anorthite and kirschsteinite, or from what might be called brachinitic basalts, which are composed of ferroan orthopyroxene and high-Ca clinopyroxene, intermediate-Ca plagioclase and ferroan olivine. Because of their similar mineralogy and composition, eucrite-like mafic achondrites formed on compositionally similar asteroids under similar conditions of temperature, pressure and oxygen fugacity. Some of them have distinctive isotopic compositions and petrologic characteristics that demonstrate formation on asteroids different from the parent of the HED clan (e.g., Ibitira, Northwest Africa (NWA) 011). Others show smaller oxygen isotopic distinctions but are otherwise petrologically and compositionally indistinguishable from basaltic eucrites (e.g., Pasamonte, Pecora Escarpment (PCA) 91007). The degree of uniformity in delta O-17 of eucrites and diogenites is one piece of evidence considered to favor of a magma-ocean scenario for their petrogenesis. Given that the O isotopic differences separating Pasamonte and PCA 91007 from other eucrites are small, and that there is an absence of other distinguishing characteristics, a legitimate question is: Did the HED parent asteroid fail to homogenize via a magma-ocean stage, thus explaining outliers like Pasamonte? We are initiating a program of study of anomalous eucrite-like achondrites as one part of our effort to seek a resolution of this issue. Here we present preliminary petrologic information on Asuka (A-) 881394, Elephant Moraine (EET) 87520 and EET 87542. We will have studied several more by conference time.

  8. Rock magnetic stratigraphy of a mafic layered sill: A key to the Karoo volcanics plumbing system

    NASA Astrophysics Data System (ADS)

    Maes, S. M.; Ferré, E. C.; Tikoff, B.; Brown, P. E.; Marsh, J. S.

    2008-05-01

    The Insizwa sill is an ~ 1 km-thick subhorizontal layered mafic intrusion and part of the Karoo Large Igneous Province in South Africa. This well-exposed intrusion consists of several superimposed petrologically and geochemically distinct units. Magnetic methods were used to study the intrusion in order to constrain the physical processes active in these types of bodies during crystallization. Rock magnetism studies indicate that within different petrologic units bulk susceptibility is controlled by primary magnetite (with minor pyrrhotite) and/or paramagnetic minerals (olivine, pyroxene). New magnetic data based on 659 specimens obtained from 3 vertical borehole cores, each spaced 5 km apart, confirm the prominent vertical zonation in low field magnetic susceptibility ( Klf), degree of anisotropy ( Pj) and orientation of the anisotropy of magnetic susceptibility (AMS) axes. The magnetic susceptibility correlates very well with petrographic units and the lateral continuity of magnetic units between boreholes is very consistent. Petrologic units with high, but variable, Klf, also show moderate anisotropy and dominantly vertical foliations. We interpret these patterns to result from inverse fabrics from single domain magnetite. The degree of anisotropy is low in petrologic units with low Klf, which also show shallowly dipping magnetic foliations. We interpret that the magnetic properties of these units are dominated by the paramagnetic minerals. These low Klf petrologic units also show no systematic increase in Klf, suggesting that only minor differentiation is occurring in these units. The dataset derived from 2 surface sampling traverses are consistent with borehole core AMS data, showing a pattern of dominantly steep magnetic foliation and variably plunging magnetic lineation with a NW-SE trend.

  9. An ion microprobe study of CAIs from CO3 meteorites. [Abstract only

    NASA Technical Reports Server (NTRS)

    Russell, S. S.; Greenwood, R. C.; Fahey, A. J.; Huss, G. R.; Wasserburg, G. J.

    1994-01-01

    When attempting to interpret the history of Ca, Al-rich inclusions (CAIs) it is often difficult to distinguish between primary features inherited from the nebula and those produced during secondary processing on the parent body. We have undertaken a systematic study of CAIs from 10 CO chondrites, believed to represent a metamorphic sequence with the goal of distinguishing primary and secondary features. ALHA 77307 (3.0), Colony (3.0), Kainsaz (3.1), Felix (3.2), ALH 82101 (3.3), Ornans (3.3), Lance (3.4), ALHA 77003 (3.5), Warrenton (3.6), and Isna (3.7) were examined by Scanning Electron Microscopy (SEM) and optical microscopy. We have identified 141 CAIs within these samples, and studied in detail the petrology of 34 inclusions. The primary phases in the lower petrologic types are spinel, melilite, and hibonite. Perovskite, FeS, ilmenite, anorthite, kirschsteinite, and metallic Fe are present as minor phases. Melilite becomes less abundant in higher petrologic types and was not detected in chondrites of type 3.5 and above, confirming previous reports that this mineral easily breaks down during heating. Iron, an element that would not be expected to condense at high temperatures, has a lower abundance in spinel from low-petrologic-type meteorites than those of higher grade, and CaTiO3 is replaced by FeTiO3 in meteorites of higher petrologic type. The abundance of CAIs is similar in each meteorite. Eight inclusions have been analyzed by ion probe. The results are summarized. The results obtained to date show that CAIs in CO meteorites, like those from other meteorite classes, contain Mg* and that Mg in some inclusions has been redistributed.

  10. Strand Plasticity Governs Fatigue in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    van Doorn, Jan Maarten; Verweij, Joanne E.; Sprakel, Joris; van der Gucht, Jasper

    2018-05-01

    The repeated loading of a solid leads to microstructural damage that ultimately results in catastrophic material failure. While posing a major threat to the stability of virtually all materials, the microscopic origins of fatigue, especially for soft solids, remain elusive. Here we explore fatigue in colloidal gels as prototypical inhomogeneous soft solids by combining experiments and computer simulations. Our results reveal how mechanical loading leads to irreversible strand stretching, which builds slack into the network that softens the solid at small strains and causes strain hardening at larger deformations. We thus find that microscopic plasticity governs fatigue at much larger scales. This gives rise to a new picture of fatigue in soft thermal solids and calls for new theoretical descriptions of soft gel mechanics in which local plasticity is taken into account.

  11. Coeval Ar-40/Ar-39 ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites

    NASA Technical Reports Server (NTRS)

    Swisher, Carl C., III; Grajales-Nishimura, Jose M.; Montanari, Alessandro; Margolis, Stanley V.; Claeys, Philippe; Alvarez, Walter; Renne, Paul; Cedillo-Pardo, Esteban; Maurrasse, Florentin J.-M. R.; Curtis, Garniss H.

    1992-01-01

    Ar-40/Ar-39 dating of drill-core samples of a glassy melt rock recovered from beneath a massive impact breccia contained with the 180-kilometer subsurface Chicxulub crater yields well-behaved incremental heating spectra with a mean plateau age of 64.98 +/- 0.05 million years ago (Ma). The glassy melt rock of andesitic composition was obtained from core 9 (1390 to 1393 meters) in the Chicxulub 1 well. The age of the melt rock is virtually indistinguishable from Ar-40/Ar-39 ages obtained on tektite glass from Beloc, Haiti, and Arroyo el Mimbral, northeastern Mexico, of 65.01 +/- 0.08 Ma (mean plateau age for Beloc) and 65.07 +/- 0.10 Ma (mean total fusion age for both sites). The Ar-40/Ar-39 ages, in conjunction with geochemical and petrological similarities, strengthen the suggestion that the Chicxulub structure is the source for the Haitian and Mexican tektites and is a viable candidate for the Cretaceous-Tertiary boundary impact site.

  12. Petrologic constraints on the origin of the Moon: Evidence from Apollo 14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shervais, J.W.; Taylor, L.A.

    1984-01-01

    The Fra Mauro breccias at Apollo 14 contain distinctive suites of mare basalts and highland crustal rocks that contrast significantly with equivalent rocks from other Apollo sites. These contrasts imply lateral heterogeneity of the lunar crust and mantle on a regional scale. This heterogeneity may date back to the earliest stages of lunar accretion and differentiation. Current theories requiring a Moon-wide crust of Ferroan Anorthosite are based largely on samples from Apollo 16, where all but a few samples represent the FAN suite. However, at the nearside sites, FAN is either scarce (A-15) or virtually absent (A-12, A-14, A-17). Itmore » is suggested that the compositional variations could be accounted for by the acceleration of a large mass of material (e.g., 0.1 to 0.2 moon masses) late in the crystallization history of the magma ocean. Besides adding fresh, primordial material, this would remelt a large pocket of crust and mantle, thereby allowing a second distillation to occur in the resulting magma sea.« less

  13. Lunar Science Conference, 4th, Houston, Tex., March 5-8, 1973, Proceedings. Volume 1 - Mineralogy and petrology. Volume 2 - Chemical and isotope analyses. Organic chemistry. Volume 3 - Physical properties

    NASA Technical Reports Server (NTRS)

    Gose, W. A.

    1973-01-01

    The mineralogy, petrology, chemistry, isotopic composition, and physical properties of lunar materials are described in papers detailing methods, results, and implications of research on samples returned from eight lunar landing sites: Apollo 11, 12, 14, 15, 16, 17, and Luna 16 and 20. The results of experiments conducted or set up on the lunar surface by the astronauts are also described along with observations taken from Command Modules and subsatellites. Major topics include general geology, soil and breccia studies, petrologic studies, mineralogic analyses, elemental compositions, radiometric age determinations, rare gas chemistry, radionuclides, organogenic compounds, particle track records, thermal properties, seismic studies, resonance studies, orbital mapping, lunar atmosphere, magnetic studies, electrical studies, optical properties, and microcratering. Individual items are announced in this issue.

  14. Resolution of the Ehrenfest Paradox by New Contraction (Expansion) Criteria

    NASA Astrophysics Data System (ADS)

    Davis, Leo; Kepros, John G.

    1988-10-01

    If we assume that the integrity of an elastic solid is governed by exchanges of real and virtual photons, the solid becomes a seat of innumerable interconnected microscopic Kennedy-Thorndike experiments. The null result of that experiment leads to a deformation criterion having the Lorentz- Fitzgerald contraction as a special case. For a spinning disc the criterion, combined with an equation of compatibility, gives radial and tangential deformations which resolve the Ehrenfest paradox.

  15. Electric Conduction in Solids: a Pedagogical Approach Supported by Laboratory Measurements and Computer Modelling Environments

    NASA Astrophysics Data System (ADS)

    Bonura, A.; Capizzo, M. C.; Fazio, C.; Guastella, I.

    2008-05-01

    In this paper we present a pedagogic approach aimed at modeling electric conduction in semiconductors, built by using NetLogo, a programmable modeling environment for building and exploring multi-agent systems. `Virtual experiments' are implemented to confront predictions of different microscopic models with real measurements of electric properties of matter, such as resistivity. The relations between these electric properties and other physical variables, like temperature, are, then, analyzed.

  16. Enhanced weak-signal sensitivity in two-photon microscopy by adaptive illumination.

    PubMed

    Chu, Kengyeh K; Lim, Daryl; Mertz, Jerome

    2007-10-01

    We describe a technique to enhance both the weak-signal relative sensitivity and the dynamic range of a laser scanning optical microscope. The technique is based on maintaining a fixed detection power by fast feedback control of the illumination power, thereby transferring high measurement resolution to weak signals while virtually eliminating the possibility of image saturation. We analyze and demonstrate the benefits of adaptive illumination in two-photon fluorescence microscopy.

  17. Some surface characteristics and gas interactions of Apollo 14 fines and rock fragments.

    NASA Technical Reports Server (NTRS)

    Cadenhead, D. A.; Wagner, N. J.; Jones, B. R.; Stetter, J. R.

    1972-01-01

    Comprehensive survey of the physical surface characteristics of Apollo 14 fines, two fragments of a breccia (14321), and a crystalline rock (14310). The survey was carried out with optical and both scanning and transmission electron microscopy and by studying the adsorption of a variety of gases including nitrogen, hydrogen, and water vapor. Our objective in the optical microscope study was to relate the visible geological and petrological features to the surface properties. Electron microscopy particularly helped relate surface roughness and particle fusion to gas adsorption and pore structure. The fine sample (14163,111) had a surface area of 0.210 sq m/g and a helium density of 2.9 g/cc. Similar values have been observed with breccia fragments. Other observations include physical adsorption of molecular hydrogen at low temperatures and of water vapor at ambient temperatures. It is concluded that these particular lunar materials, while capable of adsorbing water vapor, do not retain it for any significant time at low pressures, nor, under lunar conditions, is there any indication of absorption or penetration.

  18. Petrologic insights into basaltic volcanism at historically active Hawaiian volcanoes: Chapter 6 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Helz, Rosalind L.; Clague, David A.; Sisson, Thomas W.; Thornber, Carl R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Contributions to our knowledge of the nature of the mantle source(s) of Hawaiian basalts are reviewed briefly, although this is a topic where debate is ongoing. Finally, our accumulated petrologic observations impose constraints on the nature of the summit reservoirs at Kīlauea and Mauna Loa, specifically whether the summit chamber has been continuous or segmented during past decades.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, C.A.

    Statistical relations have been determined between geometry, volume, slope, and age for 26 circum-Pacific composite (strato) volcanoes. General trends in eruption characteristics, repose periods, flow lengths and petrology are also documented. Few examples of the earliest stages of composite volcano activity are known, perhaps because these small volcanoes are indistinguishable from cinder cones. If cinder cones evolve into composite volcanoes a fundamental change in morphometry, eruption style, and petrology occurs at a basal diameter of 2 km.

  20. The development of a virtual 3D model of the renal corpuscle from serial histological sections for E-learning environments.

    PubMed

    Roth, Jeremy A; Wilson, Timothy D; Sandig, Martin

    2015-01-01

    Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated with improved learning outcomes, but similar tools have not been created for histology education to visualize complex cellular structure-function relationships. This study outlines steps in creating a virtual 3D model of the renal corpuscle from serial, semi-thin, histological sections obtained from epoxy resin-embedded kidney tissue. The virtual renal corpuscle model was generated by digital segmentation to identify: Bowman's capsule, nuclei of epithelial cells in the parietal capsule, afferent arteriole, efferent arteriole, proximal convoluted tubule, distal convoluted tubule, glomerular capillaries, podocyte nuclei, nuclei of extraglomerular mesangial cells, nuclei of epithelial cells of the macula densa in the distal convoluted tubule. In addition to the imported images of the original sections the software generates, and allows for visualization of, images of virtual sections generated in any desired orientation, thus serving as a "virtual microtome". These sections can be viewed separately or with the 3D model in transparency. This approach allows for the development of interactive e-learning tools designed to enhance histology education of microscopic structures with complex cellular interrelationships. Future studies will focus on testing the efficacy of interactive virtual 3D models for histology education. © 2015 American Association of Anatomists.

  1. Virtual slides in peer reviewed, open access medical publication.

    PubMed

    Kayser, Klaus; Borkenfeld, Stephan; Goldmann, Torsten; Kayser, Gian

    2011-12-19

    Application of virtual slides (VS), the digitalization of complete glass slides, is in its infancy to be implemented in routine diagnostic surgical pathology and to issues that are related to tissue-based diagnosis, such as education and scientific publication. Electronic publication in Pathology offers new features of scientific communication in pathology that cannot be obtained by conventional paper based journals. Most of these features are based upon completely open or partly directed interaction between the reader and the system that distributes the article. One of these interactions can be applied to microscopic images allowing the reader to navigate and magnify the presented images. VS and interactive Virtual Microscopy (VM) are a tool to increase the scientific value of microscopic images. The open access journal Diagnostic Pathology http://www.diagnosticpathology.org has existed for about five years. It is a peer reviewed journal that publishes all types of scientific contributions, including original scientific work, case reports and review articles. In addition to digitized still images the authors of appropriate articles are requested to submit the underlying glass slides to an institution (DiagnomX.eu, and Leica.com) for digitalization and documentation. The images are stored in a separate image data bank which is adequately linked to the article. The normal review process is not involved. Both processes (peer review and VS acquisition) are performed contemporaneously in order to minimize a potential publication delay. VS are not provided with a DOI index (digital object identifier). The first articles that include VS were published in March 2011. Several logistic constraints had to be overcome until the first articles including VS could be published. Step by step an automated acquisition and distribution system had to be implemented to the corresponding article. The acceptance of VS by the reader is high as well as by the authors. Of specific value are the increased confidence to and reputation of authors as well as the presented information to the reader. Additional associated functions such as access to author-owned related image collections, reader-controlled automated image measurements and image transformations are in preparation. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1232133347629819.

  2. Paleokarst and reservoir porosity in the Ordovician Beekmantown Dolomite of the central Appalachian basin

    USGS Publications Warehouse

    Smosna, R.; Bruner, K.R.; Riley, R.A.

    2005-01-01

    A karst-unconformity play at the top of the Ordovician Beekmantown Dolomite is judged to have great petroleum potential in Ohio and adjacent states; wells have high ultimate reserves and large areas remain untested. To better understand the origin, development, and distribution of Beekmantown porosity, we conducted a petrologic-stratigraphic study of cores and thin sections from 15 oil and gas wells. The massive dolomite, characterized by a hypidiotopic-idiotopic texture, formed by the replacement of stacked peritidal carbonate cycles. Secondary porosity occurs at two scales: (1) mesoscopic - breccia porosity, solution-enlarged fractures, large vugs, and caverns, and (2) microscopic - intercrystalline, intracrystalline, molds, small vugs, and microfractures. Mesoscopic pores (providing the major storage capacity in this reservoir) were produced by intrastratal solution and collapse of carbonate layers, whereas microscopic pores (connecting the larger pores) generally formed by the leaching of individual carbonate grains and crystals. Most pore types developed during periods of subaerial exposure across the carbonate bank, tied to either the numerous, though brief falls of relative sea level during Beekmantown deposition or more importantly the prolonged Knox unconformity at the close of sedimentation. The distribution of reservoir-quality porosity is quite heterogeneous, being confined vertically to a zone immediately below the unconformity and best developed laterally beneath buried hills and noses of this erosion surface. The inferred, shallow flow of ground water in the Beekmantown karst, primarily below topographic highs and above a diagenetic base level close to the water table, led to this irregular distribution of porosity.

  3. Enhanced virtual microscopy for collaborative education.

    PubMed

    Triola, Marc M; Holloway, William J

    2011-01-26

    Curricular reform efforts and a desire to use novel educational strategies that foster student collaboration are challenging the traditional microscope-based teaching of histology. Computer-based histology teaching tools and Virtual Microscopes (VM), computer-based digital slide viewers, have been shown to be effective and efficient educational strategies. We developed an open-source VM system based on the Google Maps engine to transform our histology education and introduce new teaching methods. This VM allows students and faculty to collaboratively create content, annotate slides with markers, and it is enhanced with social networking features to give the community of learners more control over the system. We currently have 1,037 slides in our VM system comprised of 39,386,941 individual JPEG files that take up 349 gigabytes of server storage space. Of those slides 682 are for general teaching and available to our students and the public; the remaining 355 slides are used for practical exams and have restricted access. The system has seen extensive use with 289,352 unique slide views to date. Students viewed an average of 56.3 slides per month during the histology course and accessed the system at all hours of the day. Of the 621 annotations added to 126 slides 26.2% were added by faculty and 73.8% by students. The use of the VM system reduced the amount of time faculty spent administering the course by 210 hours, but did not reduce the number of laboratory sessions or the number of required faculty. Laboratory sessions were reduced from three hours to two hours each due to the efficiencies in the workflow of the VM system. Our virtual microscope system has been an effective solution to the challenges facing traditional histopathology laboratories and the novel needs of our revised curriculum. The web-based system allowed us to empower learners to have greater control over their content, as well as the ability to work together in collaborative groups. The VM system saved faculty time and there was no significant difference in student performance on an identical practical exam before and after its adoption. We have made the source code of our VM freely available and encourage use of the publically available slides on our website.

  4. Virtual Reality Glasses and "Eye-Hands Blind Technique" for Microsurgical Training in Neurosurgery.

    PubMed

    Choque-Velasquez, Joham; Colasanti, Roberto; Collan, Juhani; Kinnunen, Riina; Rezai Jahromi, Behnam; Hernesniemi, Juha

    2018-04-01

    Microsurgical skills and eye-hand coordination need continuous training to be developed and refined. However, well-equipped microsurgical laboratories are not so widespread as their setup is expensive. Herein, we present a novel microsurgical training system that requires a high-resolution personal computer screen, smartphones, and virtual reality glasses. A smartphone placed on a holder at a height of about 15-20 cm from the surgical target field is used as the webcam of the computer. A specific software is used to duplicate the video camera image. The video may be transferred from the computer to another smartphone, which may be connected to virtual reality glasses. Using the previously described training model, we progressively performed more and more complex microsurgical exercises. It did not take long to set up our system, thus saving time for the training sessions. Our proposed training model may represent an affordable and efficient system to improve eye-hand coordination and dexterity in using not only the operating microscope but also endoscopes and exoscopes. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. The Isotope Geochemistry of Abyssal Peridotites and Related Rocks

    DTIC Science & Technology

    1993-06-01

    object of several cruises, including a combined geophysics and petrology cruise (R/V Robert Conrad 27-09: Dick, et al., 1991) and an ocean drilling ...al. (1991) Proceed- ings of the Ocean Drilling Program, Scientific Results Vol. 118. Snow, J., Hart, S.R. and Dick, H.J.B. (1991) "Os isotopic...the geology, petrology , and geochemistry of mantle rocks, as well as their physical and acoustic properties. The first indications that the oceanic

  6. Calculation of Source and Structure Parameters at Regional and Teleseismic Distances

    DTIC Science & Technology

    1989-04-13

    Vedder. Am.. 67. 1029-1050, 1977. Geology of the Los Angeles Basin area, California-An Introduc- Langston. C. A.. Structure under Mount Rainier , Washington...Assistant Professor of Geophysics. David H. Eggler, Professor of Petrology , Chair of Graduate Program in Geosciences. ’)7 We approve the thesis of Rotert... petrologic , and tectonic models of this region. Data from other areas indicate that upper mantle P-wave velocities and structure correlate with surface

  7. Review of Geologic Data Sources for Coastal Sediment Budgets

    DTIC Science & Technology

    1993-02-01

    significant elements of the overall sedimentary environment . Boundaries can, for example, be delineated by headlands, submarine canyons, inlets, stream...Doubleday, Garden City, NY. Biederman, E. W. 1962. "Distinction of Shoreline Environments in New Jersey," Journal of Sedimentary Petrology, Vol 32, pp 181...234. Ingrim, R. L. 1965. " Facies Maps Based on the Megascopic Examination of Modvrn Sediments," Journal of Sedimentary Petrology, Vol 35, No. 3, pp 61W

  8. Mineralogy, petrology and chemistry of ANT-suite rocks from the lunar highlands

    NASA Technical Reports Server (NTRS)

    Prinz, M.; Keil, K.

    1977-01-01

    Anorthositic-noritic-troctolitic (ANT) rocks are the oldest and most abundant rocks of the lunar surface, and comprise about 90% of the suite of the lunar highlands. Consideration is given to the mineralogy, petrology, bulk chemistry, and origin of ANT-suite rocks. Problems associated in classifying and labeling lunar highland rocks because of textural complexities occurring from impact modifications are discussed. The mineralogy of ANT-suite rocks, dominated by plagioclase, olivine and pyrozene, and containing various minor minerals, is outlined. The petrology of ANT-suite rocks is reviewed along with the major element bulk composition of these rocks, noting that they are extremely depleted in K2O and P2O5. Various models describing the origin of ANT-suite rocks are summarized, and it is suggested that this origin involves a parental liquid of high-alumina basalt with low Fe/Fe+Mg.

  9. Principles of Metamorphic Petrology

    NASA Astrophysics Data System (ADS)

    Williams, Michael L.

    2009-05-01

    The field of metamorphic petrology has seen spectacular advances in the past decade, including new X-ray mapping techniques for characterizing metamorphic rocks and minerals, new internally consistent thermobarometers, new software for constructing and viewing phase diagrams, new methods to date metamorphic processes, and perhaps most significant, revised petrologic databases and the ability to calculate accurate phase diagrams and pseudosections. These tools and techniques provide new power and resolution for constraining pressure-temperature (P-T) histories and tectonic events. Two books have been fundamental for empowering petrologists and structural geologists during the past decade. Frank Spear's Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths, published in 1993, builds on his seminal papers to provide a quantitative framework for P-T path analysis. Spear's book lays the foundation for modern quantitative metamorphic analysis. Cees Passchier and Rudolph Trouw's Microtectonics, published in 2005, with its superb photos and figures, provides the tools and the theory for interpreting deformation textures and inferring deformation processes.

  10. Source brightness and useful beam current of carbon nanotubes and other very small emitters

    NASA Astrophysics Data System (ADS)

    Kruit, P.; Bezuijen, M.; Barth, J. E.

    2006-01-01

    The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ``brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed.

  11. A new neuroinformatics approach to personalized medicine in neurology: The Virtual Brain

    PubMed Central

    Falcon, Maria I.; Jirsa, Viktor; Solodkin, Ana

    2017-01-01

    Purpose of review An exciting advance in the field of neuroimaging is the acquisition and processing of very large data sets (so called ‘big data’), permitting large-scale inferences that foster a greater understanding of brain function in health and disease. Yet what we are clearly lacking are quantitative integrative tools to translate this understanding to the individual level to lay the basis for personalized medicine. Recent findings Here we address this challenge through a review on how the relatively new field of neuroinformatics modeling has the capacity to track brain network function at different levels of inquiry, from microscopic to macroscopic and from the localized to the distributed. In this context, we introduce a new and unique multiscale approach, The Virtual Brain (TVB), that effectively models individualized brain activity, linking large-scale (macroscopic) brain dynamics with biophysical parameters at the microscopic level. We also show how TVB modeling provides unique biological interpretable data in epilepsy and stroke. Summary These results establish the basis for a deliberate integration of computational biology and neuroscience into clinical approaches for elucidating cellular mechanisms of disease. In the future, this can provide the means to create a collection of disease-specific models that can be applied on the individual level to personalize therapeutic interventions. Video abstract http://links.lww.com/CONR/A41 PMID:27224088

  12. Polypoid nodular histiocytic hyperplasia associated with endometrioid adenocarcinoma of the endometrium: report of a case

    PubMed Central

    2014-01-01

    A 45 year old woman underwent Laparoscopy-assisted total hysterectomy with staging procedure following a diagnosis of endometrial endometrioid adenocarcinoma on her endometrial biopsy. The hysterectomy specimen showed a FIGO I stage 1a, endometrioid carcinoma. A separate polypoid lesion in the endometrium, distinct from the carcinoma, was also identified. Microscopically the polypoid lesion was “nodular histiocytic hyperplasia”. The H&E, immunohistochemical staining findings and the differential diagnoses are discussed in this report. Although description of similar lesions is available in the literature, the current lesion is unique as it is identified in a hysterectomy specimen in its entirety and its association with an endometrial endometrioid carcinoma. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1060511915121922 PMID:24885845

  13. Fluorescence Live Cell Imaging

    PubMed Central

    Ettinger, Andreas

    2014-01-01

    Fluorescence microscopy of live cells has become an integral part of modern cell biology. Fluorescent protein tags, live cell dyes, and other methods to fluorescently label proteins of interest provide a range of tools to investigate virtually any cellular process under the microscope. The two main experimental challenges in collecting meaningful live cell microscopy data are to minimize photodamage while retaining a useful signal-to-noise ratio, and to provide a suitable environment for cells or tissues to replicate physiological cell dynamics. This chapter aims to give a general overview on microscope design choices critical for fluorescence live cell imaging that apply to most fluorescence microscopy modalities, and on environmental control with a focus on mammalian tissue culture cells. In addition, we provide guidance on how to design and evaluate fluorescent protein constructs by spinning disk confocal microscopy. PMID:24974023

  14. Moessbauer spectroscopy and scanning electron microscopy of the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Brown, Christopher L.; Oliver, Frederick W.; Hammond, Ernest C., Jr.

    1989-01-01

    Meteorites provide a wealth of information about the solar system's formation, since they have similar building blocks as the Earth's crust but have been virtually unaltered since their formation. Some stony meteorites contain minerals and silicate inclusions, called chondrules, in the matrix. Utilizing Moessbauer spectroscopy, we identified minerals in the Murchison meteorite, a carbonaceous chondritic meteorite, by the gamma ray resonance lines observed. Absorption patterns of the spectra were found due to the minerals olivine and phyllosilicate. We used a scanning electron microscope to describe the structure of the chondrules in the Murchison meteorite. The chondrules were found to be deformed due to weathering of the meteorite. Diameters varied in size from 0.2 to 0.5 mm. Further enhancement of the microscopic imagery using a digital image processor was used to describe the physical characteristics of the inclusions.

  15. Experimental Applications of the Modular Acoustic System for the Submersible ALVIN

    DTIC Science & Technology

    1975-08-01

    surface. Data comparlsoIs can be made with results from other on-site instrumental packages, such as rock hammers and drills , and plankton nets...Massachusetts, and Long Island Sound," J. Sedimentary Petrology 33:723-727. Rhoads, D.C. and 1). J. Stanley (1965). "Biogenic Graded Bedding," J...Sedimentary Petrology 35:956-963. Rhoads, D.C. (1967). "Biogenic Reworking of Intertidal and Sub- tidal Sediments in Barnstable Harbor and Buzzards Bay, Massa

  16. Can Earth Materials BE Adequately Covered in a - or Two-Semester Course?

    NASA Astrophysics Data System (ADS)

    Hefferan, K. P.; O'Brien, J.

    2007-12-01

    Traditional geology programs offer courses in mineralogy, optical mineralogy, igneous petrology, metamorphic petrology, sedimentology and economic geology. At many universities this suite of mineralogy/petrology courses has been supplanted by a one-semester or two-semester Earth Materials course. This interactive poster poses five questions to faculty and students related to the means by which Earth Materials can be delivered: 1) Available online syllabi demonstrate a wide variation in the topics addressed in Earth Materials courses; is there a standard core of key topics that must be covered and in what level of detail? 2) Can a one-semester or two- semester Earth Materials course adequately cover these topics? 3) Excellent textbooks exist in both mineralogy and in petrology; what textbooks, if any, adequately encompass Earth Materials? 4) How has the online environment changed the way in which we use textbooks in the classroom? 5) Given the evolution of geology programs, higher education and the global economy in the past twenty years, what additional changes can be anticipated with respect to delivery and demand of Earth Materials topics? Answers-- or at least related discussions-- to these questions are encouraged via verbal dialogue among participants and/or by comments written on the poster. Our goal is to solicit faculty, student and industry feedback to create a textbook, curricula and online materials that support an Earth Materials course.

  17. Petrology of Anomalous Mafic Achondrite Polymict Breccia Pasamonte

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Berger, E. L.; Le, L.

    2017-01-01

    The most common asteroidal igneous meteorites are eucrite-type basalts and gabbros - rocks composed of ferroan pigeonite and augite, calcic plagioclase, silica, ilmenite, troilite, Ca-phosphate, chromite and Fe-metal [1]. These rocks are thought to have formed on a single asteroid, widely considered to be 4 Vesta, along with howardites and diogenites [1, 2]. High precision O-isotopic analyses have shown that some eucrites have small, well-resolved O-isotopic differences from the group mean [3-5]. These Oanomalous eucrites are thought to hail from asteroidal parents that are distinct from that of eucrites [5]. Three O-anomalous eucrites are PCA 82502, PCA 91007 (paired) and Pasamonte, all of which have the same O-isotopic composition [5, 6]. Our petrologic studies have shown that PCA 82502 and PCA 91007 have well-resolved anomalies in low-Ca pyroxene Fe/Mn compared to eucrites [6]. Divalent Mn and Fe are homologous species that do not greatly fractionate during igneous processes; mafic mineral Fe/Mn can be used to fingerprint parent object sources [7]. Previous petrological studies of Pasamonte [8-10] have not yielded sufficiently precise Fe/Mn ratios to allow distinction of anomalies of the scale of those found for the PCA basalts. We have begun petrological study of Pasamonte for comparison with our results on normal and anomalous eucrites [6], and to constrain its origin.

  18. Apollo 12 feldspathic basalts 12031, 12038, and 12072; petrology, comparison and interpretations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaty, E.W.; Hill, S.M.R.; Albee, A.L.

    1979-01-01

    Modal and chemical data indicate that 12072, 12038, and 12031, the Apollo 12 feldspathic basalts, form a well-defined group which cannot be related to the other Apollo 12 rock types. 12072 contains phenocrysts of olivine and pigeonite and microphenocrysts of Cr-spinel set in a fine-grained, variolitic groundmass. 12038 is a medium-grained, equigranular basalt with a texture indicating it was multiply saturated. 12031 is a coarse-grained rock with granular to graphic intergrowths of pyroxene and plagioclase; it was also multiply saturated. Petrologic observations, as well as the bulk chemistry, are consistent with the interpretation that 12031 could be derived from 12072more » through fractionation of Cr-spinel, olivine, and pigeonite, the observed phenocryst assemblage. 12038, however, contains more pigeonite, less olivine, three times as much Ca-phosphate minerals, one-fifth as much troilite, and much more sodic plagioclase than 12072. These differences indicate that 12038 must have come from a separate igneous body. Consideration of the bulk compositions indicates that neither 12072 and 12031 nor 12038 could have been derived from the Apollo 12 olivine, pigeonite, or ilmenite basalts by crystal--liquid fractionation. The general petrologic similarities between 12072, 12031, and the other Apollo 12 basalts suggests that they were produced in either the same or similar source regions. 12038, however, is petrologically and chemically unique, and is probably exotic to the Apollo 12 landing site.« less

  19. Thermal and petrologic constraints on the lower crustal melt accumulation in the Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Karakas, O.; Dufek, J.; Mangan, M.; Wright, H. M. N.

    2014-12-01

    Heat transfer in active volcanic areas is governed by complex coupling between tectonic and magmatic processes. These two processes provide unique imprints on the petrologic and thermal evolution of magma by controlling the geometry, depth, longevity, composition, and fraction of melt in the crust. The active volcanism, tectonic extension, and significantly high surface heat flow in Salton Sea Geothermal Field, CA, provides information about the dynamic heat transfer processes in its crust. The volcanism in the area is associated with tectonic extension over the last 500 ka, followed by subsidence and sedimentation at the surface level and dike emplacement in the lower crust. Although significant progress has been made describing the tectonic evolution and petrology of the erupted products of the Salton Buttes, their coupled control on the crustal heat transfer and feedback on the melt evolution remain unclear. To address these concepts, we develop a two-dimensional finite volume model and investigate the compositional and thermal evolution of the melt and crust in the Salton Sea Geothermal Field through a one-way coupled thermal model that accounts for tectonic extension, lower crustal magma emplacement, sedimentation, and subsidence. Through our simulations, we give quantitative estimates to the thermal and compositional evolution and longevity of the lower crustal melt source in the crustal section. We further compare the model results with petrologic constraints. Our thermal balance equations show that crustal melting is limited and the melt is dominated by mantle-derived material. Similarly, petrologic work on δ18O isotope ratios suggests fractional crystallization of basalt with minor crustal assimilation. In addition, we suggest scenarios for the melt fraction, composition, enthalpy release, geometry and depth of magma reservoirs, their temporal evolution, and the timescales of magmatic storage and evolution processes. These parameters provide the source conditions for the dynamics of surface volcanism and the presence of a geothermal system, which modify the thermal and mechanical structure of the crust.

  20. The Run-up to Volcanic Eruption Unveiled by Forensic Petrology and Geophysical Observations

    NASA Astrophysics Data System (ADS)

    Rasmussen, D. J.; Plank, T. A.; Roman, D. C.

    2017-12-01

    Volcanoes often warn of impending eruptions. However, one of the greatest challenges in volcano research is translating precursory geophysical signals into physical magmatic processes. Petrology offers powerful tools to study eruption run-up that benefit from direct response to magmatic forcings. Developing these tools, and tying them to geophysical observations, will help us identify eruption triggers (e.g., magmatic recharge, gas build-up, tectonic events) and understand the significance of monitored signals of unrest. We present an overview of petrologic tools used for studying eruption run-up, highlighting results from our study of the 1999 eruption of Shishaldin volcano. Olivine crystals contain chemical gradients, the consequence of diffusion following magma mixing events, which is modeled to determine mixing timescales. Modeled timescales provide strong evidence for at least three mixing events, which were triggered by magmatic recharge. Petrologic barometers indicate these events occurred at very shallow depths (within the volcanic edifice). The first mixing event occurred nine months before eruption, which was signaled by a swarm of deep-long period earthquake. Minor recharge events followed over two months, which are indicated by a second deep-long period earthquake swarm and a change in the local stress orientation measured by shear-wave splitting. Following these events, the system was relatively quiet until a large mixing event occurred 45 days prior to eruption, which was heralded by a large earthquake (M5.2). Following this event, geophysical signals of unrest intensified and became continuous. The final mixing event, beginning roughly a week before eruption, represents the final perturbation to the system before eruption. Our findings point to a relatively long run-up, which was subtle at first and intensified several weeks before eruption. This study highlights the strong link between geophysical signals of volcanic unrest and magmatic events, and helps open the door for the application of forensic petrology to unmonitored eruptions.

  1. AI (artificial intelligence) in histopathology--from image analysis to automated diagnosis.

    PubMed

    Kayser, Klaus; Görtler, Jürgen; Bogovac, Milica; Bogovac, Aleksandar; Goldmann, Torsten; Vollmer, Ekkehard; Kayser, Gian

    2009-01-01

    The technological progress in digitalization of complete histological glass slides has opened a new door in tissue--based diagnosis. The presentation of microscopic images as a whole in a digital matrix is called virtual slide. A virtual slide allows calculation and related presentation of image information that otherwise can only be seen by individual human performance. The digital world permits attachments of several (if not all) fields of view and the contemporary visualization on a screen. The presentation of all microscopic magnifications is possible if the basic pixel resolution is less than 0.25 microns. To introduce digital tissue--based diagnosis into the daily routine work of a surgical pathologist requires a new setup of workflow arrangement and procedures. The quality of digitized images is sufficient for diagnostic purposes; however, the time needed for viewing virtual slides exceeds that of viewing original glass slides by far. The reason lies in a slower and more difficult sampling procedure, which is the selection of information containing fields of view. By application of artificial intelligence, tissue--based diagnosis in routine work can be managed automatically in steps as follows: 1. The individual image quality has to be measured, and corrected, if necessary. 2. A diagnostic algorithm has to be applied. An algorithm has be developed, that includes both object based (object features, structures) and pixel based (texture) measures. 3. These measures serve for diagnosis classification and feedback to order additional information, for example in virtual immunohistochemical slides. 4. The measures can serve for automated image classification and detection of relevant image information by themselves without any labeling. 5. The pathologists' duty will not be released by such a system; to the contrary, it will manage and supervise the system, i.e., just working at a "higher level". Virtual slides are already in use for teaching and continuous education in anatomy and pathology. First attempts to introduce them into routine work have been reported. Application of AI has been established by automated immunohistochemical measurement systems (EAMUS, www.diagnomX.eu). The performance of automated diagnosis has been reported for a broad variety of organs at sensitivity and specificity levels >85%). The implementation of a complete connected AI supported system is in its childhood. Application of AI in digital tissue--based diagnosis will allow the pathologists to work as supervisors and no longer as primary "water carriers". Its accurate use will give them the time needed to concentrating on difficult cases for the benefit of their patients.

  2. Haptic Technologies for MEMS Design

    NASA Astrophysics Data System (ADS)

    Calis, Mustafa; Desmulliez, Marc P. Y.

    2006-04-01

    This paper presents for the first time a design methodology for MEMS/NEMS based on haptic sensing technologies. The software tool created as a result of this methodology will enable designers to model and interact in real time with their virtual prototype. One of the main advantages of haptic sensing is the ability to bring unusual microscopic forces back to the designer's world. Other significant benefits for developing such a methodology include gain productivity and the capability to include manufacturing costs within the design cycle.

  3. Report of the Workshop on Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H. (Editor); Herd, Christopher D. K. (Editor)

    2002-01-01

    Geochemical and petrologic studies of the Martian meteorites (nicknamed the SNCs) have proliferated in the past few years, from a wealth of new samples and the perfection of new analytical methods. An intriguing result from these studies is that the chemical and isotopic compositions of the Martian meteorites, all basalts or derived from basaltic magma, can be modeled as mixtures of a limited number of components. These mixing components were the focus of the workshop.

  4. Summary of the research work of the Trace Elements Section, Geochemistry and Petrology Branch, for the period April 1, 1948-December 31, 1950

    USGS Publications Warehouse

    Rabbitt, John C.

    1951-01-01

    Much of the material in this report has been paraphrased from reports prepared by members of the Section. My special thanks are due them; to Earl Ingerson, chief of the Geochemistry and Petrology Branch of the Survey, for his critical review; to my secretary, Marie Woolihan, for her aid in collecting material; and to Virginia Layne of the editorial staff of the Section for typing the manuscript and the multilith mats.

  5. Distribution of terrestrial age and petrologic type of meteorites from western Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jull, A.J.T.; Donahue, D.J.; Wlotzka, F.

    1990-10-01

    A group of 54 meteorites have been recovered from Daraj, Western Libya. After assessment of pairing of samples, using petrologic criteria, {sup 14}C terrestrial ages were obtained on 13 samples selected from 9 different fall events. Eleven of the ages range from 3,500 to 7,600 years, with only two samples having ages in excess of 10,000 years. The cut-off in ages may be related to the timing of climatic changes in the Hammadah al Hamra.

  6. Mineralogy, Petrology, Chronology, and Exposure History of the Chelyabinsk Meteorite and Parent Body

    NASA Technical Reports Server (NTRS)

    Righter, K.; Abell, P.; Agresti, D.; Berger, E. L.; Burton, A. S.; Delaney, J. S.; Fries, M. D.; Gibson, E. K.; Harrington, R.; Herzog, G. F.; hide

    2015-01-01

    The Chelyabinsk meteorite fall on February 15, 2013 attracted much more attention worldwide than do most falls. A consortium led by JSC received 3 masses of Chelyabinsk (Chel-101, -102, -103) that were collected shortly after the fall and handled with care to minimize contamination. Initial studies were reported in 2013; we have studied these samples with a wide range of analytical techniques to better understand the mineralogy, petrology, chronology and exposure history of the Chelyabinsk parent body.

  7. Petrology and Geochemistry of New Paired Martian Meteorites Larkman Nunatak 12240 and Larkman Nunatak 12095

    NASA Technical Reports Server (NTRS)

    Funk, R. C.; Peslier, A. H.; Brandon, A. D.; Humayun, M.

    2016-01-01

    Two of the latest Martian meteorites found in Antarctica, paired olivine-phyric shergottites LAR 12240 and LAR 12095, are described in order to decipher their petrological context, and place constraints on the geological history of Mars. This project identifies all phases found in LAR 12240 and 12095 and analyzes them for major and trace elements. The textural relationships among these phases are examined in order to develop a crystallization history of the magma(s) that formed these basalts.

  8. Research in volcanic geology, petrology and planetary science at MIT, 1969 to 1974

    NASA Technical Reports Server (NTRS)

    Mcgetchin, T. R.

    1974-01-01

    The behavior of volcanoes was studied by geologic mapping, petrologic investigations of lava and xenoliths, physical measurements, and theoretical modelling. Field observations were conducted in Alaska (Nunivak Island), Iceland, Hawaii (Mauna Kea), Italy (Etna, Stromboli), and Arizona. The results are discussed and compared with known data for lunar and planetary gelogy. Field methods used for the volcano research are cited and a list is given of all participating scientists and students. Publications and abstracts resulting from the research are also listed.

  9. Use of virtual slide system for quick frozen intra-operative telepathology diagnosis in Kyoto, Japan.

    PubMed

    Tsuchihashi, Yasunari; Takamatsu, Terumasa; Hashimoto, Yukimasa; Takashima, Tooru; Nakano, Kooji; Fujita, Setsuya

    2008-07-15

    We started to use virtual slide (VS) and virtual microscopy (VM) systems for quick frozen intra-operative telepathology diagnosis in Kyoto, Japan. In the system we used a digital slide scanner, VASSALO by CLARO Inc., and a broadband optic fibre provided by NTT West Japan Inc. with the best effort capacity of 100 Mbps. The client is the pathology laboratory of Yamashiro Public Hospital, one of the local centre hospitals located in the south of Kyoto Prefecture, where a full-time pathologist is not present. The client is connected by VPN to the telepathology centre of our institute located in central Kyoto. As a result of the recent 15 test cases of VS telepathology diagnosis, including cases judging negative or positive surgical margins, we could estimate the usefulness of VS in intra-operative remote diagnosis. The time required for the frozen section VS file making was found to be around 10 min when we use x10 objective and if the maximal dimension of the frozen sample is less than 20 mm. Good correct focus of VS images was attained in all cases and all the fields of each tissue specimen. Up to now the capacity of best effort B-band appears to be sufficient to attain diagnosis on time in intra-operation. Telepathology diagnosis was achieved within 5 minutes in most cases using VS viewer provided by CLARO Inc. The VS telepathology system was found to be superior to the conventional still image telepathology system using a robotic microscope since in the former we can observe much greater image information than in the latter in a certain limited time of intra-operation and in the much more efficient ways. In the near future VS telepathology will replace conventional still image telepathology with a robotic microscope even in quick frozen intra-operative diagnosis.

  10. Use of virtual slide system for quick frozen intra-operative telepathology diagnosis in Kyoto, Japan

    PubMed Central

    Tsuchihashi, Yasunari; Takamatsu, Terumasa; Hashimoto, Yukimasa; Takashima, Tooru; Nakano, Kooji; Fujita, Setsuya

    2008-01-01

    We started to use virtual slide (VS) and virtual microscopy (VM) systems for quick frozen intra-operative telepathology diagnosis in Kyoto, Japan. In the system we used a digital slide scanner, VASSALO by CLARO Inc., and a broadband optic fibre provided by NTT West Japan Inc. with the best effort capacity of 100 Mbps. The client is the pathology laboratory of Yamashiro Public hospital, one of the local centre hospitals located in the south of Kyoto Prefecture, where a fulltime pathologist is not present. The client is connected by VPN to the telepathology centre of our institute located in central Kyoto. As a result of the recent 15 test cases of VS telepathology diagnosis, including cases judging negative or positive surgical margins, we could estimate the usefulness of VS in intra-operative remote diagnosis. The time required for the frozen section VS file making was found to be around 10 min when we use ×10 objective and if the maximal dimension of the frozen sample is less than 20 mm. Good correct focus of VS images was attained in all cases and all the fields of each tissue specimen. Up to now the capacity of best effort B-band appears to be sufficient to attain diagnosis on time in intra-operation. Telepathology diagnosis was achieved within 5 minutes in most cases using VS viewer provided by CLARO Inc. The VS telepathology system was found to be superior to the conventional still image telepathology system using a robotic microscope since in the former we can observe much greater image information than in the latter in a certain limited time of intra-operation and in the much more efficient ways. In the near future VS telepathology will replace conventional still image telepathology with a robotic microscope even in quick frozen intra-operative diagnosis. PMID:18673520

  11. Emulation and design of terahertz reflection-mode confocal scanning microscopy based on virtual pinhole

    NASA Astrophysics Data System (ADS)

    Yang, Yong-fa; Li, Qi

    2014-12-01

    In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.

  12. Virtual Tool Mark Generation for Efficient Striation Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekstrand, Laura; Zhang, Song; Grieve, Taylor

    2014-02-16

    This study introduces a tool mark analysis approach based upon 3D scans of screwdriver tip and marked plate surfaces at the micrometer scale from an optical microscope. An open-source 3D graphics software package is utilized to simulate the marking process as the projection of the tip's geometry in the direction of tool travel. The edge of this projection becomes a virtual tool mark that is compared to cross-sections of the marked plate geometry using the statistical likelihood algorithm introduced by Chumbley et al. In a study with both sides of six screwdriver tips and 34 corresponding marks, the method distinguishedmore » known matches from known nonmatches with zero false-positive matches and two false-negative matches. For matches, it could predict the correct marking angle within ±5–10°. Individual comparisons could be made in seconds on a desktop computer, suggesting that the method could save time for examiners.« less

  13. LabVIEW 2010 Computer Vision Platform Based Virtual Instrument and Its Application for Pitting Corrosion Study.

    PubMed

    Ramos, Rogelio; Zlatev, Roumen; Valdez, Benjamin; Stoytcheva, Margarita; Carrillo, Mónica; García, Juan-Francisco

    2013-01-01

    A virtual instrumentation (VI) system called VI localized corrosion image analyzer (LCIA) based on LabVIEW 2010 was developed allowing rapid automatic and subjective error-free determination of the pits number on large sized corroded specimens. The VI LCIA controls synchronously the digital microscope image taking and its analysis, finally resulting in a map file containing the coordinates of the detected probable pits containing zones on the investigated specimen. The pits area, traverse length, and density are also determined by the VI using binary large objects (blobs) analysis. The resulting map file can be used further by a scanning vibrating electrode technique (SVET) system for rapid (one pass) "true/false" SVET check of the probable zones only passing through the pit's centers avoiding thus the entire specimen scan. A complete SVET scan over the already proved "true" zones could determine the corrosion rate in any of the zones.

