Improving the safety of room air pneumoperitoneum for diagnostic laparoscopy.
Ikechebelu, J I; Okeke, C A F
2008-06-01
Laparoscopic examination is a useful investigation in the evaluation of infertile women. To perform this test, pneumoperitoneum is required to distend the abdomen, improve visibility and displace the intestines out of the pelvis. Several gases have been used to achieve this purpose including Nitrous Oxide (N2O), Carbondioxide (CO2), Helium, Xenon andAir. This was a prospective study in a private fertility centre in Nnewi, Nigeria aimed at reducing the morbidities inherent in the use Room Air pneumoperitoneum for diagnostic laparoscopy. This was sequel to an earlier study, which revealed that women who had Room Air pneumoperitoneum had a higher port wound infection rate, abdominal discomfort (feeling of retained gas in the abdomen) and shoulder pain with resultant delayed return to normal activity than women who had Co2 pneumoperitoneum. This study demonstrated that the use of soda lime to purify the Room Air and a low pressure suction pump to evacuate the air after the procedure significantly reduced the wound infection rate and virtually eliminated the abdominal discomfort and shoulder pain associated with Room Air pneumoperitoneum. This was followed by early return to normal activity. Therefore, use of Room Air for pneumoperitoneum is safe and affordable. It is recommended for low resource settings.
Koivusalo, A M; Kellokumpu, I; Ristkari, S; Lindgren, L
1997-10-01
Carbon dioxide (CO2) pneumoperitoneum together with an increased intraabdominal pressure (IAP) induces a hemodynamic stress response, diminishes urine output, and may compromise splanchnic perfusion. A new retractor method may be less traumatic. Accordingly, 30 ASA physical status I or II patients undergoing laparoscopic cholecystectomy were randomly allocated to a CO2 pneumoperitoneum (IAP 12-13 mm Hg) (control) or to a gasless abdominal wall lift method (retractor) group. Anesthesia and intravascular fluids were standardized. Direct mean arterial pressure (MAP), urine output, urine-N-acetyl-beta-D-glucosaminidase (U-NAG), arterial blood gases, gastric mucosal PCO2, and intramucosal pH (pHi) were measured. Normoventilation was instituted in all patients. MAP increased (P < 0.001) only with CO2 pneumoperitoneum. Minute volume of ventilation had to be increased by 35% with CO2 insufflation. PaCO2 was significantly higher (P < 0.05) for 3 h postoperatively in the control group. Diuresis was less (P < 0.01) and U-NAG levels (P < 0.01) higher in the control group. The pHi decreased after induction of pneumoperitoneum up to three hours postoperatively and remained intact in the retractor group. We conclude that the retractor method for laparoscopic cholecystectomy ensures stable hemodynamics, prevents respiratory acidosis, and provides protection against biochemical effects, which reveal the renal and splanchic ischemia caused by CO2 insufflation. A mechanical retractor method (gasless) was compared with conventional CO2 pneumoperitoneum for laparoscopic cholestectomy. The gasless method ensured stable hemodynamics, prevented respiratory acidosis, and provided protection against the renal and splanchnic ischemia seen with CO2 pneumoperitoneum.
Oprea, V; Matei, O; Gheorghescu, D; Leuca, D; Buia, F; Rosianu, M; Dinca, M
2014-01-01
forced repair of a giant abdominal wall defect end with unsatisfactory results despite development of prosthetics materials. The enlargement of abdominal wall dimensions could be realized altogether other methods with the aid of pneumo-peritoneum. The aim of the study is to evaluate early results of the method used for patients with giant incisional hernias. between june 1998 - june 2013, 17 patients (4 males) with giant abdominal wall defects (incisional and inguinal hernias) were prepaired for radical surgery with pneumoperitoneum. Average age was 64.35 years. We reevaluated the standard constants of the pulmonary function,blood gases, and intra-vesical pressure in 3 moments: before the first gas insuflation, 24 hours before surgery and in the 7th daypost operatively. the method was free of accidents or incidents, no mortality was recorded. The respiratory function was significantly increased and also the intra-abdominal pressure. our results suggest that the method of progressive pneumoperitoneum is safe, costless of choice for creating a clear compatibility between the wall and abdominal content inpatients with giant abdominal wall defects. Also ensures a longterm and stable improvement of the respiratory function in all its components. Celsius.
The Physiologic Effects of Pneumoperitoneum in the Morbidly Obese
Nguyen, Ninh T.; Wolfe, Bruce M.
2005-01-01
Objective: To review the physiologic effects of carbon dioxide (CO2) pneumoperitoneum in the morbidly obese. Summary Background Data: The number of laparoscopic bariatric operations performed in the United States has increased dramatically over the past several years. Laparoscopic bariatric surgery requires abdominal insufflation with CO2 and an increase in the intraabdominal pressure up to 15 mm Hg. Many studies have demonstrated the adverse consequences of pneumoperitoneum; however, few studies have examined the physiologic effects of pneumoperitoneum in the morbidly obese. Methods: A MEDLINE search from 1994 to 2003 was performed using the key words morbid obesity, laparoscopy, bariatric surgery, pneumoperitoneum, and gastric bypass. The authors reviewed papers evaluating the physiologic effects of pneumoperitoneum in morbidly obese subjects undergoing laparoscopy. The topics examined included alteration in acid-base balance, hemodynamics, femoral venous flow, and hepatic, renal, and cardiorespiratory function. Results: Physiologically, morbidly obese patients have a higher intraabdominal pressure at 2 to 3 times that of nonobese patients. The adverse consequences of pneumoperitoneum in morbidly obese patients are similar to those observed in nonobese patients. Laparoscopy in the obese can lead to systemic absorption of CO2 and increased requirements for CO2 elimination. The increased intraabdominal pressure enhances venous stasis, reduces intraoperative portal venous blood flow, decreases intraoperative urinary output, lowers respiratory compliance, increases airway pressure, and impairs cardiac function. Intraoperative management to minimize the adverse changes include appropriate ventilatory adjustments to avoid hypercapnia and acidosis, the use of sequential compression devices to minimizes venous stasis, and optimize intravascular volume to minimize the effects of increased intraabdominal pressure on renal and cardiac function. Conclusions: Morbidly obese patients undergoing laparoscopic bariatric surgery are at risk for intraoperative complications relating to the use of CO2 pneumoperitoneum. Surgeons performing laparoscopic bariatric surgery should understand the physiologic effects of CO2 pneumoperitoneum in the morbidly obese and make appropriate intraoperative adjustments to minimize the adverse changes. PMID:15650630
Wirth, Steffen; Biesemann, Andreas; Spaeth, Johannes; Schumann, Stefan
2017-02-01
Pneumoperitoneum during laparoscopic surgery leads to atelectasis and impairment of oxygenation. Positive end-expiratory pressure (PEEP) is supposed to counteract atelectasis. We hypothesized that the derecruiting effects of pneumoperitoneum would deteriorate the intratidal compliance profile in patients undergoing laparoscopic surgery. In 30 adult patients scheduled for surgery with pneumoperitoneum, respiratory variables were measured during mechanical ventilation. We calculated the dynamic compliance of the respiratory system (C RS ) and the intratidal volume-dependent C RS curve using the gliding-SLICE method. The C RS curve was then classified in terms of indicating intratidal recruitment/derecruitment (increasing profile) and overdistension (decreasing profile). During the surgical interventions, the PEEP level was maintained nearly constant at 7 cm H 2 O. Data are expressed as mean [confidence interval]. Baseline C RS was 60 [54-67] mL cm H 2 O -1 . Application of pneumoperitoneum decreased C RS to 40 [37-43] mL cm H 2 O -1 which partially recovered to 54 [50-59] mL cm H 2 O -1 (P < 0.001) after removal but remained below the value measured before pneumoperitoneum (P < 0.001). Baseline compliance profiles indicated intratidal recruitment/derecruitment in 48 % patients. After induction of pneumoperitoneum, intratidal recruitment/derecruitment was indicated in 93 % patients (P < 0.01), and after removal intratidal recruitment/derecruitment was indicated in 59 % patients. Compliance profiles showing overdistension were not observed. Analyses of the intratidal compliance profiles reveal that pneumoperitoneum during laparoscopic surgery causes intratidal recruitment/derecruitment which partly persists after its removal. The analysis of the intratidal volume-dependent C RS profiles could be used to guide intraoperative PEEP adjustments during elevated intraabdominal pressure.
Kamble, Shruthi P.; Bevinaguddaiah, Yatish; Nagaraja, Dinesh Chillkunda; Pujar, Vinayak S.; Anandaswamy, Tejesh C.
2017-01-01
Background: Pneumoperitoneum in laparoscopic procedures is associated with hemodynamic response, due to the release of catecholamines and vasopressin. Magnesium and clonidine have been used to attenuate such hemodynamic responses by inhibiting release of these mediators. We conducted this randomized, double-blinded study to assess which of the two attenuates hemodynamic response better. Materials and Methods: Ninety American Society of Anesthesiologists health status Classes I and II patients posted for elective laparoscopic cholecystectomy were randomized into three groups of thirty patients each. Group C received injection clonidine 1 μg/kg diluted in 10 mL normal saline over 10 min, prior to pneumoperitoneum. Group M received injection magnesium sulfate 50 mg/kg diluted in 10 mL normal saline over 10 min, prior to pneumoperitoneum. Group NS received 10 mL normal saline intravenously over 10 min, prior to pneumoperitoneum. Hemodynamic parameters were recorded before induction (baseline values), at the end of magnesium sulfate/clonidine/saline administration and before pneumoperitoneum (P0), 5 min (P5), 10 min (P10), 20 min (P20), 30 min (P30), and 40 min (P40) after pneumoperitoneum. Results: Systolic blood pressure, diastolic blood pressure (DBP), mean arterial pressure (MAP), and heart rate (HR) were all significantly higher in the normal saline group compared to magnesium and clonidine. On comparing patients in Group M and Group C, DBP, MAP, and HR were significantly lower in the magnesium group. Mean extubation time and time to response to verbal commands were significantly longer in the magnesium group. Conclusions: Both magnesium and clonidine attenuated the hemodynamic response to pneumoperitoneum. However, magnesium 50 mg/kg, attenuated hemodynamic response better than clonidine 1 μg/kg. PMID:28298759
Preoperative progressive pneumoperitoneum in patients with abdominal-wall hernias.
