The Virtual Physiological Human
Coveney, Peter V.; Diaz, Vanessa; Hunter, Peter; Kohl, Peter; Viceconti, Marco
2011-01-01
The Virtual Physiological Human is synonymous with a programme in computational biomedicine that aims to develop a framework of methods and technologies to investigate the human body as a whole. It is predicated on the transformational character of information technology, brought to bear on that most crucial of human concerns, our own health and well-being.
McFarlane, N. J. B.; Lin, X.; Zhao, Y.; Clapworthy, G. J.; Dong, F.; Redaelli, A.; Parodi, O.; Testi, D.
2011-01-01
Ischaemic heart failure remains a significant health and economic problem worldwide. This paper presents a user-friendly software system that will form a part of the virtual pathological heart of the Virtual Physiological Human (VPH2) project, currently being developed under the European Commission Virtual Physiological Human (VPH) programme. VPH2 is an integrated medicine project, which will create a suite of modelling, simulation and visualization tools for patient-specific prediction and planning in cases of post-ischaemic left ventricular dysfunction. The work presented here describes a three-dimensional interactive visualization for simulating left ventricle restoration surgery, comprising the operations of cutting, stitching and patching, and for simulating the elastic deformation of the ventricle to its post-operative shape. This will supply the quantitative measurements required for the post-operative prediction tools being developed in parallel in the same project. PMID:22670207
[Scientific significance and prospective application of digitized virtual human].
Zhong, Shi-zhen
2003-03-01
As a cutting-edge research project, digitization of human anatomical information combines conventional medicine with information technology, computer technology, and virtual reality technology. Recent years have seen the establishment of, or the ongoing effort to establish various virtual human models in many countries, on the basis of continuous sections of human body that are digitized by means of computational medicine incorporating information technology to quantitatively simulate human physiological and pathological conditions, and to provide wide prospective applications in the fields of medicine and other disciplines. This article addresses 4 issues concerning the progress in virtual human model researches as the following: (1) Worldwide survey of sectioning and modeling of visible human. American visible human database was completed in 1994, which contains both a male and a female datasets, and has found wide application internationally. South Korea also finished the data collection for a male visible Korean human dataset in 2000. (2) Application of the dataset of Visible Human Project (VHP). This dataset has yielded plentiful fruits in medical education and clinical research, and further plans are proposed and practiced to construct a Physical Human and Physiological Human . (3) Scientific significance and prospect of virtual human studies. Digitized human dataset may eventually contribute to the development of many new high-tech industries. (4) Progress of virtual Chinese human project. The 174th session of Xiangshang Science Conferences held in 2001 marked the initiation of digitized virtual human project in China, and some key techniques have been explored. By now the data-collection process for 4 Chinese virtual human datasets have been successfully completed.
Interviewing Suspects with Avatars: Avatars Are More Effective When Perceived as Human
Ströfer, Sabine; Ufkes, Elze G.; Bruijnes, Merijn; Giebels, Ellen; Noordzij, Matthijs L.
2016-01-01
It has been consistently demonstrated that deceivers generally can be discriminated from truth tellers by monitoring an increase in their physiological response. But is this still the case when deceivers interact with a virtual avatar? The present research investigated whether the mere “belief” that the virtual avatar is computer or human operated forms a crucial factor for eliciting physiological cues to deception. Participants were interviewed about a transgression they had been seduced to commit, by a human-like virtual avatar. In a between-subject design, participants either deceived or told the truth about this transgression. During the interviews, we measured the physiological responses assessing participants' electrodermal activity (EDA). In line with our hypothesis, EDA differences between deceivers and truth tellers only were significant for participants who believed they interacted with a human operated (compared to a computer operated) avatar. These results have theoretical as well as practical implications which we will discuss. PMID:27148150
Higuera-Trujillo, Juan Luis; López-Tarruella Maldonado, Juan; Llinares Millán, Carmen
2017-11-01
Psychological research into human factors frequently uses simulations to study the relationship between human behaviour and the environment. Their validity depends on their similarity with the physical environments. This paper aims to validate three environmental-simulation display formats: photographs, 360° panoramas, and virtual reality. To do this we compared the psychological and physiological responses evoked by simulated environments set-ups to those from a physical environment setup; we also assessed the users' sense of presence. Analysis show that 360° panoramas offer the closest to reality results according to the participants' psychological responses, and virtual reality according to the physiological responses. Correlations between the feeling of presence and physiological and other psychological responses were also observed. These results may be of interest to researchers using environmental-simulation technologies currently available in order to replicate the experience of physical environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thiel, Rainer; Viceconti, Marco; Stroetmann, Karl
2011-01-01
Biocomputational modelling as developed by the European Virtual Physiological Human (VPH) Initiative is the area of ICT most likely to revolutionise in the longer term the practice of medicine. Using the example of osteoporosis management, a socio-economic assessment framework is presented that captures how the transformation of clinical guidelines through VPH models can be evaluated. Applied to the Osteoporotic Virtual Physiological Human Project, a consequent benefit-cost analysis delivers promising results, both methodologically and substantially.
Integrating multi-scale data to create a virtual physiological mouse heart.
Land, Sander; Niederer, Steven A; Louch, William E; Sejersted, Ole M; Smith, Nicolas P
2013-04-06
While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle.
Integrating multi-scale data to create a virtual physiological mouse heart
Land, Sander; Niederer, Steven A.; Louch, William E.; Sejersted, Ole M.; Smith, Nicolas P.
2013-01-01
While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle. PMID:24427525
NASA Astrophysics Data System (ADS)
Potter, Lucas; Arikatla, Sreekanth; Bray, Aaron; Webb, Jeff; Enquobahrie, Andinet
2017-03-01
Stenosis of the upper airway affects approximately 1 in 200,000 adults per year1 , and occurs in neonates as well2 . Its treatment is often dictated by institutional factors and clinicians' experience or preferences 3 . Objective and quantitative methods of evaluating treatment options hold the potential to improve care in stenosis patients. Virtual surgical planning software tools are critically important for this. The Virtual Pediatric Airway Workbench (VPAW) is a software platform designed and evaluated for upper airway stenosis treatment planning. It incorporates CFD simulation and geometric authoring with objective metrics from both that help in informed evaluation and planning. However, this planner currently lacks physiological information which could impact the surgical planning outcomes. In this work, we integrated a lumped parameter, model based human physiological engine called BioGears with VPAW. We demonstrated the use of physiology informed virtual surgical planning platform for patient-specific stenosis treatment planning. The preliminary results show that incorporating patient-specific physiology in the pretreatment plan would play important role in patient-specific surgical trainers and planners in airway surgery and other types of surgery that are significantly impacted by physiological conditions during surgery.
Virtual Reality as a Distraction Technique in Chronic Pain Patients
Gao, Kenneth; Sulea, Camelia; Wiederhold, Mark D.
2014-01-01
Abstract We explored the use of virtual reality distraction techniques for use as adjunctive therapy to treat chronic pain. Virtual environments were specifically created to provide pleasant and engaging experiences where patients navigated on their own through rich and varied simulated worlds. Real-time physiological monitoring was used as a guide to determine the effectiveness and sustainability of this intervention. Human factors studies showed that virtual navigation is a safe and effective method for use with chronic pain patients. Chronic pain patients demonstrated significant relief in subjective ratings of pain that corresponded to objective measurements in peripheral, noninvasive physiological measures. PMID:24892196
Knowledge environments representing molecular entities for the virtual physiological human.
Hofmann-Apitius, Martin; Fluck, Juliane; Furlong, Laura; Fornes, Oriol; Kolárik, Corinna; Hanser, Susanne; Boeker, Martin; Schulz, Stefan; Sanz, Ferran; Klinger, Roman; Mevissen, Theo; Gattermayer, Tobias; Oliva, Baldo; Friedrich, Christoph M
2008-09-13
In essence, the virtual physiological human (VPH) is a multiscale representation of human physiology spanning from the molecular level via cellular processes and multicellular organization of tissues to complex organ function. The different scales of the VPH deal with different entities, relationships and processes, and in consequence the models used to describe and simulate biological functions vary significantly. Here, we describe methods and strategies to generate knowledge environments representing molecular entities that can be used for modelling the molecular scale of the VPH. Our strategy to generate knowledge environments representing molecular entities is based on the combination of information extraction from scientific text and the integration of information from biomolecular databases. We introduce @neuLink, a first prototype of an automatically generated, disease-specific knowledge environment combining biomolecular, chemical, genetic and medical information. Finally, we provide a perspective for the future implementation and use of knowledge environments representing molecular entities for the VPH.
The Virtual Physiological Human - a European initiative for in silico human modelling -.
Viceconti, Marco; Clapworthy, Gordon; Van Sint Jan, Serge
2008-12-01
The Virtual Physiological Human (VPH) is an initiative, strongly supported by the European Commission (EC), that seeks to develop an integrated model of human physiology at multiple scales from the whole body through the organ, tissue, cell and molecular levels to the genomic level. VPH had its beginnings in 2005 with informal discussions amongst like-minded scientists which led to the STEP project, a Coordination Action funded by the EC that began in early 2006. The STEP project greatly accelerated the progress of the VPH and proved to be a catalyst for wide-ranging discussions within Europe and for outreach activities designed to develop a broad international approach to the huge scientific and technological challenges involved in this area. This paper provides an overview of the VPH and the developments it has engendered in the rapidly expanding worldwide activities associated with the physiome. It then uses one particular project, the Living Human Project, to illustrate the type of advances that are taking place to further the aims of the VPH and similar initiatives worldwide.
Virtually-augmented interfaces for tactical aircraft.
Haas, M W
1995-05-01
The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and non-virtual concepts and devices across the visual, auditory and haptic sensory modalities. A fusion interface is a multi-sensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion-interface concepts. One of the virtual concepts to be investigated in the Fusion Interfaces for Tactical Environments facility (FITE) is the application of EEG and other physiological measures for virtual control of functions within the flight environment. FITE is a specialized flight simulator which allows efficient concept development through the use of rapid prototyping followed by direct experience of new fusion concepts. The FITE facility also supports evaluation of fusion concepts by operational fighter pilots in a high fidelity simulated air combat environment. The facility was utilized by a multi-disciplinary team composed of operational pilots, human-factors engineers, electronics engineers, computer scientists, and experimental psychologists to prototype and evaluate the first multi-sensory, virtually-augmented cockpit. The cockpit employed LCD-based head-down displays, a helmet-mounted display, three-dimensionally localized audio displays, and a haptic display. This paper will endeavor to describe the FITE facility architecture, some of the characteristics of the FITE virtual display and control devices, and the potential application of EEG and other physiological measures within the FITE facility.
Simulating the decentralized processes of the human immune system in a virtual anatomy model.
Sarpe, Vladimir; Jacob, Christian
2013-01-01
Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.
Fernández Peruchena, Carlos M; Prado-Velasco, Manuel
2010-01-01
Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient's information to the models.A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies.
Fernández Peruchena, Carlos M; Prado-Velasco, Manuel
2010-01-01
Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient’s information to the models. A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies. PMID:21625646
Height effects in real and virtual environments.
Simeonov, Peter I; Hsiao, Hongwei; Dotson, Brian W; Ammons, Douglas E
2005-01-01
The study compared human perceptions of height, danger, and anxiety, as well as skin conductance and heart rate responses and postural instability effects, in real and virtual height environments. The 24 participants (12 men, 12 women), whose average age was 23.6 years, performed "lean-over-the-railing" and standing tasks on real and comparable virtual balconies, using a surround-screen virtual reality (SSVR) system. The results indicate that the virtual display of elevation provided realistic perceptual experience and induced some physiological responses and postural instability effects comparable to those found in a real environment. It appears that a simulation of elevated work environment in a SSVR system, although with reduced visual fidelity, is a valid tool for safety research. Potential applications of this study include the design of virtual environments that will help in safe evaluation of human performance at elevation, identification of risk factors leading to fall incidents, and assessment of new fall prevention strategies.
Moss, Robert; Grosse, Thibault; Marchant, Ivanny; Lassau, Nathalie; Gueyffier, François; Thomas, S. Randall
2012-01-01
Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models. PMID:22761561
ERIC Educational Resources Information Center
Lombardi, Sara A.; Hicks, Reimi E.; Thompson, Katerina V.; Marbach-Ad, Gili
2014-01-01
This study investigated the impact of three commonly used cardiovascular model-assisted activities on student learning and student attitudes and perspectives about science. College students enrolled in a Human Anatomy and Physiology course were randomly assigned to one of three experimental groups (organ dissections, virtual dissections, or…
Improving the physiological realism of experimental models.
Vinnakota, Kalyan C; Cha, Chae Y; Rorsman, Patrik; Balaban, Robert S; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A; Jeneson, Jeroen A L
2016-04-06
The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.
ERIC Educational Resources Information Center
Higazi, Tarig B.
2011-01-01
Histology is one of the main subjects in introductory college-level Human Anatomy and Physiology classes. Institutions are moving toward the replacement of traditional microscope-based histology learning with virtual microscopy learning amid concerns of losing the valuable learning experience of traditional microscopy. This study used live digital…
Improving the physiological realism of experimental models
Vinnakota, Kalyan C.; Cha, Chae Y.; Rorsman, Patrik; Balaban, Robert S.; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A.
2016-01-01
The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease. PMID:27051507
Green, Sue M; Weaver, Mike; Voegeli, David; Fitzsimmons, Debs; Knowles, Jess; Harrison, Maureen; Shephard, Kerry
2006-07-01
Students commence nurse education with varying levels of understanding of human anatomy and physiology due to a wide range of previous exposure to the topic. All students, however, are required to attain a broad knowledge of this topic prior to qualification. This paper describes the use of a Virtual Learning Environment (VLE), Blackboard 5, and the associated development of appropriate resources aimed at supporting nursing students undertaking a human anatomy and physiology module at Higher Education Level 1. The VLE was used as part of a blended learning approach. The results suggested that the majority of students utilised the VLE throughout the academic year. Opportunities for independent and self-directed learning were available in that students chose when and where to learn. Students generally commented favourably on ease of use and type of resources available. Frequency of use of the VLE, however, did not correlate strongly with the final examination mark achieved. Overall the VLE and the associated available resources appeared useful in supporting student learning and has been adopted for use in subsequent years.
The EuroPhysiome, STEP and a roadmap for the virtual physiological human.
Fenner, J W; Brook, B; Clapworthy, G; Coveney, P V; Feipel, V; Gregersen, H; Hose, D R; Kohl, P; Lawford, P; McCormack, K M; Pinney, D; Thomas, S R; Van Sint Jan, S; Waters, S; Viceconti, M
2008-09-13
Biomedical science and its allied disciplines are entering a new era in which computational methods and technologies are poised to play a prevalent role in supporting collaborative investigation of the human body. Within Europe, this has its focus in the virtual physiological human (VPH), which is an evolving entity that has emerged from the EuroPhysiome initiative and the strategy for the EuroPhysiome (STEP) consortium. The VPH is intended to be a solution to common infrastructure needs for physiome projects across the globe, providing a unifying architecture that facilitates integration and prediction, ultimately creating a framework capable of describing Homo sapiens in silico. The routine reliance of the biomedical industry, biomedical research and clinical practice on information technology (IT) highlights the importance of a tailor-made and robust IT infrastructure, but numerous challenges need to be addressed if the VPH is to become a mature technological reality. Appropriate investment will reap considerable rewards, since it is anticipated that the VPH will influence all sectors of society, with implications predominantly for improved healthcare, improved competitiveness in industry and greater understanding of (patho)physiological processes. This paper considers issues pertinent to the development of the VPH, highlighted by the work of the STEP consortium.
Haidar, Ali N; Zasada, Stefan J; Coveney, Peter V; Abdallah, Ali E; Beckles, Bruce; Jones, Mike A S
2011-06-06
We present applications of audited credential delegation (ACD), a usable security solution for authentication, authorization and auditing in distributed virtual physiological human (VPH) project environments that removes the use of digital certificates from end-users' experience. Current security solutions are based on public key infrastructure (PKI). While PKI offers strong security for VPH projects, it suffers from serious usability shortcomings in terms of end-user acquisition and management of credentials which deter scientists from exploiting distributed VPH environments. By contrast, ACD supports the use of local credentials. Currently, a local ACD username-password combination can be used to access grid-based resources while Shibboleth support is underway. Moreover, ACD provides seamless and secure access to shared patient data, tools and infrastructure, thus supporting the provision of personalized medicine for patients, scientists and clinicians participating in e-health projects from a local to the widest international scale.
Haidar, Ali N.; Zasada, Stefan J.; Coveney, Peter V.; Abdallah, Ali E.; Beckles, Bruce; Jones, Mike A. S.
2011-01-01
We present applications of audited credential delegation (ACD), a usable security solution for authentication, authorization and auditing in distributed virtual physiological human (VPH) project environments that removes the use of digital certificates from end-users' experience. Current security solutions are based on public key infrastructure (PKI). While PKI offers strong security for VPH projects, it suffers from serious usability shortcomings in terms of end-user acquisition and management of credentials which deter scientists from exploiting distributed VPH environments. By contrast, ACD supports the use of local credentials. Currently, a local ACD username–password combination can be used to access grid-based resources while Shibboleth support is underway. Moreover, ACD provides seamless and secure access to shared patient data, tools and infrastructure, thus supporting the provision of personalized medicine for patients, scientists and clinicians participating in e-health projects from a local to the widest international scale. PMID:22670214
Multi-sector thermo-physiological head simulator for headgear research
NASA Astrophysics Data System (ADS)
Martinez, Natividad; Psikuta, Agnes; Corberán, José Miguel; Rossi, René M.; Annaheim, Simon
2017-02-01
A novel thermo-physiological human head simulator for headgear testing was developed by coupling a thermal head manikin with a thermo-physiological model. As the heat flux at head-site is directly measured by the head manikin, this method provides a realistic quantification of the heat transfer phenomena occurring in the headgear, such as moisture absorption-desorption cycles, condensation, or moisture migration across clothing layers. Before coupling, the opportunities of the head manikin for representing the human physiology were evaluated separately. The evaluation revealed reduced precision in forehead and face temperature predictions under extreme heterogeneous temperature distributions and no initial limitation for simulating temperature changes observed in the human physiology. The thermo-physiological model predicted higher sweat rates when applied for coupled than for pure virtual simulations. After coupling, the thermo-physiological human head simulator was validated using eight human experiments. It precisely predicted core, mean skin, and forehead temperatures with average rmsd values within the average experimental standard deviation (rmsd of 0.20 ± 0.15, 0.83 ± 0.34, and 1.04 ± 0.54 °C, respectively). However, in case of forehead, precision was lower for the exposures including activity than for the sedentary exposures. The representation of the human sweat evaporation could be affected by a reduced evaporation efficiency and the manikin sweat dynamics. The industry will benefit from this thermo-physiological human head simulator leading to the development of helmet designs with enhanced thermal comfort and, therefore, with higher acceptance by users.
Chao, Edmund Y S; Armiger, Robert S; Yoshida, Hiroaki; Lim, Jonathan; Haraguchi, Naoki
2007-03-08
The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the "Virtual Human" reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of these unique database and simulation technology. This integrated system, model library and database will impact on orthopaedic education, basic research, device development and application, and clinical patient care related to musculoskeletal joint system reconstruction, trauma management, and rehabilitation.
Chao, Edmund YS; Armiger, Robert S; Yoshida, Hiroaki; Lim, Jonathan; Haraguchi, Naoki
2007-01-01
The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the "Virtual Human" reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of these unique database and simulation technology. This integrated system, model library and database will impact on orthopaedic education, basic research, device development and application, and clinical patient care related to musculoskeletal joint system reconstruction, trauma management, and rehabilitation. PMID:17343764
Virtual physiological human: training challenges.
Lawford, Patricia V; Narracott, Andrew V; McCormack, Keith; Bisbal, Jesus; Martin, Carlos; Bijnens, Bart; Brook, Bindi; Zachariou, Margarita; Freixa, Jordi Villà I; Kohl, Peter; Fletcher, Katherine; Diaz-Zuccarini, Vanessa
2010-06-28
The virtual physiological human (VPH) initiative encompasses a wide range of activities, including structural and functional imaging, data mining, knowledge discovery tool and database development, biomedical modelling, simulation and visualization. The VPH community is developing from a multitude of relatively focused, but disparate, research endeavours into an integrated effort to bring together, develop and translate emerging technologies for application, from academia to industry and medicine. This process initially builds on the evolution of multi-disciplinary interactions and abilities, but addressing the challenges associated with the implementation of the VPH will require, in the very near future, a translation of quantitative changes into a new quality of highly trained multi-disciplinary personnel. Current strategies for undergraduate and on-the-job training may soon prove insufficient for this. The European Commission seventh framework VPH network of excellence is exploring this emerging need, and is developing a framework of novel training initiatives to address the predicted shortfall in suitably skilled VPH-aware professionals. This paper reports first steps in the implementation of a coherent VPH training portfolio.
A vision and strategy for the virtual physiological human in 2010 and beyond.
Hunter, Peter; Coveney, Peter V; de Bono, Bernard; Diaz, Vanessa; Fenner, John; Frangi, Alejandro F; Harris, Peter; Hose, Rod; Kohl, Peter; Lawford, Pat; McCormack, Keith; Mendes, Miriam; Omholt, Stig; Quarteroni, Alfio; Skår, John; Tegner, Jesper; Randall Thomas, S; Tollis, Ioannis; Tsamardinos, Ioannis; van Beek, Johannes H G M; Viceconti, Marco
2010-06-13
European funding under framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for nearly 2 years. The VPH network of excellence (NoE) is helping in the development of common standards, open-source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also helping to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by framework 6 strategy for a European physiome (STEP) project in 2006. It is now time to assess the accomplishments of the last 2 years and update the STEP vision for the VPH. We consider the biomedical science, healthcare and information and communications technology challenges facing the project and we propose the VPH Institute as a means of sustaining the vision of VPH beyond the time frame of the NoE.
A vision and strategy for the virtual physiological human in 2010 and beyond
Hunter, Peter; Coveney, Peter V.; de Bono, Bernard; Diaz, Vanessa; Fenner, John; Frangi, Alejandro F.; Harris, Peter; Hose, Rod; Kohl, Peter; Lawford, Pat; McCormack, Keith; Mendes, Miriam; Omholt, Stig; Quarteroni, Alfio; Skår, John; Tegner, Jesper; Randall Thomas, S.; Tollis, Ioannis; Tsamardinos, Ioannis; van Beek, Johannes H. G. M.; Viceconti, Marco
2010-01-01
European funding under framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for nearly 2 years. The VPH network of excellence (NoE) is helping in the development of common standards, open-source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also helping to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by framework 6 strategy for a European physiome (STEP) project in 2006. It is now time to assess the accomplishments of the last 2 years and update the STEP vision for the VPH. We consider the biomedical science, healthcare and information and communications technology challenges facing the project and we propose the VPH Institute as a means of sustaining the vision of VPH beyond the time frame of the NoE. PMID:20439264
Zhang, Lelin; Chi, Yu Mike; Edelstein, Eve; Schulze, Jurgen; Gramann, Klaus; Velasquez, Alvaro; Cauwenberghs, Gert; Macagno, Eduardo
2010-01-01
Wireless physiological/neurological monitoring in virtual reality (VR) offers a unique opportunity for unobtrusively quantifying human responses to precisely controlled and readily modulated VR representations of health care environments. Here we present such a wireless, light-weight head-mounted system for measuring electrooculogram (EOG) and electroencephalogram (EEG) activity in human subjects interacting with and navigating in the Calit2 StarCAVE, a five-sided immersive 3-D visualization VR environment. The system can be easily expanded to include other measurements, such as cardiac activity and galvanic skin responses. We demonstrate the capacity of the system to track focus of gaze in 3-D and report a novel calibration procedure for estimating eye movements from responses to the presentation of a set of dynamic visual cues in the StarCAVE. We discuss cyber and clinical applications that include a 3-D cursor for visual navigation in VR interactive environments, and the monitoring of neurological and ocular dysfunction in vision/attention disorders.
Multi-sector thermo-physiological head simulator for headgear research.
Martinez, Natividad; Psikuta, Agnes; Corberán, José Miguel; Rossi, René M; Annaheim, Simon
2017-02-01
A novel thermo-physiological human head simulator for headgear testing was developed by coupling a thermal head manikin with a thermo-physiological model. As the heat flux at head-site is directly measured by the head manikin, this method provides a realistic quantification of the heat transfer phenomena occurring in the headgear, such as moisture absorption-desorption cycles, condensation, or moisture migration across clothing layers. Before coupling, the opportunities of the head manikin for representing the human physiology were evaluated separately. The evaluation revealed reduced precision in forehead and face temperature predictions under extreme heterogeneous temperature distributions and no initial limitation for simulating temperature changes observed in the human physiology. The thermo-physiological model predicted higher sweat rates when applied for coupled than for pure virtual simulations. After coupling, the thermo-physiological human head simulator was validated using eight human experiments. It precisely predicted core, mean skin, and forehead temperatures with average rmsd values within the average experimental standard deviation (rmsd of 0.20 ± 0.15, 0.83 ± 0.34, and 1.04 ± 0.54 °C, respectively). However, in case of forehead, precision was lower for the exposures including activity than for the sedentary exposures. The representation of the human sweat evaporation could be affected by a reduced evaporation efficiency and the manikin sweat dynamics. The industry will benefit from this thermo-physiological human head simulator leading to the development of helmet designs with enhanced thermal comfort and, therefore, with higher acceptance by users.
Lombardi, Sara A; Hicks, Reimi E; Thompson, Katerina V; Marbach-Ad, Gili
2014-03-01
This study investigated the impact of three commonly used cardiovascular model-assisted activities on student learning and student attitudes and perspectives about science. College students enrolled in a Human Anatomy and Physiology course were randomly assigned to one of three experimental groups (organ dissections, virtual dissections, or plastic models). Each group received a 15-min lecture followed by a 45-min activity with one of the treatments. Immediately after the lesson and then 2 mo later, students were tested on anatomy and physiology knowledge and completed an attitude survey. Students who used plastic models achieved significantly higher overall scores on both the initial and followup exams than students who performed organ or virtual dissections. On the initial exam, students in the plastic model and organ dissection treatments scored higher on anatomy questions than students who performed virtual dissections. Students in the plastic model group scored higher than students who performed organ dissections on physiology questions. On the followup exam, when asked anatomy questions, students in the plastic model group scored higher than dissection students and virtual dissection students. On attitude surveys, organ dissections had higher perceived value and were requested for inclusion in curricula twice as often as any other activity. Students who performed organ dissections were more likely than the other treatment groups to agree with the statement that "science is fun," suggesting that organ dissections may promote positive attitudes toward science. The findings of this study provide evidence for the importance of multiple types of hands-on activities in anatomy laboratory courses.
Biomechanics-based in silico medicine: the manifesto of a new science.
Viceconti, Marco
2015-01-21
In this perspective article we discuss the role of contemporary biomechanics in the light of recent applications such as the development of the so-called Virtual Physiological Human technologies for physiology-based in silico medicine. In order to build Virtual Physiological Human (VPH) models, computer models that capture and integrate the complex systemic dynamics of living organisms across radically different space-time scales, we need to re-formulate a vast body of existing biology and physiology knowledge so that it is formulated as a quantitative hypothesis, which can be expressed in mathematical terms. Once the predictive accuracy of these models is confirmed against controlled experiments and against clinical observations, we will have VPH model that can reliably predict certain quantitative changes in health status of a given patient, but also, more important, we will have a theory, in the true meaning this word has in the scientific method. In this scenario, biomechanics plays a very important role, biomechanics is one of the few areas of life sciences where we attempt to build full mechanistic explanations based on quantitative observations, in other words, we investigate living organisms like physical systems. This is in our opinion a Copernican revolution, around which the scope of biomechanics should be re-defined. Thus, we propose a new definition for our research domain "Biomechanics is the study of living organisms as mechanistic systems". Copyright © 2014 Elsevier Ltd. All rights reserved.
Simulating Humans as Integral Parts of Spacecraft Missions
NASA Technical Reports Server (NTRS)
Bruins, Anthony C.; Rice, Robert; Nguyen, Lac; Nguyen, Heidi; Saito, Tim; Russell, Elaine
2006-01-01
The Collaborative-Virtual Environment Simulation Tool (C-VEST) software was developed for use in a NASA project entitled "3-D Interactive Digital Virtual Human." The project is oriented toward the use of a comprehensive suite of advanced software tools in computational simulations for the purposes of human-centered design of spacecraft missions and of the spacecraft, space suits, and other equipment to be used on the missions. The C-VEST software affords an unprecedented suite of capabilities for three-dimensional virtual-environment simulations with plug-in interfaces for physiological data, haptic interfaces, plug-and-play software, realtime control, and/or playback control. Mathematical models of the mechanics of the human body and of the aforementioned equipment are implemented in software and integrated to simulate forces exerted on and by astronauts as they work. The computational results can then support the iterative processes of design, building, and testing in applied systems engineering and integration. The results of the simulations provide guidance for devising measures to counteract effects of microgravity on the human body and for the rapid development of virtual (that is, simulated) prototypes of advanced space suits, cockpits, and robots to enhance the productivity, comfort, and safety of astronauts. The unique ability to implement human-in-the-loop immersion also makes the C-VEST software potentially valuable for use in commercial and academic settings beyond the original space-mission setting.
Virtual Reality Simulation of the Effects of Microgravity in Gastrointestinal Physiology
NASA Technical Reports Server (NTRS)
Compadre, Cesar M.
1998-01-01
The ultimate goal of this research is to create an anatomically accurate three-dimensional (3D) simulation model of the effects of microgravity in gastrointestinal physiology and to explore the role that such changes may have in the pharmacokinetics of drugs given to the space crews for prevention or therapy. To accomplish this goal the specific aims of this research are: 1) To generate a complete 3-D reconstructions of the human GastroIntestinal (GI) tract of the male and female Visible Humans. 2) To develop and implement time-dependent computer algorithms to simulate the GI motility using the above 3-D reconstruction.
Paini, Alicia; Sala Benito, Jose Vicente; Bessems, Jos; Worth, Andrew P
2017-12-01
Physiologically based kinetic (PBK) models and the virtual cell based assay can be linked to form so called physiologically based dynamic (PBD) models. This study illustrates the development and application of a PBK model for prediction of estragole-induced DNA adduct formation and hepatotoxicity in humans. To address the hepatotoxicity, HepaRG cells were used as a surrogate for liver cells, with cell viability being used as the in vitro toxicological endpoint. Information on DNA adduct formation was taken from the literature. Since estragole induced cell damage is not directly caused by the parent compound, but by a reactive metabolite, information on the metabolic pathway was incorporated into the model. In addition, a user-friendly tool was developed by implementing the PBK/D model into a KNIME workflow. This workflow can be used to perform in vitro to in vivo extrapolation and forward as backward dosimetry in support of chemical risk assessment. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Gupta, Akriti; Singh, Satendra; Khaliq, Farah; Dhaliwal, Upreet; Madhu, S V
2018-03-01
In the country presently, preclinical medical students are not routinely exposed to real patients. Thus, when they start clinical postings, they are found to have poor clinical reasoning skills. Simulated virtual patients (SVPs) can improve clinical skills without endangering real patients. This pilot study describes the development of two SVPs in endocrine physiology and their validation in terms of acquisition of clinical knowledge and student engagement. Two SVPs, Nandini Sharma (unintentional weight gain) and Sunil Yadav (polyuria), were created and published on the i-Human Patients platform through an iterative, interdisciplinary, and transdisciplinary collaborative process using the conceptual framework of Kim et al. (Kim S, Phillips WR, Pinsky L, Brock D, Phillips K, Keary J. Med Educ 40: 867-876, 2006). After internal and external peer validation, the SVPs were piloted on 40 students (20 students per virtual patient) over 2 wk. A cognitive pretest was conducted before exposure, and a posttest soon after. Faculty and student feedback were collected. Faculty found SVPs authentic, helpful as teaching-learning tools, and useful for giving feedback and for assessment. Students found SVPs more engaging than paper cases and helpful in developing clinical reasoning and in imparting clinical exposure. Pretest and posttest scores indicated knowledge gain ( P < 0.01). Although challenging to create, SVPs created on the i-Human Patients platform improved learning in endocrine physiology and were well accepted by students and faculty as a means to provide early clinical exposure. More SVPs can be developed through collaboration between stakeholder departments and integrated into the curriculum for greater benefit.
Wiśniowska, Barbara; Polak, Sebastian
2016-11-01
A Quantitative Systems Pharmacology approach was utilized to predict the cardiac consequences of drug-drug interaction (DDI) at the population level. The Simcyp in vitro-in vivo correlation and physiologically based pharmacokinetic platform was used to predict the pharmacokinetic profile of terfenadine following co-administration of the drug. Electrophysiological effects were simulated using the Cardiac Safety Simulator. The modulation of ion channel activity was dependent on the inhibitory potential of drugs on the main cardiac ion channels and a simulated free heart tissue concentration. ten Tusscher's human ventricular cardiomyocyte model was used to simulate the pseudo-ECG traces and further predict the pharmacodynamic consequences of DDI. Consistent with clinical observations, predicted plasma concentration profiles of terfenadine show considerable intra-subject variability with recorded C max values below 5 ng/mL for most virtual subjects. The pharmacokinetic and pharmacodynamic effects of inhibitors were predicted with reasonable accuracy. In all cases, a combination of the physiologically based pharmacokinetic and physiology-based pharmacodynamic models was able to differentiate between the terfenadine alone and terfenadine + inhibitor scenario. The range of QT prolongation was comparable in the clinical and virtual studies. The results indicate that mechanistic in vitro-in vivo correlation can be applied to predict the clinical effects of DDI even without comprehensive knowledge on all mechanisms contributing to the interaction. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
The LINDSAY Virtual Human Project: An immersive Approach to Anatomy and Physiology
ERIC Educational Resources Information Center
Tworek, Janet K.; Jamniczky, Heather A.; Jacob, Christian; Hallgrímsson, Benedikt; Wright, Bruce
2013-01-01
The increasing number of digital anatomy teaching software packages challenges anatomy educators on how to best integrate these tools for teaching and learning. Realistically, there exists a complex interplay of design, implementation, politics, and learning needs in the development and integration of software for education, each of which may be…
ERIC Educational Resources Information Center
Birnbaum, Mark J.; Picco, Jenna; Clements, Meghan; Witwicka, Hanna; Yang, Meiheng; Hoey, Margaret T.; Odgren, Paul R.
2010-01-01
A key goal of molecular/cell biology/biotechnology is to identify essential genes in virtually every physiological process to uncover basic mechanisms of cell function and to establish potential targets of drug therapy combating human disease. This article describes a semester-long, project-oriented molecular/cellular/biotechnology laboratory…
Virtual reality as a tool for cross-cultural communication: an example from military team training
NASA Astrophysics Data System (ADS)
Downes-Martin, Stephen; Long, Mark; Alexander, Joanna R.
1992-06-01
A major problem with communication across cultures, whether professional or national, is that simple language translation if often insufficient to communicate the concepts. This is especially true when the communicators come from highly specialized fields of knowledge or from national cultures with long histories of divergence. This problem becomes critical when the goal of the communication is national negotiation dealing with such high risk items as arms negotiation or trade wars. Virtual Reality technology has considerable potential for facilitating communication across cultures, by immersing the communicators within multiple visual representations of the concepts, and providing control over those representations. Military distributed team training provides a model for virtual reality suitable for cross cultural communication such as negotiation. In both team training and negotiation, the participants must cooperate, agree on a set of goals, and achieve mastery over the concepts being negotiated. Team training technologies suitable for supporting cross cultural negotiation exist (branch wargaming, computer image generation and visualization, distributed simulation), and have developed along different lines than traditional virtual reality technology. Team training de-emphasizes the realism of physiological interfaces between the human and the virtual reality, and emphasizes the interaction of humans with each other and with intelligent simulated agents within the virtual reality. This approach to virtual reality is suggested as being more fruitful for future work.
... ARS HOME ANATOMY Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ... ANATOMY > Sinus Anatomy Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ...
Evaluation of the Virtual Physiology of Exercise Laboratory Program
ERIC Educational Resources Information Center
Dobson, John L.
2009-01-01
The Virtual Physiology of Exercise Laboratory (VPEL) program was created to simulate the test design, data collection, and analysis phases of selected exercise physiology laboratories. The VPEL program consists of four modules: (1) cardiovascular, (2) maximal O[subscript 2] consumption [Vo[subscript 2max], (3) lactate and ventilatory thresholds,…
Brundage, Shelley B; Brinton, James M; Hancock, Adrienne B
2016-12-01
Virtual reality environments (VREs) allow for immersion in speaking environments that mimic real-life interactions while maintaining researcher control. VREs have been used successfully to engender arousal in other disorders. The purpose of this study was to investigate the utility of virtual reality environments to examine physiological reactivity and subjective ratings of distress in persons who stutter (PWS). Subjective and objective measures of arousal were collected from 10PWS during four-minute speeches to a virtual audience and to a virtual empty room. Stuttering frequency and physiological measures (skin conductance level and heart rate) did not differ across speaking conditions, but subjective ratings of distress were significantly higher in the virtual audience condition compared to the virtual empty room. VREs have utility in elevating subjective ratings of distress in PWS. VREs have the potential to be useful tools for practicing treatment targets in a safe, controlled, and systematic manner. Copyright © 2016 Elsevier Inc. All rights reserved.
Serious Game and Virtual World Training: Instrumentation and Assessment
2012-12-10
Effectiveness of EEG Neurofeedback Training for ADHD in a Clinical Setting as Measured by Changes in T.O.V.A. Scores, Behavioral Ratings, and WISC-R...Human Physiological Data Collection Methods 24 4.3.1 Electroencephalography ( EEG ) 24 4.3.2 Galvanic Skin Response (GSR) and Heart Rate Variability...Collecting Human Data 24 8 Participant Wearing a 32-Channel EEG Cap 25 9 Future Force Warrior Example Combat Armor 27 10 Screenshot of the Organic
ERIC Educational Resources Information Center
Muhlberger, Andreas; Bulthoff, Heinrich H.; Wiedemann, Georg; Pauli, Paul
2007-01-01
An overall assessment of phobic fear requires not only a verbal self-report of fear but also an assessment of behavioral and physiological responses. Virtual reality can be used to simulate realistic (phobic) situations and therefore should be useful for inducing emotions in a controlled, standardized way. Verbal and physiological fear reactions…
Integrative approaches to computational biomedicine
Coveney, Peter V.; Diaz-Zuccarini, Vanessa; Graf, Norbert; Hunter, Peter; Kohl, Peter; Tegner, Jesper; Viceconti, Marco
2013-01-01
The new discipline of computational biomedicine is concerned with the application of computer-based techniques and particularly modelling and simulation to human health. Since 2007, this discipline has been synonymous, in Europe, with the name given to the European Union's ambitious investment in integrating these techniques with the eventual aim of modelling the human body as a whole: the virtual physiological human. This programme and its successors are expected, over the next decades, to transform the study and practice of healthcare, moving it towards the priorities known as ‘4P's’: predictive, preventative, personalized and participatory medicine.
Grillon, Christian; Baas, Johanna M P; Cornwell, Brian; Johnson, Linda
2006-10-01
Sustained anxiety can be modeled using context conditioning, which can be studied in a virtual reality environment. Unpredictable stressors increase context conditioning in animals. This study examined context conditioning to predictable and unpredictable shocks in humans using behavioral avoidance, potentiated startle, and subjective reports of anxiety. Subjects were guided through three virtual rooms (no-shock, predictable, unpredictable contexts). Eight-sec duration colored lights served as conditioned stimuli (CS). During acquisition, no shock was administered in the no-shock context. Shocks were paired with the CS in the predictable context and were administered randomly in the unpredictable context. No shock was administered during extinction. Startle stimuli were delivered during CS and between CS to assess cued and context conditioning, respectively. To assess avoidance, subjects freely navigated into two of the three contexts to retrieve money. Startle between CS was potentiated in the unpredictable context compared to the two other contexts. Following acquisition, subjects showed a strong preference for the no-shock context and avoidance of the unpredictable context. Consistent with animal data, context conditioning is increased by unpredictability. These data support virtual reality as a tool to extend research on physiological and behavioral signs of fear and anxiety in humans.
Unique life sciences research facilities at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.
1994-01-01
The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.
NASA Astrophysics Data System (ADS)
Tsoupikova, Daria
2006-02-01
This paper will explore how the aesthetics of the virtual world affects, transforms, and enhances the immersive emotional experience of the user. What we see and what we do upon entering the virtual environment influences our feelings, mental state, physiological changes and sensibility. To create a unique virtual experience the important component to design is the beauty of the virtual world based on the aesthetics of the graphical objects such as textures, models, animation, and special effects. The aesthetic potency of the images that comprise the virtual environment can make the immersive experience much stronger and more compelling. The aesthetic qualities of the virtual world as born out through images and graphics can influence the user's state of mind. Particular changes and effects on the user can be induced through the application of techniques derived from the research fields of psychology, anthropology, biology, color theory, education, art therapy, music, and art history. Many contemporary artists and developers derive much inspiration for their work from their experience with traditional arts such as painting, sculpture, design, architecture and music. This knowledge helps them create a higher quality of images and stereo graphics in the virtual world. The understanding of the close relation between the aesthetic quality of the virtual environment and the resulting human perception is the key to developing an impressive virtual experience.
Color appearance in stereoscopy
NASA Astrophysics Data System (ADS)
Gadia, Davide; Rizzi, Alessandro; Bonanomi, Cristian; Marini, Daniele; Galmonte, Alessandra; Agostini, Tiziano
2011-03-01
The relationship between color and lightness appearance and the perception of depth has been studied since a while in the field of perceptual psychology and psycho-physiology. It has been found that depth perception affects the final object color and lightness appearance. In the stereoscopy research field, many studies have been proposed on human physiological effects, considering e.g. geometry, motion sickness, etc., but few has been done considering lightness and color information. Goal of this paper is to realize some preliminar experiments in Virtual Reality in order to determine the effects of depth perception on object color and lightness appearance. We have created a virtual test scene with a simple 3D simultaneous contrast configuration. We have created three different versions of this scene, each with different choices of relative positions and apparent size of the objects. We have collected the perceptual responses of several users after the observation of the test scene in the Virtual Theater of the University of Milan, a VR immersive installation characterized by a semi-cylindrical screen that covers 120° of horizontal field of view from an observation distance of 3.5 m. We present a description of the experiments setup and procedure, and we discuss the obtained results.
Graphic-based musculoskeletal model for biomechanical analyses and animation.
Chao, Edmund Y S
2003-04-01
The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the 'Virtual Human' reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. This paper details the design, capabilities, and features of the VIMS development at Johns Hopkins University, an effort possible only through academic and commercial collaborations. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of this unique database and simulation technology. This integrated system will impact on medical education, basic research, device development and application, and clinical patient care related to musculoskeletal diseases, trauma, and rehabilitation.
Virtual faces expressing emotions: an initial concomitant and construct validity study.
Joyal, Christian C; Jacob, Laurence; Cigna, Marie-Hélène; Guay, Jean-Pierre; Renaud, Patrice
2014-01-01
Facial expressions of emotions represent classic stimuli for the study of social cognition. Developing virtual dynamic facial expressions of emotions, however, would open-up possibilities, both for fundamental and clinical research. For instance, virtual faces allow real-time Human-Computer retroactions between physiological measures and the virtual agent. The goal of this study was to initially assess concomitants and construct validity of a newly developed set of virtual faces expressing six fundamental emotions (happiness, surprise, anger, sadness, fear, and disgust). Recognition rates, facial electromyography (zygomatic major and corrugator supercilii muscles), and regional gaze fixation latencies (eyes and mouth regions) were compared in 41 adult volunteers (20 ♂, 21 ♀) during the presentation of video clips depicting real vs. virtual adults expressing emotions. Emotions expressed by each set of stimuli were similarly recognized, both by men and women. Accordingly, both sets of stimuli elicited similar activation of facial muscles and similar ocular fixation times in eye regions from man and woman participants. Further validation studies can be performed with these virtual faces among clinical populations known to present social cognition difficulties. Brain-Computer Interface studies with feedback-feedforward interactions based on facial emotion expressions can also be conducted with these stimuli.
ERIC Educational Resources Information Center
Anyanwu, Godson Emeka; Agu, Augustine Uchechukwu; Anyaehie, Ugochukwu Bond
2012-01-01
The impact and perception of students on the use of a simple, low technology-driven version of a virtual microscope in teaching and assessments in cellular physiology and histology were studied. Its impact on the time and resources of the faculty were also assessed. Simple virtual slides and conventional microscopes were used to conduct the same…
Human Research Program Human Health Countermeasures Element: Evidence Report - Artificial Gravity
NASA Technical Reports Server (NTRS)
Clement, Gilles
2015-01-01
The most serious risks of long-duration flight involve radiation, behavioral stresses, and physiological deconditioning. Artificial gravity (AG), by substituting for the missing gravitational cues and loading in space, has the potential to mitigate the last of these risks by preventing the adaptive responses from occurring. The rotation of a Mars-bound spacecraft or an embarked human centrifuge offers significant promise as an effective, efficient multi-system countermeasure against the physiological deconditioning associated with prolonged weightlessness. Virtually all of the identified risks associated with bone loss, muscle weakening, cardiovascular deconditioning, and sensorimotor disturbances might be alleviated by the appropriate application of AG. However, experience with AG in space has been limited and a human-rated centrifuge is currently not available on board the ISS. A complete R&D program aimed at determining the requirements for gravity level, gravity gradient, rotation rate, frequency, and duration of AG exposure is warranted before making a decision for implementing AG in a human spacecraft.
de Borst, Aline W.; de Gelder, Beatrice
2015-01-01
Recent developments in neuroimaging research support the increased use of naturalistic stimulus material such as film, avatars, or androids. These stimuli allow for a better understanding of how the brain processes information in complex situations while maintaining experimental control. While avatars and androids are well suited to study human cognition, they should not be equated to human stimuli. For example, the uncanny valley hypothesis theorizes that artificial agents with high human-likeness may evoke feelings of eeriness in the human observer. Here we review if, when, and how the perception of human-like avatars and androids differs from the perception of humans and consider how this influences their utilization as stimulus material in social and affective neuroimaging studies. First, we discuss how the appearance of virtual characters affects perception. When stimuli are morphed across categories from non-human to human, the most ambiguous stimuli, rather than the most human-like stimuli, show prolonged classification times and increased eeriness. Human-like to human stimuli show a positive linear relationship with familiarity. Secondly, we show that expressions of emotions in human-like avatars can be perceived similarly to human emotions, with corresponding behavioral, physiological and neuronal activations, with exception of physical dissimilarities. Subsequently, we consider if and when one perceives differences in action representation by artificial agents versus humans. Motor resonance and predictive coding models may account for empirical findings, such as an interference effect on action for observed human-like, natural moving characters. However, the expansion of these models to explain more complex behavior, such as empathy, still needs to be investigated in more detail. Finally, we broaden our outlook to social interaction, where virtual reality stimuli can be utilized to imitate complex social situations. PMID:26029133
The effects of immersiveness on physiology.
Wiederhold, B K; Davis, R; Wiederhold, M D
1998-01-01
The effects of varying levels of immersion in virtual reality environments on participant's heart rate, respiration rate, peripheral skin temperature, and skin resistance levels were examined. Subjective reports of presence were also noted. Participants were presented with a virtual environment of an airplane flight both as seen from a two-dimensional computer screen and as seen from within a head-mounted display. Subjects were randomly assigned to different order of conditions presented, but all subjects received both conditions. Differences between the non-phobics' physiological responses and the phobic's response when placed in a virtual environment related to the phobia were noted. Also noted were changes in physiology based on degree of immersion.
Organ-specific physiological responses to acute physical exercise and long-term training in humans.
Heinonen, Ilkka; Kalliokoski, Kari K; Hannukainen, Jarna C; Duncker, Dirk J; Nuutila, Pirjo; Knuuti, Juhani
2014-11-01
Virtually all tissues in the human body rely on aerobic metabolism for energy production and are therefore critically dependent on continuous supply of oxygen. Oxygen is provided by blood flow, and, in essence, changes in organ perfusion are also closely associated with alterations in tissue metabolism. In response to acute exercise, blood flow is markedly increased in contracting skeletal muscles and myocardium, but perfusion in other organs (brain and bone) is only slightly enhanced or is even reduced (visceral organs). Despite largely unchanged metabolism and perfusion, repeated exposures to altered hemodynamics and hormonal milieu produced by acute exercise, long-term exercise training appears to be capable of inducing effects also in tissues other than muscles that may yield health benefits. However, the physiological adaptations and driving-force mechanisms in organs such as brain, liver, pancreas, gut, bone, and adipose tissue, remain largely obscure in humans. Along these lines, this review integrates current information on physiological responses to acute exercise and to long-term physical training in major metabolically active human organs. Knowledge is mostly provided based on the state-of-the-art, noninvasive human imaging studies, and directions for future novel research are proposed throughout the review. ©2014 Int. Union Physiol. Sci./Am. Physiol. Soc.
ERIC Educational Resources Information Center
Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan
2015-01-01
Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components…
Behavior believability in virtual worlds: agents acting when they need to.
Avradinis, Nikos; Panayiotopoulos, Themis; Anastassakis, George
2013-12-01
Believability has been a perennial goal for the intelligent virtual agent community. One important aspect of believability largely consists in demonstrating autonomous behavior, consistent with the agent's personality and motivational state, as well as the world conditions. Autonomy, on behalf of the agent, implies the existence of an internal structure and mechanism that allows the agent to have its own needs and interests, based on which the agent will dynamically select and generate goals that will in turn lead to self-determined behavior. Intrinsic motivation allows the agent to function and demonstrate behavior, even when no external stimulus is present, due to the constant change of its internal emotional and physiological state. The concept of motivation has already been investigated by research works on intelligent agents, trying to achieve autonomy. The current work presents an architecture and model to represent and manage internal driving factors in intelligent virtual agents, using the concept of motivations. Based on Maslow and Alderfer's bio-psychological needs theories, we present a motivational approach to represent human needs and produce emergent behavior through motivation synthesis. Particular attention is given to basic, physiological level needs, which are the basis of behavior and can produce tendency to action even when there is no other interaction with the environment.
Sugita, Norihiro; Yoshizawa, Makoto; Abe, Makoto; Tanaka, Akira; Watanabe, Takashi; Chiba, Shigeru; Yambe, Tomoyuki; Nitta, Shin-ichi
2007-09-28
Computer graphics and virtual reality techniques are useful to develop automatic and effective rehabilitation systems. However, a kind of virtual environment including unstable visual images presented to wide field screen or a head mounted display tends to induce motion sickness. The motion sickness induced in using a rehabilitation system not only inhibits effective training but also may harm patients' health. There are few studies that have objectively evaluated the effects of the repetitive exposures to these stimuli on humans. The purpose of this study is to investigate the adaptation to visually induced motion sickness by physiological data. An experiment was carried out in which the same video image was presented to human subjects three times. We evaluated changes of the intensity of motion sickness they suffered from by a subjective score and the physiological index rho(max), which is defined as the maximum cross-correlation coefficient between heart rate and pulse wave transmission time and is considered to reflect the autonomic nervous activity. The results showed adaptation to visually-induced motion sickness by the repetitive presentation of the same image both in the subjective and the objective indices. However, there were some subjects whose intensity of sickness increased. Thus, it was possible to know the part in the video image which related to motion sickness by analyzing changes in rho(max) with time. The physiological index, rho(max), will be a good index for assessing the adaptation process to visually induced motion sickness and may be useful in checking the safety of rehabilitation systems with new image technologies.
Cook, Daniel L; Neal, Maxwell L; Bookstein, Fred L; Gennari, John H
2013-12-02
In prior work, we presented the Ontology of Physics for Biology (OPB) as a computational ontology for use in the annotation and representations of biophysical knowledge encoded in repositories of physics-based biosimulation models. We introduced OPB:Physical entity and OPB:Physical property classes that extend available spatiotemporal representations of physical entities and processes to explicitly represent the thermodynamics and dynamics of physiological processes. Our utilitarian, long-term aim is to develop computational tools for creating and querying formalized physiological knowledge for use by multiscale "physiome" projects such as the EU's Virtual Physiological Human (VPH) and NIH's Virtual Physiological Rat (VPR). Here we describe the OPB:Physical dependency taxonomy of classes that represent of the laws of classical physics that are the "rules" by which physical properties of physical entities change during occurrences of physical processes. For example, the fluid analog of Ohm's law (as for electric currents) is used to describe how a blood flow rate depends on a blood pressure gradient. Hooke's law (as in elastic deformations of springs) is used to describe how an increase in vascular volume increases blood pressure. We classify such dependencies according to the flow, transformation, and storage of thermodynamic energy that occurs during processes governed by the dependencies. We have developed the OPB and annotation methods to represent the meaning-the biophysical semantics-of the mathematical statements of physiological analysis and the biophysical content of models and datasets. Here we describe and discuss our approach to an ontological representation of physical laws (as dependencies) and properties as encoded for the mathematical analysis of biophysical processes.
Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan
2015-04-01
Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components of conversation based on (1) performance alone or (2) the composite effect of performance and physiological metrics of predicted engagement (e.g., gaze pattern, pupil dilation, blink rate). Participants showed improved performance and looking pattern within the physiologically sensitive system as compared to the performance based system. This suggests that physiologically informed technologies may have the potential of being an effective tool in the hands of interventionists.
Annerstedt, Matilda; Jönsson, Peter; Wallergård, Mattias; Johansson, Gerd; Karlson, Björn; Grahn, Patrik; Hansen, Ase Marie; Währborg, Peter
2013-06-13
Experimental research on stress recovery in natural environments is limited, as is study of the effect of sounds of nature. After inducing stress by means of a virtual stress test, we explored physiological recovery in two different virtual natural environments (with and without exposure to sounds of nature) and in one control condition. Cardiovascular data and saliva cortisol were collected. Repeated ANOVA measurements indicated parasympathetic activation in the group subjected to sounds of nature in a virtual natural environment, suggesting enhanced stress recovery may occur in such surroundings. The group that recovered in virtual nature without sound and the control group displayed no particular autonomic activation or deactivation. The results demonstrate a potential mechanistic link between nature, the sounds of nature, and stress recovery, and suggest the potential importance of virtual reality as a tool in this research field. Copyright © 2013 Elsevier Inc. All rights reserved.
Modeling liver physiology: combining fractals, imaging and animation.
Lin, Debbie W; Johnson, Scott; Hunt, C Anthony
2004-01-01
Physiological modeling of vascular and microvascular networks in several key human organ systems is critical for a deeper understanding of pharmacology and the effect of pharmacotherapies on disease. Like the lung and the kidney, the morphology of its vascular and microvascular system plays a major role in its functional capability. To understand liver function in absorption and metabolism of food and drugs, one must examine the morphology and physiology at both higher and lower level liver function. We have developed validated virtualized dynamic three dimensional (3D) models of liver secondary units and primary units by combining a number of different methods: three-dimensional rendering, fractals, and animation. We have simulated particle dynamics in the liver secondary unit. The resulting models are suitable for use in helping researchers easily visualize and gain intuition on results of in silico liver experiments.
Social conditioning and extinction paradigm: a translational study in virtual reality.
Shiban, Youssef; Reichenberger, Jonas; Neumann, Inga D; Mühlberger, Andreas
2015-01-01
In human beings, experiments investigating fear conditioning with social stimuli are rare. The current study aims at translating an animal model for social fear conditioning (SFC) to a human sample using an operant SFC paradigm in virtual reality. Forty participants actively (using a joystick) approached virtual male agents that served as conditioned stimuli (CS). During the acquisition phase, unconditioned stimuli (US), a combination of an air blast (5 bar, 10 ms) and a female scream (95 dB, 40 ms), were presented when participants reached a defined proximity to the agent with a contingency of 75% for CS+ agents and never for CS- agents. During the extinction and the test phases, no US was delivered. Outcome variables were pleasantness ratings and physiological reactions in heart rate (HR) and fear-potentiated startle. Additionally, the influence of social anxiety, which was measured with the Social Phobia Inventory scale, was evaluated. As expected after the acquisition phase the CS+ was rated clearly less pleasant than the CS-. This difference vanished during extinction. Furthermore, the HR remained high for the CS+, while the HR for the CS- was clearly lower after than before the acquisition. Furthermore, a clear difference between CS+ and CS- after the acquisition indicated successful conditioning on this translational measure. Contrariwise no CS+/CS- differences were observed in the physiological variables during extinction. Importantly, at the generalization test, higher socially fearful participants rated pleasantness of all agents as low whereas the lower socially fearful participants rated pleasantness as low only for the CS+. SFC was successfully induced and extinguished confirming operant conditioning in this SFC paradigm. These findings suggest that the paradigm is suitable to expand the knowledge about the learning and unlearning of social fears. Further studies should investigate the operant mechanisms of development and treatment of social anxiety disorder.
... Anatomy Virtual Anatomy Disclosure Statement Printer Friendly Nasal Physiology Jeremiah A. Alt, MD, PhD Noam Cohen, MD, ... control the inflammation. CONCLUSION An understanding of the physiology of the nose is critical to understand nasal ...
Vogt, Tobias; Herpers, Rainer; Askew, Christopher D.; Scherfgen, David; Strüder, Heiko K.; Schneider, Stefan
2015-01-01
Virtual reality environments are increasingly being used to encourage individuals to exercise more regularly, including as part of treatment those with mental health or neurological disorders. The success of virtual environments likely depends on whether a sense of presence can be established, where participants become fully immersed in the virtual environment. Exposure to virtual environments is associated with physiological responses, including cortical activation changes. Whether the addition of a real exercise within a virtual environment alters sense of presence perception, or the accompanying physiological changes, is not known. In a randomized and controlled study design, moderate-intensity Exercise (i.e., self-paced cycling) and No-Exercise (i.e., automatic propulsion) trials were performed within three levels of virtual environment exposure. Each trial was 5 minutes in duration and was followed by posttrial assessments of heart rate, perceived sense of presence, EEG, and mental state. Changes in psychological strain and physical state were generally mirrored by neural activation patterns. Furthermore, these changes indicated that exercise augments the demands of virtual environment exposures and this likely contributed to an enhanced sense of presence. PMID:26366305
Vogt, Tobias; Herpers, Rainer; Askew, Christopher D; Scherfgen, David; Strüder, Heiko K; Schneider, Stefan
2015-01-01
Virtual reality environments are increasingly being used to encourage individuals to exercise more regularly, including as part of treatment those with mental health or neurological disorders. The success of virtual environments likely depends on whether a sense of presence can be established, where participants become fully immersed in the virtual environment. Exposure to virtual environments is associated with physiological responses, including cortical activation changes. Whether the addition of a real exercise within a virtual environment alters sense of presence perception, or the accompanying physiological changes, is not known. In a randomized and controlled study design, moderate-intensity Exercise (i.e., self-paced cycling) and No-Exercise (i.e., automatic propulsion) trials were performed within three levels of virtual environment exposure. Each trial was 5 minutes in duration and was followed by posttrial assessments of heart rate, perceived sense of presence, EEG, and mental state. Changes in psychological strain and physical state were generally mirrored by neural activation patterns. Furthermore, these changes indicated that exercise augments the demands of virtual environment exposures and this likely contributed to an enhanced sense of presence.
Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan
2014-01-01
Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components of conversation based on (1) performance alone or (2) the composite effect of performance and physiological metrics of predicted engagement (e.g., gaze pattern, pupil dilation, blink rate). Participants showed improved performance and looking pattern within the physiologically sensitive system as compared to the performance based system. This suggests that physiologically informed technologies may have the potential of being an effective tool in the hands of interventionists. PMID:25261247
Stress inoculation training supported by physiology-driven adaptive virtual reality stimulation.
Popović, Sinisa; Horvat, Marko; Kukolja, Davor; Dropuljić, Branimir; Cosić, Kresimir
2009-01-01
Significant proportion of psychological problems related to combat stress in recent large peacekeeping operations underscores importance of effective methods for strengthening the stress resistance of military personnel. Adaptive control of virtual reality (VR) stimulation, based on estimation of the subject's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Therefore, following an overview of SIT and its applications in the military setting, generic concept of physiology-driven adaptive VR stimulation is presented in the paper. Toward the end of the paper, closed-loop adaptive control strategy applicable to SIT is outlined.
Cosić, Kresimir; Popović, Sinisa; Kukolja, Davor; Horvat, Marko; Dropuljić, Branimir
2010-02-01
The significant proportion of severe psychological problems related to intensive stress in recent large peacekeeping operations underscores the importance of effective methods for strengthening the prevention and treatment of stress-related disorders. Adaptive control of virtual reality (VR) stimulation presented in this work, based on estimation of the person's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Following an overview of physiology-driven adaptive VR stimulation, its major functional subsystems are described in more detail. A specific algorithm of stimuli delivery applicable to SIT is outlined.
Heart rate response to fear conditioning and virtual reality in subthreshold PTSD.
Roy, Michael J; Costanzo, Michelle E; Jovanovic, Tanja; Leaman, Suzanne; Taylor, Patricia; Norrholm, Seth D; Rizzo, Albert A
2013-01-01
Posttraumatic stress disorder (PTSD) is a significant health concern for U.S. military service members (SMs) returning from Afghanistan and Iraq. Early intervention to prevent chronic disability requires greater understanding of subthreshold PTSD symptoms, which are associated with impaired physical health, mental health, and risk for delayed onset PTSD. We report a comparison of physiologic responses for recently deployed SMs with high and low subthreshold PTSD symptoms, respectively, to a fear conditioning task and novel virtual reality paradigm (Virtual Iraq). The high symptom group demonstrated elevated heart rate (HR) response during fear conditioning. Virtual reality sequences evoked significant HR responses which predicted variance of the PTSD Checklist-Military Version self-report. Our results support the value of physiologic assessment during fear conditioning and combat-related virtual reality exposure as complementary tools in detecting subthreshold PTSD symptoms in Veterans.
The Virtual Physiological Human ToolKit.
Cooper, Jonathan; Cervenansky, Frederic; De Fabritiis, Gianni; Fenner, John; Friboulet, Denis; Giorgino, Toni; Manos, Steven; Martelli, Yves; Villà-Freixa, Jordi; Zasada, Stefan; Lloyd, Sharon; McCormack, Keith; Coveney, Peter V
2010-08-28
The Virtual Physiological Human (VPH) is a major European e-Science initiative intended to support the development of patient-specific computer models and their application in personalized and predictive healthcare. The VPH Network of Excellence (VPH-NoE) project is tasked with facilitating interaction between the various VPH projects and addressing issues of common concern. A key deliverable is the 'VPH ToolKit'--a collection of tools, methodologies and services to support and enable VPH research, integrating and extending existing work across Europe towards greater interoperability and sustainability. Owing to the diverse nature of the field, a single monolithic 'toolkit' is incapable of addressing the needs of the VPH. Rather, the VPH ToolKit should be considered more as a 'toolbox' of relevant technologies, interacting around a common set of standards. The latter apply to the information used by tools, including any data and the VPH models themselves, and also to the naming and categorizing of entities and concepts involved. Furthermore, the technologies and methodologies available need to be widely disseminated, and relevant tools and services easily found by researchers. The VPH-NoE has thus created an online resource for the VPH community to meet this need. It consists of a database of tools, methods and services for VPH research, with a Web front-end. This has facilities for searching the database, for adding or updating entries, and for providing user feedback on entries. Anyone is welcome to contribute.
2013-01-01
Background In prior work, we presented the Ontology of Physics for Biology (OPB) as a computational ontology for use in the annotation and representations of biophysical knowledge encoded in repositories of physics-based biosimulation models. We introduced OPB:Physical entity and OPB:Physical property classes that extend available spatiotemporal representations of physical entities and processes to explicitly represent the thermodynamics and dynamics of physiological processes. Our utilitarian, long-term aim is to develop computational tools for creating and querying formalized physiological knowledge for use by multiscale “physiome” projects such as the EU’s Virtual Physiological Human (VPH) and NIH’s Virtual Physiological Rat (VPR). Results Here we describe the OPB:Physical dependency taxonomy of classes that represent of the laws of classical physics that are the “rules” by which physical properties of physical entities change during occurrences of physical processes. For example, the fluid analog of Ohm’s law (as for electric currents) is used to describe how a blood flow rate depends on a blood pressure gradient. Hooke’s law (as in elastic deformations of springs) is used to describe how an increase in vascular volume increases blood pressure. We classify such dependencies according to the flow, transformation, and storage of thermodynamic energy that occurs during processes governed by the dependencies. Conclusions We have developed the OPB and annotation methods to represent the meaning—the biophysical semantics—of the mathematical statements of physiological analysis and the biophysical content of models and datasets. Here we describe and discuss our approach to an ontological representation of physical laws (as dependencies) and properties as encoded for the mathematical analysis of biophysical processes. PMID:24295137
Milani-Nejad, Nima; Canan, Benjamin D; Elnakish, Mohammad T; Davis, Jonathan P; Chung, Jae-Hoon; Fedorov, Vadim V; Binkley, Philip F; Higgins, Robert S D; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L
2015-12-15
Cross-bridge cycling rate is an important determinant of cardiac output, and its alteration can potentially contribute to reduced output in heart failure patients. Additionally, animal studies suggest that this rate can be regulated by muscle length. The purpose of this study was to investigate cross-bridge cycling rate and its regulation by muscle length under near-physiological conditions in intact right ventricular muscles of nonfailing and failing human hearts. We acquired freshly explanted nonfailing (n = 9) and failing (n = 10) human hearts. All experiments were performed on intact right ventricular cardiac trabeculae (n = 40) at physiological temperature and near the normal heart rate range. The failing myocardium showed the typical heart failure phenotype: a negative force-frequency relationship and β-adrenergic desensitization (P < 0.05), indicating the expected pathological myocardium in the right ventricles. We found that there exists a length-dependent regulation of cross-bridge cycling kinetics in human myocardium. Decreasing muscle length accelerated the rate of cross-bridge reattachment (ktr) in both nonfailing and failing myocardium (P < 0.05) equally; there were no major differences between nonfailing and failing myocardium at each respective length (P > 0.05), indicating that this regulatory mechanism is preserved in heart failure. Length-dependent assessment of twitch kinetics mirrored these findings; normalized dF/dt slowed down with increasing length of the muscle and was virtually identical in diseased tissue. This study shows for the first time that muscle length regulates cross-bridge kinetics in human myocardium under near-physiological conditions and that those kinetics are preserved in the right ventricular tissues of heart failure patients. Copyright © 2015 the American Physiological Society.
Kononowicz, Andrzej A; Narracott, Andrew J; Manini, Simone; Bayley, Martin J; Lawford, Patricia V; McCormack, Keith; Zary, Nabil
2014-01-23
Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients' interactivity by enriching them with computational models of physiological and pathological processes. The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the description of four integration strategies, and the last element consisted of evaluation profiles specifying the relevant feasibility features and acceptance thresholds for specific purposes. The group of experts who evaluated the virtual patient exemplar found higher integration more interesting, but at the same time they were more concerned with the validity of the result. The observed differences were not statistically significant. This paper outlines a framework for the integration of computational models into virtual patients. The opportunities and challenges of model exploitation are discussed from a number of user perspectives, considering different levels of model integration. The long-term aim for future research is to isolate the most crucial factors in the framework and to determine their influence on the integration outcome.
Narracott, Andrew J; Manini, Simone; Bayley, Martin J; Lawford, Patricia V; McCormack, Keith; Zary, Nabil
2014-01-01
Background Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients’ interactivity by enriching them with computational models of physiological and pathological processes. Objective The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. Methods The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. Results The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the description of four integration strategies, and the last element consisted of evaluation profiles specifying the relevant feasibility features and acceptance thresholds for specific purposes. The group of experts who evaluated the virtual patient exemplar found higher integration more interesting, but at the same time they were more concerned with the validity of the result. The observed differences were not statistically significant. Conclusions This paper outlines a framework for the integration of computational models into virtual patients. The opportunities and challenges of model exploitation are discussed from a number of user perspectives, considering different levels of model integration. The long-term aim for future research is to isolate the most crucial factors in the framework and to determine their influence on the integration outcome. PMID:24463466
Chen, Chih-Chen
2016-01-01
[Purpose] The increase in the Taiwanese older population is associated with age-related inconveniences. Finding adequate and simple physical activities to help the older people maintaining their physiological function and preventing them from falls has become an urgent social issue. [Subjects and Methods] This study aimed to design a virtual exercise training game suitable for Taiwanese older people. This system will allow for the maintenance of the physiological function and standing stability through physical exercise, while using a virtual reality game. The participants can easily exercise in a carefree, interactive environment. This study will use Kinect for Windows for physical movement detection and Unity software for virtual world development. [Results] Group A and B subjects were involved in the exercise training method of Kinect interactive multimedia for 12 weeks. The results showed that the functional reach test and the unipedal stance test improved significantly. [Conclusion] The physiological function and standing stability of the group A subjects were examined at six weeks post training. The results showed that these parameters remained constant. This proved that the proposed system provide substantial support toward the preservation of the Taiwanese older people’ physiological function and standing stability. PMID:27190480
Chen, Chih-Chen
2016-04-01
[Purpose] The increase in the Taiwanese older population is associated with age-related inconveniences. Finding adequate and simple physical activities to help the older people maintaining their physiological function and preventing them from falls has become an urgent social issue. [Subjects and Methods] This study aimed to design a virtual exercise training game suitable for Taiwanese older people. This system will allow for the maintenance of the physiological function and standing stability through physical exercise, while using a virtual reality game. The participants can easily exercise in a carefree, interactive environment. This study will use Kinect for Windows for physical movement detection and Unity software for virtual world development. [Results] Group A and B subjects were involved in the exercise training method of Kinect interactive multimedia for 12 weeks. The results showed that the functional reach test and the unipedal stance test improved significantly. [Conclusion] The physiological function and standing stability of the group A subjects were examined at six weeks post training. The results showed that these parameters remained constant. This proved that the proposed system provide substantial support toward the preservation of the Taiwanese older people' physiological function and standing stability.
Telemedicine, virtual reality, and surgery
NASA Technical Reports Server (NTRS)
Mccormack, Percival D.; Charles, Steve
1994-01-01
Two types of synthetic experience are covered: virtual reality (VR) and surgery, and telemedicine. The topics are presented in viewgraph form and include the following: geometric models; physiological sensors; surgical applications; virtual cadaver; VR surgical simulation; telesurgery; VR Surgical Trainer; abdominal surgery pilot study; advanced abdominal simulator; examples of telemedicine; and telemedicine spacebridge.
Bergström, Ilias; Kilteni, Konstantina; Slater, Mel
2016-01-01
In immersive virtual reality (IVR) it is possible to replace a person’s real body by a life-sized virtual body that is seen from first person perspective to visually substitute their own. Multisensory feedback from the virtual to the real body (such as the correspondence of touch and also movement) can also be present. Under these conditions participants typically experience a subjective body ownership illusion (BOI) over the virtual body, even though they know that it is not their real one. In most studies and applications the posture of the real and virtual bodies are as similar as possible. Here we were interested in whether the BOI is diminished when there are gross discrepancies between the real and virtual body postures. We also explored whether a comfortable or uncomfortable virtual body posture would induce feelings and physiological responses commensurate with the posture. We carried out an experiment with 31 participants in IVR realized with a wide field-of-view head-mounted display. All participants were comfortably seated. Sixteen of them were embodied in a virtual body designed to be in a comfortable posture, and the remainder in an uncomfortable posture. The results suggest that the uncomfortable body posture led to lesser subjective BOI than the comfortable one, but that participants in the uncomfortable posture experienced greater awareness of their autonomic physiological responses. Moreover their heart rate, heart rate variability, and the number of mistakes in a cognitive task were associated with the strength of their BOI in the uncomfortable posture: greater heart rate, lower heart rate variability and more mistakes were associated with higher levels of the BOI. These findings point in a consistent direction—that the BOI over a body that is in an uncomfortable posture can lead to subjective, physiological and cognitive effects consistent with discomfort that do not occur with the BOI over a body in a comfortable posture. PMID:26828365
Surface mesh to voxel data registration for patient-specific anatomical modeling
NASA Astrophysics Data System (ADS)
de Oliveira, Júlia E. E.; Giessler, Paul; Keszei, András.; Herrler, Andreas; Deserno, Thomas M.
2016-03-01
Virtual Physiological Human (VPH) models are frequently used for training, planning, and performing medical procedures. The Regional Anaesthesia Simulator and Assistant (RASimAs) project has the goal of increasing the application and effectiveness of regional anesthesia (RA) by combining a simulator of ultrasound-guided and electrical nerve-stimulated RA procedures and a subject-specific assistance system through an integration of image processing, physiological models, subject-specific data, and virtual reality. Individualized models enrich the virtual training tools for learning and improving regional anaesthesia (RA) skills. Therefore, we suggest patient-specific VPH models that are composed by registering the general mesh-based models with patient voxel data-based recordings. Specifically, the pelvis region has been focused for the support of the femoral nerve block. The processing pipeline is composed of different freely available toolboxes such as MatLab, the open Simulation framework (SOFA), and MeshLab. The approach of Gilles is applied for mesh-to-voxel registration. Personalized VPH models include anatomical as well as mechanical properties of the tissues. Two commercial VPH models (Zygote and Anatomium) were used together with 34 MRI data sets. Results are presented for the skin surface and pelvic bones. Future work will extend the registration procedure to cope with all model tissue (i.e., skin, muscle, bone, vessel, nerve, fascia) in a one-step procedure and extrapolating the personalized models to body regions actually being out of the captured field of view.
Model-based sensorimotor integration for multi-joint control: development of a virtual arm model.
Song, D; Lan, N; Loeb, G E; Gordon, J
2008-06-01
An integrated, sensorimotor virtual arm (VA) model has been developed and validated for simulation studies of control of human arm movements. Realistic anatomical features of shoulder, elbow and forearm joints were captured with a graphic modeling environment, SIMM. The model included 15 musculotendon elements acting at the shoulder, elbow and forearm. Muscle actions on joints were evaluated by SIMM generated moment arms that were matched to experimentally measured profiles. The Virtual Muscle (VM) model contained appropriate admixture of slow and fast twitch fibers with realistic physiological properties for force production. A realistic spindle model was embedded in each VM with inputs of fascicle length, gamma static (gamma(stat)) and dynamic (gamma(dyn)) controls and outputs of primary (I(a)) and secondary (II) afferents. A piecewise linear model of Golgi Tendon Organ (GTO) represented the ensemble sampling (I(b)) of the total muscle force at the tendon. All model components were integrated into a Simulink block using a special software tool. The complete VA model was validated with open-loop simulation at discrete hand positions within the full range of alpha and gamma drives to extrafusal and intrafusal muscle fibers. The model behaviors were consistent with a wide variety of physiological phenomena. Spindle afferents were effectively modulated by fusimotor drives and hand positions of the arm. These simulations validated the VA model as a computational tool for studying arm movement control. The VA model is available to researchers at website http://pt.usc.edu/cel .
A Virtual Reprise of the Stanley Milgram Obedience Experiments
Slater, Mel; Antley, Angus; Davison, Adam; Swapp, David; Guger, Christoph; Barker, Chris; Pistrang, Nancy; Sanchez-Vives, Maria V.
2006-01-01
Background Stanley Milgram's 1960s experimental findings that people would administer apparently lethal electric shocks to a stranger at the behest of an authority figure remain critical for understanding obedience. Yet, due to the ethical controversy that his experiments ignited, it is nowadays impossible to carry out direct experimental studies in this area. In the study reported in this paper, we have used a similar paradigm to the one used by Milgram within an immersive virtual environment. Our objective has not been the study of obedience in itself, but of the extent to which participants would respond to such an extreme social situation as if it were real in spite of their knowledge that no real events were taking place. Methodology Following the style of the original experiments, the participants were invited to administer a series of word association memory tests to the (female) virtual human representing the stranger. When she gave an incorrect answer, the participants were instructed to administer an ‘electric shock’ to her, increasing the voltage each time. She responded with increasing discomfort and protests, eventually demanding termination of the experiment. Of the 34 participants, 23 saw and heard the virtual human, and 11 communicated with her only through a text interface. Conclusions Our results show that in spite of the fact that all participants knew for sure that neither the stranger nor the shocks were real, the participants who saw and heard her tended to respond to the situation at the subjective, behavioural and physiological levels as if it were real. This result reopens the door to direct empirical studies of obedience and related extreme social situations, an area of research that is otherwise not open to experimental study for ethical reasons, through the employment of virtual environments. PMID:17183667
A virtual reprise of the Stanley Milgram obedience experiments.
Slater, Mel; Antley, Angus; Davison, Adam; Swapp, David; Guger, Christoph; Barker, Chris; Pistrang, Nancy; Sanchez-Vives, Maria V
2006-12-20
Stanley Milgram's 1960s experimental findings that people would administer apparently lethal electric shocks to a stranger at the behest of an authority figure remain critical for understanding obedience. Yet, due to the ethical controversy that his experiments ignited, it is nowadays impossible to carry out direct experimental studies in this area. In the study reported in this paper, we have used a similar paradigm to the one used by Milgram within an immersive virtual environment. Our objective has not been the study of obedience in itself, but of the extent to which participants would respond to such an extreme social situation as if it were real in spite of their knowledge that no real events were taking place. Following the style of the original experiments, the participants were invited to administer a series of word association memory tests to the (female) virtual human representing the stranger. When she gave an incorrect answer, the participants were instructed to administer an 'electric shock' to her, increasing the voltage each time. She responded with increasing discomfort and protests, eventually demanding termination of the experiment. Of the 34 participants, 23 saw and heard the virtual human, and 11 communicated with her only through a text interface. Our results show that in spite of the fact that all participants knew for sure that neither the stranger nor the shocks were real, the participants who saw and heard her tended to respond to the situation at the subjective, behavioural and physiological levels as if it were real. This result reopens the door to direct empirical studies of obedience and related extreme social situations, an area of research that is otherwise not open to experimental study for ethical reasons, through the employment of virtual environments.
NASA Astrophysics Data System (ADS)
Xu, Xiaojiang; Rioux, Timothy P.; MacLeod, Tynan; Patel, Tejash; Rome, Maxwell N.; Potter, Adam W.
2017-03-01
The purpose of this paper is to develop a database of tissue composition, distribution, volume, surface area, and skin thickness from anatomically correct human models, the virtual family. These models were based on high-resolution magnetic resonance imaging (MRI) of human volunteers, including two adults (male and female) and two children (boy and girl). In the segmented image dataset, each voxel is associated with a label which refers to a tissue type that occupies up that specific cubic millimeter of the body. The tissue volume was calculated from the number of the voxels with the same label. Volumes of 24 organs in body and volumes of 7 tissues in 10 specific body regions were calculated. Surface area was calculated from the collection of voxels that are touching the exterior air. Skin thicknesses were estimated from its volume and surface area. The differences between the calculated and original masses were about 3 % or less for tissues or organs that are important to thermoregulatory modeling, e.g., muscle, skin, and fat. This accurate database of body tissue distributions and geometry is essential for the development of human thermoregulatory models. Data derived from medical imaging provide new effective tools to enhance thermal physiology research and gain deeper insight into the mechanisms of how the human body maintains heat balance.
Evaluation of glucose controllers in virtual environment: methodology and sample application.
Chassin, Ludovic J; Wilinska, Malgorzata E; Hovorka, Roman
2004-11-01
Adaptive systems to deliver medical treatment in humans are safety-critical systems and require particular care in both the testing and the evaluation phase, which are time-consuming, costly, and confounded by ethical issues. The objective of the present work is to develop a methodology to test glucose controllers of an artificial pancreas in a simulated (virtual) environment. A virtual environment comprising a model of the carbohydrate metabolism and models of the insulin pump and the glucose sensor is employed to simulate individual glucose excursions in subjects with type 1 diabetes. The performance of the control algorithm within the virtual environment is evaluated by considering treatment and operational scenarios. The developed methodology includes two dimensions: testing in relation to specific life style conditions, i.e. fasting, post-prandial, and life style (metabolic) disturbances; and testing in relation to various operating conditions, i.e. expected operating conditions, adverse operating conditions, and system failure. We define safety and efficacy criteria and describe the measures to be taken prior to clinical testing. The use of the methodology is exemplified by tuning and evaluating a model predictive glucose controller being developed for a wearable artificial pancreas focused on fasting conditions. Our methodology to test glucose controllers in a virtual environment is instrumental in anticipating the results of real clinical tests for different physiological conditions and for different operating conditions. The thorough testing in the virtual environment reduces costs and speeds up the development process.
Neuman-Lee, Lorin A; Carr, James; Vaughn, Katelynn; French, Susannah S
2015-08-01
Polybrominated diphenyl ethers (PBDEs) are used as flame retardants and are persistent contaminants found in virtually every environment and organism sampled to date, including humans. There is growing evidence that PBDEs are the source of thyroid, neurodevelopmental, and reproductive toxicity. Yet little work has focused on how this pervasive contaminant may influence the reproduction and physiology of non-traditional model species. This is especially critical because in many cases non-model species, such as reptiles, are most likely to come into contact with PBDEs in nature. We tested how short-term, repeated exposure to the PBDE congener BDE-47 during pregnancy affected physiological processes in pregnant female gartersnakes (thyroid follicular height, bactericidal ability, stress responsiveness, reproductive output, and tendency to terminate pregnancy) and their resulting offspring (levels of corticosterone, bactericidal ability, and size differences). We found potential effects of BDE-47 on both the mother, such as increased size and higher thyroid follicular height, and her offspring (increased size), suggesting the effects on physiological function of PBDEs do indeed extend beyond the traditional rodent models. Copyright © 2015 Elsevier Inc. All rights reserved.
First Person Experience of Body Transfer in Virtual Reality
Slater, Mel; Spanlang, Bernhard; Sanchez-Vives, Maria V.; Blanke, Olaf
2010-01-01
Background Altering the normal association between touch and its visual correlate can result in the illusory perception of a fake limb as part of our own body. Thus, when touch is seen to be applied to a rubber hand while felt synchronously on the corresponding hidden real hand, an illusion of ownership of the rubber hand usually occurs. The illusion has also been demonstrated using visuomotor correlation between the movements of the hidden real hand and the seen fake hand. This type of paradigm has been used with respect to the whole body generating out-of-the-body and body substitution illusions. However, such studies have only ever manipulated a single factor and although they used a form of virtual reality have not exploited the power of immersive virtual reality (IVR) to produce radical transformations in body ownership. Principal Findings Here we show that a first person perspective of a life-sized virtual human female body that appears to substitute the male subjects' own bodies was sufficient to generate a body transfer illusion. This was demonstrated subjectively by questionnaire and physiologically through heart-rate deceleration in response to a threat to the virtual body. This finding is in contrast to earlier experimental studies that assume visuotactile synchrony to be the critical contributory factor in ownership illusions. Our finding was possible because IVR allowed us to use a novel experimental design for this type of problem with three independent binary factors: (i) perspective position (first or third), (ii) synchronous or asynchronous mirror reflections and (iii) synchrony or asynchrony between felt and seen touch. Conclusions The results support the notion that bottom-up perceptual mechanisms can temporarily override top down knowledge resulting in a radical illusion of transfer of body ownership. The research also illustrates immersive virtual reality as a powerful tool in the study of body representation and experience, since it supports experimental manipulations that would otherwise be infeasible, with the technology being mature enough to represent human bodies and their motion. PMID:20485681
Social conditioning and extinction paradigm: a translational study in virtual reality
Shiban, Youssef; Reichenberger, Jonas; Neumann, Inga D.; Mühlberger, Andreas
2015-01-01
In human beings, experiments investigating fear conditioning with social stimuli are rare. The current study aims at translating an animal model for social fear conditioning (SFC) to a human sample using an operant SFC paradigm in virtual reality. Forty participants actively (using a joystick) approached virtual male agents that served as conditioned stimuli (CS). During the acquisition phase, unconditioned stimuli (US), a combination of an air blast (5 bar, 10 ms) and a female scream (95 dB, 40 ms), were presented when participants reached a defined proximity to the agent with a contingency of 75% for CS+ agents and never for CS– agents. During the extinction and the test phases, no US was delivered. Outcome variables were pleasantness ratings and physiological reactions in heart rate (HR) and fear-potentiated startle. Additionally, the influence of social anxiety, which was measured with the Social Phobia Inventory scale, was evaluated. As expected after the acquisition phase the CS+ was rated clearly less pleasant than the CS–. This difference vanished during extinction. Furthermore, the HR remained high for the CS+, while the HR for the CS– was clearly lower after than before the acquisition. Furthermore, a clear difference between CS+ and CS– after the acquisition indicated successful conditioning on this translational measure. Contrariwise no CS+/CS– differences were observed in the physiological variables during extinction. Importantly, at the generalization test, higher socially fearful participants rated pleasantness of all agents as low whereas the lower socially fearful participants rated pleasantness as low only for the CS+. SFC was successfully induced and extinguished confirming operant conditioning in this SFC paradigm. These findings suggest that the paradigm is suitable to expand the knowledge about the learning and unlearning of social fears. Further studies should investigate the operant mechanisms of development and treatment of social anxiety disorder. PMID:25904889
Calebiro, Davide; Godbole, Amod
2018-04-01
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and mediate the effects of numerous hormones and neurotransmitters. The nearly 1000 GPCRs encoded by the human genome regulate virtually all physiological functions and are implicated in the pathogenesis of prevalent human diseases such as thyroid disorders, hypertension or Parkinson's disease. As a result, 30-50% of all currently prescribed drugs are targeting these receptors. Once activated, GPCRs induce signals at the cell surface. This is often followed by internalization, a process that results in the transfer of receptors from the plasma membrane to membranes of the endosomal compartment. Internalization was initially thought to be mainly implicated in signal desensitization, a mechanism of adaptation to prolonged receptor stimulation. However, several unexpected functions have subsequently emerged. Most notably, accumulating evidence indicates that internalization can induce prolonged receptor signaling on intracellular membranes, which is apparently required for at least some biological effects of hormones like TSH, LH and adrenaline. These findings reveal an even stronger connection between receptor internalization and signaling than previously thought. Whereas new studies are just beginning to reveal an important physiological role for GPCR signaling after internalization and ways to exploit it for therapeutic purposes, future investigations will be required to explore its involvement in human disease. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm.
Dura-Bernal, Salvador; Zhou, Xianlian; Neymotin, Samuel A; Przekwas, Andrzej; Francis, Joseph T; Lytton, William W
2015-01-01
Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of limb prosthetics.
Validation of an integrative mathematical model of dehydration and rehydration in virtual humans.
Pruett, W Andrew; Clemmer, John S; Hester, Robert L
2016-11-01
Water homeostasis is one of the body's most critical tasks. Physical challenges to the body, including exercise and surgery, almost always coordinate with some change in water handling reflecting the changing needs of the body. Vasopressin is the most important hormone that contributes to short-term water homeostasis. By manipulating vascular tone and regulating water reabsorption in the collecting duct of the kidneys, vasopressin can mediate the retention or loss of fluids quickly. In this study, we validated HumMod, an integrative mathematical model of human physiology, against six different challenges to water homeostasis with special attention to the secretion of vasopressin and maintenance of electrolyte balance. The studies chosen were performed in normal men and women, and represent a broad spectrum of perturbations. HumMod successfully replicated the experimental results, remaining within 1 standard deviation of the experimental means in 138 of 161 measurements. Only three measurements lay outside of the second standard deviation. Observations were made on serum osmolarity, serum vasopressin concentration, serum sodium concentration, urine osmolarity, serum protein concentration, hematocrit, and cumulative water intake following dehydration. This validation suggests that HumMod can be used to understand water homeostasis under a variety of conditions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Silva, Mauro Rubens
2002-10-01
Starting with the excellent collective work done by the European Community (EC)-funded Virtual Reality Environments for Psycho-Neuro-physiological Assessment and Rehabilitation (VREPAR) projects, I try to indicate some possible pathways that would allow a better integration of this advanced technology into the reality of Latin American psychology. I myself use analyses that I did in my master's degree in the PUCSP-Catholic University in São Paulo, Brazil. I also include a brief description of the CD-ROM Clinical Psychology Uses of Virtual Reality (CPUVR) that accompanies my thesis. I point out the importance of collaboration between psychology and other disciplines, including computer science. I explain the method that I used to work with digital information, important for the formation of a critical mass of people thinking in Portuguese and Spanish to accelerate a technological jump.
Hoekstra, Alfons G; Alowayyed, Saad; Lorenz, Eric; Melnikova, Natalia; Mountrakis, Lampros; van Rooij, Britt; Svitenkov, Andrew; Závodszky, Gábor; Zun, Pavel
2016-11-13
This discussion paper introduces the concept of the Virtual Artery as a multiscale model for arterial physiology and pathologies at the physics-chemistry-biology (PCB) interface. The cellular level is identified as the mesoscopic level, and we argue that by coupling cell-based models with other relevant models on the macro- and microscale, a versatile model of arterial health and disease can be composed. We review the necessary ingredients, both models of arteries at many different scales, as well as generic methods to compose multiscale models. Next, we discuss how this can be combined into the virtual artery. Finally, we argue that the concept of models at the PCB interface could or perhaps should become a powerful paradigm, not only as in our case for studying physiology, but also for many other systems that have such PCB interfaces.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Authors.
Webb, Andrea K; Vincent, Ashley L; Jin, Alvin B; Pollack, Mark H
2015-02-01
Post-traumatic stress disorder (PTSD) currently is diagnosed via clinical interview in which subjective self reports of traumatic events and associated experiences are discussed with a mental health professional. The reliability and validity of diagnoses can be improved with the use of objective physiological measures. In this study, physiological activity was recorded from 58 male veterans (PTSD Diagnosis n = 16; Trauma Exposed/No PTSD Diagnosis: n = 23; No Trauma/No PTSD Diagnosis: n = 19) with and without PTSD and combat trauma exposure in response to emotionally evocative non-idiographic virtual reality stimuli. Statistically significant differences among the Control, Trauma, and PTSD groups were present during the viewing of two virtual reality videos. Skin conductance and interbeat interval features were extracted for each of ten video events (five events of increasing severity per video). These features were submitted to three stepwise discriminant function analyses to assess classification accuracy for Control versus Trauma, Control versus PTSD, and Trauma versus PTSD pairings of participant groups. Leave-one-out cross-validation classification accuracy was between 71 and 94%. These results are promising and suggest the utility of objective physiological measures in assisting with PTSD diagnosis.
Rajan, J Pandia; Rajan, S Edward
2018-01-01
Wireless physiological signal monitoring system designing with secured data communication in the health care system is an important and dynamic process. We propose a signal monitoring system using NI myRIO connected with the wireless body sensor network through multi-channel signal acquisition method. Based on the server side validation of the signal, the data connected to the local server is updated in the cloud. The Internet of Things (IoT) architecture is used to get the mobility and fast access of patient data to healthcare service providers. This research work proposes a novel architecture for wireless physiological signal monitoring system using ubiquitous healthcare services by virtual Internet of Things. We showed an improvement in method of access and real time dynamic monitoring of physiological signal of this remote monitoring system using virtual Internet of thing approach. This remote monitoring and access system is evaluated in conventional value. This proposed system is envisioned to modern smart health care system by high utility and user friendly in clinical applications. We claim that the proposed scheme significantly improves the accuracy of the remote monitoring system compared to the other wireless communication methods in clinical system.
Widdowson, Christopher; Ganhotra, Jatin; Faizal, Mohammed; Wilko, Marissa; Parikh, Saurin; Adhami, Zainulabidin; Hernandez, Manuel E
2016-08-01
Falls are a leading cause of injury and mortality among adults over the age of 65 years. Given the strong relation between fear of falling and fall risk, identification of the mechanisms that underlie anxiety-related changes in postural control may pave the way to the development of novel therapeutic strategies aimed at reducing fall risk in older adults. First, we review potential mechanisms underlying anxiety-mediated changes in postural control in older adults with and without neurological conditions. We then present a system that allows for the simultaneous recording of neural, physiological, and behavioral data in an immersive virtual reality (VR) environment while implementing sensory and mechanical perturbations to evaluate alterations in sensorimotor integration under conditions with high postural threat. We also discuss applications of VR in minimizing falls in older adults and potential future studies.
Hagerhall, C M; Laike, T; Küller, M; Marcheschi, E; Boydston, C; Taylor, R P
2015-01-01
Psychological and physiological benefits of viewing nature have been extensively studied for some time. More recently it has been suggested that some of these positive effects can be explained by nature's fractal properties. Virtually all studies on human responses to fractals have used stimuli that represent the specific form of fractal geometry found in nature, i.e. statistical fractals, as opposed to fractal patterns which repeat exactly at different scales. This raises the question of whether human responses like preference and relaxation are being driven by fractal geometry in general or by the specific form of fractal geometry found in nature. In this study we consider both types of fractals (statistical and exact) and morph one type into the other. Based on the Koch curve, nine visual stimuli were produced in which curves of three different fractal dimensions evolve gradually from an exact to a statistical fractal. The patterns were shown for one minute each to thirty-five subjects while qEEG was continuously recorded. The results showed that the responses to statistical and exact fractals differ, and that the natural form of the fractal is important for inducing alpha responses, an indicator of a wakefully relaxed state and internalized attention.
A vision and strategy for the virtual physiological human: 2012 update
Hunter, Peter; Chapman, Tara; Coveney, Peter V.; de Bono, Bernard; Diaz, Vanessa; Fenner, John; Frangi, Alejandro F.; Harris, Peter; Hose, Rod; Kohl, Peter; Lawford, Pat; McCormack, Keith; Mendes, Miriam; Omholt, Stig; Quarteroni, Alfio; Shublaq, Nour; Skår, John; Stroetmann, Karl; Tegner, Jesper; Thomas, S. Randall; Tollis, Ioannis; Tsamardinos, Ioannis; van Beek, Johannes H. G. M.; Viceconti, Marco
2013-01-01
European funding under Framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for 5 years. The VPH Network of Excellence (NoE) has been set up to help develop common standards, open source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also working to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by the FP6 STEP project in 2006. In 2010, we wrote an assessment of the accomplishments of the first two years of the VPH in which we considered the biomedical science, healthcare and information and communications technology challenges facing the project (Hunter et al. 2010 Phil. Trans. R. Soc. A 368, 2595–2614 (doi:10.1098/rsta.2010.0048)). We proposed that a not-for-profit professional umbrella organization, the VPH Institute, should be established as a means of sustaining the VPH vision beyond the time-frame of the NoE. Here, we update and extend this assessment and in particular address the following issues raised in response to Hunter et al.: (i) a vision for the VPH updated in the light of progress made so far, (ii) biomedical science and healthcare challenges that the VPH initiative can address while also providing innovation opportunities for the European industry, and (iii) external changes needed in regulatory policy and business models to realize the full potential that the VPH has to offer to industry, clinics and society generally. PMID:24427536
A vision and strategy for the virtual physiological human: 2012 update.
Hunter, Peter; Chapman, Tara; Coveney, Peter V; de Bono, Bernard; Diaz, Vanessa; Fenner, John; Frangi, Alejandro F; Harris, Peter; Hose, Rod; Kohl, Peter; Lawford, Pat; McCormack, Keith; Mendes, Miriam; Omholt, Stig; Quarteroni, Alfio; Shublaq, Nour; Skår, John; Stroetmann, Karl; Tegner, Jesper; Thomas, S Randall; Tollis, Ioannis; Tsamardinos, Ioannis; van Beek, Johannes H G M; Viceconti, Marco
2013-04-06
European funding under Framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for 5 years. The VPH Network of Excellence (NoE) has been set up to help develop common standards, open source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also working to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by the FP6 STEP project in 2006. In 2010, we wrote an assessment of the accomplishments of the first two years of the VPH in which we considered the biomedical science, healthcare and information and communications technology challenges facing the project (Hunter et al. 2010 Phil. Trans. R. Soc. A 368, 2595-2614 (doi:10.1098/rsta.2010.0048)). We proposed that a not-for-profit professional umbrella organization, the VPH Institute, should be established as a means of sustaining the VPH vision beyond the time-frame of the NoE. Here, we update and extend this assessment and in particular address the following issues raised in response to Hunter et al.: (i) a vision for the VPH updated in the light of progress made so far, (ii) biomedical science and healthcare challenges that the VPH initiative can address while also providing innovation opportunities for the European industry, and (iii) external changes needed in regulatory policy and business models to realize the full potential that the VPH has to offer to industry, clinics and society generally.
Kamimura, Hidetaka; Ito, Satoshi; Chijiwa, Hiroyuki; Okuzono, Takeshi; Ishiguro, Tomohiro; Yamamoto, Yosuke; Nishinoaki, Sho; Ninomiya, Shin-Ichi; Mitsui, Marina; Kalgutkar, Amit S; Yamazaki, Hiroshi; Suemizu, Hiroshi
2017-05-01
1. The partial glucokinase activator N,N-dimethyl-5-((2-methyl-6-((5-methylpyrazin-2-yl)carbamoyl)benzofuran-4-yl)oxy)pyrimidine-2-carboxamide (PF-04937319) is biotransformed in humans to N-methyl-5-((2-methyl-6-((5-methylpyrazin-2-yl)carbamoyl)benzofuran-4-yl)oxy)pyrimidine-2-carboxamide (M1), accounting for ∼65% of total exposure at steady state. 2. As the disproportionately abundant nature of M1 could not be reliably predicted from in vitro metabolism studies, we evaluated a chimeric mouse model with humanized liver on TK-NOG background for its ability to retrospectively predict human disposition of PF-04937319. Since livers of chimeric mice were enlarged by hyperplasia and contained remnant mouse hepatocytes, hepatic intrinsic clearances normalized for liver weight, metabolite formation and liver to plasma concentration ratios were plotted against the replacement index by human hepatocytes and extrapolated to those in the virtual chimeric mouse with 100% humanized liver. 3. Semi-physiological pharmacokinetic analyses using the above parameters revealed that simulated concentration curves of PF-04937319 and M1 were approximately superimposed with the observed clinical data in humans. 4. Finally, qualitative profiling of circulating metabolites in humanized chimeric mice dosed with PF-04937319 or M1 also revealed the presence of a carbinolamide metabolite, identified in the clinical study as a human-specific metabolite. The case study demonstrates that humanized chimeric mice may be potentially useful in preclinical discovery towards studying disproportionate or human-specific metabolism of drug candidates.
Virtual human versus human administration of photographic lineups.
Daugherty, Brent; Babu, Sabarish; Wallendael, Lori Van; Cutler, Brian; Hodges, Larry F
2008-01-01
One solution to mistaken identification by a crime's victims and eyewitnesses is to use a virtual officer to conduct identification procedures. Results from a study comparing a virtual officer with a live human investigator indicate that the virtual officer performs comparably to the human in terms of identification accuracy, emotional affect, and ease of use.
A three-dimensional virtual environment for modeling mechanical cardiopulmonary interactions.
Kaye, J M; Primiano, F P; Metaxas, D N
1998-06-01
We have developed a real-time computer system for modeling mechanical physiological behavior in an interactive, 3-D virtual environment. Such an environment can be used to facilitate exploration of cardiopulmonary physiology, particularly in situations that are difficult to reproduce clinically. We integrate 3-D deformable body dynamics with new, formal models of (scalar) cardiorespiratory physiology, associating the scalar physiological variables and parameters with the corresponding 3-D anatomy. Our framework enables us to drive a high-dimensional system (the 3-D anatomical models) from one with fewer parameters (the scalar physiological models) because of the nature of the domain and our intended application. Our approach is amenable to modeling patient-specific circumstances in two ways. First, using CT scan data, we apply semi-automatic methods for extracting and reconstructing the anatomy to use in our simulations. Second, our scalar physiological models are defined in terms of clinically measurable, patient-specific parameters. This paper describes our approach, problems we have encountered and a sample of results showing normal breathing and acute effects of pneumothoraces.
Papafaklis, Michail I; Muramatsu, Takashi; Ishibashi, Yuki; Lakkas, Lampros S; Nakatani, Shimpei; Bourantas, Christos V; Ligthart, Jurgen; Onuma, Yoshinobu; Echavarria-Pinto, Mauro; Tsirka, Georgia; Kotsia, Anna; Nikas, Dimitrios N; Mogabgab, Owen; van Geuns, Robert-Jan; Naka, Katerina K; Fotiadis, Dimitrios I; Brilakis, Emmanouil S; Garcia-Garcia, Héctor M; Escaned, Javier; Zijlstra, Felix; Michalis, Lampros K; Serruys, Patrick W
2014-09-01
To develop a simplified approach of virtual functional assessment of coronary stenosis from routine angiographic data and test it against fractional flow reserve using a pressure wire (wire-FFR). Three-dimensional quantitative coronary angiography (3D-QCA) was performed in 139 vessels (120 patients) with intermediate lesions assessed by wire-FFR (reference standard: ≤0.80). The 3D-QCA models were processed with computational fluid dynamics (CFD) to calculate the lesion-specific pressure gradient (ΔP) and construct the ΔP-flow curve, from which the virtual functional assessment index (vFAI) was derived. The discriminatory power of vFAI for ischaemia- producing lesions was high (area under the receiver operator characteristic curve [AUC]: 92% [95% CI: 86-96%]). Diagnostic accuracy, sensitivity and specificity for the optimal vFAI cut-point (≤0.82) were 88%, 90% and 86%, respectively. Virtual-FAI demonstrated superior discrimination against 3D-QCA-derived % area stenosis (AUC: 78% [95% CI: 70- 84%]; p<0.0001 compared to vFAI). There was a close correlation (r=0.78, p<0.0001) and agreement of vFAI compared to wire-FFR (mean difference: -0.0039±0.085, p=0.59). We developed a fast and simple CFD-powered virtual haemodynamic assessment model using only routine angiography and without requiring any invasive physiology measurements/hyperaemia induction. Virtual-FAI showed a high diagnostic performance and incremental value to QCA for predicting wire-FFR; this "less invasive" approach could have important implications for patient management and cost.
Eliciting affect via immersive virtual reality: a tool for adolescent risk reduction.
Hadley, Wendy; Houck, Christopher D; Barker, David H; Garcia, Abbe Marrs; Spitalnick, Josh S; Curtis, Virginia; Roye, Scott; Brown, Larry K
2014-04-01
A virtual reality environment (VRE) was designed to expose participants to substance use and sexual risk-taking cues to examine the utility of VR in eliciting adolescent physiological arousal. 42 adolescents (55% male) with a mean age of 14.54 years (SD = 1.13) participated. Physiological arousal was examined through heart rate (HR), respiratory sinus arrhythmia (RSA), and self-reported somatic arousal. A within-subject design (neutral VRE, VR party, and neutral VRE) was utilized to examine changes in arousal. The VR party demonstrated an increase in physiological arousal relative to a neutral VRE. Examination of individual segments of the party (e.g., orientation, substance use, and sexual risk) demonstrated that HR was significantly elevated across all segments, whereas only the orientation and sexual risk segments demonstrated significant impact on RSA. This study provides preliminary evidence that VREs can be used to generate physiological arousal in response to substance use and sexual risk cues.
Characteristic changes in the physiological components of cybersickness.
Kim, Young Youn; Kim, Hyun Ju; Kim, Eun Nam; Ko, Hee Dong; Kim, Hyun Taek
2005-09-01
We investigated the characteristic changes in the physiology of cybersickness when subjects were exposed to virtual reality. Sixty-one participants experienced a virtual navigation for a total of 9.5 min, and were required to detect specific virtual objects. Three questionnaires for sickness susceptibility and immersive tendency were obtained before the navigation. Sixteen electrophysiological signals were recorded before, during, and after the navigation. The severity of cybersickness experienced by participants was reported from a simulator sickness questionnaire after the navigation. The total severity of cybersickness had a significant positive correlation with gastric tachyarrhythmia, eyeblink rate, heart period, and EEG delta wave and a negative correlation with EEG beta wave. These results suggest that cybersickness accompanies the pattern changes in the activities of the central and the autonomic nervous systems.
Riva, G; Bacchetta, M; Baruffi, M; Borgomainerio, E; Defrance, C; Gatti, F; Galimberti, C; Fontaneto, S; Marchi, S; Molinari, E; Nugues, P; Rinaldi, S; Rovetta, A; Ferretti, G S; Tonci, A; Wann, J; Vincelli, F
1999-01-01
Due, in large part, to the significant advances in PC hardware that have been made over the last 3 years, PC-based virtual environments are approaching reality. Virtual Reality Environments for Psychoneurophysiological Assessment and Rehabilitation (VREPAR) are two European Community funded projects (Telematics for health-HC 1053/HC 1055, http:// www.psicologia.net) that are trying to develop a PC-based virtual reality system (PC-VRS) for the medical market that can be marketed at a price that is accessible to its possible endusers (hospitals, universities, and research centres) and that would have the modular, connectability, and interoperability characteristics that the existing systems lack. In particular, the projects are developing three hardware/software modules for the application of the PCVRS in psycho-neuro-physiological assessment and rehabilitation. The chosen development areas are eating disorders (bulimia, anorexia, and obesity), movement disorders (Parkinson's disease and torsion dystonia) and stroke disorders (unilateral neglect and hemiparesis). This article describes the rationale of the modules and the preliminary results obtained.
Reverse Induced Fit-Driven MAS-Downstream Transduction: Looking for Metabotropic Agonists.
Pernomian, Larissa; Gomes, Mayara S; de Paula da Silva, Carlos H Tomich; Rosa, Joaquin M C
2017-01-01
Protective effects of MAS activation have spurred clinical interests in developing MAS agonists. However, current bases that drive this process preclude that physiological concentrations of peptide MAS agonists induce an atypical signaling that does not reach the metabotropic efficacy of constitutive activation. Canonical activation of MAS-coupled G proteins is only achieved by supraphysiological concentrations of peptide MAS agonists or physiological concentrations of chemically modified analogues. These pleiotropic differences are because of two overlapped binding domains: one non-metabotropic site that recognizes peptide agonists and one metabotropic domain that recognizes modified analogues. It is feasible that supraphysiological concentrations of peptide MAS agonists undergo to chemical modifications required for binding to metabotropic domain. Receptor oligomerization enhances pharmacological parameters coupled to metabotropic signaling. The formation of receptor-signalosome complex makes the transduction of agonists more adaptive. Considering the recent identification of MAS-signalosome, we aimed to postulate the reverse induced fit hypothesis in which MAS-signalosome would trigger chemical modifications required for agonists bind to MAS metabotropic domain. Here we cover rational perspectives for developing novel metabotropic MAS agonists in the view of the reverse induced-fit hypothesis. Predicting a 3D model of MAS metabotropic domain may guide the screening of chemical modifications required for metabotropic efficacy. Pharmacophore-based virtual screening would select potential metabotropic MAS agonists from virtual libraries from human proteome. Rational perspectives that consider reverse induced fit hypothesis during MAS activation for developing metabotropic MAS agonists represents the best approach in providing MAS ligands with constitutive efficacy at physiological concentrations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
[Current problems in the data acquisition of digitized virtual human and the countermeasures].
Zhong, Shi-zhen; Yuan, Lin
2003-06-01
As a relatively new field of medical science research that has attracted the attention from worldwide researchers, study of digitized virtual human still awaits long-term dedicated effort for its full development. In the full array of research projects of the integrated Virtual Chinese Human project, virtual visible human, virtual physical human, virtual physiome, and intellectualized virtual human must be included as the four essential constitutional opponents. The primary importance should be given to solving the problems concerning the data acquisition for the dataset of this immense project. Currently 9 virtual human datasets have been established worldwide, which are subjected to critical analyses in the paper with special attention given to the problems in the data storage and the techniques employed, for instance, in these datasets. On the basis of current research status of Virtual Chinese Human project, the authors propose some countermeasures for solving the problems in the data acquisition for the dataset, which include (1) giving the priority to the quality control instead of merely racing for quantity and speed, and (2) improving the setting up of the markers specific for the tissues and organs to meet the requirement from information technology, (3) with also attention to the development potential of the dataset which should have explicit pertinence to specific actual applications.
Allen, R J; Rieger, T R; Musante, C J
2016-03-01
Quantitative systems pharmacology models mechanistically describe a biological system and the effect of drug treatment on system behavior. Because these models rarely are identifiable from the available data, the uncertainty in physiological parameters may be sampled to create alternative parameterizations of the model, sometimes termed "virtual patients." In order to reproduce the statistics of a clinical population, virtual patients are often weighted to form a virtual population that reflects the baseline characteristics of the clinical cohort. Here we introduce a novel technique to efficiently generate virtual patients and, from this ensemble, demonstrate how to select a virtual population that matches the observed data without the need for weighting. This approach improves confidence in model predictions by mitigating the risk that spurious virtual patients become overrepresented in virtual populations.
Kuriakose, Selvia; Lahiri, Uttama
2015-07-01
Individuals with Autism are characterized by deficits in socialization and communication. In recent years several assistive technologies, e.g., Virtual Reality (VR), have been investigated to address the socialization deficits in these individuals. Presently available VR-based systems address various aspects of social communication in an isolated manner and without monitoring one's affective state such as, anxiety. However, in conventional observation-based therapy, a therapist adjusts the intervention paradigm by monitoring one's anxiety level. But, often these individuals have an inherent inability to explicitly express their anxiety thereby inducing limitations on conventional techniques. Physiological signals being continuously available and not directly impacted by these communication difficulties can be alternatively used as markers of one's anxiety level. In our research we aim at designing a Virtual-reality bAsed Social-communication Task (VAST) system that can address the various aspects of social communication, e.g., social context, subtle social cues, emotional expression, etc., in a cumulative and structured way. In addition, we augment this with a capability to use one's physiological signals as markers of one's anxiety level. In our preliminary feasibility study we investigate the potential of VAST to cause variations in one's performance and anxiety level that can be mapped from one's physiological indices.
Physiological reactivity to nonideographic virtual reality stimuli in veterans with and without PTSD
Webb, Andrea K; Vincent, Ashley L; Jin, Alvin B; Pollack, Mark H
2015-01-01
Background Post-traumatic stress disorder (PTSD) currently is diagnosed via clinical interview in which subjective self reports of traumatic events and associated experiences are discussed with a mental health professional. The reliability and validity of diagnoses can be improved with the use of objective physiological measures. Methods In this study, physiological activity was recorded from 58 male veterans (PTSD Diagnosis n = 16; Trauma Exposed/No PTSD Diagnosis: n = 23; No Trauma/No PTSD Diagnosis: n = 19) with and without PTSD and combat trauma exposure in response to emotionally evocative non-idiographic virtual reality stimuli. Results Statistically significant differences among the Control, Trauma, and PTSD groups were present during the viewing of two virtual reality videos. Skin conductance and interbeat interval features were extracted for each of ten video events (five events of increasing severity per video). These features were submitted to three stepwise discriminant function analyses to assess classification accuracy for Control versus Trauma, Control versus PTSD, and Trauma versus PTSD pairings of participant groups. Leave-one-out cross-validation classification accuracy was between 71 and 94%. Conclusions These results are promising and suggest the utility of objective physiological measures in assisting with PTSD diagnosis. PMID:25642387
Martini, Matteo; Kilteni, Konstantina; Maselli, Antonella; Sanchez-Vives, Maria V
2015-09-29
The feeling of "ownership" over an external dummy/virtual body (or body part) has been proven to have both physiological and behavioural consequences. For instance, the vision of an "embodied" dummy or virtual body can modulate pain perception. However, the impact of partial or total invisibility of the body on physiology and behaviour has been hardly explored since it presents obvious difficulties in the real world. In this study we explored how body transparency affects both body ownership and pain threshold. By means of virtual reality, we presented healthy participants with a virtual co-located body with four different levels of transparency, while participants were tested for pain threshold by increasing ramps of heat stimulation. We found that the strength of the body ownership illusion decreases when the body gets more transparent. Nevertheless, in the conditions where the body was semi-transparent, higher levels of ownership over a see-through body resulted in an increased pain sensitivity. Virtual body ownership can be used for the development of pain management interventions. However, we demonstrate that providing invisibility of the body does not increase pain threshold. Therefore, body transparency is not a good strategy to decrease pain in clinical contexts, yet this remains to be tested.
Martini, Matteo; Kilteni, Konstantina; Maselli, Antonella; Sanchez-Vives, Maria V.
2015-01-01
The feeling of “ownership” over an external dummy/virtual body (or body part) has been proven to have both physiological and behavioural consequences. For instance, the vision of an “embodied” dummy or virtual body can modulate pain perception. However, the impact of partial or total invisibility of the body on physiology and behaviour has been hardly explored since it presents obvious difficulties in the real world. In this study we explored how body transparency affects both body ownership and pain threshold. By means of virtual reality, we presented healthy participants with a virtual co-located body with four different levels of transparency, while participants were tested for pain threshold by increasing ramps of heat stimulation. We found that the strength of the body ownership illusion decreases when the body gets more transparent. Nevertheless, in the conditions where the body was semi-transparent, higher levels of ownership over a see-through body resulted in an increased pain sensitivity. Virtual body ownership can be used for the development of pain management interventions. However, we demonstrate that providing invisibility of the body does not increase pain threshold. Therefore, body transparency is not a good strategy to decrease pain in clinical contexts, yet this remains to be tested. PMID:26415748
Integrating knowledge representation and quantitative modelling in physiology.
de Bono, Bernard; Hunter, Peter
2012-08-01
A wealth of potentially shareable resources, such as data and models, is being generated through the study of physiology by computational means. Although in principle the resources generated are reusable, in practice, few can currently be shared. A key reason for this disparity stems from the lack of consistent cataloguing and annotation of these resources in a standardised manner. Here, we outline our vision for applying community-based modelling standards in support of an automated integration of models across physiological systems and scales. Two key initiatives, the Physiome Project and the European contribution - the Virtual Phsysiological Human Project, have emerged to support this multiscale model integration, and we focus on the role played by two key components of these frameworks, model encoding and semantic metadata annotation. We present examples of biomedical modelling scenarios (the endocrine effect of atrial natriuretic peptide, and the implications of alcohol and glucose toxicity) to illustrate the role that encoding standards and knowledge representation approaches, such as ontologies, could play in the management, searching and visualisation of physiology models, and thus in providing a rational basis for healthcare decisions and contributing towards realising the goal of of personalized medicine. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hirarchical emotion calculation model for virtual human modellin - biomed 2010.
Zhao, Yue; Wright, David
2010-01-01
This paper introduces a new emotion generation method for virtual human modelling. The method includes a novel hierarchical emotion structure, a group of emotion calculation equations and a simple heuristics decision making mechanism, which enables virtual humans to perform emotionally in real-time according to their internal and external factors. Emotion calculation equations used in this research were derived from psychologic emotion measurements. Virtual humans can utilise the information in virtual memory and emotion calculation equations to generate their own numerical emotion states within the hierarchical emotion structure. Those emotion states are important internal references for virtual humans to adopt appropriate behaviours and also key cues for their decision making. A simple heuristics theory is introduced and integrated into decision making process in order to make the virtual humans decision making more like a real human. A data interface which connects the emotion calculation and the decision making structure together has also been designed and simulated to test the method in Virtools environment.
Identification of resilient individuals and those at risk for performance deficits under stress.
Winslow, Brent D; Carroll, Meredith B; Martin, Jonathan W; Surpris, Glenn; Chadderdon, George L
2015-01-01
Human task performance is affected by exposure to physiological and psychological stress. The ability to measure the physiological response to stressors and correlate that to task performance could be used to identify resilient individuals or those at risk for stress-related performance decrements. Accomplishing this prior to performance under severe stress or the development of clinical stress disorders could facilitate focused preparation such as tailoring training to individual needs. Here we measure the effects of stress on physiological response and performance through behavior, physiological sensors, and subjective ratings, and identify which individuals are at risk for stress-related performance decrements. Participants performed military-relevant training tasks under stress in a virtual environment, with autonomic and hypothalamic-pituitary-adrenal axis (HPA) reactivity analyzed. Self-reported stress, as well as physiological indices of stress, increased in the group pre-exposed to socioevaluative stress. Stress response was effectively captured via electrodermal and cardiovascular measures of heart rate and skin conductance level. A resilience classification algorithm was developed based upon physiological reactivity, which correlated with baseline unstressed physiological and self-reported stress values. Outliers were identified in the experimental group that had a significant mismatch between self-reported stress and salivary cortisol. Baseline stress measurements were predictive of individual resilience to stress, including the impact stress had on physiological reactivity and performance. Such an approach may have utility in identifying individuals at risk for problems performing under severe stress. Continuing work has focused on adapting this method for military personnel, and assessing the utility of various coping and decision-making strategies on performance and physiological stress.
Identification of resilient individuals and those at risk for performance deficits under stress
Winslow, Brent D.; Carroll, Meredith B.; Martin, Jonathan W.; Surpris, Glenn; Chadderdon, George L.
2015-01-01
Human task performance is affected by exposure to physiological and psychological stress. The ability to measure the physiological response to stressors and correlate that to task performance could be used to identify resilient individuals or those at risk for stress-related performance decrements. Accomplishing this prior to performance under severe stress or the development of clinical stress disorders could facilitate focused preparation such as tailoring training to individual needs. Here we measure the effects of stress on physiological response and performance through behavior, physiological sensors, and subjective ratings, and identify which individuals are at risk for stress-related performance decrements. Participants performed military-relevant training tasks under stress in a virtual environment, with autonomic and hypothalamic-pituitary-adrenal axis (HPA) reactivity analyzed. Self-reported stress, as well as physiological indices of stress, increased in the group pre-exposed to socioevaluative stress. Stress response was effectively captured via electrodermal and cardiovascular measures of heart rate and skin conductance level. A resilience classification algorithm was developed based upon physiological reactivity, which correlated with baseline unstressed physiological and self-reported stress values. Outliers were identified in the experimental group that had a significant mismatch between self-reported stress and salivary cortisol. Baseline stress measurements were predictive of individual resilience to stress, including the impact stress had on physiological reactivity and performance. Such an approach may have utility in identifying individuals at risk for problems performing under severe stress. Continuing work has focused on adapting this method for military personnel, and assessing the utility of various coping and decision-making strategies on performance and physiological stress. PMID:26441503
Sex differences in a virtual water maze: an eye tracking and pupillometry study.