  14. Producing coherent excitations in pumped Mott antiferromagnetic insulators

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Claassen, Martin; Moritz, B.; Devereaux, T. P.

    2017-12-01

    Nonequilibrium dynamics in correlated materials has attracted attention due to the possibility of characterizing, tuning, and creating complex ordered states. To understand the photoinduced microscopic dynamics, especially the linkage under realistic pump conditions between transient states and remnant elementary excitations, we performed nonperturbative simulations of various time-resolved spectroscopies. We used the Mott antiferromagnetic insulator as a model platform. The transient dynamics of multiparticle excitations can be attributed to the interplay between Floquet virtual states and a modification of the density of states, in which interactions induce a spectral weight transfer. Using an autocorrelation of the time-dependent spectral function, we show that resonance of the virtual states with the upper Hubbard band in the Mott insulator provides the route towards manipulating the electronic distribution and modifying charge and spin excitations. Our results link transient dynamics to the nature of many-body excitations and provide an opportunity to design nonequilibrium states of matter via tuned laser pulses.

  15. Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork

    PubMed Central

    Villafana, Tana Elizabeth; Brown, William P.; Delaney, John K.; Palmer, Michael; Warren, Warren S.; Fischer, Martin C.

    2014-01-01

    The layering structure of a painting contains a wealth of information about the artist's choice of materials and working methods, but currently, no 3D noninvasive method exists to replace the taking of small paint samples in the study of the stratigraphy. Here, we adapt femtosecond pump-probe imaging, previously shown in tissue, to the case of the color palette in paintings, where chromophores have much greater variety. We show that combining the contrasts of multispectral and multidelay pump-probe spectroscopy permits nondestructive 3D imaging of paintings with molecular and structural contrast, even for pigments with linear absorption spectra that are broad and relatively featureless. We show virtual cross-sectioning capabilities in mockup paintings, with pigment separation and nondestructive imaging on an intact 14th century painting (The Crucifixion by Puccio Capanna). Our approach makes it possible to extract microscopic information for a broad range of applications to cultural heritage. PMID:24449855

  16. Quantitative imaging of heterogeneous dynamics in drying and aging paints

    PubMed Central

    van der Kooij, Hanne M.; Fokkink, Remco; van der Gucht, Jasper; Sprakel, Joris

    2016-01-01

    Drying and aging paint dispersions display a wealth of complex phenomena that make their study fascinating yet challenging. To meet the growing demand for sustainable, high-quality paints, it is essential to unravel the microscopic mechanisms underlying these phenomena. Visualising the governing dynamics is, however, intrinsically difficult because the dynamics are typically heterogeneous and span a wide range of time scales. Moreover, the high turbidity of paints precludes conventional imaging techniques from reaching deep inside the paint. To address these challenges, we apply a scattering technique, Laser Speckle Imaging, as a versatile and quantitative tool to elucidate the internal dynamics, with microscopic resolution and spanning seven decades of time. We present a toolbox of data analysis and image processing methods that allows a tailored investigation of virtually any turbid dispersion, regardless of the geometry and substrate. Using these tools we watch a variety of paints dry and age with unprecedented detail. PMID:27682840

  17. Fabrication of a trimer/single atom tip for gas field ion sources by means of field evaporation without tip heating.

    PubMed

    Kim, Kwang-Il; Kim, Young Heon; Ogawa, Takashi; Choi, Suji; Cho, Boklae; Ahn, Sang Jung; Park, In-Yong

    2018-05-11

    A gas field ion source (GFIS) has many advantages that are suitable for ion microscope sources, such as high brightness and a small virtual source size, among others. In order to apply a tip-based GFIS to an ion microscope, it is better to create a trimer/single atom tip (TSAT), where the ion beam must be generated in several atoms of the tip apex. Here, unlike the conventional method which uses tip heating or a reactive gas, we show that the tip surface can be cleaned using only the field evaporation phenomenon and that the TSAT can also be fabricated using an insulating layer containing tungsten oxide, which remains after electrochemical etching. Using this method, we could get TSAT over 90% of yield. Copyright © 2018. Published by Elsevier B.V.

  18. Integrated fluorescence analysis system

    DOEpatents

    Buican, Tudor N.; Yoshida, Thomas M.

    1992-01-01

    An integrated fluorescence analysis system enables a component part of a sample to be virtually sorted within a sample volume after a spectrum of the component part has been identified from a fluorescence spectrum of the entire sample in a flow cytometer. Birefringent optics enables the entire spectrum to be resolved into a set of numbers representing the intensity of spectral components of the spectrum. One or more spectral components are selected to program a scanning laser microscope, preferably a confocal microscope, whereby the spectrum from individual pixels or voxels in the sample can be compared. Individual pixels or voxels containing the selected spectral components are identified and an image may be formed to show the morphology of the sample with respect to only those components having the selected spectral components. There is no need for any physical sorting of the sample components to obtain the morphological information.

  19. ConfocalVR: Immersive Visualization Applied to Confocal Microscopy.

    PubMed

    Stefani, Caroline; Lacy-Hulbert, Adam; Skillman, Thomas

    2018-06-24

    ConfocalVR is a virtual reality (VR) application created to improve the ability of researchers to study the complexity of cell architecture. Confocal microscopes take pictures of fluorescently labeled proteins or molecules at different focal planes to create a stack of 2D images throughout the specimen. Current software applications reconstruct the 3D image and render it as a 2D projection onto a computer screen where users need to rotate the image to expose the full 3D structure. This process is mentally taxing, breaks down if you stop the rotation, and does not take advantage of the eye's full field of view. ConfocalVR exploits consumer-grade virtual reality (VR) systems to fully immerse the user in the 3D cellular image. In this virtual environment the user can: 1) adjust image viewing parameters without leaving the virtual space, 2) reach out and grab the image to quickly rotate and scale the image to focus on key features, and 3) interact with other users in a shared virtual space enabling real-time collaborative exploration and discussion. We found that immersive VR technology allows the user to rapidly understand cellular architecture and protein or molecule distribution. We note that it is impossible to understand the value of immersive visualization without experiencing it first hand, so we encourage readers to get access to a VR system, download this software, and evaluate it for yourself. The ConfocalVR software is available for download at http://www.confocalvr.com, and is free for nonprofits. Copyright © 2018. Published by Elsevier Ltd.

  20. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars

    USGS Publications Warehouse

    Nunez, Jorge; Farmer, Jack; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars.

  1. The role of virtual reality in surgical training in otorhinolaryngology.

    PubMed

    Fried, Marvin P; Uribe, José I; Sadoughi, Babak

    2007-06-01

    This article reviews the rationale, current status and future directions for the development and implementation of virtual reality surgical simulators as training tools. The complexity of modern surgical techniques, which utilize advanced technology, presents a dilemma for surgical training. Hands-on patient experience - the traditional apprenticeship method for teaching operations - may not apply because of the learning curve for skill acquisition and patient safety expectation. The paranasal sinuses and temporal bone have intricate anatomy with a significant amount of vital structures either within the surgical field or in close proximity. The current standard of surgical care in these areas involves the use of endoscopes, cameras and microscopes, requiring additional hand-eye coordination, an accurate command of fine motor skills, and a thorough knowledge of the anatomy under magnified vision. A surgeon's disorientation or loss of perspective can lead to complications, often catastrophic and occasionally lethal. These considerations define the ideal environment for surgical simulation; not surprisingly, significant research and validation of simulators in these areas have occurred. Virtual reality simulators are demonstrating validity as training and skills assessment tools. Future prototypes will find application for routine use in teaching, surgical planning and the development of new instruments and computer-assisted devices.

  2. Isukasia area: Regional geological setting (includes excursion guide)

    NASA Technical Reports Server (NTRS)

    Nutman, A. P.; Rosing, M.

    1986-01-01

    A brief account of the geology of the Isukasis area is given and is biased toward the main theme of the itinerary for the area: What has been established about the protoliths of the early Archean rocks of the area - the Isua supracrustal belt and the Amitsoq gneisses? The area's long and complex tectonometamorphic history of events can be divided into episodes using a combination of dike chronology, isotopic, and petrological studies. The earliest dikes, the ca 3700 Ma Inaluk dikes, intrude the earliest (tonalitic) components of the Amitsoq gneisses but are themselves cut up by the injection of the younger (granitic and pegmatitic) phases of the Amitsoq gneisses of the area. The areas of low late Archean deformation, strongly deformed early Archean mafic rocks have coarse grained metamorphic segregations and are cut by virtually undeformed mid-Archean Tarssartoq (Ameralik) dikes devoid of metamorphic segregations. The shows that the area was affected by regional amphibolite facies metamorphism in the early Archean. Late Archean and Proterozoic metamorphic imprints are marked to very strong in the area. Much of the early Archean gneiss complex was already highly deformed when the mid-Archean Tarssartoq dikes were intruded.

  3. Pristine Igneous Rocks and the Early Differentiation of Planetary Materials

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    1998-01-01

    Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. Most of the accessible lunar crust consists of materials hybridized by impact-mixing. Rare pristine (unmixed) samples reflect the original genetic diversity of the early crust. We studied the relative importance of internally generated melt (including the putative magma ocean) versus large impact melts in early lunar magmatism, through both sample analysis and physical modeling. Other topics under investigation included: lunar and SNC (martian?) meteorites; igneous meteorites in general; impact breccias, especially metal-rich Apollo samples and polymict eucrites; effects of regolith/megaregolith insulation on thermal evolution and geochronology; and planetary bulk compositions and origins. We investigated the theoretical petrology of impact melts, especially those formed in large masses, such as the unejected parts of the melts of the largest lunar and terrestrial impact basins. We developed constraints on several key effects that variations in melting/displacement ratio (a strong function of both crater size and planetary g) have on impact melt petrology. Modeling results indicate that the impact melt-derived rock in the sampled, megaregolith part of the Moon is probably material that was ejected from deeper average levels than the non-impact-melted material (fragmental breccias and unbrecciated pristine rocks). In the largest lunar impacts, most of the impact melt is of mantle origin and avoids ejection from the crater, while most of the crust, and virtually all of the impact-melted crust, in the area of the crater is ejected. We investigated numerous extraordinary meteorites and Apollo rocks, emphasizing pristine rocks, siderophile and volatile trace elements, and the identification of primary partial melts, as opposed to partial cumulates. Apollo 15 sample 15434,28 is an extraodinarily large glass spherule, nearly if not entirely free of meteoritic contamination, and provides insight into the diversity of mare basalts in the Hadley-Apennine region. Apollo 14 sample 14434 is in many respects a new rock type, intermediate between nonmare gabbronorites and mare basalts. We helped to both plan and implement a consortium to study the Yamato-793605 SNC/martian meteorite.

  4. Properties of the Guin ungrouped iron meteorite - The origin of Guin and of group-IIE irons

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.; Jerde, E. A.; Zong, P.; Wasson, J. T.; Westcott, J. W.; Mayeda, T. K.; Clayton, R. N.

    1986-01-01

    The composition and structure of the Guin ungrouped iron meteorite inclusions have been investigated experimentally. The structural characteristics of polished and etched slabs of the meteorite were studied microscopically in reflected light. Modal abundances of troilite nodules and silicate inclusions were determined by weighing paper traces. The bulk composition of the silicate inclusions was calculated by combining modal phase abundances and mineral compositions. It is found that the largest silicate inclusion (2 x 4 cm) consists mostly of a shock-melted plagioclase-rich matrix surrounding large, partly melted augite grains. The oxygen isotopic composition of the inclusion is near that of LL chondrites. The inclusion is found to be similar in composition to selected melt pocket glasses in ordinary chondrites produced in situ by preferential melting of plagioclase rock due to shock compression. It is suggested that the Guin assemblage was formed by impact melting on a chondritic parent body. Silicate inclusions in IIE irons share many of the compositional and petrological characteristics of the Guin inclusions, indicating that IIE irons also formed by impact-melting of chondritic materials. Black and white photomicrographs of the silicate inclusions are provided.

  5. Petrology of the igneous rocks

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.

    1987-01-01

    Papers published during the 1983-1986 period on the petrology and geochemistry of igneous rocks are discussed, with emphasis on tectonic environment. Consideration is given to oceanic rocks, subdivided into divergent margin suites (mid-ocean ridge basalts, ridge-related seamounts, and back-arc basin basalts) and intraplate suites (oceanic island basalts and nonridge seamounts), and to igneous rocks formed at convergent margins (island arc and continental arc suites), subdivided into volcanic associations and plutonic associations. Other rock groups discussed include continental flood basalts, layered mafic intrusions, continental alkalic associations, komatiites, ophiolites, ash-flow tuffs, anorthosites, and mantle xenoliths.

  6. Melt solidification and late-stage evaporation in the evolution of a FUN inclusion from the Vigarano C3V chondrite

    NASA Technical Reports Server (NTRS)

    Davis, Andrew M.; Clayton, Robert N.; Mayeda, Toshiko K.; Sylvester, Paul J.; Macpherson, Glenn J.

    1991-01-01

    Results are presented on a detailed petrologic, chemical, and isotopic study of the so-called FUN inclusion (1623-5) from the Vigarano C3V chondrite. It is shown that the precursor material from which the Vigarano 1623-5 has formed contained some nuclear isotopic anomalies; this precursor was composed of melted and crystallized spinel, olivine, fassaite, and melilite. The results on the petrologic and isotopic properties of 1623-5 indicate unambiguously the action of volatilization in the evolution of this inclusion.

  7. Petrology of Two Itokawa Particles: Comparison with Equilibrated LL Chondrites

    NASA Technical Reports Server (NTRS)

    Komatsu, M.; Mikouchi, T.; Arai, T.; Fagan, T. J.; Zolensky, M.; Hagiya, K.; Ohsumi, K.; Karouji, Y.

    2015-01-01

    A strong link between Itokawa particles and LL chondrites was confirmed by preliminary examinations of Hayabusa particles [e.g., 1, 2]. Both poorly equilibrated and highly equilibrated particles have been found among the grains returned from Itokawa [1], and it is suggested that they correspond to LL4 and LL5-6, respectively. Here we report the petrography of two Itokawa particles and TEM study of one, and compare them to Antarctic LL chondrites with variable petrologic types (LL4-LL7) in order to understand the metamorphic history of asteroid Itokawa.

  8. Determination of Shear Wave Velocity Structure in the Rio Grande Rift Through Receiver Function and Surface Wave Analysis. Appendix B

    DTIC Science & Technology

    1991-08-01

    source and receiver responses for constant ray parameter, Bull. Seism. Soc. Am. 67, 1029-1050, 1977. Langston, C. A., Structure under Mount Rainier ...the 106 petrologic processes taking place within the rift. APPENDIX LIST OF COMPUTER PROGRAMS USED IN THESIS. 107 I 108 PROGRAM: RAY3D AUTHOR: Dr. T.J...Lab. Rep., LA-8676-T, 218 pp., 1981. Baldridge, W. S., Petrology an,3 petrogenesis of Plio- Pleistocene basaltic rocks from the central Rio Grand

  9. Spinel cataclasites in 15445 and 72435 - Petrology and criteria for equilibrium

    NASA Technical Reports Server (NTRS)

    Baker, M. B.; Herzberg, C. T.

    1980-01-01

    The problem of establishing the existence of equilibrium among the coexisting phases in the rock is addressed by presenting petrographic and mineral chemistry data on a new spinel cataclasite from 15445 (clast H) and data more extensive than those previously available on two clasts in 72435. Criteria useful in reconstructing the original petrology of these and other spinel cataclasites are analyzed by considering equilibrium among the different phases, that is, the mono- or polymict nature of these cataclasized samples. Finally, the role of impact processes in disturbing the equilibria is discussed.

  10. Summary of the research work of the Trace Elements Section, Geochemistry and Petrology Branch, for the period January 1-March 31, 1951

    USGS Publications Warehouse

    Rabbitt, John C.

    1951-01-01

    This report summarized the research work of the Trace Elements Section, Geochemistry and Petrology Branch for the period January 1 - March 31, 1951. Work before that is summarized in an earlier report, "Summary of the research work of the Trace Elements Section, Geochemistry and Petrology Branch, for the period April 1, 1948 - December 31, 1950," by John C. Rabbitt (U.S. Geol. Survey Trace Elements Investigations Rept. 148, January 1951). This report will be referred to as TEIR 148. In TEIR 148 the purpose of each project was described and it is not thought necessary to repeat that material. The research work of the section consists of laboratory and related field studies in the following fields: 1. Mineralogic and petrologic investigations of radioactive rocks, minerals, and ores. 2. Investigations of chemical methods of analysis for uranium, thorium, and other elements and compounds in radioactive materials, and related chemical problems. 3. Investigations of spectographic method of analysis for a wide variety of elements in radioactive materials. 4. Investigation of radiometric methods of analysis is applied to radioactive materials. It should be emphasized that the work undertaken so far is almost entirely in the nature of investigations supporting the field appraisal of known uraniferous deposits. A program of more fundamental research, particularly in the mineralogy and geochemistry of uranium, is now being drawn up and will be submitted for approval soon. This report does not deal with the routine analytical work of the Section nor the public-sample program. The analytical work will be summarized in a report to be issued after the end of fiscal year 1951, and a report on the public-sample program is in process. Special thanks are due members of the Section who are engaged in the research work and who have supplied material for this report, the Early Ingerson, Chief of the Geochemistry and Petrology Branch for his critical review, to Jane Titcomb of the editorial staff of the Section for editing the report, and to Virginia Layne of the same staff, for typing the manuscript and the multilith mats.

  11. Petrologically-based Electrical Profiles vs. Geophysical Observations through the Upper Mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Gaillard, F.; Massuyeau, M.; Sifre, D.; Tarits, P.

    2013-12-01

    Mineralogical transformations in the up-welling mantle play a critical role on the dynamics of mass and heat transfers at mid-ocean-ridgeS. The melting event producing ridge basalts occur at 60 km depth below the ridge axis, but because of small amounts of H2O and CO2 in the source region of MOR-basalts, incipient melting can initiate at much greater depth. Such incipient melts concentrate incompatible elements, and are particularly rich in volatile species. These juices evolve from carbonatites, carbonated basalts, to CO2-H2O-rich basalts as recently exposed by petrological surveys; the passage from carbonate to silicate melts is a complex pathway that is strongly non-linear. This picture has recently been complicated further by studies showing that oxygen increasingly partitions into garnet as pressure increases; this implies that incipient melting may be prevented at depth exceeding 200 km because not enough oxygen is available in the system to stabilize carbonate melts. The aim of this work is twofold: - We modelled the complex pathway of mantle melting in presence of C-O-H volatiles by adjusting the thermodynamic properties of mixing in the multi-component C-O-H-melt system. This allows us to calculate the change in melt composition vs. depth following any sortS of adiabat. - We modelled the continuous change in electrical properties from carbonatites, carbonated basalts, to CO2-H2O-rich basalts. We then successfully converted this petrological evolution along a ridge adiabat into electrical conductivity vs. depth signal. The discussion that follows is about comparison of this petrologically-based conductivity profile with the recent profiles obtained by inversion of the long-period electromagnetic signals from the East-Pacific-Rise. These geophysically-based profiles reveal the electrical conductivity structure down to 400 km depth and they show some intriguing highly conductive sections. We will discuss heterogeneity in electrical conductivity of the upper mantle underneath the ridge in terms of melting processes. Our prime conclusion is that the redox melting process, universally predicted by petrological models, might not be universal and that incipient melting can extend down to the transition zone.

  12. Phase petrology reveals shallow magma storage prior to large explosive silicic eruptions at Hekla volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Weber, Gregor; Castro, Jonathan M.

    2017-05-01

    Understanding the conditions that culminate in explosive eruptions of silicic magma is of great importance for volcanic hazard assessment and crisis mitigation. However, geological records of active volcanoes typically show a wide range of eruptive behavior and magnitude, which can vary dramatically for individual eruptive centers. In order to evaluate possible future scenarios of eruption precursors, magmatic system variables for different eruption types need to be constrained. Here we use petrological experiments and microanalysis of crystals to clarify the P-T-x state under which rhyodacitic melts accumulated prior to the H3 eruption; the largest Holocene Plinian eruption of Hekla volcano in Iceland. Cobalt-buffered, H2O-saturated phase equilibrium experiments reproduce the natural H3 pumice phenocryst assemblage (pl > fa + cpx > ilm + mt > ap + zrc) and glass chemistry, at 850 ± 15°C and PH2O of 130 to 175 MPa, implying shallow crustal magma storage between 5 and 6.6 km. The systematics of FeO and anorthite (CaAl2Si2O8) content in plagioclase reveal that thermal gradients were more important than compositional mixing or mingling within this magma reservoir. As these petrological findings indicate magma storage much shallower than is currently thought of Hekla's mafic system, we use the constrained storage depth in combination with deformation modeling to forecast permissible surface uplift patterns that could stem from pre-eruptive magma intrusion. Using forward modeling of surface deformation above various magma storage architectures, we show that vertical surface displacements caused by silicic magma accumulation at ∼6 km depth would be narrower than those observed in recent mafic events, which are fed from a lower crustal storage zone. Our results show how petrological reconstruction of magmatic system variables can help link signs of pre-eruptive geophysical unrest to magmatic processes occurring in reservoirs at shallow depths. This will enhance our abilities to couple deformation measurements (e.g. InSAR and GPS) to petrological studies to better constrain potential precursors to volcanic eruptions.

  13. Carbon nanotube oscillator surface profiling device and method of use

    DOEpatents

    Popescu, Adrian [Tampa, FL; Woods, Lilia M [Tampa, FL; Bondarev, Igor V [Fuquay Varina, NC

    2011-11-15

    The proposed device is based on a carbon nanotube oscillator consisting of a finite length outer stationary nanotube and a finite length inner oscillating nanotube. Its main function is to measure changes in the characteristics of the motion of the carbon nanotube oscillating near a sample surface, and profile the roughness of this surface. The device operates in a non-contact mode, thus it can be virtually non-wear and non-fatigued system. It is an alternative to the existing atomic force microscope (AFM) tips used to scan surfaces to determine their roughness.

  14. A LabVIEW based template for user created experiment automation.

    PubMed

    Kim, D J; Fisk, Z

    2012-12-01

    We have developed an expandable software template to automate user created experiments. The LabVIEW based template is easily modifiable to add together user created measurements, controls, and data logging with virtually any type of laboratory equipment. We use reentrant sequential selection to implement sequence script making it possible to wrap a long series of the user created experiments and execute them in sequence. Details of software structure and application examples for scanning probe microscope and automated transport experiments using custom built laboratory electronics and a cryostat are described.

  15. Benefits of Objective Collapse Models for Cosmology and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Okon, Elias; Sudarsky, Daniel

    2014-02-01

    We display a number of advantages of objective collapse theories for the resolution of long-standing problems in cosmology and quantum gravity. In particular, we examine applications of objective reduction models to three important issues: the origin of the seeds of cosmic structure, the problem of time in quantum gravity and the information loss paradox; we show how reduction models contain the necessary tools to provide solutions for these issues. We wrap up with an adventurous proposal, which relates the spontaneous collapse events of objective collapse models to microscopic virtual black holes.

  16. Amplitude analysis and the nature of the Z c(3900)

    DOE PAGES

    Pilloni, A.; Fernandez-Ramirez, C.; Jackura, A.; ...

    2017-06-21

    The microscopic nature of the XYZ states remains an unsettled topic. We show how a thorough amplitude analysis of the data can help constraining models of these states. Specifically, we consider the case of the Z c(3900) peak and discuss possible scenarios of a QCD state, virtual state, or a kinematical enhancement. Here, we conclude that current data are not precise enough to distinguish between these hypotheses, however, the method we propose, when applied to the forthcoming high-statistics measurements should shed light on the nature of these exotic enhancements.

  17. Modeling of surface effects in crystalline materials within the framework of gradient crystal plasticity

    NASA Astrophysics Data System (ADS)

    Peng, Xiang-Long; Husser, Edgar; Huang, Gan-Yun; Bargmann, Swantje

    2018-03-01

    A finite-deformation gradient crystal plasticity theory is developed, which takes into account the interaction between dislocations and surfaces. The model captures both energetic and dissipative effects for surfaces penetrable by dislocations. By taking advantage of the principle of virtual power, the surface microscopic boundary equations are obtained naturally. Surface equations govern surface yielding and hardening. A thin film under shear deformation serves as a benchmark problem for validation of the proposed model. It is found that both energetic and dissipative surface effects significantly affect the plastic behavior.

  18. Amplitude analysis and the nature of the Z c(3900)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilloni, A.; Fernandez-Ramirez, C.; Jackura, A.

    The microscopic nature of the XYZ states remains an unsettled topic. We show how a thorough amplitude analysis of the data can help constraining models of these states. Specifically, we consider the case of the Z c(3900) peak and discuss possible scenarios of a QCD state, virtual state, or a kinematical enhancement. Here, we conclude that current data are not precise enough to distinguish between these hypotheses, however, the method we propose, when applied to the forthcoming high-statistics measurements should shed light on the nature of these exotic enhancements.

  19. Geochemistry of Martian Meteorites and the Petrologic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.

    2002-01-01

    Mafic igneous rocks serve as probes of the interiors of their parent bodies - the compositions of the magmas contain an imprint of the source region composition and mineralogy, the melting and crystallization processes, and mixing and assimilation. Although complicated by their multifarious history, it is possible to constrain the petrologic evolution of an igneous province through compositional study of the rocks. Incompatible trace elements provide one means of doing this. I will use incompatible element ratios of martian meteorites to constrain the early petrologic evolution of Mars. Incompatible elements are strongly partitioned into the melt phase during igneous processes. The degree of incompatibility will differ depending on the mineral phases in equilibrium with the melt. Most martian meteorites contain some cumulus grains, but nevertheless, incompatible element ratios of bulk meteorites will be close to those of their parent magmas. ALH 84001 is an exception, and it will not be discussed. The martian meteorites will be considered in two groups; a 1.3 Ga group composed of the clinopyroxenites and dunite, and a younger group composed of all others.

  20. [Petrological Analysis of Astrophysical Dust Analog Evolution

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1997-01-01

    This project "Petrological analysis of astrophysical dust analog evolution" was initiated to try to understand the vapor phase condensation, and the nature of the reaction products, in circumstellar environments, such as the solar nebula 4,500 Myrs ago, and in the interstellar medium. Telescope-based infrared [IR] spectroscopy offers a broad-scale inventory of the various types of dust in these environments but no details on small-scale variations in terms of chemistry and morphology and petrological phase relationships. Vapor phase condensation in these environments is almost certainly a non-equilibrium process. The main challenge to this research was to document the nature of this process that, based on astrophysical observations, seems to yield compositionally consistent materials. This observation may suggest a predictable character during non-equilibrium condensation. These astrophysical environments include two chemically distinct, that is, oxygen-rich and carbon-rich environments. The former is characterized by silicates the latter by carbon-bearing solids. According to cosmological models of stellar evolution circumstellar dust accreted into protoplanets wherein thermal and/or aqueous processes will alter the dust under initially, non-equilibrium conditions.

  1. Scanning electron microscopy of hepatic ultrastructure: secondary, backscattered, and transmitted electron imaging.

    PubMed

    Miyai, K; Abraham, J L; Linthicum, D S; Wagner, R M

    1976-10-01

    Several methods of tissue preparation and different modes of operation of the scanning electron microscope were used to study the ultrastructure of rat liver. Rat livers were perfusion fixed with buffered 2 per cent paraformaldehyde or a mixture of 1.5 per cent paraformaldehyde and 1 per cent glutaraldehyde and processed as follows. Tissue blocks were postfixed in buffered 2 per cent osmium tetroxide followed sequentially by the ligand-mediated osmium binding technique, dehydration and cryofracture in ethanol, and critical point drying. They were then examined without metal coating in the scanning electron microscope operating in the secondary electron and backscattered electron modes. Fifty-micrometer sections were cut with a tissue sectioner, stained with lead citrate, postfixed with osmium, dehydrated, critical point dried, and examined in the secondary electron and back-scattered electron modes. Frozen sections (0.25 to 0.75 mum. thick) were cut by the method of Tokuyasu (Toluyasu KT: J Cell Biol 57:551, 1973) and their scanning transmission electron microscope images were examined either with a scanning transmission electron microscope detector or with a conversion stub using the secondary electron detector. Secondary electron images of the liver prepared by ligand-mediated osmium binding and subsequent cryofracture revealed such intracellular structures as cisternae of the endoplasmic reticulum, lysosomes, mitochondria, lipid droplets, nucleolus and nuclear chromatin, as well as the usual surface morphology, Lipocytes in the perisinusoidal space were readily identified. Backscattered electron images. Unembedded frozen sections had little drying artifact and were virtually free of freezing damage. The scanning transmission electron microscope image revealed those organelles visualized by the secondary electron mode in the ligand-mediated osmium binding-treated tissue.

  2. Learning pathology using collaborative vs. individual annotation of whole slide images: a mixed methods trial.

    PubMed

    Sahota, Michael; Leung, Betty; Dowdell, Stephanie; Velan, Gary M

    2016-12-12

    Students in biomedical disciplines require understanding of normal and abnormal microscopic appearances of human tissues (histology and histopathology). For this purpose, practical classes in these disciplines typically use virtual microscopy, viewing digitised whole slide images in web browsers. To enhance engagement, tools have been developed to enable individual or collaborative annotation of whole slide images within web browsers. To date, there have been no studies that have critically compared the impact on learning of individual and collaborative annotations on whole slide images. Junior and senior students engaged in Pathology practical classes within Medical Science and Medicine programs participated in cross-over trials of individual and collaborative annotation activities. Students' understanding of microscopic morphology was compared using timed online quizzes, while students' perceptions of learning were evaluated using an online questionnaire. For senior medical students, collaborative annotation of whole slide images was superior for understanding key microscopic features when compared to individual annotation; whilst being at least equivalent to individual annotation for junior medical science students. Across cohorts, students agreed that the annotation activities provided a user-friendly learning environment that met their flexible learning needs, improved efficiency, provided useful feedback, and helped them to set learning priorities. Importantly, these activities were also perceived to enhance motivation and improve understanding. Collaborative annotation improves understanding of microscopic morphology for students with sufficient background understanding of the discipline. These findings have implications for the deployment of annotation activities in biomedical curricula, and potentially for postgraduate training in Anatomical Pathology.

  3. Conventional Microscopy vs. Computer Imagery in Chiropractic Education.

    PubMed

    Cunningham, Christine M; Larzelere, Elizabeth D; Arar, Ilija

    2008-01-01

    As human tissue pathology slides become increasingly difficult to obtain, other methods of teaching microscopy in educational laboratories must be considered. The purpose of this study was to evaluate our students' satisfaction with newly implemented computer imagery based laboratory instruction and to obtain input from their perspective on the advantages and disadvantages of computerized vs. traditional microscope laboratories. This undertaking involved the creation of a new computer laboratory. Robbins and Cotran Pathologic Basis of Disease, 7(th)ed, was chosen as the required text which gave students access to the Robbins Pathology website, including complete content of text, Interactive Case Study Companion, and Virtual Microscope. Students had experience with traditional microscopes in their histology and microbiology laboratory courses. Student satisfaction with computer based learning was assessed using a 28 question survey which was administered to three successive trimesters of pathology students (n=193) using the computer survey website Zoomerang. Answers were given on a scale of 1-5 and statistically analyzed using weighted averages. The survey data indicated that students were satisfied with computer based learning activities during pathology laboratory instruction. The most favorable aspect to computer imagery was 24-7 availability (weighted avg. 4.16), followed by clarification offered by accompanying text and captions (weighted avg. 4.08). Although advantages and disadvantages exist in using conventional microscopy and computer imagery, current pathology teaching environments warrant investigation of replacing traditional microscope exercises with computer applications. Chiropractic students supported the adoption of computer-assisted instruction in pathology laboratories.

  4. A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future.

    PubMed

    Jonnal, Ravi S; Kocaoglu, Omer P; Zawadzki, Robert J; Liu, Zhuolin; Miller, Donald T; Werner, John S

    2016-07-01

    Optical coherence tomography (OCT) has enabled "virtual biopsy" of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings.

  5. Crystallization Age and Impact Resetting of Ancient Lunar Crust from the Descartes Terrane

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Borg, L. E.; Nyquist, L. E.; Bogard, D. D.

    2002-01-01

    Lunar ferroan anorthosites (FANs) are relics of an ancient, primary feldspathic crust that is widely believed to have crystallized from a global magma ocean. Compositions and ages of FANs provide fundamental information about the origin and magmatic evolution of the Moon, while the petrology and thermal history of lunar FANs illustrate the structure and impact history of the lunar crust. Here we report petrologic, geochemical, and isotopic (Nd-Sr-Ar) studies of a ferroan noritic anorthosite clast from lunar breccia 67215 to improve our understanding of the composition, age, and thermal history of the Moon.

  6. Studies of Brazilian meteorites. XIII - Mineralogy, petrology, and chemistry of the Putinga, Rio Grande do Sul, chondrite

    NASA Technical Reports Server (NTRS)

    Keil, K.; Lange, D.; Ulbrich, M. N. C.; Gomes, C. B.; Jarosewich, E.; Roisenberg, A.; Souza, M. J.

    1978-01-01

    The Putinga, Rio Grande do Sul chondrite is described and classified as an L6. The mineral composition and some significant ratios of elements are reported, and the reasons for assignment to the L group and to petrologic type 6 are explained. The analysis suggests that maskelynite of oligoclase composition was formed by solid-state shock transformation of previously existing well-crystallized plagioclase at estimated shock pressures of about 250-350 kbar. This finding indicates that recrystallization (formation of well-crystallized oligoclase) preceded shock transformation formation of the maskelynite.

  7. Mineralogy and Petrology of COMET WILD2 Nucleus Samples

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Bland, Phil; Bradley, John; Brearley, Adrian; Brennan, Sean; Bridges, John; Brownlee, Donald; Butterworth, Anna; Dai, Zurong; Ebel, Denton

    2006-01-01

    The sample return capsule of the Stardust spacecraft will be recovered in northern Utah on January 15, 2006, and under nominal conditions it will be delivered to the new Stardust Curation Laboratory at the Johnson Space Center two days later. Within the first week we plan to begin the harvesting of aerogel cells, and the comet nucleus samples they contain for detailed analysis. By the time of the LPSC meeting we will have been analyzing selected removed grains for more than one month. This presentation will present the first results from the mineralogical and petrological analyses that will have been performed.

  8. Igneous and metamorphic petrology in the field: a problem-based, writing-intensive alternative to traditional classroom petrology

    NASA Astrophysics Data System (ADS)

    DeBari, S. M.

    2011-12-01

    The Geology Department at Western Washington University (~100 geology majors) offers field and classroom versions of its undergraduate petrology course. This is a one-quarter course (igneous and metamorphic petrology) with mineralogy as a prerequisite. The field version of the course is offered during the three weeks prior to fall quarter and the classroom version is offered in spring quarter. We take 15-20 students around the state of Washington, camping at different outcrop sites where students integrate observational skills, petrologic knowledge, and writing. Petrogenetic associations in various tectonic settings provide the theme of the course. We compare ophiolites vs. arc sequences (volcanic, plutonic, and metamorphic rocks), S- vs. I-type granitoids (plutonic rocks and associated metamorphic rocks), Barrovian vs. Buchan vs. subduction zone metamorphism of different protoliths, and flood-basalt vs. active-arc volcanism. Some basics are covered in the first day at WWU, followed by 17 days of field instruction. Lecture is integrated with outcrop study in the field. For example, students will listen to a lecture about magma differentiation processes as they examine cumulate rocks in the Mt. Stuart batholith, and a lecture about metamorphic facies as they study blueschist facies rocks in the San Juan Islands. Students study multiple outcrops around a site for 1-4 days. They then use their observations (sketches and written descriptions of mineral assemblages, rock types, rock textures, etc.) and analysis techniques (e.g. geochemical data plotting, metamorphic protolith analysis) to write papers in which the data are interpreted in terms of a larger tectonic problem. In advance of the writing process, students use group discussion techniques such as whiteboarding to share their observational evidence and explore interpretations. Student evaluations indicate that despite the intense pace of the course, they enjoy it more. Students also feel that they retain more material for future classes. The undivided attention, immediate writing/reflection, and repetition of skills in different settings reinforce material. Because of students' higher level of engagement, more of them pursue advanced classes or independent studies. A corollary benefit is that students form strong bonds with their cohort group, providing mutual support as they continue through the program and ultimately improving their field camp experience. Final exam scores are equal to or better than in the traditional class, and some basic skills, such the ability to make observations at a variety of scales in sketches and writing, are better. Students can also better distinguish between observation and inference in report writing. Finally, students can apply their theoretical understanding of petrologic processes (e.g. magma differentiation, metamorphic facies progressions) to real rocks in a more sophisticated way using evidence.

  9. Remotely accessible laboratory for MEMS testing

    NASA Astrophysics Data System (ADS)

    Sivakumar, Ganapathy; Mulsow, Matthew; Melinger, Aaron; Lacouture, Shelby; Dallas, Tim E.

    2010-02-01

    We report on the construction of a remotely accessible and interactive laboratory for testing microdevices (aka: MicroElectroMechancial Systems - MEMS). Enabling expanded utilization of microdevices for research, commercial, and educational purposes is very important for driving the creation of future MEMS devices and applications. Unfortunately, the relatively high costs associated with MEMS devices and testing infrastructure makes widespread access to the world of MEMS difficult. The creation of a virtual lab to control and actuate MEMS devices over the internet helps spread knowledge to a larger audience. A host laboratory has been established that contains a digital microscope, microdevices, controllers, and computers that can be logged into through the internet. The overall layout of the tele-operated MEMS laboratory system can be divided into two major parts: the server side and the client side. The server-side is present at Texas Tech University, and hosts a server machine that runs the Linux operating system and is used for interfacing the MEMS lab with the outside world via internet. The controls from the clients are transferred to the lab side through the server interface. The server interacts with the electronics required to drive the MEMS devices using a range of National Instruments hardware and LabView Virtual Instruments. An optical microscope (100 ×) with a CCD video camera is used to capture images of the operating MEMS. The server broadcasts the live video stream over the internet to the clients through the website. When the button is pressed on the website, the MEMS device responds and the video stream shows the movement in close to real time.

  10. Augmented Reality Technology Using Microsoft HoloLens in Anatomic Pathology.

    PubMed

    Hanna, Matthew G; Ahmed, Ishtiaque; Nine, Jeffrey; Prajapati, Shyam; Pantanowitz, Liron

    2018-05-01

    Context Augmented reality (AR) devices such as the Microsoft HoloLens have not been well used in the medical field. Objective To test the HoloLens for clinical and nonclinical applications in pathology. Design A Microsoft HoloLens was tested for virtual annotation during autopsy, viewing 3D gross and microscopic pathology specimens, navigating whole slide images, telepathology, as well as real-time pathology-radiology correlation. Results Pathology residents performing an autopsy wearing the HoloLens were remotely instructed with real-time diagrams, annotations, and voice instruction. 3D-scanned gross pathology specimens could be viewed as holograms and easily manipulated. Telepathology was supported during gross examination and at the time of intraoperative consultation, allowing users to remotely access a pathologist for guidance and to virtually annotate areas of interest on specimens in real-time. The HoloLens permitted radiographs to be coregistered on gross specimens and thereby enhanced locating important pathologic findings. The HoloLens also allowed easy viewing and navigation of whole slide images, using an AR workstation, including multiple coregistered tissue sections facilitating volumetric pathology evaluation. Conclusions The HoloLens is a novel AR tool with multiple clinical and nonclinical applications in pathology. The device was comfortable to wear, easy to use, provided sufficient computing power, and supported high-resolution imaging. It was useful for autopsy, gross and microscopic examination, and ideally suited for digital pathology. Unique applications include remote supervision and annotation, 3D image viewing and manipulation, telepathology in a mixed-reality environment, and real-time pathology-radiology correlation.

  11. Linking petrology and seismology of the southwest Greenland lithosphere

    NASA Astrophysics Data System (ADS)

    Lesher, C. E.; Vestergaard, C.; Brown, E.; Schutt, D.

    2015-12-01

    Mantle xenoliths from late-Proterozoic diamond-bearing kimberlitic dikes in the Kangerlussuaq, Sarfartoq and Maniitsoq areas of southwestern Greenland provide constraints on the composition and thermal state of lithospheric mantle beneath Greenland to depths of ~200 km [1]. Similarly, surface wave tomography studies carried out as part of the GLATIS project use a range of Rayleigh wave periods sensitive to structures at a similar depth interval within southwestern Greenland lithospheric mantle [2]. Here we link petrologic and seismologic constraints on the mantle lithosphere beneath Greenland utilizing methods of [3] that show that inferred chemical and mineralogical stratification inferred from petrology, showing mantle peridotite transitioning from garnet-free harzburgite to garnet lherzolite between ~70 and 180 km, cannot readily be resolved with fundamental mode Rayleigh waves. On the other hand, comparing phase velocities predicted from xenolith compositions, mineralogy and last equilibration temperatures and pressures, defining the continental geotherm during late-Proterozoic time, with those for the present-day mantle lithosphere suggest significant cooling of the cratonic mantle to a modern geotherm characterized by a heat flux of 30 mW/m2 and average crustal heat production of 0.3 mW/m3 [4]. These preliminary findings point to the weak dependence of shear wave velocities on mantle peridotite composition and mineralogy, and further illustrate its strong temperature dependence. Comparison of ancient and modern continental geotherms made possible by combining petrologic and seismological data, as shown here for southwest Greenland, provide additional constraints on secular cooling of cratonic regions linked to large-scale tectonic processes. [1] Bizzarro et al., 2003, CMP, 146; Sand et al., Lithos, 112. [2] Darbyshire et al., 2004, GJI, 158. [3] Schutt and Lesher, 2006, JGR, 111. [4] Meirerbachtol et al., 2015, JGR/ES, 120.

  12. Blending Curriculum with Research in an Undergraduate Petrology Course: A Recipe for Success?

    NASA Astrophysics Data System (ADS)

    Gonzales, D. A.; Semken, S. C.

    2009-12-01

    In this presentation we discuss the design, key curricular elements, and strengths and weaknesses of an undergraduate course in the Department of Geosciences at Fort Lewis College that was recast to focus on petrologic studies in the Southern Rocky Mountains and Colorado Plateau. Redesign of the course retained an additional petrology option in the curriculum and offered undergraduates a richer opportunity to learn and practice science-research skills. This course emphasizes direct engagement and student responsibility for learning: traits valuable in transforming undergraduates into experienced and competent professionals. Previous offerings of this course have been field based, each having a unique context for research. The primary pedagogical strategy was to blend field studies with inquiry to promote authentic, student-driven research. Students applied and tested their prior knowledge, and used observational and interpretative skills, to investigate major regional rock bodies and geologic histories, as opposed to completing a set of activities with predefined outcomes. In 2010, students will work on an NSF-funded project to test hypotheses on the origin and evolution of mafic magmas of the Navajo volcanic field. This research will most involve petrographic and microanalytical techniques on rock specimens with a subordinate amount of field work. Formative and summative assessment data for previous offerings of this course reveal that these classes have an impact on the academic interests and future successes of students. Assessment data collected from students, and other faculty that interacted with them, indicate that students in this research-oriented petrology course have gained a greater understanding of the elements and complications of research. They have also developed geologic skills and a passion for geologic research that have influenced subsequent academic (and later career) paths of the students.

  13. Fe-Ni metal in primitive chondrites: Indicators of classification and metamorphic conditions for ordinary and CO chondrites

    USGS Publications Warehouse

    Kimura, M.; Grossman, J.N.; Weisberg, M.K.

    2008-01-01

    We report the results of our petrological and mineralogical study of Fe-Ni metal in type 3 ordinary and CO chondrites, and the ungrouped carbonaceous chondrite Acfer 094. Fe-Ni metal in ordinary and CO chondrites occurs in chondrule interiors, on chondrule surfaces, and as isolated grains in the matrix. Isolated Ni-rich metal in chondrites of petrologic type lower than type 3.10 is enriched in Co relative to the kamacite in chondrules. However, Ni-rich metal in type 3.15-3.9 chondrites always contains less Co than does kamacite. Fe-Ni metal grains in chondrules in Semarkona typically show plessitic intergrowths consisting of submicrometer kamacite and Ni-rich regions. Metal in other type 3 chondrites is composed of fine- to coarse-grained aggregates of kamacite and Ni-rich metal, resulting from metamorphism in the parent body. We found that the number density of Ni-rich grains in metal (number of Ni-rich grains per unit area of metal) in chondrules systematically decreases with increasing petrologic type. Thus, Fe-Ni metal is a highly sensitive recorder of metamorphism in ordinary and carbonaceous chondrites, and can be used to distinguish petrologic type and identify the least thermally metamorphosed chondrites. Among the known ordinary and CO chondrites, Semarkona is the most primitive. The range of metamorphic temperatures were similar for type 3 ordinary and CO chondrites, despite them having different parent bodies. Most Fe-Ni metal in Acfer 094 is martensite, and it preserves primary features. The degree of metamorphism is lower in Acfer 094, a true type 3.00 chondrite, than in Semarkona, which should be reclassified as type 3.01. ?? The Meteoritical Society, 2008.

  14. Updated Reference Model for Heat Generation in the Lithosphere

    NASA Astrophysics Data System (ADS)

    Wipperfurth, S. A.; Sramek, O.; Roskovec, B.; Mantovani, F.; McDonough, W. F.

    2017-12-01

    Models integrating geophysics and geochemistry allow for characterization of the Earth's heat budget and geochemical evolution. Global lithospheric geophysical models are now constrained by surface and body wave data and are classified into several unique tectonic types. Global lithospheric geochemical models have evolved from petrological characterization of layers to a combination of petrologic and seismic constraints. Because of these advances regarding our knowledge of the lithosphere, it is necessary to create an updated chemical and physical reference model. We are developing a global lithospheric reference model based on LITHO1.0 (segmented into 1°lon x 1°lat x 9-layers) and seismological-geochemical relationships. Uncertainty assignments and correlations are assessed for its physical attributes, including layer thickness, Vp and Vs, and density. This approach yields uncertainties for the masses of the crust and lithospheric mantle. Heat producing element abundances (HPE: U, Th, and K) are ascribed to each volume element. These chemical attributes are based upon the composition of subducting sediment (sediment layers), composition of surface rocks (upper crust), a combination of petrologic and seismic correlations (middle and lower crust), and a compilation of xenolith data (lithospheric mantle). The HPE abundances are correlated within each voxel, but not vertically between layers. Efforts to provide correlation of abundances horizontally between each voxel are discussed. These models are used further to critically evaluate the bulk lithosphere heat production in the continents and the oceans. Cross-checks between our model and results from: 1) heat flux (Artemieva, 2006; Davies, 2013; Cammarano and Guerri, 2017), 2) gravity (Reguzzoni and Sampietro, 2015), and 3) geochemical and petrological models (Rudnick and Gao, 2014; Hacker et al. 2015) are performed.

  15. Characteristics and habitat of deep vs. shallow slow slip events

    NASA Astrophysics Data System (ADS)

    Wipperfurth, S. A.; Sramek, O.; Roskovec, B.; Mantovani, F.; McDonough, W. F.

    2016-12-01

    Models integrating geophysics and geochemistry allow for characterization of the Earth's heat budget and geochemical evolution. Global lithospheric geophysical models are now constrained by surface and body wave data and are classified into several unique tectonic types. Global lithospheric geochemical models have evolved from petrological characterization of layers to a combination of petrologic and seismic constraints. Because of these advances regarding our knowledge of the lithosphere, it is necessary to create an updated chemical and physical reference model. We are developing a global lithospheric reference model based on LITHO1.0 (segmented into 1°lon x 1°lat x 9-layers) and seismological-geochemical relationships. Uncertainty assignments and correlations are assessed for its physical attributes, including layer thickness, Vp and Vs, and density. This approach yields uncertainties for the masses of the crust and lithospheric mantle. Heat producing element abundances (HPE: U, Th, and K) are ascribed to each volume element. These chemical attributes are based upon the composition of subducting sediment (sediment layers), composition of surface rocks (upper crust), a combination of petrologic and seismic correlations (middle and lower crust), and a compilation of xenolith data (lithospheric mantle). The HPE abundances are correlated within each voxel, but not vertically between layers. Efforts to provide correlation of abundances horizontally between each voxel are discussed. These models are used further to critically evaluate the bulk lithosphere heat production in the continents and the oceans. Cross-checks between our model and results from: 1) heat flux (Artemieva, 2006; Davies, 2013; Cammarano and Guerri, 2017), 2) gravity (Reguzzoni and Sampietro, 2015), and 3) geochemical and petrological models (Rudnick and Gao, 2014; Hacker et al. 2015) are performed.