Mayagoitia, J C; Suárez, D; Arenas, J C; Díaz de León, V
2006-06-01
Induction of preoperative progressive pneumoperitoneum is an elective procedure in patients with hernias with loss of domain. A prospective study was carried out from June 2003 to May 2005 at the Hospital de Especialidades, Instituto Mexicano del Seguro Social, Leon, Mexico. Preoperative progressive pneumoperitoneum was induced using a double-lumen intraabdominal catheter inserted through a Veress needle and daily insufflation of ambient air. Variables analyzed were age, sex, body mass index, type, location and size of defective hernia, number of previous repairs, number of days pneumoperitoneum was maintained, type of hernioplasty, and incidence of complications. Of 12 patients, 2 were excluded because it was technically impossible to induce pneumoperitoneum. Of the remaining 10 patients, 60% were female and 40% were male. The patients' average age was 51.5 years, average body mass index was 34.7, and evolution time of their hernias ranged from 8 months to 23 years. Nine patients had ventral hernias and one had an inguinal hernia. Pneumoperitoneum was maintained for an average of 9.3 days and there were no serious complications relating to the puncture or the maintenance of the pneumoperitoneum. One patient who previously had undergone a mastectomy experienced minor complications. We were able to perform hernioplasty on all patients, eight with the Rives technique, one with supra-aponeurotic mesh, and one using the Lichtenstein method for inguinal hernia repair. One patient's wound became infected postoperatively. Preoperative progressive pneumoperitoneum is a safe procedure that is easy to perform and that facilitates surgical hernia repair in patients with hernia with loss of domain. Complications are infrequent, patient tolerability is adequate, and the proposed modification to the puncture technique makes the procedure even safer.
Barrio, Javier; Errando, Carlos L; García-Ramón, Jaime; Sellés, Rafael; San Miguel, Guillermo; Gallego, Juan
2017-11-01
To evaluate the influence of neuromuscular blockade (NMB) on surgical conditions during low-pressure pneumoperitoneum (8mmHg) laparoscopic cholecystectomy (LC), while comparing moderate and deep NMB. Secondary objective was to evaluate if surgical conditions during low-pressure pneumoperitoneum LC performed with deep NMB could be comparable to those provided during standard-pressure pneumoperitoneum (12mmHg) LC. Prospective, randomized, blinded clinical trial. Operating room. Ninety ASA 1-2 patients scheduled for elective LC. Patients were allocated into 3 groups: Group 1: low-pressure pneumoperitoneum with moderate-NMB (1-3 TOF), Group 2: low-pressure pneumoperitoneum with deep-NMB (1-5 PTC) and Group 3: standard pneumoperitoneum (12mmHg). Rocuronium was used to induce NMB and acceleromiography was used for NMB monitoring (TOF-Watch-SX). Three experienced surgeons evaluated surgical conditions using a four-step scale at three time-points: surgical field exposure, dissection of the gallbladder and extraction/closure. Low-pressure pneumoperitoneum (Group 1 vs. 2): good conditions: 96.7 vs. 96.7%, 90 vs. 80% and 89.6 vs. 92.3%, respectively for the time-points, p>0.05. No differences in optimal surgical conditions were observed between the groups. Surgery completion at 8mmHg pneumoperitoneum: 96.7 vs. 86.7%, p=0.353. Standard-pressure pneumoperitoneum vs. low-pressure pneumoperitoneum with deep NMB (Group 3 vs. 2): good conditions: 100% in Group 3 for the three time-points (p=0.024 vs. Group 2 at dissection of the gallbladder). Significantly greater percentage of optimal conditions during standard-pressure pneumoperitoneum LC at the three time points of evaluation. The depth of NMB was found not to be decisive neither in the improvement of surgical conditions nor in the completion of low-pressure pneumoperitoneum LC performed by experienced surgeons. Surgical conditions were considered better with a standard-pressure pneumoperitoneum, regardless of the depth of NMB, than during low-pressure pneumoperitoneum with deep NMB. Copyright © 2017 Elsevier Inc. All rights reserved.
Wiesen, Ari J; Sideridis, Kostas; Fernandes, Angelo; Hines, Jonathan; Indaram, Anant; Weinstein, Lenny; Davidoff, Samuel; Bank, Simmy
2006-12-01
PEG is a widely used method for providing nutritional support. Although pneumoperitoneum is a known finding after PEG placement, its true incidence is subject to debate. Small retrospective studies have found varied rates of free air after PEG placement. There were a total of 65 patients. To assess the true incidence of pneumoperitoneum and its clinical significance. Prospective study. Long Island Jewish Medical Center. We obtained upright and anterior-posterior chest radiographs of 65 patients within 3 hours after PEG placement. Type of PEG tube, gauge of the needle used, number of sticks, and indications were recorded. The presence of pneumoperitoneum on the initial chest film was considered to be a positive finding. After a positive result, a repeat chest film was obtained 72 hours later to determine whether there was progression or resolution of the free air. Patients enrolled in the study were also monitored clinically for evidence of peritonitis. Of the 65 patients who underwent PEG placement, 13 developed a pneumoperitoneum on the initial chest radiograph; there was complete resolution of pneumoperitoneum at 72 hours in 10 of the 13 patients. In 3 patients, the free air persisted but was of no clinical significance. The free air was quantified by measuring the height of the air column under the diaphragm and was graded with a scoring system (0, no air; 1, small; 2, moderate; 3, large). Eleven patients who underwent PEG died during the hospitalization; none of the deaths were related to the PEG placement or pneumoperitoneum. The other 54 patients were discharged to a skilled nursing facility. No patients in the study had clinical evidence of peritonitis. There were no adverse events, ie, infection or bleeding, associated with the PEG placement in any of the patients. Our data suggest that pneumoperitoneum after PEG placement is common and, in the absence of clinical symptoms, is of no clinical significance and does not warrant any further intervention.
Singla, Sanjeev; Mittal, Geeta; Raghav; Mittal, Rajinder K
2014-01-01
Background: Abdominal pain and shoulder tip pain after laparoscopic cholecystectomy are distressing for the patient. Various causes of this pain are peritoneal stretching and diaphragmatic irritation by high intra-abdominal pressure caused by pneumoperitoneum . We designed a study to compare the post operative pain after laparoscopic cholecystectomy at low pressure (7-8 mm of Hg) and standard pressure technique (12-14 mm of Hg). Aim : To compare the effect of low pressure and standard pressure pneumoperitoneum in post laparoscopic cholecystectomy pain . Further to study the safety of low pressure pneumoperitoneum in laparoscopic cholecystectomy. Settings and Design: A prospective randomised double blind study. Materials and Methods: A prospective randomised double blind study was done in 100 ASA grade I & II patients. They were divided into two groups -50 each. Group A patients underwent laparoscopic cholecystectomy with low pressure pneumoperitoneum (7-8 mm Hg) while group B underwent laparoscopic cholecystectomy with standard pressure pneumoperitoneum (12-13 mm Hg). Both the groups were compared for pain intensity, analgesic requirement and complications. Statistical Analysis: Demographic data and intraoperative complications were analysed using chi-square test. Frequency of pain, intensity of pain and analgesics consumption was compared by applying ANOVA test. Results: Post-operative pain score was significantly less in low pressure group as compared to standard pressure group. Number of patients requiring rescue analgesic doses was more in standard pressure group . This was statistically significant. Also total analgesic consumption was more in standard pressure group. There was no difference in intraoperative complications. Conclusion: This study demonstrates the use of simple expedient of reducing the pressure of pneumoperitoneum to 8 mm results in reduction in both intensity and frequency of post-operative pain and hence early recovery and better outcome.This study also shows that low pressure technique is safe with comparable rate of intraoperative complications. PMID:24701492
Lausten, S B; Grøfte, T; Andreasen, F; Vilstrup, H; Jensen, S L
1999-04-01
We recently demonstrated that laparoscopic cholecystectomy is followed by a much smaller hepatic catabolic stress response than conventional cholecystectomy. It is not known what is responsible for this difference. Thirty pigs were randomly allocated to the following five treatment groups: (1) laparotomy, (2) pneumoperitoneum, (3) pneumoperitoneum with insertion of four trocars, (4) laparotomy, (5) pneumoperitoneum. Groups 1-3 were operated on in an ambulatory setting, whereas groups 4 and 5 were operated on in a stationary setting. Urea synthesis, as quantified by functional hepatic nitrogen clearance, and the response of stress hormones and cytokines were assessed. Laparotomy increased the functional hepatic nitrogen clearance by 195% (p < 0.001); pneumoperitoneum and trocars increased it by 145% (p < 0.001); and pneumoperitoneum alone increased it by 113% (p < 0. 001). The difference between laparotomy and both pneumoperitoneum groups was significant. If the stress factor of ambulatory surgery was eliminated, the increase in functional hepatic nitrogen clearance was reduced to 87% (p < 0.01) after laparotomy and 38% (NS) for animals subject to pneumoperitoneum. There were significant differences in concentrations of stress hormones, tumor necrosis factor alpha, and interleukin 8 among groups intra- and postoperatively. The magnitude of the postoperative hepatic stress response after laparotomy compared to pneumoperitoneum with and without insertion of trocars seems to be caused by the greater trauma to the abdominal wall. Furthermore, an ambulatory setting seems to be an important postoperative stress factor in itself.
Gases for establishing pneumoperitoneum during laparoscopic abdominal surgery.