Mueller, Sven C; Jackson, Carl P T; Skelton, Ron W
2008-11-21
Sex differences in human spatial navigation are well known. However, the exact strategies that males and females employ in order to navigate successfully around the environment are unclear. While some researchers propose that males prefer environment-centred (allocentric) and females prefer self-centred (egocentric) navigation, these findings have proved difficult to replicate. In the present study we examined eye movements and physiological measures of memory (pupillometry) in order to compare visual scanning of spatial orientation using a human virtual analogue of the Morris Water Maze task. Twelve women and twelve men (average age=24 years) were trained on a visible platform and had to locate an invisible platform over a series of trials. On all but the first trial, participants' eye movements were recorded for 3s and they were asked to orient themselves in the environment. While the behavioural data replicated previous findings of improved spatial performance for males relative to females, distinct sex differences in eye movements were found. Males tended to explore consistently more space early on while females demonstrated initially longer fixation durations and increases in pupil diameter usually associated with memory processing. The eye movement data provides novel insight into differences in navigational strategies between the sexes.
Fusaro, M.; Tieri, G.
2016-01-01
Studies have explored behavioral and neural responses to the observation of pain in others. However, much less is known about how taking a physical perspective influences reactivity to the observation of others' pain and pleasure. To explore this issue we devised a novel paradigm in which 24 healthy participants immersed in a virtual reality scenario observed a virtual: needle penetrating (pain), caress (pleasure), or ball touching (neutral) the hand of an avatar seen from a first (1PP)- or a third (3PP)-person perspective. Subjective ratings and physiological responses [skin conductance responses (SCR) and heart rate (HR)] were collected in each trial. All participants reported strong feelings of ownership of the virtual hand only in 1PP. Subjective measures also showed that pain and pleasure were experienced as more salient than neutral. SCR analysis demonstrated higher reactivity in 1PP than in 3PP. Importantly, vicarious pain induced stronger responses with respect to the other conditions in both perspectives. HR analysis revealed equally lower activity during pain and pleasure with respect to neutral. SCR may reflect egocentric perspective, and HR may merely index general arousal. The results suggest that behavioral and physiological indexes of reactivity to seeing others' pain and pleasure were qualitatively similar in 1PP and 3PP. Our paradigm indicates that virtual reality can be used to study vicarious sensation of pain and pleasure without actually delivering any stimulus to participants' real body and to explore behavioral and physiological reactivity when they observe pain and pleasure from ego- and allocentric perspectives. PMID:27655965
Navab, Nassir; Fellow, Miccai; Hennersperger, Christoph; Frisch, Benjamin; Fürst, Bernhard
2016-10-01
In the last decade, many researchers in medical image computing and computer assisted interventions across the world focused on the development of the Virtual Physiological Human (VPH), aiming at changing the practice of medicine from classification and treatment of diseases to that of modeling and treating patients. These projects resulted in major advancements in segmentation, registration, morphological, physiological and biomechanical modeling based on state of art medical imaging as well as other sensory data. However, a major issue which has not yet come into the focus is personalizing intra-operative imaging, allowing for optimal treatment. In this paper, we discuss the personalization of imaging and visualization process with particular focus on satisfying the challenging requirements of computer assisted interventions. We discuss such requirements and review a series of scientific contributions made by our research team to tackle some of these major challenges. Copyright © 2016. Published by Elsevier B.V.
Role of Proangiogenic Factors in Immunopathogenesis of Multiple Sclerosis.
Hamid, Kabir Magaji; Mirshafiey, Abbas
2016-02-01
Angiogenesis is a complex and balanced process in which new blood vessels form from preexisting ones by sprouting, splitting, growth and remodeling. This phenomenon plays a vital role in many physiological and pathological processes. However, the disturbance in physiological process can play a role in pathogenesis of some chronic inflammatory diseases, including multiple sclerosis (MS) in human and its animal model. Although the relation between abnormal blood vessels and MS lesions was established in previous studies, but the role of pathological angiogenesis remains unclear. In this study, the link between proangiogenic factors and multiple sclerosis pathogenesis was examined by conducting a systemic review. Thus we searched the English medical literature via PubMed, ISI web of knowledge, Medline and virtual health library (VHL) databases. In this review, we describe direct and indirect roles of some proangiogenic factors in MS pathogenesis and report the association of these factors with pathological and inflammatory angiogenesis.
WE-D-303-01: Development and Application of Digital Human Phantoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segars, P.
2015-06-15
Modern medical physics deals with complex problems such as 4D radiation therapy and imaging quality optimization. Such problems involve a large number of radiological parameters, and anatomical and physiological breathing patterns. A major challenge is how to develop, test, evaluate and compare various new imaging and treatment techniques, which often involves testing over a large range of radiological parameters as well as varying patient anatomies and motions. It would be extremely challenging, if not impossible, both ethically and practically, to test every combination of parameters and every task on every type of patient under clinical conditions. Computer-based simulation using computationalmore » phantoms offers a practical technique with which to evaluate, optimize, and compare imaging technologies and methods. Within simulation, the computerized phantom provides a virtual model of the patient’s anatomy and physiology. Imaging data can be generated from it as if it was a live patient using accurate models of the physics of the imaging and treatment process. With sophisticated simulation algorithms, it is possible to perform virtual experiments entirely on the computer. By serving as virtual patients, computational phantoms hold great promise in solving some of the most complex problems in modern medical physics. In this proposed symposium, we will present the history and recent developments of computational phantom models, share experiences in their application to advanced imaging and radiation applications, and discuss their promises and limitations. Learning Objectives: Understand the need and requirements of computational phantoms in medical physics research Discuss the developments and applications of computational phantoms Know the promises and limitations of computational phantoms in solving complex problems.« less
Virtual Rehabilitation with Children: Challenges for Clinical Adoption [From the Field].
Glegg, Stephanie
2017-01-01
Virtual, augmented, and mixed reality environments are increasingly being developed and used to address functional rehabilitation goals related to physical, cognitive, social, and psychological impairments. For example, a child with an acquired brain injury may participate in virtual rehabilitation to address impairments in balance, attention, turn taking, and engagement in therapy. The trend toward virtual rehabilitation first gained momentum with the adoption of commercial off-the-shelf active video gaming consoles (e.g., Nintendo Wii and XBox). Now, we are seeing the rapid emergence of customized rehabilitation-specific systems that integrate technological advances in virtual reality, visual effects, motion tracking, physiological monitoring, and robotics.
Rieger, TR; Musante, CJ
2016-01-01
Quantitative systems pharmacology models mechanistically describe a biological system and the effect of drug treatment on system behavior. Because these models rarely are identifiable from the available data, the uncertainty in physiological parameters may be sampled to create alternative parameterizations of the model, sometimes termed “virtual patients.” In order to reproduce the statistics of a clinical population, virtual patients are often weighted to form a virtual population that reflects the baseline characteristics of the clinical cohort. Here we introduce a novel technique to efficiently generate virtual patients and, from this ensemble, demonstrate how to select a virtual population that matches the observed data without the need for weighting. This approach improves confidence in model predictions by mitigating the risk that spurious virtual patients become overrepresented in virtual populations. PMID:27069777
Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm
Dura-Bernal, Salvador; Zhou, Xianlian; Neymotin, Samuel A.; Przekwas, Andrzej; Francis, Joseph T.; Lytton, William W.
2015-01-01
Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of limb prosthetics. PMID:26635598
Rivera-Gutierrez, Diego; Ferdig, Rick; Li, Jian; Lok, Benjamin
2014-04-01
We have created You, M.D., an interactive museum exhibit in which users learn about topics in public health literacy while interacting with virtual humans. You, M.D. is equipped with a weight sensor, a height sensor and a Microsoft Kinect that gather basic user information. Conceptually, You, M.D. could use this user information to dynamically select the appearance of the virtual humans in the interaction attempting to improve learning outcomes and user perception for each particular user. For this concept to be possible, a better understanding of how different elements of the visual appearance of a virtual human affects user perceptions is required. In this paper, we present the results of an initial user study with a large sample size (n =333) ran using You, M.D. The study measured users reactions based on the users gender and body-mass index (BMI) when facing virtual humans with BMI either concordant or discordant from the users BMI. The results of the study indicate that concordance between the users BMI and the virtual humans BMI affects male and female users differently. The results also show that female users rate virtual humans as more knowledgeable than male users rate the same virtual humans.
Human Resource Management in Virtual Organizations. Research in Human Resource Management Series.
ERIC Educational Resources Information Center
Heneman, Robert L., Ed.; Greenberger, David B., Ed.
This document contains 14 papers on human resources (HR) and human resource management (HRM) in virtual organizations. The following papers are included: "Series Preface" (Rodger Griffeth); "Volume Preface" (Robert L. Heneman, David B. Greenberger); "The Virtual Organization: Definition, Description, and…
Balázs, P
2006-03-01
According to standard textbooks, the last episode of European New Age plague pandemic died out by 1720 in Marseilles. Despite this allegation, the pandemic continued in well-documented new outbreaks, which attacked and devastated Central and Eastern Europe throughout the first half of the 18th century. At the beginning, military campaigns spread the infection out of the Ottoman Empire. Later on commercial goods took over this role via land or sea from Asia or out of the eastern Mediterranean region. Finally, the plague in Europe--except Russia and the Ottoman Empire--"died out" virtually by the end of the 18th century. Explaining this, there many scientific reasons were suggested: 1. Oriental rat fleas as main vectors of infection could not tolerate any more the European weather conditions (although there were no virtual climate changes in the last 300 years). 2. Black rats that lived in close proximity to man, were being outplayed by brown rats living rather outside of human habitats; 3. There emerged less virulent Yersinia strains that caused natural human immunisation. In spite of these suggestions, which may have contributed to the success, joint civil and military health authorities blocked the plague indeed, as a result of disciplined and relentless law enforcement. In Hungary, respectively in the Hapsburg Empire, well-advised health legislation backed up the effectiveness of local authorities. Following the last great devastation in 1738-1740, the General Norm of Health Service--a voluminous decree--summed up by 1770 all the time honoured empiric rules of foregoing centuries. It can be excellently demonstrated, how exactly the empiric rules discovered a century later met scientific facts of physiology and microbiology.
An intelligent virtual human system for providing healthcare information and support.
Rizzo, Albert A; Lange, Belinda; Buckwalter, John G; Forbell, Eric; Kim, Julia; Sagae, Kenji; Williams, Josh; Rothbaum, Barbara O; Difede, JoAnn; Reger, Greg; Parsons, Thomas; Kenny, Patrick
2011-01-01
Over the last 15 years, a virtual revolution has taken place in the use of Virtual Reality simulation technology for clinical purposes. Shifts in the social and scientific landscape have now set the stage for the next major movement in Clinical Virtual Reality with the "birth" of intelligent virtual humans. Seminal research and development has appeared in the creation of highly interactive, artificially intelligent and natural language capable virtual human agents that can engage real human users in a credible fashion. No longer at the level of a prop to add context or minimal faux interaction in a virtual world, virtual humans can be designed to perceive and act in a 3D virtual world, engage in spoken dialogues with real users and can be capable of exhibiting human-like emotional reactions. This paper will present an overview of the SimCoach project that aims to develop virtual human support agents to serve as online guides for promoting access to psychological healthcare information and for assisting military personnel and family members in breaking down barriers to initiating care. The SimCoach experience is being designed to attract and engage military Service Members, Veterans and their significant others who might not otherwise seek help with a live healthcare provider. It is expected that this experience will motivate users to take the first step--to empower themselves to seek advice and information regarding their healthcare and general personal welfare and encourage them to take the next step towards seeking more formal resources if needed.
Modulation of visually evoked movement responses in moving virtual environments.
Reed-Jones, Rebecca J; Vallis, Lori Ann
2009-01-01
Virtual-reality technology is being increasingly used to understand how humans perceive and act in the moving world around them. What is currently not clear is how virtual reality technology is perceived by human participants and what virtual scenes are effective in evoking movement responses to visual stimuli. We investigated the effect of virtual-scene context on human responses to a virtual visual perturbation. We hypothesised that exposure to a natural scene that matched the visual expectancies of the natural world would create a perceptual set towards presence, and thus visual guidance of body movement in a subsequently presented virtual scene. Results supported this hypothesis; responses to a virtual visual perturbation presented in an ambiguous virtual scene were increased when participants first viewed a scene that consisted of natural landmarks which provided 'real-world' visual motion cues. Further research in this area will provide a basis of knowledge for the effective use of this technology in the study of human movement responses.
Eliciting Affect via Immersive Virtual Reality: A Tool for Adolescent Risk Reduction
Houck, Christopher D.; Barker, David H.; Garcia, Abbe Marrs; Spitalnick, Josh S.; Curtis, Virginia; Roye, Scott; Brown, Larry K.
2014-01-01
Objective A virtual reality environment (VRE) was designed to expose participants to substance use and sexual risk-taking cues to examine the utility of VR in eliciting adolescent physiological arousal. Methods 42 adolescents (55% male) with a mean age of 14.54 years (SD = 1.13) participated. Physiological arousal was examined through heart rate (HR), respiratory sinus arrhythmia (RSA), and self-reported somatic arousal. A within-subject design (neutral VRE, VR party, and neutral VRE) was utilized to examine changes in arousal. Results The VR party demonstrated an increase in physiological arousal relative to a neutral VRE. Examination of individual segments of the party (e.g., orientation, substance use, and sexual risk) demonstrated that HR was significantly elevated across all segments, whereas only the orientation and sexual risk segments demonstrated significant impact on RSA. Conclusions This study provides preliminary evidence that VREs can be used to generate physiological arousal in response to substance use and sexual risk cues. PMID:24365699
Modeling mechanical cardiopulmonary interactions for virtual environments.
Kaye, J M
1997-01-01
We have developed a computer system for modeling mechanical cardiopulmonary behavior in an interactive, 3D virtual environment. The system consists of a compact, scalar description of cardiopulmonary mechanics, with an emphasis on respiratory mechanics, that drives deformable 3D anatomy to simulate mechanical behaviors of and interactions between physiological systems. Such an environment can be used to facilitate exploration of cardiopulmonary physiology, particularly in situations that are difficult to reproduce clinically. We integrate 3D deformable body dynamics with new, formal models of (scalar) cardiorespiratory physiology, associating the scalar physiological variables and parameters with corresponding 3D anatomy. Our approach is amenable to modeling patient-specific circumstances in two ways. First, using CT scan data, we apply semi-automatic methods for extracting and reconstructing the anatomy to use in our simulations. Second, our scalar models are defined in terms of clinically-measurable, patient-specific parameters. This paper describes our approach and presents a sample of results showing normal breathing and acute effects of pneumothoraces.
Visualized modeling platform for virtual plant growth and monitoring on the internet
NASA Astrophysics Data System (ADS)
Zhou, De-fu; Tian, Feng-qui; Ren, Ping
2009-07-01
Virtual plant growth is a key research topic in Agriculture Information Technique and Computer Graphics. It has been applied in botany, agronomy, environmental sciences, computre sciences and applied mathematics. Modeling leaf color dynamics in plant is of significant importance for realizing virtual plant growth. Using systematic analysis method and dynamic modeling technology, a SPAD-based leaf color dynamic model was developed to simulate time-course change characters of leaf SPAD on the plant. In addition, process of plant growth can be computer-stimulated using Virtual Reality Modeling Language (VRML) to establish a vivid and visible model, including shooting, rooting, blooming, as well as growth of the stems and leaves. In the resistance environment, e.g., lacking of water, air or nutrient substances, high salt or alkaline, freezing injury, high temperature, suffering from diseases and insect pests, the changes from the level of whole plant to organs, tissues and cells could be computer-stimulated. Changes from physiological and biochemistry could also be described. When a series of indexes were input by the costumers, direct view and microcosmic changes could be shown. Thus, the model has a good performance in predicting growth condition of the plant, laying a foundation for further constructing virtual plant growth system. The results revealed that realistic physiological and pathological processes of 3D virtual plants could be demonstrated by proper design and effectively realized in the internet.
Wolf, Matthew
2014-04-01
Aircraft passengers and crew may be subjected to rapid or prolonged decompression to high cabin altitude when an aircraft develops a hole in the fuselage. The accepted measure of neurological damage due to the hypobaric hypoxia produced is the subjective 'time of useful consciousness' (TUC) measure, which is appropriate for pilots and crew who perform their given tasks, however, TUC is measured under conditions different than the decompression scenarios that passengers undergo in today's aircraft. Ernsting proposed that prolonged exposure to alveolar O2 pressures less than 30 mmHg (P30) causes neurological damage. The current study proposes that a critical value of arterial O2 saturation of 70% (S70) can be used in place of P30 and that this physiological measure is more suited for determination of hypobaric hypoxia in passengers. The study shows the equivalence of model-predicted P30 and S70 values in the Ernsting-decompression scenarios. The model is also used to predict values of these physiological measures in actual aircraft-decompression scenarios. The model can be used by others to quantitatively predict the degree of hypobaric hypoxia for virtually any kind of decompression scenario, including those where supplemental O2 is used. Use of this tool avoids the prohibitive costs of human-subject testing for new aircraft and the potential danger inherent in such tests.
ERIC Educational Resources Information Center
Kiegaldie, Debra; White, Geoff
2006-01-01
The Virtual Patient, an interactive multimedia learning resource using a critical care clinical scenario for postgraduate nursing students, was developed to enhance flexible access to learning experiences and improve learning outcomes in the management of critically ill patients. Using real-time physiological animations, authentic content design…
Is Virtual Reality a Useful Tool in the Teaching of Physiology?
ERIC Educational Resources Information Center
Richardson, Daniel
2011-01-01
This opinion statement points out some of the considerations and pitfalls in using virtual reality computer programs in the teaching of life sciences. Emphasis is placed on the possibility of such programs leading to reductionist thinking including how reductionist thinking could foster the formation of misconceptions. Negative feedback is used as…
Souza Silva, Wagner; Aravind, Gayatri; Sangani, Samir; Lamontagne, Anouk
2018-03-01
This study examines how three types of obstacles (cylinder, virtual human and virtual human with footstep sounds) affect circumvention strategies of healthy young adults. Sixteen participants aged 25.2 ± 2.5 years (mean ± 1SD) were tested while walking overground and viewing a virtual room through a helmet mounted display. As participants walked towards a stationary target in the far space, they avoided an obstacle (cylinder or virtual human) approaching either from the right (+40°), left (-40°) or head-on (0°). Obstacle avoidance strategies were characterized using the position and orientation of the head. Repeated mixed model analysis showed smaller minimal distances (p = 0.007) while avoiding virtual humans as compared to cylinders. Footstep sounds added to virtual humans did not modify (p = 0.2) minimal distances compared to when no sound was provided. Onset times of avoidance strategies were similar across conditions (p = 0.06). Results indicate that the nature of the obstacle (human-like vs. non-human object) matters and can modify avoidance strategies. Smaller obstacle clearances in response to virtual humans may reflect the use of a less conservative avoidance strategy, due to a resemblance of obstacles to pedestrians and a recall of strategies used in daily locomotion. The lack of influence of footstep sounds supports the fact that obstacle avoidance primarily relies on visual cues and the principle of 'inverse effectiveness' whereby multisensory neurons' response to multimodal stimuli becomes weaker when the unimodal sensory stimulus (vision) is strong. Present findings should be taken into consideration to optimize the ecological validity of VR-based obstacle avoidance paradigms used in research and rehabilitation. Copyright © 2018 Elsevier B.V. All rights reserved.
Virtual and biomolecular screening converge on a selective agonist for GPR30.
Bologa, Cristian G; Revankar, Chetana M; Young, Susan M; Edwards, Bruce S; Arterburn, Jeffrey B; Kiselyov, Alexander S; Parker, Matthew A; Tkachenko, Sergey E; Savchuck, Nikolay P; Sklar, Larry A; Oprea, Tudor I; Prossnitz, Eric R
2006-04-01
Estrogen is a hormone critical in the development, normal physiology and pathophysiology of numerous human tissues. The effects of estrogen have traditionally been solely ascribed to estrogen receptor alpha (ERalpha) and more recently ERbeta, members of the soluble, nuclear ligand-activated family of transcription factors. We have recently shown that the seven-transmembrane G protein-coupled receptor GPR30 binds estrogen with high affinity and resides in the endoplasmic reticulum, where it activates multiple intracellular signaling pathways. To differentiate between the functions of ERalpha or ERbeta and GPR30, we used a combination of virtual and biomolecular screening to isolate compounds that selectively bind to GPR30. Here we describe the identification of the first GPR30-specific agonist, G-1 (1), capable of activating GPR30 in a complex environment of classical and new estrogen receptors. The development of compounds specific to estrogen receptor family members provides the opportunity to increase our understanding of these receptors and their contribution to estrogen biology.
Virtual tissues in toxicology.
Shah, Imran; Wambaugh, John
2010-02-01
New approaches are vital for efficiently evaluating human health risk of thousands of chemicals in commerce. In vitro models offer a high-throughput approach for assaying chemical-induced molecular and cellular changes; however, bridging these perturbations to in vivo effects across chemicals, dose, time, and species remains challenging. Technological advances in multiresolution imaging and multiscale simulation are making it feasible to reconstruct tissues in silico. In toxicology, these "virtual" tissues (VT) aim to predict histopathological outcomes from alterations of cellular phenotypes that are controlled by chemical-induced perturbations in molecular pathways. The behaviors of thousands of heterogeneous cells in tissues are simulated discretely using agent-based modeling (ABM), in which computational "agents" mimic cell interactions and cellular responses to the microenvironment. The behavior of agents is constrained by physical laws and biological rules derived from experimental evidence. VT extend compartmental physiologic models to simulate both acute insults as well as the chronic effects of low-dose exposure. Furthermore, agent behavior can encode the logic of signaling and genetic regulatory networks to evaluate the role of different pathways in chemical-induced injury. To extrapolate toxicity across species, chemicals, and doses, VT require four main components: (a) organization of prior knowledge on physiologic events to define the mechanistic rules for agent behavior, (b) knowledge on key chemical-induced molecular effects, including activation of stress sensors and changes in molecular pathways that alter the cellular phenotype, (c) multiresolution quantitative and qualitative analysis of histologic data to characterize and measure chemical-, dose-, and time-dependent physiologic events, and (d) multiscale, spatiotemporal simulation frameworks to effectively calibrate and evaluate VT using experimental data. This investigation presents the motivation, implementation, and application of VT with examples from hepatotoxicity and carcinogenesis.
Clinical use of virtual reality distraction system to reduce anxiety and pain in dental procedures.
Wiederhold, Mark D; Gao, Kenneth; Wiederhold, Brenda K
2014-06-01
Virtual reality (VR) has been used by clinicians to manage pain in clinical populations. This study examines the use of VR as a form of distraction for dental patients using both subjective and objective measures to determine how a VR system affects patients' reported anxiety level, pain level, and physiological factors. As predicted, results of self-evaluation questionnaires showed that patients experienced less anxiety and pain after undergoing VR treatment. Physiological data reported similar trends in decreased anxiety. Overall, the favorable subjective and objective responses suggest that VR distraction systems can reduce discomfort and pain for patients with mild to moderate fear and anxiety.
Photorealistic virtual anatomy based on Chinese Visible Human data.
Heng, P A; Zhang, S X; Xie, Y M; Wong, T T; Chui, Y P; Cheng, C Y
2006-04-01
Virtual reality based learning of human anatomy is feasible when a database of 3D organ models is available for the learner to explore, visualize, and dissect in virtual space interactively. In this article, we present our latest work on photorealistic virtual anatomy applications based on the Chinese Visible Human (CVH) data. We have focused on the development of state-of-the-art virtual environments that feature interactive photo-realistic visualization and dissection of virtual anatomical models constructed from ultra-high resolution CVH datasets. We also outline our latest progress in applying these highly accurate virtual and functional organ models to generate realistic look and feel to advanced surgical simulators. (c) 2006 Wiley-Liss, Inc.
Building Virtuality into University-Based Human Resources Policy in China's Universities
ERIC Educational Resources Information Center
Guoliang, Zhang
2005-01-01
On the basis of discussing the notion of virtual human resources and its structure, this paper analyzes the necessity of building up virtual university teaching staff and proposes a model for the structural makeup of virtual university teaching staff.
An elevated plus-maze in mixed reality for studying human anxiety-related behavior.
Biedermann, Sarah V; Biedermann, Daniel G; Wenzlaff, Frederike; Kurjak, Tim; Nouri, Sawis; Auer, Matthias K; Wiedemann, Klaus; Briken, Peer; Haaker, Jan; Lonsdorf, Tina B; Fuss, Johannes
2017-12-21
A dearth of laboratory tests to study actual human approach-avoidance behavior has complicated translational research on anxiety. The elevated plus-maze (EPM) is the gold standard to assess approach-avoidance behavior in rodents. Here, we translated the EPM to humans using mixed reality through a combination of virtual and real-world elements. In two validation studies, we observed participants' anxiety on a behavioral, physiological, and subjective level. Participants reported higher anxiety on open arms, avoided open arms, and showed an activation of endogenous stress systems. Participants' with high anxiety exhibited higher avoidance. Moreover, open arm avoidance was moderately predicted by participants' acrophobia and sensation seeking, with opposing influences. In a randomized, double blind, placebo controlled experiment, GABAergic stimulation decreased avoidance of open arms while alpha-2-adrenergic antagonism increased avoidance. These findings demonstrate cross-species validity of open arm avoidance as a translational measure of anxiety. We thus introduce the first ecologically valid assay to track actual human approach-avoidance behavior under laboratory conditions.
Vision-based navigation in a dynamic environment for virtual human
NASA Astrophysics Data System (ADS)
Liu, Yan; Sun, Ji-Zhou; Zhang, Jia-Wan; Li, Ming-Chu
2004-06-01
Intelligent virtual human is widely required in computer games, ergonomics software, virtual environment and so on. We present a vision-based behavior modeling method to realize smart navigation in a dynamic environment. This behavior model can be divided into three modules: vision, global planning and local planning. Vision is the only channel for smart virtual actor to get information from the outside world. Then, the global and local planning module use A* and D* algorithm to find a way for virtual human in a dynamic environment. Finally, the experiments on our test platform (Smart Human System) verify the feasibility of this behavior model.
An Intelligent Virtual Human System For Providing Healthcare Information And Support
2011-01-01
for clinical purposes. Shifts in the social and scientific landscape have now set the stage for the next major movement in Clinical Virtual Reality ...College; dMadigan Army Medical Center Army Abstract. Over the last 15 years, a virtual revolution has taken place in the use of Virtual Reality ... Virtual Reality with the “birth” of intelligent virtual humans. Seminal research and development has appeared in the creation of highly interactive
Human Rights and Private Ordering in Virtual Worlds
NASA Astrophysics Data System (ADS)
Oosterbaan, Olivier
This paper explores the application of human rights in (persistent) virtual world environments. The paper begins with describing a number of elements that most virtual environments share and that are relevant for the application of human rights in such a setting; and by describing in a general nature the application of human rights between private individuals. The paper then continues by discussing the application in virtual environments of two universally recognized human rights, namely freedom of expression, and freedom from discrimination. As these specific rights are discussed, a number of more general conclusions on the application of human rights in virtual environments are drawn. The first general conclusion being that, because virtual worlds are private environments, participants are subject to private ordering. The second general conclusion being that participants and non-participants alike have to accept at times that in-world expressions are to an extent private speech. The third general conclusion is that, where participants represent themselves in-world, other participants cannot assume that such in-world representation share the characteristics of the human player; and that where virtual environments contain game elements, participants and non-participants alike should not take everything that happens in the virtual environment at face value or literally, which does however not amount to having to accept a higher level of infringement on their rights for things that happen in such an environment.
Constraint, Intelligence, and Control Hierarchy in Virtual Environments. Chapter 1
NASA Technical Reports Server (NTRS)
Sheridan, Thomas B.
2007-01-01
This paper seeks to deal directly with the question of what makes virtual actors and objects that are experienced in virtual environments seem real. (The term virtual reality, while more common in public usage, is an oxymoron; therefore virtual environment is the preferred term in this paper). Reality is difficult topic, treated for centuries in those sub-fields of philosophy called ontology- "of or relating to being or existence" and epistemology- "the study of the method and grounds of knowledge, especially with reference to its limits and validity" (both from Webster s, 1965). Advances in recent decades in the technologies of computers, sensors and graphics software have permitted human users to feel present or experience immersion in computer-generated virtual environments. This has motivated a keen interest in probing this phenomenon of presence and immersion not only philosophically but also psychologically and physiologically in terms of the parameters of the senses and sensory stimulation that correlate with the experience (Ellis, 1991). The pages of the journal Presence: Teleoperators and Virtual Environments have seen much discussion of what makes virtual environments seem real (see, e.g., Slater, 1999; Slater et al. 1994; Sheridan, 1992, 2000). Stephen Ellis, when organizing the meeting that motivated this paper, suggested to invited authors that "We may adopt as an organizing principle for the meeting that the genesis of apparently intelligent interaction arises from an upwelling of constraints determined by a hierarchy of lower levels of behavioral interaction. "My first reaction was "huh?" and my second was "yeah, that seems to make sense." Accordingly the paper seeks to explain from the author s viewpoint, why Ellis s hypothesis makes sense. What is the connection of "presence" or "immersion" of an observer in a virtual environment, to "constraints" and what types of constraints. What of "intelligent interaction," and is it the intelligence of the observer or the intelligence of the environment (whatever the latter may mean) that is salient? And finally, what might be relevant about "upwelling" of constraints as determined by a hierarchy of levels of interaction?
ERIC Educational Resources Information Center
Gupta, Akriti; Singh, Satendra; Khaliq, Farah; Dhaliwal, Upreet; Madhu, S. V.
2018-01-01
In the country presently, preclinical medical students are not routinely exposed to real patients. Thus, when they start clinical postings, they are found to have poor clinical reasoning skills. Simulated virtual patients (SVPs) can improve clinical skills without endangering real patients. This pilot study describes the development of two SVPs in…
ERIC Educational Resources Information Center
de Espindola, Marina Bazzo; El-Bacha, Tatiana; Giannella, Tais Rabetti; Struchiner, Miriam; da Silva, Wagner S.; Da Poian, Andrea T.
2010-01-01
This work describes the use of a virtual learning environment (VLE) applied to the biochemistry class for undergraduate, first-year medical students at the Federal University of Rio de Janeiro. The course focused on the integration of energy metabolism, exploring metabolic adaptations in different physiological or pathological states such as…
HuPSON: the human physiology simulation ontology.
Gündel, Michaela; Younesi, Erfan; Malhotra, Ashutosh; Wang, Jiali; Li, Hui; Zhang, Bijun; de Bono, Bernard; Mevissen, Heinz-Theodor; Hofmann-Apitius, Martin
2013-11-22
Large biomedical simulation initiatives, such as the Virtual Physiological Human (VPH), are substantially dependent on controlled vocabularies to facilitate the exchange of information, of data and of models. Hindering these initiatives is a lack of a comprehensive ontology that covers the essential concepts of the simulation domain. We propose a first version of a newly constructed ontology, HuPSON, as a basis for shared semantics and interoperability of simulations, of models, of algorithms and of other resources in this domain. The ontology is based on the Basic Formal Ontology, and adheres to the MIREOT principles; the constructed ontology has been evaluated via structural features, competency questions and use case scenarios.The ontology is freely available at: http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html (owl files) and http://bishop.scai.fraunhofer.de/scaiview/ (browser). HuPSON provides a framework for a) annotating simulation experiments, b) retrieving relevant information that are required for modelling, c) enabling interoperability of algorithmic approaches used in biomedical simulation, d) comparing simulation results and e) linking knowledge-based approaches to simulation-based approaches. It is meant to foster a more rapid uptake of semantic technologies in the modelling and simulation domain, with particular focus on the VPH domain.
Genheimer, Hannah; Andreatta, Marta; Asan, Esther; Pauli, Paul
2017-12-20
Since exposure therapy for anxiety disorders incorporates extinction of contextual anxiety, relapses may be due to reinstatement processes. Animal research demonstrated more stable extinction memory and less anxiety relapse due to vagus nerve stimulation (VNS). We report a valid human three-day context conditioning, extinction and return of anxiety protocol, which we used to examine effects of transcutaneous VNS (tVNS). Seventy-five healthy participants received electric stimuli (unconditioned stimuli, US) during acquisition (Day1) when guided through one virtual office (anxiety context, CTX+) but never in another (safety context, CTX-). During extinction (Day2), participants received tVNS, sham, or no stimulation and revisited both contexts without US delivery. On Day3, participants received three USs for reinstatement followed by a test phase. Successful acquisition, i.e. startle potentiation, lower valence, higher arousal, anxiety and contingency ratings in CTX+ versus CTX-, the disappearance of these effects during extinction, and successful reinstatement indicate validity of this paradigm. Interestingly, we found generalized reinstatement in startle responses and differential reinstatement in valence ratings. Altogether, our protocol serves as valid conditioning paradigm. Reinstatement effects indicate different anxiety networks underlying physiological versus verbal responses. However, tVNS did neither affect extinction nor reinstatement, which asks for validation and improvement of the stimulation protocol.
Sense of presence and anxiety during virtual social interactions between a human and virtual humans.
Morina, Nexhmedin; Brinkman, Willem-Paul; Hartanto, Dwi; Emmelkamp, Paul M G
2014-01-01
Virtual reality exposure therapy (VRET) has been shown to be effective in treatment of anxiety disorders. Yet, there is lack of research on the extent to which interaction between the individual and virtual humans can be successfully implanted to increase levels of anxiety for therapeutic purposes. This proof-of-concept pilot study aimed at examining levels of the sense of presence and anxiety during exposure to virtual environments involving social interaction with virtual humans and using different virtual reality displays. A non-clinical sample of 38 participants was randomly assigned to either a head-mounted display (HMD) with motion tracker and sterescopic view condition or a one-screen projection-based virtual reality display condition. Participants in both conditions engaged in free speech dialogues with virtual humans controlled by research assistants. It was hypothesized that exposure to virtual social interactions will elicit moderate levels of sense of presence and anxiety in both groups. Further it was expected that participants in the HMD condition will report higher scores of sense of presence and anxiety than participants in the one-screen projection-based display condition. Results revealed that in both conditions virtual social interactions were associated with moderate levels of sense of presence and anxiety. Additionally, participants in the HMD condition reported significantly higher levels of presence than those in the one-screen projection-based display condition (p = .001). However, contrary to the expectations neither the average level of anxiety nor the highest level of anxiety during exposure to social virtual environments differed between the groups (p = .97 and p = .75, respectively). The findings suggest that virtual social interactions can be successfully applied in VRET to enhance sense of presence and anxiety. Furthermore, our results indicate that one-screen projection-based displays can successfully activate levels of anxiety in social virtual environments. The outcome can prove helpful in using low-cost projection-based virtual reality environments for treating individuals with social phobia.
Virtual reality in surgical training.
Lange, T; Indelicato, D J; Rosen, J M
2000-01-01
Virtual reality in surgery and, more specifically, in surgical training, faces a number of challenges in the future. These challenges are building realistic models of the human body, creating interface tools to view, hear, touch, feel, and manipulate these human body models, and integrating virtual reality systems into medical education and treatment. A final system would encompass simulators specifically for surgery, performance machines, telemedicine, and telesurgery. Each of these areas will need significant improvement for virtual reality to impact medicine successfully in the next century. This article gives an overview of, and the challenges faced by, current systems in the fast-changing field of virtual reality technology, and provides a set of specific milestones for a truly realistic virtual human body.
Clinical Use of Virtual Reality Distraction System to Reduce Anxiety and Pain in Dental Procedures
Gao, Kenneth; Wiederhold, Brenda K.
2014-01-01
Abstract Virtual reality (VR) has been used by clinicians to manage pain in clinical populations. This study examines the use of VR as a form of distraction for dental patients using both subjective and objective measures to determine how a VR system affects patients' reported anxiety level, pain level, and physiological factors. As predicted, results of self-evaluation questionnaires showed that patients experienced less anxiety and pain after undergoing VR treatment. Physiological data reported similar trends in decreased anxiety. Overall, the favorable subjective and objective responses suggest that VR distraction systems can reduce discomfort and pain for patients with mild to moderate fear and anxiety. PMID:24892198
NASA Technical Reports Server (NTRS)
Searcy, Brittani
2017-01-01
Using virtual environments to assess complex large scale human tasks provides timely and cost effective results to evaluate designs and to reduce operational risks during assembly and integration of the Space Launch System (SLS). NASA's Marshall Space Flight Center (MSFC) uses a suite of tools to conduct integrated virtual analysis during the design phase of the SLS Program. Siemens Jack is a simulation tool that allows engineers to analyze human interaction with CAD designs by placing a digital human model into the environment to test different scenarios and assess the design's compliance to human factors requirements. Engineers at MSFC are using Jack in conjunction with motion capture and virtual reality systems in MSFC's Virtual Environments Lab (VEL). The VEL provides additional capability beyond standalone Jack to record and analyze a person performing a planned task to assemble the SLS at Kennedy Space Center (KSC). The VEL integrates Vicon Blade motion capture system, Siemens Jack, Oculus Rift, and other virtual tools to perform human factors assessments. By using motion capture and virtual reality, a more accurate breakdown and understanding of how an operator will perform a task can be gained. By virtual analysis, engineers are able to determine if a specific task is capable of being safely performed by both a 5% (approx. 5ft) female and a 95% (approx. 6'1) male. In addition, the analysis will help identify any tools or other accommodations that may to help complete the task. These assessments are critical for the safety of ground support engineers and keeping launch operations on schedule. Motion capture allows engineers to save and examine human movements on a frame by frame basis, while virtual reality gives the actor (person performing a task in the VEL) an immersive view of the task environment. This presentation will discuss the need of human factors for SLS and the benefits of analyzing tasks in NASA MSFC's VEL.
A posthuman liturgy? Virtual worlds, robotics, and human flourishing.
Shatzer, Jacob
2013-01-01
In order to inspire a vision of biotechnology that affirms human dignity and human flourishing, the author poses questions about virtual reality and the use of robotics in health care. Using the concept of 'liturgy' and an anthropology of humans as lovers, the author explores how virtual reality and robotics in health care shape human moral agents, and how such shaping could influence the way we do or do not pursue a 'posthuman' future.
USDA-ARS?s Scientific Manuscript database
This research is the first use of the Box-Jenkins time-series models to describe changes in heart rate (HR) of free-ranging crossbred cows (Bos taurus) receiving both programmed audio cues from directional virtual fencing (DVFTM) devices and non-programmed environmental/physiological cues. The DVFT...
Physiological Feedback Method and System
NASA Technical Reports Server (NTRS)
Pope, Alan T. (Inventor); Severance, Kurt E. (Inventor)
2002-01-01
A method and system provide physiological feedback for a patient and/or physician. At least one physiological effect experienced by a body part of a patient is measured noninvasively. A three-dimensional graphics model serving as an analogous representation of the body part is altered in accordance with the measurements. A binocular image signal representative of the three-dimensional graphics model so-altered is displayed for the patient and/or physician in a virtual reality environment.
ERIC Educational Resources Information Center
Calvert, Sandra L.; Tan, Siu-Lan
1994-01-01
Compared to college students who only watched a violent virtual reality game, those who played the game exhibited a higher heart rate after the game, reported more dizziness and nausea during the game, and exhibited more aggressive thoughts on a posttest questionnaire. Results suggest support for arousal and cognitive, but not psychoanalytic,…
CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish.
González, Federico
2016-07-01
Because of their extraordinary differentiation potential, human pluripotent stem cells (hPSCs) can differentiate into virtually any cell type of the human body, providing a powerful platform not only for generating relevant cell types useful for cell replacement therapies, but also for modeling human development and disease. Expanding this potential, structures resembling human organs, termed organoids, have been recently obtained from hPSCs through tissue engineering. Organoids exhibit multiple cell types self-organizing into structures recapitulating in part the physiology and the cellular interactions observed in the organ in vivo, offering unprecedented opportunities for human disease modeling. To fulfill this promise, tissue engineering in hPSCs needs to be supported by robust and scalable genome editing technologies. With the advent of the CRISPR/Cas9 technology, manipulating the genome of hPSCs has now become an easy task, allowing modifying their genome with superior precision, speed, and throughput. Here we review current and potential applications of the CRISPR/Cas9 technology in hPSCs and how they contribute to establish hPSCs as a model of choice for studying human genetics. Developmental Dynamics 245:788-806, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Costa, Rafael T da; Carvalho, Marcele R de; Ribeiro, Pedro; Nardi, Antonio E
2018-01-01
To investigate the reactions of women with driving phobia to a therapeutic program of scheduled virtual reality exposure treatment (VRET) sessions. The study intervention consisted of a computer game with car-driving scenarios that included several traffic situations. We investigated the participants' sense of presence, subjective distress, and physiological responses during eight virtual-reality exposures. We also evaluated clinical characteristics, driving cognitions, and quality of life in the participants. Thirteen women were selected. Eight were able to complete the protocol. After VRET, there was a decrease in the frequency of distorted thoughts and state anxiety scores, as well as a slight improvement in quality of life. Subjective discomfort scores, heart rate variation, and sense of presence scores confirmed that there was sense of presence in the virtual reality environment. All patients showed some degree of improvement and demonstrated different levels of anxiety in subsequent in vivo driving experiences. Our findings suggest that VRET could be used to facilitate in vivo exposure, because it can induce presence/immersion and reduce anxiety in patients with specific phobia. Furthermore, VRET is not associated with any type of risk.
A Test of Spatial Contiguity for Virtual Human's Gestures in Multimedia Learning Environments
ERIC Educational Resources Information Center
Craig, Scotty D.; Twyford, Jessica; Irigoyen, Norma; Zipp, Sarah A.
2015-01-01
Virtual humans are becoming an easily available and popular component of multimedia learning that are often used in online learning environments. There is still a need for systematic research into their effectiveness. The current study investigates the positioning of a virtual human's gestures when guiding the learner through a multimedia…
Geerts, Hugo; Spiros, Athan; Roberts, Patrick; Twyman, Roy; Alphs, Larry; Grace, Anthony A.
2012-01-01
The tremendous advances in understanding the neurobiological circuits involved in schizophrenia have not translated into more effective treatments. An alternative strategy is to use a recently published ‘Quantitative Systems Pharmacology’ computer-based mechanistic disease model of cortical/subcortical and striatal circuits based upon preclinical physiology, human pathology and pharmacology. The physiology of 27 relevant dopamine, serotonin, acetylcholine, norepinephrine, gamma-aminobutyric acid (GABA) and glutamate-mediated targets is calibrated using retrospective clinical data on 24 different antipsychotics. The model was challenged to predict quantitatively the clinical outcome in a blinded fashion of two experimental antipsychotic drugs; JNJ37822681, a highly selective low-affinity dopamine D2 antagonist and ocaperidone, a very high affinity dopamine D2 antagonist, using only pharmacology and human positron emission tomography (PET) imaging data. The model correctly predicted the lower performance of JNJ37822681 on the positive and negative syndrome scale (PANSS) total score and the higher extra-pyramidal symptom (EPS) liability compared to olanzapine and the relative performance of ocaperidone against olanzapine, but did not predict the absolute PANSS total score outcome and EPS liability for ocaperidone, possibly due to placebo responses and EPS assessment methods. Because of its virtual nature, this modeling approach can support central nervous system research and development by accounting for unique human drug properties, such as human metabolites, exposure, genotypes and off-target effects and can be a helpful tool for drug discovery and development. PMID:23251349
Human agency beliefs influence behaviour during virtual social interactions.
Caruana, Nathan; Spirou, Dean; Brock, Jon
2017-01-01
In recent years, with the emergence of relatively inexpensive and accessible virtual reality technologies, it is now possible to deliver compelling and realistic simulations of human-to-human interaction. Neuroimaging studies have shown that, when participants believe they are interacting via a virtual interface with another human agent, they show different patterns of brain activity compared to when they know that their virtual partner is computer-controlled. The suggestion is that users adopt an "intentional stance" by attributing mental states to their virtual partner. However, it remains unclear how beliefs in the agency of a virtual partner influence participants' behaviour and subjective experience of the interaction. We investigated this issue in the context of a cooperative "joint attention" game in which participants interacted via an eye tracker with a virtual onscreen partner, directing each other's eye gaze to different screen locations. Half of the participants were correctly informed that their partner was controlled by a computer algorithm ("Computer" condition). The other half were misled into believing that the virtual character was controlled by a second participant in another room ("Human" condition). Those in the "Human" condition were slower to make eye contact with their partner and more likely to try and guide their partner before they had established mutual eye contact than participants in the "Computer" condition. They also responded more rapidly when their partner was guiding them, although the same effect was also found for a control condition in which they responded to an arrow cue. Results confirm the influence of human agency beliefs on behaviour in this virtual social interaction context. They further suggest that researchers and developers attempting to simulate social interactions should consider the impact of agency beliefs on user experience in other social contexts, and their effect on the achievement of the application's goals.
Web-based Three-dimensional Virtual Body Structures: W3D-VBS
Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex
2002-01-01
Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user’s progress through evaluation tools helps customize lesson plans. A self-guided “virtual tour” of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it. PMID:12223495
Web-based three-dimensional Virtual Body Structures: W3D-VBS.
Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex
2002-01-01
Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user's progress through evaluation tools helps customize lesson plans. A self-guided "virtual tour" of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it.
Wei, Gaofeng; Tang, Gang; Fu, Zengliang; Sun, Qiuming; Tian, Feng
2010-10-01
The China Mechanical Virtual Human (CMVH) is a human musculoskeletal biomechanical simulation platform based on China Visible Human slice images; it has great realistic application significance. In this paper is introduced the construction method of CMVH 3D models. Then a simulation system solution based on Creator/Vega is put forward for the complex and gigantic data characteristics of the 3D models. At last, combined with MFC technology, the CMVH simulation system is developed and a running simulation scene is given. This paper provides a new way for the virtual reality application of CMVH.
The social perceptual salience effect.
Inderbitzin, Martin P; Betella, Alberto; Lanatá, Antonio; Scilingo, Enzo P; Bernardet, Ulysses; Verschure, Paul F M J
2013-02-01
Affective processes appraise the salience of external stimuli preparing the agent for action. So far, the relationship between stimuli, affect, and action has been mainly studied in highly controlled laboratory conditions. In order to find the generalization of this relationship to social interaction, we assess the influence of the salience of social stimuli on human interaction. We constructed reality ball game in a mixed reality space where pairs of people collaborated in order to compete with an opposing team. We coupled the players with team members with varying social salience by using both physical and virtual representations of remote players (i.e., avatars). We observe that, irrespective of the team composition, winners and losers display significantly different inter- and intrateam spatial behaviors. We show that subjects regulate their interpersonal distance to both virtual and physical team members in similar ways, but in proportion to the vividness of the stimulus. As an independent validation of this social salience effect, we show that this behavioral effect is also displayed in physiological correlates of arousal. In addition, we found a strong correlation between performance, physiology, and the subjective reports of the subjects. Our results show that proxemics is consistent with affective responses, confirming the existence of a social salience effect. This provides further support for the so-called law of apparent reality, and it generalizes it to the social realm, where it can be used to design more efficient social artifacts. PsycINFO Database Record (c) 2013 APA, all rights reserved.
A Virtual Campus Based on Human Factor Engineering
ERIC Educational Resources Information Center
Yang, Yuting; Kang, Houliang
2014-01-01
Three Dimensional or 3D virtual reality has become increasingly popular in many areas, especially in building a digital campus. This paper introduces a virtual campus, which is based on a 3D model of The Tourism and Culture College of Yunnan University (TCYU). Production of the virtual campus was aided by Human Factor and Ergonomics (HF&E), an…
The Value of Biomedical Simulation Environments to Future Human Space Flight Missions
NASA Technical Reports Server (NTRS)
Mulugeta, Lealem; Myers, Jerry G.; Skytland, Nicholas G.; Platts, Steven H.
2010-01-01
With the ambitious goals to send manned missions to asteroids and onto Mars, substantial work will be required to ensure the well being of the men and women who will undertake these difficult missions. Unlike current International Space Station or Shuttle missions, astronauts will be required to endure long-term exposure to higher levels of radiation, isolation and reduced gravity. These new operation conditions will pose health risks that are currently not well understood and perhaps unanticipated. Therefore, it is essential to develop and apply advanced tools to predict, assess and mitigate potential hazards to astronaut health. NASA s Digital Astronaut Project (DAP) is working to develop and apply computational models of physiologic response to space flight operation conditions over various time periods and environmental circumstances. The collective application and integration of well vetted models assessing the physiology, biomechanics and anatomy is referred to as the Digital Astronaut. The Digital Astronaut simulation environment will serve as a practical working tool for use by NASA in operational activities such as the prediction of biomedical risks and functional capabilities of astronauts. In additional to space flight operation conditions, DAP s work has direct applicability to terrestrial biomedical research by providing virtual environments for hypothesis testing, experiment design, and to reduce animal/human testing. A practical application of the DA to assess pre and post flight responses to exercise is illustrated and the difficulty in matching true physiological responses is discussed.
Virtual agents in a simulated virtual training environment
NASA Technical Reports Server (NTRS)
Achorn, Brett; Badler, Norman L.
1993-01-01
A drawback to live-action training simulations is the need to gather a large group of participants in order to train a few individuals. One solution to this difficulty is the use of computer-controlled agents in a virtual training environment. This allows a human participant to be replaced by a virtual, or simulated, agent when only limited responses are needed. Each agent possesses a specified set of behaviors and is capable of limited autonomous action in response to its environment or the direction of a human trainee. The paper describes these agents in the context of a simulated hostage rescue training session, involving two human rescuers assisted by three virtual (computer-controlled) agents and opposed by three other virtual agents.
Willemet, Marie; Chowienczyk, Phil; Alastruey, Jordi
2015-08-15
While central (carotid-femoral) foot-to-foot pulse wave velocity (PWV) is considered to be the gold standard for the estimation of aortic arterial stiffness, peripheral foot-to-foot PWV (brachial-ankle, femoral-ankle, and carotid-radial) are being studied as substitutes of this central measurement. We present a novel methodology to assess theoretically these computed indexes and the hemodynamics mechanisms relating them. We created a database of 3,325 virtual healthy adult subjects using a validated one-dimensional model of the arterial hemodynamics, with cardiac and arterial parameters varied within physiological healthy ranges. For each virtual subject, foot-to-foot PWV was computed from numerical pressure waveforms at the same locations where clinical measurements are commonly taken. Our numerical results confirm clinical observations: 1) carotid-femoral PWV is a good indicator of aortic stiffness and correlates well with aortic PWV; 2) brachial-ankle PWV overestimates aortic PWV and is related to the stiffness and geometry of both elastic and muscular arteries; and 3) muscular PWV (carotid-radial, femoral-ankle) does not capture the stiffening of the aorta and should therefore not be used as a surrogate for aortic stiffness. In addition, our analysis highlights that the foot-to-foot PWV algorithm is sensitive to the presence of reflected waves in late diastole, which introduce errors in the PWV estimates. In this study, we have created a database of virtual healthy subjects, which can be used to assess theoretically the efficiency of physiological indexes based on pulse wave analysis. Copyright © 2015 the American Physiological Society.
Molecular crowding favors reactivity of a human ribozyme under physiological ionic conditions.
Strulson, Christopher A; Yennawar, Neela H; Rambo, Robert P; Bevilacqua, Philip C
2013-11-19
In an effort to relate RNA folding to function under cellular-like conditions, we monitored the self-cleavage reaction of the human hepatitis delta virus-like CPEB3 ribozyme in the background of physiological ionic concentrations and various crowding and cosolute agents. We found that at physiological free Mg(2+) concentrations (∼0.1-0.5 mM), both crowders and cosolutes stimulate the rate of self-cleavage, up to ∼6-fold, but that in 10 mM Mg(2+) (conditions widely used for in vitro ribozyme studies) these same additives have virtually no effect on the self-cleavage rate. We further observe a dependence of the self-cleavage rate on crowder size, wherein the level of rate stimulation is diminished for crowders larger than the size of the unfolded RNA. Monitoring effects of crowding and cosolute agents on rates in biological amounts of urea revealed additive-promoted increases at both low and high Mg(2+) concentrations, with a maximal stimulation of more than 10-fold and a rescue of the rate to its urea-free values. Small-angle X-ray scattering experiments reveal a structural basis for this stimulation in that higher-molecular weight crowding agents favor a more compact form of the ribozyme in 0.5 mM Mg(2+) that is essentially equivalent to the form under standard ribozyme conditions of 10 mM Mg(2+) without a crowder. This finding suggests that at least a portion of the rate enhancement arises from favoring the native RNA tertiary structure. We conclude that cellular-like crowding supports ribozyme reactivity by favoring a compact form of the ribozyme, but only under physiological ionic and cosolute conditions.
Paalvast, Yared; Gerding, Albert; Wang, Yanan; Bloks, Vincent W; van Dijk, Theo H; Havinga, Rick; Willems van Dijk, Ko; Rensen, Patrick C N; Bakker, Barbara M; Kuivenhoven, Jan Albert; Groen, Albert K
2017-10-01
Physiological adaptations resulting in the development of the metabolic syndrome in man occur over a time span of several decades. This combined with the prohibitive financial cost and ethical concerns to measure key metabolic parameters repeatedly in subjects for the major part of their life span makes that comprehensive longitudinal human data sets are virtually nonexistent. While experimental mice are often used, little is known whether this species is in fact an adequate model to better understand the mechanisms that drive the metabolic syndrome in man. We took up the challenge to study the response of male apoE*3-Leiden.CETP mice (with a humanized lipid profile) to a high-fat high-cholesterol diet for 6 months. Study parameters include body weight, food intake, plasma and liver lipids, hepatic transcriptome, VLDL - triglyceride production and importantly the use of stable isotopes to measure hepatic de novo lipogenesis, gluconeogenesis, and biliary/fecal sterol secretion to assess metabolic fluxes. The key observations include (1) high inter-individual variation; (2) a largely unaffected hepatic transcriptome at 2, 3, and 6 months; (3) a biphasic response curve of the main metabolic features over time; and (4) maximum insulin resistance preceding dyslipidemia. The biphasic response in plasma triglyceride and total cholesterol appears to mimic that of men in cross-sectional studies. Combined, these observations suggest that studies such as these can help to delineate the causes of metabolic derangements in patients suffering from metabolic syndrome. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Virtual reality in a children's hospital.
Nihei, K; Shirakawa, K; Isshiki, N; Hirose, M; Iwata, H; Kobayashi, N
1999-01-01
We used virtual reality technology to improve the quality of life and amenity of in-patients in a children's hospital. Children in the hospital could enjoy a zoo, amusement park, and aquarium, in virtual. They played soccer, skiing and horse riding in virtual. They could communicate with persons who were out of the hospital and attend the school which they had gone to before entering hospital. They played music with children who had been admitted to other children's hospitals. By using this virtual technology, the quality of life of children who suffered from psychological and physiological stress in the hospital greatly improved. It is not only useful for their QOL but also for the healing of illness. However, these methods are very rare. Our systemic in our children's hospital is the first to be reported in Japan both software and hardware of virtual reality technology to increase the QOL of sick children need further development.
DHM simulation in virtual environments: a case-study on control room design.
Zamberlan, M; Santos, V; Streit, P; Oliveira, J; Cury, R; Negri, T; Pastura, F; Guimarães, C; Cid, G
2012-01-01
This paper will present the workflow developed for the application of serious games in the design of complex cooperative work settings. The project was based on ergonomic studies and development of a control room among participative design process. Our main concerns were the 3D human virtual representation acquired from 3D scanning, human interaction, workspace layout and equipment designed considering ergonomics standards. Using Unity3D platform to design the virtual environment, the virtual human model can be controlled by users on dynamic scenario in order to evaluate the new work settings and simulate work activities. The results obtained showed that this virtual technology can drastically change the design process by improving the level of interaction between final users and, managers and human factors team.
USDA-ARS?s Scientific Manuscript database
This research is the first use of the Box-Jenkins time-series models to describe changes in heart rate (HR) of free-ranging crossbred cows (Bos taurus) receiving both programmed audio cues from directional virtual fencing (DVFTM) devices and non-programmed environmental/physiological cues. The DVFT...
Human responses to augmented virtual scaffolding models.
Hsiao, Hongwei; Simeonov, Peter; Dotson, Brian; Ammons, Douglas; Kau, Tsui-Ying; Chiou, Sharon
2005-08-15
This study investigated the effect of adding real planks, in virtual scaffolding models of elevation, on human performance in a surround-screen virtual reality (SSVR) system. Twenty-four construction workers and 24 inexperienced controls performed walking tasks on real and virtual planks at three virtual heights (0, 6 m, 12 m) and two scaffolding-platform-width conditions (30, 60 cm). Gait patterns, walking instability measurements and cardiovascular reactivity were assessed. The results showed differences in human responses to real vs. virtual planks in walking patterns, instability score and heart-rate inter-beat intervals; it appeared that adding real planks in the SSVR virtual scaffolding model enhanced the quality of SSVR as a human - environment interface research tool. In addition, there were significant differences in performance between construction workers and the control group. The inexperienced participants were more unstable as compared to construction workers. Both groups increased their stride length with repetitions of the task, indicating a possibly confidence- or habit-related learning effect. The practical implications of this study are in the adoption of augmented virtual models of elevated construction environments for injury prevention research, and the development of programme for balance-control training to reduce the risk of falls at elevation before workers enter a construction job.
Ranky, Richard G; Sivak, Mark L; Lewis, Jeffrey A; Gade, Venkata K; Deutsch, Judith E; Mavroidis, Constantinos
2014-06-05
Cycling has been used in the rehabilitation of individuals with both chronic and post-surgical conditions. Among the challenges with implementing bicycling for rehabilitation is the recruitment of both extremities, in particular when one is weaker or less coordinated. Feedback embedded in virtual reality (VR) augmented cycling may serve to address the requirement for efficacious cycling; specifically recruitment of both extremities and exercising at a high intensity. In this paper a mechatronic rehabilitation bicycling system with an interactive virtual environment, called Virtual Reality Augmented Cycling Kit (VRACK), is presented. Novel hardware components embedded with sensors were implemented on a stationary exercise bicycle to monitor physiological and biomechanical parameters of participants while immersing them in an augmented reality simulation providing the user with visual, auditory and haptic feedback. This modular and adaptable system attaches to commercially-available stationary bicycle systems and interfaces with a personal computer for simulation and data acquisition processes. The complete bicycle system includes: a) handle bars based on hydraulic pressure sensors; b) pedals that monitor pedal kinematics with an inertial measurement unit (IMU) and forces on the pedals while providing vibratory feedback; c) off the shelf electronics to monitor heart rate and d) customized software for rehabilitation. Bench testing for the handle and pedal systems is presented for calibration of the sensors detecting force and angle. The modular mechatronic kit for exercise bicycles was tested in bench testing and human tests. Bench tests performed on the sensorized handle bars and the instrumented pedals validated the measurement accuracy of these components. Rider tests with the VRACK system focused on the pedal system and successfully monitored kinetic and kinematic parameters of the rider's lower extremities. The VRACK system, a virtual reality mechatronic bicycle rehabilitation modular system was designed to convert most bicycles in virtual reality (VR) cycles. Preliminary testing of the augmented reality bicycle system was successful in demonstrating that a modular mechatronic kit can monitor and record kinetic and kinematic parameters of several riders.