  16. Building simple multiscale visualizations of outcrop geology using virtual reality modeling language (VRML)

    NASA Astrophysics Data System (ADS)

    Thurmond, John B.; Drzewiecki, Peter A.; Xu, Xueming

    2005-08-01

    Geological data collected from outcrop are inherently three-dimensional (3D) and span a variety of scales, from the megascopic to the microscopic. This presents challenges in both interpreting and communicating observations. The Virtual Reality Modeling Language provides an easy way for geoscientists to construct complex visualizations that can be viewed with free software. Field data in tabular form can be used to generate hierarchical multi-scale visualizations of outcrops, which can convey the complex relationships between a variety of data types simultaneously. An example from carbonate mud-mounds in southeastern New Mexico illustrates the embedding of three orders of magnitude of observation into a single visualization, for the purpose of interpreting depositional facies relationships in three dimensions. This type of raw data visualization can be built without software tools, yet is incredibly useful for interpreting and communicating data. Even simple visualizations can aid in the interpretation of complex 3D relationships that are frequently encountered in the geosciences.

  17. A Virtual Reality Visualization Tool for Neuron Tracing

    PubMed Central

    Usher, Will; Klacansky, Pavol; Federer, Frederick; Bremer, Peer-Timo; Knoll, Aaron; Angelucci, Alessandra; Pascucci, Valerio

    2017-01-01

    Tracing neurons in large-scale microscopy data is crucial to establishing a wiring diagram of the brain, which is needed to understand how neural circuits in the brain process information and generate behavior. Automatic techniques often fail for large and complex datasets, and connectomics researchers may spend weeks or months manually tracing neurons using 2D image stacks. We present a design study of a new virtual reality (VR) system, developed in collaboration with trained neuroanatomists, to trace neurons in microscope scans of the visual cortex of primates. We hypothesize that using consumer-grade VR technology to interact with neurons directly in 3D will help neuroscientists better resolve complex cases and enable them to trace neurons faster and with less physical and mental strain. We discuss both the design process and technical challenges in developing an interactive system to navigate and manipulate terabyte-sized image volumes in VR. Using a number of different datasets, we demonstrate that, compared to widely used commercial software, consumer-grade VR presents a promising alternative for scientists. PMID:28866520

  18. LabVIEW 2010 Computer Vision Platform Based Virtual Instrument and Its Application for Pitting Corrosion Study

    PubMed Central

    Ramos, Rogelio; Zlatev, Roumen; Valdez, Benjamin; Stoytcheva, Margarita; Carrillo, Mónica; García, Juan-Francisco

    2013-01-01

    A virtual instrumentation (VI) system called VI localized corrosion image analyzer (LCIA) based on LabVIEW 2010 was developed allowing rapid automatic and subjective error-free determination of the pits number on large sized corroded specimens. The VI LCIA controls synchronously the digital microscope image taking and its analysis, finally resulting in a map file containing the coordinates of the detected probable pits containing zones on the investigated specimen. The pits area, traverse length, and density are also determined by the VI using binary large objects (blobs) analysis. The resulting map file can be used further by a scanning vibrating electrode technique (SVET) system for rapid (one pass) “true/false” SVET check of the probable zones only passing through the pit's centers avoiding thus the entire specimen scan. A complete SVET scan over the already proved “true” zones could determine the corrosion rate in any of the zones. PMID:23691434

  19. Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks

    NASA Astrophysics Data System (ADS)

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2013-09-01

    We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.

  20. Dynamical interplay between awareness and epidemic spreading in multiplex networks.

    PubMed

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2013-09-20

    We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.

  1. Efficiency of a new bioaerosol sampler in sampling Betula pollen for antigen analyses.

    PubMed

    Rantio-Lehtimäki, A; Kauppinen, E; Koivikko, A

    1987-01-01

    A new bioaerosol sampler consisting of Liu-type atmospheric aerosol sampling inlet, coarse particle inertial impactor, two-stage high-efficiency virtual impactor (aerodynamic particle sizes respectively in diameter: greater than or equal to 8 microns, 8-2.5 microns, and 2.5 microns; sampling on filters) and a liquid-cooled condenser was designed, fabricated and field-tested in sampling birch (Betula) pollen grains and smaller particles containing Betula antigens. Both microscopical (pollen counts) and immunochemical (enzyme-linked immunosorbent assay) analyses of each stage were carried out. The new sampler was significantly more efficient than Burkard trap e.g. in sampling particles of Betula pollen size (ca. 25 microns in diameter). This was prominent during pollen peak periods (e.g. May 19th, 1985, in the virtual impactor 9482 and in the Burkard trap 2540 Betula p.g. X m-3 of air). Betula antigens were detected also in filter stages where no intact pollen grains were found; in the condenser unit the antigen concentrations instead were very low.

  2. Going virtual with quicktime VR: new methods and standardized tools for interactive dynamic visualization of anatomical structures.

    PubMed

    Trelease, R B; Nieder, G L; Dørup, J; Hansen, M S

    2000-04-15

    Continuing evolution of computer-based multimedia technologies has produced QuickTime, a multiplatform digital media standard that is supported by stand-alone commercial programs and World Wide Web browsers. While its core functions might be most commonly employed for production and delivery of conventional video programs (e.g., lecture videos), additional QuickTime VR "virtual reality" features can be used to produce photorealistic, interactive "non-linear movies" of anatomical structures ranging in size from microscopic through gross anatomic. But what is really included in QuickTime VR and how can it be easily used to produce novel and innovative visualizations for education and research? This tutorial introduces the QuickTime multimedia environment, its QuickTime VR extensions, basic linear and non-linear digital video technologies, image acquisition, and other specialized QuickTime VR production methods. Four separate practical applications are presented for light and electron microscopy, dissectable preserved specimens, and explorable functional anatomy in magnetic resonance cinegrams.

  3. Producing coherent excitations in pumped Mott antiferromagnetic insulators

    DOE PAGES

    Wang, Yao; Claassen, Martin; Moritz, B.; ...

    2017-12-15

    Nonequilibrium dynamics in correlated materials has attracted attention due to the possibility of characterizing, tuning, and creating complex ordered states. To understand the photoinduced microscopic dynamics, especially the linkage under realistic pump conditions between transient states and remnant elementary excitations, we performed nonperturbative simulations of various time-resolved spectroscopies. We used the Mott antiferromagnetic insulator as a model platform. The transient dynamics of multi-particle excitations can be attributed to the interplay between Floquet virtual states and a modification of the density of states, in which interactions induce a spectral weight transfer. Using an autocorrelation of the time-dependent spectral function, we showmore » that resonance of the virtual states with the upper Hubbard band in the Mott insulator provides the route towards manipulating the electronic distribution and modifying charge and spin excitations. In conclusion, our results link transient dynamics to the nature of many-body excitations and provide an opportunity to design nonequilibrium states of matter via tuned laser pulses.« less

  4. A Virtual Reality Visualization Tool for Neuron Tracing.

    PubMed

    Usher, Will; Klacansky, Pavol; Federer, Frederick; Bremer, Peer-Timo; Knoll, Aaron; Yarch, Jeff; Angelucci, Alessandra; Pascucci, Valerio

    2018-01-01

    Tracing neurons in large-scale microscopy data is crucial to establishing a wiring diagram of the brain, which is needed to understand how neural circuits in the brain process information and generate behavior. Automatic techniques often fail for large and complex datasets, and connectomics researchers may spend weeks or months manually tracing neurons using 2D image stacks. We present a design study of a new virtual reality (VR) system, developed in collaboration with trained neuroanatomists, to trace neurons in microscope scans of the visual cortex of primates. We hypothesize that using consumer-grade VR technology to interact with neurons directly in 3D will help neuroscientists better resolve complex cases and enable them to trace neurons faster and with less physical and mental strain. We discuss both the design process and technical challenges in developing an interactive system to navigate and manipulate terabyte-sized image volumes in VR. Using a number of different datasets, we demonstrate that, compared to widely used commercial software, consumer-grade VR presents a promising alternative for scientists.

  5. Aero-Thermo-Dynamic Mass Analysis

    NASA Astrophysics Data System (ADS)

    Shiba, Kota; Yoshikawa, Genki

    2016-07-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  6. Geological and petrological considerations relevant to the disposal of radioactive wastes by hydraulic fracturing: an example at the US Department of Energy's Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, C.S.

    1983-01-01

    At Oak Ridge National Laboratory the Pumpkin Valley Shale is used as a host formation for hydraulic fracturing waste disposal. Determination of the relationships between the distribution of different lithologies and porosity-permeability trends within this host formation allows these properties, important to hydraulic fracturing operations, to be related to measurable and mappable geological and petrological parameters. It also permits extrapolation of such patterns to little-studied portions of the Pumpkin Valley Shale. Such knowledge better allows for the satisfactory operation and assessment of the hydraulic fracturing at Oak Ridge National Laboratory.

  7. Petrology of lunar rocks and implication to lunar evolution

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.

    1976-01-01

    Recent advances in lunar petrology, based on studies of lunar rock samples available through the Apollo program, are reviewed. Samples of bedrock from both maria and terra have been collected where micrometeorite impact penetrated the regolith and brought bedrock to the surface, but no in situ cores have been taken. Lunar petrogenesis and lunar thermal history supported by studies of the rock sample are discussed and a tentative evolutionary scenario is constructed. Mare basalts, terra assemblages of breccias, soils, rocks, and regolith are subjected to elemental analysis, mineralogical analysis, trace content analysis, with studies of texture, ages and isotopic composition. Probable sources of mare basalts are indicated.

  8. First known EL5 chondrite - Evidence for dual genetic sequence for enstatite chondrites

    NASA Technical Reports Server (NTRS)

    Sears, D. W. G.; Weeks, K. S.; Rubin, A. E.

    1984-01-01

    The compositionally distinct EH and EL groups together with four (3-6) petrologic types which constitute the enstatite chondrites represent increasing degrees of metamorphic alteration. Although bulk composition variations preclude a simple conversion of EH4 into EL6 material, complex models which involve simultaneous bulk composition and petrologic type variations may be implied by other classification schemes in common use. Attention is presently given to the discovery of the first EL5 chondrite, which breaks the EH3,4-EH5-EL6 sequence and indicates that the enstatite chondrites constitute the two discrete, isochemical metamorphic sequences EH3-5 and EL5-6.

  9. Petrologic comparisons of Cayley and Descartes on the basis of Apollo 16 soils from stations 4 and 11

    NASA Technical Reports Server (NTRS)

    Basu, A.; Mckay, D. S.

    1984-01-01

    Petrologic aspects of the Cayley and Descartes formations are reviewed in the light of new data on Apollo 16 soils. Specific comparison of the modal abundances of lithic fragments in drive tube sample 64001/2 from the slopes of Stone Mountain (station 4) and in soil 67941 from the North Ray Crater rim (station 11) shows that melt rocks, especially poikilitic rocks, are more abundant at station 4 than at station 11; the reverse is true for fragmental breccias. Such lithologic differences suggest that stations 4 and 11 do not belong to the same geologic formation. Metamorphosed breccias are pervasive in both the formations and may represent a local component that has been reworked and diluted as fresh materials were added. Lithologic compositions inferred from the study of soil samples are different from lithologic compositions inferred from the study of rake samples or breccia clasts. This difference may be related to a mixing of material of different grain size distributions. The petrology of soils at the Apollo 16 site may not accurately reflect original material associated with either the Descartes or the Cayley formation because of extensive mixing with local material.

  10. Quantitative EPMA Compositional Mapping of NWA 2995: Characterization, and Petrologic Interpretation of Mafic Clasts

    NASA Technical Reports Server (NTRS)

    Carpenter, P. K.; Hahn, T. M.; Korotev, R. L.; Ziegler, R. A.; Jolliff, B. L.

    2017-01-01

    We present the first fully quantitative compositional maps of lunar meteorite NWA 2995 using electron microprobe stage mapping, and compare selected clast mineralogy and chemistry. NWA 2995 is a feldspathic fragmental breccia containing numerous highland fine grained lithologies, including anorthosite, norite, olivine basalt, subophitic basalt, gabbro, KREEP-like basalt, granulitic and glassy impact melts, coarse-grained mineral fragments, Fe-Ni metal, and glassy matrix [1]. Chips of NWA 2995, representing these diverse materials, were analyzed by INAA and fused-bead electron-probe microanalysis (EPMA); comparison of analytical data suggests grouping of lunar meteorites NWA 2995, 2996, 3190, 4503, 5151, and 5152. The mean composition of NWA 2995 corresponds to a 2:1 mixture of feldspathic and mare material, with approximately 5% KREEP component [2]. Clast mineral chemistry and petrologic interpretation of paired stone NWA 2996 has been reported by Mercer et al. [3], and Gross et al. [4]. This study combines advances in quantitative EPMA compositional mapping and data analysis, as applied to selected mafic clasts in a polished section of NWA 2995, to investigate the origin of mafic lithic components and to demonstrate a procedural framework for petrologic analysis.

  11. Towards Calibrating the Vestan Regolith: Correlating the Petrology, Chemistry and Spectroscopy of Howardites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Ammannito, E.; Hiroi, T.; De Angelis, S.; Di Iorio, T.; Pieters, C. M.; De Sanctis, C.

    2013-01-01

    The Dawn spacecraft carries a visible and infrared mapping spectrometer (VIR) [1] that has acquired spectra for the wavelength range 0.25-5.0 µm at various spatial resolutions covering much of the vestan surface [2]. Through comparison of VIR spectra with laboratory spectra of howardite, eucrite and diogenite meteorites, the distribution of more diogenite-rich and more eucrite-rich terranes on Vesta have been mapped [3], but these maps are qualitative in nature. The available laboratory spectra are not well-integrated with detailed sample petrology or composition limiting their utility for lithologic mapping. Importantly, howardites are now recognized to come in two subtypes, regolithic and fragmental [4]. The former are breccias assembled in part from true regolith, while the latter have had much less exposure to the space environment. We are attempting to develop a more quantitative basis for mapping the distribution of lithologic types on Vesta through acquiring laboratory spectra on splits of howardites that have been petrologically and chemically characterized [5]. Noble gas analyses have been done on some allowing identification of those howardites that have been exposed in the true regolith of Vesta [6].

  12. Garnet Signatures in Geophysical and Geochemical Observations: Insights into the Thermo-Petrological Structure of Oceanic Upper Mantle

    NASA Astrophysics Data System (ADS)

    Grose, C. J.; Afonso, J. C.

    2013-12-01

    We have developed new physically comprehensive thermal plate models of the oceanic lithosphere which incorporate temperature- and pressure-dependent heat transport properties and thermal expansivity, melting beneath ridges, hydrothermal circulation near ridge axes, and insulating oceanic crust. These models provide good fits to global databases of seafloor topography and heat flow, and seismic evidence of thermal structure near ridge axes. We couple these thermal plate models with thermodynamic models to predict the petrology of oceanic lithosphere. Geoid height predictions from our models suggest that there is a strong anomaly in geoid slope (over age) above ~25 Ma lithosphere due to the topography of garnet-field mantle. A similar anomaly is also present in geoid data over fracture zones. In addition, we show that a new assessment of a large database of ocean island basalt Sm/Yb systematics indicates that there is an unmistakable step-like increase in Sm/Yb values around 15-20 Ma, indicating the presence of garnet. To explain this feature, we have attempted to couple our thermo-petrological models of oceanic upper mantle with an open system, non-modal, dynamic melting model with diffusion kinetics to investigate trace element partitioning in an ascending mantle column.

  13. Thermal Effects of Lunar Surface Roughness: Application for the 2008 LRO Diviner Lunar Radiometer Experiment

    NASA Astrophysics Data System (ADS)

    Greenhagen, B.; Paige, D. A.

    2007-12-01

    It is well known that surface roughness affects spectral slope in the infrared. For the first time, we applied a three-dimensional thermal model to a high resolution lunar topography map to study the effects of surface roughness on lunar thermal emission spectra. We applied a numerical instrument model of the upcoming Diviner Lunar Radiometer Experiment (DLRE) to simulate the expected instrument response to surface roughness variations. The Diviner Lunar Radiometer Experiment (DLRE) will launch in late 2008 onboard the Lunar Reconnaissance Orbiter (LRO). DLRE is a nine-channel radiometer designed to study the thermal and petrologic properties of the lunar surface. DLRE has two solar channels (0.3-3.0 μm high/low sensitivity), three mid-infrared petrology channels (7.55-8.05, 8.10-8.40 8.40-8.70 μm), and four thermal infrared channels (12.5-25, 25-50, 50-100, and 100-200 μm). The topographic data we used was selected from a USGS Hadley Rille DEM (from Apollo 15 Panoramic Camera data) with 10 m resolution (M. Rosiek; personal communication). To remove large scale topographic features, we applied a 200 x 200 pixel boxcar high-pass filter to a relatively flat portion of the DEM. This "flattened" surface roughness map served as the basis for much of this study. We also examined the unaltered topography. Surface temperatures were calculated using a three-dimensional ray tracing thermal model. We created temperature maps at numerous solar incidence angles with nadir viewing geometry. A DLRE instrument model, which includes filter spectral responses and detector fields of view, was applied to the high resolution temperature maps. We studied both the thermal and petrologic effects of surface roughness. For the thermal study, the output of the optics model is a filter specific temperature, scaled to a DLRE footprint of < 500 m. For the petrologic study, we examined the effect of the surface roughness induced spectral slope on the DLRE's ability to locate the Christiansen Feature, which is a good compositional indicator. With multiple thermal infrared channels over a wide spectral range, DLRE will be well suited to measure temperature variations due to surface roughness. Any necessary compensation (e.g. correction for spectral slope) to the mid-infrared petrology data will be performed.

  14. Reconstructing the thermal evolution of the CK chondrite parent body using Northwest Africa 5343, the least metamorphosed CK chondrite

    NASA Astrophysics Data System (ADS)

    Dunn, T. L.; Gross, J.; O'Hara, E. J.

    2017-12-01

    Carbonaceous chondrites (CCs) represent some of the most pristine solar system material, providing constraints on the early formation of planetesimals. The CK chondrites are the only group of CCs to exhibit the full range of thermal metamorphism (petrologic type 3 to 6). Most unequilibrated CK chondrites (CK3s) have been metamorphosed to petrologic subtype 3.8 or higher. However, homogeneity of olivine suggests that CK3 chondrite Northwest Africa (NWA) 5343 is less metamorphosed than the other CK3s. The presence of unrecrystallized matrix indicates that it is less than petrologic type 3.7. To better assess the lower limits of metamorphism on the CK chondrite parent body, we performed a detailed analysis of matrix material in NWA 5343. Ascertaining the lower limit of metamorphism in the CK chondrites is critical when addressing the CK-CV parent body debate (e.g., one vs. two parent bodies), and will shed light onto the evolution of metamorphosed CC parent bodies. We recognize two texturally distinct regions in the matrix of NWA 5343. Both have similar mineralogies (mostly olivine with lesser pyroxene and plagioclase), but differ in grain size, shape, and porosity. The porous region of the sample is characterized by subhedral-rounded olivine grains, typically < 40 µms, surrounded by empty pore space ( 10-14% porosity). Some small patches of matrix within the porous region contain angular olivine grains that are < 10 µms, similar to "clastic matrix" typically observed in some low petrologic type CCs and ordinary chondrites (OCs). In the glassy matrix region of NWA 5343 (3-7% porosity), olivine grains are larger (20-40 µms) and more anhedral. Skeletal pyroxene is also common. Original pore space is filled with a Ca-rich glass that appears to originate from an unusual vein in this region. Most interestingly, the extent of metamorphism varies within NWA 5343. Larger, anhedral olivine in the glassy region suggest that this region is more metamorphosed than the porous region. Even within the porous region there is a range of metamorphism, with small patches of granoblastic olivine intermixed with the clastic matrix. This suggests that NWA 5343 may represent a metamorphic breccia, a common occurrence in OCs and CCs of lower petrologic types, and provides insight into the evolution of the only completely metamorphosed CC parent body.

  15. The Black Hole Information Paradox and the Collapse of the Wave Function

    NASA Astrophysics Data System (ADS)

    Okon, Elias; Sudarsky, Daniel

    2015-04-01

    The black hole information paradox arises from an apparent conflict between the Hawking black hole radiation and the fact that time evolution in quantum mechanics is unitary. The trouble is that while the former suggests that information of a system falling into a black hole disappears, the latter implies that information must be conserved. In this work we discuss the current divergence in views regarding the paradox, we evaluate the role that objective collapse theories could play in its resolution and we propose a link between spontaneous collapse events and microscopic virtual black holes.

  16. A petrologic comparison of Triassic plutonism in the San Gabriel and Mule Mountains, southern California

    NASA Astrophysics Data System (ADS)

    Barth, Andrew P.; Tosdal, R. M.; Wooden, J. L.

    1990-11-01

    Triassic magmatism in the southwest U.S. Cordillera forms a semicontinuous magmatic arc extending from northwestern Nevada to southeastern California. Quartz monzodioritic and quartz monzonitic rocks and associated diorites and granites are widespread in southeastern California, and we suggest that these rocks represent exposure of a structurally deeper part of the Triassic arc, where it was emplaced into comparatively thick Proterozoic crust. Elemental and isotopic data suggest that Triassic quartz monzodiorites and quartz monzonites in the Mule and San Gabriel Mountains were derived from a relatively undepleted, nonradiogenic mafic lithospheric source, with virtually no upper crustal interaction. Very limited data for associated Triassic(?) diorites indicate a wide range in composition and a surprisingly radiogenic isotopic signature. Younger Triassic(?) granites record a strong geochemical signature of interaction with continental crust, including inherited zircon and high initial Sr ratios but comparatively less radiogenic Pb isotopic compositions. The major and trace element geochemistry of Late Triassic plutonic rocks in southeastern California is similar in many respects to alkalic components of the Triassic arc in the Mojave Desert. However, contemporaneous rocks farther north have a calc-alkalic signature, perhaps reflecting the variation in age and composition of lithosphere across which the Triassic arc was constructed.

  17. A petrologic comparison of Triassic plutonism in the San Gabriel and Mule Mountains, southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, A.P.; Tosdal, R.M.; Wooden, J.L.

    1990-11-10

    Triassic magmatism in the southwest US Cordillera forms a semicontinuous magmatic arc extending from northwestern Nevada to southeastern California. Quartz monzodioritic and quartz monzonitic rocks and associated diorites and granites are widespread in southeastern California, and the authors suggest that these rocks represent exposure of a structurally deeper part of the Triassic arc, where it was emplaced into comparatively thick Proterozoic crust. Elemental and isotopic data suggest that Triassic quartz monzodiorites and quartz monzonites in the Mule and San Gabriel Mountains were derived from a relatively undepleted, nonradiogenic mafic lithospheric source, with virtually no upper crustal interaction. Very limited datamore » for associated Triassic ( ) diorites indicate a wide range in composition and a surprisingly radiogenic isotopic signature. Younger Triassic( ) granites record a strong geochemical signature of interaction with continental crust, including inherited zircon and high initial Sr ratios but comparatively less radiogenic Pb isotopic compositions. The major and trace element geochemistry of Late Triassic plutonic rocks in southeastern California is similar in many respects to akalic components of the Triassic arc in the Mojave Desert. However, contemporaneous rocks farther north have a calc-alkalic signature, perhaps reflecting the variation in age and composition of lithosphere across which the Triassic arc was constructed.« less

  18. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment.

    PubMed

    Chiaradia, Massimo; Caricchi, Luca

    2017-03-15

    Porphyry deposits, our main source of copper and of significant amounts of Mo, Re and Au, form at convergent margins in association with intermediate-felsic magmas. Although it is accepted that copper is transported and precipitated by fluids released by these magmas, the magmatic processes leading to the formation of economic deposits remain elusive. Here we perform Monte Carlo petrological and geochemical modelling to quantitatively link crustal magmatic processes and the geochemical signatures of magmas (i.e., Sr/Y) to the formation of porphyry Cu deposits of different sizes. Our analysis shows that economic deposits (particularly the largest ones) may only form in association with magma accumulated in the lower-middle crust (P > ~0.5 GPa) during ≥2-3 Ma, and subsequently transferred to and degassed in the upper crust over periods of up to ~2.0 Ma. Magma accumulation and evolution at shallower depths (<~0.4 GPa) dramatically reduces the potential of magmatic systems to produce economic deposits. Our modelling also predicts the association of the largest porphyry deposits with a specific Sr/Y interval (~100 ± 50) of the associated magmatic rocks, which is virtually identical to the range measured in giant porphyry copper deposits.

  19. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment

    PubMed Central

    Chiaradia, Massimo; Caricchi, Luca

    2017-01-01

    Porphyry deposits, our main source of copper and of significant amounts of Mo, Re and Au, form at convergent margins in association with intermediate-felsic magmas. Although it is accepted that copper is transported and precipitated by fluids released by these magmas, the magmatic processes leading to the formation of economic deposits remain elusive. Here we perform Monte Carlo petrological and geochemical modelling to quantitatively link crustal magmatic processes and the geochemical signatures of magmas (i.e., Sr/Y) to the formation of porphyry Cu deposits of different sizes. Our analysis shows that economic deposits (particularly the largest ones) may only form in association with magma accumulated in the lower-middle crust (P > ~0.5 GPa) during ≥2–3 Ma, and subsequently transferred to and degassed in the upper crust over periods of up to ~2.0 Ma. Magma accumulation and evolution at shallower depths (<~0.4 GPa) dramatically reduces the potential of magmatic systems to produce economic deposits. Our modelling also predicts the association of the largest porphyry deposits with a specific Sr/Y interval (~100 ± 50) of the associated magmatic rocks, which is virtually identical to the range measured in giant porphyry copper deposits. PMID:28295045

  20. RandomSpot: A web-based tool for systematic random sampling of virtual slides.

    PubMed

    Wright, Alexander I; Grabsch, Heike I; Treanor, Darren E

    2015-01-01

    This paper describes work presented at the Nordic Symposium on Digital Pathology 2014, Linköping, Sweden. Systematic random sampling (SRS) is a stereological tool, which provides a framework to quickly build an accurate estimation of the distribution of objects or classes within an image, whilst minimizing the number of observations required. RandomSpot is a web-based tool for SRS in stereology, which systematically places equidistant points within a given region of interest on a virtual slide. Each point can then be visually inspected by a pathologist in order to generate an unbiased sample of the distribution of classes within the tissue. Further measurements can then be derived from the distribution, such as the ratio of tumor to stroma. RandomSpot replicates the fundamental principle of traditional light microscope grid-shaped graticules, with the added benefits associated with virtual slides, such as facilitated collaboration and automated navigation between points. Once the sample points have been added to the region(s) of interest, users can download the annotations and view them locally using their virtual slide viewing software. Since its introduction, RandomSpot has been used extensively for international collaborative projects, clinical trials and independent research projects. So far, the system has been used to generate over 21,000 sample sets, and has been used to generate data for use in multiple publications, identifying significant new prognostic markers in colorectal, upper gastro-intestinal and breast cancer. Data generated using RandomSpot also has significant value for training image analysis algorithms using sample point coordinates and pathologist classifications.

  1. Impact of Virtual and Augmented Reality Based on Intraoperative Magnetic Resonance Imaging and Functional Neuronavigation in Glioma Surgery Involving Eloquent Areas.

    PubMed

    Sun, Guo-Chen; Wang, Fei; Chen, Xiao-Lei; Yu, Xin-Guang; Ma, Xiao-Dong; Zhou, Ding-Biao; Zhu, Ru-Yuan; Xu, Bai-Nan

    2016-12-01

    The utility of virtual and augmented reality based on functional neuronavigation and intraoperative magnetic resonance imaging (MRI) for glioma surgery has not been previously investigated. The study population consisted of 79 glioma patients and 55 control subjects. Preoperatively, the lesion and related eloquent structures were visualized by diffusion tensor tractography and blood oxygen level-dependent functional MRI. Intraoperatively, microscope-based functional neuronavigation was used to integrate the reconstructed eloquent structure and the real head and brain, which enabled safe resection of the lesion. Intraoperative MRI was used to verify brain shift during the surgical process and provided quality control during surgery. The control group underwent surgery guided by anatomic neuronavigation. Virtual and augmented reality protocols based on functional neuronavigation and intraoperative MRI provided useful information for performing tailored and optimized surgery. Complete resection was achieved in 55 of 79 (69.6%) glioma patients and 20 of 55 (36.4%) control subjects, with average resection rates of 95.2% ± 8.5% and 84.9% ± 15.7%, respectively. Both the complete resection rate and average extent of resection differed significantly between the 2 groups (P < 0.01). Postoperatively, the rate of preservation of neural functions (motor, visual field, and language) was lower in controls than in glioma patients at 2 weeks and 3 months (P < 0.01). Combining virtual and augmented reality based on functional neuronavigation and intraoperative MRI can facilitate resection of gliomas involving eloquent areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future

    PubMed Central

    Jonnal, Ravi S.; Kocaoglu, Omer P.; Zawadzki, Robert J.; Liu, Zhuolin; Miller, Donald T.; Werner, John S.

    2016-01-01

    Purpose Optical coherence tomography (OCT) has enabled “virtual biopsy” of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. Methods We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Results Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Conclusions Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings. PMID:27409507

  3. Assessing the shock state of the lunar highlands: Implications for the petrogenesis and chronology of crustal anorthosites.

    PubMed

    Pernet-Fisher, J F; Joy, K H; Martin, D J P; Donaldson Hanna, K L

    2017-07-19

    Our understanding of the formation and evolution of the primary lunar crust is based on geochemical systematics from the lunar ferroan anorthosite (FAN) suite. Recently, much effort has been made to understand this suite's petrologic history to constrain the timing of crystallisation and to interpret FAN chemical diversity. We investigate the shock histories of lunar anorthosites by combining Optical Microscope (OM) 'cold' cathodoluminescence (CL)-imaging and Fourier Transform Infrared (FTIR) spectroscopy analyses. In the first combined study of its kind, this study demonstrates that over ~4.5 Ga of impact processing, plagioclase is on average weakly shocked (<15 GPa) and examples of high shock states (>30 GPa; maskelynite) are uncommon. To investigate how plagioclase trace-element systematics are affected by moderate to weak shock (~5 to 30 GPa) we couple REE+Y abundances with FTIR analyses for FAN clasts from lunar meteorite Northwest Africa (NWA) 2995. We observe weak correlations between plagioclase shock state and some REE+Y systematics (e.g., La/Y and Sm/Nd ratios). This observation could prove significant to our understanding of how crystallisation ages are evaluated (e.g., plagioclase-whole rock Sm-Nd isochrons) and for what trace-elements can be used to differentiate between lunar lithologies and assess magma source compositional differences.

  4. Web-Based Virtual Microscopy of Digitized Blood Slides for Malaria Diagnosis: An Effective Tool for Skills Assessment in Different Countries and Environments.

    PubMed

    Ahmed, Laura; Seal, Leonard H; Ainley, Carol; De la Salle, Barbara; Brereton, Michelle; Hyde, Keith; Burthem, John; Gilmore, William Samuel

    2016-08-11

    Morphological examination of blood films remains the reference standard for malaria diagnosis. Supporting the skills required to make an accurate morphological diagnosis is therefore essential. However, providing support across different countries and environments is a substantial challenge. This paper reports a scheme supplying digital slides of malaria-infected blood within an Internet-based virtual microscope environment to users with different access to training and computing facilities. The feasibility of the approach was established, allowing users to test, record, and compare their own performance with that of other users. From Giemsa stained thick and thin blood films, 56 large high-resolution digital slides were prepared, using high-quality image capture and 63x oil-immersion objective lens. The individual images were combined using the photomerge function of Adobe Photoshop and then adjusted to ensure resolution and reproduction of essential diagnostic features. Web delivery employed the Digital Slidebox platform allowing digital microscope viewing facilities and image annotation with data gathering from participants. Engagement was high with images viewed by 38 participants in five countries in a range of environments and a mean completion rate of 42/56 cases. The rate of parasite detection was 78% and accuracy of species identification was 53%, which was comparable with results of similar studies using glass slides. Data collection allowed users to compare performance with other users over time or for each individual case. Overall, these results demonstrate that users worldwide can effectively engage with the system in a range of environments, with the potential to enhance personal performance through education, external quality assessment, and personal professional development, especially in regions where educational resources are difficult to access.

  5. Simple, but not easy - Opportunities and challenges from teachers' and students' perspectives in the 21st century of veterinary parasitology teaching.

    PubMed

    Strube, Christina; Raue, Katharina; Janecek, Elisabeth

    2018-03-15

    One of the main goals in academia is, and has been, high quality education of students to provide theoretical and practical knowledge essential for professional life. Achieving this goal is highly dependent on teaching procedures and, consequently, on a constant adaptation of teaching styles to align to technical advances and cutting-edge topics. Technical advances can strongly influence teaching and learning in the complex subject area of veterinary parasitology. Today's students are provided with extensive, digital lecture notes, and e-learning offers including virtual microscope technology to independently obtain intensified theoretical knowledge and understanding. As veterinary parasitology is also highly reliant on proficient practical skills, lectures with integrated diagnostic exercises are mandatory. Nowadays, such practical skills, such as carrying out faecal examination procedures, can be strengthened by having access to clinical skills labs. Advances such as digital lecture notes, e-learning and virtual microscopes do not only provide new, innovative opportunities, but can also comprise challenges. In this context, provision of sufficient relevant studying material may discourage students to take on responsibilities for autonomous gathering of information. Besides technical advances, 'Zeitgeist' changes are shaping teaching contents, which are progressively expanding as zoonoses are increasingly being focused on. With the aim of adopting the one-health concept, students today are expected not only to bear responsibilities for animals, but also for their owners and public health. This article will cast light on some key challenges and opportunities in modern veterinary parasitology teaching from the teachers´ and the students´ perspectives. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. 3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation

    NASA Astrophysics Data System (ADS)

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Wen, Di; Brandt, Eric; van Ditzhuijzen, Nienke S.; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Farmazilian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    High resolution, 100 frames/sec intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and 3D registration methods, to provide validation of IVOCT pullback volumes using microscopic, brightfield and fluorescent cryoimage volumes, with optional, exactly registered cryo-histology. The innovation was a method to match an IVOCT pullback images, acquired in the catheter reference frame, to a true 3D cryo-image volume. Briefly, an 11-parameter, polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Local minima were possible, but when we started within reasonable ranges, every one of 24 digital phantom cases converged to a good solution with a registration error of only +1.34+/-2.65μm (signed distance). Registration was applied to 10 ex-vivo cadaver coronary arteries (LADs), resulting in 10 registered cryo and IVOCT volumes yielding a total of 421 registered 2D-image pairs. Image overlays demonstrated high continuity between vascular and plaque features. Bland- Altman analysis comparing cryo and IVOCT lumen area, showed mean and standard deviation of differences as 0.01+/-0.43 mm2. DICE coefficients were 0.91+/-0.04. Finally, visual assessment on 20 representative cases with easily identifiable features suggested registration accuracy within one frame of IVOCT (+/-200μm), eliminating significant misinterpretations introduced by 1mm errors in the literature. The method will provide 3D data for training of IVOCT plaque algorithms and can be used for validation of other intravascular imaging modalities.

  7. Lunar basalt meteorite EET 87521: Petrology of the clast population

    NASA Technical Reports Server (NTRS)

    Semenova, A. S.; Nazarov, M. A.; Kononkova, N. N.

    1993-01-01

    The Elephant Moraine meteorite EET 87521 was classified as a lunar mare basalt breccia which is composed mainly of VLT basalt clasts. Here we report on our petrological study of lithic clasts and monomineralic fragments in the thin sections EET 87521,54 and EET 87521,47,1, which were prepared from the meteorite. The results of the study show that EET 87521 consists mainly of Al-rich ferrobasalt clasts and olivine pyroxenite clasts. The bulk composition of the meteorite can be well modelled by the mixing of these lithic components which appear to be differentiates of the Luna 25 basalt melt. KREEP and Mg-rich gabbro components are minor constituents of EET 87521.

  8. Geological and petrological considerations relevant to the disposal of radioactive wastes by hydraulic fracturing: an example at the US Department of Energy's Oak Ridge National Laboratory. [Pumpkin Valley shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, C.S.

    1982-01-01

    At Oak Ridge National Laboratory the Pumpkin Valley Shale is used as a host formation for hydraulic-fracturing waste disposal. Determination of the relationships between the distribution of different lithologies and porosity-permeability trends within this host formation allows these properties, important to hydraulic-fracturing operations, to be related to measurable and mappable geological and petrological parameters. It also permits extrapolation of such patterns to little-studied portions of the Pumpkin Valley Shale. Such knowledge better allows for the satisfactory operation and assessment of the hydraulic fracturing at Oak Ridge National Laboratory.

  9. Aqueous Alteration and Shock Metamorphism of Antarctic CR Chondrites

    NASA Technical Reports Server (NTRS)

    Komatsu, M.; Fagan, T. J.; Yamaguchi, A.; Mikouchi, T.; Yasutake, M.; Zolensky, M. E.

    2018-01-01

    CR chondrites are the group of carbonaceous chondrites that best preserve records of formation of their components in the solar nebula. Although they are affected by aqueous alteration, many chondrules and CAIs are well-preserved, suggesting they have experienced little thermal metamorphism. We have been investigating the petrologic variations among the CR chondrites in the NIPR Antarctic meteorite collection. We focused particular attention on the petrology of amoeboid olivine aggregates (AOAs) in order to understand secondary alteration on the CR chondrite parent body. AOAs are composed of fine-grained forsteritic olivine and refractory minerals formed by condensation in the solar nebula, and can be used as sensitive indicators of secondary alteration processes.

  10. Dark inclusions in CO3 chondrites: new indicators of parent-body processes

    NASA Astrophysics Data System (ADS)

    Itoh, Daisuke; Tomeoka, Kazushige

    2003-01-01

    A petrographic and scanning electron microscopic study of the four CO3 chondrites Kainsaz, Ornans, Lancé, and Warrenton reveals for the first time that dark inclusions (DIs) occur in all the meteorites. DIs are mostly smaller in size than those reported from CV3 chondrites. They show evidence suggesting that they were formed by aqueous alteration and subsequent dehydration of a chondritic precursor and so probably have a formation history similar to that of DIs in CV3 chondrites. DIs in the CO3 chondrites consist mostly of fine-grained, Fe-rich olivine and can be divided into two types on the basis of texture. Type I DIs contain rounded, porous aggregates of fine grains in a fine-grained matrix and have textures suggesting that they are fragments of chondrule pseudomorphs. Veins filled with Fe-rich olivine are common in type I DIs, providing evidence that they experienced aqueous alteration on the parent body. Type II DIs lack rounded porous aggregates and have a matrix-like, featureless texture. Bulk chemical compositions of DIs and mineralogical characteristics of olivine grains in DIs suggest that these two types of DIs have a close genetic relationship. The DIs are probably clasts that have undergone aqueous alteration and subsequent dehydration at a location different from the present location in the meteorites. The major element compositions, the mineralogy of metallic phases, and the widely dispersed nature of the DIs suggest that their precursor was CO chondrite material. The CO parent body has been commonly regarded to have been dry, homogeneous, and unprocessed. However, the DIs suggest that the CO parent body was a heterogeneous conglomerate consisting of water-bearing regions and water-free regions and that during asteroidal heating, the water-bearing regions were aqueously altered and subsequently dehydrated. Brecciation may also have been active in the parent body. The DIs and the matrices are similarly affected by thermal metamorphism in their own host CO3 chondrites (petrologic subtypes 3.1 to 3.6), but the degree of the secondary processing (aqueous alteration and subsequent dehydration) of the DIs has no apparent correlation with the petrologic grades of the host chondrites. These observations suggest that the DIs had been incorporated into the host chondrites before the thermal metamorphism took place and that the secondary processes that affected the DIs largely occurred before the thermal metamorphism.

  11. Magnetic mapping of (carbonated) oceanic crust-mantle boundary: New insights from Linnajavri, northern Norway

    NASA Astrophysics Data System (ADS)

    Tominaga, M.; Beinlich, A.; Tivey, M.; Andrade Lima, E.; Weiss, B. P.

    2012-12-01

    The contribution of lower oceanic crust and upper mantle to marine magnetic anomalies has long been recognized, but the detailed magnetic character of this non-volcanic source layer remains to be fully defined. Here, we report preliminary results of a magnetic survey and source characterization of a "carbonated" oceanic Moho (petrological "Mohorovicic discontinuity") sequence observed at the Linnajavri Serpentinite Complex (LSC), northern Norway. The LSC is located at 67° 36'N and 16° 24'E within the upper Allochthon of the Norwegian Caledonides and represents a dismembered ophiolite. Particularly in the southern ("Ridoalggicohkka") area of the LSC, gabbro, serpentinite and its talc-carbonate (soapstone) and quartz-carbonate (listvenite) altered equivalents are extraordinarily well-exposed [1]. An intact oceanic Moho is exposed here, despite its complex tectonic setting. The small degree of arctic rock weathering (≤ 2 mm weathering surface) allowed for detailed regional-scale surface magnetic mapping across alteration fronts (serpentinite-soapstone; soapstone-listvenite) and lithological contacts (soapstone-gabbro). Magnetic mapping was conducted using a handheld 3-axis magnetometer, surface-towed resistivity meter and Teka surface magnetic susceptometer with sample spacing of 1 m. Geophysical field mapping was combined with petrological observations and scanning SQUID microscopy (SM) mapping conducted on thin sections from rock samples that were drilled along the survey lines. Regional scale magnetic mapping indicates that the total magnetic field across both the "carbonated" Moho and the soapstone-serpentinite interfaces show higher frequency changes in their magnetic anomaly character and amplitudes than the surface-towed resistivity data. SQUID microscopy mapping of both natural remanence magnetization (NRM) and anhysteretic remanence magnetization (ARM) on gabbro, serpentinite, soapstone, and listvenite samples, with a sensor-sample separation of ˜190 μm, show that the distribution of microscopically measurable ferromagnetic and possibly sulfide minerals produces a different bulk intensity for each of the rock types. SM vector magnetic field maps of these samples also reveal that the magnetization associated with these grains (observed as dipole-like fields in SM maps) is variable in direction from grain to grain, which may result from different alteration histories for each grain. These complex magnetization patterns acquired through thermal and chemical alteration history may explain the short wavelength magnetic anomalies observed along our traverse lines. [1] Beinlich, A., Plümper, O., Hövelmann, J., Austrheim, H. and Jamtveit, B. (2012), Terra Nova, in press.

  12. Sedimentary petrology and reservoir quality of the Middle Jurassic Red Glacier Formation, Cook Inlet forearc basin: Initial impressions

    USGS Publications Warehouse

    Helmold, K.P.; LePain, D.L.; Stanley, Richard G.

    2016-01-01

    The Division of Geological & Geophysical Surveys and Division of Oil & Gas are currently conducting a study of the hydrocarbon potential of Cook Inlet forearc basin (Gillis, 2013, 2014; LePain and others, 2013; Wartes, 2015; Herriott, 2016 [this volume]). The Middle Jurassic Tuxedni Group is recognized as a major source of oil in Tertiary reservoirs (Magoon, 1994), although the potential for Tuxedni reservoirs remains largely unknown. As part of this program, five days of the 2015 field season were spent examining outcrops, largely sandstones, of the Middle Jurassic Red Glacier Formation (Tuxedni Group) approximately 6.4 km northeast of Johnson Glacier on the western side of Cook Inlet (fig. 4-1). Three stratigraphic sections (fig. 4-2) totaling approximately 307 m in thickness were measured and described in detail (LePain and others, 2016 [this volume]). Samples were collected for a variety of analyses including palynology, Rock-Eval pyrolysis, vitrinite reflectance, detrital zircon geochronology, and petrology. This report summarizes our initial impressions of the petrology and reservoir quality of sandstones encountered in these measured sections. Interpretations are based largely on hand-lens observations of hand specimens and are augmented by stereomicroscope observations. Detailed petrographic (point-count) analyses and measurement of petrophysical properties (porosity, permeability, and grain density) are currently in progress.

  13. The Private Lives of Minerals: Social Network Analysis Applied to Mineralogy and Petrology

    NASA Astrophysics Data System (ADS)

    Hazen, R. M.; Morrison, S. M.; Fox, P. A.; Golden, J. J.; Downs, R. T.; Eleish, A.; Prabhu, A.; Li, C.; Liu, C.

    2016-12-01

    Comprehensive databases of mineral species (rruff.info/ima) and their geographic localities and co-existing mineral assemblages (mindat.org) reveal patterns of mineral association and distribution that mimic social networks, as commonly applied to such varied topics as social media interactions, the spread of disease, terrorism networks, and research collaborations. Applying social network analysis (SNA) to common assemblages of rock-forming igneous and regional metamorphic mineral species, we find patterns of cohesion, segregation, density, and cliques that are similar to those of human social networks. These patterns highlight classic trends in lithologic evolution and are illustrated with sociograms, in which mineral species are the "nodes" and co-existing species form "links." Filters based on chemistry, age, structural group, and other parameters highlight visually both familiar and new aspects of mineralogy and petrology. We quantify sociograms with SNA metrics, including connectivity (based on the frequency of co-occurrence of mineral pairs), homophily (the extent to which co-existing mineral species share compositional and other characteristics), network closure (based on the degree of network interconnectivity), and segmentation (as revealed by isolated "cliques" of mineral species). Exploitation of large and growing mineral data resources with SNA offers promising avenues for discovering previously hidden trends in mineral diversity-distribution systematics, as well as providing new pedagogical approaches to teaching mineralogy and petrology.

  14. Petrological and seismic precursors of the paroxysmal phase of the last Vesuvius eruption on March 1944

    PubMed Central

    Pappalardo, Lucia; D'Auria, Luca; Cavallo, Andrea; Fiore, Stefano

    2014-01-01

    Abrupt transitions in style and intensity are common during volcanic eruptions, with an immediate impact on the surrounding territory and its population. Defining the factors trigger such sudden shifts in the eruptive behavior as well as developing methods to predict such changes during volcanic crises are crucial goals in volcanology. In our research, the combined investigation of both petrological and seismic indicators has been applied for the first time to a Vesuvius eruption, that of March 1944 that caused the present dormant state of the volcano. Our results contribute to elucidate the evolution of the conduit dynamics that generated a drastic increase in the Volcanic Explosivity Index, associated to the ejection of huge amount of volcanic ash. Remarkably, our study shows that the main paroxysm was announced by robust changes in petrology consistent with seismology, thus suggesting that the development of monitoring methods to assess the nature of ejected juvenile material combined with conventional geophysical techniques can represent a powerful tool for forecasting the evolution of an eruption towards violent behavior. This in turn is a major goal in volcanology because this evidence can help decision-makers to implement an efficient safety strategy during the emergency (scale and pace of evacuation). PMID:25199537

  15. Improving Geoscience Outreach Through Multimedia Enhanced Web Sites - An Example From Connecticut

    NASA Astrophysics Data System (ADS)

    Hyatt, J. A.; Coron, C. R.; Schroeder, T. J.; Fleming, T.; Drzewiecki, P. A.