Yu, Tianwu; Cheng, Yao; Wang, Xiaomei; Tu, Bing; Cheng, Nansheng; Gong, Jianping; Bai, Lian
2017-06-21
This is an update of the review published in 2013.Laparoscopic surgery is now widely performed to treat various abdominal diseases. Currently, carbon dioxide is the most frequently used gas for insufflation of the abdominal cavity (pneumoperitoneum). Although carbon dioxide meets most of the requirements for pneumoperitoneum, the absorption of carbon dioxide may be associated with adverse events. People with high anaesthetic risk are more likely to experience cardiopulmonary complications and adverse events, for example hypercapnia and acidosis, which has to be avoided by hyperventilation. Therefore, other gases have been introduced as alternatives to carbon dioxide for establishing pneumoperitoneum. To assess the safety, benefits, and harms of different gases (i.e. carbon dioxide, helium, argon, nitrogen, nitrous oxide, and room air) used for establishing pneumoperitoneum in participants undergoing laparoscopic general abdominal or gynaecological pelvic surgery. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2016, Issue 9), Ovid MEDLINE (1950 to September 2016), Ovid Embase (1974 to September 2016), Science Citation Index Expanded (1970 to September 2016), Chinese Biomedical Literature Database (CBM) (1978 to September 2016), ClinicalTrials.gov (September 2016), and World Health Organization International Clinical Trials Registry Platform (September 2016). We included randomised controlled trials (RCTs) comparing different gases for establishing pneumoperitoneum in participants (irrespective of age, sex, or race) undergoing laparoscopic abdominal or gynaecological pelvic surgery under general anaesthesia. Two review authors identified the trials for inclusion, collected the data, and assessed the risk of bias independently. We performed the meta-analyses using Review Manager 5. We calculated risk ratio (RR) for dichotomous outcomes (or Peto odds ratio for very rare outcomes), and mean difference (MD) or standardised mean difference (SMD) for continuous outcomes with 95% confidence intervals (CI). We used GRADE to rate the quality of evidence, MAIN RESULTS: We included nine RCTs, randomising 519 participants, comparing different gases for establishing pneumoperitoneum: nitrous oxide (three trials), helium (five trials), or room air (one trial) was compared to carbon dioxide. Three trials randomised participants to nitrous oxide pneumoperitoneum (100 participants) or carbon dioxide pneumoperitoneum (96 participants). None of the trials was at low risk of bias. There was insufficient evidence to determine the effects of nitrous oxide and carbon dioxide on cardiopulmonary complications (RR 2.00, 95% CI 0.38 to 10.43; two studies; 140 participants; very low quality of evidence), or surgical morbidity (RR 1.01, 95% CI 0.18 to 5.71; two studies; 143 participants; very low quality of evidence). There were no serious adverse events related to either nitrous oxide or carbon dioxide pneumoperitoneum (three studies; 196 participants; very low quality of evidence). We could not combine data from two trials (140 participants) which individually showed lower pain scores (a difference of about one visual analogue score on a scale of 1 to 10 with lower numbers indicating less pain) with nitrous oxide pneumoperitoneum at various time points on the first postoperative day, and this was rated asvery low quality .Four trials randomised participants to helium pneumoperitoneum (69 participants) or carbon dioxide pneumoperitoneum (75 participants) and one trial involving 33 participants did not state the number of participants in each group. None of the trials was at low risk of bias. There was insufficient evidence to determine the effects of helium or carbon dioxide on cardiopulmonary complications (RR 1.46, 95% CI 0.35 to 6.12; three studies; 128 participants; very low quality of evidence) or pain scores (visual analogue score on a scale of 1 to 10 with lower numbers indicating less pain; MD 0.49 cm, 95% CI -0.28 to 1.26; two studies; 108 participants; very low quality of evidence). There were three serious adverse events (subcutaneous emphysema) related to helium pneumoperitoneum (three studies; 128 participants; very low quality of evidence).One trial randomised participants to room air pneumoperitoneum (70 participants) or carbon dioxide pneumoperitoneum (76 participants). The trial was at unclear risk of bias. There were no cardiopulmonary complications or serious adverse events observed related to either room air or carbon dioxide pneumoperitoneum (both outcomes very low quality of evidence). The evidence of lower hospital costs and reduced pain during the first postoperative day with room air pneumoperitoneum compared with carbon dioxide pneumoperitoneum (a difference of about one visual analogue score on a scale of 1 to 10 with lower numbers indicating less pain, was rated as very low quality of evidence. The quality of the current evidence is very low. The effects of nitrous oxide and helium pneumoperitoneum compared with carbon dioxide pneumoperitoneum are uncertain. Evidence from one trial of small sample size suggests that room air pneumoperitoneum may decrease hospital costs in people undergoing laparoscopic abdominal surgery. The safety of nitrous oxide, helium, and room air pneumoperitoneum has yet to be established.Further trials on this topic are needed, and should compare various gases (i.e. nitrous oxide, helium, argon, nitrogen, and room air) with carbon dioxide under standard pressure pneumoperitoneum with cold gas insufflation for people with high anaesthetic risk. Future trials should include outcomes such as complications, serious adverse events, quality of life, and pain.
Argon pneumoperitoneum is more dangerous than CO2 pneumoperitoneum during venous gas embolism.
Mann, C; Boccara, G; Grevy, V; Navarro, F; Fabre, J M; Colson, P
1997-12-01
We investigated the possibility of using argon, an inert gas, as a replacement for carbon dioxide (CO2). The tolerance of argon pneumoperitoneum was compared with that of CO2 pneumoperitoneum. Twenty pigs were anesthetized with enflurane 1.5%. Argon (n = 11) or CO2 (n = 9) pneumoperitoneum was created at 15 mm Hg over 20 min, and serial intravenous injections of each gas (ranging from 0.1 to 20 mL/kg) were made. Cardiorespiratory variables were measured. Transesophageal Doppler and capnographic monitoring were assessed in the detection of embolism. During argon pneumoperitoneum, there was no significant change from baseline in arterial pressure and pulmonary excretion of CO2, mean systemic arterial pressure (MAP), mean pulmonary artery pressure (PAP), or systemic and pulmonary vascular resistances, whereas CO2 pneumoperitoneum significantly increased these values (P < 0.05). During the embolic trial and from gas volumes of 2 and 0.2 mL/kg, the decrease in MAP and the increase in PAP were significantly higher with argon than with CO2 (P < 0.05). In contrast to CO2, argon pneumoperitoneum was not associated with significant changes in cardiorespiratory functions. However, argon embolism seems to be more deleterious than CO2 embolism. The possibility of using argon pneumoperitoneum during laparoscopy remains uncertain. Laparoscopic surgery requires insufflation of gas into the peritoneal cavity. We compared the hemodynamic effects of argon, an inert gas, and carbon dioxide in a pig model of laparoscopic surgery. We conclude that argon carries a high risk factor in the case of an accidental gas embolism.
Meijer, D W; Rademaker, B P; Schlooz, S; Bemelman, W A; de Wit, L T; Bannenberg, J J; Stijnen, T; Gouma, D F
1997-06-01
Disadvantages related to CO2 pneumoperitoneum have led to development of the abdominal wall retractor (AWR), a device designed to facilitate laparoscopic surgery without conventional pneumoperitoneum (15 mmHg CO2). We investigated the effects of the AWR on hemodynamics and gas exchange in humans. We also investigated whether the use of an AWR imposed extra technical difficulties for the surgeon. A pilot study revealed that cholecystectomy without low-pressure pneumoperitoneum was technically impossible. A prospective randomized controlled trial: Twenty patients undergoing laparoscopic cholecystectomy were randomly allocated into group 1: AWR with low-pressure pneumoperitoneum (5 mmHg), or group 2: conventional pneumoperitoneum (15 mmHg). Surgery using the AWR lasted longer, 72 +/- 16 min (mean +/- SD) vs 50 +/- 18 min compared with standard laparoscopic cholecystectomy. There were no differences between the groups with respect to hemodynamic parameters, although a small reduction of the cardiac output was observed using conventional pneumoperitoneum (from 3.9 +/- 0.7 to 3. 2 +/- 1.1 l/min) and an increase during AWR (from 4.2 +/- 0.9 to 5.2 +/- 1.5 l/min). Peak inspiratory pressures were significantly higher during conventional pneumoperitoneum compared to AWR. A slight decrease in pH accompanied by an increase in CO2 developed during pneumoperitoneum and during the use of the AWR. In both groups arterial PO2 decreased. The results indicate that the view was impaired during use of the AWR and therefore its use was difficult and time-consuming. Possible advantages of this devices' effects on hemodynamics and ventilatory parameters could not be confirmed in this study.
[Pneumoperitoneum due to splenic abscess: a diagnostic challenge. Case Report].
Peña-Ros, Emilio; Méndez-Martínez, Marcelino; Vicente-Ruiz, María; Sánchez-Cifuentes, Ángela; Martínez-Sanz, Nuria; Albarracín Marín-Blázquez, Antonio
2015-01-01
Splenic abscess is a rare clinic entity, its incidence has increased due to the rising number of clinical conditions involving immunosuppression. Endocarditis is the most frequent cause, and gram-positive aerobes are the main causal agents. Its clinical presentation is non-specific and delays diagnosis. Computed tomography scan is the method of choice, and the treatment is based on antibiotics and drainage, radiological or surgical, involving splenectomy in special cases that require it. A 55-year-old man with abdominal pain and fever. The analysis revealed leukocytosis 14,000/mm3, prothrombin activity 53%, and metabolic acidosis. Computed tomography scan showed a peri-hepatic pneumoperitoneum, liquid fluid, and peri-splenic bubbles, and slight trabeculation of fat around the duodenal bulb with pneumoperitoneum in this area. Patient underwent a median laparotomy, finding a purulent peritonitis due to a ruptured abscess in the spleen, splenectomy was performed. Fluid culture showed polymorphonuclears, with no microorganisms identified. The patient progressed and was discharged on the 5th post-operative day. Splenic abscess is an uncommon condition, in which the diagnosis is delayed and mortality, in untreated patients, is high. Its association with pneumoperitoneum may confuse the diagnosis towards viscera perforation. Thus it must be suspected in the finding of unknown cause of pneumoperitoneum by complementary examinations. The treatment of choice is splenectomy, because the capsular rupture is the norm in all of them. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
Madsen, Matias V; Istre, Olav; Staehr-Rye, Anne K; Springborg, Henrik H; Rosenberg, Jacob; Lund, Jørgen; Gätke, Mona R
2016-05-01
Postoperative shoulder pain remains a significant problem after laparoscopy. Pneumoperitoneum with insufflation of carbon dioxide (CO2) is thought to be the most important cause. Reduction of pneumoperitoneum pressure may, however, compromise surgical visualisation. Recent studies indicate that the use of deep neuromuscular blockade (NMB) improves surgical conditions during a low-pressure pneumoperitoneum (8 mmHg). The aim of this study was to investigate whether low-pressure pneumoperitoneum (8 mmHg) and deep NMB (posttetanic count 0 to 1) compared with standard-pressure pneumoperitoneum (12 mmHg) and moderate NMB (single bolus of rocuronium 0.3 mg kg with spontaneous recovery) would reduce the incidence of shoulder pain and improve recovery after laparoscopic hysterectomy. A randomised, controlled, double-blinded study. Private hospital in Denmark. Ninety-nine patients. Randomisation to either deep NMB and 8 mmHg pneumoperitoneum (Group 8-Deep) or moderate NMB and 12 mmHg pneumoperitoneum (Group 12-Mod). Pain was assessed on a visual analogue scale (VAS) for 14 postoperative days. The primary endpoint was the incidence of shoulder pain during 14 postoperative days. Secondary endpoints included area under curve VAS scores for shoulder, abdominal, incisional and overall pain during 4 and 14 postoperative days; opioid consumption; incidence of nausea and vomiting; antiemetic consumption; time to recovery of activities of daily living; length of hospital stay; and duration of surgery. Shoulder pain occurred in 14 of 49 patients (28.6%) in Group 8-Deep compared with 30 of 50 (60%) patients in Group 12-Mod. Absolute risk reduction was 0.31 (95% confidence interval 0.12 to 0.48; P = 0.002). There were no differences in any secondary endpoints including area under the curve for VAS scores. Deep NMB and low-pressure pneumoperitoneum (8 mmHg) reduced the incidence of shoulder pain after laparoscopic hysterectomy in comparison to moderate NMB and standard-pressure pneumoperitoneum (12 mmHg). Clinicaltrials.gov identifier: NCT01722097.