Prosthetic Leg Control in the Nullspace of Human Interaction.
Gregg, Robert D; Martin, Anne E
2016-07-01
Recent work has extended the control method of virtual constraints, originally developed for autonomous walking robots, to powered prosthetic legs for lower-limb amputees. Virtual constraints define desired joint patterns as functions of a mechanical phasing variable, which are typically enforced by torque control laws that linearize the output dynamics associated with the virtual constraints. However, the output dynamics of a powered prosthetic leg generally depend on the human interaction forces, which must be measured and canceled by the feedback linearizing control law. This feedback requires expensive multi-axis load cells, and actively canceling the interaction forces may minimize the human's influence over the prosthesis. To address these limitations, this paper proposes a method for projecting virtual constraints into the nullspace of the human interaction terms in the output dynamics. The projected virtual constraints naturally render the output dynamics invariant with respect to the human interaction forces, which instead enter into the internal dynamics of the partially linearized prosthetic system. This method is illustrated with simulations of a transfemoral amputee model walking with a powered knee-ankle prosthesis that is controlled via virtual constraints with and without the proposed projection.
Rapid cell separation with minimal manipulation for autologous cell therapies
NASA Astrophysics Data System (ADS)
Smith, Alban J.; O'Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.
2017-02-01
The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities.
Utilization and acceptance of virtual patients in veterinary basic sciences - the vetVIP-project.
Kleinsorgen, Christin; Kankofer, Marta; Gradzki, Zbigniew; Mandoki, Mira; Bartha, Tibor; von Köckritz-Blickwede, Maren; Naim, Hassan Y; Beyerbach, Martin; Tipold, Andrea; Ehlers, Jan P
2017-01-01
Context: In medical and veterinary medical education the use of problem-based and cased-based learning has steadily increased over time. At veterinary faculties, this development has mainly been evident in the clinical phase of the veterinary education. Therefore, a consortium of teachers of biochemistry and physiology together with technical and didactical experts launched the EU-funded project "vetVIP", to create and implement veterinary virtual patients and problems for basic science instruction. In this study the implementation and utilization of virtual patients occurred at the veterinary faculties in Budapest, Hannover and Lublin. Methods: This report describes the investigation of the utilization and acceptance of students studying veterinary basic sciences using optional online learning material concurrently to regular biochemistry and physiology didactic instruction. The reaction of students towards this offer of clinical case-based learning in basic sciences was analysed using quantitative and qualitative data. Quantitative data were collected automatically within the chosen software-system CASUS as user-log-files. Responses regarding the quality of the virtual patients were obtained using an online questionnaire. Furthermore, subjective evaluation by authors was performed using a focus group discussion and an online questionnaire. Results: Implementation as well as usage and acceptance varied between the three participating locations. High approval was documented in Hannover and Lublin based upon the high proportion of voluntary students (>70%) using optional virtual patients. However, in Budapest the participation rate was below 1%. Due to utilization, students seem to prefer virtual patients and problems created in their native language and developed at their own university. In addition, the statement that assessment drives learning was supported by the observation that peak utilization was just prior to summative examinations. Conclusion: Veterinary virtual patients in basic sciences can be introduced and used for the presentation of integrative clinical case scenarios. Student post-course comments also supported the conclusion that overall the virtual cases increased their motivation for learning veterinary basic sciences.
NASA Astrophysics Data System (ADS)
Chen, Szu-Yu; Hsieh, C.-S.; Chu, S.-W.; Lin, Cheng-Yung; Ko, C.-Y.; Chen, Y.-C.; Tsai, Huai-Jen; Hu, C.-H.; Sun, Chi-Kuang
2005-03-01
Harmonics optical microscopy (HOM) provides a truly "noninvasive" tool for in vivo and long-term study of vertebrate embryonic development. Based on the nonlinear natures, it provides sub-micrometer 3D spatial resolution and high 3D optical-sectioning power (~1μm axial resolution) without using invasive and toxic fluorophores. Since only virtual-level-transition is involved, HOM is known to leave no energy deposition and no photodamages. Combined with second harmonic generation, which is sensitive to specific structure such as nerve and muscle fibers, HOM can be used to do functional studies of early developmental dynamics of many vertebrate physiological systems. Recently, zebrafish has become a standard model for many biological and medical studies of vertebrates, due to the similarity between embryonic development of zebrafish and human being. Zebrafish embryos now have been used to study many vertebrate physiological systems. We have demonstrated an in vivo HOM study of developmental dynamics of several embryonic physiological systems in live zebrafish embryos, with focuses on the developments of brains, eyes, ears, and hearts. Based on a femtosecond Cr:forsterite laser, which provides the deepest penetration (~1.5mm) and least photodamage in the zebrafish embryo, complete developing processes of different physiological systems within a period of time longer than 20 hours can be non-invasively observed inside the same embryo.
Virtual reality adaptive stimulation of limbic networks in the mental readiness training.
Cosić, Kresimir; Popović, Sinisa; Kostović, Ivica; Judas, Milos
2010-01-01
A significant proportion of severe psychological problems in recent large-scale peacekeeping operations underscores the importance of effective methods for strengthening the stress resilience. Virtual reality (VR) adaptive stimulation, based on the estimation of the participant's emotional state from physiological signals, may enhance the mental readiness training (MRT). Understanding neurobiological mechanisms by which the MRT based on VR adaptive stimulation can affect the resilience to stress is important for practical application in the stress resilience management. After the delivery of a traumatic audio-visual stimulus in the VR, the cascade of events occurs in the brain, which evokes various physiological manifestations. In addition to the "limbic" emotional and visceral brain circuitry, other large-scale sensory, cognitive, and memory brain networks participate with less known impact in this physiological response. The MRT based on VR adaptive stimulation may strengthen the stress resilience through targeted brain-body interactions. Integrated interdisciplinary efforts, which would integrate the brain imaging and the proposed approach, may contribute to clarifying the neurobiological foundation of the resilience to stress.
Future Cyborgs: Human-Machine Interface for Virtual Reality Applications
2007-04-01
FUTURE CYBORGS : HUMAN-MACHINE INTERFACE FOR VIRTUAL REALITY APPLICATIONS Robert R. Powell, Major, USAF April 2007 Blue Horizons...SUBTITLE Future Cyborgs : Human-Machine Interface for Virtual Reality Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Nicholas Negroponte, Being Digital (New York: Alfred A Knopf, Inc, 1995), 123. 23 Ibid. 24 Andy Clark, Natural-Born Cyborgs (New York: Oxford
HuPSON: the human physiology simulation ontology
2013-01-01
Background Large biomedical simulation initiatives, such as the Virtual Physiological Human (VPH), are substantially dependent on controlled vocabularies to facilitate the exchange of information, of data and of models. Hindering these initiatives is a lack of a comprehensive ontology that covers the essential concepts of the simulation domain. Results We propose a first version of a newly constructed ontology, HuPSON, as a basis for shared semantics and interoperability of simulations, of models, of algorithms and of other resources in this domain. The ontology is based on the Basic Formal Ontology, and adheres to the MIREOT principles; the constructed ontology has been evaluated via structural features, competency questions and use case scenarios. The ontology is freely available at: http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html (owl files) and http://bishop.scai.fraunhofer.de/scaiview/ (browser). Conclusions HuPSON provides a framework for a) annotating simulation experiments, b) retrieving relevant information that are required for modelling, c) enabling interoperability of algorithmic approaches used in biomedical simulation, d) comparing simulation results and e) linking knowledge-based approaches to simulation-based approaches. It is meant to foster a more rapid uptake of semantic technologies in the modelling and simulation domain, with particular focus on the VPH domain. PMID:24267822
Methamphetamine craving induced in an online virtual reality environment.
Culbertson, Christopher; Nicolas, Sam; Zaharovits, Itay; London, Edythe D; De La Garza, Richard; Brody, Arthur L; Newton, Thomas F
2010-10-01
The main aim of this study was to assess self-reported craving and physiological reactivity in a methamphetamine virtual reality (METH-VR) cue model created using Second Life, a freely available online gaming platform. Seventeen, non-treatment seeking, individuals that abuse methamphetamine (METH) completed this 1-day, outpatient, within-subjects study. Participants completed four test sessions: 1) METH-VR, 2) neutral-VR, 3) METH-video, and 4) neutral-video in a counterbalanced (Latin square) fashion. The participants provided subjective ratings of urges to use METH, mood, and physical state throughout each cue presentation. Measures of physiological reactivity (heart rate variability) were also collected during each cue presentation and at rest. The METH-VR condition elicited the greatest change in subjective reports of "crave METH", "desire METH", and "want METH" at all time points. The "high craving" participants displayed more high frequency cardiovascular activity while the "low craving" participants displayed more low frequency cardiovascular activity during the cue conditions, with the greatest difference seen during the METH-VR and METH-video cues. These findings reveal a physiological divergence between high and low craving METH abusers using heart rate variability, and demonstrate the usefulness of VR cues for eliciting subjective craving in METH abusers, as well as the effectiveness of a novel VR drug cue model created within an online virtual world. (c) 2010 Elsevier Inc. All rights reserved.
Methamphetamine Craving Induced in an Online Virtual Reality Environment
Culbertson, Christopher; Nicolas, Sam; Zaharovits, Itay; London, Edythe D.; De La Garza, Richard; Brody, Arthur L.; Newton, Thomas F.
2010-01-01
The main aim of this study was to assess self-reported craving and physiological reactivity in a methamphetamine virtual reality (METH-VR) cue model created using Second Life, a freely available online gaming platform. Seventeen, non-treatment seeking, individuals that abuse methamphetamine (METH) completed this one-day, outpatient, within-subjects study. Participants completed four test sessions: 1) METH-VR 2) neutral-VR 3) METH-video 4) neutral-video in a counterbalanced (latin square) fashion. The participants provided subjective ratings of urges to use METH, mood, and physical state throughout each cue presentation. Measures of physiological reactivity (heart rate variability) were also collected during each cue presentation and at rest. The METH-VR condition elicited the greatest change in subjective reports of “crave METH”, “desire METH”, and “want METH” at all time points. The “high craving” participants displayed more high frequency cardiovascular activity while the “low craving” participants displayed more low frequency cardiovascular activity during the cue conditions, with the greatest difference seen during the METH-VR and METH-video cues. These findings reveal a physiological divergence between high and low craving METH abusers using heart rate variability, and demonstrate the usefulness of VR cues for eliciting subjective craving in METH abusers, as well as the effectiveness of a novel VR drug cue model created within an online virtual world. PMID:20643158
Manually locating physical and virtual reality objects.
Chen, Karen B; Kimmel, Ryan A; Bartholomew, Aaron; Ponto, Kevin; Gleicher, Michael L; Radwin, Robert G
2014-09-01
In this study, we compared how users locate physical and equivalent three-dimensional images of virtual objects in a cave automatic virtual environment (CAVE) using the hand to examine how human performance (accuracy, time, and approach) is affected by object size, location, and distance. Virtual reality (VR) offers the promise to flexibly simulate arbitrary environments for studying human performance. Previously, VR researchers primarily considered differences between virtual and physical distance estimation rather than reaching for close-up objects. Fourteen participants completed manual targeting tasks that involved reaching for corners on equivalent physical and virtual boxes of three different sizes. Predicted errors were calculated from a geometric model based on user interpupillary distance, eye location, distance from the eyes to the projector screen, and object. Users were 1.64 times less accurate (p < .001) and spent 1.49 times more time (p = .01) targeting virtual versus physical box corners using the hands. Predicted virtual targeting errors were on average 1.53 times (p < .05) greater than the observed errors for farther virtual targets but not significantly different for close-up virtual targets. Target size, location, and distance, in addition to binocular disparity, affected virtual object targeting inaccuracy. Observed virtual box inaccuracy was less than predicted for farther locations, suggesting possible influence of cues other than binocular vision. Human physical interaction with objects in VR for simulation, training, and prototyping involving reaching and manually handling virtual objects in a CAVE are more accurate than predicted when locating farther objects.
A haptic interface for virtual simulation of endoscopic surgery.
Rosenberg, L B; Stredney, D
1996-01-01
Virtual reality can be described as a convincingly realistic and naturally interactive simulation in which the user is given a first person illusion of being immersed within a computer generated environment While virtual reality systems offer great potential to reduce the cost and increase the quality of medical training, many technical challenges must be overcome before such simulation platforms offer effective alternatives to more traditional training means. A primary challenge in developing effective virtual reality systems is designing the human interface hardware which allows rich sensory information to be presented to users in natural ways. When simulating a given manual procedure, task specific human interface requirements dictate task specific human interface hardware. The following paper explores the design of human interface hardware that satisfies the task specific requirements of virtual reality simulation of Endoscopic surgical procedures. Design parameters were derived through direct cadaver studies and interviews with surgeons. Final hardware design is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, A.I.; Keyomarsi, K.; Bryan, J.
1990-11-01
The authors have previously described a defective herpes simplex virus (HSV-1) vector system that permits that introduction of virtually any gene into nonmitotic cells. pHSVlac, the prototype vector, stably expresses Escherichia coli {beta}-galactosidase from a constitutive promoter in many human cell lines, in cultured rat neurons from throughout the nervous system, and in cells in the adult rat brain. HSV-1 vectors expressing other genes may prove useful for studying neuronal physiology or performing human gene therapy for neurological diseases, such as Parkinson disease or brain tumors. A HSV-1 temperature-sensitive (ts) mutant, ts K, has been used as helper virus; tsmore » mutants revert to wild type. In contrast, HSV-1 deletion mutants essentially cannot revert to wild type; therefore, use of a deletion mutant as helper virus might permit human gene therapy with HSV-1 vectors. They now report an efficient packaging system for HSV-1 VECTORS USING A DELETION MUTANT, d30EBA, as helper virus; virus is grown on the complementing cell line M64A. pHSVlac virus prepared using the deletion mutant packaging system stably expresses {beta}-galactosidase in cultured rat sympathetic neurons and glia. Both D30EBA and ts K contain a mutation in the IE3 gene of HSV-1 strain 17 and have the same phenotype; therefore, changing the helper virus from ts K to D30EBA does not alter the host range or other properties of the HSV-1 vector system.« less
Morris, Paul D; Silva Soto, Daniel Alejandro; Feher, Jeroen F A; Rafiroiu, Dan; Lungu, Angela; Varma, Susheel; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2017-08-01
Fractional flow reserve (FFR)-guided percutaneous intervention is superior to standard assessment but remains underused. The authors have developed a novel "pseudotransient" analysis protocol for computing virtual fractional flow reserve (vFFR) based upon angiographic images and steady-state computational fluid dynamics. This protocol generates vFFR results in 189 s (cf >24 h for transient analysis) using a desktop PC, with <1% error relative to that of full-transient computational fluid dynamics analysis. Sensitivity analysis demonstrated that physiological lesion significance was influenced less by coronary or lesion anatomy (33%) and more by microvascular physiology (59%). If coronary microvascular resistance can be estimated, vFFR can be accurately computed in less time than it takes to make invasive measurements.
SimCoach: An Intelligent Virtual Human System for Proving Healthcare Information and Support
2010-08-01
classrooms , offices, markets, etc.), the next important challenge will involve populating these environments with Virtual Human (VH) representations...in a virtual classroom (Parsons et al., 2007; Rizzo et al., 2006). Additionally, VHs have been used effectively for the conduct of social psychology...T Bowerly, J G Buckwalter and A A Rizzo (2007), A controlled clinical comparison of attention performance in children with ADHD in a virtual reality
Brief virtual reality therapy for public speaking anxiety.
Harris, Sandra R; Kemmerling, Robert L; North, Max M
2002-12-01
The primary goal of this research program was to investigate the effectiveness of virtual reality therapy (VRT) in reducing public speaking anxiety of university students. The prevalence and impact of public speaking anxiety as a type of Social Phobia are discussed. Studies of VRT as an emerging treatment for psychological problems are reviewed. In the present study, eight students completed VRT individual treatment and post-testing, and six students in a Wait-List control group completed post-testing. Assessment measures included four self-report inventories, self-report of Subjective Units of Discomfort during exposure to VRT and physiological measurements of heart rate during speaking tasks. Four weekly individual exposure treatment sessions of approximately 15 min each were conducted by the author serving as therapist. Results on self-report and physiological measures appear to indicate that four virtual reality treatment sessions were effective in reducing public speaking anxiety in university students, corroborating earlier studies of VRT's effectiveness as a psychotherapeutic modality. Future research directions are discussed, primarily the need for research on younger populations, to assess the effectiveness of VRT for earlier intervention with public speaking anxiety.
Nauser, Thomas; Gebicki, Janusz M
2017-09-18
The principal initial biological targets of free radicals formed under conditions of oxidative stress are the proteins. The most common products of the interaction are carbon-centered alkyl radicals which react rapidly with oxygen to form peroxyl radicals and hydroperoxides. All these species are reactive, capable of propagating the free radical damage to enzymes, nucleic acids, lipids, and endogenous antioxidants, leading finally to the pathologies associated with oxidative stress. The best chance of preventing this chain of damage is in early repair of the protein radicals by antioxidants. Estimate of the effectiveness of the physiologically significant antioxidants requires knowledge of the antioxidant tissue concentrations and rate constants of their reaction with protein radicals. Previous studies by pulse radiolysis have shown that only ascorbate can repair the Trp and Tyr protein radicals before they form peroxyl radicals under physiological concentrations of oxygen. We have now extended this work to other protein C-centered radicals generated by hydroxyl radicals because these and many other free radicals formed under oxidative stress can produce secondary radicals on virtually any amino acid residue. Pulse radiolysis identified two classes of rate constants for reactions of protein radicals with ascorbate, a faster one in the range (9-60) × 10 7 M -1 s -1 and a slow one with a range of (0.5-2) × 10 7 M -1 s -1 . These results show that ascorbate can prevent further reactions of protein radicals only in the few human tissues where its concentration exceeds about 2.5 mM.
Wagner, A; Ploder, O; Enislidis, G; Truppe, M; Ewers, R
1996-04-01
Interventional video tomography (IVT), a new imaging modality, achieves virtual visualization of anatomic structures in three dimensions for intraoperative stereotactic navigation. Partial immersion into a virtual data space, which is orthotopically coregistered to the surgical field, enhances, by means of a see-through head-mounted display (HMD), the surgeon's visual perception and technique by providing visual access to nonvisual data of anatomy, physiology, and function. The presented cases document the potential of augmented reality environments in maxillofacial surgery.
Using Advanced Prosthetics for Stress Inoculation Training and to Teach Life Saving Skills
2010-04-01
was successful in applying off-the-shelf video games to their training methods. The effectiveness of video games as a teaching tool can be found...study, we evaluated the physiological responses of trainees during a virtual combat medic video game task performance. In this experiment combat...Shoot House Virtual Reality Videogame (VRVG) MOUT training and testing for joint forces and for echelon one combat trauma care SIT training
Virtually Naked: Virtual Environment Reveals Sex-Dependent Nature of Skin Disclosure
Lomanowska, Anna M.; Guitton, Matthieu J.
2012-01-01
The human tendency to reveal or cover naked skin reflects a competition between the individual propensity for social interactions related to sexual appeal and interpersonal touch versus climatic, environmental, physical, and cultural constraints. However, due to the ubiquitous nature of these constraints, isolating on a large scale the spontaneous human tendency to reveal naked skin has remained impossible. Using the online 3-dimensional virtual world of Second Life, we examined spontaneous human skin-covering behavior unhindered by real-world climatic, environmental, and physical variables. Analysis of hundreds of avatars revealed that virtual females disclose substantially more naked skin than virtual males. This phenomenon was not related to avatar hypersexualization as evaluated by measurement of sexually dimorphic body proportions. Furthermore, analysis of skin-covering behavior of a population of culturally homogeneous avatars indicated that the propensity of female avatars to reveal naked skin persisted despite explicit cultural norms promoting less revealing attire. These findings have implications for further understanding how sex-specific aspects of skin disclosure influence human social interactions in both virtual and real settings. PMID:23300580
Virtually naked: virtual environment reveals sex-dependent nature of skin disclosure.
Lomanowska, Anna M; Guitton, Matthieu J
2012-01-01
The human tendency to reveal or cover naked skin reflects a competition between the individual propensity for social interactions related to sexual appeal and interpersonal touch versus climatic, environmental, physical, and cultural constraints. However, due to the ubiquitous nature of these constraints, isolating on a large scale the spontaneous human tendency to reveal naked skin has remained impossible. Using the online 3-dimensional virtual world of Second Life, we examined spontaneous human skin-covering behavior unhindered by real-world climatic, environmental, and physical variables. Analysis of hundreds of avatars revealed that virtual females disclose substantially more naked skin than virtual males. This phenomenon was not related to avatar hypersexualization as evaluated by measurement of sexually dimorphic body proportions. Furthermore, analysis of skin-covering behavior of a population of culturally homogeneous avatars indicated that the propensity of female avatars to reveal naked skin persisted despite explicit cultural norms promoting less revealing attire. These findings have implications for further understanding how sex-specific aspects of skin disclosure influence human social interactions in both virtual and real settings.
Meeting review: Bioinformatics and Medicine - from molecules to humans, virtual and real.
Russell, Roslin
2002-01-01
The Industrialization Workshop Series aims to promote and discuss integration, automation, simulation, quality, availability and standards in the high-throughput life sciences. The main issues addressed being the transformation of bioinformatics and bioinformaticsbased drug design into a robust discipline in industry, the government, research institutes and academia. The latest workshop emphasized the influence of the post-genomic era on medicine and healthcare with reference to advanced biological systems modeling and simulation, protein structure research, protein-protein interactions, metabolism and physiology. Speakers included Michael Ashburner, Kenneth Buetow, Francois Cambien, Cyrus Chothia, Jean Garnier, Francois Iris, Matthias Mann, Maya Natarajan, Peter Murray-Rust, Richard Mushlin, Barry Robson, David Rubin, Kosta Steliou, John Todd, Janet Thornton, Pim van der Eijk, Michael Vieth and Richard Ward.
A Low-cost System for Generating Near-realistic Virtual Actors
NASA Astrophysics Data System (ADS)
Afifi, Mahmoud; Hussain, Khaled F.; Ibrahim, Hosny M.; Omar, Nagwa M.
2015-06-01
Generating virtual actors is one of the most challenging fields in computer graphics. The reconstruction of a realistic virtual actor has been paid attention by the academic research and the film industry to generate human-like virtual actors. Many movies were acted by human-like virtual actors, where the audience cannot distinguish between real and virtual actors. The synthesis of realistic virtual actors is considered a complex process. Many techniques are used to generate a realistic virtual actor; however they usually require expensive hardware equipment. In this paper, a low-cost system that generates near-realistic virtual actors is presented. The facial features of the real actor are blended with a virtual head that is attached to the actor's body. Comparing with other techniques that generate virtual actors, the proposed system is considered a low-cost system that requires only one camera that records the scene without using any expensive hardware equipment. The results of our system show that the system generates good near-realistic virtual actors that can be used on many applications.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shi, M.; Sun, J.; Yang, C.; Zhang, Yajuan; Scopesi, F.; Makobore, P.; Chin, C.; Serra, G.; Wickramasinghe, Y. A. B. D.; Rolfe, P.
2015-02-01
Brain activity can be monitored non-invasively by functional near-infrared spectroscopy (fNIRS), which has several advantages in comparison with other methods, such as flexibility, portability, low cost and fewer physical restrictions. However, in practice fNIRS measurements are often contaminated by physiological interference arising from cardiac contraction, breathing and blood pressure fluctuations, thereby severely limiting the utility of the method. Hence, further improvement is necessary to reduce or eliminate such interference in order that the evoked brain activity information can be extracted reliably from fNIRS data. In the present paper, the multi-distance fNIRS probe configuration has been adopted. The short-distance fNIRS measurement is treated as the virtual channel and the long-distance fNIRS measurement is treated as the measurement channel. Independent component analysis (ICA) is employed for the fNIRS recordings to separate the brain signals and the interference. Least-absolute deviation (LAD) estimator is employed to recover the brain activity signals. We also utilized Monte Carlo simulations based on a five-layer model of the adult human head to evaluate our methodology. The results demonstrate that the ICA algorithm has the potential to separate physiological interference in fNIRS data and the LAD estimator could be a useful criterion to recover the brain activity signals.
Inter-Individual Variability in High-Throughput Risk ...
We incorporate realistic human variability into an open-source high-throughput (HT) toxicokinetics (TK) modeling framework for use in a next-generation risk prioritization approach. Risk prioritization involves rapid triage of thousands of environmental chemicals, most which have little or no existing TK data. Chemicals are prioritized based on model estimates of hazard and exposure, to decide which chemicals should be first in line for further study. Hazard may be estimated with in vitro HT screening assays, e.g., U.S. EPA’s ToxCast program. Bioactive ToxCast concentrations can be extrapolated to doses that produce equivalent concentrations in body tissues using a reverse TK approach in which generic TK models are parameterized with 1) chemical-specific parameters derived from in vitro measurements and predicted from chemical structure; and 2) with physiological parameters for a virtual population. Here we draw physiological parameters from realistic estimates of distributions of demographic and anthropometric quantities in the modern U.S. population, based on the most recent CDC NHANES data. A Monte Carlo approach, accounting for the correlation structure in physiological parameters, is used to estimate ToxCast equivalent doses for the most sensitive portion of the population. To quantify risk, ToxCast equivalent doses are compared to estimates of exposure rates based on Bayesian inferences drawn from NHANES urinary analyte biomonitoring data. The inclusion
NASA Astrophysics Data System (ADS)
Chen, S.-Y.; Tsai, T.-H.; Hsieh, C.-S.; Tai, S.-P.; Lin, C.-Y.; Ko, C.-Y.; Chen, Y.-C.; Tsai, H.-J.; Hu, C.-H.; Sun, C.-K.
2005-03-01
Based on a femtosecond Cr:forsterite laser, harmonics optical microscopy (HOM) provides a truly "noninvasive" tool for in vivo and long-term study of vertebrate embryonic development. Based on optical nonlinearity, HOM provides sub-micrometer 3D spatial resolution and high 3D optical-sectioning power without using invasive and toxic fluorophores. Since only virtual-level-transition is involved, HOM is known to leave no energy deposition and no photodamage. Combined with second harmonic generation, which is sensitive to specific structure such as nerve and muscle fibers, HOM can perform functional studies of early developmental dynamics of many vertebrate physiological systems. Recently, zebrafish has become a standard model for many biological and medical studies of vertebrates, due to the similarity between embryonic development of zebrafish and human being. Here we demonstrate in vivo HOM studies of developmental dynamics of several important embryonic physiological systems in live zebrafish embryos, with focuses on the developments of brains, eyes, ears, and hearts. Based on a femtosecond Cr:forsterite laser, which provides the deepest penetration (~1.5mm) and least photodamage in the zebrafish embryo, complete developing processes of different physiological systems within a period of time longer than 20 hours can be non-invasively observed inside the same embryo.
Rizzo, Albert; Buckwalter, J Galen; John, Bruce; Newman, Brad; Parsons, Thomas; Kenny, Patrick; Williams, Josh
2012-01-01
The incidence of posttraumatic stress disorder (PTSD) in returning OEF/OIF military personnel is creating a significant healthcare challenge. This has served to motivate research on how to better develop and disseminate evidence-based treatments for PTSD. One emerging form of treatment for combat-related PTSD that has shown promise involves the delivery of exposure therapy using immersive Virtual Reality (VR). Initial outcomes from open clinical trials have been positive and fully randomized controlled trials are currently in progress to further validate this approach. Based on our research group's initial positive outcomes using VR to emotionally engage and successfully treat persons undergoing exposure therapy for PTSD, we have begun development in a similar VR-based approach to deliver stress resilience training with military service members prior to their initial deployment. The Stress Resilience In Virtual Environments (STRIVE) project aims to create a set of combat simulations (derived from our existing Virtual Iraq/Afghanistan exposure therapy system) that are part of a multi-episode narrative experience. Users can be immersed within challenging combat contexts and interact with virtual characters within these episodes as part of an experiential learning approach for training a range of psychoeducational and cognitive-behavioral emotional coping strategies believed to enhance stress resilience. The STRIVE project aims to present this approach to service members prior to deployment as part of a program designed to better prepare military personnel for the types of emotional challenges that are inherent in the combat environment. During these virtual training experiences users are monitored physiologically as part of a larger investigation into the biomarkers of the stress response. One such construct, Allostatic Load, is being directly investigated via physiological and neuro-hormonal analysis from specimen collections taken immediately before and after engagement in the STRIVE virtual experience.
2010-01-01
Background Many researchers and clinicians have proposed using virtual reality (VR) in adjunct to in vivo exposure therapy to provide an innovative form of exposure to patients suffering from different psychological disorders. The rationale behind the 'virtual approach' is that real and virtual exposures elicit a comparable emotional reaction in subjects, even if, to date, there are no experimental data that directly compare these two conditions. To test whether virtual stimuli are as effective as real stimuli, and more effective than photographs in the anxiety induction process, we tested the emotional reactions to real food (RF), virtual reality (VR) food and photographs (PH) of food in two samples of patients affected, respectively, by anorexia (AN) and bulimia nervosa (BN) compared to a group of healthy subjects. The two main hypotheses were the following: (a) the virtual exposure elicits emotional responses comparable to those produced by the real exposure; (b) the sense of presence induced by the VR immersion makes the virtual experience more ecological, and consequently more effective than static pictures in producing emotional responses in humans. Methods In total, 10 AN, 10 BN and 10 healthy control subjects (CTR) were randomly exposed to three experimental conditions: RF, PH, and VR while their psychological (Stait Anxiety Inventory (STAI-S) and visual analogue scale for anxiety (VAS-A)) and physiological (heart rate, respiration rate, and skin conductance) responses were recorded. Results RF and VR induced a comparable emotional reaction in patients higher than the one elicited by the PH condition. We also found a significant effect in the subjects' degree of presence experienced in the VR condition about their level of perceived anxiety (STAI-S and VAS-A): the higher the sense of presence, the stronger the level of anxiety. Conclusions Even though preliminary, the present data show that VR is more effective than PH in eliciting emotional responses similar to those expected in real life situations. More generally, the present study suggests the potential of VR in a variety of experimental, training and clinical contexts, being its range of possibilities extremely wide and customizable. In particular, in a psychological perspective based on a cognitive behavioral approach, the use of VR enables the provision of specific contexts to help patients to cope with their diseases thanks to an easily controlled stimulation. PMID:20602749
Physical environment virtualization for human activities recognition
NASA Astrophysics Data System (ADS)
Poshtkar, Azin; Elangovan, Vinayak; Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen
2015-05-01
Human activity recognition research relies heavily on extensive datasets to verify and validate performance of activity recognition algorithms. However, obtaining real datasets are expensive and highly time consuming. A physics-based virtual simulation can accelerate the development of context based human activity recognition algorithms and techniques by generating relevant training and testing videos simulating diverse operational scenarios. In this paper, we discuss in detail the requisite capabilities of a virtual environment to aid as a test bed for evaluating and enhancing activity recognition algorithms. To demonstrate the numerous advantages of virtual environment development, a newly developed virtual environment simulation modeling (VESM) environment is presented here to generate calibrated multisource imagery datasets suitable for development and testing of recognition algorithms for context-based human activities. The VESM environment serves as a versatile test bed to generate a vast amount of realistic data for training and testing of sensor processing algorithms. To demonstrate the effectiveness of VESM environment, we present various simulated scenarios and processed results to infer proper semantic annotations from the high fidelity imagery data for human-vehicle activity recognition under different operational contexts.
Spontaneous Recovery of Human Spatial Memory in a Virtual Water Maze
ERIC Educational Resources Information Center
Luna, David; Martínez, Héctor
2015-01-01
The occurrence of spontaneous recovery in human spatial memory was assessed using a virtual environment. In Experiment 1, spatial memory was established by training participants to locate a hidden platform in a virtual water maze using a set of four distal landmarks. In Experiment 2, after learning about the location of a hidden platform, the…
Augmented reality for biomedical wellness sensor systems
NASA Astrophysics Data System (ADS)
Jenkins, Jeffrey; Szu, Harold
2013-05-01
Due to the commercial move and gaming industries, Augmented Reality (AR) technology has matured. By definition of AR, both artificial and real humans can be simultaneously present and realistically interact among one another. With the help of physics and physiology, we can build in the AR tool together with real human day-night webcam inputs through a simple interaction of heat transfer -getting hot, action and reaction -walking or falling, as well as the physiology -sweating due to activity. Knowing the person age, weight and 3D coordinates of joints in the body, we deduce the force, the torque, and the energy expenditure during real human movements and apply to an AR human model. We wish to support the physics-physiology AR version, PPAR, as a BMW surveillance tool for senior home alone (SHA). The functionality is to record senior walking and hand movements inside a home environment. Besides the fringe benefit of enabling more visits from grand children through AR video games, the PP-AR surveillance tool may serve as a means to screen patients in the home for potential falls at points around in house. Moreover, we anticipate PP-AR may help analyze the behavior history of SHA, e.g. enhancing the Smartphone SHA Ubiquitous Care Program, by discovering early symptoms of candidate Alzheimer-like midnight excursions, or Parkinson-like trembling motion for when performing challenging muscular joint movements. Using a set of coordinates corresponding to a set of 3D positions representing human joint locations, we compute the Kinetic Energy (KE) generated by each body segment over time. The Work is then calculated, and converted into calories. Using common graphics rendering pipelines, one could invoke AR technology to provide more information about patients to caretakers. Alerts to caretakers can be prompted by a patient's departure from their personal baseline, and the patient's time ordered joint information can be loaded to a graphics viewer allowing for high-definition digital reconstruction. Then an entire scene can be viewed from any position in virtual space, and AR can display certain measurements values which either constituted an alert, or otherwise indicate signs of the transition from wellness to illness.
Development of real-time motion capture system for 3D on-line games linked with virtual character
NASA Astrophysics Data System (ADS)
Kim, Jong Hyeong; Ryu, Young Kee; Cho, Hyung Suck
2004-10-01
Motion tracking method is being issued as essential part of the entertainment, medical, sports, education and industry with the development of 3-D virtual reality. Virtual human character in the digital animation and game application has been controlled by interfacing devices; mouse, joysticks, midi-slider, and so on. Those devices could not enable virtual human character to move smoothly and naturally. Furthermore, high-end human motion capture systems in commercial market are expensive and complicated. In this paper, we proposed a practical and fast motion capturing system consisting of optic sensors, and linked the data with 3-D game character with real time. The prototype experiment setup is successfully applied to a boxing game which requires very fast movement of human character.
Using virtual reality to explore self-regulation in high-risk settings.
Kniffin, Tracey C; Carlson, Charles R; Ellzey, Antonio; Eisenlohr-Moul, Tory; Beck, Kelly Battle; McDonald, Renee; Jouriles, Ernest N
2014-10-01
Virtual reality (VR) models allow investigators to explore high-risk situations carefully in the laboratory using physiological assessment strategies and controlled conditions not available in field settings. This article introduces the use of a virtual experience to examine the influence of self-regulatory skills training on female participants' reactions to a high-risk encounter with an aggressive male. Sixty-three female participants were recruited for the study. Demographic data indicated that 54% of the participants were not currently in a relationship, 36.5% were in a committed relationship, and 9.5% were occasionally dating. After obtaining informed consent, participants were assigned randomly to either a diaphragmatic breathing training condition or an attention control condition. Results indicated that both groups rated the virtual environment as equally realistic; the aggressive advances of the male were also perceived as equally real across the two experimental groups. Physiological data indicated that there were no differences between the groups on respiration or cardiovascular measures during baseline or during the VR task. After the VR experience, however, the participants in the breathing training condition had lower respiration rates and higher heart rate variability measures than those in the control condition. The results suggest that VR platforms provide a realistic and challenging environment to examine how self-regulation procedures may influence behavioral outcomes. Real-time dynamic engagement in a virtual setting affords investigators with an opportunity to evaluate the utility of self-regulatory skills training for improving safety in situations where there are uncertain and risky outcomes. © The Author(s) 2014.
Surviving sepsis--a 3D integrative educational simulator.
Ježek, Filip; Tribula, Martin; Kulhánek, Tomáš; Mateják, Marek; Privitzer, Pavol; Šilar, Jan; Kofránek, Jiří; Lhotská, Lenka
2015-08-01
Computer technology offers greater educational possibilities, notably simulation and virtual reality. This paper presents a technology which serves to integrate multiple modalities, namely 3D virtual reality, node-based simulator, Physiomodel explorer and explanatory physiological simulators employing Modelica language and Unity3D platform. This emerging tool chain should allow the authors to concentrate more on educational content instead of application development. The technology is demonstrated through Surviving sepsis educational scenario, targeted on Microsoft Windows Store platform.
Digital evaluation of sitting posture comfort in human-vehicle system under Industry 4.0 framework
NASA Astrophysics Data System (ADS)
Tao, Qing; Kang, Jinsheng; Sun, Wenlei; Li, Zhaobo; Huo, Xiao
2016-09-01
Most of the previous studies on the vibration ride comfort of the human-vehicle system were focused only on one or two aspects of the investigation. A hybrid approach which integrates all kinds of investigation methods in real environment and virtual environment is described. The real experimental environment includes the WBV(whole body vibration) test, questionnaires for human subjective sensation and motion capture. The virtual experimental environment includes the theoretical calculation on simplified 5-DOF human body vibration model, the vibration simulation and analysis within ADAMS/VibrationTM module, and the digital human biomechanics and occupational health analysis in Jack software. While the real experimental environment provides realistic and accurate test results, it also serves as core and validation for the virtual experimental environment. The virtual experimental environment takes full advantages of current available vibration simulation and digital human modelling software, and makes it possible to evaluate the sitting posture comfort in a human-vehicle system with various human anthropometric parameters. How this digital evaluation system for car seat comfort design is fitted in the Industry 4.0 framework is also proposed.
Costanzo, Michelle E; Leaman, Suzanne; Jovanovic, Tanja; Norrholm, Seth D; Rizzo, Albert A; Taylor, Patricia; Roy, Michael J
2014-01-01
Subthreshold posttraumatic stress disorder (PTSD) has garnered recent attention because of the significant distress and functional impairment associated with the symptoms as well as the increased risk of progression to full PTSD. However, the clinical presentation of subthreshold PTSD can vary widely and therefore is not clearly defined, nor is there an evidence-based treatment approach. Thus, we aim to further the understanding of subthreshold PTSD symptoms by reporting the use of a virtual combat environment in eliciting distinctive psychophysiological responses associated with PTSD symptoms in a sample of subthreshold recently deployed US service members. Heart rate, skin conductance, electromyography (startle), respiratory rate, and blood pressure were monitored during three unique combat-related virtual reality scenarios as a novel procedure to assess subthreshold symptoms in a sample of 78 service members. The Clinician-Administered PTSD Scale was administered, and linear regression analyses were used to investigate the relationship between symptom clusters and physiological variables. Among the range of psychophysiological measures that were studied, regression analysis revealed heart rate as most strongly associated with Clinician-Administered PTSD Scale-based measures hyperarousal (R = 0.11, p = .035,) reexperiencing (R = 0.24, p = .001), and global PTSD symptoms (R = 0.17, p = .003). Our findings support the use of a virtual reality environment in eliciting physiological responses associated with subthreshold PTSD symptoms.
Venkataraman, Pranav; Browd, Samuel R; Lutz, Barry R
2016-09-01
OBJECTIVE The surgical placement of a shunt designed to resolve the brain's impaired ability to drain excess CSF is one of the most common treatments for hydrocephalus. The use of a dynamic testing platform is an important part of shunt testing that can faithfully reproduce the physiological environment of the implanted shunts. METHODS A simulation-based framework that serves as a proof of concept for enabling the application of virtual intracranial pressure (ICP) and CSF models to a physical shunt-testing system was engineered. This was achieved by designing hardware and software that enabled the application of dynamic model-driven inlet and outlet pressures to a shunt and the subsequent measurement of the resulting drainage rate. RESULTS A set of common physiological scenarios was simulated, including oscillations in ICP due to respiratory and cardiac cycles, changes in baseline ICP due to changes in patient posture, and transient ICP spikes caused by activities such as exercise, coughing, sneezing, and the Valsalva maneuver. The behavior of the Strata valve under a few of these physiological conditions is also demonstrated. CONCLUSIONS Testing shunts with dynamic ICP and CSF simulations can facilitate the optimization of shunts to be more failure resistant and better suited to patient physiology.
The Martian: Examining Human Physical Judgments across Virtual Gravity Fields.
Ye, Tian; Qi, Siyuan; Kubricht, James; Zhu, Yixin; Lu, Hongjing; Zhu, Song-Chun
2017-04-01
This paper examines how humans adapt to novel physical situations with unknown gravitational acceleration in immersive virtual environments. We designed four virtual reality experiments with different tasks for participants to complete: strike a ball to hit a target, trigger a ball to hit a target, predict the landing location of a projectile, and estimate the flight duration of a projectile. The first two experiments compared human behavior in the virtual environment with real-world performance reported in the literature. The last two experiments aimed to test the human ability to adapt to novel gravity fields by measuring their performance in trajectory prediction and time estimation tasks. The experiment results show that: 1) based on brief observation of a projectile's initial trajectory, humans are accurate at predicting the landing location even under novel gravity fields, and 2) humans' time estimation in a familiar earth environment fluctuates around the ground truth flight duration, although the time estimation in unknown gravity fields indicates a bias toward earth's gravity.
Human Machine Interfaces for Teleoperators and Virtual Environments
NASA Technical Reports Server (NTRS)
Durlach, Nathaniel I. (Compiler); Sheridan, Thomas B. (Compiler); Ellis, Stephen R. (Compiler)
1991-01-01
In Mar. 1990, a meeting organized around the general theme of teleoperation research into virtual environment display technology was conducted. This is a collection of conference-related fragments that will give a glimpse of the potential of the following fields and how they interplay: sensorimotor performance; human-machine interfaces; teleoperation; virtual environments; performance measurement and evaluation methods; and design principles and predictive models.
Advanced Collaborative Environments Supporting Systems Integration and Design
2003-03-01
concurrently view a virtual system or product model while maintaining natural, human communication . These virtual systems operate within a computer-generated...These environments allow multiple individuals to concurrently view a virtual system or product model while simultaneously maintaining natural, human ... communication . As a result, TARDEC researchers and system developers are using this advanced high-end visualization technology to develop future
Comparing Human-Human to Human-Computer Tutorial Dialogue
2010-01-01
acknowledged what their tutor said and participated in rapport building with chit-chat. This seems to be driven by a need to be polite and courteous to the...An experiment on public speaking anxiety in response to three different types of virtual audiences. Presence: Teleoperators and Virtual
Estimating the gaze of a virtuality human.
Roberts, David J; Rae, John; Duckworth, Tobias W; Moore, Carl M; Aspin, Rob
2013-04-01
The aim of our experiment is to determine if eye-gaze can be estimated from a virtuality human: to within the accuracies that underpin social interaction; and reliably across gaze poses and camera arrangements likely in every day settings. The scene is set by explaining why Immersive Virtuality Telepresence has the potential to meet the grand challenge of faithfully communicating both the appearance and the focus of attention of a remote human participant within a shared 3D computer-supported context. Within the experiment n=22 participants rotated static 3D virtuality humans, reconstructed from surround images, until they felt most looked at. The dependent variable was absolute angular error, which was compared to that underpinning social gaze behaviour in the natural world. Independent variables were 1) relative orientations of eye, head and body of captured subject; and 2) subset of cameras used to texture the form. Analysis looked for statistical and practical significance and qualitative corroborating evidence. The analysed results tell us much about the importance and detail of the relationship between gaze pose, method of video based reconstruction, and camera arrangement. They tell us that virtuality can reproduce gaze to an accuracy useful in social interaction, but with the adopted method of Video Based Reconstruction, this is highly dependent on combination of gaze pose and camera arrangement. This suggests changes in the VBR approach in order to allow more flexible camera arrangements. The work is of interest to those wanting to support expressive meetings that are both socially and spatially situated, and particular those using or building Immersive Virtuality Telepresence to accomplish this. It is also of relevance to the use of virtuality humans in applications ranging from the study of human interactions to gaming and the crossing of the stage line in films and TV.
Interactions with Virtual People: Do Avatars Dream of Digital Sheep?. Chapter 6
NASA Technical Reports Server (NTRS)
Slater, Mel; Sanchez-Vives, Maria V.
2007-01-01
This paper explores another form of artificial entity, ones without physical embodiment. We refer to virtual characters as the name for a type of interactive object that have become familiar in computer games and within virtual reality applications. We refer to these as avatars: three-dimensional graphical objects that are in more-or-less human form which can interact with humans. Sometimes such avatars will be representations of real-humans who are interacting together within a shared networked virtual environment, other times the representations will be of entirely computer generated characters. Unlike other authors, who reserve the term agent for entirely computer generated characters and avatars for virtual embodiments of real people; the same term here is used for both. This is because avatars and agents are on a continuum. The question is where does their behaviour originate? At the extremes the behaviour is either completely computer generated or comes only from tracking of a real person. However, not every aspect of a real person can be tracked every eyebrow move, every blink, every breath rather real tracking data would be supplemented by inferred behaviours which are programmed based on the available information as to what the real human is doing and her/his underlying emotional and psychological state. Hence there is always some programmed behaviour it is only a matter of how much. In any case the same underlying problem remains how can the human character be portrayed in such a manner that its actions are believable and have an impact on the real people with whom it interacts? This paper has three main parts. In the first part we will review some evidence that suggests that humans react with appropriate affect in their interactions with virtual human characters, or with other humans who are represented as avatars. This is so in spite of the fact that the representational fidelity is relatively low. Our evidence will be from the realm of psychotherapy, where virtual social situations are created that do test whether people react appropriately within these situations. We will also consider some experiments on face-to-face virtual communications between people in the same shared virtual environments. The second part will try to give some clues about why this might happen, taking into account modern theories of perception from neuroscience. The third part will include some speculations about the future developments of the relationship between people and virtual people. We will suggest that a more likely scenario than the world becoming populated by physically embodied virtual people (robots, androids) is that in the relatively near future we will interact more and more in our everyday lives with virtual people- bank managers, shop assistants, instructors, and so on. What is happening in the movies with computer graphic generated individuals and entire crowds may move into the space of everyday life.
[Research report of experimental database establishment of digitized virtual Chinese No.1 female].
Zhong, Shi-zhen; Yuan, Lin; Tang, Lei; Huang, Wen-hua; Dai, Jing-xing; Li, Jian-yi; Liu, Chang; Wang, Xing-hai; Li, Hua; Luo, Shu-qian; Qin, Dulie; Zeng, Shao-qun; Wu, Tao; Zhang, Mei-chao; Wu, Kun-cheng; Jiao, Pei-feng; Lu, Yun-tao; Chen, Hao; Li, Pei-liang; Gao, Yuan; Wang, Tong; Fan, Ji-hong
2003-03-01
To establish digitized virtual Chinese No.1 female (VCH-F1) image database. A 19 years old female cadaver was scanned by CT, MRI, and perfused with red filling material through formal artery before freezing and em- bedding. The whole body was cut by JZ1500A vertical milling machine with a 0.2 mm inter-spacing. All the images was produced by Fuji FinePix S2 Pro camera. The body index of VCH-F1 was 94%. We cut 8 556 sections of the whole body, and each image was 17.5 MB in size and the whole database reached 149.7 GB. We have totally 6 versions of the database for different applications. Compared with other databases, VCH-F1 has good representation of the Chinese body shape, colorful filling material in blood vessels providing enough information for future registration and segmentation. Vertical embedding and cutting helped to retain normal human physiological posture, and the image quality and operation efficiency were improved by using various techniques such as one-time freezing and fixation, double-temperature icehouse, large-diameter milling disc and whole body cutting.
In biochemical systems a host of “nature’s catalysts” conduct chemical transformations at physiological temperatures, high substrate conversion, high optical activity integrity, and single reactive center substrate changes. All of these traits are highly esteemed in the pursuit o...
Discovery of novel human acrosin inhibitors by virtual screening
NASA Astrophysics Data System (ADS)
Liu, Xuefei; Dong, Guoqiang; Zhang, Jue; Qi, Jingjing; Zheng, Canhui; Zhou, Youjun; Zhu, Ju; Sheng, Chunquan; Lü, Jiaguo
2011-10-01
Human acrosin is an attractive target for the discovery of male contraceptive drugs. For the first time, structure-based drug design was applied to discover structurally diverse human acrosin inhibitors. A parallel virtual screening strategy in combination with pharmacophore-based and docking-based techniques was used to screen the SPECS database. From 16 compounds selected by virtual screening, a total of 10 compounds were found to be human acrosin inhibitors. Compound 2 was found to be the most potent hit (IC50 = 14 μM) and its binding mode was investigated by molecular dynamics simulations. The hit interacted with human acrosin mainly through hydrophobic and hydrogen-bonding interactions, which provided a good starting structure for further optimization studies.
2014-01-01
Background Cycling has been used in the rehabilitation of individuals with both chronic and post-surgical conditions. Among the challenges with implementing bicycling for rehabilitation is the recruitment of both extremities, in particular when one is weaker or less coordinated. Feedback embedded in virtual reality (VR) augmented cycling may serve to address the requirement for efficacious cycling; specifically recruitment of both extremities and exercising at a high intensity. Methods In this paper a mechatronic rehabilitation bicycling system with an interactive virtual environment, called Virtual Reality Augmented Cycling Kit (VRACK), is presented. Novel hardware components embedded with sensors were implemented on a stationary exercise bicycle to monitor physiological and biomechanical parameters of participants while immersing them in an augmented reality simulation providing the user with visual, auditory and haptic feedback. This modular and adaptable system attaches to commercially-available stationary bicycle systems and interfaces with a personal computer for simulation and data acquisition processes. The complete bicycle system includes: a) handle bars based on hydraulic pressure sensors; b) pedals that monitor pedal kinematics with an inertial measurement unit (IMU) and forces on the pedals while providing vibratory feedback; c) off the shelf electronics to monitor heart rate and d) customized software for rehabilitation. Bench testing for the handle and pedal systems is presented for calibration of the sensors detecting force and angle. Results The modular mechatronic kit for exercise bicycles was tested in bench testing and human tests. Bench tests performed on the sensorized handle bars and the instrumented pedals validated the measurement accuracy of these components. Rider tests with the VRACK system focused on the pedal system and successfully monitored kinetic and kinematic parameters of the rider’s lower extremities. Conclusions The VRACK system, a virtual reality mechatronic bicycle rehabilitation modular system was designed to convert most bicycles in virtual reality (VR) cycles. Preliminary testing of the augmented reality bicycle system was successful in demonstrating that a modular mechatronic kit can monitor and record kinetic and kinematic parameters of several riders. PMID:24902780
Human agency beliefs influence behaviour during virtual social interactions
Brock, Jon
2017-01-01
In recent years, with the emergence of relatively inexpensive and accessible virtual reality technologies, it is now possible to deliver compelling and realistic simulations of human-to-human interaction. Neuroimaging studies have shown that, when participants believe they are interacting via a virtual interface with another human agent, they show different patterns of brain activity compared to when they know that their virtual partner is computer-controlled. The suggestion is that users adopt an “intentional stance” by attributing mental states to their virtual partner. However, it remains unclear how beliefs in the agency of a virtual partner influence participants’ behaviour and subjective experience of the interaction. We investigated this issue in the context of a cooperative “joint attention” game in which participants interacted via an eye tracker with a virtual onscreen partner, directing each other’s eye gaze to different screen locations. Half of the participants were correctly informed that their partner was controlled by a computer algorithm (“Computer” condition). The other half were misled into believing that the virtual character was controlled by a second participant in another room (“Human” condition). Those in the “Human” condition were slower to make eye contact with their partner and more likely to try and guide their partner before they had established mutual eye contact than participants in the “Computer” condition. They also responded more rapidly when their partner was guiding them, although the same effect was also found for a control condition in which they responded to an arrow cue. Results confirm the influence of human agency beliefs on behaviour in this virtual social interaction context. They further suggest that researchers and developers attempting to simulate social interactions should consider the impact of agency beliefs on user experience in other social contexts, and their effect on the achievement of the application’s goals. PMID:28948104
[Health effects of fluorine and its compounds].
Kono, K
1994-12-01
Fluoride, the ionic form of fluorine, is a natural component of the biosphere and 13th most abundant element in the crust of the earth. It is, therefore, found in a wide range of concentrations in virtually all inanimate and living things. Many trace elements perform a definite function in human metabolism and the question of the value of fluoride, always found in the body, has been raised. Much evidence suggesting that the inclusion of fluoride in drinking water has beneficial as well as adverse effects on human health was obtained. Either alone or in combination with calcium and/or vitamin D, it is used in high daily doses for the treatment of osteoporosis. Although organic fluorine compounds are used in medicine and commerce, the inorganic fluorine compounds are of greater importance toxicologically because they are more readily available. The major pathway of fluoride elimination from the human body is via the kidney. When renal function deteriorates, the ability to excrete fluoride markedly decreases, possibly resulting in greater retention of fluoride in the body. At this point, more research is needed to evaluate the effects of physiological variables on the fluoride metabolism in humans.
One New Method to Generate 3-Dimensional Virtual Mannequin
NASA Astrophysics Data System (ADS)
Xiu-jin, Shi; Zhi-jun, Wang; Jia-jin, Le
The personal virtual mannequin is very important in electronic made to measure (eMTM) system. There is one new easy method to generate personal virtual mannequin. First, the characteristic information of customer's body is got from two photos. Secondly, some human body part templates corresponding with the customer are selected from the templates library. Thirdly, these templates are modified and assembled according to certain rules to generate a personalized 3-dimensional human, and then the virtual mannequin is realized. Experimental result shows that the method is easy and feasible.
Using a Virtual Population to Authentically Teach Epidemiology and Biostatistics
ERIC Educational Resources Information Center
Dunn, Peter K.; Donnison, Sharn; Cole, Rachel; Bulmer, Michael
2017-01-01
Epidemiology is the study of the distribution of disease in human populations. This means that authentically teaching primary data collection in epidemiology is difficult as students cannot easily access suitable human populations. Using an action research methodology, this paper studied the use of a virtual human population (called "The…
Barter, P J; Hopkins, G J; Gorjatschko, L
1984-01-17
A recent observation that lecithin: cholesterol acyltransferase (EC 2.3.1.43) interacts with both low-density lipoproteins (LDL) and high-density lipoproteins (HDL) in human plasma is in apparent conflict with an earlier finding that the purified enzyme, while highly reactive with isolated HDL, was only minimally reactive with LDL. There is evidence, however, that lecithin: cholesterol acyltransferase may exist physiologically as a component of a complex with other proteins and that studies with the isolated enzyme may therefore provide misleading results. Consequently, interactions of the enzyme with isolated human lipoproteins have been re-examined in incubations containing lecithin: cholesterol acyltransferase as a component of human lipoprotein-free plasma in which a physiologically active complex of the enzyme with other proteins may have been preserved. In this system there was a ready esterification of the free cholesterol associated with both LDL and HDL-subfraction 3 (HDL3) in reactions that obeyed typical enzyme-saturation kinetics. For a given preparation of lipoprotein-free plasma the Vmax values with LDL and with HDL3 were virtually identical. The apparent Km for free cholesterol associated with HDL3 was 5.6 X 10(-5) M, while for that associated with LDL it was 4.1 X 10(-4) M. This implied that, in terms of free cholesterol concentration, the affinity of HDL3 for lecithin: cholesterol acyltransferase was about 7-times greater than that of LDL. When expressed in terms of lipoprotein particle concentration, however, it was apparent that the affinity of LDL for the enzyme was considerably greater than that of HDL3. When the lipoprotein fractions were equated in terms of lipoprotein surface area, the apparent affinities of the two fractions for the enzyme were found to be comparable.
Future Evolution of Virtual Worlds as Communication Environments
NASA Astrophysics Data System (ADS)
Prisco, Giulio
Extensive experience creating locations and activities inside virtual worlds provides the basis for contemplating their future. Users of virtual worlds are diverse in their goals for these online environments; for example, immersionists want them to be alternative realities disconnected from real life, whereas augmentationists want them to be communication media supporting real-life activities. As the technology improves, the diversity of virtual worlds will increase along with their significance. Many will incorporate more advanced virtual reality, or serve as major media for long-distance collaboration, or become the venues for futurist social movements. Key issues are how people can create their own virtual worlds, travel across worlds, and experience a variety of multimedia immersive environments. This chapter concludes by noting the view among some computer scientists that future technologies will permit uploading human personalities to artificial intelligence avatars, thereby enhancing human beings and rendering the virtual worlds entirely real.
NASA Technical Reports Server (NTRS)
Rosen, Robert; Korsmeyer, David J.
1993-01-01
The Human Exploration Demonstration Project (HEDP) is an ongoing task at the NASA's Ames Research Center to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary surface habitat. The integrated environment consists of life support systems, physiological monitoring of project crew, a virtual environment work station, and centralized data acquisition and habitat systems health monitoring. The HEDP is an integrated technology demonstrator, as well as an initial operational testbed. There are several robotic systems operational in a simulated planetary landscape external to the habitat environment, to provide representative work loads for the crew. This paper describes the evolution of the HEDP from initial concept to operational project; the status of the HEDP after two years; the final facilities composing the HEDP; the project's role as a NASA Ames Research Center systems technology testbed; and the interim demonstration scenarios that have been run to feature the developing technologies in 1993.
Molecular Mechanisms Regulating Temperature Compensation of the Circadian Clock.
Narasimamurthy, Rajesh; Virshup, David M
2017-01-01
An approximately 24-h biological timekeeping mechanism called the circadian clock is present in virtually all light-sensitive organisms from cyanobacteria to humans. The clock system regulates our sleep-wake cycle, feeding-fasting, hormonal secretion, body temperature, and many other physiological functions. Signals from the master circadian oscillator entrain peripheral clocks using a variety of neural and hormonal signals. Even centrally controlled internal temperature fluctuations can entrain the peripheral circadian clocks. But, unlike other chemical reactions, the output of the clock system remains nearly constant with fluctuations in ambient temperature, a phenomenon known as temperature compensation. In this brief review, we focus on recent advances in our understanding of the posttranslational modifications, especially a phosphoswitch mechanism controlling the stability of PER2 and its implications for the regulation of temperature compensation.