    2005-12-01

    Although large governmental web sites (e.g. USGS, NASA etc.) are important resources, particularly in relation to phenomena with global to regional significance (e.g. recent Tsunami and Hurricane disasters), smaller academic web portals continue to make substantive contributions to web-based learning in the geosciences. The strength of "home-grown" web sites is that they easily can be tailored to specific classes, they often focus on local geologic content, and they potentially integrate classroom, laboratory, and field-based learning in ways that improve introductory classes. Furthermore, innovative multimedia techniques including virtual reality, image manipulations, and interactive streaming video can improve visualization and be particularly helpful for first-time geology students. This poster reports on one such web site, Learning Tools in Earth Science (LTES, http://www.easternct .edu/personal/faculty/hyattj/LTES-v2/), a site developed by geoscience faculty at two state institutions. In contrast to some large web sites with media development teams, LTES geoscientists, with strong support from media and IT service departments, are responsible for geologic content and verification, media development and editing, and web development and authoring. As such, we have considerable control over both content and design of this site. At present the main content modules for LTES include "mineral" and "virtual field trip" links. The mineral module includes an interactive mineral gallery, and a virtual mineral box of 24 unidentified samples that are identical to those used in some of our classes. Students navigate an intuitive web portal to manipulate images and view streaming video segments that explain and undertake standard mineral identification tests. New elements highlighted in our poster include links to a virtual petrographic microscope, in which users can manipulate images to simulate stage rotation in both plane- and cross-polarized light. Virtual field trips include video-based excursions to sites in Georgia, Connecticut and Greenland. New to these VFT's is the integration of "virtual walks" in which users are able to navigate through some field sites in a virtual sense. Development of this resource is ongoing, but response from students, faculty outside of Earth Science and K-12 instructors indicate that this small web site can provide useful resources for those educators utilizing web-based learning in their courses. .edu/personal/faculty/hyattj/LTES-v2/

  16. Mineralogy and Petrology of Amoeboid Olivine Inclusions in CO3 Chondrites: Relationship to Parent-Body Aqueous Alteration

    NASA Technical Reports Server (NTRS)

    Chizmadia, Lysa J.; Rubin, Alan E.; Wasson, John T.

    2003-01-01

    Petrographic and mineralogic studies of amoeboid olivine inclusions (AOIs) in CO3 carbonaceous chondrites reveal that they are sensitive indicators of parent-body aqueous and thermal alteration. As the petrologic subtype increases from 3.0 to 3.8, forsteritic olivine (Fa(sub 0-1)) is systematically converted into ferroan olivine (Fa(sub 60-75)). We infer that the Fe, Si and O entered the assemblage along grain boundaries, forming ferroan olivine that filled fractures and voids. As temperatures increased, Fe(+2) from the new olivine exchanged with Mg(+2) from the original AOI to form diffusive haloes around low-FeO cores. Cations of Mn(+2), Ca(+2) and Cr(+3) were also mobilized. The systematic changes in AOI textures and olivine compositional distributions can be used to refine the classification of CO3 chondrites into subtypes. In subtype 3.0, olivine occurs as small forsterite grains (Fa(sub 0-1)), free of ferroan olivine. In petrologic subtype 3.2, narrow veins of FeO-rich olivine have formed at forsterite grain boundaries. With increasing alteration, these veins thicken to form zones of ferroan olivine at the outside AOI margin and within the AOI interior. By subtype 3.7, there is a fairly broad olivine compositional distribution in the range Fa(sub 63-70), and by subtype 3.8, no forsterite remains and the high-Fa peak has narrowed, Fa(sub 64-67). Even at this stage, there is incomplete equilibration in the chondrite as a whole (e.g., data for coarse olivine grains in Isna (CO3.8) chondrules and lithic clasts show a peak at Fa(sub39)). We infer that the mineral changes in A01 identified in the low petrologic types required aqueous or hydrothermal fluids whereas those in subtypes greater than or equal to 3.3 largely reflect diffusive exchange within and between mineral grains without the aid of fluids.

  17. The source rock potential of the Karroo coals of the south western Rift Basin of Tanzania

    NASA Astrophysics Data System (ADS)

    Mpanju, F.; Ntomola, S.; Kagya, M.

    For many years geoscientists believed that coals (Type III Kerogen) generate gas only. The geochemical study of Durand and Parrante ( Petrolum Geochemistry and Exploration of Europe, pp. 255-265, 1983) revealed that coals have reasonable potential for oil generation. On this basis forty outcrop samples of Lower and Upper Permian age, i.e. coals and carbonaceous shales, were collected from the south western Rift Basin of Tanzania. The aim of the study was to determine the richness, type, maturity and hydrocarbon potential of the above samples. These samples were subjected to both geochemical and petrological analyses. Geochemical analyses included solvent extraction, TOC, GC, GC-MS and pyrolysis. The petrological analysis included vitrinite reflectance, spore fluorescence and maceral content. The geochemical analyses showed all samples to be rich in organic matter of Types II and III and samples from Songwe Kiwira, Namwele, Mbamba Bay, Njuga and Mhukuru coalfields were in an early mature-mature stage of hydrocarbon generation. Whereas samples from Ketewaka and Ngaka coalfields showed a GC-trace of early generated waxy oil. All samples contained organic matter derived from terrestrial material which was deposited under oxic environment. The Hydrogen Index of most coals and carbonaceous shales was greater than 200 indicating that they can generate oil or light oil. Petrological observations showed all samples to be in the range of 0.47-0.67% Ro and some of them were rich in both liptinite and vitrinite macerals. From both geochemical and petrological observations it was concluded that the Lower and Upper Permian coals and carbonaceous shales under study are probably capable of generating oil. The oil generated has the same characteristics as that generated by Cretaceous and Tertiary coals discovered from other parts of the world, i.e. Adjuna and Kutei Basins in Indonesia and the Gippsland Basin in Australia (Kirkland et al., AAPG Bull.71, 577, 1987).

  18. Northwest Africa 428: Impact-induced Annealing of an L6 Chondrite Breccia

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2006-01-01

    Northwest Africa (NWA) 428 is an L chondrite that was successively thermally metamorphosed to petrologic type-6, shocked to stage S4-S5, brecciated, and annealed to approximately petrologic type-4. Its thermal and shock history resembles that of the previously studied LL6 chondrite, Miller Range (MIL) 99301, which formed on a different asteroid. The petrologic type-6 classification of NWA 428 is based on its highly recrystallized texture, coarse metal (150 +/- 150 micron), troilite (100 +/- 170 micron), and plagioclase (20-60 micron) grains, and relatively homogeneous olivine (Fa(sub 24.4 +/- 0.6)), low-Ca pyroxene (FS(sub 2.5+/- 0,4) , and plagioclase (Ab(sub 84.2 +/- 0.4) compositions. The petrographic criteria that indicate shock stage S4-S5 include the presence of chromite veinlets, chromite-plagioclase assemblages, numerous occurrences of metallic Cu, irregular troilite grains within metallic Fe-Ni, polycrystalline troilite, duplex plessite, metal and troilite veins, large troilite nodules, and low-Ca clinopyroxene with polysynthetic twins. If the rock had been shocked before thermal metamorphism, low-Ca clinopyroxene produced by the shock event would have transformed into orthopyroxene. Post-shock brecciation is indicated by the presence of recrystallized clasts and highly shocked clasts that form sharp boundaries with the host. Post-shock annealing is indicated by the sharp optical extinction of the olivine grains; during annealing, the damaged olivine crystal lattices healed. If temperatures exceeded those approximating petrologic type-4 (approximately 600-700 C) during annealing, the low-Ca clinopyroxene would have transformed into orthopyroxene. The other shock indicators, likewise, survived the mild annealing. An impact event is the most plausible source of post-metamorphic, post-shock annealing because any A1-26 that may have been present when the asteroid accreted would have decayed away by the time NWA 428 was annealed. The similar inferred histories of NWA 428 (L6) and MIL 99301 (LL6) indicate that impact heating affected more than 1 ordinary chondrite parent body.

  19. Detection of tectonometamorphic discontinuities within the Himalayan orogen: Structural and petrological constraints from the Rasuwa district, central Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Rapa, Giulia; Mosca, Pietro; Groppo, Chiara; Rolfo, Franco

    2018-06-01

    A detailed structural, lithological and petrological study of different transects in the Rasuwa district of central Nepal Himalaya allows the characterization of the tectonostratigraphic architecture of the area. It also facilitates constraining the P-T evolution of the different units within the Lesser (LHS) and Greater (GHS) Himalayan Sequences. Peak P-T conditions obtained for the studied metapelite samples using the pseudosection approach and the Average PT method highlight the existence of four different T/P ratio populations in different tectonometamorphic units: 80 ± 11 °C/kbar (LHS), 66 ± 7 °C/kbar (RTS), 73 ± 1 °C/kbar (Lower-GHS) and 101 ± 12 °C/kbar (Upper-GHS). Integration of structural and petrological data emphasizes the existence of three tectonometamorphic discontinuities bounding these units, characterized by top-to-the-south sense of shear: the Ramgarh Thrust, which separates the LHS (peak metamorphism at ∼600 °C, 7.5 kbar) from the overlying RTS (peak metamorphism at ∼635 °C, 10 kbar); the Main Central Thrust, which separates the RTS from the Lower-GHS (peak at 700-740 °C, 9.5-10.5 kbar with a prograde increase in both P and T in the kyanite stability field), and the Langtang Thrust, which juxtaposes the Upper-GHS (peak at 780-800 °C, 7.5-8.0 kbar with a nearly isobaric heating in the sillimanite stability field) onto the Lower-GHS. An increase in the intensity of deformation, with development of pervasive mylonitic fabrics and/or shear zones, is generally observed approaching the discontinuities from either side. Overall, data and results presented in this paper demonstrate that petrological and structural analysis combined together, are reliable methods adequate to identify tectonometamorphic discontinuities in both the LHS and GHS. Geochronological data from the literature allow the interpretation of these discontinuities as in-sequence thrusts.

  20. Petrologic and oxygen isotopic study of ALH 85085-like chondrites

    NASA Astrophysics Data System (ADS)

    Prinz, M.; Weisberg, M. K.; Clayton, R. N.; Mayeda, T. K.; Ebihara, M.

    1994-07-01

    Four meteorites (PAT 91546, PCA 91328, PCA 91452, PCA 91467) petrologically similar to ALH 85085 chondrite have now been found. Previous studies of ALH 85085 showed it be a new kind of CR-related microchondrule-bearing chondrite, although one called it a sub-chondrite. The purpose of this study is to learn more about ALH 85085-like meteorites and their relationship to CR and CR-related (LEW 85332, Acfer 182, Bencubbin) chondrites. The methods used included petrology, INA bulk chemical analysis (PAT 91546, PCA 91467), and O isotopic analyses of the whole rocks and separated chondrules and dark inclusions (DIs) from PAT 91546. Since microchondrules and fragments are approximately 20 microns it was necessary to analyze composite samples for O; one was of approximately 100 chondrules, and another was of 5 DIs. Petrologically, the four meteorites are similar to ALH 85085, and there is no basis for determining if all of them, or any combinations, are paired. Mineralogically, olivine and pyroxene are highly magnesian FeNi metal generally has 3-10% Ni, and has a positive Ni-Co correlation similar to that in CR and CR-related chondrites. Refractory inclusions are similar in size to the chondrules and have the following assemblages: (1) hibonite-perovskite, (2) melilite-fassaite-forsterite, (3) grossite (Ca-dialuminate)-melilite-perovskite, (4) spinel-melilite, and (5) spinel-pyroxene aggregates. Chemically, INA analyses indicate that PAT 91546 and PCA 91467 are generally similar to ALH 85085. Oxygen isotopic analyses of the four whole-rock compositions fall along the CR mixing line as does ALH 85085; they are also close to LEW 85332, Acfer 182, and Bencubbin. This supports the concept that these are all CR-related chondrites. Even stronger support is found in the compositions of the chondrules and DIs in PAT 91546, which also plot on or near the CR line.

  1. "MERAPIDATA": New Petrologic and Geochemical Database of the Merapi Volcano, Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Borisova, A. Y.; Martel, C.; Pratomo, I.; Toutain, J.; Sumarti, S.; Surono, S.

    2011-12-01

    Petrologic and geochemical databases of erupted products are critical for monitoring and predicting the evolution of active volcanoes. To monitor the activity of one of the most dangerous volcanoes in the world, Merapi Volcano in Indonesia, in the framework of the new instrumental site VELI (Volcans Explosifs - Laboratoires Indonésiens labelled by INSU in 2009 in France), we generated "MERAPIDATA", a complete database of available petrologic and geochemical data published in the literature on pyroclastic flows, tephra, lavas and xenoliths coupled with the exact ages of historical flows [1] or estimated ages based on 14C geochronology [2]. "MERAPIDATA" permits to access complete petrologic, geochemical, and geochronological information (e.g., major, trace element and Sr-Nd-Pb-O isotopic composition of the bulk volcanic rocks, xenoliths, minerals and glasses; textural information; type of eruption; classification) of a given volcanic product or series. In addition to ~300 published volcanic products, new data on 2 pyroclastic flows, 1 tephra and 4 ash samples collected on northern and western slopes of the volcano in October and November 2010 during subplinian type eruption have been added to "MERAPIDATA". The 2010 ash sample chemistry allows classifying them as high-K basaltic andesite. The ash samples demonstrate major and trace element compositions typical for the high-K series. For the first time, we obtained complete data on the Merapi ash samples which characterized by low L.O.I. ≤ 0.58 wt%, CO2total ≤ 0.05 wt%, H2Ototal = 0.3 - 0.5 wt%, Stotal ≤ 0.13 wt% and moderate Cl (550 - 1120 ppm) contents. The ash-leachates produced by leaching experiments demonstrate constant F/Cl ratios (0.05 ± 0.01) and Ca-Na-K enrichment (Ca/Na= 3 - 7, Na/K = 1 - 5). Sr-Nd-Pb-O isotopic analyses on the 2010 Merapi products are in progress. New petrologic (e.g., melt and fluid inclusion data, T - P - fO2 - aH2O - aCO2) and geochemical (e.g., volatile, major, trace element and isotopic composition of the bulk volcanic rocks and glassy matrix) data will permit to explain unexpected subplinian type of the 2010 eruption. The complete "MERAPIDATA" programmed with MS Access 2007 will be available in English version for open access at the website of the Observatory of Midi-Pyrénées (Toulouse, France): "http://www.get.obs-mip.fr/index.php/Annuaire/Borisova-Anastassia/MERAPIDATA". [1] Camus et al., (2000). JVGR 100, 139-163. [2] Gertisser & Keller (2003). JVGR 123, 1-23.

  2. The Athena Microscopic Imager Investigation

    NASA Technical Reports Server (NTRS)

    Herkenhoff, K. E.; Aquyres, S. W.; Bell, J. F., III; Maki, J. N.; Arneson, H. M.; Brown, D. I.; Collins, S. A.; Dingizian, A.; Elliot, S. T.; Geotz, W.

    2003-01-01

    The Athena science payload on the Mars Exploration Rovers (MER) includes the Microscopic Imager (MI) [1]. The MI is a fixed-focus camera mounted on the end of an extendable instrument arm, the Instrument Deployment Device (IDD; see Figure 1).The MI was designed to acquire images at a spatial resolution of 30 microns/pixel over a broad spectral range (400 - 700 nm; see Table 1). Technically, the microscopic imager is not a microscope: it has a fixed magnification of 0.4 and is intended to produce images that simulate a geologist s view through a common hand lens. In photographers parlance, the system makes use of a macro lens. The MI uses the same electronics design as the other MER cameras [2, 3] but has optics that yield a field of view of 31 31 mm across a 1024 1024 pixel CCD image (Figure 2). The MI acquires images using only solar or skylightillumination of the target surface. A contact sensor is used to place the MI slightly closer to the target surface than its best focus distance (about 66 mm), allowing concave surfaces to be imaged in good focus. Because the MI has a relatively small depth of field (3 mm), a single MI image of a rough surface will contain both focused and unfocused areas. Coarse focusing will be achieved by moving the IDD away from a rock target after the contact sensor is activated. Multiple images taken at various distances will be acquired to ensure good focus on all parts of rough surfaces. By combining a set of images acquired in this way, a completely focused image can be assembled. Stereoscopic observations can be obtained by moving the MI laterally relative to its boresight. Estimates of the position and orientation of the MI for each acquired image will be stored in the rover computer and returned to Earth with the image data. The MI optics will be protected from the Martian environment by a retractable dust cover. The dust cover includes a Kapton window that is tinted orange to restrict the spectral bandpass to 500-700 nm, allowing color information to be obtained by taking images with the dust cover open and closed. The MI will image the same materials measured by other Athena instruments (including surfaces prepared by the Rock Abrasion Tool), as well as rock and soil targets of opportunity. Subsets of the full image array can be selected and/or pixels can be binned to reduce data volume. Image compression will be used to maximize the information contained in the data returned to Earth. The resulting MI data will place other MER instrument data in context and aid in petrologic and geologic interpretations of rocks and soils on Mars.

  3. Generic Primary Mechanical Response of Viscous Liquids

    NASA Astrophysics Data System (ADS)

    Bierwirth, S. Peter; Böhmer, Roland; Gainaru, Catalin

    2017-12-01

    Four decades ago a seminal review by Jonscher [Nature (London) 267, 673 (1977), 10.1038/267673a0] revealed that the dielectric response of conducting materials is characterized by a "remarkable universality". Demonstrating that the same response pattern is exhibited also by shear rheological spectra of nonpolymeric viscous liquids, the present contribution connects two branches of condensed matter physics: Concepts developed for charge transport can be employed for the description of mass flow and vice versa. Based on the virtual equivalence of the two dynamics a connection is established between microscopic and macroscopic viscoelastic characteristics of liquids, resembling the Barton-Nakajima-Namikawa relation for conductivity.

  4. Direct observation of current-induced conductive path in colossal-electroresistance manganite thin films

    NASA Astrophysics Data System (ADS)

    Wei, Wengang; Zhu, Yinyan; Bai, Yu; Liu, Hao; Du, Kai; Zhang, Kai; Kou, Yunfang; Shao, Jian; Wang, Wenbin; Hou, Denglu; Dong, Shuai; Yin, Lifeng; Shen, Jian

    2016-01-01

    Manganites are known to often show colossal electroresistance (CER) in addition to colossal magnetoresistance. The (La1-yP ry) 1 -xC axMn O3 (LPCMO) system has a peculiar CER behavior in that little change of magnetization occurs. We use a magnetic force microscope to uncover the CER mechanism in the LPCMO system. In contrast to the previous belief that current reshapes the ferromagnetic metallic (FMM) domains, we show that the shape of the FMM domains remain virtually unchanged after passing electric current. Instead, it is the appearance of a tiny fraction of FMM "bridges" that is responsible for the CER behavior.

  5. Analysis of the Δ(X) - L intervalley mixing in group-IV heterostructures

    NASA Astrophysics Data System (ADS)

    Kiselev, A. A.; Kim, K. W.; Yablonovitch, E.

    2005-06-01

    We provide a treatment of the problem of Δ(X) - L intervalley mixing in differently oriented SiGe heterostructures in the transparent effective mass method. Mixing potentials can be calculated, considering changes in the constituent Concentrations of individual heterolayers from some "virtual crystal level" as a bunch of microscopic single-ion perturbations. Strong mixing between lowest localized Δ and L states can be achieved in (113) structures, making them favorable for the electrically controlled gigantic intervalley g factor modulation. We provide estimates for the mixing potential and further consider limitations related to the strength of the in-plane localization and quality of the interface.

  6. Nipple adenoma arising from axillary accessory breast: a case report

    PubMed Central

    2012-01-01

    Nipple adenoma is a relatively rare benign breast neoplasm, and cases of the disease arising from the axillary accessory breast have very seldom been reported in the English literature. We report a case of nipple adenoma arising from axillary accessory breast including clinical and pathological findings. An 82-year-old woman presented with the complaint of a small painful mass in the right axilla. Physical examination confirmed a well-defined eczematous crusted mass that was 8 mm in size. The diagnosis of nipple adenoma was made from an excisional specimen on the basis of characteristic histological findings. Microscopic structural features included a compact proliferation of small tubules lined by epithelial and myoepithelial cells, and the merging of glandular epithelial cells of the adenoma into squamous epithelial cells in the superficial epidermal layer. Because clinically nipple adenoma may resemble Paget’s disease and pathologically can be misinterpreted as tubular carcinoma, the correct identification of nipple adenoma is an important factor in the differential diagnosis for axillary tumor neoplasms. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1186821489769063 PMID:23186145

  7. Virtual slide telepathology workstation of the future: lessons learned from teleradiology.

    PubMed

    Krupinski, Elizabeth A

    2009-08-01

    The clinical reading environment for the 21st century pathologist looks very different than it did even a few short years ago. Glass slides are quickly being replaced by digital "virtual slides," and the traditional light microscope is being replaced by the computer display. There are numerous questions that arise however when deciding exactly what this new digital display viewing environment will be like. Choosing a workstation for daily use in the interpretation of digital pathology images can be a very daunting task. Radiology went digital nearly 20 years ago and faced many of the same challenges so there are lessons to be learned from these experiences. One major lesson is that there is no "one size fits all" workstation so users must consider a variety of factors when choosing a workstation. In this article, we summarize some of the potentially critical elements in a pathology workstation and the characteristics one should be aware of and look for in the selection of one. Issues pertaining to both hardware and software aspects of medical workstations will be reviewed particularly as they may impact the interpretation process.

  8. Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection

    PubMed Central

    Zhi, Yanan; Wang, Benquan; Yao, Xincheng

    2016-01-01

    Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches—including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy—have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact–free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina. PMID:27480461

  9. Pulmonary artery sarcoma with angiosarcoma phenotype mimicking pleomorphic malignant fibrous histiocytoma: a case report

    PubMed Central

    2012-01-01

    Abstract Primary sarcomas of the major blood vessels can be classified based on location in relationship to the wall or by histologic type. Angiosarcomas are malignant neoplasms that arise from the endothelial lining of the blood vessels; those arising in the intimal compartment of pulmonary artery are rare. We report a case of pulmonary artery angiosarcoma in a 36-year old female with pulmonary masses. The patient had no other primary malignant neoplasm, thus excluding a metastatic lesion. Gross examination revealed a thickened right pulmonary artery and a necrotic and hemorrhagic tumor, filling and occluding the vascular lumen. The mass extended distally, within the pulmonary vasculature of the right lung. Microscopically, an intravascular undifferentiated tumor was identified. The tumor cells showed expression for vascular markers VEGFR, VEGFR3, PDGFRa, FGF, Ulex europaeus, FVIII, FLI-1, CD31 and CD34; p53 was overexpressed and Ki67 proliferative rate was increased. Intravascular angiosarcomas are aggressive neoplasms, often associated with poor outcome. Virtual slide The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2315906377648045. PMID:23134683

  10. High-speed image processing system and its micro-optics application

    NASA Astrophysics Data System (ADS)

    Ohba, Kohtaro; Ortega, Jesus C. P.; Tanikawa, Tamio; Tanie, Kazuo; Tajima, Kenji; Nagai, Hiroshi; Tsuji, Masataka; Yamada, Shigeru

    2003-07-01

    In this paper, a new application system with high speed photography, i.e. an observational system for the tele-micro-operation, has been proposed with a dynamic focusing system and a high-speed image processing system using the "Depth From Focus (DFF)" criteria. In micro operation, such as for the microsurgery, DNA operation and etc., the small depth of a focus on the microscope makes bad observation. For example, if the focus is on the object, the actuator cannot be seen with the microscope. On the other hand, if the focus is on the actuator, the object cannot be observed. In this sense, the "all-in-focus image," which holds the in-focused texture all over the image, is useful to observe the microenvironments on the microscope. It is also important to obtain the "depth map" which could show the 3D micro virtual environments in real-time to actuate the micro objects, intuitively. To realize the real-time micro operation with DFF criteria, which has to integrate several images to obtain "all-in-focus image" and "depth map," at least, the 240 frames par second based image capture and processing system should be required. At first, this paper briefly reviews the criteria of "depth from focus" to achieve the all-in-focus image and the 3D microenvironments' reconstruction, simultaneously. After discussing the problem in our past system, a new frame-rate system is constructed with the high-speed video camera and FPGA hardware with 240 frames par second. To apply this system in the real microscope, a new criterion "ghost filtering" technique to reconstruct the all-in-focus image is proposed. Finally, the micro observation shows the validity of this system.

  11. Navigation and Image Injection for Control of Bone Removal and Osteotomy Planes in Spine Surgery.

    PubMed

    Kosterhon, Michael; Gutenberg, Angelika; Kantelhardt, Sven Rainer; Archavlis, Elefterios; Giese, Alf

    2017-04-01

    In contrast to cranial interventions, neuronavigation in spinal surgery is used in few applications, not tapping into its full technological potential. We have developed a method to preoperatively create virtual resection planes and volumes for spinal osteotomies and export 3-D operation plans to a navigation system controlling intraoperative visualization using a surgical microscope's head-up display. The method was developed using a Sawbone ® model of the lumbar spine, demonstrating feasibility with high precision. Computer tomographic and magnetic resonance image data were imported into Amira ® , a 3-D visualization software. Resection planes were positioned, and resection volumes representing intraoperative bone removal were defined. Fused to the original Digital Imaging and Communications in Medicine data, the osteotomy planes were exported to the cranial version of a Brainlab ® navigation system. A navigated surgical microscope with video connection to the navigation system allowed intraoperative image injection to visualize the preplanned resection planes. The workflow was applied to a patient presenting with a congenital hemivertebra of the thoracolumbar spine. Dorsal instrumentation with pedicle screws and rods was followed by resection of the deformed vertebra guided by the in-view image injection of the preplanned resection planes into the optical path of a surgical microscope. Postoperatively, the patient showed no neurological deficits, and the spine was found to be restored in near physiological posture. The intraoperative visualization of resection planes in a microscope's head-up display was found to assist the surgeon during the resection of a complex-shaped bone wedge and may help to further increase accuracy and patient safety. Copyright © 2017 by the Congress of Neurological Surgeons

  12. Use of interactive live digital imaging to enhance histology learning in introductory level anatomy and physiology classes.

    PubMed

    Higazi, Tarig B

    2011-01-01

    Histology is one of the main subjects in introductory college-level Human Anatomy and Physiology classes. Institutions are moving toward the replacement of traditional microscope-based histology learning with virtual microscopy learning amid concerns of losing the valuable learning experience of traditional microscopy. This study used live digital imaging (LDI) of microscopic slides on a SMART board to enhance Histology laboratory teaching. The interactive LDI system consists of a digital camera-equipped microscope that projects live images on a wall-mounted SMART board via a computer. This set-up allows real-time illustration of microscopic slides with highlighted key structural components, as well as the ability to provide the students with relevant study and review material. The impact of interactive LDI on student learning of Histology was then measured based on performance in subsequent laboratory tests before and after its implementation. Student grades increased from a mean of 76% (70.3-82.0, 95% CI) before to 92% (88.8-95.3, 95% CI) after integration of LDI indicating highly significant (P < 0.001) enhancement in students' Histology laboratory performance. In addition, student ratings of the impact of the interactive LDI on their Histology learning were strongly positive, suggesting that a majority of students who valued this learning approach also improved learning and understanding of the material as a result. The interactive LDI technique is an innovative, highly efficient and affordable tool to enhance student Histology learning, which is likely to expand knowledge and student perception of the subject and in turn enrich future science careers. Copyright © 2011 American Association of Anatomists.

  13. Development of scanning x-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuyama, S.; Mimura, H.; Yumoto, H.

    We developed a high-spatial-resolution scanning x-ray fluorescence microscope (SXFM) using Kirkpatrick-Baez mirrors. As a result of two-dimensional focusing tests at BL29XUL of SPring-8, the full width at half maximum of the focused beam was achieved to be 50x30 nm{sup 2} (VxH) under the best focusing conditions. The measured beam profiles were in good agreement with simulated results. Moreover, beam size was controllable within the wide range of 30-1400 nm by changing the virtual source size, although photon flux and size were in a trade-off relationship. To demonstrate SXFM performance, a fine test chart fabricated using focused ion beam system wasmore » observed to determine the best spatial resolution. The element distribution inside a logo mark of SPring-8 in the test chart, which has a minimum linewidth of approximately 50-60 nm, was visualized with a spatial resolution better than 30 nm using the smallest focused x-ray beam.« less

  14. Petrology and Composition of HED Polymict Breccias

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Herrin, J. S.; Mertzman, S. A.; Mertzman, K. R.

    2010-01-01

    The howardite, eucrite and diogenite (HED) clan of meteorites forms the largest suite of achondrites with over 900 named members. The HEDs are igneous rocks and breccias of igneous rocks from a differentiated asteroid [1]. The consensus view is that these rocks hail from the asteroid 4 Vesta, which will be the first target of NASA's Dawn mission. When Dawn arrives at Vesta, she will begin remote imagery and spectroscopy of the surface. The surface she will observe will be dominated by rocks and soils mixed through impact gardening. To help with the interpretation of the remotely sensed data, we have begun a project on the petrologic and compositional study of a suite of HED polymict breccias. Here we report on the preliminary findings of this project.

  15. Conference on Chondrules and Their Origins

    NASA Technical Reports Server (NTRS)

    Hrametz, K.

    1983-01-01

    Chondrule parent materials, chondrule formation, and post-formational history are addressed. Contributions involving mineralogy petrology, geochemistry, geochronology, isotopic measurements, physical measurements, experimental studies, and theoretical studies are included.

  16. Lunar and Planetary Science XXXV: Undergraduate Education and Research Programs, Facilities, and Information Access

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) GRIDVIEW: Recent Improvements in Research and Education Software for Exploring Mars Topography; 2) Software and Hardware Upgrades for the University of North Dakota Asteroid and Comet Internet Telescope (ACIT); 3) Web-based Program for Calculating Effects of an Earth Impact; 4) On-Line Education, Web- and Virtual-Classes in an Urban University: A Preliminary Overview; 5) Modelling Planetary Material's Structures: From Quasicrystalline Microstructure to Crystallographic Materials by Use of Mathematica; 6) How We Used NASA Lunar Set in Planetary and Material Science Studies: Textural and Cooling Sequences in Sections of Lava Column from a Thin and a Thick Lava-Flow, from the Moon and Mars with Terrestrial Analogue and Chondrule Textural Comparisons; 7) Classroom Teaching of Space Technology and Simulations by the Husar Rover Model; 8) New Experiments (In Meteorology, Aerosols, Soil Moisture and Ice) on the New Hunveyor Educational Planetary Landers of Universities and Colleges in Hungary; 9) Teaching Planetary GIS by Constructing Its Model for the Test Terrain of the Hunveyor and Husar; 10) Undergraduate Students: An Untapped Resource for Planetary Researchers; 11) Analog Sites in Field Work of Petrology: Rock Assembly Delivered to a Plain by Floods on Earth and Mars; 12) RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility; 13) Full Text Searching and Customization in the NASA ADS Abstract Service.

  17. Dynamical consequences of mantle heterogeneity in two-phase models of mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Katz, R. F.

    2010-12-01

    The mid-ocean ridge system, over 50,000 km in length, samples the magmatic products of a large swath of the asthenosphere. It provides our best means to assess the heterogeneity structure of the upper mantle. Interpretation of the diverse array of observations of MOR petrology, geochemistry, tomography, etc requires models that can map heterogeneity structure onto predictions testable by comparison with these observations. I report on progress to this end; in particular, I describe numerical models of coupled magma/mantle dynamics at mid-ocean ridges [1,2]. These models incorporate heterogeneity in terms of a simple, two-component thermochemical system with specified amplitude and spatial distribution. They indicate that mantle heterogeneity has significant fluid-dynamical consequences for both mantle and magmatic flow. Models show that the distribution of enrichment can lead to asymmetry in the strength of upwelling across the ridge-axis and channelised magmatic transport to the axis. Furthermore, heterogeneity can cause off-axis upwelling of partially molten diapirs, trapping of enriched melts off-axis, and re-fertilization of the mantle by pooled and refrozen melts. Predicted consequences of geochemical heterogeneity may also be considered. References: [1] Katz, RF, (2008); Magma dynamics with the Enthalpy Method: Benchmark Solutions and Magmatic Focusing at Mid-ocean Ridges. Journal of Petrology, doi: 10.1093/petrology/egn058. [2] Katz RF, (2010); Porosity-driven convection and asymmetry beneath mid-ocean ridges. Submitted to G3.

  18. Petrology and Geochemistry of Unbrecciated Harzburgitic Diogenite MIL 07001: A Window Into Vestan Geological Evolution

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Peng, Z. X.; Mertzman, S. A.; Mertzman, K. R.

    2014-01-01

    There is a strong case that asteroid 4 Vesta is the parent of the howardite, eucrite and diogenite (HED) meteorites. Models developed for the geological evolution of Vesta can satisfy the compositions of basaltic eucrites that dominate in the upper crust. The bulk compositional characteristics of diogenites - cumulate harzburgites and orthopyroxenites from the lower crust - do not fit into global magma ocean models that can describe the compositions of basaltic and cumulate eucrites. Recent more detailed formation models do make provision for a more complicated origin for diogenites, but this model has yet to be completely vetted. Compositional studies of bulk samples has led to the hypothesis that many diogenites were formed late by interaction of their parent melts with a eucritic crust, but those observations may alternatively be explained by subsolidus equilibration of trace elements between orthopyroxene and plagioclase and Ca-phosphate in the rocks. Differences in radiogenic Mg-26 content between diogenites and eucrites favors early formation of the former, not later formation. Understanding the origin of diogenites is crucial for understanding the petrologic evolution of Vesta. We have been doing coordinated studies of a suite of diogenites including petrologic investigations, bulk rock major and trace element studies, and in situ trace element analyses of orthopyroxene. Here we will focus on an especially unusual, and potentially key, diogenite, MIL 07001.

  19. Essential Elements of Geologic Reports.

    ERIC Educational Resources Information Center

    Webb, Elmer James

    1988-01-01

    Described is a report outline for geologic reports. Essential elements include title; abstract; introduction; stratigraphy; petrography; geochemistry; petrology; geophysics; structural geology; geologic history; modeling; economics; conclusions; and recommendations. (Author/CW)

  20. Baked shale and slag formed by the burning of coal beds

    USGS Publications Warehouse

    Rogers, G. Sherburne

    1918-01-01

    The baking and reddening of large masses of strata caused by the burning of coal beds is a striking feature of the landscape in most of the great western coal-bearing areas. The general character and broader effects of the burning have been described by many writers, but the fact that in places enough heat is generated to fuse and thoroughly recrystallize the overlying shale and sandstone has received less attention. Some of the natural slags thus formed simulate somewhat abnormal igneous rocks, but others consist largely of rare and little known minerals. A wide range in the mineral composition of such slags is to be expected, depending on the composition of the original sediment and the conditions of fusion and cooling. These products of purely thermal metamorphism offer a fertile field for petrologic investigation. The writer has observed the effects produced by the burning of coal beds in several localities in Montana, particularly along upper Tongue River in the southern part of the State, in the district lying southeast of the mouth of Bighorn River, and in the Little Sheep Mountain coal field north of Miles City. A number of specimens of the rock formed have been examined under the microscope, though time has not been available for a systematic examination. The writer is greatly indebted to Mr. E. S. Larsen for assistance in the study of some of the minerals.

  1. Geochemistry of sapphirine-apatite-calcite-bearing gabbroic dykes from the Finero Phlogopite Peridotite (Ivrea-Verbano Zone): evidence for multistage interaction with the ambient peridotite

    NASA Astrophysics Data System (ADS)

    Tommaso, Giovanardi; Alberto, Zanetti; Maurizio, Mazzucchelli; Tomoaki, Morishita; Antonio, Langone

    2016-04-01

    The Finero Phlogopite-Peridotite (FPP) is a mantle unit outcropping in the northernmost tip of the Ivrea-Verbano Zone (IVZ, Southern Alps). It shows a virtually complete recrystallization due to pervasive to channelled melt migration. The pervasive metasomatism formed a main lithologic association constituted by phlogopite harzburgites associated to phlogopite pyroxenites (mainly olivine-websterites, websterites and orthopyroxenites). These lithologies are also rich in amphibole and do not show significant chemical gradients among them (Zanetti et al., 1999). The channelled migration stages formed dunite bodies, which sometimes contain stratiform chromitites and, more rarely, pyroxenite layers similar to those associated to phlogopite harzburgite. The FPP also shows a discrete number of other, subordinate rock-types, which are characterised by the presence of apatite usually associated to carbonates (i.e. calcite or dolomite) and exhibit marked modal and chemical gradients with respect to the host phlogopite harzburgite. Examples of these lithologies are apatite-dolomite-bearing wehrlites and harzburgites (e.g. Zanetti et al. 1999; Morishita et al., 2008), apatite-calcite zircon-syenites and hornblendites. Ar-Ar amphibole analysis and U-Pb zircon and apatite data return Triassic ages for these rocks, which have been considered to document the time of melt/fluid injection. Notwithstanding the apparent mineralogical and chemical differences with the main lithologic sequences, apatite-carbonates-bearing rocks have been frequently interpreted as cogenetic to phlogopite harzburgites. To debate the petrogenesis of these rocks, a detailed field, petrological and geochemical investigation has been carried out on a swarm of apatite-calcite-bearing gabbroic veins that randomly cut the main lithologic association. Preliminary investigation evidenced as these veins show complex metasomatic haloes and a symmetric internal layering, characterised by crystallisation of magmatic sapphirine (Giovanardi et al., 2013). The mineral assemblage of the veins is dominated by titanian pargasite towards the host peridotite and by plagioclase at the vein centre. The veins also present phlogopite and spinel. Field and petrographic evidence, major and trace element data and the O isotopic composition of such gabbroic veins indicate that they formed at shallow mantle conditions by multistage fractional crystallisation of a migrating melt unrelated to those forming phlogopite harzburgites. Besides, local strong enrichments in LILE, LREE and 18O in vein minerals confirm that such melt was deeply modified by interaction with the host phlogopite peridotite. The genetic relationships with other intrusive events recorded by the FPP and the associated crustal sequence will be addressed with the aim of placing new constraints on the petrologic and geodynamic evolution of the IVZ. Giovanardi, T., Morishita, T., Zanetti, A., Mazzucchelli, M., Vannucci, R. (2013). Igneous sapphirine as a product of melt-peridotite interactions in the Finero Phlogopite-Peridotite Massif, Western Italian Alps. European Journal of Mineralogy 25, 17-31. Morishita, T., Hattori, K.H., Terada, K., Matsumoto, T., Yamamoto, K., Takebe, M., Ishida, Y., Tamura, A., Arai, S. (2008). Geochemistry of apatite-rich layers in the Finero phlogopite-peridotite massif (Italian Western Alps) and ion microprobe dating of apatite. Chemical Geology 251, 99-111. Zanetti, A., Mazzucchelli, M., Rivalenti, G., Vannucci, R. (1999). The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism. Contributions to Mineralogy and Petrology 134, 107-122.

  2. Linking petrology and seismology at an active volcano.

    PubMed

    Saunders, Kate; Blundy, Jon; Dohmen, Ralf; Cashman, Kathy

    2012-05-25

    Many active volcanoes exhibit changes in seismicity, ground deformation, and gas emissions, which in some instances arise from magma movement in the crust before eruption. An enduring challenge in volcano monitoring is interpreting signs of unrest in terms of the causal subterranean magmatic processes. We examined over 300 zoned orthopyroxene crystals from the 1980-1986 eruption of Mount St. Helens that record pulsatory intrusions of new magma and volatiles into an existing larger reservoir before the eruption occurred. Diffusion chronometry applied to orthopyroxene crystal rims shows that episodes of magma intrusion correlate temporally with recorded seismicity, providing evidence that some seismic events are related to magma intrusion. These time scales are commensurate with monitoring signals at restless volcanoes, thus improving our ability to forecast volcanic eruptions by using petrology.

  3. Petrology and geochemistry of lithic fragments separated from the Apollo 15 deep-drill core

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Nielsen, R. L.; Drake, M. J.

    1977-01-01

    Petrological and geochemical analysis of lithic fragments separated from the Apollo 15 deep-drill core showed these fragments to fall into the essentially the same range of rock types as observed in surface soil samples and large rock samples. Three particles are singled out as being of special interest. One sample is a mare basalt containing extremely evolved phases. The particle may represent small-scale imperfect crystal/liquid separation in a lava flow. A green glass particle is not the ultramafic emerald green glass described from the Apollo 15 site, but rather an ANT-like light green color, and has a quite different chemical composition from the ultramafic variety. One mare basalt displays a positive Eu anomaly and is enriched in plagioclase relative to olivine plus pyroxene.

  4. Petrology and Raman Spectroscopy of Shocked Phases in the Gujba CB Chondrite and the Shock History of the CB Parent Body

    NASA Technical Reports Server (NTRS)

    Weisberg, M. K.; Kimura, M.

    2004-01-01

    The CB chondrites are metal-rich chondritic meteorites having characteristics that sharply distinguish them from other chondrites [1], including (1) high metal abundances (60-80 vol.% metal), (2) most chondrules have cryptocrystalline or barred textures, (3) moderately volatile lithophile elements are highly depleted and (4) nitrogen is enriched in the heavy isotope. Similarities in mineral composition, as well as oxygen and nitrogen isotopic compositions of the CB to CR and CH chondrites are consistent with derivation of these chondrite groups from a common nebular reservoir, hence their grouping in the CR clan [1, 2, 3, 4]. CB chondrites have been divided into CBa (Gujba, Bencubbin, Weatherford) and CBb (Hammadah al Hamra 237 and QUE 94411) subgroups based on petrologic characteristics.

  5. Global petrologic variations on the moon: a ternary-diagram approach.

    USGS Publications Warehouse

    Davis, P.A.; Spudis, P.D.

    1987-01-01

    A ternary-diagram approach for determination of global petrologic variations on the lunar surface is presented that incorporates valuable improvements in our previous method of using geochemical variation diagrams. Our results are as follows: 1) the highlands contain large areas of relatively pure ferroan anorthosite; 2) the average composition of the upper lunar crust is represented by an 'anorthositic gabbro' composition; 3) KREEP/Mg-suite rocks are a minor fraction of the upper lunar crust; 4) within the farside highlands, areas of KREEP/Mg-suite rocks coincide mostly with areas of crustal thinning; 5) portions of the E limb and farside highlands have considerable amounts of a mafic, chondritic Th/Ti component (like mare basalt) whose occurrences coincide with mapped concentrations of light plains that display dark-halo craters.- from Authors

  6. Development of the Earth's early crust: Implications from the Beartooth Mountains

    NASA Technical Reports Server (NTRS)

    Mueller, P. A.; Wooden, J. L.; Henry, D. J.; Mogk, D. W.

    1983-01-01

    The Beartooth Mountains of Montana and Wyoming are one of several major uplifts of Precambrian rocks in the northwestern of the Wyoming Province. The range is composed of a wide variety of rock types which record a complex geologic history that extends from early ( 3400 Ma) to late (approx 700 Ma) Precambrian time. The Archean geology of the range is complex and many areas remain unstudied in detail. In this discussion two areas are discussed for which there is considerable structural, geochemical and petrologic information. The easternmost portion of the range (EBT) and the northwesternmost portion, the North Snowy Block (NSB), contain rather extensive records of both early and late Archean geologic activity. These data are used to constrain a petrologic tectonic model for the development of continental crust in this area.

  7. An automated system for whole microscopic image acquisition and analysis.

    PubMed

    Bueno, Gloria; Déniz, Oscar; Fernández-Carrobles, María Del Milagro; Vállez, Noelia; Salido, Jesús

    2014-09-01

    The field of anatomic pathology has experienced major changes over the last decade. Virtual microscopy (VM) systems have allowed experts in pathology and other biomedical areas to work in a safer and more collaborative way. VMs are automated systems capable of digitizing microscopic samples that were traditionally examined one by one. The possibility of having digital copies reduces the risk of damaging original samples, and also makes it easier to distribute copies among other pathologists. This article describes the development of an automated high-resolution whole slide imaging (WSI) system tailored to the needs and problems encountered in digital imaging for pathology, from hardware control to the full digitization of samples. The system has been built with an additional digital monochromatic camera together with the color camera by default and LED transmitted illumination (RGB). Monochrome cameras are the preferred method of acquisition for fluorescence microscopy. The system is able to digitize correctly and form large high resolution microscope images for both brightfield and fluorescence. The quality of the digital images has been quantified using three metrics based on sharpness, contrast and focus. It has been proved on 150 tissue samples of brain autopsies, prostate biopsies and lung cytologies, at five magnifications: 2.5×, 10×, 20×, 40×, and 63×. The article is focused on the hardware set-up and the acquisition software, although results of the implemented image processing techniques included in the software and applied to the different tissue samples are also presented. © 2014 Wiley Periodicals, Inc.

  8. Supercooled spin liquid state in the frustrated pyrochlore Dy 2Ti 2O 7

    DOE PAGES

    Kassner, Ethan R.; Eyvazov, Azar B.; Pichler, Benjamin; ...

    2015-06-30

    A “supercooled” liquid develops when a fluid does not crystallize upon cooling below its ordering temperature. Instead, the microscopic relaxation times diverge so rapidly that, upon further cooling, equilibration eventually becomes impossible and glass formation occurs. Classic supercooled liquids exhibit specific identifiers including microscopic relaxation times diverging on a Vogel–Tammann–Fulcher (VTF) trajectory, a Havriliak–Negami (HN) form for the dielectric function ε(ω,T), and a general Kohlrausch–Williams–Watts (KWW) form for time-domain relaxation. Recently, the pyrochlore Dy 2Ti 2O 7 has become of interest because its frustrated magnetic interactions may, in theory, lead to highly exotic magnetic fluids. However, its true magnetic statemore » at low temperatures has proven very difficult to identify unambiguously. Here, we introduce high-precision, boundary-free magnetization transport techniques based upon toroidal geometries and gain an improved understanding of the time- and frequency-dependent magnetization dynamics of Dy 2Ti 2O 7. We demonstrate a virtually universal HN form for the magnetic susceptibility χ(ω,T), a general KWW form for the real-time magnetic relaxation, and a divergence of the microscopic magnetic relaxation rates with the VTF trajectory. Low-temperature Dy 2Ti 2O 7 therefore exhibits the characteristics of a supercooled magnetic liquid. Lastly, one implication is that this translationally invariant lattice of strongly correlated spins may be evolving toward an unprecedented magnetic glass state, perhaps due to many-body localization of spin.« less

  9. Effects of whispering gallery mode in microsphere super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Song; Deng, Yongbo; Zhou, Wenchao; Yu, Muxin; Urbach, H. P.; Wu, Yihui

    2017-09-01

    Whispering Gallery modes have been presented in microscopic glass spheres or toruses with many applications. In this paper, the possible approaches to enhance the imaging resolution by Whispering Gallery modes are discussed, including evanescent waves coupling, transformed and illustration by Whispering Gallery modes. It shows that the high-order scattering modes play the dominant role in the reconstructed virtual image when the Whispering Gallery modes exist. Furthermore, we find that the high image resolution of electric dipoles can be achieved, when the out-of-phase components exist from the illustration of Whispering Gallery modes. Those results of our simulation could contribute to the knowledge of microsphere-assisted super-resolution imaging and its potential applications.

  10. Confocal laser endomicroscopy in the "in vivo" histological diagnosis of the gastrointestinal tract.

    PubMed

    De Palma, Giovanni D

    2009-12-14

    Recent technological advances in miniaturization have allowed for a confocal scanning microscope to be integrated into a conventional flexible endoscope, or into trans-endoscopic probes, a technique now known as confocal endomicroscopy or confocal laser endomicroscopy. This newly-developed technology has enabled endoscopists to collect real-time in vivo histological images or "virtual biopsies" of the gastrointestinal mucosa during endoscopy, and has stimulated significant interest in the application of this technique in clinical gastroenterology. This review aims to evaluate the current data on the technical aspects and the utility of this new technology in clinical gastroenterology and its potential impact in the future, particularly in the screening or surveillance of gastrointestinal neoplasia.

  11. Introduction to the virtual special issue on super-resolution imaging techniques

    NASA Astrophysics Data System (ADS)

    Cao, Liangcai; Liu, Zhengjun

    2017-12-01

    Until quite recently, the resolution of optical imaging instruments, including telescopes, cameras and microscopes, was considered to be limited by the diffraction of light and by image sensors. In the past few years, many exciting super-resolution approaches have emerged that demonstrate intriguing ways to bypass the classical limit in optics and detectors. More and more research groups are engaged in the study of advanced super-resolution schemes, devices, algorithms, systems, and applications [1-6]. Super-resolution techniques involve new methods in science and engineering of optics [7,8], measurements [9,10], chemistry [11,12] and information [13,14]. Promising applications, particularly in biomedical research and semiconductor industry, have been successfully demonstrated.

  12. Catalog of Computer Programs Used in Undergraduate Geological Education.

    ERIC Educational Resources Information Center

    Burger, H. Robert

    1983-01-01

    Provides list of mineralogy, petrology, and geochemistry computer programs. Each entry includes a brief description, program name and language, availability of program listing, and source and/or reference. (JN)

  13. AVAL - The ASTER Volcanic Ash Library

    NASA Astrophysics Data System (ADS)

    Williams, D.; Ramsey, M. S.