García-Santos, Esther; Puerto-Puerto, Alejandro; Sánchez-García, Susana; Ruescas-García, Francisco Javier; Alberca-Páramo, Ana; Martín-Fernández, Jesús
2015-01-01
Pneumoperitoneum is defined as the existence of extraluminal air in the abdominal cavity. In 80-90% of cases is due to perforation of a hollow organ. However, in 10-15% of cases, it is nonsurgical pneumoperitoneum. The case of a patient undergoing mechanical ventilation, developing abdominal compartment syndrome tension pneumoperitoneum is reported. Female, 75 years old asking for advise due to flu of long term duration. Given her respiratory instability, admission to the Intensive Care Unit is decided. It is then intubated and mechanically ventilated. Chest x-ray revealed a large pneumoperitoneum but no pneumothorax neither mediastinum; and due to the suspicion of viscera perforation with clinical instability secondary to intra-abdominal hypertension box, emergency surgery was decided. When discarded medical history as a cause of pneumoperitoneum, it is considered that ventilation is the most common cause. Benign idiopathic or nonsurgical pneumoperitoneum, can be be treated conservatively if the patient agrees. But if intraabdominal hypertension prevails, it can result in severe respiratory and hemodynamic deterioration, sometimes requiring abdominal decompression to immediately get lower abdominal pressure and thus improve hemodynamic function. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
Ypsilantis, Petros; Lambropoulou, Maria; Tentes, Ioannis; Chryssidou, Maria; Georgantas, Themistoklis; Simopoulos, Constantinos
2016-04-01
Although CO2 is the insufflation gas of choice in laparoscopic procedures, room air is usually used in natural orifice transluminal endoscopic surgery. The aim of the present study was to compare the safety of room air versus CO2 pneumoperitoneum in terms of their effect on the oxidative state, apoptosis and tissue injury of splanchnic organs. Eighteen Wistar rats were assigned to three groups (n = 6 per group) and were subjected to 8 mm Hg room air (group Pne-Air) or CO2 pneumoperitoneum (group Pne-CO2) or sham operation for 60 min. Forty-five minutes postdeflation, tissue samples were excised from the liver, stomach, ileum and kidneys for reduced glutathione-to-glutathione disulfide (GSH/GSSG) ratio, caspase-8 and caspase-3 and hypoxia-inducible factor-1α (HIF-1α) immunohistochemical assessment and histopathologic examination. GSH/GSSG ratio substantially declined in both pneumoperitoneum groups. No change was noted in HIF-1α expression. Mild upregulation of caspase-8 and caspase-3 was noted in both pneumoperitoneum groups being less pronounced in group Pne-Air. Histopathologic score was increased in all organs studied, but the stomach, in both pneumoperitoneum groups. Pneumoperitoneum established by either room air or CO2 induced substantial oxidative stress, mild apoptosis and mild tissue injury in splanchnic organs. While air pneumoperitoneum conferred a less pronounced apoptotic effect, the oxidative state and histopathologic profile of splanchnic organs did not differ between insufflation gases.
Protective effect of theophylline on renal functions in experimental pneumoperitoneum model.
Ozturk, Sefa Alperen; Ceylan, Cavit; Serel, Tekin Ahmet; Doluoglu, Omer Gokhan; Soyupek, Arap Sedat; Guzel, Ahmet; Özorak, Alper; Uz, Efkan; Savas, Hasan Basri; Baspinar, Sirin
2015-07-01
Our objective in this experimental study is to research the effect of the intra-abdominal pressure which rises following pneumoperitoneum and whether Theophylline has a possible protective activity on this situation. In our study, 24 Wistar Albino rats were used. Rats were divided into two groups. The first group was set for only pneumoperitoneum model. The second group was given 15 mg/kg of Theophylline intraperitoneally before setting pneumoperitoneum model. Then urea, creatinine, cystatin-C, tissue and serum total antioxidant capacity, total oxidant capacity and oxidative stress index in two groups were measured and compared with each other. Apoptosis and histopathological conditions in the renal tissues were examined. The differences between the groups were analyzed with the Mann-Whitney U test. Results were considered significant at p < 0.05. No statistically significant difference was determined between tissue and serum averages in two groups in terms of TAS, TOS and OSI values (p > 0.05). The mean value of urea were similar in pneumoperitoneum and pneumoperitoneum + theophylline groups (p = 0.12). The mean cystatin-C value was 2.2 ± 0.3 µg/mL in pneumoperitoneum, 1.74 ± 0.33 µg/mL in pneumoperitoneum + theophylline (p = 0.002). According to our study, lower cystatin-C levels in the group, where Theophylline was given, are suggestive of lower renal injury in this group. However, this opinion is interrogated as there is no difference in terms of tissue and serum TAS, TOS, OSI and urea values between the groups.
Komori, Yoko; Iwashita, Yukio; Ohta, Masayuki; Kawano, Yuichiro; Inomata, Masafumi; Kitano, Seigo
2014-08-01
A recent study demonstrated that high pressure of carbon dioxide (CO2) pneumoperitoneum before liver resection impairs postoperative liver regeneration. This study was aimed to investigate effects of varying insufflation pressures of CO2 pneumoperitoneum on liver regeneration using a rat model. 180 male Wistar rats were randomly divided into three groups: control group (without preoperative pneumoperitoneum), low-pressure group (with preoperative pneumoperitoneum at 5 mmHg), and high-pressure group (with preoperative pneumoperitoneum at 10 mmHg). After pneumoperitoneum, all rats were subjected to 70% partial hepatic resection and then euthanized at 0 min, 12 h, and on postoperative days (PODs) 1, 2, 4, and 7. Following outcome parameters were used: liver regeneration (liver regeneration rate, mitotic count, Ki-67 labeling index), hepatocellular damage (serum aminotransferases), oxidative stress [serum malondialdehyde (MDA)], interleukin-6 (IL-6), and hepatocyte growth factor (HGF) expression in the liver tissue. No significant differences were observed for all parameters between control and low-pressure groups. The liver regeneration rate and mitotic count were significantly decreased in the high-pressure group than in control and low-pressure groups on PODs 2 and 4. Postoperative hepatocellular damage was significantly greater in the high-pressure group on PODs 1, 2, 4, and 7 compared with control and/or low-pressure groups. Serum MDA levels were significantly higher in the high-pressure group on PODs 1 and 2, and serum IL-6 levels were significantly higher in the high-pressure group at 12 h and on POD 1, compared with control and/or low-pressure groups. The HGF tissue expression was significantly lower in the high-pressure group at 12 h and on PODs 1 and 4, compared with that in control and/or low-pressure groups. High-pressure pneumoperitoneum before 70% liver resection impairs postoperative liver regeneration, but low-pressure pneumoperitoneum has no adverse effects. This study suggests that following laparoscopic liver resection using appropriate pneumoperitoneum pressure, no impairment of liver regeneration occurs.
Warlé, Michiel C.; Hooijmans, Carlijn R.
2016-01-01
Both preclinical and clinical studies indicate that raised intra-abdominal pressure (IAP) associated with pneumoperitoneum during laparoscopic surgical procedures can cause renal damage, the severity of which may be influenced by variables such as pressure level and duration. Several of these variables have been investigated in animal studies, but synthesis of all preclinical data has not been performed. This systematic review summarizes all available pre-clinical evidence on this topic, including an assessment of its quality and risk of bias. We performed meta-analysis to assess which aspects of the pneumoperitoneum determine the severity of its adverse effects. A systematic search in two databases identified 55 studies on the effect of pneumoperitoneum on renal function which met our inclusion criteria. There was high heterogeneity between the studies regarding study design, species, sex, pressure and duration of pneumoperitoneum, and type of gas used. Measures to reduce bias were poorly reported, leading to an unclear risk of bias in the majority of studies. Details on randomisation, blinding and a sample size calculation were not reported in ≥80% of the studies. Meta-analysis showed an overall increase in serum creatinine during pneumoperitoneum, and a decrease in urine output and renal blood flow. Subgroup analysis indicated that for serum creatinine, this effect differed between species. Subgroup analysis of pressure level indicated that urine output decreased as IAP level increased. No differences between types of gas were observed. Data were insufficient to reliably assess whether sex or IAP duration modulate the effect of pneumoperitoneum. Four studies assessing long-term effects indicated that serum creatinine normalized ≥24 hours after desufflation of pneumoperitoneum at 15mmHg. We conclude that harmful effects on renal function and perfusion during pneumoperitoneum appear to be robust, but evidence on long-term effects is very limited. The reliability and clinical relevance of these findings for healthy patients and patients at high risk of renal impairment remain uncertain. We emphasize the need for rigorous reporting of preclinical research methodology, which is of vital importance for clinical translation of preclinical data. PMID:27657740
Okrainec, A; Farcas, M; Henao, O; Choy, I; Green, J; Fotoohi, M; Leslie, R; Wight, D; Karam, P; Gonzalez, N; Apkarian, J
2009-01-01
The Veress needle is the most commonly used technique for creating the pneumoperitoneum at the start of a laparoscopic surgical procedure. Inserting the Veress needle correctly is crucial since errors can cause significant harm to patients. Unfortunately, this technique can be difficult to teach since surgeons rely heavily on tactile feedback while advancing the needle through the various layers of the abdominal wall. This critical step in laparoscopy, therefore, can be challenging for novice trainees to learn without adequate opportunities to practice in a safe environment with no risk of injury to patients. To address this issue, we have successfully developed a prototype of a virtual reality haptic needle insertion simulator using the tactile feedback of 22 surgeons to set realistic haptic parameters. A survey of these surgeons concluded that our device appeared and felt realistic, and could potentially be a useful tool for teaching the proper technique of Veress needle insertion.
Singla, Sanjeev; Mittal, Geeta; Raghav; Mittal, Rajinder K
2014-02-01
Abdominal pain and shoulder tip pain after laparoscopic cholecystectomy are distressing for the patient. Various causes of this pain are peritoneal stretching and diaphragmatic irritation by high intra-abdominal pressure caused by pneumoperitoneum . We designed a study to compare the post operative pain after laparoscopic cholecystectomy at low pressure (7-8 mm of Hg) and standard pressure technique (12-14 mm of Hg). Aim : To compare the effect of low pressure and standard pressure pneumoperitoneum in post laparoscopic cholecystectomy pain . Further to study the safety of low pressure pneumoperitoneum in laparoscopic cholecystectomy. A prospective randomised double blind study. A prospective randomised double blind study was done in 100 ASA grade I & II patients. They were divided into two groups -50 each. Group A patients underwent laparoscopic cholecystectomy with low pressure pneumoperitoneum (7-8 mm Hg) while group B underwent laparoscopic cholecystectomy with standard pressure pneumoperitoneum (12-13 mm Hg). Both the groups were compared for pain intensity, analgesic requirement and complications. Demographic data and intraoperative complications were analysed using chi-square test. Frequency of pain, intensity of pain and analgesics consumption was compared by applying ANOVA test. Post-operative pain score was significantly less in low pressure group as compared to standard pressure group. Number of patients requiring rescue analgesic doses was more in standard pressure group . This was statistically significant. Also total analgesic consumption was more in standard pressure group. There was no difference in intraoperative complications. This study demonstrates the use of simple expedient of reducing the pressure of pneumoperitoneum to 8 mm results in reduction in both intensity and frequency of post-operative pain and hence early recovery and better outcome.This study also shows that low pressure technique is safe with comparable rate of intraoperative complications.