Dealing with Diversity in Computational Cancer Modeling
Johnson, David; McKeever, Steve; Stamatakos, Georgios; Dionysiou, Dimitra; Graf, Norbert; Sakkalis, Vangelis; Marias, Konstantinos; Wang, Zhihui; Deisboeck, Thomas S.
2013-01-01
This paper discusses the need for interconnecting computational cancer models from different sources and scales within clinically relevant scenarios to increase the accuracy of the models and speed up their clinical adaptation, validation, and eventual translation. We briefly review current interoperability efforts drawing upon our experiences with the development of in silico models for predictive oncology within a number of European Commission Virtual Physiological Human initiative projects on cancer. A clinically relevant scenario, addressing brain tumor modeling that illustrates the need for coupling models from different sources and levels of complexity, is described. General approaches to enabling interoperability using XML-based markup languages for biological modeling are reviewed, concluding with a discussion on efforts towards developing cancer-specific XML markup to couple multiple component models for predictive in silico oncology. PMID:23700360
Wandner, Laura D; Heft, Marc W; Lok, Benjamin C; Hirsh, Adam T; George, Steven Z; Horgas, Anne L; Atchison, James W; Torres, Calia A; Robinson, Michael E
2014-05-01
Previous literature indicates that biases exist in pain ratings. Healthcare professionals have been found to use patient demographic cues such as sex, race, and age when making decisions about pain treatment. However, there has been little research comparing healthcare professionals' (i.e., physicians and nurses) pain decision policies based on patient demographic cues. The current study used virtual human technology to examine the impact of patients' sex, race, and age on healthcare professionals' pain ratings. One hundred and ninety-three healthcare professionals (nurses and physicians) participated in this online study. Healthcare professionals assessed virtual human patients who were male and African American to be experiencing greater pain intensity and were more willing to administer opioid analgesics to them than to their demographic counterparts. Similarly, nurses were more willing to administer opioids make treatment decisions than physicians. There was also a significant virtual human-sex by healthcare professional interaction for pain assessment and treatment decisions. The sex difference (male>female) was greater for nurses than physicians. Results replicated findings of previous studies using virtual human patients to assess the effect of sex, race, and age in pain decision-making. In addition, healthcare professionals' pain ratings differed depending on healthcare profession. Nurses were more likely to rate pain higher and be more willing to administer opioid analgesics than were physicians. Healthcare professionals rated male and African American virtual human patients as having higher pain in most pain assessment and treatment domains compared to their demographic counterparts. Similarly the virtual human-sex difference ratings were more pronounced for nurses than physicians. Given the large number of patients seen throughout the healthcare professionals' careers, these pain practice biases have important public health implications. This study suggests attention to the influence of patient demographic cues in pain management education is needed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wandner, Laura D.; Heft, Marc W.; Lok, Benjamin C.; Hirsh, Adam T.; George, Steven Z.; Horgas, Anne L.; Atchison, James W.; Torres, Calia A.; Robinson, Michael E.
2013-01-01
Background Previous literature indicates that biases exist in pain ratings. Healthcare professionals have been found to use patient demographic cues such as sex, race, and age when making decisions about pain treatment. However, there has been little research comparing healthcare professionals’ (i.e., physicians and nurses) pain decision policies based on patient demographic cues. Methods The current study used virtual human technology to examine the impact of patients’ sex, race, and age on healthcare professionals’ pain ratings. One hundred and ninety-three healthcare professionals (nurses and physicians) participated in this online study. Results Healthcare professionals assessed virtual human patients who were male and African American to be experiencing greater pain intensity and were more willing to administer opioid analgesics to them than to their demographic counterparts. Similarly, nurses were more willing to administer opioids make treatment decisions than physicians. There was also a significant virtual human-sex by healthcare professional interaction for pain assessment and treatment decisions. The sex difference (male > female) was greater for nurses than physicians. Conclusions Results replicated findings of previous studies using virtual human patients to assess the effect of sex, race, and age in pain decision-making. In addition, healthcare professionals” pain ratings differed depending on healthcare profession. Nurses were more likely to rate pain higher and be more willing to administer opioid analgesics than were physicians. Healthcare professionals rated male and African American virtual human patients as having higher pain in most pain assessment and treatment domains compared to their demographic counterparts. Similarly the virtual human-sex difference ratings were more pronounced for nurses than physicians. Given the large number of patients seen throughout the healthcare professionals’ careers, these pain practice biases have important public health implications. This study suggests attention to the influence of patient demographic cues in pain management education is needed. PMID:24128374
Computational fluid dynamics modelling in cardiovascular medicine.
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
The assessment of virtual reality for human anatomy instruction
NASA Technical Reports Server (NTRS)
Benn, Karen P.
1994-01-01
This research project seeks to meet the objective of science training by developing, assessing, and validating virtual reality as a human anatomy training medium. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment the traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three dimensional, unlike the one dimensional depiction found in textbooks and the two dimensional depiction found on the computer. Virtual reality is a breakthrough technology that allows one to step through the computer screen into a three dimensional world. This technology offers many opportunities to enhance science education. Therefore, a virtual testing environment of the abdominopelvic region of a human cadaver was created to study the placement of body parts within the nine anatomical divisions of the abdominopelvic region and the four abdominal quadrants.
NASA Astrophysics Data System (ADS)
Miranda, Mateus R.; Costa, Henrik; Oliveira, Luiz; Bernardes, Thiago; Aguiar, Carla; Miosso, Cristiano; Oliveira, Alessandro B. S.; Diniz, Alberto C. G. C.; Domingues, Diana Maria G.
2015-03-01
This paper aims at describing an experimental platform used to evaluate the performance of individuals at training immersive physiological games. The platform proposed is embedded in an immersive environment in a CAVE of Virtual Reality and consists on a base frame with actuators with three degrees of freedom, sensor array interface and physiological sensors. Physiological data of breathing, galvanic skin resistance (GSR) and pressure on the hand of the user and a subjective questionnaire were collected during the experiments. The theoretical background used in a project focused on Software Engineering, Biomedical Engineering in the field of Ergonomics and Creative Technologies in order to presents this case study, related of an evaluation of a vehicular simulator located inside the CAVE. The analysis of the simulator uses physiological data of the drivers obtained in a period of rest and after the experience, with and without movements at the simulator. Also images from the screen are captured through time at the embedded experience and data collected through physiological data visualization (average frequency and RMS graphics). They are empowered by the subjective questionnaire as strong lived experience provided by the technological apparatus. The performed immersion experience inside the CAVE allows to replicate behaviors from physical spaces inside data space enhanced by physiological properties. In this context, the biocybrid condition is expanded beyond art and entertainment, as it is applied to automotive engineering and biomedical engineering. In fact, the kinesthetic sensations amplified by synesthesia replicates the sensation of displacement in the interior of an automobile, as well as the sensations of vibration and vertical movements typical of a vehicle, different speeds, collisions, etc. The contribution of this work is the possibility to tracing a stress analysis protocol for drivers while operating a vehicle getting affective behaviors coming from physiological data, mixed to embedded simulation in Mixed Reality.
Poeschl, Sandra; Doering, Nicola
2013-01-01
Virtual training applications with high levels of immersion or fidelity (for example for social phobia treatment) produce high levels of presence and therefore belong to the most successful Virtual Reality developments. Whereas display and interaction fidelity (as sub-dimensions of immersion) and their influence on presence are well researched, realism of the displayed simulation depends on the specific application and is therefore difficult to measure. We propose to measure simulation realism by using a self-report questionnaire. The German VR Simulation Realism Scale for VR training applications was developed based on a translation of scene realism items from the Witmer-Singer-Presence Questionnaire. Items for realism of virtual humans (for example for social phobia training applications) were supplemented. A sample of N = 151 students rated simulation realism of a Fear of Public Speaking application. Four factors were derived by item- and principle component analysis (Varimax rotation), representing Scene Realism, Audience Behavior, Audience Appearance and Sound Realism. The scale developed can be used as a starting point for future research and measurement of simulation realism for applications including virtual humans.
ERIC Educational Resources Information Center
Chou, Chih-Yueh; Huang, Bau-Hung; Lin, Chi-Jen
2011-01-01
This study proposes a virtual teaching assistant (VTA) to share teacher tutoring tasks in helping students practice program tracing and proposes two mechanisms of complementing machine intelligence and human intelligence to develop the VTA. The first mechanism applies machine intelligence to extend human intelligence (teacher answers) to evaluate…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Subeihi, Ala' A.A., E-mail: ala.alsubeihi@wur.nl; BEN-HAYYAN-Aqaba International Laboratories, Aqaba Special Economic Zone Authority; Spenkelink, Bert
2012-05-01
This study defines a physiologically based kinetic (PBK) model for methyleugenol (ME) in human based on in vitro and in silico derived parameters. With the model obtained, bioactivation and detoxification of methyleugenol (ME) at different doses levels could be investigated. The outcomes of the current model were compared with those of a previously developed PBK model for methyleugenol (ME) in male rat. The results obtained reveal that formation of 1′-hydroxymethyleugenol glucuronide (1′HMEG), a major metabolic pathway in male rat liver, appears to represent a minor metabolic pathway in human liver whereas in human liver a significantly higher formation of 1′-oxomethyleugenolmore » (1′OME) compared with male rat liver is observed. Furthermore, formation of 1′-sulfooxymethyleugenol (1′HMES), which readily undergoes desulfonation to a reactive carbonium ion (CA) that can form DNA or protein adducts (DA), is predicted to be the same in the liver of both human and male rat at oral doses of 0.0034 and 300 mg/kg bw. Altogether despite a significant difference in especially the metabolic pathways of the proximate carcinogenic metabolite 1′-hydroxymethyleugenol (1′HME) between human and male rat, the influence of species differences on the ultimate overall bioactivation of methyleugenol (ME) to 1′-sulfooxymethyleugenol (1′HMES) appears to be negligible. Moreover, the PBK model predicted the formation of 1′-sulfooxymethyleugenol (1′HMES) in the liver of human and rat to be linear from doses as high as the benchmark dose (BMD{sub 10}) down to as low as the virtual safe dose (VSD). This study shows that kinetic data do not provide a reason to argue against linear extrapolation from the rat tumor data to the human situation. -- Highlights: ► A PBK model is made for bioactivation and detoxification of methyleugenol in human. ► Comparison to the PBK model in male rat revealed species differences. ► PBK results support linear extrapolation from high to low dose and from rat to human.« less
Influence of Music on Anxiety Induced by Fear of Heights in Virtual Reality.
Seinfeld, Sofia; Bergstrom, Ilias; Pomes, Ausias; Arroyo-Palacios, Jorge; Vico, Francisco; Slater, Mel; Sanchez-Vives, Maria V
2015-01-01
Music is a potent mood regulator that can induce relaxation and reduce anxiety in different situations. While several studies demonstrate that certain types of music have a subjective anxiolytic effect, the reported results from physiological responses are less conclusive. Virtual reality allows us to study diverse scenarios of real life under strict experimental control while preserving high ecological validity. We aimed to study the modulating effect of music on the anxiety responses triggered by an immersive virtual reality scenario designed to induce fear of heights. Subjects experienced a virtual scenario depicting an exterior elevator platform ascending and descending the total height of its 350 meters tall supporting structure. Participants were allocated to either a group that experienced the elevator ride with background music or without, in a between-groups design. Furthermore, each group included participants with different degrees of fear of heights, ranging from low to high fear. Recordings of heart rate, galvanic skin response, body balance, and head movements were obtained during the experiments. Subjective anxiety was measured by means of three questionnaires. The scenario produced significant changes in subjective and physiological measures, confirming its efficacy as a stressor. A significant increase in state anxiety was found between pre and post-assessment in the silence group, but not in the music group, indicating that post-stress recovery was faster in the musical group. Results suggest that music can ameliorate the subjective anxiety produced by fear of heights.
Influence of Music on Anxiety Induced by Fear of Heights in Virtual Reality
Seinfeld, Sofia; Bergstrom, Ilias; Pomes, Ausias; Arroyo-Palacios, Jorge; Vico, Francisco; Slater, Mel; Sanchez-Vives, Maria V.
2016-01-01
Music is a potent mood regulator that can induce relaxation and reduce anxiety in different situations. While several studies demonstrate that certain types of music have a subjective anxiolytic effect, the reported results from physiological responses are less conclusive. Virtual reality allows us to study diverse scenarios of real life under strict experimental control while preserving high ecological validity. We aimed to study the modulating effect of music on the anxiety responses triggered by an immersive virtual reality scenario designed to induce fear of heights. Subjects experienced a virtual scenario depicting an exterior elevator platform ascending and descending the total height of its 350 meters tall supporting structure. Participants were allocated to either a group that experienced the elevator ride with background music or without, in a between-groups design. Furthermore, each group included participants with different degrees of fear of heights, ranging from low to high fear. Recordings of heart rate, galvanic skin response, body balance, and head movements were obtained during the experiments. Subjective anxiety was measured by means of three questionnaires. The scenario produced significant changes in subjective and physiological measures, confirming its efficacy as a stressor. A significant increase in state anxiety was found between pre and post-assessment in the silence group, but not in the music group, indicating that post-stress recovery was faster in the musical group. Results suggest that music can ameliorate the subjective anxiety produced by fear of heights. PMID:26779081
Virtual Reality: A Dream Come True or a Nightmare.
ERIC Educational Resources Information Center
Cornell, Richard; Bailey, Dan
Virtual Reality (VR) is a new medium which allows total stimulation of one's senses through human/computer interfaces. VR has applications in training simulators, nano-science, medicine, entertainment, electronic technology, and manufacturing. This paper focuses on some current and potential problems of virtual reality and virtual environments…
Bekele, Esubalew; Zheng, Zhi; Swanson, Amy; Crittendon, Julie; Warren, Zachary; Sarkar, Nilanjan
2013-01-01
Autism Spectrum Disorders (ASD) are characterized by atypical patterns of behaviors and impairments in social communication. Among the fundamental social impairments in the ASD population are challenges in appropriately recognizing and responding to facial expressions. Traditional intervention approaches often require intensive support and well-trained therapists to address core deficits, with many with ASD having tremendous difficulty accessing such care due to lack of available trained therapists as well as intervention costs. As a result, emerging technology such as virtual reality (VR) has the potential to offer useful technology-enabled intervention systems. In this paper, an innovative VR-based facial emotional expression presentation system was developed that allows monitoring of eye gaze and physiological signals related to emotion identification to explore new efficient therapeutic paradigms. A usability study of this new system involving ten adolescents with ASD and ten typically developing adolescents as a control group was performed. The eye tracking and physiological data were analyzed to determine intragroup and intergroup variations of gaze and physiological patterns. Performance data, eye tracking indices and physiological features indicated that there were differences in the way adolescents with ASD process and recognize emotional faces compared to their typically developing peers. These results will be used in the future for an online adaptive VR-based multimodal social interaction system to improve emotion recognition abilities of individuals with ASD. PMID:23428456
Bekele, Esubalew; Zheng, Zhi; Swanson, Amy; Crittendon, Julie; Warren, Zachary; Sarkar, Nilanjan
2013-04-01
Autism Spectrum Disorders (ASD) are characterized by atypical patterns of behaviors and impairments in social communication. Among the fundamental social impairments in the ASD population are challenges in appropriately recognizing and responding to facial expressions. Traditional intervention approaches often require intensive support and well-trained therapists to address core deficits, with many with ASD having tremendous difficulty accessing such care due to lack of available trained therapists as well as intervention costs. As a result, emerging technology such as virtual reality (VR) has the potential to offer useful technology-enabled intervention systems. In this paper, an innovative VR-based facial emotional expression presentation system was developed that allows monitoring of eye gaze and physiological signals related to emotion identification to explore new efficient therapeutic paradigms. A usability study of this new system involving ten adolescents with ASD and ten typically developing adolescents as a control group was performed. The eye tracking and physiological data were analyzed to determine intragroup and intergroup variations of gaze and physiological patterns. Performance data, eye tracking indices and physiological features indicated that there were differences in the way adolescents with ASD process and recognize emotional faces compared to their typically developing peers. These results will be used in the future for an online adaptive VR-based multimodal social interaction system to improve emotion recognition abilities of individuals with ASD.
Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight
NASA Technical Reports Server (NTRS)
2002-01-01
Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight Central simulator tower L-R: Dr Geoffrey Briggs; Jen Jasper (seated); Dr Jan Akins and Mr. Tony Gross, Ames
NASA Astrophysics Data System (ADS)
Ding, Yichen; Yu, Jing; Abiri, Arash; Abiri, Parinaz; Lee, Juhyun; Chang, Chih-Chiang; Baek, Kyung In; Sevag Packard, René R.; Hsiai, Tzung K.
2018-02-01
There currently is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3- dimensional (3-D) architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3-D and 4-D (3-D spatial + 1-D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods such as routine optical microscopes. We hereby demonstrate multi-scale applicability of VR-LSFM to 1) interrogate skin fibroblasts interacting with a hyaluronic acid-based hydrogel, 2) navigate through the endocardial trabecular network during zebrafish development, and 3) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation (BINS) algorithm with deformable image registration (DIR) to interface a VR environment for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution.
Fich, Lars Brorson; Jönsson, Peter; Kirkegaard, Poul Henning; Wallergård, Mattias; Garde, Anne Helene; Hansen, Åse
2014-08-01
Is has long been established, that views to natural scenes can a have a dampening effect on physiological stress responses. However, as people in Europe, Canada and North America today spent 50-85% of their time indoors, attention might also be paid to how the artificial man-made indoor environment influences these mechanisms. The question that this study attempts to start addressing is therefore whether certain design, characteristics of indoor spaces can make a difference to the physiological stress response as well. Using a virtual version of the Trier Social Stress Test, in which the space is computer generated and properties of the space therefore can be systematically varied, we measured saliva cortisol and heart rate variability in participants in a closed room versus a room with openings. As shown by a significant linear contrast interaction between groups and TSST conditions, participants in the closed room responded with more pronounced cortisol reactivity to stress induction, and continued to show higher levels throughout recovery, compared to participants in the open room. No differences were found regarding any part of the autonomic nervous system. Copyright © 2014 Elsevier Inc. All rights reserved.
Avola, Danilo; Spezialetti, Matteo; Placidi, Giuseppe
2013-06-01
Rehabilitation is often required after stroke, surgery, or degenerative diseases. It has to be specific for each patient and can be easily calibrated if assisted by human-computer interfaces and virtual reality. Recognition and tracking of different human body landmarks represent the basic features for the design of the next generation of human-computer interfaces. The most advanced systems for capturing human gestures are focused on vision-based techniques which, on the one hand, may require compromises from real-time and spatial precision and, on the other hand, ensure natural interaction experience. The integration of vision-based interfaces with thematic virtual environments encourages the development of novel applications and services regarding rehabilitation activities. The algorithmic processes involved during gesture recognition activity, as well as the characteristics of the virtual environments, can be developed with different levels of accuracy. This paper describes the architectural aspects of a framework supporting real-time vision-based gesture recognition and virtual environments for fast prototyping of customized exercises for rehabilitation purposes. The goal is to provide the therapist with a tool for fast implementation and modification of specific rehabilitation exercises for specific patients, during functional recovery. Pilot examples of designed applications and preliminary system evaluation are reported and discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A rapid algorithm for realistic human reaching and its use in a virtual reality system
NASA Technical Reports Server (NTRS)
Aldridge, Ann; Pandya, Abhilash; Goldsby, Michael; Maida, James
1994-01-01
The Graphics Analysis Facility (GRAF) at JSC has developed a rapid algorithm for computing realistic human reaching. The algorithm was applied to GRAF's anthropometrically correct human model and used in a 3D computer graphics system and a virtual reality system. The nature of the algorithm and its uses are discussed.
The Socioemotional Effects of a Computer-Simulated Animal on Children's Empathy and Humane Attitudes
ERIC Educational Resources Information Center
Tsai, Yueh-Feng Lily; Kaufman, David M.
2009-01-01
This study investigated the potential of using a computer-simulated animal in a handheld virtual pet videogame to improve children's empathy and humane attitudes. Also investigated was whether sex differences existed in children's development of empathy and humane attitudes resulting from play, as well as their feelings for a virtual pet. The…
Chase, J Geoffrey; Preiser, Jean-Charles; Dickson, Jennifer L; Pironet, Antoine; Chiew, Yeong Shiong; Pretty, Christopher G; Shaw, Geoffrey M; Benyo, Balazs; Moeller, Knut; Safaei, Soroush; Tawhai, Merryn; Hunter, Peter; Desaive, Thomas
2018-02-20
Critical care, like many healthcare areas, is under a dual assault from significantly increasing demographic and economic pressures. Intensive care unit (ICU) patients are highly variable in response to treatment, and increasingly aging populations mean ICUs are under increasing demand and their cohorts are increasingly ill. Equally, patient expectations are growing, while the economic ability to deliver care to all is declining. Better, more productive care is thus the big challenge. One means to that end is personalised care designed to manage the significant inter- and intra-patient variability that makes the ICU patient difficult. Thus, moving from current "one size fits all" protocolised care to adaptive, model-based "one method fits all" personalised care could deliver the required step change in the quality, and simultaneously the productivity and cost, of care. Computer models of human physiology are a unique tool to personalise care, as they can couple clinical data with mathematical methods to create subject-specific models and virtual patients to design new, personalised and more optimal protocols, as well as to guide care in real-time. They rely on identifying time varying patient-specific parameters in the model that capture inter- and intra-patient variability, the difference between patients and the evolution of patient condition. Properly validated, virtual patients represent the real patients, and can be used in silico to test different protocols or interventions, or in real-time to guide care. Hence, the underlying models and methods create the foundation for next generation care, as well as a tool for safely and rapidly developing personalised treatment protocols over large virtual cohorts using virtual trials. This review examines the models and methods used to create virtual patients. Specifically, it presents the models types and structures used and the data required. It then covers how to validate the resulting virtual patients and trials, and how these virtual trials can help design and optimise clinical trial. Links between these models and higher order, more complex physiome models are also discussed. In each section, it explores the progress reported up to date, especially on core ICU therapies in glycemic, circulatory and mechanical ventilation management, where high cost and frequency of occurrence provide a significant opportunity for model-based methods to have measurable clinical and economic impact. The outcomes are readily generalised to other areas of medical care.
VERDEX: A virtual environment demonstrator for remote driving applications
NASA Technical Reports Server (NTRS)
Stone, Robert J.
1991-01-01
One of the key areas of the National Advanced Robotics Centre's enabling technologies research program is that of the human system interface, phase 1 of which started in July 1989 and is currently addressing the potential of virtual environments to permit intuitive and natural interactions between a human operator and a remote robotic vehicle. The aim of the first 12 months of this program (to September, 1990) is to develop a virtual human-interface demonstrator for use later as a test bed for human factors experimentation. This presentation will describe the current state of development of the test bed, and will outline some human factors issues and problems for more general discussion. In brief, the virtual telepresence system for remote driving has been designed to take the following form. The human operator will be provided with a helmet-mounted stereo display assembly, facilities for speech recognition and synthesis (using the Marconi Macrospeak system), and a VPL DataGlove Model 2 unit. The vehicle to be used for the purposes of remote driving is a Cybermotion Navmaster K2A system, which will be equipped with a stereo camera and microphone pair, mounted on a motorized high-speed pan-and-tilt head incorporating a closed-loop laser ranging sensor for camera convergence control (currently under contractual development). It will be possible to relay information to and from the vehicle and sensory system via an umbilical or RF link. The aim is to develop an interactive audio-visual display system capable of presenting combined stereo TV pictures and virtual graphics windows, the latter featuring control representations appropriate for vehicle driving and interaction using a graphical 'hand,' slaved to the flex and tracking sensors of the DataGlove and an additional helmet-mounted Polhemus IsoTrack sensor. Developments planned for the virtual environment test bed include transfer of operator control between remote driving and remote manipulation, dexterous end effector integration, virtual force and tactile sensing (also the focus of a current ARRL contract, initially employing a 14-pneumatic bladder glove attachment), and sensor-driven world modeling for total virtual environment generation and operator-assistance in remote scene interrogation.
Shader Lamps Virtual Patients: the physical manifestation of virtual patients.
Rivera-Gutierrez, Diego; Welch, Greg; Lincoln, Peter; Whitton, Mary; Cendan, Juan; Chesnutt, David A; Fuchs, Henry; Lok, Benjamin
2012-01-01
We introduce the notion of Shader Lamps Virtual Patients (SLVP) - the combination of projector-based Shader Lamps Avatars and interactive virtual humans. This paradigm uses Shader Lamps Avatars technology to give a 3D physical presence to conversational virtual humans, improving their social interactivity and enabling them to share the physical space with the user. The paradigm scales naturally to multiple viewers, allowing for scenarios where an instructor and multiple students are involved in the training. We have developed a physical-virtual patient for medical students to conduct ophthalmic exams, in an interactive training experience. In this experience, the trainee practices multiple skills simultaneously, including using a surrogate optical instrument in front of a physical head, conversing with the patient about his fears, observing realistic head motion, and practicing patient safety. Here we present a prototype system and results from a preliminary formative evaluation of the system.
[The virtual library in equity, health, and human development].
Valdés, América
2002-01-01
This article attempts to describe the rationale that has led to the development of information sources dealing with equity, health, and human development in countries of Latin America and the Caribbean within the context of the Virtual Health Library (Biblioteca Virtual en Salud, BVS). Such information sources include the scientific literature, databases in printed and electronic format, institutional directories and lists of specialists, lists of events and courses, distance education programs, specialty journals and bulletins, as well as other means of disseminating health information. The pages that follow deal with the development of a Virtual Library in Equity, Health, and Human Development, an effort rooted in the conviction that decision-making and policy geared toward achieving greater equity in health must, of necessity, be based on coherent, well-organized, and readily accessible first-rate scientific information. Information is useless unless it is converted into knowledge that benefits society. The Virtual Library in Equity, Health, and Human Development is a coordinated effort to develop a decentralized regional network of scientific information sources, with strict quality control, from which public officials can draw data and practical examples that can help them set health and development policies geared toward achieving greater equity for all.
The NASA Augmented/Virtual Reality Lab: The State of the Art at KSC
NASA Technical Reports Server (NTRS)
Little, William
2017-01-01
The NASA Augmented Virtual Reality (AVR) Lab at Kennedy Space Center is dedicated to the investigation of Augmented Reality (AR) and Virtual Reality (VR) technologies, with the goal of determining potential uses of these technologies as human-computer interaction (HCI) devices in an aerospace engineering context. Begun in 2012, the AVR Lab has concentrated on commercially available AR and VR devices that are gaining in popularity and use in a number of fields such as gaming, training, and telepresence. We are working with such devices as the Microsoft Kinect, the Oculus Rift, the Leap Motion, the HTC Vive, motion capture systems, and the Microsoft Hololens. The focus of our work has been on human interaction with the virtual environment, which in turn acts as a communications bridge to remote physical devices and environments which the operator cannot or should not control or experience directly. Particularly in reference to dealing with spacecraft and the oftentimes hazardous environments they inhabit, it is our hope that AR and VR technologies can be utilized to increase human safety and mission success by physically removing humans from those hazardous environments while virtually putting them right in the middle of those environments.
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.
1991-01-01
Natural environments have a content, i.e., the objects in them; a geometry, i.e., a pattern of rules for positioning and displacing the objects; and a dynamics, i.e., a system of rules describing the effects of forces acting on the objects. Human interaction with most common natural environments has been optimized by centuries of evolution. Virtual environments created through the human-computer interface similarly have a content, geometry, and dynamics, but the arbitrary character of the computer simulation creating them does not insure that human interaction with these virtual environments will be natural. The interaction, indeed, could be supernatural but it also could be impossible. An important determinant of the comprehensibility of a virtual environment is the correspondence between the environmental frames of reference and those associated with the control of environmental objects. The effects of rotation and displacement of control frames of reference with respect to corresponding environmental references differ depending upon whether perceptual judgement or manual tracking performance is measured. The perceptual effects of frame of reference displacement may be analyzed in terms of distortions in the process of virtualizing the synthetic environment space. The effects of frame of reference displacement and rotation have been studied by asking subjects to estimate exocentric direction in a virtual space.
2D and 3D Traveling Salesman Problem
ERIC Educational Resources Information Center
Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt
2011-01-01
When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…
The Human Element in the Virtual Library.
ERIC Educational Resources Information Center
Saunders, Laverna M.
1999-01-01
Introduces the concept of the virtual library and explores how the increasing reliance on computers and digital information has affected library users and staff. Discusses users' expectations, democratization of access, human issues, organizational change, technostress, ergonomics, assessment, and strategies for success and survival. Contains 35…
Darras, Kathryn E; de Bruin, Anique B H; Nicolaou, Savvas; Dahlström, Nils; Persson, Anders; van Merriënboer, Jeroen; Forster, Bruce B
2018-03-23
Educators must select the best tools to teach anatomy to future physicians and traditionally, cadavers have always been considered the "gold standard" simulator for living anatomy. However, new advances in technology and radiology have created new teaching tools, such as virtual dissection, which provide students with new learning opportunities. Virtual dissection is a novel way of studying human anatomy through patient computed tomography (CT) scans. Through touchscreen technology, students can work together in groups to "virtually dissect" the CT scans to better understand complex anatomic relationships. This article presents the anatomic and pedagogic limitations of cadaveric dissection and explains what virtual dissection is and how this new technology may be used to overcome these limitations.
Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain
Andriani, Grasiella A.; Vijg, Jan; Montagna, Cristina
2017-01-01
Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS. PMID:27013377
Real-time human-robot interaction underlying neurorobotic trust and intent recognition.
Bray, Laurence C Jayet; Anumandla, Sridhar R; Thibeault, Corey M; Hoang, Roger V; Goodman, Philip H; Dascalu, Sergiu M; Bryant, Bobby D; Harris, Frederick C
2012-08-01
In the past three decades, the interest in trust has grown significantly due to its important role in our modern society. Everyday social experience involves "confidence" among people, which can be interpreted at the neurological level of a human brain. Recent studies suggest that oxytocin is a centrally-acting neurotransmitter important in the development and alteration of trust. Its administration in humans seems to increase trust and reduce fear, in part by directly inhibiting the amygdala. However, the cerebral microcircuitry underlying this mechanism is still unknown. We propose the first biologically realistic model for trust, simulating spiking neurons in the cortex in a real-time human-robot interaction simulation. At the physiological level, oxytocin cells were modeled with triple apical dendrites characteristic of their structure in the paraventricular nucleus of the hypothalamus. As trust was established in the simulation, this architecture had a direct inhibitory effect on the amygdala tonic firing, which resulted in a willingness to exchange an object from the trustor (virtual neurorobot) to the trustee (human actor). Our software and hardware enhancements allowed the simulation of almost 100,000 neurons in real time and the incorporation of a sophisticated Gabor mechanism as a visual filter. Our brain was functional and our robotic system was robust in that it trusted or distrusted a human actor based on movement imitation. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheok, Adrian David
This chapter details the Human Pacman system to illuminate entertainment computing which ventures to embed the natural physical world seamlessly with a fantasy virtual playground by capitalizing on infrastructure provided by mobile computing, wireless LAN, and ubiquitous computing. With Human Pacman, we have a physical role-playing computer fantasy together with real human-social and mobile-gaming that emphasizes on collaboration and competition between players in a wide outdoor physical area that allows natural wide-area human-physical movements. Pacmen and Ghosts are now real human players in the real world experiencing mixed computer graphics fantasy-reality provided by using the wearable computers on them. Virtual cookies and actual tangible physical objects are incorporated into the game play to provide novel experiences of seamless transitions between the real and virtual worlds. This is an example of a new form of gaming that anchors on physicality, mobility, social interaction, and ubiquitous computing.
NASA Virtual Institutes: International Bridges for Space Exploration
NASA Technical Reports Server (NTRS)
Schmidt, Gregory K.
2016-01-01
NASA created the first virtual institute, the NASA Astrobiology Institute (NAI), in 2009 with an aim toward bringing together geographically disparate and multidisciplinary teams toward the goal of answering broad questions in the then-new discipline of astrobiology. With the success of the virtual institute model, NASA then created the NASA Lunar Science Institute (NLSI) in 2008 to address questions of science and human exploration of the Moon, and then the NASA Aeronautics Research Institute (NARI) in 2012 which addresses key questions in the development of aeronautics technologies. With the broadening of NASA's human exploration targets to include Near Earth Asteroids and the moons of Mars as well as the Moon, the NLSI morphed into the Solar System Exploration Research Virtual Institute (SSERVI) in 2012. SSERVI funds domestic research teams to address broad questions at the intersection of science and human exploration, with the underlying principle that science enables human exploration, and human exploration enables science. Nine domestic teams were funded in 2014 for a five-year period to address a variety of different topics, and nine international partners (with more to come) also work with the U.S. teams on a variety of topics of mutual interest. The result is a robust and productive research infrastructure that is not only scientifically productive but can respond to strategic topics of domestic and international interest, and which develops a new generation of researchers. This is all accomplished with the aid of virtual collaboration technologies which enable scientific research at a distance. The virtual institute model is widely applicable to a range of space science and exploration problems.
Virtual Economies: Threats and Risks
NASA Astrophysics Data System (ADS)
Thorpe, Christopher; Hammer, Jessica; Camp, Jean; Callas, Jon; Bond, Mike
In virtual economies, human and computer players produce goods and services, hold assets, and trade them with other in-game entities, in the same way that people and corporations participate in "real-world" economies. As the border between virtual worlds and the real world grows more and more permeable, privacy and security in virtual worlds matter more and more.
Formal analysis of temporal dynamics in anxiety states and traits for virtual patients
NASA Astrophysics Data System (ADS)
Aziz, Azizi Ab; Ahmad, Faudziah; Yusof, Nooraini; Ahmad, Farzana Kabir; Yusof, Shahrul Azmi Mohd
2016-08-01
This paper presents a temporal dynamic model of anxiety states and traits for an individual. Anxiety is a natural part of life, and most of us experience it from time to time. But for some people, anxiety can be extreme. Based on several personal characteristics, traits, and a representation of events (i.e. psychological and physiological stressors), the formal model can represent whether a human that experience certain scenarios will fall into an anxiety states condition. A number of well-known relations between events and the course of anxiety are summarized from the literature and it is shown that the model exhibits those patterns. In addition, the formal model has been mathematically analyzed to find out which stable situations exist. Finally, it is pointed out how this model can be used in therapy, supported by a software agent.
The Effect of Ionic Strength on the Haemolytic Activity of Complement
Wardlaw, A. C.; Walker, H. G.
1963-01-01
The haemolytic activity of guinea-pig complement has been measured in isotonic solutions of various ionic strengths in the range 0.034–0.28 and shown to be maximum at an ionic strength close to 0.08. Haemolytic activity was virtually abolished at ionic strength 0.034, while at 0.28, the complement titre was only about 20 per cent of the value found at the physiological ionic strength 0.155. NaCl, KCl, LiBr and K2SO4 were the electrolytes used to provide ionic strength, and sucrose, mannitol and inositol the non-electrolytes used to maintain isotonicity. Nine permutations of the four electrolytes with the three non-electrolytes were tested and gave similar results. Human and rabbit complements also showed optimum haemolytic activity at ionic strength 0.08–0.10. PMID:13998876
Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin
2014-01-01
Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors.
Zhou, Xiangmin; Zhang, Nan; Sha, Desong; Shen, Yunhe; Tamma, Kumar K; Sweet, Robert
2009-01-01
The inability to render realistic soft-tissue behavior in real time has remained a barrier to face and content aspects of validity for many virtual reality surgical training systems. Biophysically based models are not only suitable for training purposes but also for patient-specific clinical applications, physiological modeling and surgical planning. When considering the existing approaches for modeling soft tissue for virtual reality surgical simulation, the computer graphics-based approach lacks predictive capability; the mass-spring model (MSM) based approach lacks biophysically realistic soft-tissue dynamic behavior; and the finite element method (FEM) approaches fail to meet the real-time requirement. The present development stems from physics fundamental thermodynamic first law; for a space discrete dynamic system directly formulates the space discrete but time continuous governing equation with embedded material constitutive relation and results in a discrete mechanics framework which possesses a unique balance between the computational efforts and the physically realistic soft-tissue dynamic behavior. We describe the development of the discrete mechanics framework with focused attention towards a virtual laparoscopic nephrectomy application.
Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin
2014-01-01
Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors. PMID:24693260
The Virtual Liver Project: Simulating Tissue Injury Through Molecular and Cellular Processes
Efficiently and humanely testing the safety of thousands of environmental chemicals is a challenge. The US EPA Virtual Liver Project (v-Liver™) is aimed at simulating the effects of environmental chemicals computationally in order to estimate the risk of toxic outcomes in humans...
Gain and phase of perceived virtual rotation evoked by electrical vestibular stimuli.
Peters, Ryan M; Rasman, Brandon G; Inglis, J Timothy; Blouin, Jean-Sébastien
2015-07-01
Galvanic vestibular stimulation (GVS) evokes a perception of rotation; however, very few quantitative data exist on the matter. We performed psychophysical experiments on virtual rotations experienced when binaural bipolar electrical stimulation is applied over the mastoids. We also performed analogous real whole body yaw rotation experiments, allowing us to compare the frequency response of vestibular perception with (real) and without (virtual) natural mechanical stimulation of the semicircular canals. To estimate the gain of vestibular perception, we measured direction discrimination thresholds for virtual and real rotations. Real direction discrimination thresholds decreased at higher frequencies, confirming multiple previous studies. Conversely, virtual direction discrimination thresholds increased at higher frequencies, implying low-pass filtering of the virtual perception process occurring potentially anywhere between afferent transduction and cortical responses. To estimate the phase of vestibular perception, participants manually tracked their perceived position during sinusoidal virtual and real kinetic stimulation. For real rotations, perceived velocity was approximately in phase with actual velocity across all frequencies. Perceived virtual velocity was in phase with the GVS waveform at low frequencies (0.05 and 0.1 Hz). As frequency was increased to 1 Hz, the phase of perceived velocity advanced relative to the GVS waveform. Therefore, at low frequencies GVS is interpreted as an angular velocity signal and at higher frequencies GVS becomes interpreted increasingly as an angular position signal. These estimated gain and phase spectra for vestibular perception are a first step toward generating well-controlled virtual vestibular percepts, an endeavor that may reveal the usefulness of GVS in the areas of clinical assessment, neuroprosthetics, and virtual reality. Copyright © 2015 the American Physiological Society.
Chowienczyk, Phil; Alastruey, Jordi
2015-01-01
While central (carotid-femoral) foot-to-foot pulse wave velocity (PWV) is considered to be the gold standard for the estimation of aortic arterial stiffness, peripheral foot-to-foot PWV (brachial-ankle, femoral-ankle, and carotid-radial) are being studied as substitutes of this central measurement. We present a novel methodology to assess theoretically these computed indexes and the hemodynamics mechanisms relating them. We created a database of 3,325 virtual healthy adult subjects using a validated one-dimensional model of the arterial hemodynamics, with cardiac and arterial parameters varied within physiological healthy ranges. For each virtual subject, foot-to-foot PWV was computed from numerical pressure waveforms at the same locations where clinical measurements are commonly taken. Our numerical results confirm clinical observations: 1) carotid-femoral PWV is a good indicator of aortic stiffness and correlates well with aortic PWV; 2) brachial-ankle PWV overestimates aortic PWV and is related to the stiffness and geometry of both elastic and muscular arteries; and 3) muscular PWV (carotid-radial, femoral-ankle) does not capture the stiffening of the aorta and should therefore not be used as a surrogate for aortic stiffness. In addition, our analysis highlights that the foot-to-foot PWV algorithm is sensitive to the presence of reflected waves in late diastole, which introduce errors in the PWV estimates. In this study, we have created a database of virtual healthy subjects, which can be used to assess theoretically the efficiency of physiological indexes based on pulse wave analysis. PMID:26055792
Kalra, Dipak
2011-01-01
Web 3.0 promises us smart computer services that will interact with each other and leverage knowledge about us and our immediate context to deliver prioritised and relevant information to support decisions and actions. Healthcare must take advantage of such new knowledge-integrating services, in particular to support better co-operation between professionals of different disciplines working in different locations, and to enable well-informed co-operation between clinicians and patients. To grasp the potential of Web 3.0 we will need well-harmonised semantic resources that can richly connect virtual teams and link their strategies to real-time and tailored evidence. Facts, decision logic, care pathway steps, alerts, education need to be embedded within components that can interact with multiple EHR systems and services consistently. Using Health Informatics 3.0 a patient's current situation could be compared with the outcomes of very similar patients (from across millions) to deliver personalised care recommendations. The integration of EHRs with biomedical sciences ('omics) research results and predictive models such as the Virtual Physiological Human could help speed up the translation of new knowledge into clinical practice. The mission, and challenge, for Health Informatics 3.0 is to enable healthy citizens, patients and professionals to collaborate within a knowledge-empowered social network in which patient specific information and personalised real-time evidence are seamlessly interwoven.
Keller, Benjamin A; Salcedo, Edgardo S; Williams, Timothy K; Neff, Lucas P; Carden, Anthony J; Li, Yiran; Gotlib, Oren; Tran, Nam K; Galante, Joseph M
2016-09-01
Resuscitative endovascular balloon occlusion of the aorta (REBOA) is an adjunct technique for salvaging patients with noncompressible torso hemorrhage. Current REBOA training paradigms require large animals, virtual reality simulators, or human cadavers for acquisition of skills. These training strategies are expensive and resource intensive, which may prevent widespread dissemination of REBOA. We have developed a low-cost, near-physiologic, pulsatile REBOA simulator by connecting an anatomic vascular circuit constructed out of latex and polyvinyl chloride tubing to a commercially available pump. This pulsatile simulator is capable of generating cardiac outputs ranging from 1.7 to 6.8 L/min with corresponding arterial blood pressures of 54 to 226/14 to 121 mmHg. The simulator accommodates a 12 French introducer sheath and a CODA balloon catheter. Upon balloon inflation, the arterial waveform distal to the occlusion flattens, distal pulsation within the simulator is lost, and systolic blood pressures proximal to the balloon catheter increase by up to 62 mmHg. Further development and validation of this simulator will allow for refinement, reduction, and replacement of large animal models, costly virtual reality simulators, and perfused cadavers for training purposes. This will ultimately facilitate the low-cost, high-fidelity REBOA simulation needed for the widespread dissemination of this life-saving technique.
Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI.
Hoffman, Hunter G; Richards, Todd L; Coda, Barbara; Bills, Aric R; Blough, David; Richards, Anne L; Sharar, Sam R
2004-06-07
This study investigated the neural correlates of virtual reality analgesia. Virtual reality significantly reduced subjective pain ratings (i.e. analgesia). Using fMRI, pain-related brain activity was measured for each participant during conditions of no virtual reality and during virtual reality (order randomized). As predicted, virtual reality significantly reduced pain-related brain activity in all five regions of interest; the anterior cingulate cortex, primary and secondary somatosensory cortex, insula, and thalamus (p<0.002, corrected). Results showed direct modulation of human brain pain responses by virtual reality distraction. Copyright 2004 Lippincott Williams and Wilkins
Wood, Dennis Patrick; Murphy, Jennifer; McLay, Robert; Koffman, Robert; Spira, James; Obrecht, Robert E; Pyne, Jeff; Wiederhold, Brenda K
2009-01-01
Virtual Reality Graded Exposure Therapy (VRGET) is an effective treatment for combat-related PTSD. We summarize the outcomes of a VRGET pilot study with 12 participants who completed one to multiple combat tours in support of the War on Terrorism and who were subsequently diagnosed with combat-related PTSD. Details of the collaborative program amongst the Virtual Reality Medical Center (VRMC), Office of Naval Research, the Naval Medical Center San Diego (NMCSD) and the Navy Hospital Camp Pendleton are discussed as is the VRGET outcomes of significant reductions in PTSD symptoms severity. We also described the estimated cost-effectiveness of VRGET for the treatment of combat-related PTSD, as contrasted to Treatment as Usual (TAU) for combat-related PTSD.
Modeling and Deorphanization of Orphan GPCRs.
Diaz, Constantino; Angelloz-Nicoud, Patricia; Pihan, Emilie
2018-01-01
Despite tremendous efforts, approximately 120 GPCRs remain orphan. Their physiological functions and their potential roles in diseases are poorly understood. Orphan GPCRs are extremely important because they may provide novel therapeutic targets for unmet medical needs. As a complement to experimental approaches, molecular modeling and virtual screening are efficient techniques to discover synthetic surrogate ligands which can help to elucidate the role of oGPCRs. Constitutively activated mutants and recently published active structures of GPCRs provide stimulating opportunities for building active molecular models for oGPCRs and identifying activators using virtual screening of compound libraries. We describe the molecular modeling and virtual screening process we have applied in the discovery of surrogate ligands, and provide examples for CCKA, a simulated oGPCR, and for two oGPCRs, GPR52 and GPR34.
Clinically Normal Stereopsis Does Not Ensure Performance Benefit from Stereoscopic 3D Depth Cues
2014-10-28
Stereopsis, Binocular Vision, Optometry , Depth Perception, 3D vision, 3D human factors, Stereoscopic displays, S3D, Virtual environment 16...Binocular Vision, Optometry , Depth Perception, 3D vision, 3D human factors, Stereoscopic displays, S3D, Virtual environment 1 Distribution A: Approved
An intelligent control and virtual display system for evolutionary space station workstation design
NASA Technical Reports Server (NTRS)
Feng, Xin; Niederjohn, Russell J.; Mcgreevy, Michael W.
1992-01-01
Research and development of the Advanced Display and Computer Augmented Control System (ADCACS) for the space station Body-Ported Cupola Virtual Workstation (BP/VCWS) were pursued. The potential applications were explored of body ported virtual display and intelligent control technology for the human-system interfacing applications is space station environment. The new system is designed to enable crew members to control and monitor a variety of space operations with greater flexibility and efficiency than existing fixed consoles. The technologies being studied include helmet mounted virtual displays, voice and special command input devices, and microprocessor based intelligent controllers. Several research topics, such as human factors, decision support expert systems, and wide field of view, color displays are being addressed. The study showed the significant advantages of this uniquely integrated display and control system, and its feasibility for human-system interfacing applications in the space station command and control environment.
Developing Trust in Virtual Teams
ERIC Educational Resources Information Center
Germain, Marie-Line
2011-01-01
Rapid globalization, advances in technology, flatter organizational structures, synergistic cooperation among firms, and a shift to knowledge work environments have led to the increasing use of virtual teams in organizations. Selecting, training, and socializing employees in virtual teamwork has therefore become an important human resource…
ENVIRONMENTAL REMOTE SENSING ANALYSIS USING OPEN SOURCE VIRTUAL EARTHS AND PUBLIC DOMAIN IMAGERY
Human activities increasingly impact natural environments. Globally, many ecosystems are stressed to unhealthy limits, leading to loss of valuable ecosystem services- economic, ecologic and intrinsic. Virtual earths (virtual globes) (-e.g., NASA World Wind, ossimPlanet, ArcGIS...
ERIC Educational Resources Information Center
Huang, Hsiu-Mei; Liaw, Shu-Sheng; Lai, Chung-Min
2016-01-01
Advanced technologies have been widely applied in medical education, including human-patient simulators, immersive virtual reality Cave Automatic Virtual Environment systems, and video conferencing. Evaluating learner acceptance of such virtual reality (VR) learning environments is a critical issue for ensuring that such technologies are used to…
Liu, Kaijun; Fang, Binji; Wu, Yi; Li, Ying; Jin, Jun; Tan, Liwen; Zhang, Shaoxiang
2013-09-01
Anatomical knowledge of the larynx region is critical for understanding laryngeal disease and performing required interventions. Virtual reality is a useful method for surgical education and simulation. Here, we assembled segmented cross-section slices of the larynx region from the Chinese Visible Human dataset. The laryngeal structures were precisely segmented manually as 2D images, then reconstructed and displayed as 3D images in the virtual reality Dextrobeam system. Using visualization and interaction with the virtual reality modeling language model, a digital laryngeal anatomy instruction was constructed using HTML and JavaScript languages. The volume larynx models can thus display an arbitrary section of the model and provide a virtual dissection function. This networked teaching system of the digital laryngeal anatomy can be read remotely, displayed locally, and manipulated interactively.
Temkin, Bharti; Acosta, Eric; Malvankar, Ameya; Vaidyanath, Sreeram
2006-04-01
The Visible Human digital datasets make it possible to develop computer-based anatomical training systems that use virtual anatomical models (virtual body structures-VBS). Medical schools are combining these virtual training systems and classical anatomy teaching methods that use labeled images and cadaver dissection. In this paper we present a customizable web-based three-dimensional anatomy training system, W3D-VBS. W3D-VBS uses National Library of Medicine's (NLM) Visible Human Male datasets to interactively locate, explore, select, extract, highlight, label, and visualize, realistic 2D (using axial, coronal, and sagittal views) and 3D virtual structures. A real-time self-guided virtual tour of the entire body is designed to provide detailed anatomical information about structures, substructures, and proximal structures. The system thus facilitates learning of visuospatial relationships at a level of detail that may not be possible by any other means. The use of volumetric structures allows for repeated real-time virtual dissections, from any angle, at the convenience of the user. Volumetric (3D) virtual dissections are performed by adding, removing, highlighting, and labeling individual structures (and/or entire anatomical systems). The resultant virtual explorations (consisting of anatomical 2D/3D illustrations and animations), with user selected highlighting colors and label positions, can be saved and used for generating lesson plans and evaluation systems. Tracking users' progress using the evaluation system helps customize the curriculum, making W3D-VBS a powerful learning tool. Our plan is to incorporate other Visible Human segmented datasets, especially datasets with higher resolutions, that make it possible to include finer anatomical structures such as nerves and small vessels. (c) 2006 Wiley-Liss, Inc.
Virtual fixtures as tools to enhance operator performance in telepresence environments
NASA Astrophysics Data System (ADS)
Rosenberg, Louis B.
1993-12-01
This paper introduces the notion of virtual fixtures for use in telepresence systems and presents an empirical study which demonstrates that such virtual fixtures can greatly enhance operator performance within remote environments. Just as tools and fixtures in the real world can enhance human performance by guiding manual operations, providing localizing references, and reducing the mental processing required to perform a task, virtual fixtures are computer generated percepts overlaid on top of the reflection of a remote workspace which can provide similar benefits. Like a ruler guiding a pencil in a real manipulation task, a virtual fixture overlaid on top of a remote workspace can act to reduce the mental processing required to perform a task, limit the workload of certain sensory modalities, and most of all allow precision and performance to exceed natural human abilities. Because such perceptual overlays are virtual constructions they can be diverse in modality, abstract in form, and custom tailored to individual task or user needs. This study investigates the potential of virtual fixtures by implementing simple combinations of haptic and auditory sensations as perceptual overlays during a standardized telemanipulation task.
Pulse!! The Virtual Clinical Learning Lab and Center of Excellence
2011-08-01
environments, physiological assets and case-authoring tools using state- of-the art technologies common to the videogame industry but here appropriated...interior processes (e.g., fluid dynamics) are beyond the current reach of the videogame industry. c. Concise Accomplishments (limit 200 words/170
Recognition profile of emotions in natural and virtual faces.
Dyck, Miriam; Winbeck, Maren; Leiberg, Susanne; Chen, Yuhan; Gur, Ruben C; Gur, Rurben C; Mathiak, Klaus
2008-01-01
Computer-generated virtual faces become increasingly realistic including the simulation of emotional expressions. These faces can be used as well-controlled, realistic and dynamic stimuli in emotion research. However, the validity of virtual facial expressions in comparison to natural emotion displays still needs to be shown for the different emotions and different age groups. Thirty-two healthy volunteers between the age of 20 and 60 rated pictures of natural human faces and faces of virtual characters (avatars) with respect to the expressed emotions: happiness, sadness, anger, fear, disgust, and neutral. Results indicate that virtual emotions were recognized comparable to natural ones. Recognition differences in virtual and natural faces depended on specific emotions: whereas disgust was difficult to convey with the current avatar technology, virtual sadness and fear achieved better recognition results than natural faces. Furthermore, emotion recognition rates decreased for virtual but not natural faces in participants over the age of 40. This specific age effect suggests that media exposure has an influence on emotion recognition. Virtual and natural facial displays of emotion may be equally effective. Improved technology (e.g. better modelling of the naso-labial area) may lead to even better results as compared to trained actors. Due to the ease with which virtual human faces can be animated and manipulated, validated artificial emotional expressions will be of major relevance in future research and therapeutic applications.
Recognition Profile of Emotions in Natural and Virtual Faces
Dyck, Miriam; Winbeck, Maren; Leiberg, Susanne; Chen, Yuhan; Gur, Rurben C.; Mathiak, Klaus
2008-01-01
Background Computer-generated virtual faces become increasingly realistic including the simulation of emotional expressions. These faces can be used as well-controlled, realistic and dynamic stimuli in emotion research. However, the validity of virtual facial expressions in comparison to natural emotion displays still needs to be shown for the different emotions and different age groups. Methodology/Principal Findings Thirty-two healthy volunteers between the age of 20 and 60 rated pictures of natural human faces and faces of virtual characters (avatars) with respect to the expressed emotions: happiness, sadness, anger, fear, disgust, and neutral. Results indicate that virtual emotions were recognized comparable to natural ones. Recognition differences in virtual and natural faces depended on specific emotions: whereas disgust was difficult to convey with the current avatar technology, virtual sadness and fear achieved better recognition results than natural faces. Furthermore, emotion recognition rates decreased for virtual but not natural faces in participants over the age of 40. This specific age effect suggests that media exposure has an influence on emotion recognition. Conclusions/Significance Virtual and natural facial displays of emotion may be equally effective. Improved technology (e.g. better modelling of the naso-labial area) may lead to even better results as compared to trained actors. Due to the ease with which virtual human faces can be animated and manipulated, validated artificial emotional expressions will be of major relevance in future research and therapeutic applications. PMID:18985152
Effects of telework and the virtual enterprise on the organization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, R.A.
1996-12-31
This paper provides information on the growing trend towards telework and using {open_quotes}virtual employees{close_quotes} as a fundamental component of the human resource requirements for the conduct of business. As the organization moves from a traditional approach of fixed plant and permanent employees toward a more dynamic model of motile office arrangements and virtual workers, new challenges arise for workers, supervisors, and managers. These challenges pertain to both the individual and the organization and are rooted in both technology and human behavior. Notwithstanding the challenges, the opportunities created for increased productivity and cost-effective operations are propelling organizations globally to adopt themore » virtual enterprise model, to a greater or lesser extent. Management hierarchy is giving way to autonomous teams. Middle management is being replaced by better organizational communication systems, better information storage and retrieval systems, and a newly developing classification of software called groupware. In the midst of these changes, the business process of identifying and acquiring the services of the virtual team member seems to lie at an intersection where Human Resources, Information Systems, Contracts/Subcontracts, and the functional department requiring the services intersect. Human Resources departments are slowly coming to grips with the virtual worker model but are largely uncomfortable in the role. Information Systems departments can implement networks; but, dynamic links outside the traditional organization bring up a myriad of questions about compatibility and system security. The champion of the virtual worker is the Functional Department. This might be engineering, software development, the design department, the financial analysis group, or whichever department in the organization is faced with the responsibility of creating knowledge work product and has resource constraints and upper management support.« less
Suitability of virtual prototypes to support human factors/ergonomics evaluation during the design.
Aromaa, Susanna; Väänänen, Kaisa
2016-09-01
In recent years, the use of virtual prototyping has increased in product development processes, especially in the assessment of complex systems targeted at end-users. The purpose of this study was to evaluate the suitability of virtual prototyping to support human factors/ergonomics evaluation (HFE) during the design phase. Two different virtual prototypes were used: augmented reality (AR) and virtual environment (VE) prototypes of a maintenance platform of a rock crushing machine. Nineteen designers and other stakeholders were asked to assess the suitability of the prototype for HFE evaluation. Results indicate that the system model characteristics and user interface affect the experienced suitability. The VE system was valued as being more suitable to support the assessment of visibility, reach, and the use of tools than the AR system. The findings of this study can be used as a guidance for the implementing virtual prototypes in the product development process. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gosselin, Marie-Christine; Neufeld, Esra; Moser, Heidi; Huber, Eveline; Farcito, Silvia; Gerber, Livia; Jedensjö, Maria; Hilber, Isabel; Di Gennaro, Fabienne; Lloyd, Bryn; Cherubini, Emilio; Szczerba, Dominik; Kainz, Wolfgang; Kuster, Niels
2014-09-01
The Virtual Family computational whole-body anatomical human models were originally developed for electromagnetic (EM) exposure evaluations, in particular to study how absorption of radiofrequency radiation from external sources depends on anatomy. However, the models immediately garnered much broader interest and are now applied by over 300 research groups, many from medical applications research fields. In a first step, the Virtual Family was expanded to the Virtual Population to provide considerably broader population coverage with the inclusion of models of both sexes ranging in age from 5 to 84 years old. Although these models have proven to be invaluable for EM dosimetry, it became evident that significantly enhanced models are needed for reliable effectiveness and safety evaluations of diagnostic and therapeutic applications, including medical implants safety. This paper describes the research and development performed to obtain anatomical models that meet the requirements necessary for medical implant safety assessment applications. These include implementation of quality control procedures, re-segmentation at higher resolution, more-consistent tissue assignments, enhanced surface processing and numerous anatomical refinements. Several tools were developed to enhance the functionality of the models, including discretization tools, posing tools to expand the posture space covered, and multiple morphing tools, e.g., to develop pathological models or variations of existing ones. A comprehensive tissue properties database was compiled to complement the library of models. The results are a set of anatomically independent, accurate, and detailed models with smooth, yet feature-rich and topologically conforming surfaces. The models are therefore suited for the creation of unstructured meshes, and the possible applications of the models are extended to a wider range of solvers and physics. The impact of these improvements is shown for the MRI exposure of an adult woman with an orthopedic spinal implant. Future developments include the functionalization of the models for specific physical and physiological modeling tasks.
Reciprocal interactions between circadian clocks and aging.
Banks, Gareth; Nolan, Patrick M; Peirson, Stuart N
2016-08-01
Virtually, all biological processes in the body are modulated by an internal circadian clock which optimizes physiological and behavioral performance according to the changing demands of the external 24-h world. This circadian clock undergoes a number of age-related changes, at both the physiological and molecular levels. While these changes have been considered to be part of the normal aging process, there is increasing evidence that disruptions to the circadian system can substantially impact upon aging and these impacts will have clear health implications. Here we review the current data of how both the physiological and core molecular clocks change with age and how feedback from external cues may modulate the aging of the circadian system.