    2016-12-01

    Volcanic ash is a rich data source for understanding the causal mechanisms behind volcanic eruptions. Petrologic and morphometric information can provide direct information on the characteristics of the parent magma. Understanding how erupted ash interacts with the atmosphere can help quantify the effect that explosive volcanism has on the local to regional climate, whereas a measure of the particle size distribution enables more accurate modeling of plume propagation. Remote sensing is regularly employed to monitor volcanic plumes using a suite of high temporal/low spatial resolution sensors. These methods employ radiative transfer modeling with assumptions of the transmissive properties of infrared energy through the plume to determine ash density, particle size and sulfur dioxide content. However, such approaches are limited to the optically-transparent regions, and the low spatial resolution data are only useful for large-scale trends. In a new approach, we are treating the infrared-opaque regions of the plume in a similar way to a solid emitting surface. This allows high spatial resolution orbital thermal infrared data from the dense proximal plume to be modeled using a linear deconvolution approach coupled with a spectral library to extract the particle size and petrology. The newly created ASTER Volcanic Ash Library (AVAL) provides the end member spectral suite, and is comprised of laboratory emission measurements of volcanic ash taken from a variety of different volcanic settings, to obtain a wide range of petrologies. These samples have been further subdivided into particle size fractions to account for spectral changes due to diffraction effects. Once mapped to the ASTER sensor's spectral resolution, this library is applied to image data and the plume deconvolved to estimate composition and particle size. We have analyzed eruptions at the Soufrière Hills Volcano, Montserrat, Chaitén and Puyehue-Cordón Caulle, both Chile, and Eyjafjallajökull, Iceland. These results provide particle size distributions within actively-erupting volcanic plumes for the first time in high resolution, and the petrologic information is being studied to understand the underlying eruptive processes observed.

  14. Teaching Igneous and Metamorphic Petrology Through Guided Inquiry Projects

    NASA Astrophysics Data System (ADS)

    McMillan, N. J.

    2003-12-01

    Undergraduate Petrology at New Mexico State University (GEOL 399) has been taught using three, 5-6 week long projects in place of lectures, lab, and exams for the last six years. Reasons for changing from the traditional format include: 1) to move the focus from identification and memorization to petrologic thinking; 2) the need for undergraduate students to apply basic chemical, structural, and field concepts to igneous and metamorphic rocks; 3) student boredom in the traditional mode by the topic that has captivated my professional life, in spite of my best efforts to offer thrilling lectures, problems, and labs. The course has three guided inquiry projects: volcanic, plutonic, and pelitic dynamothermal. Two of the rock suites are investigated during field trips. Each project provides hand samples and thin sections; the igneous projects also include whole-rock major and trace element data. Students write a scientific paper that classifies and describes the rocks, describes the data (mineralogical and geochemical), and uses data to interpret parameters such as tectonic setting, igneous processes, relationship to phase diagrams, geologic history, metamorphic grade, metamorphic facies, and polymetamorphic history. Students use the text as a major resource for self-learning; mini-lectures on pertinent topics are presented when needed by the majority of students. Project scores include evaluation of small parts of the paper due each Friday and participation in peer review as well as the final report. I have found that petrology is much more fun, although more difficult, to teach using this method. It is challenging to be totally prepared for class because students are working at different speeds on different levels on different aspects of the project. Students enjoy the course, especially the opportunity to engage in scientific investigation and debate. A significant flaw in this course is that students see fewer rocks and have less experience in rock classification. This is partially remedied by four field trips and two supplemental assignments (igneous and metamorphic) in which students identify hand samples of a wide variety of rock types. The project-based approach enhances critical thinking, math, reading, and writing skills at the expense of hand sample identification and the benefits of review of material prior to testing.

  15. Organic matter variations in transgressive and regressive shales

    USGS Publications Warehouse

    Pasley, M.A.; Gregory, W.A.; Hart, G.F.

    1991-01-01

    Organic matter in the Upper Cretaceous Mancos Shale adjacent to the Tocito Sandstone in the San Juan Basin of New Mexico was characterized using organic petrology and organic geochemistry. Differences in the organic matter found in these regressive and transgressive offshore marine sediments have been documented and assessed within a sequence stratigraphic framework. The regressive Lower Mancos Shale below the Tocito Sandstone contains abundant well preserved phytoclasts and correspondingly low hydrogen indices. Total organic carbon values for the regressive shale are low. Sediments from the transgressive systems tract (Tocito Sandstone and overlying Upper Mancos Shale) contain less terrestrially derived organic matter, more amorphous non-structured protistoclasts, higher hydrogen indices and more total organic carbon. Advanced stages of degradation are characteristic of the phytoclasts found in the transgressive shale. Amorphous material in the transgressive shale fluoresces strongly while that found in the regressive shale is typically non-fluorescent. Data from pyrolysis-gas chromatography confirm these observations. These differences are apparently related to the contrasting depositional styles that were active on the shelf during regression and subsequent transgression. It is suggested that data from organic petrology and organic geochemistry provide greater resolution in sedimentologic and stratigraphic interpretations, particularly when working with basinward, fine-grained sediments. Petroleum source potential for the regressive Lower Mancos Shale below the Tocito Sandstone is poor. Based on abundant fluorescent amorphous material, high hydrogen indices, and high total organic carbon, the transgressive Upper Mancos Shale above the Tocito Sandstone possesses excellent source potential. This suggests that appreciable source potential can be found in offshore, fine-grained sediments of the transgressive systems tract below the condensed section and associated downlap surface. Organic petrology can be used to accurately predict petroleum source potential. The addition of simple fluorescence microscopy greatly enhances this predictive ability because non-generative amorphous material is generally non-fluorescent. Organic petrology must also be used to properly evaluate the utility of Tmax from programmed pyrolysis as a thermal maturity indicator. Organic matter dominated by autochthonous amorphous protistoclasts exhibits lower Tmax values than that which is composed of mostly phytoclasts. ?? 1991.

  16. Nanotechnology: toxicologic pathology.

    PubMed

    Hubbs, Ann F; Sargent, Linda M; Porter, Dale W; Sager, Tina M; Chen, Bean T; Frazer, David G; Castranova, Vincent; Sriram, Krishnan; Nurkiewicz, Timothy R; Reynolds, Steven H; Battelli, Lori A; Schwegler-Berry, Diane; McKinney, Walter; Fluharty, Kara L; Mercer, Robert R

    2013-02-01

    Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies.

  17. Virtual slide telepathology workstation of the future: lessons learned from teleradiology☆

    PubMed Central

    Krupinski, Elizabeth A.

    2013-01-01

    Summary The clinical reading environment for the 21st century pathologist looks very different than it did even a few short years ago. Glass slides are quickly being replaced by digital “virtual slides,” and the traditional light microscope is being replaced by the computer display. There are numerous questions that arise however when deciding exactly what this new digital display viewing environment will be like. Choosing a workstation for daily use in the interpretation of digital pathology images can be a very daunting task. Radiology went digital nearly 20 years ago and faced many of the same challenges so there are lessons to be learned from these experiences. One major lesson is that there is no “one size fits all” workstation so users must consider a variety of factors when choosing a workstation. In this article, we summarize some of the potentially critical elements in a pathology workstation and the characteristics one should be aware of and look for in the selection of one. Issues pertaining to both hardware and software aspects of medical workstations will be reviewed particularly as they may impact the interpretation process. PMID:19552939

  18. Integrating 4-d light-sheet imaging with interactive virtual reality to recapitulate developmental cardiac mechanics and physiology

    NASA Astrophysics Data System (ADS)

    Ding, Yichen; Yu, Jing; Abiri, Arash; Abiri, Parinaz; Lee, Juhyun; Chang, Chih-Chiang; Baek, Kyung In; Sevag Packard, René R.; Hsiai, Tzung K.

    2018-02-01

    There currently is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3- dimensional (3-D) architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3-D and 4-D (3-D spatial + 1-D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods such as routine optical microscopes. We hereby demonstrate multi-scale applicability of VR-LSFM to 1) interrogate skin fibroblasts interacting with a hyaluronic acid-based hydrogel, 2) navigate through the endocardial trabecular network during zebrafish development, and 3) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation (BINS) algorithm with deformable image registration (DIR) to interface a VR environment for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution.

  19. Nanotechnology: Toxicologic Pathology

    PubMed Central

    Hubbs, Ann F.; Sargent, Linda M.; Porter, Dale W.; Sager, Tina M.; Chen, Bean T.; Frazer, David G.; Castranova, Vincent; Sriram, Krishnan; Nurkiewicz, Timothy R.; Reynolds, Steven H.; Battelli, Lori A.; Schwegler-Berry, Diane; McKinney, Walter; Fluharty, Kara L.; Mercer, Robert R.

    2015-01-01

    Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies. PMID:23389777

  20. Integrating light-sheet imaging with virtual reality to recapitulate developmental cardiac mechanics.

    PubMed

    Ding, Yichen; Abiri, Arash; Abiri, Parinaz; Li, Shuoran; Chang, Chih-Chiang; Baek, Kyung In; Hsu, Jeffrey J; Sideris, Elias; Li, Yilei; Lee, Juhyun; Segura, Tatiana; Nguyen, Thao P; Bui, Alexander; Sevag Packard, René R; Fei, Peng; Hsiai, Tzung K

    2017-11-16

    Currently, there is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3D architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3D and 4D (3D spatial + 1D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods, such as routine optical microscopes. We hereby demonstrate multiscale applicability of VR-LSFM to (a) interrogate skin fibroblasts interacting with a hyaluronic acid-based hydrogel, (b) navigate through the endocardial trabecular network during zebrafish development, and (c) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation algorithm with deformable image registration to interface a VR environment with imaging computation for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution.

  1. Integrating light-sheet imaging with virtual reality to recapitulate developmental cardiac mechanics

    PubMed Central

    Ding, Yichen; Abiri, Arash; Abiri, Parinaz; Li, Shuoran; Chang, Chih-Chiang; Hsu, Jeffrey J.; Sideris, Elias; Li, Yilei; Lee, Juhyun; Segura, Tatiana; Nguyen, Thao P.; Bui, Alexander; Sevag Packard, René R.; Hsiai, Tzung K.

    2017-01-01

    Currently, there is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3D architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3D and 4D (3D spatial + 1D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods, such as routine optical microscopes. We hereby demonstrate multiscale applicability of VR-LSFM to (a) interrogate skin fibroblasts interacting with a hyaluronic acid–based hydrogel, (b) navigate through the endocardial trabecular network during zebrafish development, and (c) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation algorithm with deformable image registration to interface a VR environment with imaging computation for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution. PMID:29202458

  2. First-principles study of (Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 solid solutions

    NASA Astrophysics Data System (ADS)

    Amoroso, Danila; Cano, Andrés; Ghosez, Philippe

    2018-05-01

    (Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 solid solutions are the building blocks of lead-free piezoelectric materials that attract a renewed interest. We investigate the properties of these systems by means of first-principles calculations, with a focus on the lattice dynamics and the competition between different ferroelectric phases. We first analyze the four parent compounds in order to compare their properties and their different tendency towards ferroelectricity. The core of our study is systematic characterization of the binary systems (Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 within both the virtual crystal approximation and direct supercell calculations. In the case of Ca doping, we find a gradual transformation from B -site to A -site ferroelectricity due to steric effects that largely determines the behavior of the system. In the case of Zr doping, in contrast, the behavior is eventually dominated by cooperative Zr-Ti motions and the local electrostatics. In addition, our comparative study reveals that the specific microscopic physics of these solids sets severe limits to the applicability of the virtual crystal approximation for these systems.

  3. Software Framework for Controlling Unsupervised Scientific Instruments.

    PubMed

    Schmid, Benjamin; Jahr, Wiebke; Weber, Michael; Huisken, Jan

    2016-01-01

    Science outreach and communication are gaining more and more importance for conveying the meaning of today's research to the general public. Public exhibitions of scientific instruments can provide hands-on experience with technical advances and their applications in the life sciences. The software of such devices, however, is oftentimes not appropriate for this purpose. In this study, we describe a software framework and the necessary computer configuration that is well suited for exposing a complex self-built and software-controlled instrument such as a microscope to laymen under limited supervision, e.g. in museums or schools. We identify several aspects that must be met by such software, and we describe a design that can simultaneously be used to control either (i) a fully functional instrument in a robust and fail-safe manner, (ii) an instrument that has low-cost or only partially working hardware attached for illustration purposes or (iii) a completely virtual instrument without hardware attached. We describe how to assess the educational success of such a device, how to monitor its operation and how to facilitate its maintenance. The introduced concepts are illustrated using our software to control eduSPIM, a fluorescent light sheet microscope that we are currently exhibiting in a technical museum.

  4. [A Massive Open Oneline Course (MOOC) on pratical histology: A goal, a tool, a large public ! Return on a first experience].

    PubMed

    Multon, Sylvie; Pesesse, Laurence; Weatherspoon, Alodie; Florquin, Sandra; Van de Poel, Jean-François; Martin, Pierre; Vincke, Grégoire; Hoyoux, Renaud; Marée, Raphael; Verpoorten, Dominique; Bonnet, Pierre; Quatresooz, Pascale; Defaweux, Valérie

    2018-04-01

    A goal ! The MOOC entitled "Introduction to Histology, A Human Tissue Exploration" correspond to our vision of the practice of General Histology, which is based on the ability to diagnose 5 families of biological tissues. Ultimately, participants must be able to recognize the different types of cells and all the surrounding elements in order to understand how they organize themselves to form tissues with specific functions. A tool ! This know-how is based on reasoning from observations of microscopic structures. Learners are therefore invited to manipulate a virtual microscope to explore biological samples on histological slides digitized. Annotations, comments, drawings or photos are associated with landmarks that enrich the study of these histological sections. A target audience ! Two educational paths allow deepening the subject in a different way and thus matching the goals or motivations of each one. After a first year of experience, usage statistics and surveys of our learners show that the MOOC Histo has allowed each of them to find an interest and federate a community of motivated learners. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Optical sectioning and 3D reconstructions as an alternative to scanning electron microscopy for analysis of cell shape.

    PubMed

    Landis, Jacob B; Ventura, Kayla L; Soltis, Douglas E; Soltis, Pamela S; Oppenheimer, David G

    2015-04-01

    Visualizing flower epidermal cells is often desirable for investigating the interaction between flowers and their pollinators, in addition to the broader range of ecological interactions in which flowers are involved. We developed a protocol for visualizing petal epidermal cells without the limitations of the commonly used method of scanning electron microscopy (SEM). Flower material was collected and fixed in glutaraldehyde, followed by dehydration in an ethanol series. Flowers were dissected to collect petals, and subjected to a Histo-Clear series to remove the cuticle. Material was then stained with aniline blue, mounted on microscope slides, and imaged using a compound fluorescence microscope to obtain optical sections that were reconstructed into a 3D image. This optical sectioning method yielded high-quality images of the petal epidermal cells with virtually no damage to cells. Flowers were processed in larger batches than are possible using common SEM methods. Also, flower size was not a limiting factor as often observed in SEM studies. Flowers up to 5 cm in length were processed and mounted for visualization. This method requires no special equipment for sample preparation prior to imaging and should be seen as an alternative method to SEM.

  6. Use of knowledge-sharing web-based portal in gross and microscopic anatomy.

    PubMed

    Durosaro, Olayemi; Lachman, Nirusha; Pawlina, Wojciech

    2008-12-01

    Changes in worldwide healthcare delivery require review of current medical school curricula structure to develop learning outcomes that ensures mastery of knowledge and clinical competency. In the last 3 years, Mayo Medical School implemented outcomes-based curriculum to encompass new graduate outcomes. Standard courses were replaced by 6-week clinically-integrated didactic blocks separated by student-self selected academic enrichment activities. Gross and microscopic anatomy was integrated with radiology and genetics respectively. Laboratory components include virtual microscopy and anatomical dissection. Students assigned to teams utilise computer portals to share learning experiences. High-resolution computed tomographic (CT) scans of cadavers prior to dissection were made available for correlative learning between the cadaveric material and radiologic images. Students work in teams on assigned presentations that include histology, cell and molecular biology, genetics and genomic using the Nexus Portal, based on DrupalEd, to share their observations, reflections and dissection findings. New generation of medical students are clearly comfortable utilising web-based programmes that maximise their learning potential of conceptually difficult and labor intensive courses. Team-based learning approach emphasising the use of knowledge-sharing computer portals maximises opportunities for students to master their knowledge and improve cognitive skills to ensure clinical competency.

  7. Radiation and matter: Electrodynamics postulates and Lorenz gauge

    NASA Astrophysics Data System (ADS)

    Bobrov, V. B.; Trigger, S. A.; van Heijst, G. J.; Schram, P. P.

    2016-11-01

    In general terms, we have considered matter as the system of charged particles and quantized electromagnetic field. For consistent description of the thermodynamic properties of matter, especially in an extreme state, the problem of quantization of the longitudinal and scalar potentials should be solved. In this connection, we pay attention that the traditional postulates of electrodynamics, which claim that only electric and magnetic fields are observable, is resolved by denial of the statement about validity of the Maxwell equations for microscopic fields. The Maxwell equations, as the generalization of experimental data, are valid only for averaged values. We show that microscopic electrodynamics may be based on postulation of the d'Alembert equations for four-vector of the electromagnetic field potential. The Lorenz gauge is valid for the averages potentials (and provides the implementation of the Maxwell equations for averages). The suggested concept overcomes difficulties under the electromagnetic field quantization procedure being in accordance with the results of quantum electrodynamics. As a result, longitudinal and scalar photons become real rather than virtual and may be observed in principle. The longitudinal and scalar photons provide not only the Coulomb interaction of charged particles, but also allow the electrical Aharonov-Bohm effect.

  8. Petrology of Amoeboid Olivine Aggregates in Antarctic CR Chondrites: Comparison With Other Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Komatsu, M.; Fagan, T. J.; Yamaguchi, A.; Mikouchi, T.; Zolensky, M. E.; Yasutake, M.

    2016-01-01

    Amoeboid olivine aggregates (AOAs) are important refractory components of carbonaceous chondrites and have been interpreted to represent solar nebular condensates that experienced high-temperature annealing, but largely escaped melting. In addition, because AOAs in primitive chondrites are composed of fine-grained minerals (forsterite, anorthite, spinel) that are easily modified during post crystallization alteration, the mineralogy of AOAs can be used as a sensitive indicator of metamorphic or alteration processes. AOAs in CR chondrites are particularly important because they show little evidence for secondary alteration. In addition, some CR AOAs contain Mn-enriched forsterite (aka low-iron, Mn-enriched or LIME olivine), which is an indicator of nebular formation conditions. Here we report preliminary results of the mineralogy and petrology of AOAs in Antarctic CR chondrites, and compare them to those in other carbonaceous chondrites.

  9. Mineralogy, petrology, and trace element geochemistry of the Johnstown meteorite - A brecciated orthopyroxenite with siderophile and REE-rich components

    NASA Technical Reports Server (NTRS)

    Floran, R. J.; Prinz, M.; Hlava, P. F.; Keil, K.; Spettel, B.; Waenke, H.

    1981-01-01

    The compositional and petrologic characteristics of the Johnstown meteorite show it to contain uncontaminated and unbrecciated orthopyroxenite clasts of cumulative origin that (1) must have undergone subsolidus recrystalization, (2) are parental to the brecciated matrix, and (3) show no evidence of a xenolithic, meteoritic contribution to the matrix except for contamination by the projectile which crushed it on impact. The trapped liquid was not introduced in the impact process. The variability of such trace elements as the light rare earth elements, and the presence of plagioclase and olivine in only one of the thin sections studied, demonstrates the heterogeneity of coarse-grained diogenites on a millimeter scale and the difficulty of obtaining representative samples of such meteorites. The data presented indicate that this meteorite is a monominct breccia.

  10. The evolution of volcanism, tectonics, and volatiles on Mars - An overview of recent progress

    NASA Technical Reports Server (NTRS)

    Zimbelman, James R.; Solomon, Sean C.; Sharpton, Virgil L.

    1991-01-01

    Significant results of the 'Mars: Evolution of Volcanism, Tectonics, and Volatiles' (MEVTV) project are presented. The data for the project are based on geological mapping from the Viking images, petrologic and chemical analyses of SNC meteorites, and both mapping and temporal grouping of major fault systems. The origin of the planet's crustal dichotomy is examined in detail, the kinematics and formation of wrinkle ridges are discussed, and some new theories are set forth. Because the SNC meteorites vary petrologically and isotopically, the sources of the parental Martian magma are heterogeneous. Transcurrent faulting coupled with the extensional strains that form Valles Marineris suggest early horizontal movement of lithospheric blocks. A theory which connects the formation of the crustal dichotomy to the Tharsis region associates the horizontal motions with plate tectonics that generated a new lithosphere.

  11. Amino Acid Contents of Meteorite Mineral Separates

    NASA Technical Reports Server (NTRS)

    Berger, E. L.; Burton, A. S; Locke, D.

    2017-01-01

    Indigenous amino acids have been found indigenous all 8 carbonaceous chondrite groups. However, the abundances, structural, enantiomeric and isotopic compositions of amino acids differ significantly among meteorites of different groups and petrologic types. This suggests that parent-body conditions (thermal or aqueous alteration), mineralogy, and the preservation of amino acids are linked. Previously, elucidating specific relationships between amino acids and mineralogy was not possible because the samples analyzed for amino acids were much larger than the scale at which petrologic heterogeneity is observed (sub mm-scale differences corresponding to sub-mg samples). Recent advances in amino acid measurements and application of techniques such as high resolution X-ray diffraction (HR-XRD) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) for mineralogical characterizations allow us to perform coordinated analyses on the scale at which mineral heterogeneity is observed.

  12. Apollo 15 yellow impact glasses: Chemistry, petrology, and exotic origin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delano, J.W.; Lindsley, D.H.; Ma, M.

    1982-11-15

    The Apollo 15 yellow impact glasses are characterized by moderate TiO/sub 2/ (approx.4.8%) and high abundances of the large ion lithophile elements (e.g., K, P, Hf, Th, REE). Since the chemistry of these glasses cannot be duplicated by any combination of local components presently known to occur at the Apollo 15 landing site, these yellow glasses seem to be exotic to that area. Chemical and petrologic constraints suggest that these samples were produced by impact melting of an immature mare regolith developed upon an unusual variety of mare basalt. We speculate that the target basalt were the youngest lava flowsmore » known to exist on the moon (i.e., Eratosphenian-age lavas in Oceanus Procellarum and Mare Imbrium). Specific tests are proposed for evaluating this provocative hypothesis.« less

  13. Fluid-rock geochemical interaction for modelling calibration in geothermal exploration in Indonesia

    NASA Astrophysics Data System (ADS)

    Deon, Fiorenza; Barnhoorn, Auke; Lievens, Caroline; Ryannugroho, Riskiray; Imaro, Tulus; Bruhn, David; van der Meer, Freek; Hutami, Rizki; Sibarani, Besteba; Sule, Rachmat; Saptadij, Nenny; Hecker, Christoph; Appelt, Oona; Wilke, Franziska

    2017-04-01

    Indonesia with its large, but partially unexplored geothermal potential is one of the most interesting and suitable places in the world to conduct geothermal exploration research. This study focuses on geothermal exploration based on fluid-rock geochemistry/geomechanics and aims to compile an overview on geochemical data-rock properties from important geothermal fields in Indonesia. The research carried out in the field and in the laboratory is performed in the framework of the GEOCAP cooperation (Geothermal Capacity Building program Indonesia- the Netherlands). The application of petrology and geochemistry accounts to a better understanding of areas where operating power plants exist but also helps in the initial exploration stage of green areas. Because of their relevance and geological setting geothermal fields in Java, Sulawesi and the sedimentary basin of central Sumatra have been chosen as focus areas of this study. Operators, universities and governmental agencies will benefit from this approach as it will be applied also to new green-field terrains. By comparing the characteristic of the fluids, the alteration petrology and the rock geochemistry we also aim to contribute to compile an overview of the geochemistry of the important geothermal fields in Indonesia. At the same time the rock petrology and fluid geochemistry will be used as input data to model the reservoir fluid composition along with T-P parameters with the geochemical workbench PHREEQC. The field and laboratory data are mandatory for both the implementation and validation of the model results.

  14. Petrochronology in constraining early Archean Earth processes and environments: Barberton greenstone belt, South Africa

    NASA Astrophysics Data System (ADS)

    Grosch, Eugene

    2017-04-01

    Analytical and petrological software developments over the past decade have seen rapid innovation in high-spatial resolution petrological techniques, for example, laser-ablation ICP-MS, secondary ion microprobe (SIMS, nano-SIMS), thermodynamic modelling and electron microprobe microscale mapping techniques (e.g. XMapTools). This presentation will focus on the application of petrochronology to ca. 3.55 to 3.33 billion-year-old metavolcanic and sedimentary rocks of the Onverwacht Group, shedding light on the earliest geologic evolution of the Paleoarchean Barberton greenstone belt (BGB) of South Africa. The field, scientific drilling and petrological research conducted over the past 8 years, aims to illustrate how: (a) LA-ICP-MS and SIMS U-Pb detrital zircon geochronology has helped identify the earliest tectono-sedimentary basin and sediment sources in the BGB, as well as reconstructing geodynamic processes as early as ca. 3.432 billion-years ago; (b) in-situ SIMS multiple sulphur isotope analysis of sulphides across various early Archean rock units help to reconstruct atmospheric, surface and subsurface environments on early Archean Earth and (c) the earliest candidate textural traces for subsurface microbial life can be investigated by in-situ LA-ICP-MS U-Pb dating of titanite, micro-XANES Fe-speciation analysis and metamorphic microscale mapping. Collectively, petrochronology combined with high-resolution field mapping studies, is a powerful multi-disciplinary approach towards deciphering petrogenetic and geodynamic processes preserved in the Paleoarchean Barberton greenstone belt of South Africa, with implications for early Archean Earth evolution.

  15. Progress in 1988 1990 with computer applications in the ``hard-rock'' arena: Geochemistry, mineralogy, petrology, and volcanology

    NASA Astrophysics Data System (ADS)

    Rock, Nicholas M. S.

    This review covers rock, mineral and isotope geochemistry, mineralogy, igneous and metamorphic petrology, and volcanology. Crystallography, exploration geochemistry, and mineral exploration are excluded. Fairly extended comments on software availability, and on computerization of the publication process and of specimen collection indexes, may interest a wider audience. A proliferation of both published and commercial software in the past 3 years indicates increasing interest in what traditionally has been a rather reluctant sphere of geoscience computer activity. However, much of this software duplicates the same old functions (Harker and triangular plots, mineral recalculations, etc.). It usually is more efficient nowadays to use someone else's program, or to employ the command language in one of many general-purpose spreadsheet or statistical packages available, than to program a specialist operation from scratch in, say, FORTRAN. Greatest activity has been in mineralogy, where several journals specifically encourage publication of computer-related activities, and IMA and MSA Working Groups on microcomputers have been convened. In petrology and geochemistry, large national databases of rock and mineral analyses continue to multiply, whereas the international database IGBA grows slowly; some form of integration is necessary to make these disparate systems of lasting value to the global "hard-rock" community. Total merging or separate addressing via an intelligent "front-end" are both possibilities. In volcanology, the BBC's videodisk Volcanoes and the Smithsonian Institution's Global Volcanism Project use the most up-to-date computer technology in an exciting and innovative way, to promote public education.

  16. The Magmatic Structure of Mid-ocean Ridges: Integrating Geophysical and Petrological Observations

    NASA Astrophysics Data System (ADS)

    Maclennan, J.; Singh, S.

    Geophysical surveys, petrological observations and numerical models have all played an important role in the study of magmatic processes at mid-ocean ridges. However, few studies have attempted to integrate the constraints from both geophysical and geochemical observations in order to develop models of mid-ocean ridges. Composi- tional variation within the oceanic crust must be considered when geophysical models are interpreted in terms of variation in temperature or fluid fraction. Modellers com- monly assume that the crust is compositionally homogeneous and that the relationship between temperature and melt fraction does not vary within the crust. However, the compositions of oceanic crustal rocks collected from the Oman ophiolite vary widely and their predicted solidus temperatures vary from 990­1240C and their liquidus temperatures from 1250­1700C. Compositional variation within the solid part of the oceanic crust causes variation in seismic velocities. At fixed temperature and pressure the compositional variation present in crustal rocks can give P-wave velocity variation of 1 km s-1 or more. This has the same effect as a temperature variation of 1500C in the solid or of a variation of 20% in the melt fraction. The importance of this petrolog- ical framework for the interpretation of the seismic structure of mid-ocean ridges and for the development of thermal models of oceanic crustal accretion is demonstrated using an example from the East Pacific Rise near 9N.

  17. Reliability of rapid diagnostic test for diagnosing peripheral and placental malaria in an area of unstable malaria transmission in Eastern Sudan

    PubMed Central

    2013-01-01

    Background Diagnosing Plasmodium falciparum malaria during pregnancy is a great challenge for clinicians because of the low density of parasites in the peripheral blood and parasite sequestration in the placenta. Nevertheless, few data on the use of malaria rapid diagnostic test (RDT) during pregnancy have been published. Methods P. falciparum infections were assessed in 156 febrile pregnant women by microscopic examination of their blood smears and by RDT and polymerase chain reactions (PCR). In addition, 150 women were assessed at the time of delivery by microscopy, RDT, PCR and placental histology investigations. The study was conducted at the Gadarif Hospital, Eastern Sudan. The SD Bioline P. f / P. v (Bio Standard Diagnostics, Gurgaon, Korea) RDT kit was evaluated in this study. Results Among the febrile pregnant women, 17 (11.0%), 26 (16.7%) and 18 (11.5%) positive cases of P. falciparum were detected by microscopy, RDT, and PCR, respectively. The sensitivity and specificity of the microscopy was 94.4% and 100%, respectively. The corresponding values for RDT evaluation were 83.3% and 92.0%, as compared with PCR as the gold standard. While there were no detected cases of malaria by microscopic examination of blood smears, 27 (18.0%), 21(14.0%) and 46 (30.7%) out of the 150 placentae investigated had P. falciparum as determined by RDT, PCR, and histology, respectively. The sensitivity and specificity for RDT was 17.4% and 81.7%, respectively. The corresponding values for PCR were 6.5% and 82.7%, where histology was used as the gold standard. Conclusions The RDT kit used in this study has poor performance for peripheral and placental P. falciparum malaria detection in this setting. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1092363465928479 PMID:23587371

  18. The CIPW Normative Calculation.

    ERIC Educational Resources Information Center

    Bickel, Charles

    1979-01-01

    The author has rewritten rules for CIPW norm calculation and has written FORTRAN IV programs to assist the student in this procedure. Includes a set of problems utilizing the CIPW norm to illustrate principles of chemical petrology. (MA)

  19. Mercury's Geochemical Terranes Revisited

    NASA Astrophysics Data System (ADS)

    Peplowski, P. N.; Stockstill-Cahill, K. R.

    2018-05-01

    We applied analytical tools to redefine Mercury's major geochemical terranes. The composition and petrology of each terrane will be discussed, along with analyses of gamma-ray data aimed at deriving absolute abundances of Si and Mg in each terrane.

  20. The Formation of Chondrules: Petrologic Tests of the Shock Wave Model

    NASA Technical Reports Server (NTRS)

    Connolly, H. C., Jr.; Love, S. G.

    1998-01-01

    Chondrules are mm-sized spheroidal igneous components of chondritic meteorites. They consist of olivine and orthopyroxene set in a glassy mesostasis with varying minor amounts of metals, sulfieds, oxides and carbon phases.

  1. Petrologic and geophysical study of the source of long wavelength crustal magnetic anomalies

    NASA Technical Reports Server (NTRS)

    Marsch, B.; Schlinger, C. M.

    1983-01-01

    The magnetic mineralogy and magnetic signature of banded ion formations, diagenetic (unmetamorphosed) and low grade banded iron formations, high-grade mineralogy, and phase equilibria of magnetite inorogenic magmers are discussed.

  2. Origin of Spinel Framboids in Calcium-Aluminum-Rich Inclusions

    NASA Astrophysics Data System (ADS)

    Yoshizaki, T.; Nakashima, D.; Nakamura, T.; Ishida, H.; Sakamoto, N.

    2017-07-01

    Mineralogical, petrological and O-isotopic study of a CV CAI suggests that spinel framboids in the CAI were originally mini-CAIs that condensed separately under different conditions and subsequently aggregated to form the inclusion.

  3. Separating twin images and locating the center of a microparticle in dense suspensions using correlations among reconstructed fields of two parallel holograms.

    PubMed

    Ling, Hangjian; Katz, Joseph

    2014-09-20

    This paper deals with two issues affecting the application of digital holographic microscopy (DHM) for measuring the spatial distribution of particles in a dense suspension, namely discriminating between real and virtual images and accurate detection of the particle center. Previous methods to separate real and virtual fields have involved applications of multiple phase-shifted holograms, combining reconstructed fields of multiple axially displaced holograms, and analysis of intensity distributions of weakly scattering objects. Here, we introduce a simple approach based on simultaneously recording two in-line holograms, whose planes are separated by a short distance from each other. This distance is chosen to be longer than the elongated trace of the particle. During reconstruction, the real images overlap, whereas the virtual images are displaced by twice the distance between hologram planes. Data analysis is based on correlating the spatial intensity distributions of the two reconstructed fields to measure displacement between traces. This method has been implemented for both synthetic particles and a dense suspension of 2 μm particles. The correlation analysis readily discriminates between real and virtual images of a sample containing more than 1300 particles. Consequently, we can now implement DHM for three-dimensional tracking of particles when the hologram plane is located inside the sample volume. Spatial correlations within the same reconstructed field are also used to improve the detection of the axial location of the particle center, extending previously introduced procedures to suspensions of microscopic particles. For each cross section within a particle trace, we sum the correlations among intensity distributions in all planes located symmetrically on both sides of the section. This cumulative correlation has a sharp peak at the particle center. Using both synthetic and recorded particle fields, we show that the uncertainty in localizing the axial location of the center is reduced to about one particle's diameter.

  4. Spatial cognition in a virtual reality home-cage extension for freely moving rodents

    PubMed Central

    Kaupert, Ursula; Frei, Katja; Bagorda, Francesco; Schatz, Alexej; Tocker, Gilad; Rapoport, Sophie; Derdikman, Dori

    2017-01-01

    Virtual reality (VR) environments are a powerful tool to investigate brain mechanisms involved in the behavior of animals. With this technique, animals are usually head fixed or secured in a harness, and training for cognitively more complex VR paradigms is time consuming. A VR apparatus allowing free animal movement and the constant operator-independent training of tasks would enable many new applications. Key prospective usages include brain imaging of animal behavior when carrying a miniaturized mobile device such as a fluorescence microscope or an optetrode. Here, we introduce the Servoball, a spherical VR treadmill based on the closed-loop tracking of a freely moving animal and feedback counterrotation of the ball. Furthermore, we present the complete integration of this experimental system with the animals’ group home cage, from which single individuals can voluntarily enter through a tunnel with radio-frequency identification (RFID)-automated access control and commence experiments. This automated animal sorter functions as a mechanical replacement of the experimenter. We automatically trained rats using visual or acoustic cues to solve spatial cognitive tasks and recorded spatially modulated entorhinal cells. When electrophysiological extracellular recordings from awake behaving rats were performed, head fixation can dramatically alter results, so that any complex behavior that requires head movement is impossible to achieve. We circumvented this problem with the use of the Servoball in open-field scenarios, as it allows the combination of open-field behavior with the recording of nerve cells, along with all the flexibility that a virtual environment brings. This integrated home cage with a VR arena experimental system permits highly efficient experimentation for complex cognitive experiments. NEW & NOTEWORTHY Virtual reality (VR) environments are a powerful tool for the investigation of brain mechanisms. We introduce the Servoball, a VR treadmill for freely moving rodents. The Servoball is integrated with the animals’ group home cage. Single individuals voluntarily enter using automated access control. Training is highly time-efficient, even for cognitively complex VR paradigms. PMID:28077665

  5. Import and visualization of clinical medical imagery into multiuser VR environments

    NASA Astrophysics Data System (ADS)

    Mehrle, Andreas H.; Freysinger, Wolfgang; Kikinis, Ron; Gunkel, Andreas; Kral, Florian

    2005-03-01

    The graphical representation of three-dimensional data obtained from tomographic imaging has been the central problem since this technology is available. Neither the representation as a set of two-dimensional slices nor the 2D projection of three-dimensional models yields satisfactory results. In this paper a way is outlined which permits the investigation of volumetric clinical data obtained from standard CT, MR, PET, SPECT or experimental very high resolution CT-scanners in a three dimensional environment within a few worksteps. Volumetric datasets are converted into surface data (segmentation process) using the 3D-Slicer software tool and saved as .vtk files and exported as a collection of primitives in any common file format (.iv, .pfb). Subsequently this files can be displayed and manipulated in the CAVE virtual reality center. The CAVE is a multiuser walkable virtual room consisting of several walls on which stereoscopic images are projected by rear panel beamers. Adequate tracking of the head position and separate image calculation for each eye yields a vivid impression for one or several users. With the use of a seperately tracked 6D joystick manipulations such as rotation, translation, zooming, decomposition or highlighting can be done intuitively. The usage of the CAVE technology opens new possibilities especially in surgical training ("hands-on-effect") and as an educational tool (availability of pathological data). Unlike concurring technologies the CAVE permits a walk-through into the virtual scene but preserves enough physical perception to allow interaction between multiple users, e.g. gestures and movements. By training in a virtual environment on one hand the learning process of students in complex anatomic findings may be improved considerably and on the other hand unaccustomed views such as the one through a microscope or endoscope can be trained in advance. The availability of low-cost PC based CAVE-like systems and the rapidly decreasing price of high-performance video beamers makes the CAVE an affordable alternative to conventional surgical training techniques and without limitations in handling cadavers.

  6. Immersive Virtual Reality Field Trips in the Geosciences: Integrating Geodetic Data in Undergraduate Geoscience Courses

    NASA Astrophysics Data System (ADS)

    La Femina, P. C.; Klippel, A.; Zhao, J.; Walgruen, J. O.; Stubbs, C.; Jackson, K. L.; Wetzel, R.

    2017-12-01

    High-quality geodetic data and data products, including GPS-GNSS, InSAR, LiDAR, and Structure from Motion (SfM) are opening the doors to visualizing, quantifying, and modeling geologic, tectonic, geomorphic, and geodynamic processes. The integration of these data sets with other geophysical, geochemical and geologic data is providing opportunities for the development of immersive Virtual Reality (iVR) field trips in the geosciences. iVR fieldtrips increase accessibility in the geosciences, by providing experiences that allow for: 1) exploration of field locations that might not be tenable for introductory or majors courses; 2) accessibility to outcrops for students with physical disabilities; and 3) the development of online geosciences courses. We have developed a workflow for producing iVR fieldtrips and tools to make quantitative observations (e.g., distance, area, and volume) within the iVR environment. We use a combination of terrestrial LiDAR and SfM data, 360° photos and videos, and other geophysical, geochemical and geologic data to develop realistic experiences for students to be exposed to the geosciences from sedimentary geology to physical volcanology. We present two of our iVR field trips: 1) Inside the Volcano: Exploring monogenetic volcanism at Thrihnukagigar Iceland; and 2) Changes in Depositional Environment in a Sedimentary Sequence: The Reedsville and Bald Eagle Formations, Pennsylvania. The Thrihnukagigar experience provides the opportunity to investigate monogenetic volcanism through the exploration of the upper 125 m of a fissure-cinder cone eruptive system. Students start at the plate boundary scale, then zoom into a single volcano where they can view the 3D geometry from either terrestrial LiDAR or SfM point clouds, view geochemical data and petrologic thins sections of rock samples, and a presentation of data collection and analysis, results and interpretation. Our sedimentary geology experience is based on a field lab from our introductory Physical Geology course for majors in Geoscience and Engineering. The lab explores formation of a turbidite sequence, and the transition to a shallower marine environment using the tools described above and data from SfM and 360° photos. We are evaluating the effectiveness of both iVR field trips on student learning.

  7. Design and Fabrication of Calibration Device for Scintillating Fibers of Tagger Microscope: For use in GlueX's QCD Experiment

    NASA Astrophysics Data System (ADS)

    Briere, Emily

    2012-10-01

    For decades, scientists have struggled to understand the chromo-electromagnetic field which confines quarks and gluons within the hadron. GlueX is a QCD experiment centered at Jefferson Lab, Virginia, seeking to better understand this gluonic field by exciting it and mapping the spectrum of exotic hybrid mesons that it generates. The experiment uses coherent bremsstrahlung radiation to produce a beam of photons, which due to their polarity act as virtual vector mesons. When incident on a liquid hydrogen target, these mesons are expected to form exotic hybrid mesons. Such particles quickly decay into new particles which are captured in a solenoid detector. The decays can then be reconstructed to examine the properties of the original exotic hybrid meson, although the initial energy of the photon is required to draw meaningful conclusions. The post-bremsstrahlung degraded electrons are bent from the main beam into the tagger microscope where they strike an array of scintillating optical fibers. Given the correlation between momentum and radial bend, the Silicon Photmultiplier sensors attached to the optical fibers are able to ``tag'' the electrons', and thus the photons', initial energies based on which fibers were hit. Providing central data for GlueX, the tagger microscope must be accurate. This paper details the design and fabrication of a scintillating fiber calibration device that moves horizontally above fiber bundles, using a green laser diode to direct light pulses into the fibers. This calibration method has been tested mechanically and via a Monte Carlo Matlab simulation, and has proven to be effective.

  8. A novel intravital multi-harmonic generation microscope for early diagnosis of oral cancer

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Hsiang; Lin, Chih-Feng; Shih, Ting-Fang; Sun, Chi-Kuang

    2013-03-01

    Oral cancer is one of the most frequently diagnosed human cancers and leading causes of cancer death all over the world, but the prognosis and overall survival rate are still poor because of delay in diagnosis and lack of early intervention. The failure of early diagnosis is due to insufficiency of proper diagnostic and screening tools and most patients are reluctant to undergo biopsy. Optical virtual biopsy techniques, for imaging cells and tissues at microscopic details capable of differentiating benign from malignant lesions non-invasively, are thus highly desirable. A novel multi-harmonic generation microscope, excited by a 1260 nm Cr:forsterite laser, with second and third harmonic signals demonstrating collagen fiber distribution and cell morphology in a sub-micron resolution, was developed for clinical use. To achieve invivo observation inside the human oral cavity, a small objective probe with a suction capability was carefully designed for patients' comfort and stability. By remotely changing its focus point, the same objective can image the mucosa surface with a low magnification, illuminated by side light-emitting diodes, with a charge-coupled device (CCD) for site location selection before the harmonic generation biopsy was applied. Furthermore, the slow galvanometer mirror and the fast resonant mirror provide a 30 fps frame rate for high-speed real-time observation and the z-motor of this system is triggered at the same rate to provide fast 3D scanning, again ensuring patients' comfort. Focusing on the special cytological and morphological changes of the oral epithelial cells, our preliminary result disclosed excellent consistency with traditional histopathology studies.

  9. Petrologic testament to changes in shallow magma storage and transport during 30+ years of recharge and eruption at Kīlauea Volcano, Hawai‘i: Chapter 8

    USGS Publications Warehouse

    Thornber, Carl R.; Orr, Tim R.; Heliker, Christina; Hoblitt, Richard P.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Petrologic monitoring of Kīlauea Volcano from January 1983 to October 2013 has yielded an extensive record of glass, phenocryst, melt inclusion, and bulk-lava chemistry from well-quenched lava. When correlated with 30+ years of geophysical and geologic monitoring, petrologic details testify to physical maturation of summit-to-rift magma plumbing associated with sporadic intrusion and prolonged magmatic overpressurization. Changes through time in bulk-lava major- and trace-element compositions, along with glass thermometry, record shifts in the dynamic balance of fractionation, mixing, and assimilation processes inherent to magma storage and transport during near-continuous recharge and eruption. Phenocryst composition, morphology, and texture, along with the sulfur content of melt inclusions, constrain coupled changes in eruption behavior and geochemistry to processes occurring in the shallow magmatic system. For the first 17 years of eruption, magma was steadily tapped from a summit reservoir at 1–4 km depth and circulating between 1180 and 1200°C. Furthermore, magma cooled another 30°C while flowing through the 18 km long rift conduit, before erupting olivine-spinel-phyric lava at temperatures of 1150–1170°C in a pattern linked with edifice deformation, vent formation, eruptive vigor, and presumably the flux of magma into and out of the summit reservoir. During 2000–2001, a fundamental change in steady state eruption petrology to that of relatively low-temperature, low-MgO, olivine(-spinel)-clinopyroxene-plagioclase-phryic lava points to a physical transformation of the shallow volcano plumbing uprift of the vent. Preeruptive comagmatic mixing between hotter and cooler magma is documented by resorption, overgrowth, and compositional zonation in a mixed population of phenocrysts grown at higher and lower temperatures. Large variations of sulfur (50 to >1000 ppm) in melt inclusions within individual phenocrysts and among phenocrysts in most samples provide an unequivocal glimpse of rapid crystal growth amid sulfur degassing at <30 MPa in a turbulent preeruptive environment. We speculate that, during the last decade, one or more shallow open-system reservoirs developed along the conduit between the summit and Pu‘u ‘Ō‘ō and now serve to buffer the magmatic throughput associated with ongoing recharge and eruption. Lava with identical trace-element signatures erupted simultaneously at the summit and at Pu‘u ‘Ō‘ō from 2008 to 2013 confirms magmatic continuity between the vents. Complementary changes in compositions of matrix glasses, phenocrysts, and melt inclusions of summit tephra are mirrored by similar changes in contemporaneous rift lava at eruption temperatures 20–35°C lower than those at the summit. Petrologic parameters measured at opposite ends of the shallow magmatic plumbing system are both correlated with summit deformation, demonstrating that effects of summit magma chamber pressurization are translated throughout interconnected magma pathways in the shallow edifice.

  10. New tools for Content Innovation and data sharing: Enhancing reproducibility and rigor in biomechanics research.

    PubMed

    Guilak, Farshid

    2017-03-21

    We are currently in one of the most exciting times for science and engineering as we witness unprecedented growth in our computational and experimental capabilities to generate new data and models. To facilitate data and model sharing, and to enhance reproducibility and rigor in biomechanics research, the Journal of Biomechanics has introduced a number of tools for Content Innovation to allow presentation, sharing, and archiving of methods, models, and data in our articles. The tools include an Interactive Plot Viewer, 3D Geometric Shape and Model Viewer, Virtual Microscope, Interactive MATLAB Figure Viewer, and Audioslides. Authors are highly encouraged to make use of these in upcoming journal submissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. [Methods for Reducing Laser Speckles to Achieve Even Illumination of the Microscope Field of View in Biophysical Studies].

    PubMed

    Barsky, V E; Lysov, Yu P; Yegorov, E E; Yurasov, D A; Mamaev, D D; Yurasov, R A; Cherepanov, A V; Chudinov, A V; Smoldovskaya, O V; Arefieva, A S; Rubina, A Yu; Zasedatelev, A S

    2015-01-01

    The aim of this work was to compare different speckle reduction techniques. It was shown that the use of devices based on liquid crystals only leads to partial reduction of speckle contrast. In quantitative luminescent microscopy an application of the mechanical devices when a laser beam is spread within the field of view turned out to be more efficient. Laser speckle noise was virtually eliminated with the developed and manufactured mechanical device comprising a fiber optic ring light guide and the vibrator that permits movement of optical fiber ends towards the laser diode during measurements. The method developed for the analysis of microarrays was successfully applied to the problem of speckle reduction.

  12. Three-dimensional polarization algebra for all polarization sensitive optical systems.

    PubMed

    Li, Yahong; Fu, Yuegang; Liu, Zhiying; Zhou, Jianhong; Bryanston-Cross, P J; Li, Yan; He, Wenjun

    2018-05-28

    Using three-dimensional (3D) coherency vector (9 × 1), we develop a new 3D polarization algebra to calculate the polarization properties of all polarization sensitive optical systems, especially when the incident optical field is partially polarized or un-polarized. The polarization properties of a high numerical aperture (NA) microscope objective (NA = 1.25 immersed in oil) are analyzed based on the proposed 3D polarization algebra. Correspondingly, the polarization simulation of this high NA optical system is performed by the commercial software VirtualLAB Fusion. By comparing the theoretical calculations with polarization simulations, a perfect matching relation is obtained, which demonstrates that this 3D polarization algebra is valid to quantify the 3D polarization properties for all polarization sensitive optical systems.