Magnesium sulphate attenuates arterial pressure increase during laparoscopic cholecystectomy.
Jee, D; Lee, D; Yun, S; Lee, C
2009-10-01
Magnesium is well known to inhibit catecholamine release and attenuate vasopressin-stimulated vasoconstriction. We investigated whether i.v. magnesium sulphate attenuates the haemodynamic stress responses to pneumoperitoneum by changing neurohumoral responses during laparoscopic cholecystectomy. Thirty-two patients undergoing laparoscopic cholecystectomy were randomly assigned to two groups; a control group was given saline, and a magnesium group received magnesium sulphate 50 mg kg(-1) immediately before pneumoperitoneum. Arterial pressure, heart rate, serum magnesium, plasma renin activity (PRA), and catecholamine, cortisol, and vasopressin levels were measured. Systolic and diastolic arterial pressures were greater in the control group (P<0.05) than in the magnesium group at 10, 20, and 30 min post-pneumoperitoneum. Norepinephrine or epinephrine levels [pg ml(-1), mean (SD)] were higher in the control group than in the magnesium group at 5 [211 (37) vs 138 (18)] or 10 min [59 (19) vs 39 (9)] post-pneumoperitoneum, respectively (P<0.05). In the control group, vasopressin levels [pg ml(-1), mean (SD)] were higher compared with the magnesium group at 5 [64 (18) vs 35 (9), P<0.01] and 10 min [65 (18) vs 47 (11), P<0.05] post-pneumoperitoneum. There were no significant differences between the groups in PRA and cortisol levels. I.V. magnesium sulphate before pneumoperitoneum attenuates arterial pressure increases during laparoscopic cholecystectomy. This attenuation is apparently related to reductions in the release of catecholamine, vasopressin, or both.
Pneumoperitoneum after virtual colonoscopy: causes, risk factors, and management.
Baccaro, Leopoldo M; Markelov, Alexey; Wilhelm, Jakub; Bloch, Robert
2014-06-01
Computed tomographic virtual colonoscopy (CTVC) is a safe and minimally invasive modality when compared with fiberoptic colonoscopy for evaluating the colon and rectum. We have reviewed the risks for colonic perforation by investigating the relevant literature. The objectives of this study were to assess the risk of colonic perforation during CTVC, describe risk factors, evaluate ways to reduce the incidence complications, and to review management and treatment options. A formal search of indexed publications was performed through PubMed. Search queries using keywords "CT colonography," "CT virtual colonoscopy," "virtual colonoscopy," and "perforation" yielded a total of 133 articles. A total of eight case reports and four review articles were selected. Combining case reports and review articles, a total of 25 cases of colonic perforation after CTVC have been reported. Causes include, but are not limited to, diverticular disease, irritable bowel diseases, obstructive processes, malignancies, and iatrogenic injury. Both operative and nonoperative management has been described. Nonoperative management has been proven safe and successful in minimally symptomatic and stable patients. Colonic perforation after CTVC is a rare complication and very few cases have been reported. Several risk factors are recurrent in the literature and must be acknowledged at the time of the study. Management options vary and should be tailored to each individual patient.
Bhagavatula, Sharath K; Chick, Jeffrey F B; Chauhan, Nikunj R; Shyn, Paul B
2017-02-01
Image-guided percutaneous thermal ablation is increasingly utilized in the treatment of hepatic malignancies. Peripherally located hepatic tumors can be difficult to access or located adjacent to critical structures that can be injured. As a result, ablation of peripheral tumors may be avoided or may be performed too cautiously, leading to inadequate ablation coverage. In these cases, separating the tumor from adjacent critical structures can increase the efficacy and safety of procedures. Artificial ascites and artificial pneumoperitoneum are techniques that utilize fluid and gas, respectively, to insulate critical structures from the thermal ablation zone. Induction of artificial ascites and artificial pneumoperitoneum can enable complete ablation of otherwise inaccessible hepatic tumors, improve tumor visualization, minimize unintended thermal injury to surrounding organs, and reduce post-procedural pain. This pictorial essay illustrates and discusses the proper technique and clinical considerations for successful artificial ascites and pneumoperitoneum creation to facilitate safe peripheral hepatic tumor ablation.
Vinzens, Fabrizio; Zumstein, Valentin; Bieg, Christian; Ackermann, Christoph
2016-05-26
Patients presenting with abdominal pain and pneumoperitoneum in radiological examination usually require emergency explorative laparoscopy or laparotomy. Pneumoperitoneum mostly associates with gastrointestinal perforation. There are very few cases where surgery can be avoided. We present 2 cases of pneumoperitoneum with unknown origin and successful conservative treatment. Both patients were elderly women presenting to our emergency unit, with moderate abdominal pain. There was neither medical intervention nor trauma in their medical history. Physical examination revealed mild abdominal tenderness, but no clinical sign of peritonitis. Cardiopulmonary examination remained unremarkable. Blood studies showed only slight abnormalities, in particular, inflammation parameters were not significantly increased. Finally, obtained CTs showed free abdominal gas of unknown origin in both cases. We performed conservative management with nil per os, nasogastric tube, total parenteral nutrition and prophylactic antibiotics. After 2 weeks, both were discharged home. 2016 BMJ Publishing Group Ltd.
Marwan, K; Farmer, K C; Varley, C; Chapple, K S
2007-07-01
Colonic perforation is an unusual complication of colonoscopy. We present a case of pneumothorax, pneumomediastinum, pneumoperitoneum and extensive subcutaneous emphysema resulting from a diagnostic colonoscopy. To our knowledge, only two such cases have been described previously.
Marwan, K; Farmer, KC; Varley, C; Chapple, KS
2007-01-01
Colonic perforation is an unusual complication of colonoscopy. We present a case of pneumothorax, pneumomediastinum, pneumoperitoneum and extensive subcutaneous emphysema resulting from a diagnostic colonoscopy. To our knowledge, only two such cases have been described previously. PMID:17688713
[Anesthesia experiences on laparoscopic nephrectomy with da Vinci S robotics].
Mou, Ling; Lan, Zhixun
2015-09-01
To summarize the clinical anesthesia experiences in 20 patients who underwent laparoscopic nephrectomy with da Vinci S robotics. Anesthesia data of 20 patients from Sichuan Provincial People's Hospital, who underwent laparoscopic nephrectomy with da Vinci S robotics from August 2014 to November 2014, were analyzed and summarized. The anesthesia time, operation time, CO(2) pneumoperitoneum time, PaCO(2) and PETCO(2) were recorded. All patients were anesthetized and underwent surgery with da Vinci S robotics. The anesthesia time was (220±14) min, the operation time was (187±11) min, and the CO(2) pneumoperitoneum time was (180±13) min. The PaCO(2) and PETCO(2) were significantly elevated at 1.5 h after operation compared with those at the baseline (before pneumoperitoneum) (P<0.05). The pH value was significantly decreased at 2.5 h after operation compared to that at the baseline (P<0.05). The peak airway pressure of inspiration was significantly elevated at 0.5 h after the beginning of pneumoperitoneum compared to that at the baseline (P<0.05). The hemodynamics is stable during the laparoscopic nephrectomy with da vinci S robotics. However, the duration of CO(2) pneumoperitoneum is significantly increased compared to that of other surgical procedures, resulting in high airway resistance and acid-base disturbance.
Tanaka, Ryo; Kameyama, Hitoshi; Nagahashi, Masayuki; Kanda, Tatsuo; Ichikawa, Hiroshi; Hanyu, Takaaki; Ishikawa, Takashi; Kobayashi, Takashi; Sakata, Jun; Kosugi, Shin-Ichi; Wakai, Toshifumi
2015-01-01
Idiopathic spontaneous pneumoperitoneum is a rare condition that is characterized by intraperitoneal gas for which no clear etiology has been identified. We report here a case of idiopathic spontaneous pneumoperitoneum, which was successfully managed by conservative treatment. A 77-year-old woman who was bedridden with speech disability as a sequela of brain hemorrhage presented at our hospital with a 1-day history of abdominal distention. On physical examination, she had stable vital signs and slight epigastric tenderness on deep palpation without any other signs of peritonitis. A chest radiograph and computed tomography showed that a large amount of free gas extended into the upper abdominal cavity. Esophagogastroduodenoscopy revealed no perforation of the upper gastrointestinal tract. The patient was diagnosed with idiopathic spontaneous pneumoperitoneum, and conservative treatment was selected. The abdominal distension rapidly disappeared, and the patient resumed oral intake on the 5th hospital day without deterioration of symptoms. Knowledge of this rare disease and accurate diagnosis with findings of clinical imaging might contribute towards refraining from unnecessary laparotomy.
[Non operative treatment for perforated peptic ulcer: results of a prospective study].
Songne, B; Jean, F; Foulatier, O; Khalil, H; Scotté, M
2004-12-01
The conservative management of perforated peptic ulcer has not gained widespread acceptance despite introduction of proton-pomp inhibitors because surgical procedures can achieve immediate closure by eventually using a laparoscopic approach. The aim of this prospective study was to evaluate the results of Taylor's method and to identify predictive factors of failure of medical treatment in patients presenting with perforated peptic ulcer. Between 1990 and 2000, 82 consecutive patients, with diagnosis of perforated peptic ulcer were prospectively included in this study. They were initially treated with non-operative procedure (nasogastric suction and intravenous administration of H2-blockers or proton-pomp inhibitors). No clinical improvement after 24 hours required a surgical treatment. Predictive factors of failure of non-operative treatment were tested in univariate or multivariate analysis. Clinical improvement was obtained with non-operative treatment in 54% of the patients (44/82). The overall mortality rate was 1%. In univariate analysis, significant predictive factors of failure of non-operative treatment were: size of pneumoperitoneum, heart beat >94 bpm, abdominal meteorism, pain at digital rectal exam, and age >59 years. In multivariate analysis, the significant factors were the size of pneumoperitoneum, heart beat, and abdominal meteorism. The association of these criteria: size of pneumoperitoneum >size of the first lumbar vertebra, heart beat >94 bpm, pain at digital rectal exam and age > 59 years , led to surgical treatment in all cases. These results suggest that more than 50% of patients with perforated peptic ulcer respond to conservative treatment without surgery and that the association of few criteria (size of pneumoperitoneum, heart beat, pain at digital rectal exam and age) require emergency surgery.