Kothgassner, Oswald D; Goreis, Andreas; Kafka, Johanna X; Hlavacs, Helmut; Beutl, Leon; Kryspin-Exner, Ilse; Felnhofer, Anna
2018-05-01
While virtual humans are increasingly used to benefit the elderly, considerably little is still known about older adults' virtual experiences. However, due to age-related changes, older adults' perceptions of virtual environments (VEs) may be unique. Hence, our objective was to examine possible gender differences in immersion, flow, and emotional states as well as physical and social presence in elderly males and females interacting either with a computer-controlled agent or a human-controlled avatar. Seventy-eight German-speaking older adults were randomly assigned to an avatar or an agent condition and were exposed to a brief social encounter in a virtual café. Results indicate no overall gender differences, but a significant effect of agency on social presence, physical presence, immersion, and flow. Participants in the avatar condition reported higher levels in all measures, except for involvement. Furthermore, significant gender × agency interactions were found, with females showing more social presence, spatial presence, and flow when interacting with a human-controlled avatar and more realism when conversing with an agent. Also, all participants showed significant changes in their affect post exposure. In sum, older adults' virtual experiences seem to follow unique patterns, yet, they do not preclude the elderly from successfully participating in VEs.
An immersive virtual peer for studying social influences on child cyclists' road-crossing behavior.
Babu, Sabarish V; Grechkin, Timofey Y; Chihak, Benjamin; Ziemer, Christine; Kearney, Joseph K; Cremer, James F; Plumert, Jodie M
2011-01-01
The goal of our work is to develop a programmatically controlled peer to bicycle with a human subject for the purpose of studying how social interactions influence road-crossing behavior. The peer is controlled through a combination of reactive controllers that determine the gross motion of the virtual bicycle, action-based controllers that animate the virtual bicyclist and generate verbal behaviors, and a keyboard interface that allows an experimenter to initiate the virtual bicyclist's actions during the course of an experiment. The virtual bicyclist's repertoire of behaviors includes road following, riding alongside the human rider, stopping at intersections, and crossing intersections through specified gaps in traffic. The virtual cyclist engages the human subject through gaze, gesture, and verbal interactions. We describe the structure of the behavior code and report the results of a study examining how 10- and 12-year-old children interact with a peer cyclist that makes either risky or safe choices in selecting gaps in traffic. Results of our study revealed that children who rode with a risky peer were more likely to cross intermediate-sized gaps than children who rode with a safe peer. In addition, children were significantly less likely to stop at the last six intersections after the experience of riding with the risky than the safe peer during the first six intersections. The results of the study and children's reactions to the virtual peer indicate that our virtual peer framework is a promising platform for future behavioral studies of peer influences on children's bicycle riding behavior. © 2011 IEEE Published by the IEEE Computer Society
Human-machine interface for a VR-based medical imaging environment
NASA Astrophysics Data System (ADS)
Krapichler, Christian; Haubner, Michael; Loesch, Andreas; Lang, Manfred K.; Englmeier, Karl-Hans
1997-05-01
Modern 3D scanning techniques like magnetic resonance imaging (MRI) or computed tomography (CT) produce high- quality images of the human anatomy. Virtual environments open new ways to display and to analyze those tomograms. Compared with today's inspection of 2D image sequences, physicians are empowered to recognize spatial coherencies and examine pathological regions more facile, diagnosis and therapy planning can be accelerated. For that purpose a powerful human-machine interface is required, which offers a variety of tools and features to enable both exploration and manipulation of the 3D data. Man-machine communication has to be intuitive and efficacious to avoid long accustoming times and to enhance familiarity with and acceptance of the interface. Hence, interaction capabilities in virtual worlds should be comparable to those in the real work to allow utilization of our natural experiences. In this paper the integration of hand gestures and visual focus, two important aspects in modern human-computer interaction, into a medical imaging environment is shown. With the presented human- machine interface, including virtual reality displaying and interaction techniques, radiologists can be supported in their work. Further, virtual environments can even alleviate communication between specialists from different fields or in educational and training applications.
Creating virtual humans for simulation-based training and planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stansfield, S.; Sobel, A.
1998-05-12
Sandia National Laboratories has developed a distributed, high fidelity simulation system for training and planning small team Operations. The system provides an immersive environment populated by virtual objects and humans capable of displaying complex behaviors. The work has focused on developing the behaviors required to carry out complex tasks and decision making under stress. Central to this work are techniques for creating behaviors for virtual humans and for dynamically assigning behaviors to CGF to allow scenarios without fixed outcomes. Two prototype systems have been developed that illustrate these capabilities: MediSim, a trainer for battlefield medics and VRaptor, a system formore » planning, rehearsing and training assault operations.« less
Human-Computer Interaction and Virtual Environments
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler)
1995-01-01
The proceedings of the Workshop on Human-Computer Interaction and Virtual Environments are presented along with a list of attendees. The objectives of the workshop were to assess the state-of-technology and level of maturity of several areas in human-computer interaction and to provide guidelines for focused future research leading to effective use of these facilities in the design/fabrication and operation of future high-performance engineering systems.
Carlile, Simon; Ciccarelli, Gregory; Cockburn, Jane; Diedesch, Anna C.; Finnegan, Megan K.; Hafter, Ervin; Henin, Simon; Kalluri, Sridhar; Kell, Alexander J. E.; Ozmeral, Erol J.; Roark, Casey L.
2017-01-01
Here we report the methods and output of a workshop examining possible futures of speech and hearing science out to 2030. Using a design thinking approach, a range of human-centered problems in communication were identified that could provide the motivation for a wide range of research. Nine main research programs were distilled and are summarized: (a) measuring brain and other physiological parameters, (b) auditory and multimodal displays of information, (c) auditory scene analysis, (d) enabling and understanding shared auditory virtual spaces, (e) holistic approaches to health management and hearing impairment, (f) universal access to evolving and individualized technologies, (g) biological intervention for hearing dysfunction, (h) understanding the psychosocial interactions with technology and other humans as mediated by technology, and (i) the impact of changing models of security and privacy. The design thinking approach attempted to link the judged level of importance of different research areas to the “end in mind” through empathy for the real-life problems embodied in the personas created during the workshop. PMID:29090640
Human granulocyte/pollen-binding protein. Recognition and identification as transferrin.
Sass-Kuhn, S P; Moqbel, R; Mackay, J A; Cromwell, O; Kay, A B
1984-01-01
Normal human serum was found to contain a heat-stable protein which promoted the binding of granulocytes to timothy grass pollen (granulocyte/pollen-binding protein [GPBP]). GPBP was purified by gel filtration, anion exchange, and affinity chromatography. Virtually all of the granulocyte/pollen-binding activity was associated with a beta-1-protein having a molecular mass of approximately 77,000 D and an isoelectric point of between 5.5 and 6.1. By immunoelectrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the protein was identified as transferrin. Monospecific antisera raised against either GPBP or transferrin removed biological activity from GPBP preparations, and GPBP and transferrin gave lines of identity with these two antisera. The apparent heterogeneity in the molecular size and charge of GPBP observed during progressive purification was minimal when GPBP was saturated with ferric ions before the separation procedures. These experiments indicate that granulocyte/pollen binding is a hitherto unrecognized property of transferrin which appears to be unrelated to iron transport and raises the possibility that transferrin might have a physiological role in the removal of certain organic matter. Images PMID:6690479
Passive avoidance is linked to impaired fear extinction in humans
Cornwell, Brian R.; Overstreet, Cassie; Krimsky, Marissa; Grillon, Christian
2013-01-01
Conventional wisdom dictates we must face our fears to conquer them. This idea is embodied in exposure-based treatments for anxiety disorders, where the intent of exposure is to reverse a history of avoidant behavior that is thought to fuel a patient’s irrational fears. We tested in humans the relationship between fear and avoidance by combining Pavlovian differential fear conditioning with a novel task for quantifying spontaneous passive avoidant behavior. During self-guided navigation in virtual reality following de novo fear conditioning, we observed participants keeping their distance from the feared object. At the individual level, passive avoidant behavior was highly associated with maladaptive fear expression (fear-potentiated startle) during late extinction training, indicating that extinction learning was impaired following a brief episode of avoidance. Avoidant behavior, however, was not related to initial acquired fear, raising doubt about a straightforward link between physiological fear and behavioral avoidance. We conclude that a deeper understanding of what motivates avoidance may offer a target for early intervention, before fears transition from the rational to the irrational. PMID:23427168
Computational biomedicine: a challenge for the twenty-first century.
Coveney, Peter V; Shublaq, Nour W
2012-01-01
With the relentless increase of computer power and the widespread availability of digital patient-specific medical data, we are now entering an era when it is becoming possible to develop predictive models of human disease and pathology, which can be used to support and enhance clinical decision-making. The approach amounts to a grand challenge to computational science insofar as we need to be able to provide seamless yet secure access to large scale heterogeneous personal healthcare data in a facile way, typically integrated into complex workflows-some parts of which may need to be run on high performance computers-in a facile way that is integrated into clinical decision support software. In this paper, we review the state of the art in terms of case studies drawn from neurovascular pathologies and HIV/AIDS. These studies are representative of a large number of projects currently being performed within the Virtual Physiological Human initiative. They make demands of information technology at many scales, from the desktop to national and international infrastructures for data storage and processing, linked by high performance networks.
Selective cognitive impairments associated with NMDA receptor blockade in humans.
Rowland, Laura M; Astur, Robert S; Jung, Rex E; Bustillo, Juan R; Lauriello, John; Yeo, Ronald A
2005-03-01
Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) may be involved in the pathophysiology of schizophrenia. NMDAR antagonists like ketamine induce schizophrenia-like features in humans. In rodent studies, NMDAR antagonism impairs learning by disrupting long-term potentiation (LTP) in the hippocampus. This study investigated the effects of ketamine on spatial learning (acquisition) vs retrieval in a virtual Morris water task in humans. Verbal fluency, working memory, and learning and memory of verbal information were also assessed. Healthy human subjects participated in this double-blinded, placebo-controlled study. On two separate occasions, ketamine/placebo was administered and cognitive tasks were assessed in association with behavioral ratings. Ketamine impaired learning of spatial and verbal information but retrieval of information learned prior to drug administration was preserved. Schizophrenia-like symptoms were significantly related to spatial and verbal learning performance. Ketamine did not significantly impair attention, verbal fluency, or verbal working memory task performance. Spatial working memory was slightly impaired. In conclusion, these results provide evidence for ketamine's differential impairment of verbal and spatial learning vs retrieval. By using the Morris water task, which is hippocampal-dependent, this study helps bridge the gap between nonhuman animal and human NMDAR antagonism research. Impaired cognition is a core feature of schizophrenia. A better understanding of NMDA antagonism, its physiological and cognitive consequences, may provide improved models of psychosis and cognitive therapeutics.
Study of Human Barriers upon Development of Virtual Disciplines at University of Isfahan
ERIC Educational Resources Information Center
Nikoonezhad, Sepideh; Nili, Mohammadreza; Esfahani, Ahmadreza Nasr
2015-01-01
The present study has been carried out to investigate the human barriers of developing virtual majors at Isfahan University; therefore, considering its objective, it is a functional research. It was conducted in combined (quantitative-qualitative) manner via descriptive survey method. In order to do the research, investigating the texts, interview…
Closed-loop dialog model of face-to-face communication with a photo-real virtual human
NASA Astrophysics Data System (ADS)
Kiss, Bernadette; Benedek, Balázs; Szijárto, Gábor; Takács, Barnabás
2004-01-01
We describe an advanced Human Computer Interaction (HCI) model that employs photo-realistic virtual humans to provide digital media users with information, learning services and entertainment in a highly personalized and adaptive manner. The system can be used as a computer interface or as a tool to deliver content to end-users. We model the interaction process between the user and the system as part of a closed loop dialog taking place between the participants. This dialog, exploits the most important characteristics of a face-to-face communication process, including the use of non-verbal gestures and meta communication signals to control the flow of information. Our solution is based on a Virtual Human Interface (VHI) technology that was specifically designed to be able to create emotional engagement between the virtual agent and the user, thus increasing the efficiency of learning and/or absorbing any information broadcasted through this device. The paper reviews the basic building blocks and technologies needed to create such a system and discusses its advantages over other existing methods.
2009-03-20
involved the development of an environment within the Multiverse virtual world, oriented toward allowing individuals to acquire and reinforce skills via...PetBrain software G2: Creation of a scavenger hunt scenario in the Multiverse virtual world, in which humans and AIs can collaboratively play scavenger...carried out by Novamente LLC for AOARD during June 2008 ? February 2009. It involved the development of an environment within the Multiverse virtual world
Computer tool to evaluate the cue reactivity of chemically dependent individuals.
Silva, Meire Luci da; Frère, Annie France; Oliveira, Henrique Jesus Quintino de; Martucci Neto, Helio; Scardovelli, Terigi Augusto
2017-03-01
Anxiety is one of the major influences on the dropout of relapse and treatment of substance abuse treatment. Chemically dependent individuals need (CDI) to be aware of their emotional state in situations of risk during their treatment. Many patients do not agree with the diagnosis of the therapist when considering them vulnerable to environmental stimuli related to drugs. This research presents a cue reactivity detection tool based on a device acquiring physiological signals connected to personal computer. Depending on the variations of the emotional state of the drug addict, alteration of the physiological signals will be detected by the computer tool (CT) which will modify the displayed virtual sets without intervention of the therapist. Developed in 3ds Max® software, the CT is composed of scenarios and objects that are in the habit of marijuana and cocaine dependent individual's daily life. The interaction with the environment is accomplished using a Human-Computer Interface (HCI) that converts incoming physiological signals indicating anxiety state into commands that change the scenes. Anxiety was characterized by the average variability from cardiac and respiratory rate of 30 volunteers submitted stress environment situations. To evaluate the effectiveness of cue reactivity a total of 50 volunteers who were marijuana, cocaine or both dependent were accompanied. Prior to CT, the results demonstrated a poor correlation between the therapists' predictions and those of the chemically dependent individuals. After exposure to the CT, there was a significant increase of 73% in awareness of the risks of relapse. We confirmed the hypothesis that the CT, controlled only by physiological signals, increases the perception of vulnerability to risk situations of individuals with dependence on marijuana, cocaine or both. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Circadian rhythms have been firmly established in both cardiovascular physiology (e.g., heart rate, cardiac output) and pathophysiology (e.g., arrhythmias). These phenomena have been attributed primarily to circadian rhythms in neurohumoral influences, such as sympathetic activity. Virtually every...
Tieri, Gaetano; Gioia, Annamaria; Scandola, Michele; Pavone, Enea F; Aglioti, Salvatore M
2017-05-01
To explore the link between Sense of Embodiment (SoE) over a virtual hand and physiological regulation of skin temperature, 24 healthy participants were immersed in virtual reality through a Head Mounted Display and had their real limb temperature recorded by means of a high-sensitivity infrared camera. Participants observed a virtual right upper limb (appearing either normally, or with the hand detached from the forearm) or limb-shaped non-corporeal control objects (continuous or discontinuous wooden blocks) from a first-person perspective. Subjective ratings of SoE were collected in each observation condition, as well as temperatures of the right and left hand, wrist and forearm. The observation of these complex, body and body-related virtual scenes resulted in increased real hand temperature when compared to a baseline condition in which a 3d virtual ball was presented. Crucially, observation of non-natural appearances of the virtual limb (discontinuous limb) and limb-shaped non-corporeal objects elicited high increase in real hand temperature and low SoE. In contrast, observation of the full virtual limb caused high SoE and low temperature changes in the real hand with respect to the other conditions. Interestingly, the temperature difference across the different conditions occurred according to a topographic rule that included both hands. Our study sheds new light on the role of an external hand's visual appearance and suggests a tight link between higher-order bodily self-representations and topographic regulation of skin temperature. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Casotti, G.; Rieser-Danner, L.; Knabb, M. T.
2008-01-01
Recent evidence has demonstrated that inquiry-based physiology laboratories improve students' critical- and analytical-thinking skills. We implemented inquiry-based learning into three physiology courses: Comparative Vertebrate Physiology (majors), Human Physiology (majors), and Human Anatomy and Physiology (nonmajors). The aims of our curricular…
DigitalHuman (DH): An Integrative Mathematical Model ofHuman Physiology
NASA Technical Reports Server (NTRS)
Hester, Robert L.; Summers, Richard L.; lIescu, Radu; Esters, Joyee; Coleman, Thomas G.
2010-01-01
Mathematical models and simulation are important tools in discovering the key causal relationships governing physiological processes and improving medical intervention when physiological complexity is a central issue. We have developed a model of integrative human physiology called DigitalHuman (DH) consisting of -5000 variables modeling human physiology describing cardiovascular, renal, respiratory, endocrine, neural and metabolic physiology. Users can view time-dependent solutions and interactively introduce perturbations by altering numerical parameters to investigate new hypotheses. The variables, parameters and quantitative relationships as well as all other model details are described in XML text files. All aspects of the model, including the mathematical equations describing the physiological processes are written in XML open source, text-readable files. Model structure is based upon empirical data of physiological responses documented within the peer-reviewed literature. The model can be used to understand proposed physiological mechanisms and physiological interactions that may not be otherwise intUitively evident. Some of the current uses of this model include the analyses of renal control of blood pressure, the central role of the liver in creating and maintaining insulin resistance, and the mechanisms causing orthostatic hypotension in astronauts. Additionally the open source aspect of the modeling environment allows any investigator to add detailed descriptions of human physiology to test new concepts. The model accurately predicts both qualitative and more importantly quantitative changes in clinically and experimentally observed responses. DigitalHuman provides scientists a modeling environment to understand the complex interactions of integrative physiology. This research was supported by.NIH HL 51971, NSF EPSCoR, and NASA
van den Berg, Thomas J T P
2017-05-01
The effect of cataract and other media opacities on functional vision is typically assessed clinically using visual acuity. In both clinical and basic research, straylight (the functional result of light scattering in the eye) is commonly measured. The purpose of the present study was to determine the link between these two measures: is visual acuity in cataract and other media opacities related to straylight? Interdependence between acuity and straylight is addressed from three different points of view: (1) Methodological: can acuity differences affect the measurement value of straylight, and vice versa? (2) Basic optics: does the optical process of light scattering in the human eye affect both straylight and visual acuity? (3) Statistical: how strongly are acuity and straylight correlated in the practice of important clinical conditions? Experimental and theoretical aspects will be considered, with a focus on normal ageing and cataract formation. (1) Methodological: testing potential effects of acuity, artificially manipulated with positive trial lenses, showed no effect on measured straylight values. Since light scattering in the eye involves a low percentage of the light and has large angular spreading, contrast reduction due to straylight is limited, resulting in virtually absent acuity effects. (2) Basic optics: light scattering from the human donor eye lens is found to have virtually no effect in the centre of the point-spread-function, also for cataractous lenses, resulting in virtually absent acuity effects. (3) Statistical: literature data on straylight and visual acuity show a weak correlation for the important groups of normal ageing and cataract populations. The point-spread-function of the normal ageing and cataractous human eye is built upon two rather independent basic parts. Aberrations control the central peak. Light scattering controls the periphery from about 1° onwards. The way acuity and straylight are measured ensures no confounding between them. Statistically within the normal ageing and cataract populations, visual acuity and straylight vary quite independently from each other. Visual acuity losses with cataract and other media opacities are not due to straylight, but caused by aberrations and micro-aberrations. Straylight defines disability glare, and causes symptoms of glare, haloes, hazy vision etc. Overall, visual acuity and straylight are rather independent aspects of quality of vision. © 2017 The Author Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Singularity now: using the ventricular assist device as a model for future human-robotic physiology.
Martin, Archer K
2016-04-01
In our 21 st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today's world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named "IshBot") can best be studied in ventricular assist devices - VAD.
Singularity now: using the ventricular assist device as a model for future human-robotic physiology
Martin, Archer K.
2016-01-01
In our 21st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today’s world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named “IshBot”) can best be studied in ventricular assist devices – VAD. PMID:28913480
Telemanipulation, telepresence, and virtual reality for surgery in the year 2000
NASA Astrophysics Data System (ADS)
Satava, Richard M.
1995-12-01
The new technologic revolution in medicine is based upon information technologies, and telemanipulation, telepresence and virtual reality are essential components. Telepresence surgery returns the look and feel of `open surgery' to the surgeon and promises enhancement of physical capabilities above normal human performance. Virtual reality provides basic medical education, simulation of surgical procedures, medical forces and disaster medicine practice, and virtual prototyping of medical equipment.
Human milk hyaluronan enhances innate defense of the intestinal epithelium.
Hill, David R; Rho, Hyunjin K; Kessler, Sean P; Amin, Ripal; Homer, Craig R; McDonald, Christine; Cowman, Mary K; de la Motte, Carol A
2013-10-04
Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human β-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human β-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hβ D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn.
Human Milk Hyaluronan Enhances Innate Defense of the Intestinal Epithelium*
Hill, David R.; Rho, Hyunjin K.; Kessler, Sean P.; Amin, Ripal; Homer, Craig R.; McDonald, Christine; Cowman, Mary K.; de la Motte, Carol A.
2013-01-01
Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human β-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human β-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hβ D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn. PMID:23950179
Structural insights into ligand recognition and selectivity for class A, B, and C GPCRs
Lee, Sang-Min; Booe, Jason M.; Pioszak, Augen A.
2015-01-01
The G protein-coupled receptor (GPCR) superfamily constitutes the largest collection of cell surface signaling proteins with approximately 800 members in the human genome. GPCRs regulate virtually all aspects of physiology and they are an important class of drug targets with ~30% of drugs on the market targeting a GPCR. Breakthroughs in GPCR structural biology in recent years have significantly expanded our understanding of GPCR structure and function and ushered in a new era of structure-based drug design for GPCRs. Crystal structures for nearly thirty distinct GPCRs are now available including receptors from each of the major classes, A, B, C, and F. These structures provide a foundation for understanding the molecular basis of GPCR pharmacology. Here, we review structural mechanisms of ligand recognition and selectivity of GPCRs with a focus on selected examples from classes A, B, and C, and we highlight major unresolved questions for future structural studies. PMID:25981303
A dormant internal ribosome entry site controls translation of feline immunodeficiency virus.
Camerini, Valentina; Decimo, Didier; Balvay, Laurent; Pistello, Mauro; Bendinelli, Mauro; Darlix, Jean-Luc; Ohlmann, Théophile
2008-04-01
The characterization of internal ribosome entry sites (IRESs) in virtually all lentiviruses prompted us to investigate the mechanism used by the feline immunodeficiency virus (FIV) to produce viral proteins. Various in vitro translation assays with mono- and bicistronic constructs revealed that translation of the FIV genomic RNA occurred both by a cap-dependent mechanism and by weak internal entry of the ribosomes. This weak IRES activity was confirmed in feline cells expressing bicistronic RNAs containing the FIV 5' untranslated region (UTR). Surprisingly, infection of feline cells with FIV, but not human immunodeficiency virus type 1, resulted in a great increase in FIV translation. Moreover, a change in the cellular physiological condition provoked by heat stress resulted in the specific stimulation of expression driven by the FIV 5' UTR while cap-dependent initiation was severely repressed. These results reveal the presence of a "dormant" IRES that becomes activated by viral infection and cellular stress.
Reflections on biomedical informatics: from cybernetics to genomic medicine and nanomedicine.
Maojo, Victor; Kulikowski, Casimir A
2006-01-01
Expanding on our previous analysis of Biomedical Informatics (BMI), the present perspective ranges from cybernetics to nanomedicine, based on its scientific, historical, philosophical, theoretical, experimental, and technological aspects as they affect systems developments, simulation and modelling, education, and the impact on healthcare. We then suggest that BMI is still searching for strong basic scientific principles around which it can crystallize. As -omic biological knowledge increasingly impacts the future of medicine, ubiquitous computing and informatics become even more essential, not only for the technological infrastructure, but as a part of the scientific enterprise itself. The Virtual Physiological Human and investigations into nanomedicine will surely produce yet more unpredictable opportunities, leading to significant changes in biomedical research and practice. As a discipline involved in making such advances possible, BMI is likely to need to re-define itself and extend its research horizons to meet the new challenges.
Building Virtual Models by Postprocessing Radiology Images: A Guide for Anatomy Faculty
ERIC Educational Resources Information Center
Tam, Matthew D. B. S.
2010-01-01
Radiology and radiologists are recognized as increasingly valuable resources for the teaching and learning of anatomy. State-of-the-art radiology department workstations with industry-standard software applications can provide exquisite demonstrations of anatomy, pathology, and more recently, physiology. Similar advances in personal computers and…
ERIC Educational Resources Information Center
Codd, Anthony M.; Choudhury, Bipasha
2011-01-01
The use of cadavers to teach anatomy is well established, but limitations with this approach have led to the introduction of alternative teaching methods. One such method is the use of three-dimensional virtual reality computer models. An interactive, three-dimensional computer model of human forearm anterior compartment musculoskeletal anatomy…
Trier Social Stress Test in vivo and in virtual reality: Dissociation of response domains.
Shiban, Youssef; Diemer, Julia; Brandl, Simone; Zack, Rebecca; Mühlberger, Andreas; Wüst, Stefan
2016-12-01
The Trier Social Stress Test (TSST) is considered a reliable paradigm for inducing psychosocial stress. Virtual reality (VR) has successfully been applied to ensure a greater degree of efficiency and standardization in the TSST. Studies using the TSST in VR (VR-TSST) have reported significant stress reactions, with subjective and peripheral physiological reactions comparable to those in response to the in vivo TSST and with lower cortisol reactions. The current study examined whether an additional virtual competitive factor triggers larger stress responses than a standard VR-TSST. Forty-five male participants were randomly assigned to either in vivo TSST, VR-TSST (VR) or VR-TSST with a virtual competitor (VR+). A significant increase of self-reported stress, electrodermal activity, and heart rate indicated a pronounced stress reaction with no differences between groups. For salivary cortisol, however, responder rates differed significantly between groups, with in vivo participants showing overall higher response rates (86%) than participants of both VR groups (VR: 33%, VR+: 47%). In contrast, participants of both VR groups judged the task significantly more challenging than did in vivo TSST participants. In sum, our results indicate successful stress induction in all experimental conditions, and a marked dissociation of salivary cortisol levels on the one hand, and the physiological and psychological stress reactions on the other hand. The competitive scenario did not significantly enhance stress reactions. VR technology may serve as a standardized tool for inducing social stress in experimental settings, but further research is needed to clarify why the stress reaction as assessed by cortisol differs from peripheral and subjective stress reactions in VR. Copyright © 2016 Elsevier B.V. All rights reserved.
Understanding Human Perception of Building Categories in Virtual 3d Cities - a User Study
NASA Astrophysics Data System (ADS)
Tutzauer, P.; Becker, S.; Niese, T.; Deussen, O.; Fritsch, D.
2016-06-01
Virtual 3D cities are becoming increasingly important as a means of visually communicating diverse urban-related information. To get a deeper understanding of a human's cognitive experience of virtual 3D cities, this paper presents a user study on the human ability to perceive building categories (e.g. residential home, office building, building with shops etc.) from geometric 3D building representations. The study reveals various dependencies between geometric properties of the 3D representations and the perceptibility of the building categories. Knowledge about which geometries are relevant, helpful or obstructive for perceiving a specific building category is derived. The importance and usability of such knowledge is demonstrated based on a perception-guided 3D building abstraction process.
An experiment on fear of public speaking in virtual reality.
Pertaub, D P; Slater, M; Barker, C
2001-01-01
Can virtual reality exposure therapy be used to treat people with social phobia? To answer this question it is vital to known if people will respond to virtual humans (avatars) in a virtual social setting in the same way they would to real humans. If someone is extremely anxious with real people, will they also be anxious when faced with simulated people, despite knowing that the avatars are computer generated? In [17] we described a small pilot study that placed 10 people before a virtual audience. The purpose was to assess the extent to which social anxiety, specifically fear of public speaking, was induced by the virtual audience and the extent of influence of degree of immersion (head mounted display or desktop monitor. The current paper describes a follow up study conducted with 40 subjects and the results clearly show that not only is social anxiety induced by the audience, but the degree of anxiety experienced is directly related to the type of virtual audience feedback the speaker receives. In particular, a hostile negative audience scenario was found to generate strong affect in speakers, regardless of whether or not they normally suffered from fear of public speaking.
Objective structured clinical interview training using a virtual human patient.
Parsons, Thomas D; Kenny, Patrick; Ntuen, Celestine A; Pataki, Caroly S; Pato, Michele T; Rizzo, Albert A; St-George, Cheryl; Sugar, Jeffery
2008-01-01
Effective interview skills are a core competency for psychiatry residents and developing psychotherapists. Although schools commonly make use of standardized patients to teach interview skills, the diversity of the scenarios standardized patients can characterize is limited by availability of human actors. Further, there is the economic concern related to the time and money needed to train standardized patients. Perhaps most damaging is the "standardization" of standardized patients -- will they in fact consistently proffer psychometrically reliable and valid interactions with the training clinicians. Virtual Human Agent (VHA) technology has evolved to a point where researchers may begin developing mental health applications that make use of virtual reality patients. The work presented here is a preliminary attempt at what we believe to be a large application area. Herein we describe an ongoing study of our virtual patients (VP). We present an approach that allows novice mental health clinicians to conduct an interview with a virtual character that emulates an adolescent male with conduct disorder. This study illustrates the ways in which a variety of core research components developed at the University of Southern California facilitates the rapid development of mental health applications.
Master-slave system with force feedback based on dynamics of virtual model
NASA Technical Reports Server (NTRS)
Nojima, Shuji; Hashimoto, Hideki
1994-01-01
A master-slave system can extend manipulating and sensing capabilities of a human operator to a remote environment. But the master-slave system has two serious problems: one is the mechanically large impedance of the system; the other is the mechanical complexity of the slave for complex remote tasks. These two problems reduce the efficiency of the system. If the slave has local intelligence, it can help the human operator by using its good points like fast calculation and large memory. The authors suggest that the slave is a dextrous hand with many degrees of freedom able to manipulate an object of known shape. It is further suggested that the dimensions of the remote work space be shared by the human operator and the slave. The effect of the large impedance of the system can be reduced in a virtual model, a physical model constructed in a computer with physical parameters as if it were in the real world. A method to determine the damping parameter dynamically for the virtual model is proposed. Experimental results show that this virtual model is better than the virtual model with fixed damping.
How virtual reality works: illusions of vision in "real" and virtual environments
NASA Astrophysics Data System (ADS)
Stark, Lawrence W.
1995-04-01
Visual illusions abound in normal vision--illusions of clarity and completeness, of continuity in time and space, of presence and vivacity--and are part and parcel of the visual world inwhich we live. These illusions are discussed in terms of the human visual system, with its high- resolution fovea, moved from point to point in the visual scene by rapid saccadic eye movements (EMs). This sampling of visual information is supplemented by a low-resolution, wide peripheral field of view, especially sensitive to motion. Cognitive-spatial models controlling perception, imagery, and 'seeing,' also control the EMs that shift the fovea in the Scanpath mode. These illusions provide for presence, the sense off being within an environment. They equally well lead to 'Telepresence,' the sense of being within a virtual display, especially if the operator is intensely interacting within an eye-hand and head-eye human-machine interface that provides for congruent visual and motor frames of reference. Interaction, immersion, and interest compel telepresence; intuitive functioning and engineered information flows can optimize human adaptation to the artificial new world of virtual reality, as virtual reality expands into entertainment, simulation, telerobotics, and scientific visualization and other professional work.
Sounds of silence: How to animate virtual worlds with sound
NASA Technical Reports Server (NTRS)
Astheimer, Peter
1993-01-01
Sounds are an integral and sometimes annoying part of our daily life. Virtual worlds which imitate natural environments gain a lot of authenticity from fast, high quality visualization combined with sound effects. Sounds help to increase the degree of immersion for human dwellers in imaginary worlds significantly. The virtual reality toolkit of IGD (Institute for Computer Graphics) features a broad range of standard visual and advanced real-time audio components which interpret an object-oriented definition of the scene. The virtual reality system 'Virtual Design' realized with the toolkit enables the designer of virtual worlds to create a true audiovisual environment. Several examples on video demonstrate the usage of the audio features in Virtual Design.
Virtual Reality Educational Tool for Human Anatomy.
Izard, Santiago González; Juanes Méndez, Juan A; Palomera, Pablo Ruisoto
2017-05-01
Virtual Reality is becoming widespread in our society within very different areas, from industry to entertainment. It has many advantages in education as well, since it allows visualizing almost any object or going anywhere in a unique way. We will be focusing on medical education, and more specifically anatomy, where its use is especially interesting because it allows studying any structure of the human body by placing the user inside each one. By allowing virtual immersion in a body structure such as the interior of the cranium, stereoscopic vision goggles make these innovative teaching technologies a powerful tool for training in all areas of health sciences. The aim of this study is to illustrate the teaching potential of applying Virtual Reality in the field of human anatomy, where it can be used as a tool for education in medicine. A Virtual Reality Software was developed as an educational tool. This technological procedure is based entirely on software which will run in stereoscopic goggles to give users the sensation of being in a virtual environment, clearly showing the different bones and foramina which make up the cranium, and accompanied by audio explanations. Throughout the results the structure of the cranium is described in detailed from both inside and out. Importance of an exhaustive morphological knowledge of cranial fossae is further discussed. Application for the design of microsurgery is also commented.
Intelligent neonatal monitoring based on a virtual thermal sensor
2014-01-01
Background Temperature measurement is a vital part of daily neonatal care. Accurate measurements are important for detecting deviations from normal values for both optimal incubator and radiant warmer functioning. The purpose of monitoring the temperature is to maintain the infant in a thermoneutral environmental zone. This physiological zone is defined as the narrow range of environmental temperatures in which the infant maintains a normal body temperature without increasing his or her metabolic rate and thus oxygen consumption. Although the temperature measurement gold standard is the skin electrode, infrared thermography (IRT) should be considered as an effortless and reliable tool for measuring and mapping human skin temperature distribution and assist in assessing thermoregulatory reflexes. Methods Body surface temperature was recorded under several clinical conditions using an infrared thermography imaging technique. Temperature distributions were recorded as real-time video, which was analyzed to evaluate mean skin temperatures. Emissivity variations were considered for optimal neonatal IRT correction for which the compensation vector was overlaid on the tracking algorithm to improve the temperature reading. Finally, a tracking algorithm was designed for active follow-up of the defined region of interest over a neonate’s geometry. Results The outcomes obtained from the thermal virtual sensor demonstrate its ability to accurately track different geometric profiles and shapes over the external anatomy of a neonate. Only a small percentage of the motion detection attempts failed to fit tracking scenarios due to the lack of a properly matching matrix for the ROI profile over neonate’s body surface. Conclusions This paper presents the design and implementation of a virtual temperature sensing application that can assist neonatologists in interpreting a neonate’s skin temperature patterns. Regarding the surface temperature, the influence of different environmental conditions inside the incubator has been confirming. PMID:24580961
Intelligent neonatal monitoring based on a virtual thermal sensor.
Abbas, Abbas K; Leonhardt, Steffen
2014-03-02
Temperature measurement is a vital part of daily neonatal care. Accurate measurements are important for detecting deviations from normal values for both optimal incubator and radiant warmer functioning. The purpose of monitoring the temperature is to maintain the infant in a thermoneutral environmental zone. This physiological zone is defined as the narrow range of environmental temperatures in which the infant maintains a normal body temperature without increasing his or her metabolic rate and thus oxygen consumption. Although the temperature measurement gold standard is the skin electrode, infrared thermography (IRT) should be considered as an effortless and reliable tool for measuring and mapping human skin temperature distribution and assist in assessing thermoregulatory reflexes. Body surface temperature was recorded under several clinical conditions using an infrared thermography imaging technique. Temperature distributions were recorded as real-time video, which was analyzed to evaluate mean skin temperatures. Emissivity variations were considered for optimal neonatal IRT correction for which the compensation vector was overlaid on the tracking algorithm to improve the temperature reading. Finally, a tracking algorithm was designed for active follow-up of the defined region of interest over a neonate's geometry. The outcomes obtained from the thermal virtual sensor demonstrate its ability to accurately track different geometric profiles and shapes over the external anatomy of a neonate. Only a small percentage of the motion detection attempts failed to fit tracking scenarios due to the lack of a properly matching matrix for the ROI profile over neonate's body surface. This paper presents the design and implementation of a virtual temperature sensing application that can assist neonatologists in interpreting a neonate's skin temperature patterns. Regarding the surface temperature, the influence of different environmental conditions inside the incubator has been confirming.
Modification of visual function by early visual experience.
Blakemore, C
1976-07-01
Physiological experiments, involving recording from the visual cortex in young kittens and monkeys, have given new insight into human developmental disorders. In the visual cortex of normal cats and monkeys most neurones are selectively sensitive to the orientation of moving edges and they receive very similar signals from both eyes. Even in very young kittens without visual experience, most neurones are binocularly driven and a small proportion of them are genuinely orientation selective. There is no passive maturation of the system in the absence of visual experience, but even very brief exposure to patterned images produces rapid emergence of the adult organization. These results are compared to observations on humans who have "recovered" from early blindness. Covering one eye in a kitten or a monkey, during a sensitive period early in life, produces a virtually complete loss of input from that eye in the cortex. These results can be correlated with the production of "stimulus deprivation amblyopia" in infants who have had one eye patched. Induction of a strabismus causes a loss of binocularity in the visual cortex, and in humans it leads to a loss of stereoscopic vision and binocular fusion. Exposing kittens to lines of one orientation modifies the preferred orientations of cortical cells and there is an analogous "meridional amblyopia" in astigmatic humans. The existence of a sensitive period in human vision is discussed, as well as the possibility of designing remedial and preventive treatments for human developmental disorders.
A Novel Computer-Based Set-Up to Study Movement Coordination in Human Ensembles
Alderisio, Francesco; Lombardi, Maria; Fiore, Gianfranco; di Bernardo, Mario
2017-01-01
Existing experimental works on movement coordination in human ensembles mostly investigate situations where each subject is connected to all the others through direct visual and auditory coupling, so that unavoidable social interaction affects their coordination level. Here, we present a novel computer-based set-up to study movement coordination in human groups so as to minimize the influence of social interaction among participants and implement different visual pairings between them. In so doing, players can only take into consideration the motion of a designated subset of the others. This allows the evaluation of the exclusive effects on coordination of the structure of interconnections among the players in the group and their own dynamics. In addition, our set-up enables the deployment of virtual computer players to investigate dyadic interaction between a human and a virtual agent, as well as group synchronization in mixed teams of human and virtual agents. We show how this novel set-up can be employed to study coordination both in dyads and in groups over different structures of interconnections, in the presence as well as in the absence of virtual agents acting as followers or leaders. Finally, in order to illustrate the capabilities of the architecture, we describe some preliminary results. The platform is available to any researcher who wishes to unfold the mechanisms underlying group synchronization in human ensembles and shed light on its socio-psychological aspects. PMID:28649217
Virtual HRD and National Culture: An Information Processing Perspective
ERIC Educational Resources Information Center
Chung, Chih-Hung; Angnakoon, Putthachat; Li, Jessica; Allen, Jeff
2016-01-01
Purpose: The purpose of this study is to provide researchers with a better understanding of the cultural impact on information processing in virtual learning environment. Design/methodology/approach: This study uses a causal loop diagram to depict the cultural impact on information processing in the virtual human resource development (VHRD)…
Ferraz, Eduardo Gomes; Andrade, Lucio Costa Safira; dos Santos, Aline Rode; Torregrossa, Vinicius Rabelo; Rubira-Bullen, Izabel Regina Fischer; Sarmento, Viviane Almeida
2013-12-01
The aim of this study was to evaluate the accuracy of virtual three-dimensional (3D) reconstructions of human dry mandibles, produced from two segmentation protocols ("outline only" and "all-boundary lines"). Twenty virtual three-dimensional (3D) images were built from computed tomography exam (CT) of 10 dry mandibles, in which linear measurements between anatomical landmarks were obtained and compared to an error probability of 5 %. The results showed no statistically significant difference among the dry mandibles and the virtual 3D reconstructions produced from segmentation protocols tested (p = 0,24). During the designing of a virtual 3D reconstruction, both "outline only" and "all-boundary lines" segmentation protocols can be used. Virtual processing of CT images is the most complex stage during the manufacture of the biomodel. Establishing a better protocol during this phase allows the construction of a biomodel with characteristics that are closer to the original anatomical structures. This is essential to ensure a correct preoperative planning and a suitable treatment.
Virtual reality haptic human dissection.
Needham, Caroline; Wilkinson, Caroline; Soames, Roger
2011-01-01
This project aims to create a three-dimensional digital model of the human hand and wrist which can be virtually 'dissected' through a haptic interface. Tissue properties will be added to the various anatomical structures to replicate a realistic look and feel. The project will explore the role of the medical artist and investigate the cross-discipline collaborations required in the field of virtual anatomy. The software will be used to train anatomy students in dissection skills before experience on a real cadaver. The effectiveness of the software will be evaluated and assessed both quantitatively as well as qualitatively.
The Ames Virtual Environment Workstation: Implementation issues and requirements
NASA Technical Reports Server (NTRS)
Fisher, Scott S.; Jacoby, R.; Bryson, S.; Stone, P.; Mcdowall, I.; Bolas, M.; Dasaro, D.; Wenzel, Elizabeth M.; Coler, C.; Kerr, D.
1991-01-01
This presentation describes recent developments in the implementation of a virtual environment workstation in the Aerospace Human Factors Research Division of NASA's Ames Research Center. Introductory discussions are presented on the primary research objectives and applications of the system and on the system's current hardware and software configuration. Principle attention is then focused on unique issues and problems encountered in the workstation's development with emphasis on its ability to meet original design specifications for computational graphics performance and for associated human factors requirements necessary to provide compelling sense of presence and efficient interaction in the virtual environment.
NASA Astrophysics Data System (ADS)
Bainbridge, William Sims
This chapter reports the wide range of ideas in a pair of major scientific conference meetings held inside the most popular virtual world, World of Warcraft (WoW), May 9 and May 10, 2008, plus the challenges of organizing these online events. More than a hundred scholars and scientists contributed to each session, the first covering research on World of Warcraft, and the second examining how virtual worlds fit into the larger world of human experience. A third session, held on May 11, was the starting point for the concluding chapter of this volume. This chapter describes how WoW and other virtual worlds can be used as laboratories for studying human behavior, using both qualitative and quantitative methodologies, and the affordances of virtual worlds can be used to support scientific communication (Bainbridge 2007, in press).
NASA Technical Reports Server (NTRS)
Lunsford, Myrtis Leigh
1998-01-01
The Army-NASA Virtual Innovations Laboratory (ANVIL) was recently created to provide virtual reality tools for performing Human Engineering and operations analysis for both NASA and the Army. The author's summer research project consisted of developing and refining these tools for NASA's Reusable Launch Vehicle (RLV) program. Several general simulations were developed for use by the ANVIL for the evaluation of the X34 Engine Changeout procedure. These simulations were developed with the software tool dVISE 4.0.0 produced by Division Inc. All software was run on an SGI Indigo2 High Impact. This paper describes the simulations, various problems encountered with the simulations, other summer activities, and possible work for the future. We first begin with a brief description of virtual reality systems.
Effectiveness of educational technology to improve patient care in pharmacy curricula.
Smith, Michael A; Benedict, Neal
2015-02-17
A review of the literature on the effectiveness of educational technologies to teach patient care skills to pharmacy students was conducted. Nineteen articles met inclusion criteria for the review. Seven of the articles included computer-aided instruction, 4 utilized human-patient simulation, 1 used both computer-aided instruction and human-patient simulation, and 7 utilized virtual patients. Educational technology was employed with more than 2700 students at 12 colleges and schools of pharmacy in courses including pharmacotherapeutics, skills and patient care laboratories, drug diversion, and advanced pharmacy practice experience (APPE) orientation. Students who learned by means of human-patient simulation and virtual patients reported enjoying the learning activity, whereas the results with computer-aided instruction were mixed. Moreover, the effect on learning was significant in the human-patient simulation and virtual patient studies, while conflicting data emerged on the effectiveness of computer-aided instruction.
Virtual Habitat -a dynamic simulation of closed life support systems -human model status
NASA Astrophysics Data System (ADS)
Markus Czupalla, M. Sc.; Zhukov, Anton; Hwang, Su-Au; Schnaitmann, Jonas
In order to optimize Life Support Systems on a system level, stability questions must be in-vestigated. To do so the exploration group of the Technical University of Munich (TUM) is developing the "Virtual Habitat" (V-HAB) dynamic LSS simulation software. V-HAB shall provide the possibility to conduct dynamic simulations of entire mission scenarios for any given LSS configuration. The Virtual Habitat simulation tool consists of four main modules: • Closed Environment Module (CEM) -monitoring of compounds in a closed environment • Crew Module (CM) -dynamic human simulation • P/C Systems Module (PCSM) -dynamic P/C subsystems • Plant Module (PM) -dynamic plant simulation The core module of the simulation is the dynamic and environment sensitive human module. Introduced in its basic version in 2008, the human module has been significantly updated since, increasing its capabilities and maturity significantly. In this paper three newly added human model subsystems (thermal regulation, digestion and schedule controller) are introduced touching also on the human stress subsystem which is cur-rently under development. Upon the introduction of these new subsystems, the integration of these into the overall V-HAB human model is discussed, highlighting the impact on the most important I/F. The overall human model capabilities shall further be summarized and presented based on meaningful test cases. In addition to the presentation of the results, the correlation strategy for the Virtual Habitat human model shall be introduced assessing the models current confidence level and giving an outlook on the future correlation strategy. Last but not least, the remaining V-HAB mod-ules shall be introduced shortly showing how the human model is integrated into the overall simulation.
Model for Predicting the Performance of Planetary Suit Hip Bearing Designs
NASA Technical Reports Server (NTRS)
Cowley, Matthew S.; Margerum, Sarah; Hharvill, Lauren; Rajulu, Sudhakar
2012-01-01
Designing a space suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. During the development period of the suit numerous design iterations need to occur before the hardware meets human performance requirements. Using computer models early in the design phase of hardware development is advantageous, by allowing virtual prototyping to take place. A virtual design environment allows designers to think creatively, exhaust design possibilities, and study design impacts on suit and human performance. A model of the rigid components of the Mark III Technology Demonstrator Suit (planetary-type space suit) and a human manikin were created and tested in a virtual environment. The performance of the Mark III hip bearing model was first developed and evaluated virtually by comparing the differences in mobility performance between the nominal bearing configurations and modified bearing configurations. Suited human performance was then simulated with the model and compared to actual suited human performance data using the same bearing configurations. The Mark III hip bearing model was able to visually represent complex bearing rotations and the theoretical volumetric ranges of motion in three dimensions. The model was also able to predict suited human hip flexion and abduction maximums to within 10% of the actual suited human subject data, except for one modified bearing condition in hip flexion which was off by 24%. Differences between the model predictions and the human subject performance data were attributed to the lack of joint moment limits in the model, human subject fitting issues, and the limited suit experience of some of the subjects. The results demonstrate that modeling space suit rigid segments is a feasible design tool for evaluating and optimizing suited human performance. Keywords: space suit, design, modeling, performance
Underwater Electrical Safety Practices
1976-01-01
under water. While advances continue in developing new and more effective underwater electrical equipment, the Navy is concerned that its underwater...levels passing through human tissue is known to alter, temporarily, the physiological function of cells. The long-term effects , if any, are unknown. Much...of the system--human physiology, equipment, procedures, and training. Human Physiology Present knowledge of the physiological effects of electrical
Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain.
Andriani, Grasiella A; Vijg, Jan; Montagna, Cristina
2017-01-01
Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS. Copyright © 2016. Published by Elsevier B.V.
Multiscale information modelling for heart morphogenesis
NASA Astrophysics Data System (ADS)
Abdulla, T.; Imms, R.; Schleich, J. M.; Summers, R.
2010-07-01
Science is made feasible by the adoption of common systems of units. As research has become more data intensive, especially in the biomedical domain, it requires the adoption of a common system of information models, to make explicit the relationship between one set of data and another, regardless of format. This is being realised through the OBO Foundry to develop a suite of reference ontologies, and NCBO Bioportal to provide services to integrate biomedical resources and functionality to visualise and create mappings between ontology terms. Biomedical experts tend to be focused at one level of spatial scale, be it biochemistry, cell biology, or anatomy. Likewise, the ontologies they use tend to be focused at a particular level of scale. There is increasing interest in a multiscale systems approach, which attempts to integrate between different levels of scale to gain understanding of emergent effects. This is a return to physiological medicine with a computational emphasis, exemplified by the worldwide Physiome initiative, and the European Union funded Network of Excellence in the Virtual Physiological Human. However, little work has been done on how information modelling itself may be tailored to a multiscale systems approach. We demonstrate how this can be done for the complex process of heart morphogenesis, which requires multiscale understanding in both time and spatial domains. Such an effort enables the integration of multiscale metrology.
Was it less painful for knights? Influence of appearance on pain perception.
Weeth, A; Mühlberger, A; Shiban, Y
2017-11-01
Pain perception is a subjective experience shaped by different factors. In this study, we investigated the influence of a visually manipulated appearance of a virtual arm on pain perception. Specifically, we investigated how pain perception and vegetative skin responses were modified by inducing a virtual protection on the right arm by a virtual armour. Participants (n = 32) immersed in virtual reality embodied a virtual arm, which appeared in three different versions (uncovered, neutral or protected). During the virtual reality simulation, the participants received electrical stimulations of varying intensities. Skin conductance level (SCL) was analysed for the phase anticipation (from the moment the arm appeared until the electric stimulation) and perception of pain (after the electric stimulation). Pain ratings were acquired after the painful stimuli occurred. The sense of embodiment was positive for the unprotected and neutral condition and lower for the protected than for the neutral arm. Pain ratings were significantly decreased in the protected arm condition compared with both the unprotected arm and the neutral arm conditions. The SCL measurements showed no significant differences for the three arm types. According to the pain ratings, participants felt significantly less pain in the covered arm condition compared with the unprotected and the neutral arm condition. Subjective pain perception was decreased by a virtual protection of the arm in VR. The simplicity of the manipulation suggests possible practical uses in pain therapy by strengthening the patients' own capacities to influence their pain using simple cognitive manipulations via virtual reality. A virtual, covered arm causes differences in reported pain ratings. Physiological measurements do not confirm the findings. Visual information about body protection can have an impact on pain perception. © 2017 European Pain Federation - EFIC®.
ERIC Educational Resources Information Center
Husmann, Polly R.; O'Loughlin, Valerie Dean; Braun, Mark W.
2009-01-01
This study compares overall laboratory averages and individual test scores along with a student survey to determine the effects of using virtual microscopy in place of optical microscopes in a large undergraduate human anatomy course. T-tests revealed that the first two laboratory examinations (of four) and the overall laboratory averages were…
ERIC Educational Resources Information Center
Tsai, Yueh-Feng; Kaufman, David
2014-01-01
Previous research by Tsai and Kaufman (2010a, 2010b) has suggested that computer-simulated virtual pet dogs can be used as a potential medium to enhance children's development of empathy and humane attitudes toward animals. To gain a deeper understanding of how and why interacting with a virtual pet dog might influence children's social and…
Younger and Older Users’ Recognition of Virtual Agent Facial Expressions
Beer, Jenay M.; Smarr, Cory-Ann; Fisk, Arthur D.; Rogers, Wendy A.
2015-01-01
As technology advances, robots and virtual agents will be introduced into the home and healthcare settings to assist individuals, both young and old, with everyday living tasks. Understanding how users recognize an agent’s social cues is therefore imperative, especially in social interactions. Facial expression, in particular, is one of the most common non-verbal cues used to display and communicate emotion in on-screen agents (Cassell, Sullivan, Prevost, & Churchill, 2000). Age is important to consider because age-related differences in emotion recognition of human facial expression have been supported (Ruffman et al., 2008), with older adults showing a deficit for recognition of negative facial expressions. Previous work has shown that younger adults can effectively recognize facial emotions displayed by agents (Bartneck & Reichenbach, 2005; Courgeon et al. 2009; 2011; Breazeal, 2003); however, little research has compared in-depth younger and older adults’ ability to label a virtual agent’s facial emotions, an import consideration because social agents will be required to interact with users of varying ages. If such age-related differences exist for recognition of virtual agent facial expressions, we aim to understand if those age-related differences are influenced by the intensity of the emotion, dynamic formation of emotion (i.e., a neutral expression developing into an expression of emotion through motion), or the type of virtual character differing by human-likeness. Study 1 investigated the relationship between age-related differences, the implication of dynamic formation of emotion, and the role of emotion intensity in emotion recognition of the facial expressions of a virtual agent (iCat). Study 2 examined age-related differences in recognition expressed by three types of virtual characters differing by human-likeness (non-humanoid iCat, synthetic human, and human). Study 2 also investigated the role of configural and featural processing as a possible explanation for age-related differences in emotion recognition. First, our findings show age-related differences in the recognition of emotions expressed by a virtual agent, with older adults showing lower recognition for the emotions of anger, disgust, fear, happiness, sadness, and neutral. These age-related difference might be explained by older adults having difficulty discriminating similarity in configural arrangement of facial features for certain emotions; for example, older adults often mislabeled the similar emotions of fear as surprise. Second, our results did not provide evidence for the dynamic formation improving emotion recognition; but, in general, the intensity of the emotion improved recognition. Lastly, we learned that emotion recognition, for older and younger adults, differed by character type, from best to worst: human, synthetic human, and then iCat. Our findings provide guidance for design, as well as the development of a framework of age-related differences in emotion recognition. PMID:25705105
Using virtual reality to analyze sports performance.
Bideau, Benoit; Kulpa, Richard; Vignais, Nicolas; Brault, Sébastien; Multon, Franck; Craig, Cathy
2010-01-01
Improving performance in sports can be difficult because many biomechanical, physiological, and psychological factors come into play during competition. A better understanding of the perception-action loop employed by athletes is necessary. This requires isolating contributing factors to determine their role in player performance. Because of its inherent limitations, video playback doesn't permit such in-depth analysis. Interactive, immersive virtual reality (VR) can overcome these limitations and foster a better understanding of sports performance from a behavioral-neuroscience perspective. Two case studies using VR technology and a sophisticated animation engine demonstrate how to use information from visual displays to inform a player's future course of action.
Moody, George B; Mark, Roger G; Goldberger, Ary L
2011-01-01
PhysioNet provides free web access to over 50 collections of recorded physiologic signals and time series, and related open-source software, in support of basic, clinical, and applied research in medicine, physiology, public health, biomedical engineering and computing, and medical instrument design and evaluation. Its three components (PhysioBank, the archive of signals; PhysioToolkit, the software library; and PhysioNetWorks, the virtual laboratory for collaborative development of future PhysioBank data collections and PhysioToolkit software components) connect researchers and students who need physiologic signals and relevant software with researchers who have data and software to share. PhysioNet's annual open engineering challenges stimulate rapid progress on unsolved or poorly solved questions of basic or clinical interest, by focusing attention on achievable solutions that can be evaluated and compared objectively using freely available reference data.
Komori, M; Miura, T; Shiota, K; Minato, K; Takahashi, T
1995-01-01
The volumetric shape of a human embryo and its development is hard to comprehend as they have been viewed as a 2D schemes in a textbook or microscopic sectional image. In this paper, a CAI and research support system for human embryology using multimedia presentation techniques is described. In this system, 3D data is acquired from a series of sliced specimens. Its 3D structure can be viewed interactively by rotating, extracting, and truncating its whole body or organ. Moreover, the development process of embryos can be animated using a morphing technique applied to the specimen in several stages. The system is intended to be used interactively, like a virtual reality system. Hence, the system is called Virtual Embryology.
1985-06-21
etc. Animal anatomy, physiology, and pathology. Care and breeding of labora- tory animals. For human anatomy and physiology, see 06 16 Physiology...sensation, etc. Human anatomy . For animal anatomy and physiology, see 06 03 Biology. For physiological psychology, see 05 10 Psychology. See also 06 19
Human Physiology and the Environment in Health and Disease: Readings from Scientific American.
ERIC Educational Resources Information Center
1976
This anthology of articles is designed to supplement standard texts for courses in human physiology, environmental physiology, anatomy and physiology, pathobiology, general biology, and environmental medicine. It focuses on the influences of the external environment on the body, the physiological responses to environmental challenges, and the ways…
Evolutionary Medicine: The Ongoing Evolution of Human Physiology and Metabolism.
Rühli, Frank; van Schaik, Katherine; Henneberg, Maciej
2016-11-01
The field of evolutionary medicine uses evolutionary principles to understand changes in human anatomy and physiology that have occurred over time in response to environmental changes. Through this evolutionary-based approach, we can understand disease as a consequence of anatomical and physiological "trade-offs" that develop to facilitate survival and reproduction. We demonstrate how diachronic study of human anatomy and physiology is fundamental for an increased understanding of human health and disease. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.
Human Machine Interfaces for Teleoperators and Virtual Environments Conference
NASA Technical Reports Server (NTRS)
1990-01-01
In a teleoperator system the human operator senses, moves within, and operates upon a remote or hazardous environment by means of a slave mechanism (a mechanism often referred to as a teleoperator). In a virtual environment system the interactive human machine interface is retained but the slave mechanism and its environment are replaced by a computer simulation. Video is replaced by computer graphics. The auditory and force sensations imparted to the human operator are similarly computer generated. In contrast to a teleoperator system, where the purpose is to extend the operator's sensorimotor system in a manner that facilitates exploration and manipulation of the physical environment, in a virtual environment system, the purpose is to train, inform, alter, or study the human operator to modify the state of the computer and the information environment. A major application in which the human operator is the target is that of flight simulation. Although flight simulators have been around for more than a decade, they had little impact outside aviation presumably because the application was so specialized and so expensive.
Reaction time for processing visual stimulus in a computer-assisted rehabilitation environment.
Sanchez, Yerly; Pinzon, David; Zheng, Bin
2017-10-01
To examine the reaction time when human subjects process information presented in the visual channel under both a direct vision and a virtual rehabilitation environment when walking was performed. Visual stimulus included eight math problems displayed on the peripheral vision to seven healthy human subjects in a virtual rehabilitation training (computer-assisted rehabilitation environment (CAREN)) and a direct vision environment. Subjects were required to verbally report the results of these math calculations in a short period of time. Reaction time measured by Tobii Eye tracker and calculation accuracy were recorded and compared between the direct vision and virtual rehabilitation environment. Performance outcomes measured for both groups included reaction time, reading time, answering time and the verbal answer score. A significant difference between the groups was only found for the reaction time (p = .004). Participants had more difficulty recognizing the first equation of the virtual environment. Participants reaction time was faster in the direct vision environment. This reaction time delay should be kept in mind when designing skill training scenarios in virtual environments. This was a pilot project to a series of studies assessing cognition ability of stroke patients who are undertaking a rehabilitation program with a virtual training environment. Implications for rehabilitation Eye tracking is a reliable tool that can be employed in rehabilitation virtual environments. Reaction time changes between direct vision and virtual environment.