  13. Nanoscale petrographic and geochemical insights on the origin of the Palaeoproterozoic stromatolitic phosphorites from Aravalli Supergroup, India.

    PubMed

    Papineau, D; De Gregorio, B; Fearn, S; Kilcoyne, D; McMahon, G; Purohit, R; Fogel, M

    2016-01-01

    Stromatolites composed of apatite occur in post-Lomagundi-Jatuli successions (late Palaeoproterozoic) and suggest the emergence of novel types of biomineralization at that time. The microscopic and nanoscopic petrology of organic matter in stromatolitic phosphorites might provide insights into the suite of diagenetic processes that formed these types of stromatolites. Correlated geochemical micro-analyses of the organic matter could also yield molecular, elemental and isotopic compositions and thus insights into the role of specific micro-organisms among these communities. Here, we report on the occurrence of nanoscopic disseminated organic matter in the Palaeoproterozoic stromatolitic phosphorite from the Aravalli Supergroup of north-west India. Organic petrography by micro-Raman and Transmission Electron Microscopy demonstrates syngeneity of the organic matter. Total organic carbon contents of these stromatolitic phosphorite columns are between 0.05 and 3.0 wt% and have a large range of δ(13) Corg values with an average of -18.5‰ (1σ = 4.5‰). δ(15) N values of decarbonated rock powders are between -1.2 and +2.7‰. These isotopic compositions point to the important role of biological N2 -fixation and CO2 -fixation by the pentose phosphate pathway consistent with a population of cyanobacteria. Microscopic spheroidal grains of apatite (MSGA) occur in association with calcite microspar in microbial mats from stromatolite columns and with chert in the core of diagenetic apatite rosettes. Organic matter extracted from the stromatolitic phosphorites contains a range of molecular functional group (e.g. carboxylic acid, alcohol, and aliphatic hydrocarbons) as well as nitrile and nitro groups as determined from C- and N-XANES spectra. The presence of organic nitrogen was independently confirmed by a CN(-) peak detected by ToF-SIMS. Nanoscale petrography and geochemistry allow for a refinement of the formation model for the accretion and phototrophic growth of stromatolites. The original microbial biomass is inferred to have been dominated by cyanobacteria, which might be an important contributor of organic matter in shallow-marine phosphorites. © 2015 John Wiley & Sons Ltd.

  14. Santorini Volcano's 20th Century Eruptions: A Combined Petrogenetical, Volcanological, Sociological and Environmental Study

    NASA Astrophysics Data System (ADS)

    Drymoni, Kyriaki; Magganas, Andreas; Pomonis, Panagiotis

    2014-05-01

    Santorini, the famous stratovolcano in the Aegean Sea, erupted three time periods during the 20th century (1925-1928, 1939-1941, 1950) and since then remains dormant. This study tried to combine and evaluate new and published volcanological, petrological, geochemical, environmental and sociological data of these three phases of Santorini's activity, which practically restricted to the caldera center on the Nea Kameni Islet. After field work on the formed dacite flows, pyroclastics and domes, representative rock samples and enclaves were collected and investigated for their texture, physical parameters, mineralogy and chemical composition by polarizing light microscope, scanning electron microscope (SEM-EDS), XRD, Raman spectroscopy and ICP-MS. The petrogenetic evaluation of the data obtained suggests slight but significant changes in the solid and aerial phases produced during the three explosion stages, which can be attributed to minor variations in the magmatic differentiation and magma chamber physicochemical conditions. These variations were also expressed by decrease of duration and intensity of the eruptions, as well as in their volume of ejecta and lava. Probably, the subsequent relatively long dormant period of the volcano is also related to this tension of decrease. The first compared results were collected from scientific literature, old photos as well as local and regional press and state documents from the different periods of volcanism, record the past hazard case scenarios and civil defense planning of the individual eruptions. As part of the disaster management a pilot survey, in which personal interviews with aged local islanders that were eye-witnesses of the events and elderly people or tourists that they indirectly experienced or have heard about them, was also conducted. This event-tracing, along with air pollution software models using volcanological data have shown the social impacts and the environmental consequences of the volcanic activities seem generally to follow the same way of reduction with time as above. Conclusively, this integrated comparison of the three successive per decade eruption periods within the 20th century, which had followed a long dormant period of about 60 years, provide worthy hazard and risk assessment for Santorini volcano future waking up.

  15. Use of Library Readings to Augment Conventional Geology Instruction.

    ERIC Educational Resources Information Center

    Nold, John Lloyd

    1989-01-01

    Examples of sets of questions on library readings designed to lead students into articles and emphasize important information and associated literature are presented for introductory geology courses, historical geology, structural geology, mineralogy, and petrology. (Author/CW)

  16. About Films.

    ERIC Educational Resources Information Center

    Christman, Robert; Krockover, Gerald H.

    1984-01-01

    Lists and briefly describes 46 college-level films. Films are arranged in the following categories: volcanism and earthquakes; plate tectonics; energy, water, and environmental concerns; petroleum and coal; astronomy; space exploration, space shuttle; paleontology; geomorphology; and mineralogy, petrology, and economic geology. (BC)

  17. Mineralogy and Petrology of ``New'' Lunar Meteorite Dhofar 025

    NASA Astrophysics Data System (ADS)

    Cahill, J. T.; Cohen, B. A.; Taylor, L. A.; Nazarov, M. A.

    2001-03-01

    Dh25 is an anorthositic regolith breccia. The mineral chemistry of most rock and melt clasts have compositions intermediate between FAN and HMS fields, indicative of a non-Apollo, FAN-rich locale, possibly the lunar farside.

  18. Northwest Africa 1109 and Camel Donga: Metal-bearing Brecciated Eucrites

    NASA Astrophysics Data System (ADS)

    Isa, J.; Yamaguchi, A.; Shinotsuka, K.; Ebihara, M.

    2009-03-01

    Two eucrites NWA1109 and Camel Donga contain significant amounts of Fe-metals. In order to better understand the origin of the Fe-metals, we performed a petrological and geochemical study of these meteorites.

  19. Petrology and thermal history of type IA chondrules in the Semarkona (LL3.0) chondrite

    NASA Technical Reports Server (NTRS)

    Jones, R. H.; Scott, E. R. D.

    1989-01-01

    Detailed petrologic studies have been made of 15 type IA, Fe-poor, porphyritic olivine chondrules in Semarkona (LL3.0). Major and minor element concentrations in olivines, pyroxenes, and mesostases, and bulk composition so the chondrules are measured along with zoning profiles in the olivine and pyroxene crystals. The mineral compositions and textures are best interpreted in terms of closed system crystallization in which the olivines and pyroxenes crystallized in situ from a melt corresponding to the bulk composition of the chondrule. Relict olivine grains are not found in the chondrules. Crystallization probably occurred at a cooling rate of the order of 1000 C/hr. Precursor materials of the chondrules were composed of two components, one refractory Ca-, Al-, and Ti-rich, and one less refractory Si-, Fe-, Cr-, and Mn-rich. The evidence is consistent with Semarkona being one of the least metamorphosed ordinary chondrites.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.R.

    Petrologic, bulk chemical, and mineralogic data are presented for 49 samples of tuffaceous rocks from core holes USW G-1 and UE-25a{number_sign}1 at Yucca Mountain, Nevada. Included, in descending stratigraphic order, are 11 samples from the Topopah Spring Member of the Paintbrush Tuff, 12 samples from the Tuffaceous Beds of Calico Hills, 3 samples from the Prow Pass Member of the Crater Flat Tuff, 20 samples from the Bullfrog Member of the Crater Flat Tuff and 3 samples from the Tram Member of the Crater Flat Tuff. The suite of samples contains a wide variety of petrologic types, including zeolitized, glassy,more » and devitrified tuffs. Data vary considerably between groups of samples, and include thin section descriptions (some with modal analyses for which uncertainties are estimated), electron microprobe analyses of mineral phases and matrix, mineral identifications by X-ray diffraction, and major element analyses with uncertainty estimates.« less

  1. Chapman Conference on Generation of the Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Presnall, D. C.; Hales, A. L.; Frey, F. A.

    On April 6-10, 1981, the Chapman conference on Generation of the Oceanic Lithosphere was held at Airlie House, Warrenton, Virginia. It was convened by D.C. Presnall, A.L. Hales (both at the University of Texas at Dallas), and F.A. Frey (Massachusetts Institute of Technology). The purpose of the conference was to bring together scientists with diverse specialties to develop a better understanding of the constraints imposed by geophysics, geochemistry, petrology, and tectonics on processes of oceanic lithosphere generation. Sessions were held on the nature of the crust and upper mantle at spreading centers; trace elements and isotopes; experimental petrology; magma chamber dynamics, melt migration, and mantle flow; slow versus fast spreading ridges; Atlantic spreading centers; Pacific spreading centers; and hydrothermal activity, metasomatism, and metamorphism. Fifty-four oral papers and 47 poster papers were presented. One hundred twenty-eight scientists attended from Australia, Canada, Cyprus, Denmark, France, Iceland, Japan, Mexico, United Kingdom, United States, and the USSR.

  2. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow

    PubMed Central

    Wang, Qiang; Hawkesworth, Chris J.; Wyman, Derek; Chung, Sun-Lin; Wu, Fu-Yuan; Li, Xian-Hua; Li, Zheng-Xiang; Gou, Guo-Ning; Zhang, Xiu-Zheng; Tang, Gong-Jian; Dan, Wei; Ma, Lin; Dong, Yan-Hui

    2016-01-01

    There is considerable controversy over the nature of geophysically recognized low-velocity–high-conductivity zones (LV–HCZs) within the Tibetan crust, and their role in models for the development of the Tibetan Plateau. Here we report petrological and geochemical data on magmas erupted 4.7–0.3 Myr ago in central and northern Tibet, demonstrating that they were generated by partial melting of crustal rocks at temperatures of 700–1,050 °C and pressures of 0.5–1.5 GPa. Thus Pliocene-Quaternary melting of crustal rocks occurred at depths of 15–50 km in areas where the LV–HCZs have been recognized. This provides new petrological evidence that the LV–HCZs are sources of partial melt. It is inferred that crustal melting played a key role in triggering crustal weakening and outward crustal flow in the expansion of the Tibetan Plateau. PMID:27307135

  3. The Origin and Impact History of Lunar Meteorite Yamato 86032

    NASA Technical Reports Server (NTRS)

    Yamaguchi, A.; Takeda, H.; Nyquist, L. E.; Bogard, D. D.; Ebihara, M.; Karouji, Y.

    2004-01-01

    Yamato (Y) 86032 is a feldspathic lunar highland breccia having some characteristics of regolith breccia. The absence of KREEP components in the matrix in Y86032 indicates that these meteorites came from a long distance from Mare Imbrium, perhaps from the far-side of the moon. One ferroan anorthosite (FAN) clast in Y86032 has a very old Ar-Ar age of approximately 4.35-4.4 Ga. The negative Nd of this clast may suggest a direct link with the primordial magma ocean. The facts indicate that Y86032 contains components derived from a protolith of the original lunar crust. Detailed petrologic characterization of each component in this breccia is essential to understand the early impact history and origin of the lunar highland crust. We made a large slab (5.2 x 3.6 cm x 3-5 mm) of Y86032 to better understand the relationship of various lithologies and their petrologic origin.

  4. Geochemistry, petrology, and palynology of the Pond Creek coal bed, northern Pike and southern Martin counties, Kentucky

    USGS Publications Warehouse

    Hower, J.C.; Ruppert, L.F.; Eble, C.F.; Clark, W.L.

    2005-01-01

    The geochemistry, petrology, and palynology of the Duckmantian-age Pond Creek coal bed were investigated in northern Pike and southern Martin counties, eastern Kentucky. The coal bed exhibits significant vertical variation in the investigated geochemical parameters, with many diagenetic overprints of the original geochemistry. Included in the range of geochemical signatures are the presence of elements, particularly TiO2 and Zr, suggesting the detrital influences at the time of deposition of a low-vitrinite durain; a high CaO zone with elevated B/Be, both suggesting marine influence, in a lithotype in the middle of the coal bed; and the postdepositional emplacement of pyrite in the uppermost lithotype. Individual lithotypes, each representing distinct depositional environments, all complicated to some degree by diagentic overprints, comprise the complex history of the coal bed. ?? 2004 Elsevier B.V. All rights reserved.

  5. Geochemistry, geomorphology, and soil petrology of the Mars-like soils from Pampas de la Joya hyper-arid desert

    NASA Astrophysics Data System (ADS)

    Valdivia-Silva, Julio E.; Ortega-Gutierrez, Fernando; Bonaccorsi, Rosalba

    2016-07-01

    Mars-like environments on Earth are used as a model to guide the investigation of possible habitable Martian environments. In this work we evaluate and analyze the geology, geomorphology and soil petrology of the Pampas de La Joya Desert in southern Peru, in order to understand the processes that transformed the region into a Mars-like environment. Using a multidisciplinary approach, we analyze the different soils that compose the floor of the desert, as well as describe and interpret the post-Oligocene landscape emphasizing some Mars-like features with respect to its acting geologic processes, the habitability potential under very low levels of nutrients and water, and its suitability to sustain microorganisms or their remains. Importantly, this work is part of a bigger project that use Mars-like soils, looking for new crops capable to grow in extreme environments.

  6. Metal-silicate fractionation in the surface dust layers of accreting planetesimals: Implications for the formation of ordinary chondrites and the nature of asteroid surfaces

    NASA Astrophysics Data System (ADS)

    Huang, Shaoxiong; Akridge, Glen; Sears, Derek W. G.

    Some of the most primitive solar system materials available for study in the laboratory are the ordinary chondrites, the largest meteorite class. The size and distribution of the chondrules (silicate beads) and metal, which leads to the definition of the H, L, and LL classes, suggest sorting before or during aggregation. We suggest that meteorite parent bodies (probably asteroids) had thick dusty surfaces during their early evolution that were easily mobilized by gases evolving from their interiors. Density and size sorting would have occurred in the surface layers as the upward drag forces of the gases (mainly water) acted against the downward force of gravity. The process is analogous to the industrially important process of fluidization and sorting in pyroclastic volcanics. We calculate that gas flow velocities and gas fluxes for the regolith of an asteroid-sized object heated by the impact of accreting objects or by 26Al would have been sufficient for fluidization. It can also explain, quantitatively in some cases, the observed metal-silicate sorting of ordinary chondrites, which has long been ascribed to processes occurring in the primordial solar nebula. Formation of the chondrites in the thick dynamic regolith is consistent with the major properties of chondritic meteorites (i.e., redox state, petrologic type, cooling rate, matrix abundance). These ideas have implications for the nature of asteroid surfaces and the virtual lack of asteroids with ordinary chondrite-like surfaces.

  7. Paleozoic-Mesozoic boundary in the Berry Creek Quadrangle, northwestern Sierra Nevada, California

    USGS Publications Warehouse

    Hietanen, Anna Martta

    1977-01-01

    Structural and petrologic studies in the Berry Creek quadrangle at the north end of the western metamorphic belt of the Sierra Nevada have yielded new information that helps in distinguishing between the chemically similar Paleozoic and Mesozoic rocks. The distinguishing features are structural and textural and result from different degrees of deformation. Most Paleozoic rocks are strongly deformed and thoroughly recrystallized. Phenocrysts in meta volcanic rocks are granulated and drawn out into lenses that have sutured outlines. In contrast, the phenocrysts in the Mesozoic metavolcanic rocks show well-preserved straight crystal faces, are only slightly or not at all granulated, and contain fewer mineral inclusions than do those in the Paleozoic rocks. The groundmass in the Paleozoic rocks is recrystallized to a fairly coarse grained albite-epidote-amphibole-chlorite rock, whereas in the Mesozoic rocks the groundmass is a very fine grained feltlike mesh with only spotty occurrence of well-recrystallized finegrained albite-epidote-chlorite-actinolite rock. Primary minerals, such as augite, are locally preserved in the Mesozoic rocks but are altered to a mixture of amphibole, chlorite, and epidote in the Paleozoic rocks. In the contact aureoles of the plutons, and within the Big Bend fault zone, which crosses the area parallel to the structural trends, all rocks are thoroughly recrystallized and strongly deformed. Identification of the Paleozoic and Mesozoic rocks in these parts of the area was based on the continuity of the rock units in the field and on gradual changes in microscopic textures toward the plutons.

  8. Basement rocks of Halmahera, eastern Indonesia: Implications for the early history of the Philippine Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, R.G.N.; Ballantyne, P.

    1990-06-01

    The oldest rocks known on Halmahera, eastern Indonesia, are petrologically and chemically similar to supra-subduction ophiolites and include boninitic volcanics resembling those dredged from the Marianas forearc. The age of the ophiolitic rocks is unknown; in east Halmahera they are overlain by Late Cretaceous and Eocene volcanics and associated sediments. Similar volcanics form the basement of western Halmahera. Plutonic rocks intruding the ophiolite and associated metamorphic rocks also yield Late Cretaceous to Eocene radiometric ages. The petrology and chemistry of the igneous rocks indicate an island arc origin. These rocks are locally overlain by shallow-water Eocene limestones and all aremore » overlain unconformably by Neogene sediments. The Halmahera basement rocks have many structural, petrological, and stratigraphic similarities to submarine plateaus of the southern and northern Philippine Sea and basement terranes of the eastern Philippines. The authors suggest that these similarities indicate the existence of an extensive region of Late Cretaceous and Eocene volcanism built upon probable Mesozoic ophiolitic basement. The resultant thickened crust was later fragmented by spreading in the West Philippine Sea Central Basin and backarc spreading in the Eastern Philippine Sea. It is difficult to reconcile the present distribution of these crustal fragments with a linear arc, but equally difficult to propose a simple alternative. A proto-Philippine archipelago, with short-lived arcs separated by small oceanic basins, may be the closest modern analog. The development of younger subduction zones has been influenced by the distribution of thickened crustal fragments as they have re-amalgamated since the Miocene.« less

  9. The Effects of Oxygen Fugacity on the Crystallization Sequence and Cr Partitioning of an Analog Y-98 Liquid

    NASA Technical Reports Server (NTRS)

    Bell, A. S.; Burger, P. V.; Le, Loan; Papike, J. J.; Jones, J.; Shearer, C. K.

    2013-01-01

    Interpreting the relationship between "enriched" olivine-phyric shergottites (e.g. NWA 1068/1110) and the "enriched" pyroxene-plagioclase shergottites (e.g. Shergotty, Los Angeles) is problematic. Symes et al. [1] and Shearer et al. [2]) proposed that the basaltic magma that crystallized to produce olivine-phyric shergottite NWA 1068/1110 could produce pyroxene-plagioclase shergottites with additional fractional crystallization. However, additional observations indicate that the relationship among the enriched shergottites may be more complex [1-3]. For example, Herd [3] concluded that some portion of the olivine megacrysts in this meteorite was xenocrystic in origin, seemingly derived from more reduced basaltic liquids. This conclusion may imply that a variety of complex processes such as magma mixing, entrainment, and assimilation may play important roles in the petrologic history of these meteorites. It is therefore possible that these processes have obscured the petrogenetic linkages between the enriched olivine-phyric shergottites and the pyroxene-plagioclase shergottites. As a first order step in attempting to unravel these petrologic complexities, this study focuses upon exploring the effect of fO2 on the crystallization history for an analog primitive shergottite liquid composition (Y98). Results from this work will provide a basis for reconstructing the record of fO2 in shergottites, its effect on both mineral chemistries and valence state partitioning, and a means for examining the role of crystallization on the petrologic linkages between olivine-phyric and pyroxene-plagioclase shergottites. A companion abstract [4] explores the behavior of V over this range of fO2.

  10. Lunar Meteorite Dhofar 026: A Second-Generation Impact Melt

    NASA Astrophysics Data System (ADS)

    Cohen, B. A.; Taylor, L. A.; Nazarov, M.

    2001-03-01

    Petrology and mineral-chemistry of lunar highlands meteorite Dhofar 026 show that it is a crystalline impact melt of FAN-type material. Crystalline spherules within the meteorite are earlier impact melt fragments derived from a basaltic precursor.

  11. Publications - PIR 2016-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ., LePain, D.L., and Stanley, R.G., 2016, Sedimentary petrology and reservoir quality of the Middle Jurassic ; Sedimentary; Sedimentary Rocks; Slope; Snug Harbor Siltstone Member; Stratigraphy; Tuxedni Bay Top of Page

  12. Melt focusing and geochemical evolution at mid-ocean ridges: simulations of reactive two-phase flow

    NASA Astrophysics Data System (ADS)

    Keller, T.; Katz, R. F.; Hirschmann, M. M.

    2017-12-01

    The geochemical character of MORB and related off-axis volcanic products reflects the signature of chemical reservoirs in the mantle, the processes of melt transport from source to surface, or both. Focusing of partial melt to the ridge axis controls the proportion of deep, volatile- and incompatible-rich melts that contribute to MORB formation. However, the effect of volatiles, including CO2 and H2O, on melt segregation and focusing remains poorly understood. We investigate this transport using 2-D numerical simulations of reactive two-phase flow. The phases are solid mantle and liquid magma. Major elements and volatiles are represented by a system with 4 or 6 pseudo-components. This captures accepted features of mantle melting with volatiles. The fluid-dynamical model is McKenzie's formulation [1], while melting and reactive transport use the R_DMC method [2,3]. Trace element transport is computed for 5 idealized elements between highly incompatible and compatible behavior. Our results indicate that volatiles cause channelized melt transport, which leads to fluctuations in volume and composition of melt focused to the axis. The volatile-induced expansion of the melting regime at depth, however, has no influence on melt focusing. Up to 50% of deep, volatile-rich melts are not focused to the axis, but are emplaced along the oceanic LAB. There, crystallization of accumulated melt leads to enrichment of volatiles and incompatibles in the deep lithosphere. This has implications for volatile recycling by subduction, seismic properties of the oceanic LAB, and potential sources for seamount volcanism. Results from a suite of simulations, constrained by catalogued observational data [4,5,6], enable prediction of global MORB and volatile output and systematic variations of major, volatile and trace element concentrations as a function of mantle conditions and dynamic properties. REFERENCES[1] McKenzie (1984), doi:10.1093/petrology/25.3.713.[2] Rudge, Bercovici & Spiegelman (2011), doi:10.1111/j.1365-246X.2010.04870.x.[3] Keller & Katz (2016), doi:10.1093/petrology/egw030.[4] Dalton, Langmuir & Gale (2014), doi:10.1126/science.1249466.[5] Gale, Langmuir & Dalton (2014), doi:10.1093/petrology/egu017.[6] White et al. (2001), doi:10.1093/petrology/42.6.1171.

  13. Melt focusing and CO2 extraction at mid-ocean ridges: simulations of reactive two-phase flow

    NASA Astrophysics Data System (ADS)

    Keller, T.; Katz, R. F.; Hirschmann, M. M.

    2016-12-01

    The deep CO2 cycle is the result of fluxes between near-surface and mantle reservoirs. Outgassing from mid-ocean ridges is one of the primary fluxes of CO2 from the asthenosphere into the ocean-atmosphere reservoir. Focusing of partial melt to the ridge axis crucially controls this flux. However, the role of volatiles, in particular CO2 and H2O, on melt transport processes beneath ridges remains poorly understood. We investigate this transport using numerical simulations of two-phase, multi-component magma/mantle dynamics. The phases are solid mantle and liquid magma; the components are dunite, MORB, hydrated basalt, and carbonated basalt. These effective components capture accepted features of mantle melting with volatiles. The fluid-dynamical model is McKenzie's formulation [1], while melting and reactive transport use the R_DMC method [2,3]. Our results indicate that volatiles cause channelized melt transport, which leads to significant variability in volume and composition of focused melt. The volatile-induced expansion of the melting regime at depth, however, has no influence on melt focusing; distal volatile-rich melts are not focused to the axis. Up to 50% of these melts are instead emplaced along the oceanic LAB. There, crystallization of accumulated melt leads to enrichment of CO2 and H2O in the deep lithosphere, which has implications for LAB rheology and volatile recycling by subduction. Results from a suite of simulations, constrained by catalogued observational data [4,5,6] enable predictions of global MOR CO2 output. By combining observational constraints with self-consistent numerical simulations we obtain a range of CO2 output from the global ridge system of 28-110 Mt CO2/yr, corresponding to mean CO2 contents of 50-200 ppm in the mantle. REFERENCES[1] McKenzie (1984), doi:10.1093/petrology/25.3.713.[2] Rudge, Bercovici & Spiegelman (2011), doi:10.1111/j.1365-246X.2010.04870.x.[3] Keller & Katz (2016), doi:10.1093/petrology/egw030.[4] Dalton, Langmuir & Gale (2014), doi:10.1126/science.1249466.[5] Gale, Langmuir & Dalton (2014), doi:10.1093/petrology/egu017.[6] White et al. (2001), doi:10.1093/petrology/42.6.1171. Fig: Simulation results of MOR magma/mantle dynamics with H2O and CO2, showing Darcy flux magnitude for half-spreading rates of 1 and 5 cm/yr.

  14. Petrologic and isotopic data from the Cretaceous (Campanian) Blackhawk Formation and Star Point Sandstone (Mesaverde Group), Wasatch Plateau, Utah

    USGS Publications Warehouse

    Fishman, Neil S.; Turner, Christine E.; Peterson, Fred

    2013-01-01

    The presence of discrete minerals associated with coal—whether (1) detrital or authigenic constituents of the coals or in thin mudstone or siltstone units interbedded with coals, or (2) authigenic phases that formed along cleats—might influence its utilization as an energy resource. The build-up of sintered ash deposits on the surfaces of heat exchangers in coal-fired power plants, due to the alteration of minerals during combustion of the coal, can seriously affect the functioning of the boiler and enhance corrosion of combustion equipment. In particular, the presence of sodium in coals has been considered a key factor in the fouling of boilers; however, other elements (such as calcium or magnesium) and the amount of discrete minerals burned with coal can also play a significant role in the inefficiency of and damage to boilers. Previous studies of the quality of coals in the Cretaceous (Campanian) Blackhawk Formation of the Wasatch Plateau, Utah, revealed that the sodium content of the coals varied across the region. To better understand the origin and distribution of sodium in these coals, petrologic studies were undertaken within a sedimentological framework to evaluate the timing and geochemical constraints on the emplacement of sodium-bearing minerals, particularly analcime, which previously had been identified in coals in the Blackhawk Formation. Further, the study was broadened to include not just coals in the Blackhawk Formation from various localities across the Wasatch Plateau, but also sandstones interbedded with the coals as well as sandstones in the underlying Star Point Sandstone. The alteration history of the sandstones in both formations was considered a key component of this study because it records the nature and timing of fluids passing through them and the associated precipitation of sodium-bearing minerals; thus, the alteration history could place constraints on the distribution and timing of sodium mineralization in the interbedded or overlying Blackhawk coals. Although some preliminary results were previously presented at scientific meetings, the petrologic and geochemical data have not been fully compiled and reported. The purpose of this report is to present the methods of data acquisition and the results of petrologic and isotopic analyses on coal and sandstone samples from the Blackhawk Formation as well as sandstones of the underlying Star Point Sandstone.

  15. A Magnetic Petrology Database for Satellite Magnetic Anomaly Interpretations

    NASA Astrophysics Data System (ADS)

    Nazarova, K.; Wasilewski, P.; Didenko, A.; Genshaft, Y.; Pashkevich, I.

    2002-05-01

    A Magnetic Petrology Database (MPDB) is now being compiled at NASA/Goddard Space Flight Center in cooperation with Russian and Ukrainian Institutions. The purpose of this database is to provide the geomagnetic community with a comprehensive and user-friendly method of accessing magnetic petrology data via Internet for more realistic interpretation of satellite magnetic anomalies. Magnetic Petrology Data had been accumulated in NASA/Goddard Space Flight Center, United Institute of Physics of the Earth (Russia) and Institute of Geophysics (Ukraine) over several decades and now consists of many thousands of records of data in our archives. The MPDB was, and continues to be in big demand especially since recent launching in near Earth orbit of the mini-constellation of three satellites - Oersted (in 1999), Champ (in 2000), and SAC-C (in 2000) which will provide lithospheric magnetic maps with better spatial and amplitude resolution (about 1 nT). The MPDB is focused on lower crustal and upper mantle rocks and will include data on mantle xenoliths, serpentinized ultramafic rocks, granulites, iron quartzites and rocks from Archean-Proterozoic metamorphic sequences from all around the world. A substantial amount of data is coming from the area of unique Kursk Magnetic Anomaly and Kola Deep Borehole (which recovered 12 km of continental crust). A prototype MPDB can be found on the Geodynamics Branch web server of Goddard Space Flight Center at http://core2.gsfc.nasa.gov/terr_mag/magnpetr.html. The MPDB employs a searchable relational design and consists of 7 interrelated tables. The schema of database is shown at http://core2.gsfc.nasa.gov/terr_mag/doc.html. MySQL database server was utilized to implement MPDB. The SQL (Structured Query Language) is used to query the database. To present the results of queries on WEB and for WEB programming we utilized PHP scripting language and CGI scripts. The prototype MPDB is designed to search database by major satellite magnetic anomaly, tectonic structure, geographical location, rock type, magnetic properties, chemistry and reference, see http://core2.gsfc.nasa.gov/terr_mag/query1.html. The output of database is HTML structured table, text file, and downloadable file. This database will be very useful for studies of lithospheric satellite magnetic anomalies on the Earth and other terrestrial planets.

  16. Conference on the Origin of the Moon

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Various topics relating to lunar evolution are discussed. The Moon's ancient orbital history, geophysical and geochemical constraints favoring the capture hypothesis, the site of the lunar core, chemical and petrological constraints, dynamical constraints, and mathematical models are among the topics discussed.

  17. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules.

    PubMed

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2015-01-01

    Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM) is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM) introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926-1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf) of the non-contact atomic force microscope (NC-AFM) tuning fork sensor as well as the magnitude of the electric current (I) flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111) surface.

  18. Perivascular epithelioid cell neoplasm of the urinary bladder in an adolescent: a case report and review of the literature

    PubMed Central

    2012-01-01

    Abstract Perivascular epithelioid cell neoplasms (PEComas) of the urinary bladder are extremely rare and the published cases were comprised predominantly of middle-aged patients. Herein, the authors present the first urinary bladder PEComa occurring in an adolescent. This 16-year-old Chinese girl present with a 3-year history of abdominal discomfort and a solid mass was documented in the urinary bladder by ultrasonography. Two years later, at the age of 18, the patient underwent transurethral resection of the bladder tumor. Microscopically, the tumor was composed of spindled cells mixed with epithelioid cells. Immunohistochemically, the tumor were strongly positive for HMB45, smooth muscle actin, muscle-specific actin, and H-caldesmon. Fluorescence in situ hybridization analysis revealed no evidence of EWSR1 gene rearrangement. The patient had been in a good status without evidence of recurrence 13 months after surgery. Urinary bladder PEComa is an extremely rare neoplasm and seems occur predominantly in middle-aged patients. However, this peculiar lesion can develop in pediatric population and therefore it should be rigorously distinguished from their mimickers. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1870004378817301 PMID:23276164

  19. Students as Virtual Scientists: An exploration of students' and teachers' perceived realness of a remote electron microscopy investigation

    NASA Astrophysics Data System (ADS)

    Childers, Gina; Jones, M. Gail

    2015-10-01

    Remote access technologies enable students to investigate science by utilizing scientific tools and communicating in real-time with scientists and researchers with only a computer and an Internet connection. Very little is known about student perceptions of how real remote investigations are and how immersed the students are in the experience. This study, conducted with high school students and their teachers, explored the impact of students' perception of ownership and virtual presence during a remote investigation using a scanning electron microscope. Students were randomly assigned to one of two treatment groups: students able to select their own insect to use during the remote investigation, and students that did not select their own insects to view during the remote investigation. The results of this study showed that students in the experimental group who had choice and ownership of their insect reported being more present (less distracted) during the remote investigation than students in the control group, whereas students in the control group reported controlling the technology was easier than the experimental group. Students indicated the remote investigation was very real; however, the teachers of these students were less likely to describe the investigation as being real. The results of this study have practical implications for designing remote learning environments.

  20. Viral nanomechanics with a virtual atomic force microscope

    NASA Astrophysics Data System (ADS)

    Aznar, María; Roca-Bonet, Sergi; Reguera, David

    2018-07-01

    One of the most important components of a virus is the protein shell or capsid that encloses its genetic material. The main role of the capsid is to protect the viral genome against external aggressions, facilitating its safe and efficient encapsulation and delivery. As a consequence, viral capsids have developed astonishing mechanical properties that are crucial for viral function. These remarkable properties have started to be unveiled in single-virus nanoindentation experiments, and are opening the door to the use of viral-derived artificial nanocages for promising bio- and nano-technological applications. However, the interpretation of nanoindentation experiments is often difficult, requiring the support of theoretical and simulation analysis. Here we present a ‘Virtual AFM’ (VAFM), a Brownian Dynamics simulation of a coarse-grained model of virus aimed to mimic the standard setup of atomic force microscopy (AFM) nanoindentation experiments. Despite the heavy level of coarse-graining, these simulations provide valuable information which is not accessible in experiments. Rather than focusing on a specific virus, the VAFM will be used to analyze how the mechanical response and breaking of viruses depend on different parameters controlling the effective interactions between capsid’s structural units. In particular, we will discuss the influence of adsorption, the tip radius, and the rigidity and shape of the shell on its mechanical response.

  1. Visualizing 3D data obtained from microscopy on the Internet.

    PubMed

    Pittet, J J; Henn, C; Engel, A; Heymann, J B

    1999-01-01

    The Internet is a powerful communication medium increasingly exploited by business and science alike, especially in structural biology and bioinformatics. The traditional presentation of static two-dimensional images of real-world objects on the limited medium of paper can now be shown interactively in three dimensions. Many facets of this new capability have already been developed, particularly in the form of VRML (virtual reality modeling language), but there is a need to extend this capability for visualizing scientific data. Here we introduce a real-time isosurfacing node for VRML, based on the marching cube approach, allowing interactive isosurfacing. A second node does three-dimensional (3D) texture-based volume-rendering for a variety of representations. The use of computers in the microscopic and structural biosciences is extensive, and many scientific file formats exist. To overcome the problem of accessing such data from VRML and other tools, we implemented extensions to SGI's IFL (image format library). IFL is a file format abstraction layer defining communication between a program and a data file. These technologies are developed in support of the BioImage project, aiming to establish a database prototype for multidimensional microscopic data with the ability to view the data within a 3D interactive environment. Copyright 1999 Academic Press.

  2. Subatomic movements of a domain wall in the Peierls potential.

    PubMed

    Novoselov, K S; Geim, A K; Dubonos, S V; Hill, E W; Grigorieva, I V

    2003-12-18

    The discrete nature of crystal lattices plays a role in virtually every material property. But it is only when the size of entities hosted by a crystal becomes comparable to the lattice period--as occurs for dislocations, vortices in superconductors and domain walls--that this discreteness is manifest explicitly. The associated phenomena are usually described in terms of a background Peierls 'atomic washboard' energy potential, which was first introduced for the case of dislocation motion in the 1940s. This concept has subsequently been invoked in many situations to describe certain features in the bulk behaviour of materials, but has to date eluded direct detection and experimental scrutiny at a microscopic level. Here we report observations of the motion of a single magnetic domain wall at the scale of the individual peaks and troughs of the atomic energy landscape. Our experiments reveal that domain walls can become trapped between crystalline planes, and that they propagate by distinct jumps that match the lattice periodicity. The jumps between valleys are found to involve unusual dynamics that shed light on the microscopic processes underlying domain-wall propagation. Such observations offer a means for probing experimentally the physics of topological defects in discrete lattices--a field rich in phenomena that have been subject to extensive theoretical study.

  3. Imaging brain tumour microstructure.

    PubMed

    Nilsson, Markus; Englund, Elisabet; Szczepankiewicz, Filip; van Westen, Danielle; Sundgren, Pia C

    2018-05-08

    Imaging is an indispensable tool for brain tumour diagnosis, surgical planning, and follow-up. Definite diagnosis, however, often demands histopathological analysis of microscopic features of tissue samples, which have to be obtained by invasive means. A non-invasive alternative may be to probe corresponding microscopic tissue characteristics by MRI, or so called 'microstructure imaging'. The promise of microstructure imaging is one of 'virtual biopsy' with the goal to offset the need for invasive procedures in favour of imaging that can guide pre-surgical planning and can be repeated longitudinally to monitor and predict treatment response. The exploration of such methods is motivated by the striking link between parameters from MRI and tumour histology, for example the correlation between the apparent diffusion coefficient and cellularity. Recent microstructure imaging techniques probe even more subtle and specific features, providing parameters associated to cell shape, size, permeability, and volume distributions. However, the range of scenarios in which these techniques provide reliable imaging biomarkers that can be used to test medical hypotheses or support clinical decisions is yet unknown. Accurate microstructure imaging may moreover require acquisitions that go beyond conventional data acquisition strategies. This review covers a wide range of candidate microstructure imaging methods based on diffusion MRI and relaxometry, and explores advantages, challenges, and potential pitfalls in brain tumour microstructure imaging. Copyright © 2018. Published by Elsevier Inc.

  4. Evaluation of virtual microscopy in medical histology teaching.

    PubMed

    Mione, Sylvia; Valcke, Martin; Cornelissen, Maria

    2013-01-01

    Histology stands as a major discipline in the life science curricula, and the practice of teaching it is based on theoretical didactic strategies along with practical training. Traditionally, students achieve practical competence in this subject by learning optical microscopy. Today, students can use newer information and communication technologies in the study of digital microscopic images. A virtual microscopy program was recently introduced at Ghent University. Since little empirical evidence is available concerning the impact of virtual microscopy (VM) versus optical microscopy (OM) on the acquisition of histology knowledge, this study was set up in the Faculty of Medicine and Health Sciences. A pretest-post test and cross-over design was adopted. In the first phase, the experiment yielded two groups in a total population of 199 students, Group 1 performing the practical sessions with OM versus Group 2 performing the same sessions with VM. In the second phase, the research subjects switched conditions. The prior knowledge level of all research subjects was assessed with a pretest. Knowledge acquisition was measured with a post test after each phase (T1 and T2). Analysis of covariance was carried out to study the differential gain in knowledge at T1 and T2, considering the possible differences in prior knowledge at the start of the study. The results pointed to non-significant differences at T1 and at T2. This supports the assumption that the acquisition of the histology knowledge is independent of the microscopy representation mode (VM versus OM) of the learning material. The conclusion that VM is equivalent to OM offers new directions in view of ongoing innovations in medical education technology. Copyright © 2013 American Association of Anatomists.

  5. Issues for application of virtual microscopy to cytoscreening, perspectives based on questionnaire to Japanese cytotechnologists

    PubMed Central

    Mori, Ichiro; Nunobiki, Osamu; Ozaki, Takashi; Taniguchi, Emiko; Kakudo, Kennichi

    2008-01-01

    To clarify the issues associated with the applications of virtual microscopy to the daily cytology slide screening, we conducted a survey at a slide conference of cytology. The survey was conducted specifically to the Japanese cytology technologists who use microscopes on a routine basis. Virtual slides (VS) were prepared from cytology slides using NanoZoomer (Hamamatsu Photonics, Japan), which is capable of adjusting focus on any part of the slide. A total of ten layers were scanned from the same slides, with 2 micrometer intervals. To simulate the cytology slide screening, no marker points were created. The total data volume of six slides was approximately 25 Giga Bytes. The slides were stored on the Windows 2003 Server, and were made accessible on the web to the cytology technologists. Most cytotechnologists answered "Satisfied" or "Acceptable" to the VS resolution and drawing speed, and "Dissatisfied" to the operation speed. To the ten layered focus, an answer "insufficient" was slightly more frequent than the answer "sufficient", while no one answered "fewer is acceptable" or "no need for depth". As for the use of cytology slide screening, answers "usable, but requires effort" and "not usable" were about equal in number. In a Japanese cytology meeting, a unique VS system has been used in slide conferences with markings to the discussion point for years. Therefore, Japanese cytotechnologists are relatively well accustomed to the use of VS, and the survey results showed that they regarded VS more positively than we expected. Currently, VS has the acceptable resolution and drawing speed even on the web. Most cytotechnologists regard the focusing capability crucial for cytology slide screening, but the consequential enlargement of data size, longer scanning time, and slower drawing speed are the issues that are yet to be resolved. PMID:18673503

  6. Comparison of binary mask defect printability analysis using virtual stepper system and aerial image microscope system

    NASA Astrophysics Data System (ADS)

    Phan, Khoi A.; Spence, Chris A.; Dakshina-Murthy, S.; Bala, Vidya; Williams, Alvina M.; Strener, Steve; Eandi, Richard D.; Li, Junling; Karklin, Linard

    1999-12-01

    As advanced process technologies in the wafer fabs push the patterning processes toward lower k1 factor for sub-wavelength resolution printing, reticles are required to use optical proximity correction (OPC) and phase-shifted mask (PSM) for resolution enhancement. For OPC/PSM mask technology, defect printability is one of the major concerns. Current reticle inspection tools available on the market sometimes are not capable of consistently differentiating between an OPC feature and a true random defect. Due to the process complexity and high cost associated with the making of OPC/PSM reticles, it is important for both mask shops and lithography engineers to understand the impact of different defect types and sizes to the printability. Aerial Image Measurement System (AIMS) has been used in the mask shops for a number of years for reticle applications such as aerial image simulation and transmission measurement of repaired defects. The Virtual Stepper System (VSS) provides an alternative method to do defect printability simulation and analysis using reticle images captured by an optical inspection or review system. In this paper, pre- programmed defects and repairs from a Defect Sensitivity Monitor (DSM) reticle with 200 nm minimum features (at 1x) will be studied for printability. The simulated resist lines by AIMS and VSS are both compared to SEM images of resist wafers qualitatively and quantitatively using CD verification.Process window comparison between unrepaired and repaired defects for both good and bad repair cases will be shown. The effect of mask repairs to resist pattern images for the binary mask case will be discussed. AIMS simulation was done at the International Sematech, Virtual stepper simulation at Zygo and resist wafers were processed at AMD-Submicron Development Center using a DUV lithographic process for 0.18 micrometer Logic process technology.

  7. Petrology and Geochemistry of LEW 88663 and PAT 91501: High Petrologic L Chondrites

    NASA Astrophysics Data System (ADS)

    Mittlefehldt, D. W.; Lindstrom, M. M.; Field, S. W.

    1993-07-01

    Primitive achondrites (e.g., Acapulco, Lodran) are believed to be highly metamorphosed chondritic materials, perhaps up to the point of anatexis in some types. Low petrologic grade equivalents of these achondrites are unknown, so the petrologic transition from chondritic to achondritic material cannot be documented. However, there are rare L chondrites of petrologic grade 7 that may have experienced igneous processes, and study of these may yield information relevant to the formation of primitive achondrites, and perhaps basaltic achondrites, from chondritic precursors. We have begun the study of the L7 chondrites LEW 88663 and PAT 91501 as part of our broader study of primitive achondrites. Here, we present our preliminary petrologic and geochemical data on these meteorites. Petrology and Mineral Compositions: LEW 88663 is a granular achondrite composed of equant, subhedral to anhedral olivine grains poikilitically enclosed in networks of orthopyroxene and plagioclase. Small grains of clinopyroxene are spatially associated with orthopyroxene. Troilite occurs as large anhedral and small rounded grains. The smaller troilite grains are associated with the orthopyroxene-plagioclase networks. PAT 91501 is a vesicular stone containing centimeter-sized troilite +/- metal nodules. Its texture consists of anhedral to euhedral olivine grains, anhedral orthopyroxene grains (some with euhedral clinopyroxene overgrowths), anhedral to euhedral clinopyroxene, and interstitial plagioclase and SiO2-Al2O3-K2O- rich glass. In some areas, olivine is poikilitically enclosed in orthopyroxene. Fine-grained troilite, metal, and euhedral chromite occur interstitial to the silicates. Average mineral compositions for LEW 88663 are olivine Fo(sub)75.8, orthopyroxene Wo(sub)3.4En(sub)76.2Fs(sub)20.4, clinopyroxene Wo(sub)42.6En(sub)47.8Fs(sub)9.6, plagioclase Ab(sub)75.0An(sub)21.6Or(sub)3.4. Mineral compositions for PAT 91501 are olivine Fo(sub)73.8, orthopyroxene Wo(sub)4.5En(sub)74.8Fs(sub)20.7, clinopyroxene Wo(sub)34.3En(sub)52.4Fs(sub)13.3, plagioclase Ab(sub)81.6An(sub)14.0Or(sub)44. Geochemistry: We have completed INM analysis of LEW 88663 only; analyses of PAT 91501 are in progress. The weighted mean lithophile element (refractory, moderately volatile, and volatile) content of LEW 88663 normalized to average L chondrites [1] is 0.97. The weighted mean siderophile element (excluding Fe) content is only 0.57x L. This supports the suggestion that LEW 88663 lost metal relative to average L chondrites, although not as complete as implied earlier [1]. The mean lithophile-element abundance is that of L chondrites, but the lithophile-element pattern is fractionated. Highly incompatible elements are enriched in LEW 88663 relative to L chondrites (e.g., La 2.6x, Sm 1.9x L chondrites), while the more compatible elements are near L chondrite levels or depleted (e.g., Lu 1.1x, Sc 0.94x, Cr 0.87x L chondrites). Discussion: LEW 88663 and PAT 91501 are texturally similar to the Shaw L7 chondrite [3] and to poikilitic textured clasts in LL chondrites [4]. Several textural and mineralogical characteristics of PAT 91501 indicate that this stone is in part igneous. Large rounded troilite +/- metal nodules imply that melting occurred in the metal-troilite system. Interstitial material consists of euhedral, zoned chromites, euhedral clinopyroxene overgrowths on orthopyroxene, and plagioclase + glass. Olivine often shows euhedral faces in contact with the interstitial regions. These textures indicate that the interstitial regions were molten. The average pyroxene compositions in PAT 91501 indicate equilibration at 1200 degrees C [5], above the ordinary chondrite solidus [6]. Although PAT 91501 is in part igneous in origin, we have yet to determine whether it represents an extension of parent body heating from that of metamorphosed L chondrites, or whether it represents impact melting on the parent body. We will evaluate shock features, cooling rates, and the bulk composition of PAT 91501 in order to investigate this further. Orthopyroxenes in LEW 88663 have a lower Wo content, and clinopyroxenes have a higher Wo content, than those in PAT 91501, and have equilibrated to lower temperatures, perhaps ~1000 degrees C [5]. References: [1] Wasson and Kallemeyn (1988) Phil. Trans. R. Soc. Lond., A325, 535. [2] Davis et al. (1993) LPS XXIV, 375. [3] Taylor et al. (1979) GCA, 43, 323. [4] Fodor and Keil (1975) Meteoritics, 10, 325. [5] Lindsley (1983) Am. Mineral., 68, 477. [6] Jurewicz et al. (1993) LPS XXIV, 739.

  8. TH-CD-201-07: Experimentally Investigating Proton Energy Deposition On the Microscopic Scale Using Fluorescence Nuclear Track Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, T; University College London, London; McFadden, C

    Purpose: In order to further understand the interplay between proton physics and radiobiology it is necessary to consider proton energy deposition on the microscopic scale. In this work we used Fluorescent Nuclear Track Detectors (FNTDs) to experimentally investigate proton energy deposition, track-by-track. Methods: We irradiated 8×4×0.5mm{sup 3} FNTD chips (Landauer Inc) at seven water depths along a pristine proton Bragg peak with range=12cm. After irradiation, the FNTDs were scanned using a confocal microscope (FV1200, Olympus) with a high-power red laser and an oil-immersion objective lens (UPLSAPO60XO, NA=1.35). 10 slice image stacks were acquired with a slice-thickness of 2µm at multiplemore » positions across each FNTD. Image-based analyses of track radius and track “mass” (integrated signal intensity) were performed using trackpy. For comparison, Monte Carlo simulated data were obtained using TOPAS and TOPAS-nBio. Results: Excellent correlation was observed between median track mass and TOPAS dose-averaged linear energy transfer. The resolution of the imaging system was determined insufficient to detect a relationship between track radius and exposure depth. Histograms of track mass (i) displayed strong repeatability across positions within an FNTD and (ii) varied in peak position and shape as a function of depth. TOPAS-nBio simulations implemented on the nanometer scale using physics lists from GEANT4-DNA yielded energy deposition distributions for individual protons and electrons scored within a virtual FNTD. Good agreement was found between these simulated datasets and the FNTD track mass distributions. Conclusion: Robust experimental measurements of the integral energy deposited by individual proton tracks can be performed using FNTDs. Monte Carlo simulations offer an exceedingly powerful approach to the quantification of proton energy deposition on the microscopic scale, but whilst they have been well validated at the macroscopic level, their microscopic validation is far from complete. Our results demonstrate that FNTD-based study can play an important role in addressing this deficit. Tracy Underwood gratefully acknowledges the support of the European Commission under an FP7 Marie Curie International Outgoing Fellowship for Career Development (#630064).« less

  9. Age of metamorphic events : petrochronology and hygrochronology

    NASA Astrophysics Data System (ADS)

    Bosse, Valerie; Villa, Igor M.