Wang, Na; Wang, Yuantao; Pang, Lei; Wang, Jinguo
2015-01-01
Objective: To evaluate the efficacy of preemptive intravenous oxycodone in the patients undergoing laparoscopic resection of ovarian tumor. Methods: Sixty ASA I or II patients undergoing elective laparoscopic resection of ovarian tumor were randomly allocated to one of two groups: Group O (n=30) received intravenous oxycodone (0.1 mg·kg-1) 10 minutes before surgery over 2 minutes, and Group N (n=30) received an equivalent volume of normal saline. All patients received a standardized general anesthesia. MBP and HR at the time of arrival of the operating room (T1), 5 min before pneumoperitoneum (T2), 5 minutes (T3), 10 minutes (T4), and 15 minutes after pneumoperitoneum (T5), and VAS scores at postoperative 2, 4, 8, 12 and 24 hour were recorded. The tramadol consumption and side effects in 24 h after surgery were recorded. Results: VAS pain scores at 2, 4, 8 and 12 hour after operation were significantly lower in Group O (P<0.05). MBP and HR increased significantly due to pneumoperitoneum at T3, T4 and T5, compared with T1 and T2 within Group N, and were higher at T3, T4 and T5 in Group N than at the same time points in Group O. Tramadol consumption was statistically lower in Group O (P=0.0003). Conclusions: Preemptive intravenous oxycodone was an efficient and safe method to reduce intraoperative haemodynamic effect and postoperative pain. PMID:26101479
MRI Evaluation of an Elastic TPU Mesh under Pneumoperitoneum in IPOM Position in a Porcine Model.
Lambertz, A; van den Hil, L C L; Ciritsis, A; Eickhoff, R; Kraemer, N A; Bouvy, N D; Müllen, A; Klinge, U; Neumann, U P; Klink, C D
2018-06-01
The frequency of laparoscopic approaches increased in hernia surgery over the past years. After mesh placement in IPOM position, the real extent of the meshes configurational changes after termination of pneumoperitoneum is still largely unknown. To prevent a later mesh folding it might be useful to place the mesh while it is kept under tension. Conventionally used meshes may lose their Effective Porosity under these conditions due to poor elastic properties. The aim of this study was to evaluate a newly developed elastic thermoplastic polyurethane (TPU) containing mesh that retains its Effective Porosity under mechanical strain in IPOM position in a porcine model. It was visualized under pneumoperitoneum using MRI in comparison to polyvinylidenefluoride (PVDF) meshes with similar structure. In each of ten minipigs, a mesh (TPU containing or native PVDF, 10 × 20 cm) was randomly placed in IPOM position at the center of the abdominal wall. After 8 weeks, six pigs underwent MRI evaluation with and without pneumoperitoneum to assess the visibility and elasticity of the mesh. Finally, pigs were euthanized and abdominal walls were explanted for histological and immunohistochemical assessment. The degree of adhesion formation was documented. Laparoscopic implantation of elastic TPU meshes in IPOM position was feasible and safe in a minipig model. Mesh position could be precisely visualized and assessed with and without pneumoperitoneum using MRI after 8 weeks. Elastic TPU meshes showed a significantly higher surface increase under pneumoperitoneum in comparison to PVDF. Immunohistochemically, the amount of CD45-positive cells was significantly lower and the Collagen I/III ratio was significantly higher in TPU meshes after 8 weeks. There were no differences regarding adhesion formation between study groups. The TPU mesh preserves its elastic properties in IPOM position in a porcine model after 8 weeks. Immunohistochemistry indicates superior biocompatibility regarding CD45-positive cells and Collagen I/III ratio in comparison to PVDF meshes with a similar structure.
Latimer, F G; Eades, S C; Pettifer, G; Tetens, J; Hosgood, G; Moore, R M
2003-05-01
Abdominal insufflation is performed routinely during laparoscopy in horses to improve visualisation and facilitate instrument and visceral manipulations during surgery. It has been shown that high-pressure pneumoperitoneum with carbon dioxide (CO2) has deleterious cardiopulmonary effects in dorsally recumbent, mechanically ventilated, halothane-anaesthetised horses. There is no information on the effects of CO2 pneumoperitoneum on cardiopulmonary function and haematology, plasma chemistry and peritoneal fluid (PF) variables in standing sedated horses during laparoscopic surgery. To determine the effects of high pressure CO2 pneumoperitoneum in standing sedated horses on cardiopulmonary function, blood gas, haematology, plasma chemistry and PF variables. Six healthy, mature horses were sedated with an i.v. bolus of detomidine (0.02 mg/kg bwt) and butorphanol (0.02 mg/kg bwt) and instrumented to determine the changes in cardiopulmonary function, haematology, serum chemistry and PF values during and after pneumoperitoneum with CO2 to 15 mmHg pressure for standing laparoscopy. Each horse was assigned at random to either a standing left flank exploratory laparoscopy (LFL) with CO2 pneumoperitoneum or sham procedure (SLFL) without insufflation, and instrumented for measurement of cardiopulmonary variables. Each horse underwent a second procedure in crossover fashion one month later so that all 6 horses had both an LFL and SLFL performed. Cardiopulmonary variables and blood gas analyses were obtained 5 mins after sedation and every 15 mins during 60 mins baseline (BL), insufflation (15 mmHg) and desufflation. Haematology, serum chemistry analysis and PF analysis were performed at BL, insufflation and desufflation, and 24 h after the conclusion of each procedure. Significant decreases in heart rate, cardiac output and cardiac index and significant increases in mean right atrial pressure, systemic vascular resistance and pulmonary vascular resistance were recorded immediately after and during sedation in both groups of horses. Pneumoperitoneum with CO2 at 15 mmHg had no significant effect on cardiopulmonary function during surgery. There were no significant differences in blood gas, haematology or plasma chemistry values within or between groups at any time interval during the study. There was a significant increase in the PF total nucleated cell count 24 h following LFL compared to baseline values for LFL or SLFL at 24 h. There were no differences in PF protein concentrations within or between groups at any time interval. Pneumoperitoneum with CO2 during standing laparoscopy in healthy horses does not cause adverse alterations in cardiopulmonary, haematology or plasma chemistry variables, but does induce a mild inflammatory response within the peritoneal cavity. High pressure (15 mmHg) pneumoperitoneum in standing sedated mature horses for laparoscopic surgery can be performed safely without any short-term or cumulative adverse effects on haemodynamic or cardiopulmonary function.
Feasibility of therapeutic pneumoperitoneum in a large animal model using a microvaporisator.
Reymond, M A; Hu, B; Garcia, A; Reck, T; Köckerling, F; Hess, J; Morel, P
2000-01-01
Multimodal therapy is used increasingly in advanced gastrointestinal tumors. Potential benefits of using an intraoperative adjuvant therapy during laparoscopy for cancer have been documented in animal studies. The aim of this study was to develop a device that could deliver such an intraoperative drug therapy. We developed a micropump suitable for minimally invasive surgery procedures that allowed microdroplets of therapeutic substance to be distributed into the pneumoperitoneum (CO2), creating a "therapeutic pneumoperitoneum." A closed-loop control system regulates drug delivery according to the gas flow. In vitro, the micropump is able to aerosolize various aqueous and ethanol solutions, including cytostatic and bacteriostatic drugs and adhesion-modulating agents. The size of the microdroplets has been optimized to prevent visual artifacts. The micropump was tested in an animal model (pig). The system was inserted into a 5-mm trocar. After insufflation of a 12-mm CO2 pneumoperitoneum, laparoscopic sigmoid colon resections could be performed with no special difficulties. No fog developed, and no system-related complication was observed. At autopsy, the active principle was distributed to all exposed peritoneal surfaces. As opposed to conventional peritoneal washing, therapeutic pneumoperitoneum reaches the entire peritoneal surface, allowing an optimal drug distribution. Drug diffusion into the tissues is enhanced by the intraperitoneal pressure. Precise determination of the instantaneous and total drug quantity is possible. Therefore, this drug delivery system has several advantages over conventional irrigation. Its potential domains of application are locoregional cancer therapy, prevention of port-site recurrences, immunomodulation, analgesia, peritonitis, and prevention of postoperative adhesions.
What is the proper ventilation strategy during laparoscopic surgery?
2017-01-01
The main stream of intraabdominal surgery has changed from laparotomy to laparoscopy, but anesthetic care for laparoscopic surgery is challenging for clinicians, because pneumoperitoneum might aggravate respiratory mechanics and arterial oxygenation. The authors reviewed the literature regarding ventilation strategies that reduce deleterious pulmonary physiologic changes during pneumoperitoneum for laparoscopic surgery under general anesthesia and make appropriate recommendations. PMID:29225741
Pneumatosis in canine gastric dilatation-volvulus syndrome.
Fischetti, Anthony J; Saunders, H Mark; Drobatz, Kenneth J
2004-01-01
Retrospectively, 243 dogs with radiographic evidence of gastric dilatation-volvulus (GDV) were studied for radiographic signs of pneumatosis (intramural gas), pneumoperitoneum, splenomegaly, and severity of gastric distention. The sensitivity, specificity, and predictive value of these imaging signs as predictors of gastric wall necrosis, as determined by visual inspection at surgery or necropsy, were determined. The sensitivity and specificity of gastric pneumatosis were 14.1% and 92.7%, respectively. The prevalence of gastric wall necrosis was 26.6%. The positive and negative predictive values of gastric pneumatosis for predicting gastric necrosis were 40.9% and 74.9%, respectively. Gastric pneumatosis and pneumoperitoneum were identified together in four dogs. Pneumoperitoneum, either alone or in conjunction with pneumatosis, yielded similar results as a test for gastric necrosis. Splenomegaly and severity of gastric distention were insensitive and nonspecific for gastric wall necrosis. Splenomegaly did not predict the need for splenectomy at surgery. Although pneumatosis and pneumoperitoneum are relatively specific signs of gastric wall necrosis, the utility of these signs as a test for gastric necrosis is limited in clinical practice. The significance of pneumatosis should be taken into consideration with previous treatments for gastric decompression, as percutaneous gastric trocharization or orogastric intubation may increase the number of false-positive results.
Low pressure versus standard pressure pneumoperitoneum in laparoscopic cholecystectomy.