Shi, Zheng; Yu, Tian; Sun, Rong; Wang, Shan; Chen, Xiao-Qian; Cheng, Li-Jia; Liu, Rong
2016-01-01
Human epidermal growth factor receptor-2 (HER2) is a trans-membrane receptor like protein, and aberrant signaling of HER2 is implicated in many human cancers, such as ovarian cancer, gastric cancer, and prostate cancer, most notably breast cancer. Moreover, it has been in the spotlight in the recent years as a promising new target for therapy of breast cancer. Since virtual screening has become an integral part of the drug discovery process, it is of great significant to identify novel HER2 inhibitors by structure-based virtual screening. In this study, we carried out a series of elegant bioinformatics approaches, such as virtual screening and molecular dynamics (MD) simulations to identify HER2 inhibitors from Food and Drug Administration-approved small molecule drug as potential "new use" drugs. Molecular docking identified top 10 potential drugs which showed spectrum affinity to HER2. Moreover, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) might exert potential inhibitory effects against HER2-targeted anti-breast cancer therapeutics. Together, our findings may provide successful application of virtual screening studies in the lead discovery process, and suggest that our discovered small molecules could be effective HER2 inhibitor candidates for further study. A series of elegant bioinformatics approaches, including virtual screening and molecular dynamics (MD) simulations were took advantage to identify human epidermal growth factor receptor-2 (HER2) inhibitors. Molecular docking recognized top 10 candidate compounds, which showed spectrum affinity to HER2. Further, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) in candidate compounds were identified as potential "new use" drugs against HER2-targeted anti-breast cancer therapeutics. Abbreviations used: HER2: Human epidermal growth factor receptor-2, FDA: Food and Drug Administration, PDB: Protein Database Bank, RMSDs: Root mean square deviations, SPC: Single point charge, PME: Particle mesh Ewald, NVT: Constant volume, NPT: Constant pressure, RMSF: Root-mean-square fluctuation.
Virtual reality and planetary exploration
NASA Technical Reports Server (NTRS)
Mcgreevy, Michael W.
1992-01-01
Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.
Virtual reality and planetary exploration
NASA Astrophysics Data System (ADS)
McGreevy, Michael W.
Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.
Simulation Of Assembly Processes With Technical Of Virtual Reality
NASA Astrophysics Data System (ADS)
García García, Manuel; Arenas Reina, José Manuel; Lite, Alberto Sánchez; Sebastián Pérez, Miguel Ángel
2009-11-01
Virtual reality techniques use at industrial processes provides a real approach to product life cycle. For components manual assembly, the use of virtual surroundings facilitates a simultaneous engineering in which variables such as human factors and productivity take a real act. On the other hand, in the actual phase of industrial competition it is required a rapid adjustment to client needs and to market situation. In this work it is analyzed the assembly of the front components of a vehicle using virtual reality tools and following up a product-process design methodology which includes every life service stage. This study is based on workstations design, taking into account productive and human factors from the ergonomic point of view implementing a postural study of every assembly operation, leaving the rest of stages for a later study. Design is optimized applying this methodology together with the use of virtual reality tools. It is also achieved a 15% reduction on time assembly and of 90% reduction in muscle—skeletal diseases at every assembly operation.
Virtual arthroscopy of the visible human female temporomandibular joint.
Ishimaru, T; Lew, D; Haller, J; Vannier, M W
1999-07-01
This study was designed to obtain views of the temporomandibular joint (TMJ) by means of computed arthroscopic simulation (virtual arthroscopy) using three-dimensional (3D) processing. Volume renderings of the TMJ from very thin cryosection slices of the Visible Human Female were taken off the Internet. Analyze(AVW) software (Biomedical Imaging Resource, Mayo Foundation, Rochester, MN) on a Silicon Graphics 02 workstation (Mountain View, CA) was then used to obtain 3D images and allow the navigation "fly-through" of the simulated joint. Good virtual arthroscopic views of the upper and lower joint spaces of both TMJs were obtained by fly-through simulation from the lateral and endaural sides. It was possible to observe the presence of a partial defect in the articular disc and an osteophyte on the condyle. Virtual arthroscopy provided visualization of regions not accessible to real arthroscopy. These results indicate that virtual arthroscopy will be a new technique to investigate the TMJ of the patient with TMJ disorders in the near future.
What Happens in a Virtual World Has a Real-World Impact, a Scholar Finds
ERIC Educational Resources Information Center
Foster, Andrea L.
2008-01-01
Forget the pills, hypnosis, and meditation. Losing weight or boosting self-confidence can be achieved by adopting an avatar and living in virtual reality, says Jeremy N. Bailenson, an assistant professor of communications at Stanford University. As the director of Stanford's Virtual Human Interaction Lab, Mr. Bailenson has explored ways that…
ERIC Educational Resources Information Center
Burke, Shanna L.; Bresnahan, Tammy; Li, Tan; Epnere, Katrina; Rizzo, Albert; Partin, Mary; Ahlness, Robert M.; Trimmer, Matthew
2018-01-01
Conversational virtual human (VH) agents are increasingly used to support role-play experiential learning. This project examined whether a Virtual Interactive Training Agent (ViTA) system would improve job interviewing skills in individuals with autism and developmental disabilities (N = 32). A linear mixed model was employed to evaluate adjusted…
ERIC Educational Resources Information Center
Collier, Larissa; Dunham, Stacey; Braun, Mark W.; O'Loughlin, Valerie Dean
2012-01-01
Many studies that evaluate the introduction of technology in the classroom focus on student performance and student evaluations. This study focuses on instructor evaluation of the introduction of virtual microscopy into an undergraduate anatomy class. Semi-structured interviews were conducted with graduate teaching assistants (TA) and analyzed…
Virtual Worlds vs Books and Videos in History Education
ERIC Educational Resources Information Center
Ijaz, Kiran; Bogdanovych, Anton; Trescak, Tomas
2017-01-01
In this paper, we investigate an application of virtual reality and artificial intelligence (AI) as a technological combination that has a potential to improve the learning experience and engage with the modern generation of students. To address this need, we have created a virtual reality replica of one of humanity's first cities, the city of…
Energy management using virtual reality improves 2000-m rowing performance.
Hoffmann, Charles P; Filippeschi, Alessandro; Ruffaldi, Emanuele; Bardy, Benoit G
2014-01-01
Elite-standard rowers tend to use a fast-start strategy followed by an inverted parabolic-shaped speed profile in 2000-m races. This strategy is probably the best to manage energy resources during the race and maximise performance. This study investigated the use of virtual reality (VR) with novice rowers as a means to learn about energy management. Participants from an avatar group (n = 7) were instructed to track a virtual boat on a screen, whose speed was set individually to follow the appropriate to-be-learned speed profile. A control group (n = 8) followed an indoor training programme. In spite of similar physiological characteristics in the groups, the avatar group learned and maintained the required profile, resulting in an improved performance (i.e. a decrease in race duration), whereas the control group did not. These results suggest that VR is a means to learn an energy-related skill and improve performance.
[Virtual educational proposal in cardiopulmonary resuscitation for the neonate care].
Gonçalves, Gilciane Ribeiro; Peres, Heloisa Helena Ciqueto; Rodrigues, Rita de Cássia; Tronchin, Daisy Maria Rizatto; Pereira, Irene Mari
2010-06-01
The purpose of this study was to develop an educational proposal using virtual multimedia resources, to innovate, stimulate and diversify areas of communication and interaction, facilitating nurses' autonomous and reflexive process of teaching and learning. This is an applied research, following the cyclical and interactive phases of designing, planning, developing and implementing. The educational proposal was developed on the TelEduc platform, using specific tools for content organization and communication between students and administrator. The teaching modules were on the following themes: Module 1--Fundamentals of the heart anatomy and physiology in newborns; Module 2--Risk factors for the occurrence of cardiorespiratory arrest in newborns; Module 3--Planning nursing care; Module 4--Medications used in cardiopulmonary arrests in newborns; and Module 5--Cardiorespiratory arrest care in newborns. This study may contribute to innovating teaching in nursing from a virtual educational proposal on the important issue of newborn cardiopulmonary resuscitation care.
A controlled study of agoraphobia and the independent effect of virtual reality exposure therapy.
Malbos, Eric; Rapee, Ronald M; Kavakli, Manolya
2013-02-01
Past controlled clinical trials centred on virtual reality exposure therapy (VRET) for agoraphobia mostly used multicomponent therapy with success. However, the present paper aimed to evaluate the independent effect of VRET for agoraphobia. A controlled study involving 18 agoraphobic participants assigned to two groups: VRET only and VRET with cognitive therapy. Nine specific virtual environments were developed using an affordable game level editor. Questionnaires, behavioural tests and physiological measures indicated a positive effect of VRET. Correlations supported the predictive value of presence towards treatment outcome. The addition of cognitive therapy did not provide significant additional benefit. Overall, the isolated effects of VRET did not seem to be significantly less than the effects of VRET combined with cognitive therapy. Future research should explore the use of other components in addition to cognitive therapy and VRET for agoraphobia as well as its possible use in patients' homes.
Plank, Markus; Snider, Joseph; Kaestner, Erik; Halgren, Eric; Poizner, Howard
2015-02-01
Using a novel, fully mobile virtual reality paradigm, we investigated the EEG correlates of spatial representations formed during unsupervised exploration. On day 1, subjects implicitly learned the location of 39 objects by exploring a room and popping bubbles that hid the objects. On day 2, they again popped bubbles in the same environment. In most cases, the objects hidden underneath the bubbles were in the same place as on day 1. However, a varying third of them were misplaced in each block. Subjects indicated their certainty that the object was in the same location as the day before. Compared with bubble pops revealing correctly placed objects, bubble pops revealing misplaced objects evoked a decreased negativity starting at 145 ms, with scalp topography consistent with generation in medial parietal cortex. There was also an increased negativity starting at 515 ms to misplaced objects, with scalp topography consistent with generation in inferior temporal cortex. Additionally, misplaced objects elicited an increase in frontal midline theta power. These findings suggest that the successive neurocognitive stages of processing allocentric space may include an initial template matching, integration of the object within its spatial cognitive map, and memory recall, analogous to the processing negativity N400 and theta that support verbal cognitive maps in humans. Copyright © 2015 the American Physiological Society.
The expanding universe of hypoxia.
Zhang, Huafeng; Semenza, Gregg L
2008-07-01
Reduced oxygen availability (hypoxia) is sensed and transduced into changes in the activity or expression of cellular macromolecules. These responses impact on virtually all areas of biology and medicine. In this meeting report, we summarize major developments in the field that were presented at the 2008 Keystone Symposium on Cellular, Physiological, and Pathogenic Responses to Hypoxia.
O'Callaghan, T F; Ross, R P; Stanton, C; Clarke, G
2016-07-01
The gut microbiome exerts a marked influence on host physiology, and manipulation of its composition has repeatedly been shown to influence host metabolism and body composition. This virtual endocrine organ also has a role in the regulation of the plasma concentrations of tryptophan, an essential amino acid and precursor to serotonin, a key neurotransmitter within both the enteric and central nervous systems. Control over the hypothalamic-pituitary-adrenal axis also appears to be under the influence of the gut microbiota. This is clear from studies in microbiota-deficient germ-free animals with exaggerated responses to psychological stress that can be normalized by monocolonization with certain bacterial species including Bifidobacterium infantis. Therapeutic targeting of the gut microbiota may thus be useful in treating or preventing stress-related microbiome-gut-brain axis disorders and metabolic diseases, much the same way as redirections of metabolopathies can be achieved through more traditional endocrine hormone-based interventions. Moreover, the implications of these findings need to be considered in the context of farm and domestic animal physiology, behavior, and food safety. Copyright © 2016 Elsevier Inc. All rights reserved.
Current status of knowledge on public-speaking anxiety.
Pull, Charles B
2012-01-01
This review examines the current knowledge on public-speaking anxiety, that is, the fear of speaking in front of others. This article summarizes the findings from previous review articles and describes new research findings on basic science aspects, prevalence rates, classification, and treatment that have been published between August 2008 and August 2011. Recent findings highlight the major aspects of psychological and physiological reactivity to public speaking in individuals who are afraid to speak in front of others, confirm high prevalence rates of the disorder, contribute to identifying the disorder as a possibly distinct subtype of social anxiety disorder (SAD), and give support to the efficacy of treatment programs using virtual reality exposure and Internet-based self-help. Public-speaking anxiety is a highly prevalent disorder, leading to excessive psychological and physiological reactivity. It is present in a majority of individuals with SAD and there is substantial evidence that it may be a distinct subtype of SAD. It is amenable to treatment including, in particular, new technologies such as exposure to virtual environments and the use of cognitive-behavioral self-help programs delivered on the Internet.
Virtual Reality for Pain Management in Cardiac Surgery
Mosso-Vázquez, José Luis; Gao, Kenneth; Wiederhold, Brenda K.
2014-01-01
Abstract Surgical anxiety creates psychological and physiological stress, causes complications in surgical procedures, and prolongs recovery. Relaxation of patients in postoperative intensive care units can moderate patient vital signs and reduce discomfort. This experiment explores the use of virtual reality (VR) cybertherapy to reduce postoperative distress in patients that have recently undergone cardiac surgery. Sixty-seven patients were monitored at IMSS La Raza National Medical Center within 24 hours of cardiac surgery. Patients navigated through a 30 minute VR simulation designed for pain management. Results were analyzed through comparison of pre- and postoperative vital signs and Likert scale survey data. A connection was found in several physiological factors with subjective responses from the Likert scale survey. Heavy positive correlation existed between breathing rate and Likert ratings, and a moderate correlation was found between mean arterial pressure and Likert ratings and heart rate and Likert ratings, all of which indicated lower pain and stress within patients. Further study of these factors resulted in the categorization of patients based upon their vital signs and subjective response, providing a context for the effectiveness of the therapy to specific groups of patients. PMID:24892200
[Virtual Campus of Public Health: six years of human resources education in Mexico].
Ramos Herrera, Igor; Alfaro Alfaro, Noé; Fonseca León, Joel; García Sandoval, Cristóbal; González Castañeda, Miguel; López Zermeño, María Del Carmen; Benítez Morales, Ricardo
2014-11-01
This paper discusses the gestation process, implementation methodology, and results obtained from the initiative to use e-learning to train human resources for health, six years after the launch of the Virtual Campus of Public Health of the University of Guadalajara (Mexico); the discussion is framed by Pan American Health Organization (PAHO) standards and practices. This is a special report on the work done by the institutional committee of the Virtual Campus in western Mexico to create an Internet portal that follows the guidelines of the strategic model established by Nodo México and PAHO for the Region of the Americas. This Virtual Campus began its activities in 2007, on the basis of the use of free software and institutional collaboration. Since the initial year of implementation of the node, over 500 health professionals have been trained using virtual courses, the node's educational platform, and a repository of virtual learning resources that are interoperable with other repositories in Mexico and the Region of the Americas. The University of Guadalajara Virtual Campus committee has followed the proposed model as much as possible, thereby achieving most of the goals set in the initial work plan, despite a number of administrative challenges and the difficulty of motivating committee members.
Geometric morphometrics and virtual anthropology: advances in human evolutionary studies.
Rein, Thomas R; Harvati, Katerina
2014-01-01
Geometric morphometric methods have been increasingly used in paleoanthropology in the last two decades, lending greater power to the analysis and interpretation of the human fossil record. More recently the advent of the wide use of computed tomography and surface scanning, implemented in combination with geometric morphometrics (GM), characterizes a new approach, termed Virtual Anthropology (VA). These methodological advances have led to a number of developments in human evolutionary studies. We present some recent examples of GM and VA related research in human evolution with an emphasis on work conducted at the University of Tübingen and other German research institutions.
Efforts in Preparation for Jack Validation.
1997-12-01
clothing, equipment attached to the body, age, or physical health. The skeleton’s size, structure, and proportions are affected by age, exercise ...things such as genetics, exercise , and dietary habit (Bailey, Malina, & Rasmussen, 1978). VIRTUAL HUMAN MODELS A virtual human models only a subset of...artistically modeled) surfaces. - Somatotype modeling is not considered. To understand what this implies, consider scaling the body using an average
Digital Adultery, "Meta-Anon Widows," Real-World Divorce, and the Need for a Virtual Sexual Ethic
NASA Astrophysics Data System (ADS)
Spencer, William David
Ethical issues that have emerged around relationships in virtual worlds can inform the way we approach the ethics of human/robot relationships. A workable ethic would be one that treats marriage as an enduring human institution and, while we value robots as worthy works of our hands, they are inappropriate partners for marital or sexual relationships.
Institutional, Public and Individual Learning Dynamics of the Andy Holt Virtual Library.
ERIC Educational Resources Information Center
Peckham, Robert
The Andy Holt Virtual Library, with a focus on the Humanities and Fine Arts, is free and open to the public, though designed to serve the learning communities within the College of Humanities and Fine Arts at the University of Tennessee-Martin (UT). It also plays a resource role in UT's New College and the Tennessee Governors School for the…
NASA Astrophysics Data System (ADS)
Ciunel, St.; Tica, B.
2016-08-01
The paper presents the studies made on a similar biomechanical system composed by neck, head and thorax bones. The models were defined in a CAD environment which includes Adams algorithm for dynamic simulations. The virtual models and the entire morphology were obtained starting with CT images made on a living human subject. The main movements analyzed were: axial rotation (left-right), lateral bending (left-right) and flexion- extension movement. After simulation was obtained the entire biomechanical behavior based on data tables or diagrams. That virtual model composed by neck and head can be included in complex system (as a car system) and supposed to several impact simulations (virtual crash tests). Also, our research team built main components of a testing device for dummy car crash neck-head system using anatomical data.
Trust Building in Virtual Communities
NASA Astrophysics Data System (ADS)
Mezgár, István
By using different types of communication networks various groups of people can come together according to their private or business interest forming a Virtual Community. In these communities cooperation and collaboration plays an important role. As trust is the base of all human interactions this fact is even more valid in case of virtual communities. According to different experiments the level of trust in virtual communities is highly influenced by the way/mode of communication and by the duration of contact. The paper discusses the ways of trust building focusing on communication technologies and security aspects in virtual communities.
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.
1995-01-01
This presentation focuses on the application of computer graphics or 'virtual reality' (VR) techniques as a human-computer interface tool in the operation of telerobotic systems. VR techniques offer very valuable task realization aids for planning, previewing and predicting robotic actions, operator training, and for visual perception of non-visible events like contact forces in robotic tasks. The utility of computer graphics in telerobotic operation can be significantly enhanced by high-fidelity calibration of virtual reality images to actual TV camera images. This calibration will even permit the creation of artificial (synthetic) views of task scenes for which no TV camera views are available.
2015-01-01
The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities. PMID:26569608
Kostrubiec, Viviane; Dumas, Guillaume; Zanone, Pier-Giorgio; Kelso, J A Scott
2015-01-01
The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities.
da Silva, Robson Rodrigues; Bissaco, Marcia Aparecida Silva; Goroso, Daniel Gustavo
2015-12-01
Understanding the basic concepts of physiology and biophysics of cardiac cells can be improved by virtual experiments that illustrate the complex excitation-contraction coupling process in cardiac cells. The aim of this study is to propose a rat cardiac myocyte simulator, with which calcium dynamics in excitation-contraction coupling of an isolated cell can be observed. This model has been used in the course "Mathematical Modeling and Simulation of Biological Systems". In this paper we present the didactic utility of the simulator MioLab(®). The simulator enables virtual experiments that can help studying inhibitors and activators in the sarcoplasmic reticulum sodium-calcium exchanger, thus corroborating a better understanding of the effects of medications, which are used to treat arrhythmias, on these compartments. The graphical interfaces were developed not only to facilitate the use of the simulator, but also to promote a constructive learning on the subject, since there are animations and videos for each stage of the simulation. The effectiveness of the simulator was tested by a group of graduate students. Some examples of simulations were presented in order to describe the overall structure of the simulator. Part of these virtual experiments became an activity for Biomedical Engineering graduate students, who evaluated the simulator based on its didactic quality. As a result, students answered a questionnaire on the usability and functionality of the simulator as a teaching tool. All students performed the proposed activities and classified the simulator as an optimal or good learning tool. In their written questions, students indicated as negative characteristics some problems with visualizing graphs; as positive characteristics, they indicated the simulator's didactic function, especially tutorials and videos on the topic of this study. The results show that the simulator complements the study of the physiology and biophysics of the cardiac cell. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Virtual Glovebox (VGX) Aids Astronauts in Pre-Flight Training
NASA Technical Reports Server (NTRS)
2003-01-01
NASA's Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.
Web-based e-learning and virtual lab of human-artificial immune system.
Gong, Tao; Ding, Yongsheng; Xiong, Qin
2014-05-01
Human immune system is as important in keeping the body healthy as the brain in supporting the intelligence. However, the traditional models of the human immune system are built on the mathematics equations, which are not easy for students to understand. To help the students to understand the immune systems, a web-based e-learning approach with virtual lab is designed for the intelligent system control course by using new intelligent educational technology. Comparing the traditional graduate educational model within the classroom, the web-based e-learning with the virtual lab shows the higher inspiration in guiding the graduate students to think independently and innovatively, as the students said. It has been found that this web-based immune e-learning system with the online virtual lab is useful for teaching the graduate students to understand the immune systems in an easier way and design their simulations more creatively and cooperatively. The teaching practice shows that the optimum web-based e-learning system can be used to increase the learning effectiveness of the students.
2017-08-08
Usability Studies In Virtual And Traditional Computer Aided Design Environments For Fault Identification Dr. Syed Adeel Ahmed, Xavier University...virtual environment with wand interfaces compared directly with a workstation non-stereoscopic traditional CAD interface with keyboard and mouse. In...the differences in interaction when compared with traditional human computer interfaces. This paper provides analysis via usability study methods
ERIC Educational Resources Information Center
Rose, Laurence Michael
2013-01-01
The primary focus of this research was to explore through the use of a grounded theory methodology if the human perceptions of trust, isolation, and presence affected the virtual workers ability to accept deep organizational change. The study found that the virtual workers in the sample defined their acceptance of deep organizational change by…
Defining Virtual Interactions: A Taxonomy for Researchers and Practitioners
1999-11-01
Engineering and Management of the Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the...information technology and produce the maximum benefits for all virtual components involved. Vlll DEFINING VIRTUAL INTERACTIONS: A TAXONOMY FOR...allow the human factor to maximize information exchange and provide high quality products to intelligence consumers. Applicability of this research In
ERIC Educational Resources Information Center
Colky, Deborah Lavin; Colky, Michael T.; Young, William H., III
Designed for managers and workers in virtual organizations as well as adult and continuing educators in higher education, associations, and private sector, this book outlines a customer-driven performance management system and explains its use as a development tool. The characteristics of virtual organizations are described, and the rationale for…
Australian DefenceScience. Volume 16, Number 2, Winter
2008-01-01
Making Virtual Advisers speedily interactive To provide an authentically interactive experience for humans working with Virtual Advisers, the Virtual...peer trusted and strong authentication for checking of security credentials without recourse to third parties or infrastructure, thus eliminating...multiple passwords, or carry around multiple security tokens.” Each CodeStick device is readied for use with a biometric authentication process. Since
Social interactions in virtual reality exposure therapy: A proof-of-concept pilot study.
Morina, Nexhmedin; Brinkman, Willem-Paul; Hartanto, Dwi; Kampmann, Isabel L; Emmelkamp, Paul M G
2015-01-01
Research on virtual reality exposure therapy (VRET) has demonstrated good treatment efficacy with regards to several anxiety disorders. Yet, there is lack of knowledge about the value of integrating interaction between clients and virtual humans in VRET. Such interaction might prove effective in treating psychological complaints that involve social interactions, such as social anxiety. A VRET system specifically designed to expose clients with social anxiety disorder to anxiety provoking social situations was applied to 16 and 18 individuals with high and low levels of social anxiety, respectively. Participants engaged in two exposure sessions in several free speech dialogues with virtual humans while being monitored by a therapist. Participants with high levels of social anxiety reported significantly lower levels of social anxiety three months after exposure to two virtual reality interaction sessions than before treatment (p < 0.01). In the group with low levels of social anxiety, no significant change of social anxiety was reported between pre-treatment and follow-up. Additionally, participants in both groups reported higher self-efficacy three months after treatment than before treatment (ps ≤ 0.001). These findings indicate that virtual reality technology that incorporates social interactions may be successfully applied for therapeutic purposes.
Tremblay, Line; Roy-Vaillancourt, Mélina; Chebbi, Brahim; Bouchard, Stéphane; Daoust, Michael; Dénommée, Jessica; Thorpe, Moriah
2016-02-01
It is well documented that anti-fat attitudes influence the interactions individuals have with overweight people. However, testing attitudes through self-report measures is challenging. In the present study, we explore the use of a haptic virtual reality environment to physically interact with overweight virtual human (VH). We verify the hypothesis that duration and strength of virtual touch vary according to the characteristics of VH in ways similar to those encountered from interaction with real people in anti-fat attitude studies. A group of 61 participants were randomly assigned to one of the experimental conditions involving giving a virtual hug to a female or a male VH of either normal or overweight. We found significant associations between body image satisfaction and anti-fat attitudes and sex differences on these measures. We also found a significant interaction effect of the sex of the participants, sex of the VH, and the body size of the VH. Female participants hugged longer the overweight female VH than overweight male VH. Male participants hugged longer the normal-weight VH than the overweight VH. We conclude that virtual touch is a promising method of measuring attitudes, emotion and social interactions.
Emerging CAE technologies and their role in Future Ambient Intelligence Environments
NASA Astrophysics Data System (ADS)
Noor, Ahmed K.
2011-03-01
Dramatic improvements are on the horizon in Computer Aided Engineering (CAE) and various simulation technologies. The improvements are due, in part, to the developments in a number of leading-edge technologies and their synergistic combinations/convergence. The technologies include ubiquitous, cloud, and petascale computing; ultra high-bandwidth networks, pervasive wireless communication; knowledge based engineering; networked immersive virtual environments and virtual worlds; novel human-computer interfaces; and powerful game engines and facilities. This paper describes the frontiers and emerging simulation technologies, and their role in the future virtual product creation and learning/training environments. The environments will be ambient intelligence environments, incorporating a synergistic combination of novel agent-supported visual simulations (with cognitive learning and understanding abilities); immersive 3D virtual world facilities; development chain management systems and facilities (incorporating a synergistic combination of intelligent engineering and management tools); nontraditional methods; intelligent, multimodal and human-like interfaces; and mobile wireless devices. The Virtual product creation environment will significantly enhance the productivity and will stimulate creativity and innovation in future global virtual collaborative enterprises. The facilities in the learning/training environment will provide timely, engaging, personalized/collaborative and tailored visual learning.
NASA Technical Reports Server (NTRS)
1990-01-01
While a new technology called 'virtual reality' is still at the 'ground floor' level, one of its basic components, 3D computer graphics is already in wide commercial use and expanding. Other components that permit a human operator to 'virtually' explore an artificial environment and to interact with it are being demonstrated routinely at Ames and elsewhere. Virtual reality might be defined as an environment capable of being virtually entered - telepresence, it is called - or interacted with by a human. The Virtual Interface Environment Workstation (VIEW) is a head-mounted stereoscopic display system in which the display may be an artificial computer-generated environment or a real environment relayed from remote video cameras. Operator can 'step into' this environment and interact with it. The DataGlove has a series of fiber optic cables and sensors that detect any movement of the wearer's fingers and transmit the information to a host computer; a computer generated image of the hand will move exactly as the operator is moving his gloved hand. With appropriate software, the operator can use the glove to interact with the computer scene by grasping an object. The DataSuit is a sensor equipped full body garment that greatly increases the sphere of performance for virtual reality simulations.
The daily timing of gene expression and physiology in mammals
Schibler, Ueli
2007-01-01
Mammalian behavior and physiology undergo daily rhythms that are coordinated by an endogenous circadian timing system. This system has a hierarchical structure, in that a master pacemaker, residing in the suprachiasmatic nucleus of the ventral hypothalamus, synchronizes peripheral oscillators in virtually all body cells. While the basic molecular mechanisms generating the daily rhythms are similar in aIl cells, most clock out-puts are cell-specific. This conclusion is based on genomewide transcriptome profiling studies in several tissues that have revealed hundreds of rhythmically expressed genes. Cyclic gene expression in the various organs governs overt rhythms in behavior and physiology, encompassing sleep-wake cycles, metabolism, xenobiotic detoxification, and cellularproliferation. As a consequence, chronic perturbation of this temporal organization may lead to increased morbidity and reduced lifespan. PMID:17969863
NASA Technical Reports Server (NTRS)
Johnson, David W.
1992-01-01
Virtual realities are a type of human-computer interface (HCI) and as such may be understood from a historical perspective. In the earliest era, the computer was a very simple, straightforward machine. Interaction was human manipulation of an inanimate object, little more than the provision of an explicit instruction set to be carried out without deviation. In short, control resided with the user. In the second era of HCI, some level of intelligence and control was imparted to the system to enable a dialogue with the user. Simple context sensitive help systems are early examples, while more sophisticated expert system designs typify this era. Control was shared more equally. In this, the third era of the HCI, the constructed system emulates a particular environment, constructed with rules and knowledge about 'reality'. Control is, in part, outside the realm of the human-computer dialogue. Virtual reality systems are discussed.
The effect on lower spine muscle activation of walking on a narrow beam in virtual reality.
Antley, Angus; Slater, Mel
2011-02-01
To what extent do people behave in immersive virtual environments as they would in similar situations in a physical environment? There are many ways to address this question, ranging from questionnaires, behavioral studies, and the use of physiological measures. Here, we compare the onsets of muscle activity using surface electromyography (EMG) while participants were walking under three different conditions: on a normal floor surface, on a narrow ribbon along the floor, and on a narrow platform raised off the floor. The same situation was rendered in an immersive virtual environment (IVE) Cave-like system, and 12 participants did the three types of walking in a counter-balanced within-groups design. The mean number of EMG activity onsets per unit time followed the same pattern in the virtual environment as in the physical environment-significantly higher for walking on the platform compared to walking on the floor. Even though participants knew that they were in fact really walking at floor level in the virtual environment condition, the visual illusion of walking on a raised platform was sufficient to influence their behavior in a measurable way. This opens up the door for this technique to be used in gait and posture related scenarios including rehabilitation.
Papafaklis, Michail I; Muramatsu, Takashi; Ishibashi, Yuki; Bourantas, Christos V; Fotiadis, Dimitrios I; Brilakis, Emmanouil S; Garcia-Garcia, Héctor M; Escaned, Javier; Serruys, Patrick W; Michalis, Lampros K
2018-03-01
Fractional flow reserve (FFR) has been established as a useful diagnostic tool. The distal coronary pressure to aortic pressure (Pd/Pa) ratio at rest is a simpler physiologic index but also requires the use of the pressure wire, whereas recently proposed virtual functional indices derived from coronary imaging require complex blood flow modelling and/or are time-consuming. Our aim was to test the diagnostic performance of virtual resting Pd/Pa using routine angiographic images and a simple flow model. Three-dimensional quantitative coronary angiography (3D-QCA) was performed in 139 vessels (120 patients) with intermediate lesions assessed by FFR. The resting Pd/Pa for each lesion was assessed by computational fluid dynamics. The discriminatory power of virtual resting Pd/Pa against FFR (reference: ≤0.80) was high (area under the receiver operator characteristic curve [AUC]: 90.5% [95% CI: 85.4-95.6%]). Diagnostic accuracy, sensitivity and specificity for the optimal virtual resting Pd/Pa cut-off (≤0.94) were 84.9%, 90.4% and 81.6%, respectively. Virtual resting Pd/Pa demonstrated superior performance (p<0.001) versus 3D-QCA %area stenosis (AUC: 77.5% [95% CI: 69.8-85.3%]). There was a good correlation between virtual resting Pd/Pa and FFR (r=0.69, p<0.001). Virtual resting Pd/Pa using routine angiographic data and a simple flow model provides fast functional assessment of coronary lesions without requiring the pressure-wire and hyperaemia induction. The high diagnostic performance of virtual resting Pd/Pa for predicting FFR shows promise for using this simple/fast virtual index in clinical practice. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Sex differences in virtual navigation influenced by scale and navigation experience.
Padilla, Lace M; Creem-Regehr, Sarah H; Stefanucci, Jeanine K; Cashdan, Elizabeth A
2017-04-01
The Morris water maze is a spatial abilities test adapted from the animal spatial cognition literature and has been studied in the context of sex differences in humans. This is because its standard design, which manipulates proximal (close) and distal (far) cues, applies to human navigation. However, virtual Morris water mazes test navigation skills on a scale that is vastly smaller than natural human navigation. Many researchers have argued that navigating in large and small scales is fundamentally different, and small-scale navigation might not simulate natural human navigation. Other work has suggested that navigation experience could influence spatial skills. To address the question of how individual differences influence navigational abilities in differently scaled environments, we employed both a large- (146.4 m in diameter) and a traditional- (36.6 m in diameter) scaled virtual Morris water maze along with a novel measure of navigation experience (lifetime mobility). We found sex differences on the small maze in the distal cue condition only, but in both cue-conditions on the large maze. Also, individual differences in navigation experience modulated navigation performance on the virtual water maze, showing that higher mobility was related to better performance with proximal cues for only females on the small maze, but for both males and females on the large maze.
A bio-inspired glucose controller based on pancreatic β-cell physiology.
Herrero, Pau; Georgiou, Pantelis; Oliver, Nick; Johnston, Desmond G; Toumazou, Christofer
2012-05-01
Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell physiology of the pancreas have described the glucose-induced insulin release from pancreatic β cells at a molecular level. This has facilitated development of a new class of bio-inspired glucose control algorithms that replicate the functionality of the biological pancreas. However, technologies for sensing glucose levels and delivering insulin use the subcutaneous route, which is nonphysiological and introduces some challenges. In this article, a novel glucose controller is presented as part of a bio-inspired artificial pancreas. A mathematical model of β-cell physiology was used as the core of the proposed controller. In order to deal with delays and lack of accuracy introduced by the subcutaneous route, insulin feedback and a gain scheduling strategy were employed. A United States Food and Drug Administration-accepted type 1 diabetes mellitus virtual population was used to validate the presented controller. Premeal and postmeal mean ± standard deviation blood glucose levels for the adult and adolescent populations were well within the target range set for the controller [(70, 180) mg/dl], with a percent time in range of 92.8 ± 7.3% for the adults and 83.5 ± 14% for the adolescents. This article shows for the first time very good glucose control in a virtual population with type 1 diabetes mellitus using a controller based on a subcellular β-cell model. © 2012 Diabetes Technology Society.
A Bio-Inspired Glucose Controller Based on Pancreatic β-Cell Physiology
Herrero, Pau; Georgiou, Pantelis; Oliver, Nick; Johnston, Desmond G; Toumazou, Christofer
2012-01-01
Introduction Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell physiology of the pancreas have described the glucose-induced insulin release from pancreatic β cells at a molecular level. This has facilitated development of a new class of bio-inspired glucose control algorithms that replicate the functionality of the biological pancreas. However, technologies for sensing glucose levels and delivering insulin use the subcutaneous route, which is nonphysiological and introduces some challenges. In this article, a novel glucose controller is presented as part of a bio-inspired artificial pancreas. Methods A mathematical model of β-cell physiology was used as the core of the proposed controller. In order to deal with delays and lack of accuracy introduced by the subcutaneous route, insulin feedback and a gain scheduling strategy were employed. A United States Food and Drug Administration-accepted type 1 diabetes mellitus virtual population was used to validate the presented controller. Results Premeal and postmeal mean ± standard deviation blood glucose levels for the adult and adolescent populations were well within the target range set for the controller [(70, 180) mg/dl], with a percent time in range of 92.8 ± 7.3% for the adults and 83.5 ± 14% for the adolescents. Conclusions This article shows for the first time very good glucose control in a virtual population with type 1 diabetes mellitus using a controller based on a subcellular β-cell model. PMID:22768892
The Next Wave: Humans, Computers, and Redefining Reality
NASA Technical Reports Server (NTRS)
Little, William
2018-01-01
The Augmented/Virtual Reality (AVR) Lab at KSC is dedicated to " exploration into the growing computer fields of Extended Reality and the Natural User Interface (it is) a proving ground for new technologies that can be integrated into future NASA projects and programs." The topics of Human Computer Interface, Human Computer Interaction, Augmented Reality, Virtual Reality, and Mixed Reality are defined; examples of work being done in these fields in the AVR Lab are given. Current new and future work in Computer Vision, Speech Recognition, and Artificial Intelligence are also outlined.
Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery.
Kockro, Ralf A; Hwang, Peter Y K
2009-05-01
We have developed an interactive virtual model of the temporal bone for the training and teaching of cranial base surgery. The virtual model was based on the tomographic data of the Visible Human Project. The male Visible Human's computed tomographic data were volumetrically reconstructed as virtual bone tissue, and the individual photographic slices provided the basis for segmentation of the middle and inner ear structures, cranial nerves, vessels, and brainstem. These structures were created by using outlining and tube editing tools, allowing structural modeling either directly on the basis of the photographic data or according to information from textbooks and cadaver dissections. For training and teaching, the virtual model was accessed in the previously described 3-dimensional workspaces of the Dextroscope or Dextrobeam (Volume Interactions Pte, Ltd., Singapore), whose interfaces enable volumetric exploration from any perspective and provide virtual tools for drilling and measuring. We have simulated several cranial base procedures including approaches via the floor of the middle fossa and the lateral petrous bone. The virtual model suitably illustrated the core facts of anatomic spatial relationships while simulating different stages of bone drilling along a variety of surgical corridors. The system was used for teaching during training courses to plan and discuss operative anatomy and strategies. The Virtual Temporal Bone and its surrounding 3-dimensional workspace provide an effective way to study the essential surgical anatomy of this complex region and to teach and train operative strategies, especially when used as an adjunct to cadaver dissections.
Normand, Jean-Marie; Sanchez-Vives, Maria V; Waechter, Christian; Giannopoulos, Elias; Grosswindhager, Bernhard; Spanlang, Bernhard; Guger, Christoph; Klinker, Gudrun; Srinivasan, Mandayam A; Slater, Mel
2012-01-01
Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human's movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.
The development, assessment and validation of virtual reality for human anatomy instruction
NASA Technical Reports Server (NTRS)
Marshall, Karen Benn
1996-01-01
This research project seeks to meet the objective of science training by developing, assessing, validating and utilizing VR as a human anatomy training medium. Current anatomy instruction is primarily in the form of lectures and usage of textbooks. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three-dimensional, unlike the one-dimensional depiction found in textbooks and the two-dimensional depiction found on the computer. Virtual reality allows one to step through the computer screen into a 3-D artificial world. The primary objective of this project is to produce a virtual reality application of the abdominopelvic region of a human cadaver that can be taken back to the classroom. The hypothesis is that an immersive learning environment affords quicker anatomic recognition and orientation and a greater level of retention in human anatomy instruction. The goal is to augment not replace traditional modes of instruction.
Enhanced emotional responses during social coordination with a virtual partner
Dumas, Guillaume; Kelso, J.A. Scott; Tognoli, Emmanuelle
2016-01-01
Emotion and motion, though seldom studied in tandem, are complementary aspects of social experience. This study investigates variations in emotional responses during movement coordination between a human and a Virtual Partner (VP), an agent whose virtual finger movements are driven by the Haken-Kelso-Bunz (HKB) equations of Coordination Dynamics. Twenty-one subjects were instructed to coordinate finger movements with the VP in either inphase or antiphase patterns. By adjusting model parameters, we manipulated the ‘intention’ of VP as cooperative or competitive with the human's instructed goal. Skin potential responses (SPR) were recorded to quantify the intensity of emotional response. At the end of each trial, subjects rated the VP's intention and whether they thought their partner was another human being or a machine. We found greater emotional responses when subjects reported that their partner was human and when coordination was stable. That emotional responses are strongly influenced by dynamic features of the VP's behavior, has implications for mental health, brain disorders and the design of socially cooperative machines. PMID:27094374
Toward a VPH/Physiome ToolKit.
Garny, Alan; Cooper, Jonathan; Hunter, Peter J
2010-01-01
The Physiome Project was officially launched in 1997 and has since brought together teams from around the world to work on the development of a computational framework for the modeling of the human body. At the European level, this effort is focused around patient-specific solutions and is known as the Virtual Physiological Human (VPH) Initiative.Such modeling is both multiscale (in space and time) and multiphysics. This, therefore, requires careful interaction and collaboration between the teams involved in the VPH/Physiome effort, if we are to produce computer models that are not only quantitative, but also integrative and predictive.In that context, several technologies and solutions are already available, developed both by groups involved in the VPH/Physiome effort, and by others. They address areas such as data handling/fusion, markup languages, model repositories, ontologies, tools (for simulation, imaging, data fitting, etc.), as well as grid, middleware, and workflow.Here, we provide an overview of resources that should be considered for inclusion in the VPH/Physiome ToolKit (i.e., the set of tools that addresses the needs and requirements of the Physiome Project and VPH Initiative) and discuss some of the challenges that we are still facing.
Atomic force microscopy studies of human rhinovirus topology and molecular forces.
Kienberger, Ferry; Zhu, Rong; Rankl, Christian; Gruber, Hermann J; Blaas, Dieter; Hinterdorfer, Peter
2010-01-01
Dynamic force microscopy (DFM) allows for imaging of the structure and assessment of the function of biological specimens in their physiological environment. In DFM, the cantilever is oscillated at a given frequency and touches the sample only at the end of its downward movement. Accordingly, the problem of lateral forces displacing or even destroying biomolecules is virtually inexistent as the contact time and friction forces are greatly reduced. Here, we describe the use of DFM in studies of human rhinovirus serotype 2 (HRV2). The capsid of HRV2 was reproducibly imaged without any displacement of the virus. Release of the genomic RNA from the virions was initiated by exposure to low-pH buffer and snapshots of the extrusion process were obtained. DFM of the single-stranded RNA genome of an HRV showed loops protruding from a condensed RNA core, 20-50 nm in height. The mechanical rigidity of the RNA was determined by single molecule pulling experiments. From fitting RNA stretching curves to the worm-like-chain (WLC) model a persistence length of 1.0+/-0.17 nm was obtained. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Kalinyak-Fliszar, Michelene; Martin, Nadine; Keshner, Emily; Rudnicky, Alex; Shi, Justin; Teodoro, Gregory
2015-11-01
We investigated the feasibility of using a virtual clinician (VC) to promote functional communication abilities of persons with aphasia (PWAs). We aimed to determine whether the quantity and quality of verbal output in dialogues with a VC would be the same or greater than those with a human clinician (HC). Four PWAs practiced dialogues for 2 sessions each with a HC and VC. Dialogues from before and after practice were transcribed and analyzed for content. We compared measures taken before and after practice in the VC and HC conditions. Results were mixed. Participants either produced more verbal output with the VC or showed no difference on this measure between the VC and HC conditions. Participants also showed some improvement in postpractice narratives. Results provide support for the feasibility and applicability of virtual technology to real-life communication contexts to improve functional communication in PWAs.
Bottegoni, Giovanni; Veronesi, Marina; Bisignano, Paola; Kacker, Puneet; Favia, Angelo D; Cavalli, Andrea
2016-06-20
In this study, we report on a virtual ligand screening protocol optimized to identify fragments endowed with activity at multiple targets. Thanks to this protocol, we were able to identify a fragment that displays activity in the low-micromolar range at both β-secretase 1 (BACE-1) and glycogen synthase kinase 3β (GSK-3β). These two structurally and physiologically unrelated enzymes likely contribute, through different pathways, to the onset of Alzheimer's disease (AD). Therefore, their simultaneous inhibition holds great potential in exerting a profound effect on AD. In perspective, the strategy outlined herein can be adapted to other target combinations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Headphone and Head-Mounted Visual Displays for Virtual Environments
NASA Technical Reports Server (NTRS)
Begault, Duran R.; Ellis, Stephen R.; Wenzel, Elizabeth M.; Trejo, Leonard J. (Technical Monitor)
1998-01-01
A realistic auditory environment can contribute to both the overall subjective sense of presence in a virtual display, and to a quantitative metric predicting human performance. Here, the role of audio in a virtual display and the importance of auditory-visual interaction are examined. Conjectures are proposed regarding the effectiveness of audio compared to visual information for creating a sensation of immersion, the frame of reference within a virtual display, and the compensation of visual fidelity by supplying auditory information. Future areas of research are outlined for improving simulations of virtual visual and acoustic spaces. This paper will describe some of the intersensory phenomena that arise during operator interaction within combined visual and auditory virtual environments. Conjectures regarding audio-visual interaction will be proposed.
Human-scale interaction for virtual model displays: a clear case for real tools
NASA Astrophysics Data System (ADS)
Williams, George C.; McDowall, Ian E.; Bolas, Mark T.
1998-04-01
We describe a hand-held user interface for interacting with virtual environments displayed on a Virtual Model Display. The tool, constructed entirely of transparent materials, is see-through. We render a graphical counterpart of the tool on the display and map it one-to-one with the real tool. This feature, combined with a capability for touch- sensitive, discrete input, results in a useful spatial input device that is visually versatile. We discuss the tool's design and interaction techniques it supports. Briefly, we look at the human factors issues and engineering challenges presented by this tool and, in general, by the class of hand-held user interfaces that are see-through.
Considerations for the future development of virtual technology as a rehabilitation tool
Kenyon, Robert V; Leigh, Jason; Keshner, Emily A
2004-01-01
Background Virtual environments (VE) are a powerful tool for various forms of rehabilitation. Coupling VE with high-speed networking [Tele-Immersion] that approaches speeds of 100 Gb/sec can greatly expand its influence in rehabilitation. Accordingly, these new networks will permit various peripherals attached to computers on this network to be connected and to act as fast as if connected to a local PC. This innovation may soon allow the development of previously unheard of networked rehabilitation systems. Rapid advances in this technology need to be coupled with an understanding of how human behavior is affected when immersed in the VE. Methods This paper will discuss various forms of VE that are currently available for rehabilitation. The characteristic of these new networks and examine how such networks might be used for extending the rehabilitation clinic to remote areas will be explained. In addition, we will present data from an immersive dynamic virtual environment united with motion of a posture platform to record biomechanical and physiological responses to combined visual, vestibular, and proprioceptive inputs. A 6 degree-of-freedom force plate provides measurements of moments exerted on the base of support. Kinematic data from the head, trunk, and lower limb was collected using 3-D video motion analysis. Results Our data suggest that when there is a confluence of meaningful inputs, neither vision, vestibular, or proprioceptive inputs are suppressed in healthy adults; the postural response is modulated by all existing sensory signals in a non-additive fashion. Individual perception of the sensory structure appears to be a significant component of the response to these protocols and underlies much of the observed response variability. Conclusion The ability to provide new technology for rehabilitation services is emerging as an important option for clinicians and patients. The use of data mining software would help analyze the incoming data to provide both the patient and the therapist with evaluation of the current treatment and modifications needed for future therapies. Quantification of individual perceptual styles in the VE will support development of individualized treatment programs. The virtual environment can be a valuable tool for therapeutic interventions that require adaptation to complex, multimodal environments. PMID:15679951
Miloff, Alexander; Lindner, Philip; Hamilton, William; Reuterskiöld, Lena; Andersson, Gerhard; Carlbring, Per
2016-02-02
Traditional one-session exposure therapy (OST) in which a patient is gradually exposed to feared stimuli for up to 3 h in a one-session format has been found effective for the treatment of specific phobias. However, many individuals with specific phobia are reluctant to seek help, and access to care is lacking due to logistic challenges of accessing, collecting, storing, and/or maintaining stimuli. Virtual reality (VR) exposure therapy may improve upon existing techniques by facilitating access, decreasing cost, and increasing acceptability and effectiveness. The aim of this study is to compare traditional OST with in vivo spiders and a human therapist with a newly developed single-session gamified VR exposure therapy application with modern VR hardware, virtual spiders, and a virtual therapist. Participants with specific phobia to spiders (N = 100) will be recruited from the general public, screened, and randomized to either VR exposure therapy (n = 50) or traditional OST (n = 50). A behavioral approach test using in vivo spiders will serve as the primary outcome measure. Secondary outcome measures will include spider phobia questionnaires and self-reported anxiety, depression, and quality of life. Outcomes will be assessed using a non-inferiority design at baseline and at 1, 12, and 52 weeks after treatment. VR exposure therapy has previously been evaluated as a treatment for specific phobias, but there has been a lack of high-quality randomized controlled trials. A new generation of modern, consumer-ready VR devices is being released that are advancing existing technology and have the potential to improve clinical availability and treatment effectiveness. The VR medium is also particularly suitable for taking advantage of recent phobia treatment research emphasizing engagement and new learning, as opposed to physiological habituation. This study compares a market-ready, gamified VR spider phobia exposure application, delivered using consumer VR hardware, with the current gold standard treatment. Implications are discussed. ClinicalTrials.gov identifier NCT02533310. Registered on 25 August 2015.
The digital library: an oxymoron?
Guédon, J C
1999-01-01
"Virtual libraries" and "digital libraries" have become stock phrases of our times. But what do they really mean? While digital refers to a new form of document encoding and must be approached from that perspective, virtual resonates with aspects that modern philosophy treats with benign neglect at best. The word virtual harbors the notion of potential, and therein lies its hidden strength. Although strong commercial interests try to use the shift to a digital environment to redefine the political economy of knowledge, and thus virtualize libraries into a state of almost complete impotence, all hope is not lost. Librarians of virtualized libraries may well discover that they have re-empowered institutions if they place human interaction at the heart of their operations. In other words, rather than envisioning themselves as knowledge bankers sitting on treasure vaults of knowledge, they should see themselves as "hearts" dynamizing human communities. They should also see themselves as an essential part of these communities, and not as external repositories of knowledge. In this fashion, they will avoid the fate of becoming an oxymoron. PMID:9934524
Virtual surface characteristics of a tactile display using magneto-rheological fluids.
Lee, Chul-Hee; Jang, Min-Gyu
2011-01-01
Virtual surface characteristics of tactile displays are investigated to characterize the feeling of human touch for a haptic interface application. In order to represent the tactile feeling, a prototype tactile display incorporating Magneto-Rheological (MR) fluid has been developed. Tactile display devices simulate the finger's skin to feel the sensations of contact such as compliance, friction, and topography of the surface. Thus, the tactile display can provide information on the surface of an organic tissue to the surgeon in virtual reality. In order to investigate the compliance feeling of a human finger's touch, normal force responses of a tactile display under various magnetic fields have been assessed. Also, shearing friction force responses of the tactile display are investigated to simulate the action of finger dragging on the surface. Moreover, different matrix arrays of magnetic poles are applied to form the virtual surface topography. From the results, different tactile feelings are observed according to the applied magnetic field strength as well as the arrays of magnetic poles combinations. This research presents a smart tactile display technology for virtual surfaces.
Deploying Embodied AI into Virtual Worlds
NASA Astrophysics Data System (ADS)
Burden, David J. H.
The last two years have seen the start of commercial activity within virtual worlds. Unlike computer games where Non-Player-Character avatars are common, in most virtual worlds they are the exception — and until recently in Second Life they were non-existent. However there is real commercial scope for Als in these worlds — in roles from virtual sales staff and tutors to personal assistants. Deploying an embodied AI into a virtual world offers a unique opportunity to evaluate embodied Als, and to develop them within an environment where human and computer are on almost equal terms. This paper presents an architecture being used for the deployment of chatbot driven avatars within the Second Life virtual world, looks at the challenges of deploying an AI within such a virtual world, the possible implications for the Turing Test, and identifies research directions for the future.
A Typology of Ethnographic Scales for Virtual Worlds
NASA Astrophysics Data System (ADS)
Boellstorff, Tom
This chapter outlines a typology of genres of ethnographic research with regard to virtual worlds, informed by extensive research the author has completed both in Second Life and in Indonesia. It begins by identifying four confusions about virtual worlds: they are not games, they need not be graphical or even visual, they are not mass media, and they need not be defined in terms of escapist role-playing. A three-part typology of methods for ethnographic research in virtual worlds focuses on the relationship between research design and ethnographic scale. One class of methods for researching virtual worlds with regard to ethnographic scale explores interfaces between virtual worlds and the actual world, whereas a second examines interfaces between two or more virtual worlds. The third class involves studying a single virtual world in its own terms. Recognizing that all three approaches have merit for particular research purposes, ethnography of virtual worlds can be a vibrant field of research, contributing to central debates about human selfhood and sociality.
NASA Astrophysics Data System (ADS)
Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok
2014-01-01
This paper presents control performances of a new type of four-degrees-of-freedom (4-DOF) haptic master that can be used for robot-assisted minimally invasive surgery (RMIS). By adopting a controllable electrorheological (ER) fluid, the function of the proposed master is realized as a haptic feedback as well as remote manipulation. In order to verify the efficacy of the proposed master and method, an experiment is conducted with deformable objects featuring human organs. Since the use of real human organs is difficult for control due to high cost and moral hazard, an excellent alternative method, the virtual reality environment, is used for control in this work. In order to embody a human organ in the virtual space, the experiment adopts a volumetric deformable object represented by a shape-retaining chain linked (S-chain) model which has salient properties such as fast and realistic deformation of elastic objects. In haptic architecture for RMIS, the desired torque/force and desired position originating from the object of the virtual slave and operator of the haptic master are transferred to each other. In order to achieve the desired torque/force trajectories, a sliding mode controller (SMC) which is known to be robust to uncertainties is designed and empirically implemented. Tracking control performances for various torque/force trajectories from the virtual slave are evaluated and presented in the time domain.
Normand, Jean-Marie; Sanchez-Vives, Maria V.; Waechter, Christian; Giannopoulos, Elias; Grosswindhager, Bernhard; Spanlang, Bernhard; Guger, Christoph; Klinker, Gudrun; Srinivasan, Mandayam A.; Slater, Mel
2012-01-01
Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human’s movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale. PMID:23118987
Nature and origins of virtual environments - A bibliographical essay
NASA Technical Reports Server (NTRS)
Ellis, S. R.
1991-01-01
Virtual environments presented via head-mounted, computer-driven displays provide a new media for communication. They may be analyzed by considering: (1) what may be meant by an environment; (2) what is meant by the process of virtualization; and (3) some aspects of human performance that constrain environmental design. Their origins are traced from previous work in vehicle simulation and multimedia research. Pointers are provided to key technical references, in the dispersed, archival literature, that are relevant to the development and evaluation of virtual-environment interface systems.
Human Robotic Swarm Interaction Using an Artificial Physics Approach
2014-12-01
calculates virtual forces that are summed and translated into velocity commands. The virtual forces are modeled after real physical forces such as...results from the physical experiments show that an artificial physics-based framework is an effective way to allow multiple agents to follow a human... modeled after real physical forces such as gravitational and Coulomb, forces but are not restricted to them, for example, the force magnitude may not be
Katja — the 24th week of virtual pregnancy for dosimetric calculations
NASA Astrophysics Data System (ADS)
Becker, Janine; Zankl, Maria; Fill, Ute; Hoeschen, Christoph
2008-01-01
Virtual human models, a.k.a. voxel models, are currently the
Using a virtual population to authentically teach epidemiology and biostatistics
NASA Astrophysics Data System (ADS)
Dunn, Peter K.; Donnison, Sharn; Cole, Rachel; Bulmer, Michael
2017-02-01
Epidemiology is the study of the distribution of disease in human populations. This means that authentically teaching primary data collection in epidemiology is difficult as students cannot easily access suitable human populations. Using an action research methodology, this paper studied the use of a virtual human population (called The Island) to enable students to experience many features of authentic primary data collection in epidemiological research. The Island was used in a course introducing epidemiology and biostatistics for students in non-quantitative disciplines. This paper discusses how The Island was introduced into the course, and then evaluates the change. Students were highly engaged, and students and teaching staff responded favourably to the use of The Island, with 70% of students agreeing or strongly agreeing that The Island was easy to use, and 64% agreeing or strongly agreeing that the use of a virtual population was beneficial to their understanding of epidemiology.
Design Projects in Human Anatomy & Physiology
ERIC Educational Resources Information Center
Polizzotto, Kristin; Ortiz, Mary T.
2008-01-01
Very often, some type of writing assignment is required in college entry-level Human Anatomy and Physiology courses. This assignment can be anything from an essay to a research paper on the literature, focusing on a faculty-approved topic of interest to the student. As educators who teach Human Anatomy and Physiology at an urban community college,…
Innovative application of virtual display technique in virtual museum
NASA Astrophysics Data System (ADS)
Zhang, Jiankang
2017-09-01
Virtual museum refers to display and simulate the functions of real museum on the Internet in the form of 3 Dimensions virtual reality by applying interactive programs. Based on Virtual Reality Modeling Language, virtual museum building and its effective interaction with the offline museum lie in making full use of 3 Dimensions panorama technique, virtual reality technique and augmented reality technique, and innovatively taking advantages of dynamic environment modeling technique, real-time 3 Dimensions graphics generating technique, system integration technique and other key virtual reality techniques to make sure the overall design of virtual museum.3 Dimensions panorama technique, also known as panoramic photography or virtual reality, is a technique based on static images of the reality. Virtual reality technique is a kind of computer simulation system which can create and experience the interactive 3 Dimensions dynamic visual world. Augmented reality, also known as mixed reality, is a technique which simulates and mixes the information (visual, sound, taste, touch, etc.) that is difficult for human to experience in reality. These technologies make virtual museum come true. It will not only bring better experience and convenience to the public, but also be conducive to improve the influence and cultural functions of the real museum.
Putative human sperm Interactome: a networks study.
Ordinelli, Alessandra; Bernabò, Nicola; Orsini, Massimiliano; Mattioli, Mauro; Barboni, Barbara
2018-04-11
For over sixty years, it has been known that mammalian spermatozoa immediately after ejaculation are virtually infertile. They became able to fertilize only after they reside for long time (hours to days) within female genital tract where they complete their functional maturation, the capacitation. This process is finely regulated by the interaction with the female environment and involves, in spermatozoa, a myriad of molecules as messengers and target of signals. Since, to date, a model able to represent the molecular interaction that characterize sperm physiology does not exist, we realized the Human Sperm Interactme Network3.0 (HSIN3.0) and its main component (HSNI3.0_MC), starting from the pathway active in male germ cells. HSIN3.0 and HSIN3.0_MC are scale free networks, adherent to the Barabasi-Albert model, and are characterised by an ultra-small world topology. We found that they are resistant to random attacks and that are designed to respond quickly and specifically to external inputs. In addition, it has been possible to identify the most connected nodes (the hubs) and the bottlenecks nodes. This result allowed us to explore the control mechanisms active in driving sperm biochemical machinery and to verify the different levels of controls: party vs. date hubs and hubs vs. bottlenecks, thanks the availability of data from KO mice. Finally, we found that several key nodes represent molecules specifically involved in function that are thought to be not present or not active in sperm cells, such as control of cell cycle, proteins synthesis, nuclear trafficking, and immune response, thus potentially open new perspectives on the study of sperm biology. For the first time we present a network representing putative human sperm interactome. This result gives very intriguing biological information and could contribute to the knowledge of spermatozoa, either in physiological or pathological conditions.