    2017-04-01

    Geodynamic models of the lithosphere require quantitative data from natural samples. Time is a key parameter: it allows to calculate rates and duration of geological processes and provides informations about the involved physical processes (Vance et al. 2003). Large-scale orogenic models require linking geochronological data with other parameters: structures, kinematics, magmatic and metamorphic petrology (P-T-A-X conditions), thermobarometric evolution of the lithosphere, chemical dynamics (Muller, 2003). This requires geochronometers that are both powerful chemical and petrological tracers. In-situ techniques allow dating a mineral in its petrological-microstructural environment. Getting a "date" has become quite easy... But what do we date in the end ? What is the link between the numbers obtained from the mass spectrometer and the age of the metamorphic event we are trying to date ? How can we transform the date into a geological meaningful age ? What do we learn about the behavior of the geochronometer minerals? Now that we can perform precise dating on very small samples directly in the studied rock, it is important to improve the way we interpret the ages to give them more pertinence in the geodynamic context. We propose to discuss the Th/U/Pb system isotopic closure in various metamorphic contexts using our published examples of in situ dating on monazite and zircon (Bosse et al. 2009; Didier et al. 2014, 2015). The studied examples show that (i) fluid assisted dissolution-precipitation processes rather than temperature-dependent solid diffusion predominantly govern the closure of the Th/U/Pb system (ii) monazite and zircon are sensitive to the interaction with fluids of specific composition (F, CO2, K ...), even at low temperature (iii) in the absence of fluids, monazite is able to record HT events and to retain this information in poly-orogenic contexts or during partial melting events (iv) complex chemical and isotopic zonations, well known in monazite, reflect the interaction with the surrounding mineral assemblages. An often neglected observation is that the K-Ar chronometer minerals show similar patterns of isotopic inheritance closely tied to relict patches and heterochemical retrogression phases (Villa and Williams 2013). Isotopic closure in the U-Pb and K-Ar systems follows the same principle: thermal diffusion is very slow, dissolution and reprecipitation are several orders of magnitude faster. This means that both U-Pb and K-Ar mineral chronometers are hygrochronometers. The interpretation of the ages of the different domains cannot be decoupled from the geochemical and petrological context. The focus on petrology also requires, following Villa (1998, 2016), that the ages measured in metamorphic rocks no longer can be used in geodynamic models according to the "closure temperature" concept as originally defined by Dodson (1973). Bosse et al. (2009) Chem Geol 261: 286 Didier et al. (2014) Chem Geol 381: 206 Didier et al. (2015) Contrib Mineral Petrol 170: 45 Dodson (1973) Contrib Mineral Petrol 40: 259 Muller (2003) EPSL, 206: 237 Villa (1998) Terra Nova 10: 42 Villa (2016) Chem Geol 420: 1 Villa & Williams (2013) In: Harlov & Austrheim (eds.), Metasomatism and the Chemical Transformation of Rock. Springer, p171

  10. Promise and Pitfalls of Lu/Hf-Sm/Nd Garnet Geochronology

    NASA Astrophysics Data System (ADS)

    King, R. L.; Vervoort, J. D.; Kohn, M. J.; Zirakparvar, N. A.; Hart, G. L.; Corrie, S. L.; Cheng, H.

    2007-12-01

    Our ability to routinely measure Lu-Hf and Sm-Nd isotopes in garnet allows broad new applications in geochronology, petrology, and tectonics. However, applications of these data can be limited by challenges in interpreting the petrologic record and preparing garnets for analysis. Here, we examine petrologic and chemical pitfalls encountered in garnet geochronology. Petrologic factors influencing trace element compositions in garnet include reactions that modify REE availability and partitioning (1,2), kinetically limited transfer of REEs to garnet (3), and bulk compositional heterogeneities (4). Interpreting the effects of these processes on Sm/Nd and Lu/Hf ages requires characterizing REE zonation prior to isotope analysis and age interpretation. Because garnet fractions are traditionally picked from crushed samples without regard to intracrystalline origins or chemistries, isochrons will represent mixtures derived to varying degrees from all periods of garnet growth. While measured zoning might generally indicate what garnet portion dominates the Lu/Hf or Sm/Nd budget, traditional mineral separation will rarely realize the chronologic potential afforded by high precision Hf and Nd isotope measurements. The potential use of alternative techniques, such as microsampling, necessitates selective digestion and/or leaching to eliminate inclusions within garnet. For Sm/Nd geochronology, H2SO4 leaching removes LREE-rich phosphates (e.g. apatite), but not silicates (e.g. epidote), precluding Sm-Nd dating of some rocks. For Lu/Hf geochronology, ubiquitous zircon microinclusions (c. 1 μm) can significantly disrupt age determinations. Microinclusions cannot be detected optically or separated physically, requiring selective chemical digestion. If complete digestion methods, such as bomb digestion, are used for garnet fractions, then "common Hf" from zircon will be contained in final solutions. These mixed analyses are of dubious utility and will fall into one of two categories based upon inclusion reaction history (5). In "best case" scenarios, zircon will be quasi-co-genetic with garnet formation and all phases will reflect the same Hf pool available during metamorphism. In this case, these "garnet" fractions may retain age information, but will yield underestimated Lu/Hf ratios that severely degrade isochron precision. However, "worst case" scenarios for these mixed-phase analyses will occur when zircon is inherited from prior events, such that garnet analyses represent two, unequilibrated Hf pools. Here, Lu/Hf isotopic analyses do not yield accurate age information on garnet growth as individual isotopic analyses reflect several, unrelated petrologic events. To avoid systematic introduction of errors of this type due to improper digestion procedures, garnet dissolutions should occur via low-pressure, hot-plate style digestion in Teflon beakers. Here, chemical conditions are unlikely to incorporate significant zircon-derived Hf within final solutions, ensuring that Lu/Hf ratios primarily reflect garnet compositions. 1. King et al., 2004, Geochem. Geophys. Geosys. 10.1029/ 2004GC000746; 2.Corrie and Kohn, 2008, J. Metam. Geol. in press; 3.Skora et al., 2006, Contr. Min. Pet. 152, 703-720; 4.Carlson, 2002, Amer.Mineral. 87, 185-204; 3. 5.Scherer et al., 2000, Geochim. Cosmochim. Acta 64, 3413-3432.

  11. Creation of a virtual cutaneous tissue bank

    NASA Astrophysics Data System (ADS)

    LaFramboise, William A.; Shah, Sujal; Hoy, R. W.; Letbetter, D.; Petrosko, P.; Vennare, R.; Johnson, Peter C.

    2000-04-01

    Cellular and non-cellular constituents of skin contain fundamental morphometric features and structural patterns that correlate with tissue function. High resolution digital image acquisitions performed using an automated system and proprietary software to assemble adjacent images and create a contiguous, lossless, digital representation of individual microscope slide specimens. Serial extraction, evaluation and statistical analysis of cutaneous feature is performed utilizing an automated analysis system, to derive normal cutaneous parameters comprising essential structural skin components. Automated digital cutaneous analysis allows for fast extraction of microanatomic dat with accuracy approximating manual measurement. The process provides rapid assessment of feature both within individual specimens and across sample populations. The images, component data, and statistical analysis comprise a bioinformatics database to serve as an architectural blueprint for skin tissue engineering and as a diagnostic standard of comparison for pathologic specimens.

  12. Brightness measurement of an electron impact gas ion source for proton beam writing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, N.; Santhana Raman, P.; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness thatmore » is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.« less

  13. Brightness measurement of an electron impact gas ion source for proton beam writing applications.

    PubMed

    Liu, N; Xu, X; Pang, R; Raman, P Santhana; Khursheed, A; van Kan, J A

    2016-02-01

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.

  14. Coccidia of gallinaceous meat birds in Brazil.

    PubMed

    Teixeira, Marcel; Melo, Antônio Diego Brandão; Albuquerque, George Rego; Rocha, Patrícia Tironi; Monteiro, Jomar Patrício

    2015-01-01

    Coccidiosis is a disease that limits the production and marketing of gallinaceous birds in North America, especially quails, pheasants and chukar partridges. Virtually no research has been conducted in South America on the causative agents of diseases among these birds, including coccidia. The aim of this work was to make first observations on Eimeria spp. in the chukar partridge Alectoris chukar and the grey quail Coturnix coturnix, which are reared for meat in Brazil. Fecal and tissue samples were collected from commercial farms and were examined for oocysts, gross and microscopic lesions or endogenous stages. From this examination, it was found that partridges raised in Brazil did not have any visible infection. However, grey quails presented mild infection and two Eimeria species that had previously been described in other birds were identified.

  15. Towards an understanding of nuclear morphogenesis.

    PubMed

    Georgatos, S D

    1994-05-01

    In the age of "virtual reality," the imperfect microscopic silhouettes of cells and organelles are gradually being replaced by calligraphic computer drawings. In this context, textbooks and introductory slides often depict the cell nucleus as a smooth-shaped, featureless object. However, in reality, the nuclei of different cells possess distinct sizes and morphological features which develop in a programmed fashion as each cell differentiates. To dissect this complex morphogenetic process, we need to identify the basic elements that determine nuclear architecture and the regulatory factors involved. Recently, clues about the identity of these components have been obtained both by systematic analysis and by serendipity. This review summarizes a few recent findings and ideas that may serve as a first forum for future discussions and, I hope, for further work on this topic.

  16. Diagnostic riddles

    USGS Publications Warehouse

    Sileo, L.; Greiner, E.C.

    1993-01-01

    A bridled white-eye (Zosterops conspicillata) was captured in a mist net on the island of Saipan and transported to the island of Guam for an experimental study. Beginning on day three, it was immunosuppressed by intramuscular injections of dexamethasone. It was unexpectedly found dead on day 20, at which time it had lost 0.9 g (12.9% of initial body weight). Gross Pathology: Despite the weight loss, the white-eye was in good flesh, with abundant subcutaneous and visceral fat. The spleen was 3 x 11 mm, about 5 times normal size. The striatum of the forebrain was congested. There were no other lesions. Histopathology: There were microscopic abnormalities in skeletal muscle, brain, and gizzard (Figs. 1 and 2; Figure 2 is from a different white-eye which had virtually identical gizzard lesions).

  17. Three-dimensional rendering of segmented object using matlab - biomed 2010.

    PubMed

    Anderson, Jeffrey R; Barrett, Steven F

    2010-01-01

    The three-dimensional rendering of microscopic objects is a difficult and challenging task that often requires specialized image processing techniques. Previous work has been described of a semi-automatic segmentation process of fluorescently stained neurons collected as a sequence of slice images with a confocal laser scanning microscope. Once properly segmented, each individual object can be rendered and studied as a three-dimensional virtual object. This paper describes the work associated with the design and development of Matlab files to create three-dimensional images from the segmented object data previously mentioned. Part of the motivation for this work is to integrate both the segmentation and rendering processes into one software application, providing a seamless transition from the segmentation tasks to the rendering and visualization tasks. Previously these tasks were accomplished on two different computer systems, windows and Linux. This transition basically limits the usefulness of the segmentation and rendering applications to those who have both computer systems readily available. The focus of this work is to create custom Matlab image processing algorithms for object rendering and visualization, and merge these capabilities to the Matlab files that were developed especially for the image segmentation task. The completed Matlab application will contain both the segmentation and rendering processes in a single graphical user interface, or GUI. This process for rendering three-dimensional images in Matlab requires that a sequence of two-dimensional binary images, representing a cross-sectional slice of the object, be reassembled in a 3D space, and covered with a surface. Additional segmented objects can be rendered in the same 3D space. The surface properties of each object can be varied by the user to aid in the study and analysis of the objects. This inter-active process becomes a powerful visual tool to study and understand microscopic objects.

  18. Multi-Agent Simulations of Earth's Dynamics: Towards a Virtual Laboratory for Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Grigne, C.; Combes, M.; Tisseau, C.; LeYaouanq, S.; Parenthoen, M.; Tisseau, J.

    2012-12-01

    MACMA (Multi-Agent Convective MAntle) is a new tool developed at Laboratoire Domaines Océaniques (UMR CNRS 6538) and CERV-LabSTICC (Centre Européen de Réalité Virtuelle, UMR CNRS 6285) to simulate evolutive plates tectonics and mantle convection in a 2-D cylindrical geometry (Combes et al., 2012). In this approach, ridges, subduction zones, continents and convective cells are agents, whose behavior is controlled by analytical and phenomenological laws. These agents are autonomous entities which collect information from their environment and interact with each other. The dynamics of the system is mainly based on a force balance on each plate, that accounts for slab pull, ridge push, bending dissipation and viscous convective drag. Insulating continents are accounted for. Tectonic processes such as trench migration, plate suturing or continental breakup are controlled by explicit parameterizations. A heat balance is used to compute Earth's thermal evolution as a function of seafloor age distribution. We thereby obtain an evolutive system where the geometry and the number of tectonic plates are not imposed but emerge naturally from its dynamical history. Our approach has a very low computational cost and allows us to study the effect of a wide range of input parameters on the long-term thermal evolution of the Earth. MACMA can thus be seen as a 'plate tectonics virtual laboratory'. We can test not only the effect of input parameters, such as mantle initial temperature and viscosity, initial plate tectonics configuration, number and geometry of continents etc., but also study the effect of the analytical and empirical rules that we are using to describe the system. These rules can be changed at any time, and MACMA is an evolutive tool that can easily integrate new behavioral laws. Even poorly understood processes, that cannot be accounted for with differential equations, can be studied with this virtual laboratory. For Earth-like input parameters, MACMA yields plate velocities and heat flux that are in good agreement with observations. The long-term thermal evolution of the Earth obtained with our model shows a slow monotonous decrease of mantle mean temperature, with a cooling rate of around 50-100 K per billion years, which is in good agreement with petrological and geochemical constraints. Heat flux and plate velocities show a more irregular evolution, because tectonic events, such as a continental breakup, give rise to abrupt changes in Earth's surface dynamics and heat loss. Therefore MACMA is a powerful tool to study in a systematic way the effect of local events (subduction initiation, continental breakup, ridge vanishing) on plate reorganizations and global surface dynamics.

  19. Recent Advances in Study of the Detrital Mineralogy of Sand and Sandstone: Implications for Teaching.

    ERIC Educational Resources Information Center

    Suttner, Lee J.

    1989-01-01

    Discussed are methods which can be used to stimulate creative thinking in geology students by focusing on what is not known about sandstone petrology. The impact of recent advances on graduate geology teaching are highlighted. (CW)

  20. US National Report to International Union of Geodesy and Geophysics 1987-1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    USAF, Geophysics Laboratory, Hanscom AFB, MA

    1991-01-01

    An authoritative record of contributions of geophysical research in the U.S. during 1987-1990 is reported. Major areas of research include atmospheric sciences, geodesy, hydrology, planetology, geomagnetism, paleomagnetism, volcanology, geochemistry, petrology, oceanography, seismology, tectonophysics, and solar-planetary relations.

  1. Coordinated Petrography and Oxygen Isotopic Compositions of Al-Rich Chondrules from CV3 Chondrites

    NASA Astrophysics Data System (ADS)

    Zhang, M. M.; Lin, Y. T.; Tang, G. Q.; Li, X. H.

    2017-07-01

    In this study, we coordinated the petrology, bulk compositions and oxygen isotope compositions of 12 ARCs from Allende and Leoville and Ningqiang chondrites in order to elucidate any potential genetic relationships between ARCs, CAIs and FMCs.

  2. Five Years of the RoBOT "Rocks Beneath Our Toes" High School Outreach Program

    NASA Astrophysics Data System (ADS)

    Baxter, E. F.

    2011-12-01

    The "Rocks Beneath Our Toes" or RoBOT Program began in 2006 as part of an NSF CAREER award through the Geochemistry and Petrology Program. The educational outreach program engages Boston area high school students in a hands on study of rocks and minerals collected in their communities. The goal is to provide high school students a unique window into modern scientific methods of geochemistry and mineralogy and create a higher level of interest and awareness of geoscience amongst Massachusetts secondary school students who are less often exposed to earth science coursework. Beginning with a joint field trip to sampling sites identified by participants, high school students work with Boston University undergraduates enrolled in Mineralogy to analyze their samples in thin section. During the field trip, each BU undergraduate is paired with a high school student. The assignment of student pairings (started in year 2) dramatically increased student interactions and enjoyment. The program culminates with a visit by the high school group to tour BU's lab facilities and work with the undergraduates using the petrographic microscopes to explore their rock. At this visit, BU undergraduates present their semester's work in one-on-one powerpoint presentations from which discussion and microscope work follow. Thus far, >50 high school students, >40 undergraduates, and 7 high school educators were involved in the program. This included participants from three different suburban Boston area high schools and with students enrolled in the BU "Upward Bound" program: an existing program designed to enhance educational opportunities for Boston inner city high school students. Participant reviews indicate great success in achieving the program's goals. Notably, both BU undergraduates and high school students rated the opportunities for interaction with eachother among the best aspects of RoBOT. On a scale of 1 to 10, BU undergraduates rated the following four categories highest: powerpoint presentations to students (8.5); field trip (8.4); working together with microscopes (8.3); would you recommend RoBOT to others (8.2). The high school students rated the following four categories highest: RoBOT provided new geosciences experiences (9.3); working together with microscopes (9.0); tour of BU labs (8.7); powerpoint presentations by students (8.4). In addition, the PI was able to recruit top undergraduate students from Mineralogy and the RoBOT experience to join his research group where they could contribute to broader CAREER award research aims. Challenges and areas for improvement remain for the future of RoBOT. These include keeping participants engaged between the field trip and the BU visit, logistics of field trip scheduling especially with larger groups requiring more field sites and samples, and the ability to gain the interest and collaboration of secondary school educators to initiate the program in the first place. This has proven especially difficult for high schools that do not offer any earth science curriculum, indicating once again the uphill battle in perception that the geosciences face at the secondary school level.

  3. Recommended procedures and techniques for the petrographic description of bituminous coals

    USGS Publications Warehouse

    Chao, E.C.T.; Minkin, J.A.; Thompson, C.L.

    1982-01-01

    Modern coal petrology requires rapid and precise description of great numbers of coal core or bench samples in order to acquire the information required to understand and predict vertical and lateral variation of coal quality for correlation with coal-bed thickness, depositional environment, suitability for technological uses, etc. Procedures for coal description vary in accordance with the objectives of the description. To achieve our aim of acquiring the maximum amount of quantitative information within the shortest period of time, we have adopted a combined megascopic-microscopic procedure. Megascopic analysis is used to identify the distinctive lithologies present, and microscopic analysis is required only to describe representative examples of the mixed lithologies observed. This procedure greatly decreases the number of microscopic analyses needed for adequate description of a sample. For quantitative megascopic description of coal microlithotypes, microlithotype assemblages, and lithotypes, we use (V) for vitrite or vitrain, (E) for liptite, (I) for inertite or fusain, (M) for mineral layers or lenses other than iron sulfide, (S) for iron sulfide, and (X1), (X2), etc. for mixed lithologies. Microscopic description is expressed in terms of V representing the vitrinite maceral group, E the exinite group, I the inertinite group, and M mineral components. volume percentages are expressed as subscripts. Thus (V)20(V80E10I5M5)80 indicates a lithotype or assemblage of microlithotypes consisting of 20 vol. % vitrite and 80% of a mixed lithology having a modal maceral composition V80E10I5M5. This bulk composition can alternatively be recalculated and described as V84E8I4M4. To generate these quantitative data rapidly and accurately, we utilize an automated image analysis system (AIAS). Plots of VEIM data on easily constructed ternary diagrams provide readily comprehended illustrations of the range of modal composition of the lithologic units making up a given coal bed. The use of bulk-specific-gravity determinations is alo recommended for identification and characterization of the distinctive lithologic units. The availability of an AIAS also enhances the capability to acquire textural information. Ranges of size of maceral and mineral grains can be quickly and precisely determined by use of an AIAS. We assume that shape characteristics of coal particles can also be readily evaluated by automated image analysis, although this evaluation has not yet been attempted in our laboratory. Definitive data on the particulate mineral content of coal constitute another important segment of petrographic description. Characterization of mineral content may be accomplished by optical identification, electron microprobe analysis, X-ray diffraction, and scanning and transmission electron microscopy. Individual mineral grains in place in polished blocks or polished this sections, or separated from the coal matrix by sink-float methods are studied by analytical techniques appropriate to the conditions of sampling. Finally, whenever possible, identification of the probable genus or plant species from which a given coal component is derived will add valuable information and meaning to the petrographic description. ?? 1982.

  4. The Ultramafic Complex of Reinfjord: from the Magnetic Petrology to the Interpretation of the Magnetic Anomalies

    NASA Astrophysics Data System (ADS)

    Pastore, Zeudia; McEnroe, Suzanne; Church, Nathan; Fichler, Christine; ter Maat, Geertje W.; Fumagalli, Patrizia; Oda, Hirokuni; Larsen, Rune B.

    2017-04-01

    A 3D model of the geometry of the Reinfjord complex integrating geological and petrophysical data with high resolution aeromagnetic, ground magnetic and gravity data is developed. The Reinfjord ultramafic complex in northern Norway is one of the major ultramafic complexes of the Neoproterozoic Seiland Igneous Province (SIP). This province, now embedded in the Caledonian orogen, was emplaced deep in the crust (30 km of depth) and is believed to represent a section of the deep plumbing system of a large igneous province. The Reinfjord complex consists of three magmatic series formed during multiple recharging events resulting in the formation of a cylindrically zoned complex with a slightly younger dunite core surrounded by wehrlite and lherzolite units. Gabbros and gneiss form the host rock. The ultramafic complex has several distinct magnetic anomalies which do not match the mapped lithological boundaries, but are correlated with changes in magnetic susceptibilities. In particular, the deviating densities and magnetic susceptibilities at the northern side of the complex are interpreted to be due to serpentinization. Detailed studies of magnetic anomalies and magnetic properties of samples can provide a powerful tool for mapping petrological changes. Samples can have wide range of magnetic properties depending on composition, amount of ferromagnetic minerals, grain sizes and microstructures. Later geological processes such as serpentinization can alter this signal. Therefore a micro-scale study of magnetic anomalies at the thin section scale was carried out to understand better the link between the magnetic petrology and the magnetic anomalies. Serpentinization can significantly enhance the magnetic properties and therefore change the nature of the magnetic anomaly. The detailed gravity and magnetic model here presented shows the subsurface structure of the ultramafic complex refining the geological interpretation of the magnetic sources within it, and the local effects of serpentinization.

  5. Geophysical and petrological characterization of the lithospheric mantle in Iberia, Western Mediterranean and North Africa

    NASA Astrophysics Data System (ADS)

    Fernandez, M.; Torne, M.; Carballo, A.; Jiménez-Munt, I.; Verges, J.; Villasenor, A.; Garcia-Castellanos, D.; Diaz Cusi, J.

    2015-12-01

    We present a geophysical and petrological study that aims to define the lithosphere structure and the variations of the chemical composition of the lithospheric mantle along three geo-transects crossing Iberia, the westernmost Mediterranean and North Africa. The modeling is based on an integrated geophysical-petrological methodology that combines elevation, gravity, geoid, surface heat flow, seismic and geochemical data. Unlike previous models, where the density of the lithospheric mantle is only temperature-dependent, the applied methodology allows inferring seismic velocities and density in the mantle down to 400 km depth from its chemical composition through self-consistent thermodynamic calculations. The first geo-transect with a length of 1100 km runs from the NE-Iberian Peninsula to the Tell-Atlas Mountains in Algeria. The second profile crosses the entire Iberian Peninsula, from the Northern Iberian Margin to the Alboran Basin. The third runs from the Iberian Massif to the Sahara Platform crossing the Betic-Rif orogenic system through the Gibraltar Strait and the Atlas Mountains. Results are compared to available tomography models and Pn-velocity data. The obtained lithospheric structure shows large lateral variations in crustal and lithospheric mantle thicknesses and mantle chemical composition. Measured low Pn velocities in the Western Mediterranean basin can be explained either by serpentinization and/or seismic anisotropy and only partly by transient thermal effects. In the Bay of Biscay low Pn velocities are explained only by serpentinization. The negative sub-lithospheric velocity anomalies imaged by tomography models below the Iberian plate and the Atlas Mountains are interpreted in terms of high-temperature/low-density regions being responsible for the high mean topography.

  6. Pressure Variations in Metamorphic Rocks: Implications for the Interpretation of Petrographic Observations

    NASA Astrophysics Data System (ADS)

    Tajčmanová, Lucie

    2014-05-01

    Metamorphic petrologists and structural geologists, using direct measurements, bring the only direct observational constrains for validating geodynamic models. Therefore, petrological and structural geological observations are essential for the quality and reproducibility of geodynamic reconstructions and models. One of the important assumptions for geodynamic reconstructions arises from the pressure and temperature estimates in the petrology analysis. Pressure is commonly converted to depth through the equation for lithostatic pressure and so the original position of the rock sample within the Earth's interior can be constrained. The current assumption that the studied sample corresponds to uniform pressure may not be correct, and if so, it has serious implications. Increasing evidence from analytical data shows that pressure is not constant even on a grain scale, posing new challenges because, if ignored, it leads to an incorrect use of petrology data in constraining geodynamic models. Well known examples of the preservation of coesite and diamond in a host mineral like garnet show that high pressure inclusions are preserved during decompression. Tajčmanová et al. (2014) has shown that grain-scale pressure variations can develop and that these pressure variations allow compositional zoning in minerals preserved over geological time scales. A new unconventional barometric method based on equilibrium under pressure variations has been developed . Such pressure variations are also connected with differences in fluid pressure in open systems and can be thus observed at all scales. Tajčmanová L., Podladchikov Y., Powell R., Moulas E., Vrijmoed J. and Connolly J. (2014). Grain scale pressure variations and chemical equilibrium in high-grade metamorphic rocks.Journal of Metamorphic Geology, doi:10.1111/jmg.12066 This work was supported by ERC starting grant 335577 to Lucie Tajcmanova

  7. The depositional environment and petrology of the White Rim Sandstone Member of the Permian Cutler Formation, Canyonlands National Park, Utah

    USGS Publications Warehouse

    Steele-Mallory, B. A.

    1982-01-01

    The White Rim Sandstone Member of the Cutler Formation of Permian age in Canyonlands National Park, Utah, was deposited in coastal eolian and associated interdune environments. This conclusion is based on stratigraphic relationships primary sedimentary structures, and petrologic features. The White Rim consists of two major genetic units. The first represents a coastal dune field and the second represents related interdune ponds. Distinctive sedimentary structures of the coastal dune unit include large- to medium-scale, unidirectional, tabular-planar cross-bedding; high-index ripples oriented parallel to dip direction of the foresets; coarse-grained lag layers; avalanche or slump marks; and raindrop impressions. Cross-bedding measurements suggest the dunes were deposited as transverse ridges by a dominantly northwest to southeast wind. Distinctive sedimentary structures of the interdune pond unit include wavy, horizontally laminated bedding, adhesion ripples, and desiccation polygons. These features may have been produced by alternate wetting and drying of sediment during water-table fluctuations. Evidence of bioturbation is also present in this unit. Petrologic characteristics of the White Rim helped to define the depositional environment as coastal. A crinoid fragment was identified at one location; both units are enriched in heavy minerals, and small amounts of well rounded, reworked glauconite were found in the White Rim throughout the study area. Earlier work indicates that the White Rim sandstone is late Wolfcampian to early Leonardian in age. During this time, the Canyonlands area was located in a depositional area alternately dominated by marine and nonmarine environments. Results of this study suggest the White Rim represents a coastal dune field that was deposited by predominantly on-shore winds during a period of marine transgression.

  8. Origin of the lunar highlands Mg-suite: An integrated petrology, geochemistry, chronology, and remote sensing perspective

    DOE PAGES

    Shearer, C. K.; Elardo, S. M.; Petro, N. E.; ...

    2014-12-23

    The Mg-suite represents an enigmatic episode of lunar highlands magmatism that presumably represents the first stage of crustal building following primordial differentiation. This review examines the mineralogy, geochemistry, petrology, chronology, and the planetary-scale distribution of this suite of highlands plutonic rocks, presents models for their origin, examines petrogenetic relationships to other highlands rocks, and explores the link between this style of magmatism and early stages of lunar differentiation. Of the models considered for the origin of the parent magmas for the Mg-suite, the data best fit a process in which hot (solidus temperature at ≥2 GPa = 1600 to 1800more » °C) and less dense (r ~3100 kg/m3) early lunar magma ocean cumulates rise to the base of the crust during cumulate pile overturn. Some decompressional melting would occur, but placing a hot cumulate horizon adjacent to the plagioclase-rich primordial crust and KREEP-rich lithologies (at temperatures of <1300 °C) would result in the hybridization of these divergent primordial lithologies, producing Mg-suite parent magmas. As urKREEP (primeval KREEP) is not the “petrologic driver” of this style of magmatism, outside of the Procellarum KREEP Terrane (PKT), Mg-suite magmas are not required to have a KREEP signature. Evaluation of the chronology of this episode of highlands evolution indicates that Mg-suite magmatism was initiated soon after primordial differentiation (<10 m.y.). Alternatively, the thermal event associated with the mantle overturn may have disrupted the chronometers utilized to date the primordial crust. Petrogenetic relationships between the Mg-suite and other highlands suites (e.g., alkali-suite and magnesian anorthositic granulites) are consistent with both fractional crystallization processes and melting of distinctly different hybrid sources.« less

  9. Seismic and petrological properties of the upper mantle between 300 and 400 km depth

    NASA Astrophysics Data System (ADS)

    Perchuc, E.; Malinowski, M.; Nita, B.

    2008-12-01

    We compare the traveltime data from the long range seismic profiles and from the earthquakes recorded to the offset of 3000 km with theoretical traveltimes predicted by standard seismological models: PREM, IASP- 91, AK-135 and especially from seismo-petrological model PREF (Cammarano and Romanowicz - 2007). We try to compare our models to earlier studies by Thybo and Perchuc (1997a). Our data suggests that for several events in the distance range 2000-2800 km, the first-arrivals are characterized by a relatively high velocity of 8.7-8.9 km/s. It is about 2.5% higher than P-wave velocity of the Lehmann phases, observed in the nearest offset and about 3% smaller than velocity below 410 km discontinuity. We suggest that this is a new first-order seismological boundary which can be interpreted as a top of the mantle transition zone. Seismological arguments for the existence of such a boundary are as follows: refracted waves with velocity 8.7-8.9 km/s and reflected waves find by Warren at al. (1967) and by Thybo and Perchuc (1997b). Also the interpretation of the SS precursor phases (Deuss and Woodhouse 2002) suggested a reflection boundary around 300 km (our interpretation). Depth of this boundary strongly depends on the thermal state of the mantle in particular regions. In conclusion we can say that the mantle transition zone starts much earlier and the lower part of the upper mantle is much faster than predicted by purely pyrolitic mantle model. Several petrological studies suggest influences of fluids (especialy H2O) on the character of the 410 km discontinuity and of the transition zone. All the differences in experimental data can be explained by the effect of temperature on the phase transformations within the olivine-wadsleyite system.

  10. A hydrogen isotope study of CO3 type carbonaceous chondrites; comparison with type 3 ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Morse, A. D.; Newton, J.; Pillinger, C. T.

    1993-01-01

    Meteorites of the Ornans type 3 carbonaceous chondrites exhibit a range in degree of equilibration, attributed to differing amounts of thermal metamorphism. These differences have been used to split the CO3 chondrites into petrologic sub-types from 3.0, least equilibrated, to 3.7, being most equilibrated. This is similar to the system of assigning the type 3 ordinary chondrites into petrologic sub-types 3.0 to 3.9 based upon thermoluminescence (TL) and other properties; however, the actual range of thermal metamorphism experienced by CO3 chondrites is much less than that of the type 3 ordinary chondrites. The least equilibrated ordinary chondrites show evidence of aqueous alteration and have high D/H ratios possibly due to a deuterium-rich organic carrier. The aim of this study was to determine whether the CO3 chondrites, which have experienced similar secondary conditions to the type 3 ordinary chondrites, also contain a similar deuterium-rich carrier. To date a total of 5 CO3 meteorites, out of a set of 11 for which carbon and nitrogen isotopic data are available, have been analyzed. Ornans has not been analyzed yet, because it does not appear to fit in with the metamorphic sequence exhibited by the other CO3 chondrites; it also has an extremely high delta-D value of +2150 percent, unusual for such a comparatively equilibrated meteorite (type 3.4). Initial results indicate that the more equilibrated CO3's tend to have lower delta-D values, analogous to the higher petrologic type ordinary chondrites. However this is complicated by the effects of terrestrial weathering and the small data-set.

  11. Integration and Evaluation of Microscope Adapter for the Ultra-Compact Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Smith-Dryden, S. D.; Blaney, D. L.; Van Gorp, B.; Mouroulis, P.; Green, R. O.; Sellar, R. G.; Rodriguez, J.; Wilson, D.

    2012-12-01

    Petrologic, diagenetic, impact and weathering processes often happen at scales that are not observable from orbit. On Earth, one of the most common things that a scientist does when trying to understand detailed geologic history is to create a thin section of the rock and study the mineralogy and texture. Unfortunately, sample preparation and manipulation with advanced instrumentation may be a resource intensive proposition (e.g. time, power, complexity) in-situ. Getting detailed mineralogy and textural information without sample preparation is highly desirable. Visible to short wavelength microimaging spectroscopy has the potential to provide this information without sample preparation. Wavelengths between 500-2600 nm are sensitive to a wide range of minerals including mafic, carbonates, clays, and sulfates. The Ultra-Compact Imaging Spectrometer (UCIS) has been developed as a low mass (<2.0 kg), low power (~5.2 W) Offner spectrometer, ideal for use on Mars rover or other in-situ platforms. The UCIS instrument with its HgCdTe detector provides a spectral resolution of 10 nm with a range of 500-2600 nm, in addition to a 30 degree field of view and a 1.35 mrad instantaneous field of view. (Van Gorp et al. 2011). To explore applications of this technology for microscale investigations, an f/10 microimaging adapter has been designed and integrated to allow imaging of samples. The spatial coverage of the instrument is 2.56 cm with sampling of 67.5 microns (380 spatial pixels). Because the adapter is slow relative to the UCIS detector, strong sample illumination is required. Light from the lamp box was directed through optical fiber bundles, and directed onto the sample at a high angle of incidence to provide dark field imaging. For data collection, a mineral sample is mounted on the microscope adapter and scanned by the detector as it is moved horizontally via actuator. Data from the instrument is stored as a xyz cube end product with one spectral and two spatial dimensions. Measured spectra are then divided out by a white referenced spectrum of a Spectralon® calibration standard to show reflectance. For mineral samples larger than the UCIS field of view, mosaicking may be used from multiple scans. Scans of various rocks and minerals taken with the microscope adapter will be shown and results will be presented. References: Van Gorp et al., Optical design and performance of the Ultra-Compact Imaging Spectrometer, SPIE Optics and Photonics, San Diego, Aug 21-25, 2011. Acknowledgements: This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. Work was carried out with JPL Research and Technology Development Funding.

  12. SEDIMENTARY PETROLOGY OF A DECLINING REEF ECOSYSTEM, FLORIDA REEF TRACT (USA). (R825869)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Revisiting NWA 3141, 8266 and 8594; Two Eucrites and a Howardite?

    NASA Astrophysics Data System (ADS)

    Mitchell, J. T.; Stephen, N. R.

    2016-08-01

    SEM analysis was used to study the petrology of monomict eucrites Northwest Africa 3141, 8594 and 8266. The analysis carried out in this study supports the official classifications of NWA 3141 and 8594, but suggests NWA 8266 is a polymict breccia.

  14. Impact cratering phenomenon for the Ries multiring structure based on constraints of geological, geophysical, and petrological studies and the nature of the impacting body

    NASA Technical Reports Server (NTRS)

    Chao, E. C. T.; Minkin, J. A.

    1977-01-01

    In the present paper, an attempt is made to delineate, on the basis of field and laboratory data, the phenomenon of formation of the Ries multiring basin - the best preserved very large terrestrial impact structure. The model proposed conforms to constraints imposed by geological, geophysical, and petrological studies and by the nature of the postulated impacting body. It is also based on the impact features of a stony meteorite measuring 3 km in diameter at an impact velocity of 15 km/sec. The schematic reconstruction shows that critical to the production of a shallow crater is shallow impact penetration (shallow depth of burst). This and the nonballistic ejection of excavated material appear to be genetically related, i.e., if extensive nonballistic transport is recognized, then the associated crater must be a shallow structure and vice versa. This also means the shallow configuration of a crater may not have anything to do with postcratering readjustment.

  15. Petrological and geochemical Highlights in the floating fragments of the October 2011 submarine eruption offshore El Hierro (Canary Islands): Relevance of submarine hydrothermal processes

    NASA Astrophysics Data System (ADS)

    Rodriguez-Losada, Jose A.; Eff-Darwich, Antonio; Hernandez, Luis E.; Viñas, Ronaldo; Pérez, Nemesio; Hernandez, Pedro; Melián, Gladys; Martinez-Frías, Jesús; Romero-Ruiz, M. Carmen; Coello-Bravo, Juan Jesús

    2015-02-01

    This paper describes the main physical, petrological and geochemical features of the floating fragments that were emitted in the initial stages of the 2011-2012 submarine eruption off the coast of the Canarian island of El Hierro, located 380 km from the Northwest African Coast. It attempts to assess the potential of radiometric analyses to discern the intriguing origin of the floating fragments and the differences between their constituent parts. In this regard, the material that conforms the core of the fragments contains the largest concentration of uranium (U) ever found in volcanic rocks of the Canary Islands. This enrichment in U is not found in the content of thorium (Th), hence the floating fragments have an unusual U/Th ratio, namely equal to or larger than 3. Although the origin of this material is under discussion, it is proposed that the enrichment in U is the result of hydrothermal processes.

  16. Evidence for a Single Ureilite Parent Asteroid from a Petrologic Study of Polymict Ureilites

    NASA Technical Reports Server (NTRS)

    Downes, Hilary; Mittlefehldt, David W.

    2006-01-01

    Ureilites are ultramafic achondrites composed of olivine and pyroxene, with minor elemental C, mostly as graphite [1]. The silicate composition indicates loss of a basaltic component through igneous processing, yet the suite is very heterogeneous in O isotopic composition inherited from nebular processes [2]. Because of this, it has not yet been established whether ureilites were derived from a single parent asteroid or from multiple parents. Most researchers tacitly assume a single parent asteroid, but the wide variation in mineral and oxygen isotope compositions could be readily explained by an origin in multiple parent asteroids that had experienced a similar evolution. Numerous ureilite meteorites have been found in Antarctica, among them several that are clearly paired (Fig. 1) and two that are strongly brecciated (EET 83309, EET 87720). We have begun a detailed petrologic study of these latter two samples in order to characterize the range of materials in them. One goal is to attempt to determine whether ureilites were derived from a single parent asteroid.

  17. Oxygen isotopic relationships between the LEW85332 carbonaceous chondrite and CR chondrites

    NASA Technical Reports Server (NTRS)

    Prinz, M.; Weisberg, M. K.; Clayton, R. N.; Mayeda, T. K.

    1993-01-01

    LEW85332, originally described as a unique C3 chondrite, was shown to be a C2 chondrite with important linkages to the CR clan. An important petrologic aspect of LEW85332 is that it contains anhydrous chondrules and hydrated matrix, and new oxygen isotopic data on chondrules, matrix and whole rock are consistent with the petrology. Chondrules fall on the equilibrated chondrite line (ECL), with a slope near 1, which goes through ordinary chondrite chondrules. This contrasts with the CR chondrule line which has a lower slope due to hydrated components. LEW85332 chondrules define a new carbonaceous chondrite chondrule line, parallel to the anhydrous CV chondrule line (CCC), consistent with the well-established concept of two oxygen isotopic reservoirs. Matrix and whole rock fall on the CR line. The whole rock composition indicates that the chondrite is dominated by chondrules, and that most of them contain light oxygen similar to that of anhydrous olivine and pyroxene separates in the Renazzo and Al Rais CR chondrites.

  18. Modelling multi-rotor UAVs swarm deployment using virtual pheromones

    PubMed Central

    Pujol, Mar; Rizo, Ramón; Rizo, Carlos

    2018-01-01

    In this work, a swarm behaviour for multi-rotor Unmanned Aerial Vehicles (UAVs) deployment will be presented. The main contribution of this behaviour is the use of a virtual device for quantitative sematectonic stigmergy providing more adaptable behaviours in complex environments. It is a fault tolerant highly robust behaviour that does not require prior information of the area to be covered, or to assume the existence of any kind of information signals (GPS, mobile communication networks …), taking into account the specific features of UAVs. This behaviour will be oriented towards emergency tasks. Their main goal will be to cover an area of the environment for later creating an ad-hoc communication network, that can be used to establish communications inside this zone. Although there are several papers on robotic deployment it is more difficult to find applications with UAV systems, mainly because of the existence of various problems that must be overcome including limitations in available sensory and on-board processing capabilities and low flight endurance. In addition, those behaviours designed for UAVs often have significant limitations on their ability to be used in real tasks, because they assume specific features, not easily applicable in a general way. Firstly, in this article the characteristics of the simulation environment will be presented. Secondly, a microscopic model for deployment and creation of ad-hoc networks, that implicitly includes stigmergy features, will be shown. Then, the overall swarm behaviour will be modeled, providing a macroscopic model of this behaviour. This model can accurately predict the number of agents needed to cover an area as well as the time required for the deployment process. An experimental analysis through simulation will be carried out in order to verify our models. In this analysis the influence of both the complexity of the environment and the stigmergy system will be discussed, given the data obtained in the simulation. In addition, the macroscopic and microscopic models will be compared verifying the number of predicted individuals for each state regarding the simulation. PMID:29370203

  19. Some not so obvious reasons to teach optical mineralogy

    NASA Astrophysics Data System (ADS)

    Gunter, M. E.

    2004-12-01

    Hands-on, interactive, critical thinking, interdisciplinary, spiral learning, and 3-D visualization are familiar words in pedagogy, while Becke lines, dispersion staining, grain mounts, sign of elongation, extinction angle, and optical indicatrix are words seldom used in today's geosciences curriculum. However, the teaching of these seemingly rather historical optical methods, and proper training in the use of the polarized (not petrographic) light microscope (PLM), will by themselves lead to improved learning of our students. And this, if for no other reason, might warrant the inclusion of a semester-long optical mineralogy course. However, another $70 billion per year concern in the U.S. also warrants inclusion of optical mineralogy in a geosciences curriculum. That dollar amount (which would be approximately 10% of annual petroleum sales in the U.S.) centers around the cost spent (wasted?) on asbestos litigation in the U.S. Unfortunately, because we no longer teach PLM skills in the geosciences curriculum, many of the microscopists, regulators, and "expert" witnesses involved in the asbestos issue have little or no formal training in mineralogy or optical mineralogy. This, in turn, often leads to formulation of regulations that make little sense (e.g., that quartz, the most abundant mineral species in the earth's crust is now listed as a human carcinogen) and unsolved mineralogical issues (e.g., OSHA deregulated high-aspect ratio amphibole cleavage fragments in 1994 but did not propose a method to distinguish them from amphibole fibers). The current asbestos issues often deal with tremolite contamination in chrysotile or talc. There are simple PLM methods that we could teach whereby thousands of particles could be screened in minutes to find these possible contaminates, whereas electron beam or X-ray diffraction methods require orders of magnitude more time and cost - and this is only one of many examples. Finally, one might also argue that since minerals comprise rocks which, in turn, comprise the planet it might be wise to teach our students how to identify minerals. Currently, use of the PLM is by far the most efficient and least expensive method to identify minerals, not only in thin section but also in the almost-forgotten oil immersion method. Unfortunately, we have witnessed a decline of the teaching of these methods and use of the PLM mainly because optical mineralogy is viewed as a prerequisite for petrology, and as an emphasis on petrology has declined, giving way to environment-based courses, so too has the need to teach optics. However, optical mineralogy has countless applications, especially in environmental issues relating to dust inhalation, and we, as geosciences educators, can, if we choose, work to meet these societal needs.

  20. Cytopathology whole slide images and adaptive tutorials for senior medical students: a randomized crossover trial.

    PubMed

    Van Es, Simone L; Kumar, Rakesh K; Pryor, Wendy M; Salisbury, Elizabeth L; Velan, Gary M

    2016-01-08

    Diagnostic cytopathology is an essential part of clinical decision-making. However, due to a combination of factors including curriculum reform and shortage of pathologists to teach introductory cytopathology, this area of pathology receives little or no formal attention in most medical school curricula. We have previously described the successful use of efficient and effective digital learning resources, including whole slide images (WSI) and virtual microscopy adaptive tutorials (VMATs), to teach cytopathology to pathology specialist trainees - a group that had prior exposure to cytopathology in their day to day practice. Consequently, in the current study we attempted to demonstrate the efficiency and efficacy of this eLearning resource in a cohort of senior medical students that was completely naïve to the subject matter (cytopathology). We evaluated both the quantitative and qualitative impact of these digital educational materials for learning cytopathology compared with existing resources (e-textbooks and online atlases). The senior medical students were recruited from The University of New South Wales Australia for a randomized cross-over trial. Online assessments, administered after each arm of the trial, contained questions which related directly to a whole slide image. Two categories of questions in the assessments (focusing on either diagnosis or identification of cellular features) were utilized to determine efficacy. User experience and perceptions of efficiency were evaluated using online questionnaires containing Likert scale items and open-ended questions. For this cohort of senior medical students, virtual microscopy adaptive tutorials (VMATs) proved to be at least as effective as existing digital resources for learning cytopathology. Importantly, virtual microscopy adaptive tutorials had superior efficacy in facilitating accurate diagnosis on whole slide images. Student perceptions of VMATs were positive, particularly regarding the immediate feedback, interactivity and equity of learning which this learning resource provides. Virtual microscopy adaptive tutorials have the potential to improve the efficacy of learning microscopic pathology for medical students. The enhanced learning experience provided by these eLearning tools merits further investigation of their utility for other cohorts, including specialist trainees.

  1. Gigapixel imaging as a resource for geoscience teaching, research, and outreach

    NASA Astrophysics Data System (ADS)

    Bentley, C.; Pitts, A.; Rohrback, R. C.; Dudek, M.

    2015-12-01

    The Mid-Atlantic Geo-Image Collection is a repository of gigapixel-resolution geologic imagery intended as a tool for geoscience professionals, educators, students, & researchers (http://gigapan.com/groups/100/galleries). GigaPan provides a unique combination of context & detail, with images that maintain a high level of resolution through every level of magnification. Using geological GigaPans, physically disabled students can participate in virtual field trips, instructors can bring inaccessible outcrops into the classroom, & students can zoom in on hand samples without expensive microscopes. Because GigaPan images permit detailed visual examination of geologic, MAGIC is particularly suitable for use in online geology courses. The images are free to use and tag. Our 10 contributors (3 faculty, 2 graduate students, & 6 undergraduates) use 4 models of mobile robot cameras (outcrop/landscape), 2 laboratory-based GIGAmacro imaging systems (hand samples) & 2 experimental units: 1 for thin sections, 1 for GigaPans of scanning electron microscopy. Each of these has strengths & weaknesses. MAGIC has suites of images of Appalachian structure & stratigraphy, Rocky Mountains, Snowball Earth hypothesis, & doomed outcrops of Miocene strata on Chesapeake Bay. Virtual field trips with our imagery have been developed for: Billy Goat Trail, MD; Helen Lake, AB; Wind River Canyon, WY; the Canadian Rockies; El Paso, TX; glaciation around the world; and Corridor H, WV (a GSA field trip in Nov. 2015). Virtual sample sets have been developed for introductory minerals, igneous, sedimentary, & metamorphic rocks, the stratigraphy of VA's physiographic provinces, & the Snowball Earth hypothesis. The virtual field trips have been tested in both online & onsite courses. There are close to a thousand images in the collection, each averaging about 0.9 gigapixels in size, with close to 900,000 views total. A new viewer for GigaPans was released this year by GIGAmacro. This new viewer allows measurement and calibration, automatically resizing scale bars, side-by-side comparisons between 2 images, overlapping presentation of 2 images, & annotation by users. Comparative viewers are particularly useful for the presentation of before/after imagery; raw vs. annotated imagery, & polarized views of thin sections.