Gurusamy, Kurinchi Selvan; Vaughan, Jessica; Davidson, Brian R
2014-03-18
A pneumoperitoneum of 12 to 16 mm Hg is used for laparoscopic cholecystectomy. Lower pressures are claimed to be safe and effective in decreasing cardiopulmonary complications and pain. To assess the benefits and harms of low pressure pneumoperitoneum compared with standard pressure pneumoperitoneum in people undergoing laparoscopic cholecystectomy. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE, and Science Citation Index Expanded until February 2013 to identify randomised trials,using search strategies. We considered only randomised clinical trials, irrespective of language, blinding, or publication status for inclusion in the review. Two review authors independently identified trials and independently extracted data. We calculated the risk ratio (RR), mean difference (MD), or standardised mean difference (SMD) with 95% confidence intervals (CI) using both fixed-effect and random-effects models with RevMan 5 based on available case analysis. A total of 1092 participants randomly assigned to the low pressure group (509 participants) and the standard pressure group (583 participants) in 21 trials provided information for this review on one or more outcomes. Three additional trials comparing low pressure pneumoperitoneum with standard pressure pneumoperitoneum (including 179 participants) provided no information for this review. Most of the trials included low anaesthetic risk participants undergoing elective laparoscopic cholecystectomy. One trial including 140 participants was at low risk of bias. The remaining 20 trials were at high risk of bias. The overall quality of evidence was low or very low. No mortality was reported in either the low pressure group (0/199; 0%) or the standard pressure group (0/235; 0%) in eight trials that reported mortality. One participant experienced the outcome of serious adverse events (low pressure group 1/179, 0.6%; standard pressure group 0/215, 0%; seven trials; 394 participants; RR 3.00; 95% CI 0.14 to 65.90; very low quality evidence). Quality of life, return to normal activity, and return to work were not reported in any of the trials. The difference between groups in the conversion to open cholecystectomy was imprecise (low pressure group 2/269, adjusted proportion 0.8%; standard pressure group 2/287, 0.7%; 10 trials; 556 participants; RR 1.18; 95% CI 0.29 to 4.72; very low quality evidence) and was compatible with an increase, a decrease, or no difference in the proportion of conversion to open cholecystectomy due to low pressure pneumoperitoneum. No difference in the length of hospital stay was reported between the groups (five trials; 415 participants; MD -0.30 days; 95% CI -0.63 to 0.02; low quality evidence). Operating time was about two minutes longer in the low pressure group than in the standard pressure group (19 trials; 990 participants; MD 1.51 minutes; 95% CI 0.07 to 2.94; very low quality evidence). Laparoscopic cholecystectomy can be completed successfully using low pressure in approximately 90% of people undergoing laparoscopic cholecystectomy. However, no evidence is currently available to support the use of low pressure pneumoperitoneum in low anaesthetic risk patients undergoing elective laparoscopic cholecystectomy. The safety of low pressure pneumoperitoneum has to be established. Further well-designed trials are necessary, particularly in people with cardiopulmonary disorders who undergo laparoscopic cholecystectomy.
Azevedo, João L M C; Azevedo, Otavio C; Sorbello, Albino A; Becker, Otavio M; Hypolito, Otavio; Freire, Dalmer; Miyahira, Susana; Guedes, Afonso; Azevedo, Glicia C
2009-12-01
The aim of this work was to establish reliable parameters of the correct position of the Veress needle in the peritoneal cavity during creation of pneumoperitoneum. The Veress needle was inserted into the peritoneal cavity of 100 selected patients, and a carbon-dioxide flow rate of 1.2 L/min and a maximum pressure of 12 mm Hg were established. Intraperitoneal pressure (IP) and the volume of gas injected (VG) were recorded at the beginning of insufflation and at every 20 seconds. Correlations were established for pressure and volume in function of time. Values of IP and VG were predicted at 1, 2, 3, and 4 minutes of insufflation, by applying the following formulas: IP = 2.3083 + 0.0266 x time +8.3 x 10(-5) x time(2) - 2.44 x 10(-7) x time(3); and VG = 0.813 + 0.0157 x time. A strong correlation was observed between IP and preestablished time points during creation of the pneumoperitoneum, as well as between VG and preestablished time points during creation of the pneumoperitoneum, with a coefficient of determination of 0.8011 for IP and of 0.9604 for VG. The predicted values were as follows: 1 minute = 4.15; 2 minutes = 6.27; 3 minutes = 8.36; and 4 minutes = 10.10 for IP (mm Hg); and 1 minute = 1.12; 2 minutes = 2.07; 3 minutes = 3.01; and 4 minutes = 3.95 for VG (L). Values of IP and VG at given time points during insufflation for creation of the pneumoperitoneum, using the Veress needle, can be effective parameters to determine whether the needle is correctly positioned in the peritoneal cavity.
Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy.
Pessaux, Patrick; Diana, Michele; Soler, Luc; Piardi, Tullio; Mutter, Didier; Marescaux, Jacques
2015-04-01
Augmented reality (AR) in surgery consists in the fusion of synthetic computer-generated images (3D virtual model) obtained from medical imaging preoperative workup and real-time patient images in order to visualize unapparent anatomical details. The 3D model could be used for a preoperative planning of the procedure. The potential of AR navigation as a tool to improve safety of the surgical dissection is outlined for robotic hepatectomy. Three patients underwent a fully robotic and AR-assisted hepatic segmentectomy. The 3D virtual anatomical model was obtained using a thoracoabdominal CT scan with a customary software (VR-RENDER®, IRCAD). The model was then processed using a VR-RENDER® plug-in application, the Virtual Surgical Planning (VSP®, IRCAD), to delineate surgical resection planes including the elective ligature of vascular structures. Deformations associated with pneumoperitoneum were also simulated. The virtual model was superimposed to the operative field. A computer scientist manually registered virtual and real images using a video mixer (MX 70; Panasonic, Secaucus, NJ) in real time. Two totally robotic AR segmentectomy V and one segmentectomy VI were performed. AR allowed for the precise and safe recognition of all major vascular structures during the procedure. Total time required to obtain AR was 8 min (range 6-10 min). Each registration (alignment of the vascular anatomy) required a few seconds. Hepatic pedicle clamping was never performed. At the end of the procedure, the remnant liver was correctly vascularized. Resection margins were negative in all cases. The postoperative period was uneventful without perioperative transfusion. AR is a valuable navigation tool which may enhance the ability to achieve safe surgical resection during robotic hepatectomy.
Pneumoperitoneum Caused by Transhepatic Air Leak After Metallic Biliary Stent Placement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jei Hee; Lee, Deok Hee; Yu, Jeong-Sik
2000-11-15
A self-expanding metallic biliary stent was placed for palliation of a common bile duct obstruction in a 68-year-old male with unresectable pancreatic head cancer 3 days after initial percutaneous right transhepatic catheter decompression. The stent crossed the ampulla of Vater. Three days later, the stent was balloon-dilated and the percutaneous access was removed. At removal, a small contrast leak from the transhepatic tract was seen. Three days later, pneumoperitoneum was found with symptoms of peritoneal irritation and fever. A widely open sphincter of Oddi caused by the metallic stent, accompanied by delayed sealing of the transhepatic tract, may have causedmore » the air and bile leakage into the peritoneal space. This case shows that pneumoperitoneum may occur without ductal tear or bowel injury, with a biliary stent crossing the ampulla of Vater.« less
Schietroma, Mario; Carlei, Francesco; Cecilia, Emanuela M; Piccione, Federica; Sista, Federico; De Vita, Fabiola; Amicucci, Gianfranco
2013-04-01
The aim of this study was to compare changes in the systemic inflammation and immune response in the early postoperative (p.o.) period after laparoscopic Nissen fundoplication (LNF) was performed with standard-pressure and low-pressure carbon dioxide pneumoperitoneum. We studied 68 patients with documented gastroesophageal reflux disease and who underwent a LNF: 35 using standard-pressure (12 to 14 mmHg) and 33 low-pressure (6 to 8 mmHg) pneumoperitoneum. White blood cells, peripheral lymphocytes subpopulation, human leukocyte antigen-DR, neutrophil elastase, interleukin (IL)-6 and IL-1, and C-reactive protein were investigated. A significantly higher concentration of neutrophil elastase, IL-6 and IL-1, and C-reactive protein was detected postoperatively in the standard-pressure group of patients in comparison with the low-pressure group (P<0.05). A statistically significant change in human leukocyte antigen-DR expression was recorded p.o. at 24 hours, as a reduction of this antigen expressed on monocyte surface in patients from standard group; no changes were noted in low-pressure group patients (P<0.05). This study demonstrated that reducing the pressure of the pneumoperitoneum to 6 to 8 mm Hg during LNF is reduced p.o. inflammatory response and avoided p.o. immunosuppression.
Le Loch, J-B; Freymond, N; Khettab, F; Pacheco, Y; Devouassoux, G
2008-02-01
Spontaneous pneumomediastinum is a rare entity, predominantly described in young man. The association of acute dyspnea, chest pains and subcutaneous emphysema is usually reported. We report the observation of a pneumomediastinum, fortuitously discovered in front of an isolated giant subcutaneous emphysema in a 59 year old man. The recent clinical history was only marked by the presence of intense and acute dental pains. Associated with a pneumoperitoneum, a retro-pneumoperitoneum, this clinical presentation is uncommon and differs from previous published case reports. Despite a complete evaluation of classical risk factors, its origin remains uncertain. However, the presence of huge dental injuries led to consider such local origin, facilitating air diffusion. This case report allows to reconsider spontaneous pneumomediastinum entity and to propose additional physiopathological mechanisms. This original description underlines the interest to systematically perform dental examination in the presence of unexplained pneumomediastinum.
Kuebler, J F; Schukfeh, N; Vieten, G; Osthaus, W A; Huber, D; Dennhard, N; Suempelmann, R; Ure, B M; Metzelder, M L
2018-06-01
Clinical and experimental data indicate that neonates are sensitive to the CO 2 pneumoperitoneum. An impaired splanchnic perfusion during laparoscopy in adults has been reported. We recently confirmed that intravenous colloids improve macrocirculatory function in neonates. We aimed to determine the impact of CO 2 pneumoperitoneum on the perfusion of splanchnic organs in the young including effects of colloid application. Male piglets (n = 25) were divided into four groups: (1) neonatal controls, (2) neonates with crystalloid restitution, (3) neonates with colloidal restitution, and (4) adolescents with crystalloid restitution. Animals were ventilated and subjected to a 3-h, 10 mmHg CO 2 pneumoperitoneum followed by 2 h resuscitation. Hepatic, splanchnic, and arteriovenous shunt perfusion was assessed via central and portal venous catheters. Capillary organ flow was detected by fluorescent microspheres. The rate of bile flow was measured. The neonatal crystalloid group showed a significant decrease in the intestinal capillary perfusion at the end of the recovery period. This was not detectable in the adolescent and colloid group. There was a significant increase in microcirculatory arterioportal shunt flow during the CO 2 pneumoperitoneum in both neonatal groups but not in the sham and adolescent groups (p < 0.05). Hepatic arterial perfusion increased after insufflation in all groups and dropped during capnoperitoneum to levels of about 70% baseline. There was no significant impairment of splanchnic perfusion or bile flow as a result of the pneumoperitoneum in all groups. Capillary perfusion of the abdominal organs was stable during capnoperitoneum and recovery in adolescents and neonates with colloid restitution, but not with crystalloid restitution. Significant arterioportal shunting during capnoperitoneum could affect hepatic microcirculation in neonates. Our data confirm that moderate pressure capnoperitoneum has no major effect on the perfusion of abdominal organs in neonates with adequate substitution.