Characteristics of hyperthermia-induced hyperventilation in humans
Tsuji, Bun; Hayashi, Keiji; Kondo, Narihiko; Nishiyasu, Takeshi
2016-01-01
ABSTRACT In humans, hyperthermia leads to activation of a set of thermoregulatory responses that includes cutaneous vasodilation and sweating. Hyperthermia also increases ventilation in humans, as is observed in panting dogs, but the physiological significance and characteristics of the hyperventilatory response in humans remain unclear. The relative contribution of respiratory heat loss to total heat loss in a hot environment in humans is small, and this hyperventilation causes a concomitant reduction in arterial CO2 pressure (hypocapnia), which can cause cerebral hypoperfusion. Consequently, hyperventilation in humans may not contribute to the maintenance of physiological homeostasis (i.e., thermoregulation). To gain some insight into the physiological significance of hyperthermia-induced hyperventilation in humans, in this review, we discuss 1) the mechanisms underlying hyperthermia-induced hyperventilation, 2) the factors modulating this response, and 3) the physiological consequences of the response. PMID:27227102
Modeling plant growth and development.
Prusinkiewicz, Przemyslaw
2004-02-01
Computational plant models or 'virtual plants' are increasingly seen as a useful tool for comprehending complex relationships between gene function, plant physiology, plant development, and the resulting plant form. The theory of L-systems, which was introduced by Lindemayer in 1968, has led to a well-established methodology for simulating the branching architecture of plants. Many current architectural models provide insights into the mechanisms of plant development by incorporating physiological processes, such as the transport and allocation of carbon. Other models aim at elucidating the geometry of plant organs, including flower petals and apical meristems, and are beginning to address the relationship between patterns of gene expression and the resulting plant form.
Ring, Caroline L; Pearce, Robert G; Setzer, R Woodrow; Wetmore, Barbara A; Wambaugh, John F
2017-09-01
The thousands of chemicals present in the environment (USGAO, 2013) must be triaged to identify priority chemicals for human health risk research. Most chemicals have little of the toxicokinetic (TK) data that are necessary for relating exposures to tissue concentrations that are believed to be toxic. Ongoing efforts have collected limited, in vitro TK data for a few hundred chemicals. These data have been combined with biomonitoring data to estimate an approximate margin between potential hazard and exposure. The most "at risk" 95th percentile of adults have been identified from simulated populations that are generated either using standard "average" adult human parameters or very specific cohorts such as Northern Europeans. To better reflect the modern U.S. population, we developed a population simulation using physiologies based on distributions of demographic and anthropometric quantities from the most recent U.S. Centers for Disease Control and Prevention National Health and Nutrition Examination Survey (NHANES) data. This allowed incorporation of inter-individual variability, including variability across relevant demographic subgroups. Variability was analyzed with a Monte Carlo approach that accounted for the correlation structure in physiological parameters. To identify portions of the U.S. population that are more at risk for specific chemicals, physiologic variability was incorporated within an open-source high-throughput (HT) TK modeling framework. We prioritized 50 chemicals based on estimates of both potential hazard and exposure. Potential hazard was estimated from in vitro HT screening assays (i.e., the Tox21 and ToxCast programs). Bioactive in vitro concentrations were extrapolated to doses that produce equivalent concentrations in body tissues using a reverse dosimetry approach in which generic TK models are parameterized with: 1) chemical-specific parameters derived from in vitro measurements and predicted from chemical structure; and 2) with physiological parameters for a virtual population. For risk-based prioritization of chemicals, predicted bioactive equivalent doses were compared to demographic-specific inferences of exposure rates that were based on NHANES urinary analyte biomonitoring data. The inclusion of NHANES-derived inter-individual variability decreased predicted bioactive equivalent doses by 12% on average for the total population when compared to previous methods. However, for some combinations of chemical and demographic groups the margin was reduced by as much as three quarters. This TK modeling framework allows targeted risk prioritization of chemicals for demographic groups of interest, including potentially sensitive life stages and subpopulations. Published by Elsevier Ltd.
A virtual reality system for neurobehavioral and functional MRI studies.
Baumann, Stephen; Neff, Chris; Fetzick, Scott; Stangl, Gregg; Basler, Lee; Vereneck, Ray; Schneider, Walter
2003-06-01
We are developing a VR system of integrated software and hardware for scientific research and clinical application. The system is sufficiently flexible and broad-based in appeal that neurobehavioral researchers from a variety of disciplines might be interested in using it for basic research and clinical studies. The system runs on a standard Windows-based personal computer with a high-performance graphics card. Options allow a head-mounted display, dataglove, simultaneous physiological monitoring or use within neuroimaging machines such as magnetic resonance imaging (MRI) scanners. Currently, the software consists of a virtual world of nearly a dozen interconnected environments that the subject can freely navigate. Additional environments can be built and easily added to the application. A startup interface provides menus for selecting characters and objects that a researcher might want to put at specific locations within the simulation. Interactivity is provided for many typical objects such as doors, chairs and money. There are more than 50 characters in the world, most of them animated or interactive. All movements and actions of the subject within the world are tracked and recorded to an Excel spreadsheet for data analysis. Overlay maps are available as navigational aids. Concurrent physiological data can be acquired on up to 16 channels. The system provides synchronization of the VR simulation with physiological recordings and functional MR images. A spatial navigation memory task was performed with the integrated VR/fMRI system, and some pilot data is presented that shows robust activation in multiple cortical areas appropriate to the task.
Cho, Dongrae; Ham, Jinsil; Oh, Jooyoung; Park, Jeanho; Kim, Sayup; Lee, Nak-Kyu; Lee, Boreom
2017-10-24
Virtual reality (VR) is a computer technique that creates an artificial environment composed of realistic images, sounds, and other sensations. Many researchers have used VR devices to generate various stimuli, and have utilized them to perform experiments or to provide treatment. In this study, the participants performed mental tasks using a VR device while physiological signals were measured: a photoplethysmogram (PPG), electrodermal activity (EDA), and skin temperature (SKT). In general, stress is an important factor that can influence the autonomic nervous system (ANS). Heart-rate variability (HRV) is known to be related to ANS activity, so we used an HRV derived from the PPG peak interval. In addition, the peak characteristics of the skin conductance (SC) from EDA and SKT variation can also reflect ANS activity; we utilized them as well. Then, we applied a kernel-based extreme-learning machine (K-ELM) to correctly classify the stress levels induced by the VR task to reflect five different levels of stress situations: baseline, mild stress, moderate stress, severe stress, and recovery. Twelve healthy subjects voluntarily participated in the study. Three physiological signals were measured in stress environment generated by VR device. As a result, the average classification accuracy was over 95% using K-ELM and the integrated feature (IT = HRV + SC + SKT). In addition, the proposed algorithm can embed a microcontroller chip since K-ELM algorithm have very short computation time. Therefore, a compact wearable device classifying stress levels using physiological signals can be developed.
Chronic and Acute Stress Promote Overexploitation in Serial Decision Making
Lenow, Jennifer K.; Constantino, Sara M.
2017-01-01
Many decisions that humans make resemble foraging problems in which a currently available, known option must be weighed against an unknown alternative option. In such foraging decisions, the quality of the overall environment can be used as a proxy for estimating the value of future unknown options against which current prospects are compared. We hypothesized that such foraging-like decisions would be characteristically sensitive to stress, a physiological response that tracks biologically relevant changes in environmental context. Specifically, we hypothesized that stress would lead to more exploitative foraging behavior. To test this, we investigated how acute and chronic stress, as measured by changes in cortisol in response to an acute stress manipulation and subjective scores on a questionnaire assessing recent chronic stress, relate to performance in a virtual sequential foraging task. We found that both types of stress bias human decision makers toward overexploiting current options relative to an optimal policy. These findings suggest a possible computational role of stress in decision making in which stress biases judgments of environmental quality. SIGNIFICANCE STATEMENT Many of the most biologically relevant decisions that we make are foraging-like decisions about whether to stay with a current option or search the environment for a potentially better one. In the current study, we found that both acute physiological and chronic subjective stress are associated with greater overexploitation or staying at current options for longer than is optimal. These results suggest a domain-general way in which stress might bias foraging decisions through changing one's appraisal of the overall quality of the environment. These novel findings not only have implications for understanding how this important class of foraging decisions might be biologically implemented, but also for understanding the computational role of stress in behavior and cognition more broadly. PMID:28483979
Addressing security issues related to virtual institute distributed activities
NASA Astrophysics Data System (ADS)
Stytz, Martin R.; Banks, Sheila B.
2008-03-01
One issue confounding the development and experimentation of distributed modeling and simulation environments is the inability of the project team to identify and collaborate with resources, both human and technical, from outside the United States. This limitation is especially significant within the human behavior representation area where areas such as cultural effects research and joint command team behavior modeling require the participation of various cultural and national representatives. To address this limitation, as well as other human behavior representation research issues, NATO Research and Technology Organization initiated a project to develop a NATO virtual institute that enables more effective and more collaborative research into human behavior representation. However, in building and operating a virtual institute one of the chief concerns must be the cyber security of the institute. Because the institute "exists" in cyberspace, all of its activities are susceptible to cyberattacks, subterfuge, denial of service and all of the vulnerabilities that networked computers must face. In our opinion, for the concept of virtual institutes to be successful and useful, their operations and services must be protected from the threats in the cyber environment. A key to developing the required protection is the development and promulgation of standards for cyber security. In this paper, we discuss the types of cyber standards that are required, how new internet technologies can be exploited and can benefit the promulgation, development, maintenance, and robustness of the standards. This paper is organized as follows. Section One introduces the concept of the virtual institutes, the expected benefits, and the motivation for our research and for research in this area. Section Two presents background material and a discussion of topics related to VIs, uman behavior and cultural modeling, and network-centric warfare. Section Three contains a discussion of the security challenges that face the virtual institute and the characteristics of the standards that must be employed. Section Four contains our proposal for documentation of the cybersecurity standards. Section Five contains the conclusion and suggestions for further work.
Advanced Technology for Portable Personal Visualization
1993-01-01
have no cable to drag. " We submitted a short article describing the ceiling tracker and the requirements demanded of trackers in see-through systems...Newspaper/Magazine Articles : "Virtual Reality: It’s All in the Mind," Atlanta Consnrution, 29 September 1992 "Virtual Reality: Exploring the Future...basic scientific investigation of the human haptic system or to serve as haptic interfaces for virtual environments and teleloperation. 2. Research
HUMAN--A Comprehensive Physiological Model.
ERIC Educational Resources Information Center
Coleman, Thomas G.; Randall, James E.
1983-01-01
Describes computer program (HUMAN) used to simulate physiological experiments on patient pathology. Program (available from authors, including versions for microcomputers) consists of dynamic interactions of over 150 physiological variables and integrating approximations of cardiovascular, renal, lung, temperature regulation, and some hormone…
Bombari, Dario; Schmid Mast, Marianne; Canadas, Elena; Bachmann, Manuel
2015-01-01
The goal of the present review is to explain how immersive virtual environment technology (IVET) can be used for the study of social interactions and how the use of virtual humans in immersive virtual environments can advance research and application in many different fields. Researchers studying individual differences in social interactions are typically interested in keeping the behavior and the appearance of the interaction partner constant across participants. With IVET researchers have full control over the interaction partners, can standardize them while still keeping the simulation realistic. Virtual simulations are valid: growing evidence shows that indeed studies conducted with IVET can replicate some well-known findings of social psychology. Moreover, IVET allows researchers to subtly manipulate characteristics of the environment (e.g., visual cues to prime participants) or of the social partner (e.g., his/her race) to investigate their influences on participants’ behavior and cognition. Furthermore, manipulations that would be difficult or impossible in real life (e.g., changing participants’ height) can be easily obtained with IVET. Beside the advantages for theoretical research, we explore the most recent training and clinical applications of IVET, its integration with other technologies (e.g., social sensing) and future challenges for researchers (e.g., making the communication between virtual humans and participants smoother). PMID:26157414
Bombari, Dario; Schmid Mast, Marianne; Canadas, Elena; Bachmann, Manuel
2015-01-01
The goal of the present review is to explain how immersive virtual environment technology (IVET) can be used for the study of social interactions and how the use of virtual humans in immersive virtual environments can advance research and application in many different fields. Researchers studying individual differences in social interactions are typically interested in keeping the behavior and the appearance of the interaction partner constant across participants. With IVET researchers have full control over the interaction partners, can standardize them while still keeping the simulation realistic. Virtual simulations are valid: growing evidence shows that indeed studies conducted with IVET can replicate some well-known findings of social psychology. Moreover, IVET allows researchers to subtly manipulate characteristics of the environment (e.g., visual cues to prime participants) or of the social partner (e.g., his/her race) to investigate their influences on participants' behavior and cognition. Furthermore, manipulations that would be difficult or impossible in real life (e.g., changing participants' height) can be easily obtained with IVET. Beside the advantages for theoretical research, we explore the most recent training and clinical applications of IVET, its integration with other technologies (e.g., social sensing) and future challenges for researchers (e.g., making the communication between virtual humans and participants smoother).
Virtual Raters for Reproducible and Objective Assessments in Radiology
NASA Astrophysics Data System (ADS)
Kleesiek, Jens; Petersen, Jens; Döring, Markus; Maier-Hein, Klaus; Köthe, Ullrich; Wick, Wolfgang; Hamprecht, Fred A.; Bendszus, Martin; Biller, Armin
2016-04-01
Volumetric measurements in radiologic images are important for monitoring tumor growth and treatment response. To make these more reproducible and objective we introduce the concept of virtual raters (VRs). A virtual rater is obtained by combining knowledge of machine-learning algorithms trained with past annotations of multiple human raters with the instantaneous rating of one human expert. Thus, he is virtually guided by several experts. To evaluate the approach we perform experiments with multi-channel magnetic resonance imaging (MRI) data sets. Next to gross tumor volume (GTV) we also investigate subcategories like edema, contrast-enhancing and non-enhancing tumor. The first data set consists of N = 71 longitudinal follow-up scans of 15 patients suffering from glioblastoma (GB). The second data set comprises N = 30 scans of low- and high-grade gliomas. For comparison we computed Pearson Correlation, Intra-class Correlation Coefficient (ICC) and Dice score. Virtual raters always lead to an improvement w.r.t. inter- and intra-rater agreement. Comparing the 2D Response Assessment in Neuro-Oncology (RANO) measurements to the volumetric measurements of the virtual raters results in one-third of the cases in a deviating rating. Hence, we believe that our approach will have an impact on the evaluation of clinical studies as well as on routine imaging diagnostics.
EPA announced the availability of the final report, Use of Physiologically Based Pharmacokinetic (PBPK) Models to Quantify the Impact of Human Age and Interindividual Differences in Physiology and Biochemistry Pertinent to Risk Final Report for Cooperative Agreement. Th...
Virtual Reality: Real Promises and False Expectations.
ERIC Educational Resources Information Center
Homan, Willem J.
1994-01-01
Examines virtual reality (VR), and discusses the dilemma of defining VR, the limitations of the current technology, and the implications of VR for education. Highlights include a VR experience; human factors and the interface; and altered reality versus VR. (Author/AEF)
The mixed reality of things: emerging challenges for human-information interaction
NASA Astrophysics Data System (ADS)
Spicer, Ryan P.; Russell, Stephen M.; Rosenberg, Evan Suma
2017-05-01
Virtual and mixed reality technology has advanced tremendously over the past several years. This nascent medium has the potential to transform how people communicate over distance, train for unfamiliar tasks, operate in challenging environments, and how they visualize, interact, and make decisions based on complex data. At the same time, the marketplace has experienced a proliferation of network-connected devices and generalized sensors that are becoming increasingly accessible and ubiquitous. As the "Internet of Things" expands to encompass a predicted 50 billion connected devices by 2020, the volume and complexity of information generated in pervasive and virtualized environments will continue to grow exponentially. The convergence of these trends demands a theoretically grounded research agenda that can address emerging challenges for human-information interaction (HII). Virtual and mixed reality environments can provide controlled settings where HII phenomena can be observed and measured, new theories developed, and novel algorithms and interaction techniques evaluated. In this paper, we describe the intersection of pervasive computing with virtual and mixed reality, identify current research gaps and opportunities to advance the fundamental understanding of HII, and discuss implications for the design and development of cyber-human systems for both military and civilian use.
[Sectional structure of a tree. Model analysis of the vertical biomass distribution].
Galitskiĭ, V V
2010-01-01
A model has been proposed for the architecture of a tree in which virtual trees appear rhythmically on the treetop. Each consecutive virtual tree is a part of the previous tree. The difference between two adjacent virtual trees is a section--an element of the real tree structure. In case of a spruce, the section represents a verticil of a stem with the corresponding internode. Dynamics of a photosynthesizing part of the physiologically active biomass of each section differ from the corresponding dynamics of the virtual trees and the whole real tree. If the tree biomass dynamics has a sigma-shaped form, then the section dynamics have to be bell-shaped. It means that the lower stem should accordingly become bare, which is typically observed in nature. Model analysis reveals the limiting, in the age, form of trees to be an "umbrella". It can be observed in nature and is an outcome of physical limitation of the tree height combined with the sigma-shaped form of the tree biomass dynamics. Variation of model parameters provides for various forms of the tree biomass distribution along the height, which can be associated with certain biological species of trees.
Virtual Environments in Scientific Visualization
NASA Technical Reports Server (NTRS)
Bryson, Steve; Lisinski, T. A. (Technical Monitor)
1994-01-01
Virtual environment technology is a new way of approaching the interface between computers and humans. Emphasizing display and user control that conforms to the user's natural ways of perceiving and thinking about space, virtual environment technologies enhance the ability to perceive and interact with computer generated graphic information. This enhancement potentially has a major effect on the field of scientific visualization. Current examples of this technology include the Virtual Windtunnel being developed at NASA Ames Research Center. Other major institutions such as the National Center for Supercomputing Applications and SRI International are also exploring this technology. This talk will be describe several implementations of virtual environments for use in scientific visualization. Examples include the visualization of unsteady fluid flows (the virtual windtunnel), the visualization of geodesics in curved spacetime, surface manipulation, and examples developed at various laboratories.
NASA Technical Reports Server (NTRS)
Begault, Durand R.; Null, Cynthia H. (Technical Monitor)
1997-01-01
This talk will overview the basic technologies related to the creation of virtual acoustic images, and the potential of including spatial auditory displays in human-machine interfaces. Research into the perceptual error inherent in both natural and virtual spatial hearing is reviewed, since the formation of improved technologies is tied to psychoacoustic research. This includes a discussion of Head Related Transfer Function (HRTF) measurement techniques (the HRTF provides important perceptual cues within a virtual acoustic display). Many commercial applications of virtual acoustics have so far focused on games and entertainment ; in this review, other types of applications are examined, including aeronautic safety, voice communications, virtual reality, and room acoustic simulation. In particular, the notion that realistic simulation is optimized within a virtual acoustic display when head motion and reverberation cues are included within a perceptual model.
Clinical physiology of bed rest
NASA Technical Reports Server (NTRS)
Greenleaf, John E.
1993-01-01
Maintenance of optimal health in humans requires the proper balance between exercise, rest, and sleep as well as time in the upright position. About one-third of a lifetime is spent sleeping; and it is no coincidence that sleeping is performed in the horizontal position, the position in which gravitational influence on the body is minimal. Although enforced bed rest is necessary for the treatment of some ailments, in some cases it has probably been used unwisely. In addition to the lower hydrostatic pressure with the normally dependent regions of the cardiovascular system, body fuid compartments during bed rest in the horizontal body position, and virtual elimination of compression on the long bones of the skeletal system during bed rest (hypogravia), there is often reduction in energy metabolism due to the relative confinement (hypodynamia) and alteration of ambulatory circadian variations in metabolism, body temperature, and many hormonal systems. If patients are also moved to unfamiliar surroundings, they probably experience some feelings of anxiety and some sociopsychological problems. Adaptive physiological responses during bed rest are normal for that environment. They are attempts by the body to reduce unnecessary energy expenditure, to optimize its function, and to enhance its survival potential. Many of the deconditioning responses begin within the first day or two of bed rest; these early responses have prompted physicians to insist upon early resumption of the upright posture and ambulation of bedridden patients.
2014-09-16
the display, matching the depth and vertical positioning of an identical reference or “target” object. This task served as a replication-and... cinema and computer games: A review.” Ophthalmic and Physiological Optics, 31, pp. 111-122. Hsu, J., Pizlo, Z., Chelberg, D. M., Babbs, C. F., and Delp
Goehring, Jenny L.; Neff, Donna L.; Baudhuin, Jacquelyn L.; Hughes, Michelle L.
2014-01-01
The first objective of this study was to determine whether adaptive pitch-ranking and electrode-discrimination tasks with cochlear-implant (CI) recipients produce similar results for perceiving intermediate “virtual-channel” pitch percepts using current steering. Previous studies have not examined both behavioral tasks in the same subjects with current steering. A second objective was to determine whether a physiological metric of spatial separation using the electrically evoked compound action potential spread-of-excitation (ECAP SOE) function could predict performance in the behavioral tasks. The metric was the separation index (Σ), defined as the difference in normalized amplitudes between two adjacent ECAP SOE functions, summed across all masker electrodes. Eleven CII or 90 K Advanced Bionics (Valencia, CA) recipients were tested using pairs of electrodes from the basal, middle, and apical portions of the electrode array. The behavioral results, expressed as d′, showed no significant differences across tasks. There was also no significant effect of electrode region for either task. ECAP Σ was not significantly correlated with pitch ranking or electrode discrimination for any of the electrode regions. Therefore, the ECAP separation index is not sensitive enough to predict perceptual resolution of virtual channels. PMID:25480063
Ding, Yichen; Abiri, Arash; Abiri, Parinaz; Li, Shuoran; Chang, Chih-Chiang; Baek, Kyung In; Hsu, Jeffrey J; Sideris, Elias; Li, Yilei; Lee, Juhyun; Segura, Tatiana; Nguyen, Thao P; Bui, Alexander; Sevag Packard, René R; Fei, Peng; Hsiai, Tzung K
2017-11-16
Currently, there is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3D architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3D and 4D (3D spatial + 1D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods, such as routine optical microscopes. We hereby demonstrate multiscale applicability of VR-LSFM to (a) interrogate skin fibroblasts interacting with a hyaluronic acid-based hydrogel, (b) navigate through the endocardial trabecular network during zebrafish development, and (c) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation algorithm with deformable image registration to interface a VR environment with imaging computation for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution.
Integrating light-sheet imaging with virtual reality to recapitulate developmental cardiac mechanics
Ding, Yichen; Abiri, Arash; Abiri, Parinaz; Li, Shuoran; Chang, Chih-Chiang; Hsu, Jeffrey J.; Sideris, Elias; Li, Yilei; Lee, Juhyun; Segura, Tatiana; Nguyen, Thao P.; Bui, Alexander; Sevag Packard, René R.; Hsiai, Tzung K.
2017-01-01
Currently, there is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3D architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3D and 4D (3D spatial + 1D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods, such as routine optical microscopes. We hereby demonstrate multiscale applicability of VR-LSFM to (a) interrogate skin fibroblasts interacting with a hyaluronic acid–based hydrogel, (b) navigate through the endocardial trabecular network during zebrafish development, and (c) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation algorithm with deformable image registration to interface a VR environment with imaging computation for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution. PMID:29202458
Carryer, P W; Brown, M I; Malagelada, J R; Carlson, G L; McCall, J T
1982-06-01
A radiolabeled cellulose (131I-fiber) that retains the essential physical and chemical properties of this class of fiber was developed in our laboratory. We quantified the fate of orally ingested 131I-fiber in healthy individuals by external gamma camera monitoring and fecal collections. The marker passes virtually intact through the human gastrointestinal tract with negligible release and absorption of the label in the gut. Comparison of the gastric emptying rate of 131I-fiber with that of a predominantly aqueous marker, 99mTc-diethylenetriamine pentaacetic acid (99mTc-DTPA), showed that 131I-fiber strands were evacuated more slowly than intragastric fluids. An important finding was that some 131I-fiber emptying occurred during most time periods, even before liquids were completely evacuated. This suggests that the human stomach is able to empty simultaneously liquids and fiber strands (1-15 mm in length) that are resistant to grinding by antral mechanical forces and to digestion by acid-peptic secretion. Thus, some nondigestible solids may be emptied with the bulk of a meal, although at a slower rate. 131I-Fiber may be a useful marker for quantifying gastric emptying of nondigestible solids. Further, the stability of 131I-fiber in the gut, as opposed to most other physiologic solid labels, should enable future investigation of intestinal and colonic transit of fiber, which is an important component of the human diet.
In vivo regulation of interleukin 1β in patients with cryopyrin-associated periodic syndromes
Lachmann, Helen J.; Lowe, Philip; Felix, Sandra Daniela; Rordorf, Christiane; Leslie, Kieron; Madhoo, Sheril; Wittkowski, Helmut; Bek, Stephan; Hartmann, Nicole; Bosset, Sophie; Hawkins, Philip N.
2009-01-01
The investigation of interleukin 1β (IL-1β) in human inflammatory diseases is hampered by the fact that it is virtually undetectable in human plasma. We demonstrate that by administering the anti–human IL-1β antibody canakinumab (ACZ885) to humans, the resulting formation of IL-1β–antibody complexes allowed the detection of in vivo–produced IL-1β. A two-compartment mathematical model was generated that predicted a constitutive production rate of 6 ng/d IL-1β in healthy subjects. In contrast, patients with cryopyrin-associated periodic syndromes (CAPS), a rare monogenetic disease driven by uncontrolled caspase-1 activity and IL-1 production, produced a mean of 31 ng/d. Treatment with canakinumab not only induced long-lasting complete clinical response but also reduced the production rate of IL-1β to normal levels within 8 wk of treatment, suggesting that IL-1β production in these patients was mainly IL-1β driven. The model further indicated that IL-1β is the only cytokine driving disease severity and duration of response to canakinumab. A correction for natural IL-1 antagonists was not required to fit the data. Together, the study allowed new insights into the production and regulation of IL-1β in man. It also indicated that CAPS is entirely mediated by IL-1β and that canakinumab treatment restores physiological IL-1β production. PMID:19364880
NASA Astrophysics Data System (ADS)
Packard, Corey D.; Klein, Mark D.; Viola, Timothy S.; Hepokoski, Mark A.
2016-10-01
The ability to predict electro-optical (EO) signatures of diverse targets against cluttered backgrounds is paramount for signature evaluation and/or management. Knowledge of target and background signatures is essential for a variety of defense-related applications. While there is no substitute for measured target and background signatures to determine contrast and detection probability, the capability to simulate any mission scenario with desired environmental conditions is a tremendous asset for defense agencies. In this paper, a systematic process for the thermal and visible-through-infrared simulation of camouflaged human dismounts in cluttered outdoor environments is presented. This process, utilizing the thermal and EO/IR radiance simulation tool TAIThermIR (and MuSES), provides a repeatable and accurate approach for analyzing contrast, signature and detectability of humans in multiple wavebands. The engineering workflow required to combine natural weather boundary conditions and the human thermoregulatory module developed by ThermoAnalytics is summarized. The procedure includes human geometry creation, human segmental physiology description and transient physical temperature prediction using environmental boundary conditions and active thermoregulation. Radiance renderings, which use Sandford-Robertson BRDF optical surface property descriptions and are coupled with MODTRAN for the calculation of atmospheric effects, are demonstrated. Sensor effects such as optical blurring and photon noise can be optionally included, increasing the accuracy of detection probability outputs that accompany each rendering. This virtual evaluation procedure has been extensively validated and provides a flexible evaluation process that minimizes the difficulties inherent in human-subject field testing. Defense applications such as detection probability assessment, camouflage pattern evaluation, conspicuity tests and automatic target recognition are discussed.
Virtual Plant Tissue: Building Blocks for Next-Generation Plant Growth Simulation
De Vos, Dirk; Dzhurakhalov, Abdiravuf; Stijven, Sean; Klosiewicz, Przemyslaw; Beemster, Gerrit T. S.; Broeckhove, Jan
2017-01-01
Motivation: Computational modeling of plant developmental processes is becoming increasingly important. Cellular resolution plant tissue simulators have been developed, yet they are typically describing physiological processes in an isolated way, strongly delimited in space and time. Results: With plant systems biology moving toward an integrative perspective on development we have built the Virtual Plant Tissue (VPTissue) package to couple functional modules or models in the same framework and across different frameworks. Multiple levels of model integration and coordination enable combining existing and new models from different sources, with diverse options in terms of input/output. Besides the core simulator the toolset also comprises a tissue editor for manipulating tissue geometry and cell, wall, and node attributes in an interactive manner. A parameter exploration tool is available to study parameter dependence of simulation results by distributing calculations over multiple systems. Availability: Virtual Plant Tissue is available as open source (EUPL license) on Bitbucket (https://bitbucket.org/vptissue/vptissue). The project has a website https://vptissue.bitbucket.io. PMID:28523006
Virtual immunology: software for teaching basic immunology.
Berçot, Filipe Faria; Fidalgo-Neto, Antônio Augusto; Lopes, Renato Matos; Faggioni, Thais; Alves, Luiz Anastácio
2013-01-01
As immunology continues to evolve, many educational methods have found difficulty in conveying the degree of complexity inherent in its basic principles. Today, the teaching-learning process in such areas has been improved with tools such as educational software. This article introduces "Virtual Immunology," a software program available free of charge in Portuguese and English, which can be used by teachers and students in physiology, immunology, and cellular biology classes. We discuss the development of the initial two modules: "Organs and Lymphoid Tissues" and "Inflammation" and the use of interactive activities to provide microscopic and macroscopic understanding in immunology. Students, both graduate and undergraduate, were questioned along with university level professors about the quality of the software and intuitiveness of use, facility of navigation, and aesthetic organization using a Likert scale. An overwhelmingly satisfactory result was obtained with both students and immunology teachers. Programs such as "Virtual Immunology" are offering more interactive, multimedia approaches to complex scientific principles that increase student motivation, interest, and comprehension. © 2013 by The International Union of Biochemistry and Molecular Biology.
Mongeau, R; Casu, M A; Pani, L; Pillolla, G; Lianas, L; Giachetti, A
2008-05-01
The vast amount of heterogeneous data generated in various fields of neurosciences such as neuropsychopharmacology can hardly be classified using traditional databases. We present here the concept of a virtual archive, spatially referenced over a simplified 3D brain map and accessible over the Internet. A simple prototype (available at http://aquatics.crs4.it/neuropsydat3d) has been realized using current Web-based virtual reality standards and technologies. It illustrates how primary literature or summary information can easily be retrieved through hyperlinks mapped onto a 3D schema while navigating through neuroanatomy. Furthermore, 3D navigation and visualization techniques are used to enhance the representation of brain's neurotransmitters, pathways and the involvement of specific brain areas in any particular physiological or behavioral functions. The system proposed shows how the use of a schematic spatial organization of data, widely exploited in other fields (e.g. Geographical Information Systems) can be extremely useful to develop efficient tools for research and teaching in neurosciences.
The interplays among technology and content, immersant and VE
NASA Astrophysics Data System (ADS)
Song, Meehae; Gromala, Diane; Shaw, Chris; Barnes, Steven J.
2010-01-01
The research program aims to explore and examine the fine balance necessary for maintaining the interplays between technology and the immersant, including identifying qualities that contribute to creating and maintaining a sense of "presence" and "immersion" in an immersive virtual reality (IVR) experience. Building upon and extending previous work, we compare sitting meditation with walking meditation in a virtual environment (VE). The Virtual Meditative Walk, a new work-in-progress, integrates VR and biofeedback technologies with a self-directed, uni-directional treadmill. As immersants learn how to meditate while walking, robust, real-time biofeedback technology continuously measures breathing, skin conductance and heart rate. The physiological states of the immersant will in turn affect the audio and stereoscopic visual media through shutter glasses. We plan to test the potential benefits and limitations of this physically active form of meditation with data from a sitting form of meditation. A mixed-methods approach to testing user outcomes parallels the knowledge bases of the collaborative team: a physician, computer scientists and artists.
Variable responses of human and non-human primate gut microbiomes to a Western diet.
Amato, Katherine R; Yeoman, Carl J; Cerda, Gabriela; Schmitt, Christopher A; Cramer, Jennifer Danzy; Miller, Margret E Berg; Gomez, Andres; Turner, Trudy R; Wilson, Brenda A; Stumpf, Rebecca M; Nelson, Karen E; White, Bryan A; Knight, Rob; Leigh, Steven R
2015-11-16
The human gut microbiota interacts closely with human diet and physiology. To better understand the mechanisms behind this relationship, gut microbiome research relies on complementing human studies with manipulations of animal models, including non-human primates. However, due to unique aspects of human diet and physiology, it is likely that host-gut microbe interactions operate differently in humans and non-human primates. Here, we show that the human microbiome reacts differently to a high-protein, high-fat Western diet than that of a model primate, the African green monkey, or vervet (Chlorocebus aethiops sabaeus). Specifically, humans exhibit increased relative abundance of Firmicutes and reduced relative abundance of Prevotella on a Western diet while vervets show the opposite pattern. Predictive metagenomics demonstrate an increased relative abundance of genes associated with carbohydrate metabolism in the microbiome of only humans consuming a Western diet. These results suggest that the human gut microbiota has unique properties that are a result of changes in human diet and physiology across evolution or that may have contributed to the evolution of human physiology. Therefore, the role of animal models for understanding the relationship between the human gut microbiota and host metabolism must be re-focused.
WE-D-303-00: Computational Phantoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, John; Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, MA
2015-06-15
Modern medical physics deals with complex problems such as 4D radiation therapy and imaging quality optimization. Such problems involve a large number of radiological parameters, and anatomical and physiological breathing patterns. A major challenge is how to develop, test, evaluate and compare various new imaging and treatment techniques, which often involves testing over a large range of radiological parameters as well as varying patient anatomies and motions. It would be extremely challenging, if not impossible, both ethically and practically, to test every combination of parameters and every task on every type of patient under clinical conditions. Computer-based simulation using computationalmore » phantoms offers a practical technique with which to evaluate, optimize, and compare imaging technologies and methods. Within simulation, the computerized phantom provides a virtual model of the patient’s anatomy and physiology. Imaging data can be generated from it as if it was a live patient using accurate models of the physics of the imaging and treatment process. With sophisticated simulation algorithms, it is possible to perform virtual experiments entirely on the computer. By serving as virtual patients, computational phantoms hold great promise in solving some of the most complex problems in modern medical physics. In this proposed symposium, we will present the history and recent developments of computational phantom models, share experiences in their application to advanced imaging and radiation applications, and discuss their promises and limitations. Learning Objectives: Understand the need and requirements of computational phantoms in medical physics research Discuss the developments and applications of computational phantoms Know the promises and limitations of computational phantoms in solving complex problems.« less
Of mice and men: the evolving phenotype of aromatase deficiency.
Jones, Margaret E E; Boon, Wah Chin; Proietto, Joseph; Simpson, Evan R
2006-03-01
We are rapidly becoming aware of the importance of estrogen in maintaining virtually all facets of male health. In order for estrogens to be synthesized endogenously, the enzyme responsible for their synthesis from androgens, aromatase, must be functional. The seven known men in whom aromatase is nonfunctional all have a mutation in either exon V or IX of the CYP19 gene, which encodes aromatase. Collectively, these men are reported to have undetectable estrogen; normal to high levels of testosterone and gonadotropins; tall stature with delayed skeletal maturation and epiphyseal closure; osteoporosis; impaired lipid and insulin metabolism; and impaired reproductive function. The aromatase knockout mouse presents with a phenotype that is similar in many aspects and provides a valuable tool with which to examine and manipulate the actions of estrogen. By studying the naturally occurring aromatase-deficient humans, together with studies of the aromatase-knockout mouse, we are expanding our understanding of the essential role of estrogen in male physiology.
A neural network model of harmonic detection
NASA Astrophysics Data System (ADS)
Lewis, Clifford F.
2003-04-01
Harmonic detection theories postulate that a virtual pitch is perceived when a sufficient number of harmonics is present. The harmonics need not be consecutive, but higher harmonics contribute less than lower harmonics [J. Raatgever and F. A. Bilsen, in Auditory Physiology and Perception, edited by Y. Cazals, K. Horner, and L. Demany (Pergamon, Oxford, 1992), pp. 215-222 M. K. McBeath and J. F. Wayand, Abstracts of the Psychonom. Soc. 3, 55 (1998)]. A neural network model is presented that has the potential to simulate this operation. Harmonics are first passed through a bank of rounded exponential filters with lateral inhibition. The results are used as inputs for an autoassociator neural network. The model is trained using harmonic data for symphonic musical instruments, in order to test whether it can self-organize by learning associations between co-occurring harmonics. It is shown that the trained model can complete the pattern for missing-fundamental sounds. The Performance of the model in harmonic detection will be compared with experimental results for humans.
A Dormant Internal Ribosome Entry Site Controls Translation of Feline Immunodeficiency Virus▿
Camerini, Valentina; Decimo, Didier; Balvay, Laurent; Pistello, Mauro; Bendinelli, Mauro; Darlix, Jean-Luc; Ohlmann, Théophile
2008-01-01
The characterization of internal ribosome entry sites (IRESs) in virtually all lentiviruses prompted us to investigate the mechanism used by the feline immunodeficiency virus (FIV) to produce viral proteins. Various in vitro translation assays with mono- and bicistronic constructs revealed that translation of the FIV genomic RNA occurred both by a cap-dependent mechanism and by weak internal entry of the ribosomes. This weak IRES activity was confirmed in feline cells expressing bicistronic RNAs containing the FIV 5′ untranslated region (UTR). Surprisingly, infection of feline cells with FIV, but not human immunodeficiency virus type 1, resulted in a great increase in FIV translation. Moreover, a change in the cellular physiological condition provoked by heat stress resulted in the specific stimulation of expression driven by the FIV 5′ UTR while cap-dependent initiation was severely repressed. These results reveal the presence of a “dormant” IRES that becomes activated by viral infection and cellular stress. PMID:18234788
Marescaux, J; Clément, J M; Nord, M; Russier, Y; Tassetti, V; Mutter, D; Cotin, S; Ayache, N
1997-11-01
Surgical simulation increasingly appears to be an essential aspect of tomorrow's surgery. The development of a hepatic surgery simulator is an advanced concept calling for a new writing system which will transform the medical world: virtual reality. Virtual reality extends the perception of our five senses by representing more than the real state of things by the means of computer sciences and robotics. It consists of three concepts: immersion, navigation and interaction. Three reasons have led us to develop this simulator: the first is to provide the surgeon with a comprehensive visualisation of the organ. The second reason is to allow for planning and surgical simulation that could be compared with the detailed flight-plan for a commercial jet pilot. The third lies in the fact that virtual reality is an integrated part of the concept of computer assisted surgical procedure. The project consists of a sophisticated simulator which has to include five requirements: visual fidelity, interactivity, physical properties, physiological properties, sensory input and output. In this report we will describe how to get a realistic 3D model of the liver from bi-dimensional 2D medical images for anatomical and surgical training. The introduction of a tumor and the consequent planning and virtual resection is also described, as are force feedback and real-time interaction.
Shinbane, Jerold S; Saxon, Leslie A
Advances in imaging technology have led to a paradigm shift from planning of cardiovascular procedures and surgeries requiring the actual patient in a "brick and mortar" hospital to utilization of the digitalized patient in the virtual hospital. Cardiovascular computed tomographic angiography (CCTA) and cardiovascular magnetic resonance (CMR) digitalized 3-D patient representation of individual patient anatomy and physiology serves as an avatar allowing for virtual delineation of the most optimal approaches to cardiovascular procedures and surgeries prior to actual hospitalization. Pre-hospitalization reconstruction and analysis of anatomy and pathophysiology previously only accessible during the actual procedure could potentially limit the intrinsic risks related to time in the operating room, cardiac procedural laboratory and overall hospital environment. Although applications are specific to areas of cardiovascular specialty focus, there are unifying themes related to the utilization of technologies. The virtual patient avatar computer can also be used for procedural planning, computational modeling of anatomy, simulation of predicted therapeutic result, printing of 3-D models, and augmentation of real time procedural performance. Examples of the above techniques are at various stages of development for application to the spectrum of cardiovascular disease processes, including percutaneous, surgical and hybrid minimally invasive interventions. A multidisciplinary approach within medicine and engineering is necessary for creation of robust algorithms for maximal utilization of the virtual patient avatar in the digital medical center. Utilization of the virtual advanced cardiac imaging patient avatar will play an important role in the virtual health care system. Although there has been a rapid proliferation of early data, advanced imaging applications require further assessment and validation of accuracy, reproducibility, standardization, safety, efficacy, quality, cost effectiveness, and overall value to medical care. Copyright © 2018 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Virtual Reality Applications for Stress Management Training in the Military.
Pallavicini, Federica; Argenton, Luca; Toniazzi, Nicola; Aceti, Luciana; Mantovani, Fabrizia
2016-12-01
Stress Management Training programs are increasingly being adopted in the military field for resilience empowerment and primary stress prevention. In the last several years, advanced technologies (virtual reality in particular) have been integrated in order to develop more innovative and effective stress training programs for military personnel, including soldiers, pilots, and other aircrew professionals. This systematic review describes experimental studies that have been conducted in recent years to test the effectiveness of virtual reality-based Stress Management Training programs developed for military personnel. This promising state-of-the-art technology has the potential to be a successful new approach in empowering soldiers and increasing their resilience to stress. To provide an overview from 2001 to 2016 of the application of virtual reality for Stress Management Training programs developed for the military, a computer-based search for relevant publications was performed in several databases. Databases used in the search were PsycINFO, Web of Science (Web of Knowledge), PubMed, and Medline. The search string was: ("Virtual Reality") AND ("Military") AND ["Stress Training" OR ("Stress Management")]. There were 14 studies that met the inclusion criteria and were included in the review. The main observation to be drawn from this review is that virtual reality can provide interactive Stress Management Training to decrease levels of perceived stress and negative affect in military personnel. This technology appears to be a promising tool for assessing individuals' resilience to stress and for identifying the impact that stress can have on physiological reactivity and performance.Pallavicini F, Argenton L, Toniazzi N, Aceti L, Mantovani F. Virtual realtiy applications for stress management training in the military. Aerosp Med Hum Perform. 2016; 87(12):1021-1030.
Mårdh, G; Dingley, A L; Auld, D S; Vallee, B L
1986-01-01
Studies of the function of human alcohol dehydrogenase (ADH) have revealed substrates that are virtually unique for class II ADH (pi ADH). It catalyzes the formation of the intermediary glycols of norepinephrine metabolism, 3,4-dihydroxyphenylglycol and 4-hydroxy-3-methoxyphenylglycol, from the corresponding aldehydes 3,4-dihydroxymandelaldehyde and 4-hydroxy-3-methoxymandelaldehyde with Km values of 55 and 120 microM and kcat/Km ratios of 14,000 and 17,000 mM-1 X min-1; these are from 60- to 210-fold higher than those obtained with class I ADH isozymes. The catalytic preference of class II ADH also extends to benzaldehydes. The kcat/Km values for the reduction of benzaldehyde, 3,4-dihydroxybenzaldehyde and 4-hydroxy-3-methoxybenzaldehyde by pi ADH are from 9- to 29-fold higher than those for a class I isozyme, beta 1 gamma 2 ADH. Furthermore, the norepinephrine aldehydes are potent inhibitors of alcohol (ethanol) oxidation by pi ADH. The high catalytic activity of pi ADH-catalyzed reduction of the aldehydes in combination with a possible regulatory function of the aldehydes in the oxidative direction leads to essentially "unidirectional" catalysis by pi ADH. These features and the presence of pi ADH in human liver imply a physiological role for pi ADH in the degradation of circulating epinephrine and norepinephrine. PMID:3466164
Advancements in remote physiological measurement and applications in human-computer interaction
NASA Astrophysics Data System (ADS)
McDuff, Daniel
2017-04-01
Physiological signals are important for tracking health and emotional states. Imaging photoplethysmography (iPPG) is a set of techniques for remotely recovering cardio-pulmonary signals from video of the human body. Advances in iPPG methods over the past decade combined with the ubiquity of digital cameras presents the possibility for many new, lowcost applications of physiological monitoring. This talk will highlight methods for recovering physiological signals, work characterizing the impact of video parameters and hardware on these measurements, and applications of this technology in human-computer interfaces.
Ping Gong; Pengfei Song; Shigao Chen
2017-06-01
The development of ultrafast ultrasound imaging offers great opportunities to improve imaging technologies, such as shear wave elastography and ultrafast Doppler imaging. In ultrafast imaging, there are tradeoffs among image signal-to-noise ratio (SNR), resolution, and post-compounded frame rate. Various approaches have been proposed to solve this tradeoff, such as multiplane wave imaging or the attempts of implementing synthetic transmit aperture imaging. In this paper, we propose an ultrafast synthetic transmit aperture (USTA) imaging technique using Hadamard-encoded virtual sources with overlapping sub-apertures to enhance both image SNR and resolution without sacrificing frame rate. This method includes three steps: 1) create virtual sources using sub-apertures; 2) encode virtual sources using Hadamard matrix; and 3) add short time intervals (a few microseconds) between transmissions of different virtual sources to allow overlapping sub-apertures. The USTA was tested experimentally with a point target, a B-mode phantom, and in vivo human kidney micro-vessel imaging. Compared with standard coherent diverging wave compounding with the same frame rate, improvements on image SNR, lateral resolution (+33%, with B-mode phantom imaging), and contrast ratio (+3.8 dB, with in vivo human kidney micro-vessel imaging) have been achieved. The f-number of virtual sources, the number of virtual sources used, and the number of elements used in each sub-aperture can be flexibly adjusted to enhance resolution and SNR. This allows very flexible optimization of USTA for different applications.
Sutherland, Robert J
2010-06-01
The article by Goodrich-Hunsaker and Hopkins (2010, this issue) takes up an important place among in the recent contributions on the role of the hippocampus in memory. They evaluate the effect of bilateral damage to the hippocampus on performance by human participants in a virtual 8-arm radial maze. The hippocampal damage appears to be highly selective and nearly complete. Exactly as with selective hippocampal damage in rats, the human participants showed a deficit in accurately choosing rewarded versus never-rewarded arms and a deficit in avoiding reentering recently visited arms. The results are triply significant: (1) They provide good support for the idea that the wealth of neurobiological information, from network to synapse to gene, on spatial memory in the rat may apply as a whole to the human hippocampal memory system; (2) They affirm the utility of human virtual task models of rat spatial memory tasks; (3) They support one interpretation of the dampening of the hippocampal functional MRI (fMRI) blood oxygen level-dependent (BOLD) signal during performance of the virtual radial arm maze observed by Astur et al. (2005).
Virtual reality in the operating room of the future.
Müller, W; Grosskopf, S; Hildebrand, A; Malkewitz, R; Ziegler, R
1997-01-01
In cooperation with the Max-Delbrück-Centrum/Robert-Rössle-Klinik (MDC/RRK) in Berlin, the Fraunhofer Institute for Computer Graphics is currently designing and developing a scenario for the operating room of the future. The goal of this project is to integrate new analysis, visualization and interaction tools in order to optimize and refine tumor diagnostics and therapy in combination with laser technology and remote stereoscopic video transfer. Hence, a human 3-D reference model is reconstructed using CT, MR, and anatomical cryosection images from the National Library of Medicine's Visible Human Project. Applying segmentation algorithms and surface-polygonization methods a 3-D representation is obtained. In addition, a "fly-through" the virtual patient is realized using 3-D input devices (data glove, tracking system, 6-DOF mouse). In this way, the surgeon can experience really new perspectives of the human anatomy. Moreover, using a virtual cutting plane any cut of the CT volume can be interactively placed and visualized in realtime. In conclusion, this project delivers visions for the application of effective visualization and VR systems. Commonly known as Virtual Prototyping and applied by the automotive industry long ago, this project shows, that the use of VR techniques can also prototype an operating room. After evaluating design and functionality of the virtual operating room, MDC plans to build real ORs in the near future. The use of VR techniques provides a more natural interface for the surgeon in the OR (e.g., controlling interactions by voice input). Besides preoperative planning future work will focus on supporting the surgeon in performing surgical interventions. An optimal synthesis of real and synthetic data, and the inclusion of visual, aural, and tactile senses in virtual environments can meet these requirements. This Augmented Reality could represent the environment for the surgeons of tomorrow.
2009-09-01
Environmental Medicine USN United States Navy VAE Virtual Air Environment VACP Visual, Auditory, Cognitive, Psychomotor (demand) VR Virtual Reality ...0 .5 m/s. Another useful approach to capturing leg, trunk, whole body, or movement tasks comes from virtual reality - based training research and...referred to as semi-automated forces (SAF). From: http://www.sedris.org/glossary.htm#C_grp. Constructive Models Abstractions from the reality to
NASA Technical Reports Server (NTRS)
Hyde, Patricia R.; Loftin, R. Bowen
1993-01-01
The volume 2 proceedings from the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology are presented. Topics discussed include intelligent computer assisted training (ICAT) systems architectures, ICAT educational and medical applications, virtual environment (VE) training and assessment, human factors engineering and VE, ICAT theory and natural language processing, ICAT military applications, VE engineering applications, ICAT knowledge acquisition processes and applications, and ICAT aerospace applications.
ERIC Educational Resources Information Center
Miller, Carmen
1992-01-01
The first of two articles discusses virtual reality (VR) and online databases; the second one reports on an interview with Thomas A. Furness III, who defines VR and explains work at the Human Interface Technology Laboratory (HIT). Sidebars contain a glossary of VR terms and a conversation with Toni Emerson, the HIT lab's librarian. (LRW)
Scripting human animations in a virtual environment
NASA Technical Reports Server (NTRS)
Goldsby, Michael E.; Pandya, Abhilash K.; Maida, James C.
1994-01-01
The current deficiencies of virtual environment (VE) are well known: annoying lag time in drawing the current view, drastically simplified environments to reduce that time lag, low resolution and narrow field of view. Animation scripting is an application of VE technology which can be carried out successfully despite these deficiencies. The final product is a smoothly moving high resolution animation displaying detailed models. In this system, the user is represented by a human computer model with the same body proportions. Using magnetic tracking, the motions of the model's upper torso, head and arms are controlled by the user's movements (18 degrees of freedom). The model's lower torso and global position and orientation are controlled by a spaceball and keypad (12 degrees of freedom). Using this system human motion scripts can be extracted from the user's movements while immersed in a simplified virtual environment. Recorded data is used to define key frames; motion is interpolated between them and post processing adds a more detailed environment. The result is a considerable savings in time and a much more natural-looking movement of a human figure in a smooth and seamless animation.
ERIC Educational Resources Information Center
Lanier, Jaron
2001-01-01
Describes tele-immersion, a new medium for human interaction enabled by digital technologies. It combines the display and interaction techniques of virtual reality with new vision technologies that transcend the traditional limitations of a camera. Tele-immersion stations observe people as moving sculptures without favoring a single point of view.…
Closed Environment Module - Modularization and extension of the Virtual Habitat
NASA Astrophysics Data System (ADS)
Plötner, Peter; Czupalla, Markus; Zhukov, Anton
2013-12-01
The Virtual Habitat (V-HAB), is a Life Support System (LSS) simulation, created to perform dynamic simulation of LSS's for future human spaceflight missions. It allows the testing of LSS robustness by means of computer simulations, e.g. of worst case scenarios.
Photographer: Digital Telepresence: Dr Murial Ross's Virtual Reality Application for Neuroscience
NASA Technical Reports Server (NTRS)
1995-01-01
Photographer: Digital Telepresence: Dr Murial Ross's Virtual Reality Application for Neuroscience Research Biocomputation. To study human disorders of balance and space motion sickness. Shown here is a 3D reconstruction of a nerve ending in inner ear, nature's wiring of balance organs.
On Mediation in Virtual Learning Environments.
ERIC Educational Resources Information Center
Davies, Larry; Hassan, W. Shukry
2001-01-01
Discusses concepts of mediation and focuses on the importance of implementing comprehensive virtual learning environments. Topics include education and technology as they relate to cultural change, social institutions, the Internet and computer-mediated communication, software design and human-computer interaction, the use of MOOs, and language.…
Simulating Hepatic Lesions as Virtual Cellular Systems
The US EPA Virtual Liver (v-Liver) project is aimed at reducing the uncertainty in estimating the risk of toxic outcomes in humans by simulating the dose-dependent effects of environmental chemicals in silico. The v-Liver embodies an emerging field of research in computational ti...
A 3D visualization and simulation of the individual human jaw.
Muftić, Osman; Keros, Jadranka; Baksa, Sarajko; Carek, Vlado; Matković, Ivo
2003-01-01
A new biomechanical three-dimensional (3D) model for the human mandible based on computer-generated virtual model is proposed. Using maps obtained from the special kinds of photos of the face of the real subject, it is possible to attribute personality to the virtual character, while computer animation offers movements and characteristics within the confines of space and time of the virtual world. A simple two-dimensional model of the jaw cannot explain the biomechanics, where the muscular forces through occlusion and condylar surfaces are in the state of 3D equilibrium. In the model all forces are resolved into components according to a selected coordinate system. The muscular forces act on the jaw, along with the necessary force level for chewing as some kind of mandible balance, preventing dislocation and loading of nonarticular tissues. In the work is used new approach to computer-generated animation of virtual 3D characters (called "Body SABA"), using in one object package of minimal costs and easy for operation.
Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments.
Rincon, J A; Poza-Lujan, Jose-Luis; Julian, V; Posadas-Yagüe, Juan-Luis; Carrascosa, C
2016-01-01
This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system.
Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments
2016-01-01
This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system. PMID:26926691
Virtual Doppelgangers: Psychological Effects of Avatars Who Ignore Their Owners
NASA Astrophysics Data System (ADS)
Bailenson, Jeremy N.; Segovia, Kathryn Y.
For a decade, the Virtual Human Interaction Lab has been creating doppelgangers, virtual versions of the self, for research purposes. This chapter considers how humans may be affected by confrontation with virtual versions of themselves, on the basis of well-established psychological theories, including social cognitive theory (social learning theory), media richness theory (information richness theory), and self-perception theory. Experiments carried out in the Lab, and informed by these theories, have explored such notable topics as health communication, marketing, and false memories. The findings of one series of studies suggest that doppelgangerscan show the rewards of exercise and proper eating habits, changing people's health-related behavior as a result. Other studies showed that doppelgangers are powerful marketing agents and can be used in advertisements to create favorable brand impressions among consumers. Other research documented that children have difficulty in distinguishing between an actual memory elicited by a physical world event and a false memory elicited by mental image or doppelganger.
Human Adaptation to Space: Space Physiology and Countermeasures
NASA Technical Reports Server (NTRS)
Fogarty, Jennifer
2009-01-01
This viewgraph presentation reviews human physiological responses to spaceflight, and the countermeasures taken to prevent adverse effects of manned space flight. The topics include: 1) Human Spaceflight Experience; 2) Human Response to Spaceflight; 3) ISS Expeditions 1-16; 4) Countermeasure; and 5) Biomedical Data;
Husmann, Polly R; O'Loughlin, Valerie Dean; Braun, Mark W
2009-10-01
This study compares overall laboratory averages and individual test scores along with a student survey to determine the effects of using virtual microscopy in place of optical microscopes in a large undergraduate human anatomy course. T-tests revealed that the first two laboratory examinations (of four) and the overall laboratory averages were significantly increased compared with the previous year. We hypothesize that this is due to students' ability to use and understand the technology quickly as opposed to learning how to maneuver an optical microscope. Students also responded positively in a survey about the virtual microscope, indicating that increased accessibility, ease of use, and the ability to understand the material were important components of the virtual microscope. In addition, an increase in student collaboration was noted because multiple students were able to view the image at a time. This level of acceptance of virtual microscopy has been reported in previous studies, though this level of increased examination scores is rare. We attribute this to differences between the medical students, with whom this technology has been researched in the past, and undergraduate introductory students.
Schneider, Petra; Hoy, Benjamin; Wessler, Silja; Schneider, Gisbert
2011-01-01
Background The human pathogen Helicobacter pylori (H. pylori) is a main cause for gastric inflammation and cancer. Increasing bacterial resistance against antibiotics demands for innovative strategies for therapeutic intervention. Methodology/Principal Findings We present a method for structure-based virtual screening that is based on the comprehensive prediction of ligand binding sites on a protein model and automated construction of a ligand-receptor interaction map. Pharmacophoric features of the map are clustered and transformed in a correlation vector (‘virtual ligand’) for rapid virtual screening of compound databases. This computer-based technique was validated for 18 different targets of pharmaceutical interest in a retrospective screening experiment. Prospective screening for inhibitory agents was performed for the protease HtrA from the human pathogen H. pylori using a homology model of the target protein. Among 22 tested compounds six block E-cadherin cleavage by HtrA in vitro and result in reduced scattering and wound healing of gastric epithelial cells, thereby preventing bacterial infiltration of the epithelium. Conclusions/Significance This study demonstrates that receptor-based virtual screening with a permissive (‘fuzzy’) pharmacophore model can help identify small bioactive agents for combating bacterial infection. PMID:21483848
Maintaining Engagement in Long-term Interventions with Relational Agents
Bickmore, Timothy; Schulman, Daniel; Yin, Langxuan
2011-01-01
We discuss issues in designing virtual humans for applications which require long-term voluntary use, and the problem of maintaining engagement with users over time. Concepts and theories related to engagement from a variety of disciplines are reviewed. We describe a platform for conducting studies into long-term interactions between humans and virtual agents, and present the results of two longitudinal randomized controlled experiments in which the effect of manipulations of agent behavior on user engagement was assessed. PMID:21318052
NASA Astrophysics Data System (ADS)
Orngreen, Rikke; Clemmensen, Torkil; Pejtersen, Annelise Mark
The boundaries and work processes for how virtual teams interact are undergoing changes, from a tool and stand-alone application orientation, to the use of multiple generic platforms chosen and redesigned to the specific context. These are often at the same time designed both by professional software developers and the individual members of the virtual teams, rather than determined on a single organizational level. There may be no impact of the technology per se on individuals, groups or organizations, as the technology for virtual teams rather enhance situation ambiguity and disrupt existing task-artifact cycles. This ambiguous situation calls for new methods for empirical work analysis and interaction design that can help us understand how organizations, teams and individuals learn to organize, design and work in virtual teams in various networked contexts.
Modeling Physiological Systems in the Human Body as Networks of Quasi-1D Fluid Flows
NASA Astrophysics Data System (ADS)
Staples, Anne
2008-11-01
Extensive research has been done on modeling human physiology. Most of this work has been aimed at developing detailed, three-dimensional models of specific components of physiological systems, such as a cell, a vein, a molecule, or a heart valve. While efforts such as these are invaluable to our understanding of human biology, if we were to construct a global model of human physiology with this level of detail, computing even a nanosecond in this computational being's life would certainly be prohibitively expensive. With this in mind, we derive the Pulsed Flow Equations, a set of coupled one-dimensional partial differential equations, specifically designed to capture two-dimensional viscous, transport, and other effects, and aimed at providing accurate and fast-to-compute global models for physiological systems represented as networks of quasi one-dimensional fluid flows. Our goal is to be able to perform faster-than-real time simulations of global processes in the human body on desktop computers.