  2. Department-Generated Microcomputer Software.

    ERIC Educational Resources Information Center

    Mantei, Erwin J.

    1986-01-01

    Explains how self-produced software can be used to perform rapid number analysis or number-crunching duties in geology classes. Reviews programs in mineralogy and petrology and identifies areas in geology where computers can be used effectively. Discusses the advantages and benefits of integrating department-generated software into a geology…

  3. Organism-Substrate Relations and Their Impact on Sedimentary Petrology.

    ERIC Educational Resources Information Center

    Frey, Robert W.; Wheatcroft, Robert A.

    1989-01-01

    The major concepts inherent in studies of organism-substrate interrelationships as a whole are critiqued. Various modes, styles, processes and products of marine sediment bioturbation are described. Shortcomings of the present state of research knowledge on this topic are discussed. Listed are 154 references. (CW)

  4. Amoeboid Olivine Aggregates in Antarctic CR Chondrites: Petrologic Variations Among CR Chondrites

    NASA Astrophysics Data System (ADS)

    Komatsu, M.; Fagan, T. J.; Yamaguchi, A.; Mikouchi, T.; Yasutake, M.; Zolensky, M. E.

    2017-07-01

    A set of Antarctic CRs were examined to see intra-group variations. AOAs in Y-791498, Y-793261, and A-881828 have largely escaped from aqueous alteration. Extensive aqueous alteration in A-881595 and shock deformation in Y-982405 are also observed.

  5. Probing magma reservoirs to improve volcano forecasts

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Sisson, Thomas W.; Hurwitz, Shaul

    2017-01-01

    When it comes to forecasting eruptions, volcano observatories rely mostly on real-time signals from earthquakes, ground deformation, and gas discharge, combined with probabilistic assessments based on past behavior [Sparks and Cashman, 2017]. There is comparatively less reliance on geophysical and petrological understanding of subsurface magma reservoirs.

  6. Composition and Petrology of HED Polymict Breccias: The Regolith of (4) Vesta

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Cartwright, J. A.; Herrin, J. S.; Mertzman, S. A.; Mertzman, K. R.; Peng, Z. X.; Quinn, J. E.

    2012-01-01

    The polymict breccias of the howardite, eucrite and diogenite (HED) clan of meteorites preserve records of regolith processes that occur on Vesta, their putative home world. These breccias -- howardites, polymict eucrites and polymict diogenites -- are impact-engendered mixtures of diogenites and eucrites. The compositions of polymict breccias can be used to constrain the lithologic diversity of the vestan crust and the excavation depths of these materials. We have done petrological and compositional studies of multiple samples of 5 polymict eucrites and 28 howardites to investigate these issues. Older analyses were done on samples of approx 0.5 gram mass by INAA; newer analyses on samples of approx 5 gram mass by XRF and ICP-MS. We estimate the percentage of eucritic material (POEM) of polymict breccias by comparing their Al and/or Ca contents to those of average basaltic eucrite and diogenite. Our samples have POEM ranging from 28 to 98; adding two polymict diogenites from extends the range to POEM 10. One hypothesis is that ancient, well-mixed vestan regolith has POEM approx 67 and has a higher content of admixed impactor material. Several of our howardites have POEM of 59-74 (Al and/or Ca contents +/- 10% of POEM 67); about a third have Ni contents >300 micro g/g suggesting they contain >2% chondritic material (CM and/or CR). These may be regolithic howardites. Only one (LEW 85313) contains Ne dominated by a solar wind (SW) component. PCA 02066 is dominated by impact-melt material of polymict parentage and petrologically appears to be a mature regolith breccia, yet it does not contain SW-Ne. GRO 95602 falls within the POEM window, contains SW-Ne], yet has a Ni content of 193 micro g/g. Its petrologic characteristics suggest it was formed from immature regolith (no polymict breccia clasts; no glass). Trace element characteristics of the polymict breccias demonstrate the dominance of main-group eucrites as the basaltic component. Mixing diagrams of Zr, Nb, Ba, Hf and Ta with Al show no evidence for a significant contribution from Stannern-trend eucrites. An exception is polymict eucrite LEW 86001 (POEM 92), which is dominated by Stannern-trend basaltic debris. Howardite LAP 04838 (POEM 84) has higher incompatible trace concentrations than other polymict breccias (excluding LEW 86001), and either contains a Stannern-trend basaltic component, or has a significant contributions from evolved eucrites like Nuevo Laredo.

  7. The onset of metamorphism in ordinary and carbonaceous chondrites

    USGS Publications Warehouse

    Grossman, J.N.; Brearley, A.J.

    2005-01-01

    Ordinary and carbonaceous chondrites of the lowest petrologic types were surveyed by X-ray mapping techniques. A variety of metamorphic effects were noted and subjected to detailed analysis using electron microprobe, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and cathodoluminescence (CL) methods. The distribution of Cr in FeO-rich olivine systematically changes as metamorphism increases between type 3.0 and type 3.2. Igneous zoning patterns are replaced by complex ones and Cr-rich coatings develop on all grains. Cr distributions in olivine are controlled by the exsolution of a Cr-rich phase, probably chromite. Cr in olivine may have been partly present as tetrahedrally coordinated Cr3+. Separation of chromite is nearly complete by petrologic type 3.2. The abundance of chondrules showing an inhomogeneous distribution of alkalis in mesostasis also increases with petrologic type. TEM shows this to be the result of crystallization of albite. Residual glass compositions systematically change during metamorphism, becoming increasingly rich in K. Glass in type I chondrules also gains alkalis during metamorphism. Both types of chondrules were open to an exchange of alkalis with opaque matrix and other chondrules. The matrix in the least metamorphosed chondrites is rich in S and Na. The S is lost from the matrix at the earliest stages of metamorphism due to coalescence of minute grains. Progressive heating also results in the loss of sulfides from chondrule rims and increases sulfide abundances in coarse matrix assemblages as well as inside chondrules. Alkalis initially leave the matrix and enter chondrules during early metamorphism. Feldspar subsequently nucleates in the matrix and Na re-enters from chondrules. These metamorphic trends can be used to refine classification schemes for chondrites. Cr distributions in olivine are a highly effective tool for assigning petrologic types to the most primitive meteorites and can be used to subdivide types 3.0 and 3.1 into types 3.00 through 3.15. On this basis, the most primitive ordinary chondrite known is Semarkona, although even this meteorite has experienced a small amount of metamorphism. Allan Hills (ALH) A77307 is the least metamorphosed CO chondrite and shares many properties with the ungrouped carbonaceous chondrite Acfer 094. Analytical problems are significant for glasses in type II chondrules, as Na is easily lost during microprobe analysis. As a result, existing schemes for chondrule classification that are based on the alkali content of glasses need to be revised. ?? The Meteorological Society, 2005.

  8. Teaching Mineralogy, Petrology and Geochemistry in the 21st Century: Instructional Resources for Geoscience Faculty

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Beane, R. J.; Whitney, D. L.; Nicolaysen, K. E.; Panero, W. R.; Peck, W. H.

    2011-12-01

    Mineralogy, petrology and geochemistry (MPG) are pillars of the geoscience curriculum because of their relevance in interpreting Earth history and processes, application to geo-hazards, resources, and environmental issues, and contributions to emerging fields such as geology and human health. To keep faculty current in scientific advances in these fields, and in modern instructional methods, the On the Cutting Edge program convened a workshop at the University of Minnesota in August, 2011. This workshop builds on the previous 15 year's work that has been focused on identifying, aggregating, and developing high-quality collections of teaching activities and related resources, and in building a community of scholars in support of excellence in instruction in MPG courses. The goals of the workshop were to: a) develop an integrated, comprehensive and reviewed curriculum for MPG courses, and to seek ways to make connections with the larger geoscience curriculum; b) to explore emerging topics in MPG such as geobiology and climate change; c) demonstrate effective methods in teaching MPG in the context of Earth system science; d) share effective teaching activities and strategies for the classroom, laboratory and field including advances in pedagogy, assessments and research on learning; e) keep faculty current on recent advances in mineralogy, petrology and geochemistry research and to apply these findings to our teaching; f) explore and utilize current societal and global issues that intersect mineralogy, petrology and geochemistry to heighten the relevancy of course content for students; and h) meet colleagues and foster future teaching and research collaborations. A significant outcome of this workshop is a peer reviewed of collection of 300+ existing teaching activities, and a gap analysis to identify teaching activities needed to make these collections comprehensive and coherent. In addition, a series of thematic collections were developed to assist high priority areas of teaching MPG (e.g. MPG in Introductory Geoscience Courses-Beyond "Rocks in a Box"; thermobarometry programs). All demonstrations and presentations made at the workshop are accessible from the workshop webpage, including a wide variety of active learning exercises and demonstrations of modern computer applications (e.g. SHAPE, ATOMS, CrystalMaker, MELTS, Theriak-Domino, Perplex, TWQ, Google Earth and Gigapans, and PHREEQC). A post-workshop field trip to the Precambrian rocks of northern Minnesota focused on effective teaching and learning in the field. We encourage the geoscience community to use these online resources, and please consider contributing additional teaching activities and resources to these collections.

  9. Along-axis steps in Ethiopian rift Bouguer gravity anomalies: Implications for crustal thinning and melt emplacement prior to breakup

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Tiberi, C.; Fowler, M. R.; Hunegnaw, A.

    2001-12-01

    The southern Afar depression, Africa, is virtually the only area worldwide where the transition from continental rifting to seafloor spreading is exposed onshore. During mid-Miocene to Pleistocene time the rift valley was segmented along its length by long normal faults; since Pleistocene time, faulting and magmatism have jumped to a narrow ca. 60 km-long volcanic mound marked by small faults. These magmatic segments are structurally similar to slow-spreading mid-ocean ridges, yet the rift is floored by continental crust. As part of the Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE), we examine new and existing Bouguer gravity anomaly data from the rift to study the modification of the lithosphere by extensional and magmatic processes. New and existing Bouguer gravity anomaly data also show an along-axis segmentation of elongate relative positive anomalies that coincide with the magmatic segments. These anomalies are superposed on a regionally eastward increasing field as one approaches true seafloor spreading in the Gulf of Aden, and crustal thickness decreases. Quite remarkably, the magmatic segment boundaries, where data coverage is good, are marked by 15-25 mGal steps. The amplitude of the along-axis steps, as well as their across-axis characteristics, indicate that magmatic intrusion and ca. 2 km relief at the crust-mantle interface contribute to the steps. We use inverse and forward models of gravity data constrained by existing seismic and petrological data to evaluate models for the along-axis steps. EAGLE seismic data will be acquired across and along the magmatic segments to improve our understanding of breakup processes.

  10. The MapApp Virtual Seabed Explorer

    NASA Astrophysics Data System (ADS)

    Haxby, W. F.; Ryan, W. B.; Carbotte, S. M.

    2003-12-01

    MapApp is a downloadable, open source, prototype client application running in a desktop personal computing environment with the capability to explore two hundred million years of global ocean floor geology and geochemistry. It accomplishes the exploration and discovery in an integrated data environment of bathymetry, gravity, magnetic anomalies, reflection profiles, crustal ages, sediment composition, bedrock petrology and chemistry. Exploration is undertaken in a single visual interface with spawned windowpanes that communicate with each other. These panes provide the viewport for charting subsea landscapes, the spreadsheet for examination and manipulation of data discovered either by direct encounter or by query, the notebook for recording and downloading either original data or derived products, and dialog boxes to set parameters for models. All data are real measurements and their metadata reside in relational databases. The data come from decades of marine geological and geophysical surveys, coring, dredging, deep-sea drilling, and submersible dives. The lessons learned include the importance of rigorous data management, the need for quality-control of data accuracy, the discipline to keep the interface simple and intuitive, and the requirement to be functional over large scales of variable spatial and temporal resolution. A technical challenge is the programming difficulties presented by continuously changing versions of the PC client operating systems. The greatest scientific challenge is cost-effective mining of published textural data and convincing competitive researchers to contribute their data that is often already many years old. To retain and expand the user community of students, educators and researchers, we are discovering that it is equally as important to grow content as to add functionality.

  11. A proposition for the classification of carbonaceous chondritic micrometeorites

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1994-01-01

    Classification of interplanetary dust particles (IDP's) should be unambiguous and, if possible, provide an opportunity to interrelate these ultrafine IDP's with the matrices of undifferentiated meteorites. I prefer a scheme of chemical groupings and petrologic classes that is based on primary IDP properties that can be determined without prejudice by individual investigators. For IDP's of 2-50 microns these properties are bulk elemental chemistry, morphology, shape, and optical properties. The two major chemical groups are readily determined by energy dispersive spectroscopic analysis using the scanning or analytical electron microscope. Refinement of chondritic IDP classification is possible using the dominant mineral species, e.g. olivine, pyroxene, and layer silicates, and is readily inferred from FTIR, and automated chemical analysis. Petrographic analysis of phyllosilicate-rich IDP's will identify smectite-rich and serpentine-rich particles. Chondritic IDP's are also classified according to morphology, viz., CP and CF IDP's are aggregate particles that differ significantly in porosity, while the dense CS IDP's have a smooth surface. The CP IDP's are characterized by an anhydrous silicate mineralogy, but small amounts of layer silicates may be present. Distinction between the CP and CF IDP's is somewhat ambiguous, but the unique CP IDP's are fluffy, or porous, ultrafine-grained aggregates. The CP IDP's, which may contain silicate whiskers, are the most carbon-rich extraterrestrial material presently known. The CF IDP's are much less porous that CP IDP's. Using particle type definitions, CP IDP's in the NASA JSC Cosmic Dust Catalogs are approx. 15 percent of all IDP's that include nonchondritic spheres. Most aggregate particles are of the CF type.

  12. Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts

    NASA Astrophysics Data System (ADS)

    Laurent, Antonin T.; Seydoux-Guillaume, Anne-Magali; Duchene, Stéphanie; Bingen, Bernard; Bosse, Valérie; Datas, Lucien

    2016-11-01

    Microgeochemical data and transmission electron microscope (TEM) imaging of S-rich monazite crystals demonstrate that S has been incorporated in the lattice of monazite as a clino-anhydrite component via the following exchange Ca2+ + S6+ = REE3+ + P5+, and that it is now partly exsolved in nanoclusters (5-10 nm) of CaSO4. The sample, an osumilite-bearing ultra-high-temperature granulite from Rogaland, Norway, is characterized by complexly patchy zoned monazite crystals. Three chemical domains are distinguished as (1) a sulphate-rich core (0.45-0.72 wt% SO2, Th incorporated as cheralite component), (2) secondary sulphate-bearing domains (SO2 >0.05 wt%, partly clouded with solid inclusions), and (3) late S-free, Y-rich domains (0.8-2.5 wt% Y2O3, Th accommodated as the huttonite component). These three domains yield distinct isotopic U-Pb ages of 1034 ± 6, 1005 ± 7, and 935 ± 7 Ma, respectively. Uranium-Th-Pb EPMA dating independently confirms these ages. This study illustrates that it is possible to discriminate different generations of monazite based on their S contents. From the petrological context, we propose that sulphate-rich monazite reflects high-temperature Fe-sulphide breakdown under oxidizing conditions, coeval with biotite dehydration melting. Monazite may therefore reveal the presence of S in anatectic melts from high-grade terrains at a specific point in time and date S mobilization from a reduced to an oxidized state. This property can be used to investigate the mineralization potential of a given geological event within a larger orogenic framework.

  13. The nature of matrix in mixed siliciclastic-carbonate turbidites: An example from the Oquirrh-Wood River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geslin, J.K.

    1992-01-01

    Upper Pennsylvanian to Lower Permian strata of the Oquirrh-Wood River basin (OWRB) in southern Idaho are dominated by mixed siliciclastic-carbonate sediment gravity flows, including amalgamated sandy turbidites or grain flows, and silty turbidites. Previously, the petrology of the carbonate fraction of mixed siliciclastic-carbonate turbidites from the OWRB has been described as predominantly micrite. A source of micrite is present in phylloid algal mounds, which comprise a carbonate platform on the eastern basin margin. Visible micritized skeletal grains and fusulinids are uncommon in these sediments. It has been proposed that the micrite was subsequently neomorphosed to microspar or large, blocky spar.more » The actual volume of micrite in these deposits is enigmatic. Classic studies of turbidite hydrodynamics indicate that matrix accounts for no more than 20 percent, and commonly less, of the experimental turbidite deposits. Therefore, it is unlikely, based on hydrodynamics, that mixed siliciclastic-carbonate turbidites contain more than 20 percent micritic matrix. To resolve this enigma, multiple samples of the siliciclastic-carbonate turbidites from the OWRB were examined using a fluorescence (blue-light) microscope and the white-card technique. Under fluorescence the carbonate fraction of these samples was determined to contain micritized skeletal fragments; peloids, and micritized fusulinids. During diagenesis many of the carbonate grains were deformed and crushed to form carbonate pseudomatrix. Abundant carbonate grains indicate that mixed siliciclastic-carbonate turbidites from the OWRB adhere to established hydrodynamic principles, and contain less than 20 percent detrital matrix.« less

  14. Uses of vitrinite reflectance in determining thermal history in sedimentary basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castano, J.R.

    1985-02-01

    Vitrinite reflectance (VR), adapted from coal petrology, came into routine use in the petroleum industry in the late 1960s. Initially, the principal goal was to help establish the VR limits for oil and gas generation. Subsequently, VR has become accepted as the most useful measure of burial history and paleotemperature, largely because VR affords the most practical means of measuring the progression of organic metamorphism. VR is used to correlate other measures of thermal history such as chemical maturity parameters, Rock-Eval t/sub max/, and burial-history reconstruction. VR can aid in identifying unconformities, geopressured sections, and thermally altered zones. Combined withmore » good temperature data, the determination of VR equivalents from temperature and burial time are used to evaluate the relationship of depth to log VR obtained directly. The time and temperature required for maturation in Tertiary basins stresses the interplay of both factors in the maturation process. Reflectance has been employed in deciphering the burial history and tectonic evolution of many areas, including structurally complex regions as the Alps and the Wyoming Overthrust Belt. Interpretational problems that arise include: (1) VR can be altered by the absorption of hydrogen-rich materials, oxidation, and natural coking; (2) the presence of reworked and caved organic matter produces multiple reflectance populations; and (3) vitrinite is sometimes difficult to distinguish from solid hydrocarbons and some inerts if the particle size is small. Most of these problems are resolved at the microscope. Interpretation is improved significantly by analyzing a series of samples rather than an isolated sample.« less

  15. Cathodoluminescence Petrography: A Valuable Tool for Teaching and Research.

    ERIC Educational Resources Information Center

    Kopp, Otto C.

    1981-01-01

    Cathodoluminescence is visible light emitted from a specimen when it is bombarded with electrons. A technique known as cathodoluminescence petrography can provide information especially useful in studies or courses related to mineralogy and petrology. The technique is briefly presented, along with examples to illustrate typical results. (Author/WB)

  16. The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Various papers on lunar and planetary science are presented, covering such topics as: planetary geology, lunar geology, meteorites, shock loads, cometary collisions, planetary mapping, planetary atmospheres, chondrites, chondrules, planetary surfaces, impact craters, lava flow, achondrites, geochemistry, stratigraphy, micrometeorites, tectonics, mineralogy, petrology, geomorphology, and volcanology.

  17. A Petrologic Study of the IAB Iron Meteorites: Constraints on the Formation of the IAB-Winonaite Parent Body

    NASA Technical Reports Server (NTRS)

    Benedix, G. K.; McCoy, T. J.; Keil, K.; Love, S. G.

    1998-01-01

    We have studied IAB iron meteorites and their silicate-bearing inclusions to elucidate the origin of their parent body. We have divided IAB irons into five categories which best describe the inclusions and other properties of the irons.

  18. SUPPORT OF MSA AND GS SHORT COURSES AND THE COMPANION REVIEWS VOLUMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Alex Speer

    2008-01-23

    Report on two short courses: [1] Fluid-fluid Equilibria in the Crust: Petrology - Geochemistry - Economic potential. August 16-17, 2007 preceding the Goldschmidt Conference in Cologne, Germany) and [2] Paleoaltimetry: Geochemical And Thermodynamic Approaches. October 26-27, 2007 (preceding the GSA Annual Meeting in Denver, Colorado)

  19. The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Various papers on lunar and planetary science are presented, covering such topics as: impact craters, tektites, lunar geology, lava flow, geodynamics, chondrites, planetary geology, planetary surfaces, volcanology, tectonics, topography, regolith, metamorphic rock, geomorphology, lunar soil, geochemistry, petrology, cometary collisions, geochronology, weathering, and meteoritic composition.

  20. An experimental and petrologic investigation of the source regions of lunar magmatism in the context of the primordial differentiation of the moon

    NASA Astrophysics Data System (ADS)

    Elardo, Stephen M.

    The primordial differentiation of the Moon via a global magma ocean has become the paradigm under which all lunar data are interpreted. The success of this model in explaining multiple geochemical, petrologic, and isotopic characteristics lunar geology has led to magma oceans becoming the preferred model for the differentiation of Earth, Mars, Mercury, Vesta, and other large terrestrial bodies. The goal of this work is to combine petrologic analyses of lunar samples with high pressure, high temperature petrologic experiments to place new and detailed constraints the petrogenetic processes that operated during different stages of lunar magmatism, the processes that have acted upon these magmas to obscure their relationship to their mantle source regions, and how those source regions fit into the context of the lunar magma ocean model. This work focuses on two important phases of lunar magmatism: the ancient crust-building plutonic lithologies of the Mg-suite dating to ~4.3 Ga, and the most recent known mare basaltic magmas dating to ~3 Ga. These samples provide insight into the petrogenesis of magmas and interior thermal state when the Moon was a hot, juvenile planet, and also during the last gasps of magmatism from a cooling planet. Chapter 1, focusing on Mg-suite troctolite 76535, presents data on chromite symplectites, olivine-hosted melt inclusions, intercumulus mineral assemblages, and cumulus mineral chemistry to argue that the 76535 was altered by metasomatism by a migrating basaltic melt. This process could effectively raise radioisotope systems above their mineral-specific blocking temperatures and help explain some of the Mg-suite-FAN age overlap. Chapter 2 focuses on lunar meteorites NWA 4734, 032, and LAP 02205, which are 3 of the 5 youngest igneous samples from the Moon. Using geochemical and isotopic data combined with partial melting models, it is shown that these basalts do not have a link to the KREEP reservoir, and a model is presented for low-degree partial melting of late-stage LMO cumulates to generate Fe-rich partial melts. Chapter 3 presents datasets from NWA 032 that document one of the only occurrences of oscillatory zoning in lunar minerals. A model is presented that explains the zoning patterns in olivine and pyroxene by convection in a differentially cooling magma chamber. Constraints from mineral chemistry and isotopic compositions show that magma mixing was not a factor during this convection. Lastly, chapter 4 presents the results of high-pressure, high-temperature petrologic experiments on the compositions of the LAP 02205 group basalts, and NEA 003A, the latter of which is also one of the youngest basalts from the Moon. These results show that the LAP group basalts are likely the result of extreme olivine fractionation, whereas NEA 003A not only has the deepest known multiple saturation point amongst crystalline mare basalts, but also may be a near-primary melt. Possible parental melt compositions are calculated for these basalts, and models are presents for the petrogenesis of these basalts and discussed in the context of a cooling lunar mantle. These studies illustrate the importance of different LMO cumulate source regions in lunar magmatism at very different points in the thermal and magmatic evolution of the Moon.

  1. Precision and accuracy of decay constants and age standards

    NASA Astrophysics Data System (ADS)

    Villa, I. M.

    2011-12-01

    40 years of round-robin experiments with age standards teach us that systematic errors must be present in at least N-1 labs if participants provide N mutually incompatible data. In EarthTime, the U-Pb community has produced and distributed synthetic solutions with full metrological traceability. Collector linearity is routinely calibrated under variable conditions (e.g. [1]). Instrumental mass fractionation is measured in-run with double spikes (e.g. 233U-236U). Parent-daughter ratios are metrologically traceable, so the full uncertainty budget of a U-Pb age should coincide with interlaboratory uncertainty. TIMS round-robin experiments indeed show a decrease of N towards the ideal value of 1. Comparing 235U-207Pb with 238U-206Pb ages (e.g. [2]) has resulted in a credible re-evaluation of the 235U decay constant, with lower uncertainty than gamma counting. U-Pb microbeam techniques reveal the link petrology-microtextures-microchemistry-isotope record but do not achieve the low uncertainty of TIMS. In the K-Ar community, N is large; interlaboratory bias is > 10 times self-assessed uncertainty. Systematic errors may have analytical and petrological reasons. Metrological traceability is not yet implemented (substantial advance may come from work in progress, e.g. [7]). One of the worst problems is collector stability and linearity. Using electron multipliers (EM) instead of Faraday buckets (FB) reduces both dynamic range and collector linearity. Mass spectrometer backgrounds are never zero; the extent as well as the predictability of their variability must be propagated into the uncertainty evaluation. The high isotope ratio of the atmospheric Ar requires a large dynamic range over which linearity must be demonstrated under all analytical conditions to correctly estimate mass fractionation. The only assessment of EM linearity in Ar analyses [3] points out many fundamental problems; the onus of proof is on every laboratory claiming low uncertainties. Finally, sample size reduction is often associated to reducing clean-up time to increase sample/blank ratio; this may be self-defeating, as "dry blanks" [4] do not represent either the isotopic composition or the amount of Ar released by the sample chamber when exposed to unpurified sample gas. Single grains enhance background and purification problems relative to large sample sizes measured on FB. Petrologically, many natural "standards" are not ideal (e.g. MMhb1 [5], B4M [6]), as their original distributors never conceived petrology as the decisive control on isotope retention. Comparing ever smaller aliquots of unequilibrated minerals causes ever larger age variations. Metrologically traceable synthetic isotope mixtures still lie in the future. Petrological non-ideality of natural standards does not allow a metrological uncertainty budget. Collector behavior, on the contrary, does. Its quantification will, by definition, make true intralaboratory uncertainty greater or equal to interlaboratory bias. [1] Chen J, Wasserburg GJ, 1981. Analyt Chem 53, 2060-2067 [2] Mattinson JM, 2010. Chem Geol 275, 186-198 [3] Turrin B et al, 2010. G-cubed, 11, Q0AA09 [4] Baur H, 1975. PhD thesis, ETH Zürich, No. 6596 [5] Villa IM et al, 1996. Contrib Mineral Petrol 126, 67-80 [6] Villa IM, Heri AR, 2010. AGU abstract V31A-2296 [7] Morgan LE et al, in press. G-cubed, 2011GC003719

  2. Horizon quantum fuzziness for non-singular black holes

    NASA Astrophysics Data System (ADS)

    Giugno, Andrea; Giusti, Andrea; Helou, Alexis

    2018-03-01

    We study the extent of quantum gravitational effects in the internal region of non-singular, Hayward-like solutions of Einstein's field equations according to the formalism known as horizon quantum mechanics. We grant a microscopic description to the horizon by considering a huge number of soft, off-shell gravitons, which superimpose in the same quantum state, as suggested by Dvali and Gomez. In addition to that, the constituents of such a configuration are understood as loosely confined in a binding harmonic potential. A simple analysis shows that the resolution of a central singularity through quantum physics does not tarnish the classical description, which is bestowed upon this extended self-gravitating system by General Relativity. Finally, we estimate the appearance of an internal horizon as being negligible, because of the suppression of the related probability caused by the large number of virtual gravitons.

  3. First Principles Study on Topological-Phase Transition in Ferroelectric Oxides

    NASA Astrophysics Data System (ADS)

    Yamauchi, Kunihiko; Barone, Paolo; Picozzi, Silvia

    Graphene is known as a 2D topological insulator with zero energy gap and Dirac cone. In this study, we theoretically designed a honeycomb structure of Au ions embedded in a ferroelectric host oxide, in order to exploit structural distortions to control topological properties. We show that the polar structural distortion induces the emergence of spin-valley coupling, together with a topological transition from a quantum spin-Hall insulating phase to a trivial band insulator. The phase transition also affects the Berry curvature and spin-valley selection rules. Analogously to graphene, the microscopic origin of this topological phase is ascribed to a spin-valley-sublattice coupling, which arises from the interplay between trigonal crystal field and an ``effective'' spin-orbit interaction due to virtual excitations between eg and t2g states of transition-metal ions.

  4. Projection structure of a ClC-type chloride channel at 6.5Å resolution

    NASA Astrophysics Data System (ADS)

    Mindell, Joseph A.; Maduke, Merritt; Miller, Christopher; Grigorieff, Nikolaus

    2001-01-01

    Virtually all cells in all eukaryotic organisms express ion channels of the ClC type, the only known molecular family of chloride-ion-selective channels. The diversity of ClC channels highlights the multitude and range of functions served by gated chloride-ion conduction in biological membranes, such as controlling electrical excitability in skeletal muscle, maintaining systemic blood pressure, acidifying endosomal compartments, and regulating electrical responses of GABA (γ-aminobutyric acid)-containing interneurons in the central nervous system. Previously, we expressed and purified a prokaryotic ClC channel homologue. Here we report the formation of two-dimensional crystals of this ClC channel protein reconstituted into phospholipid bilayer membranes. Cryo-electron microscopic analysis of these crystals yields a projection structure at 6.5Å resolution, which shows off-axis water-filled pores within the dimeric channel complex.

  5. Improved catalyzed reporter deposition, iCARD.

    PubMed

    Lohse, Jesper; Petersen, Kenneth Heesche; Woller, Nina Claire; Pedersen, Hans Christian; Skladtchikova, Galina; Jørgensen, Rikke Malene

    2014-06-18

    Novel reporters have been synthesized with extended hydrophilic linkers that in combination with polymerizing cross-linkers result in very efficient reporter deposition. By utilizing antibodies to stain HER2 proteins in a cell line model it is demonstrated that the method is highly specific and sensitive with virtually no background. The detection of HER2 proteins in tissue was used to visualize individual antigens as small dots visible in a microscope. Image analysis-assisted counting of fluorescent or colored dots allowed assessment of relative protein levels in tissue. Taken together, we have developed novel reporters that improve the CARD method allowing highly sensitive in situ detection of proteins in tissue. Our findings suggest that in situ protein quantification in biological samples can be performed by object recognition and enumeration of dots, rather than intensity-based fluorescent or colorimetric assays.

  6. Automated complete slide digitization: a medium for simultaneous viewing by multiple pathologists.

    PubMed

    Leong, F J; McGee, J O

    2001-11-01

    Developments in telepathology robotic systems have evolved the concept of a 'virtual microscope' handling 'digital slides'. Slide digitization is a method of archiving salient histological features in numerical (digital) form. The value and potential of this have begun to be recognized by several international centres. Automated complete slide digitization has application at all levels of clinical practice and will benefit undergraduate, postgraduate, and continuing education. Unfortunately, as the volume of potential data on a histological slide represents a significant problem in terms of digitization, storage, and subsequent manipulation, the reality of virtual microscopy to date has comprised limited views at inadequate resolution. This paper outlines a system refined in the authors' laboratory, which employs a combination of enhanced hardware, image capture, and processing techniques designed for telepathology. The system is able to scan an entire slide at high magnification and create a library of such slides that may exist on an internet server or be distributed on removable media (such as CD-ROM or DVD). A digital slide allows image data manipulation at a level not possible with conventional light microscopy. Combinations of multiple users, multiple magnifications, annotations, and addition of ancillary textual and visual data are now possible. This demonstrates that with increased sophistication, the applications of telepathology technology need not be confined to second opinion, but can be extended on a wider front. Copyright 2001 John Wiley & Sons, Ltd.

  7. Vision-Based Haptic Feedback for Remote Micromanipulation in-SEM Environment

    NASA Astrophysics Data System (ADS)

    Bolopion, Aude; Dahmen, Christian; Stolle, Christian; Haliyo, Sinan; Régnier, Stéphane; Fatikow, Sergej

    2012-07-01

    This article presents an intuitive environment for remote micromanipulation composed of both haptic feedback and virtual reconstruction of the scene. To enable nonexpert users to perform complex teleoperated micromanipulation tasks, it is of utmost importance to provide them with information about the 3-D relative positions of the objects and the tools. Haptic feedback is an intuitive way to transmit such information. Since position sensors are not available at this scale, visual feedback is used to derive information about the scene. In this work, three different techniques are implemented, evaluated, and compared to derive the object positions from scanning electron microscope images. The modified correlation matching with generated template algorithm is accurate and provides reliable detection of objects. To track the tool, a marker-based approach is chosen since fast detection is required for stable haptic feedback. Information derived from these algorithms is used to propose an intuitive remote manipulation system that enables users situated in geographically distant sites to benefit from specific equipments, such as SEMs. Stability of the haptic feedback is ensured by the minimization of the delays, the computational efficiency of vision algorithms, and the proper tuning of the haptic coupling. Virtual guides are proposed to avoid any involuntary collisions between the tool and the objects. This approach is validated by a teleoperation involving melamine microspheres with a diameter of less than 2 μ m between Paris, France and Oldenburg, Germany.

  8. New Trends of Emerging Technologies in Digital Pathology.

    PubMed

    Bueno, Gloria; Fernández-Carrobles, M Milagro; Deniz, Oscar; García-Rojo, Marcial

    2016-01-01

    The future paradigm of pathology will be digital. Instead of conventional microscopy, a pathologist will perform a diagnosis through interacting with images on computer screens and performing quantitative analysis. The fourth generation of virtual slide telepathology systems, so-called virtual microscopy and whole-slide imaging (WSI), has allowed for the storage and fast dissemination of image data in pathology and other biomedical areas. These novel digital imaging modalities encompass high-resolution scanning of tissue slides and derived technologies, including automatic digitization and computational processing of whole microscopic slides. Moreover, automated image analysis with WSI can extract specific diagnostic features of diseases and quantify individual components of these features to support diagnoses and provide informative clinical measures of disease. Therefore, the challenge is to apply information technology and image analysis methods to exploit the new and emerging digital pathology technologies effectively in order to process and model all the data and information contained in WSI. The final objective is to support the complex workflow from specimen receipt to anatomic pathology report transmission, that is, to improve diagnosis both in terms of pathologists' efficiency and with new information. This article reviews the main concerns about and novel methods of digital pathology discussed at the latest workshop in the field carried out within the European project AIDPATH (Academia and Industry Collaboration for Digital Pathology). © 2016 S. Karger AG, Basel.

  9. 3D-Reconstructions and Virtual 4D-Visualization to Study Metamorphic Brain Development in the Sphinx Moth Manduca Sexta

    PubMed Central

    Huetteroth, Wolf; el Jundi, Basil; el Jundi, Sirri; Schachtner, Joachim

    2009-01-01

    During metamorphosis, the transition from the larva to the adult, the insect brain undergoes considerable remodeling: new neurons are integrated while larval neurons are remodeled or eliminated. One well acknowledged model to study metamorphic brain development is the sphinx moth Manduca sexta. To further understand mechanisms involved in the metamorphic transition of the brain we generated a 3D standard brain based on selected brain areas of adult females and 3D reconstructed the same areas during defined stages of pupal development. Selected brain areas include for example mushroom bodies, central complex, antennal- and optic lobes. With this approach we eventually want to quantify developmental changes in neuropilar architecture, but also quantify changes in the neuronal complement and monitor the development of selected neuronal populations. Furthermore, we used a modeling software (Cinema 4D) to create a virtual 4D brain, morphing through its developmental stages. Thus the didactical advantages of 3D visualization are expanded to better comprehend complex processes of neuropil formation and remodeling during development. To obtain datasets of the M. sexta brain areas, we stained whole brains with an antiserum against the synaptic vesicle protein synapsin. Such labeled brains were then scanned with a confocal laser scanning microscope and selected neuropils were reconstructed with the 3D software AMIRA 4.1. PMID:20339481

  10. 3D-Reconstructions and Virtual 4D-Visualization to Study Metamorphic Brain Development in the Sphinx Moth Manduca Sexta.

    PubMed

    Huetteroth, Wolf; El Jundi, Basil; El Jundi, Sirri; Schachtner, Joachim

    2010-01-01

    DURING METAMORPHOSIS, THE TRANSITION FROM THE LARVA TO THE ADULT, THE INSECT BRAIN UNDERGOES CONSIDERABLE REMODELING: new neurons are integrated while larval neurons are remodeled or eliminated. One well acknowledged model to study metamorphic brain development is the sphinx moth Manduca sexta. To further understand mechanisms involved in the metamorphic transition of the brain we generated a 3D standard brain based on selected brain areas of adult females and 3D reconstructed the same areas during defined stages of pupal development. Selected brain areas include for example mushroom bodies, central complex, antennal- and optic lobes. With this approach we eventually want to quantify developmental changes in neuropilar architecture, but also quantify changes in the neuronal complement and monitor the development of selected neuronal populations. Furthermore, we used a modeling software (Cinema 4D) to create a virtual 4D brain, morphing through its developmental stages. Thus the didactical advantages of 3D visualization are expanded to better comprehend complex processes of neuropil formation and remodeling during development. To obtain datasets of the M. sexta brain areas, we stained whole brains with an antiserum against the synaptic vesicle protein synapsin. Such labeled brains were then scanned with a confocal laser scanning microscope and selected neuropils were reconstructed with the 3D software AMIRA 4.1.

  11. Geophysical and petrological modelling of the structure and composition of the crust and upper mantle in complex geodynamic settings: The Tyrrhenian Sea and surroundings

    NASA Astrophysics Data System (ADS)

    Panza, G. F.; Peccerillo, A.; Aoudia, A.; Farina, B.

    2007-01-01

    Information on the physical and chemical properties of the lithosphere-asthenosphere system (LAS) can be obtained by geophysical investigation and by studies of petrology-geochemistry of magmatic rocks and entrained xenoliths. Integration of petrological and geophysical studies is particularly useful in geodynamically complex areas characterised by abundant and compositionally variable young magmatism, such as in the Tyrrhenian Sea and surroundings. A thin crust, less than 10 km, overlying a soft mantle (where partial melting can reach about 10%) is observed for Magnaghi, Vavilov and Marsili, which belong to the Central Tyrrhenian Sea backarc volcanism where subalkaline rocks dominate. Similar characteristics are seen for the uppermost crust of Ischia. A crust about 20 km thick is observed for the majority of the continental volcanoes, including Amiata-Vulsini, Roccamonfina, Phlegraean Fields-Vesuvius, Vulture, Stromboli, Vulcano-Lipari, Etna and Ustica. A thicker crust is present at Albani - about 25 km - and at Cimino-Vico-Sabatini — about 30 km. The structure of the upper mantle, in contrast, shows striking differences among various volcanic provinces. Volcanoes of the Roman region (Vulsini-Sabatini-Alban Hills) sit over an upper mantle characterised by Vs mostly ranging from about 4.2 to 4.4 km/s. At the Alban Hills, however, slightly lower Vs values of about 4.1 km/s are detected between 60 and 120 km of depth. This parallels the similar and rather homogeneous compositional features of the Roman volcanoes, whereas the lower Vs values detected at the Alban Hills may reflect the occurrence of small amounts of melts within the mantle, in agreement with the younger age of this volcano. The axial zone of the Apennines, where ultrapotassic kamafugitic volcanoes are present, has a mantle structure with high-velocity lid ( Vs ˜ 4.5 km/s) occurring at the base of a 40-km-thick crust. Beneath the Campanian volcanoes of Vesuvius and Phlegraean Fields, the mantle structure shows a rigid body dipping westward, a feature that continues southward, up to the eastern Aeolian arc. In contrast, at Ischia the upper mantle contains a shallow low-velocity layer ( Vs = 3.5-4.0 km/s) just beneath a thin but complex crust. The western Aeolian arc and Ustica sit over an upper mantle with Vs ˜ 4.2-4.4 km/s, although a rigid layer ( Vs = 4.55 km/s) from about 80 to 150 km occurs beneath the western Aeolian arc. In Sardinia, no significant differences in the LAS structure are detected from north to south. The petrological-geochemical signatures of Italian volcanoes show strong variations that allow us to distinguish several magmatic provinces. These often coincide with mantle sectors identified by Vs tomography. For instance, the Roman volcanoes show remarkable similar petrological and geochemical characteristics, mirroring similar structure of the LAS. The structure and geochemical-isotopic composition of the upper mantle change significantly when we move to the Stromboli-Campanian volcanoes. The geochemical signatures of Ischia and Procida volcanoes are similar to other Campanian centres, but Sr-Pb isotopic ratios are lower marking a transition to the backarc mantle of the Central Tyrrhenian Sea. The structural variations from Stromboli to the central (Vulcano and Lipari) and western Aeolian arc are accompanied by strong variations of geochemical signatures, such as a decrease of Sr-isotope ratios and an increase of Nd-, Pb-isotope and LILE/HFSE ratios. The dominance of mafic subalkaline magmatism in the Tyrrhenian Sea basin denotes large degrees of partial melting, well in agreement with the soft characteristics of the uppermost mantle in this area. In contrast, striking isotopic differences of Plio-Quaternary volcanic rocks from southern to northern Sardinia does not find a match in the LAS geophysical characteristics. The combination of petrological and geophysical constraints allows us to propose a 3D schematic geodynamic model of the Tyrrhenian basin and bordering volcanic areas, including the subduction of the Ionian-Adria lithosphere in the southern Tyrrhenian Sea, and to place constraints on the geodynamic evolution of the whole region.

  12. Thermal history of type-3 chondrites in the NASA antarctic collection

    NASA Astrophysics Data System (ADS)

    Bonal, L.; Quirico, E.; Montagnac, G.

    2014-07-01

    Chondrites are the most primitive meteorites. However, they were all modified in some ways by post-accretion geological processes operating on their asteroidal parent bodies. Hence, to decipher the formation(s) and origin(s) of their components, we must first understand how chondritic materials were modified in their asteroidal parent bodies. The modifications induced by secondary processes should not be underestimated and have to be precisely estimated before any interpretation of chondrite properties in terms of cosmochemistry. In particular, all chondrites contain some organic components that were potentially chemically and physically modified through post-accretion processes. A thin understanding of the induced evolution is required to allow for pertinent comparisons with other primitive extraterrestrial materials, such as cometary grains, to finally address questions such as the origin of organics in the Solar System. Type 3 chondrites experienced thermal metamorphism on their asteroidal parent body due to the radioactive decay of elements such as ^{26}Al. Temperatures higher than 300 °C were experienced on timescales of several thousands of years. Still, type 3 chondrites remain as unequilibrated rocks and common mineralogical thermometers cannot be applied. The polyaromatic carbonaceous matter is sensitive to thermal episodes (of long and short duration) experienced by the host meteorite. In particular, its structural order directly reflects the thermal history experienced on their parent bodies. The structural modification of the aromatic carbonaceous matter towards a higher order is irreversible, and independent of the mineralogy and degree of aqueous alteration. It is mainly controlled by the peak metamorphic temperature. Moreover, under the assumption of fairly similar organic precursors among chondrites of distinct groups, the structural order of polyaromatic organic matter allows for a direct comparison of their metamorphic grades. It is then possible to evaluate the metamorphic grade of the objects and to assign a petrologic type along a unique petrologic scale [1-4]. This technique has been successfully applied to type 3 Unequilibrated Ordinary Chondrites [1], carbonaceous CV chondrites [2], and CO chondrites [3]. The interpretation of the structural order of the polyaromatic carbonaceous matter in terms of thermal history is thus reliable. Raman spectroscopy enables the determination of the degree of structural order of the polyaromatic organic matter present in the matrix of chondrites. Both falls and finds, from Antarctica [4] and elsewhere, have been analyzed. It does not require a large amount of samples and is relatively easy to implement. Raman spectroscopy is particularly sensitive to the lowest petrologic types (3.0-3.2). The present NASA collection of Antarctic meteorites represents an incredible source of precious samples for our community. The present work finely characterizes the thermal history of most of the type 3 chondrites (UOCs, CVs, and COs) from that collection. At the present time, the objectives are threefold: (i) determination of reliable petrologic types indispensable for our community; (ii) identification of the most primitive type 3 chondrites (petrologic type ≤ 3.1); and (iii) identification of potential ''anomalous'' samples having experienced a slightly different thermal history. The JSC Meteorite Working Group generously allocated us with more than 150 chondrites (UOCs, CVs, and COs). The following points summarize the main results. (i) At the present time, the thermal histories of more than 100 samples have been characterized. (ii) The terrestrial weathering experienced by several chondrites (˜25 chondrites) has been too pervasive for the method to be applied. For these meteorites, as signatures of oxide minerals dominate Raman spectra of the matrix, the organic matter might have been significantly altered through oxidation. (iii) Real discrepancies with the preliminary JSC petrologic type attributions were found for several chondrites with mostly underestimations of the metamorphic grades. (iv) The structural grade of the polyaromatic carbonaceous matter is fairly homogeneous in most of the considered chondrites with a few exceptions, interpreted in terms of shock events. (v) Recently, there were some promising advances (e.g. [5,6]) in terms of interpretation of the structural order of the polyaromatic carbonaceous matter as a geothermometer for terrestrial rocks of low maturity grades. The used spectral tracers will be considered and the thermometry potentially applied to infer new constraints on the metamorphic temperature experienced by these type 3 chondrites.

  13. Education and Public Outreach for Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Mendez, Bryan J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA’s Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  14. Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Mendez, B. J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA's Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  15. Reports of Planetary Geology and Geophysics Program, 1984

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Compiler); Watters, T. R. (Compiler)

    1985-01-01

    Topics include outer planets and satellites; asteroids and comets; Venus; lunar origin and solar dynamics; cratering process; planetary interiors, petrology, and geochemistry; volcanic processes; aeolian processes and landforms; fluvial processes; geomorphology; periglacial and permafrost processes; remote sensing and regolith studies; structure, tectonics, and stratigraphy; geological mapping, cartography, and geodesy; and radar applications.

  16. Catalog of Computer Programs Used in Undergraduate Geological Education, Second Edition: Installment 2.

    ERIC Educational Resources Information Center

    Burger, H. Robert

    1983-01-01

    Part 1 (SE 533 635) presented programs for use in mineralogy, petrology, and geochemistry. This part presents an annotated list of 64 additional programs, focusing on introductory geology, mapping, and statistical packages for geological analyses. A brief description, source, suggested use(s), programing language, and other information are…

  17. Sedimentology of gas-bearing Devonian shales of the Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Potter, P. E.; Maynard, J. B.; Pryor, W. A.

    1981-01-01

    Sedimentology of the Devonian shales and its relationship to gas, oil, and uranium are reported. Information about the gas bearing Devonian shales of the Appalachian Basin is organized in the following sections: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas oil, and uranium.

  18. Antarctic meteorite descriptions 1976-1977-1978-1979

    NASA Technical Reports Server (NTRS)

    Score, R.; Schwarz, C. M.; King, T. V. V.; Mason, B.; Bogard, D. D.; Gabel, E. M.

    1981-01-01

    All previously distributed meteorite data sheets, plus a number of new ones for 1979 chondrites are included. A comprehensive sample index listing meteorite name/number, classification, and weathering category is also included. Separate indexes listing all petrologic type 3 and type 4 chondrites, all irons, all achondrites, and all carbonaceous chondrites in the collection is provided.

  19. Lunar and Planetary Science XXXV: Asteroids, Meteors, Comets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Asteroids, Meteors, Comets includes the following topics: 1) Where Some Asteroid Parent Bodies; 2) The Collisional Evolution of the Main Belt Population; 3) On Origin of Ecliptic Families of Periodic Comets; 4) Mineralogy and Petrology of Laser Irradiated Carbonaceous Chondrite Mighei; and 5) Interaction of the Gould Belt and the Earth.

  20. Stories In Stone: Teacher's Guide. Grades 4-9. LHS GEMS.

    ERIC Educational Resources Information Center

    Cuff, Kevin; And Others

    While rocks and minerals are often regarded as among the most static and solid objects, the body of knowledge of which they are part is always changing. This teachers guide contains activities and experiments designed to enhance students understanding of geology and petrology. By examining actual specimens of the Earth's crust, students learn…

Top