Sandhu, Trichak; Yamada, Sirikan; Ariyakachon, Veeravorn; Chakrabandhu, Thiraphat; Chongruksut, Wilaiwan; Ko-iam, Wasana
2009-05-01
Post-laparoscopic pain syndrome is well recognized and characterized by abdominal and particularly shoulder tip pain; it occurs frequently following laparoscopic cholecystectomy. The etiology of post-laparoscopic pain can be classified into three aspects: visceral, incision, and shoulder. The origin of shoulder pain is only partly understood, but it is commonly assumed that the cause is overstretching of the diaphragmatic muscle fibers owing to a high rate of insufflations. This study aimed to compare the frequency and intensity of shoulder tip pain between low-pressure (7 mmHg) and standard-pressure (14 mmHg) in a prospective randomized clinical trial. One hundred and forty consecutive patients undergoing elective laparoscopic cholecystectomy were randomized prospectively to either high- or low-pressure pneumoperitoneum and blinded by research nurses who assessed the patients during the postoperative period. The statistical analysis included sex, mean age, weight, American Society of Anesthesiologists (ASA) grade, operative time, complication rate, duration of surgery, conversion rate, postoperative pain by using visual analogue scale, number of analgesic injections, incidence and severity of shoulder tip pain, and postoperative hospital stay. p < 0.05 was considered indicative of significance. The characteristics of the patients were similar in the two groups except for the predominance of males in the standard-pressure group (controls). The procedure was successful in 68 of 70 patients in the low-pressure group compared with in 70 patients in the standard group. Operative time, number of analgesic injections, visual analogue score, and length of postoperative days were similar in both groups. Incidence of shoulder tip pain was higher in the standard-pressure group, but not statistically significantly so (27.9% versus 44.3%) (p = 0.100). Low-pressure pneumoperitoneum tended to be better than standard-pressure pneumoperitoneum in terms of lower incidence of shoulder tip pain, but this difference did not reach statistical significance following elective laparoscopic cholecystectomy.
Laparoscopic training model using fresh human cadavers without the establishment of penumoperitoneum
Imakuma, Ernesto Sasaki; Ussami, Edson Yassushi; Meyer, Alberto
2016-01-01
BACKGROUND: Laparoscopy is a well-established alternative to open surgery for treating many diseases. Although laparoscopy has many advantages, it is also associated with disadvantages, such as slow learning curves and prolonged operation time. Fresh frozen cadavers may be an interesting resource for laparoscopic training, and many institutions have access to cadavers. One of the main obstacles for the use of cadavers as a training model is the difficulty in introducing a sufficient pneumoperitoneum to distend the abdominal wall and provide a proper working space. The purpose of this study was to describe a fresh human cadaver model for laparoscopic training without requiring a pneumoperitoneum. MATERIALS AND METHODS AND RESULTS: A fake abdominal wall device was developed to allow for laparoscopic training without requiring a pneumoperitoneum in cadavers. The device consists of a table-mounted retractor, two rail clamps, two independent frame arms, two adjustable handle and rotating features, and two frames of the abdominal wall. A handycam is fixed over a frame arm, positioned and connected through a USB connection to a television and dissector; scissors and other laparoscopic materials are positioned inside trocars. The laparoscopic procedure is thus simulated. CONCLUSION: Cadavers offer a very promising and useful model for laparoscopic training. We developed a fake abdominal wall device that solves the limitation of space when performing surgery on cadavers and removes the need to acquire more costly laparoscopic equipment. This model is easily accessible at institutions in developing countries, making it one of the most promising tools for teaching laparoscopy. PMID:27073318
Galea, Julie; Burnand, Katherine M; Dawson, Fiona L; Sinha, Chandrasen K; Rex, Dean; Okoye, Bruce O
2017-02-01
Aim Pneumatosis intestinalis (PI) is a condition in which multiple gas-filled cysts form within the wall of the gastrointestinal tract in either the subserosa or submucosa. The presence of pneumoperitoneum in the presence of PI can present a therapeutic dilemma. The aim of our study was to review our experience and management of this condition. Methods A single-center retrospective study of consecutive children (> 1 year) presenting with a pneumoperitoneum and evidence of PI (2009-2015). Demographics, case notes, microbiology, and imaging were reviewed. Results Seven patients were identified (four males; age range 5-14 years). Four children had global developmental delay and were percutaneous endoscopic gastrostomy or jejunostomy fed, one was immunocompromised (acute lymphoblastic leukemia). The others had encephalitis and eosinophilic gastroenteritis. One patient proceeded to an exploratory laparotomy; no perforation was identified, pneumatosis of the colon was observed, and a loop ileostomy was formed. The remaining six were managed conservatively and made nil by mouth with intravenous antibiotics commenced. Five of the six had a computed tomography (CT) scan which revealed PI and free air with no other worrying signs. One died from nongastrointestinal causes, while the remaining five had feeds reintroduced uneventfully. Conclusion Free air in the setting of PI may represent rupture of the gas cysts and not always transmural perforation. Surgery may not always be indicated and conservative management may suffice. A CT scan can be useful for excluding other intra-abdominal pathological findings and continued clinical assessment is essential. Georg Thieme Verlag KG Stuttgart · New York.
Laparoscopic umbilical hernia repair in a cirrhotic patient with a peritoneovenous shunt.
Umemura, Akira; Suto, Takayuki; Sasaki, Akira; Fujita, Tomohiro; Endo, Fumitaka; Wakabayashi, Go
2015-05-01
A 62-year-old Japanese woman who had developed massive cirrhotic ascites was referred to our hospital for a peritoneovenous shunt implant. However, CT examination revealed an umbilical hernia that had not been observed before the peritoneovenous shunt was implanted. We decided to perform laparoscopic umbilical hernia repair to keep carbon dioxide from flowing backward into the central circulatory system. We first clamped the catheter and set the upper limit of the pneumoperitoneum pressure to 6 mmHg. The central venous pressure was also measured simultaneously. Mesh was then applied over the hernia and fixed by the double-crown technique. Finally, 1000-mL physiological saline was infused into the abdominal cavity while the pneumoperitoneum was slowly released. In this case, we safely performed laparoscopic umbilical hernia repair while making some alterations, specifically catheter clamping, reducing pneumoperitoneum pressure, monitoring central venous pressure, and infusing physiological saline. © 2014 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.
Schietroma, Mario; Pessia, Beatrice; Stifini, Derna; Lancione, Laura; Carlei, Francesco; Cecilia, Emanuela Marina; Amicucci, Gianfranco
2016-01-01
The advantages of laparoscopic adrenalectomy (LA) over open adrenalectomy are undeniable. Nevertheless, carbon dioxide (CO2) pneumoperitoneum may have an unfavourable effect on the local immune response. The aim of this study was to compare changes in the systemic inflammation and immune response in the early post-operative (p.o.) period after LA performed with standard and low-pressure CO2 pneumoperitoneum. We studied, in a prospective randomised study, 51 patients consecutively with documented adrenal lesion who had undergone a LA: 26 using standard-pressure (12-14 mmHg) and 25 using low-pressure (6-8 mmHg) pneumoperitoneum. White blood cells (WBC), peripheral lymphocyte subpopulation, human leucocyte antigen-DR (HLA-DR), neutrophil elastase, interleukin (IL)-6 and IL-1, and C-reactive protein (CRP) were investigated. Significantly higher concentrations of neutrophil elastase, IL-6 and IL-1 and CRP were detected p.o. in the standard-pressure group of patients in comparison with the low-pressure group (P < 0.05). A statistically significant change in HLA-DR expression was recorded p.o. at 24 h, as a reduction of this antigen expressed on the monocyte surface in patients from the standard group; no changes were noted in low-pressure group patients (P < 0.05). This study demonstrated that reducing the pressure of the pneumoperitoneum to 6-8 mmHg during LA reduced p.o. inflammatory response and averted p.o. immunosuppression.
Rustagi, Preeti; Patkar, Geeta A; Ourasang, Anil Kumar; Tendolkar, Bharati A
2017-02-01
A sustained and effective oropharyngeal sealing with supraglottic airway is required to maintain the ventilation during laparoscopic surgery. Previous studies have observed the Oropharyngeal Seal Pressure (OSP) for Proseal Laryngeal Mask Airway (PLMA) after pneumoperitoneum in supine and trendelenburg position, where PLMA was found to be an effective airway device. This study was conducted with ProSeal LMA, for laparoscopic Urologic procedures done in lateral position. To measure OSP in supine and lateral position and to observe the effect of pneumoperitoneum in lateral position on OSP. Secondary objectives were to assess adequacy of ventilation and incidence of adverse events. A total number of 25 patients of American Society of Anaesthesiologists (ASA) physical status II and I were enrolled. After induction of anaesthesia using a standardized protocol, PLMA was inserted. Ryle's tube was inserted through drain tube. The position of PLMA was confirmed with ease of insertion of Ryle's tube and fibreoptic grading of vocal cords. Patients were then put in lateral position. The OSP was measured in supine position. This value was baseline comparison for OSP in lateral position and that after pneumoperitoneum. We assessed the efficacy of PLMA for ventilation, after carboperitoneum in lateral position (peak airway pressure, End Tidal Carbon dioxide (EtCO 2 ), SPO 2 ). Incidence of adverse effects (displacement of device, gastric insufflation, regurgitation, coughing, sore throat, blood on device, trauma) was also noted. The OSP was above Peak Airway Pressure (PAP) in supine (22.1±5.4 and 15.4±4.49cm of H 2 O) and lateral position (22.6±5.3 and 16.1±4.6). After pneumoperitoneum, which was in lateral position, there was statistically significant (p-value <0.05) increase in both PAP (19.96±4.015) and OSP (24.32±4.98, p-value 0.03). There was no intraoperative displacement of PLMA. There was no event of suboptimal oxygenation. EtCO 2 was always within normal limits. Gastric insufflation was present in one patient. One patient had coughing and blood was detected on device. Three patients had throat discomfort post-operatively. In this study, Oropharyngeal seal pressures with PLMA were found to increase after pneumoperitoneum in lateral position. PLMA forms an effective seal around airway and is an efficient and safe alternative for airway management in urological laparoscopic surgeries done in lateral position.
Intraocular Pressure Changes With Positioning During Laparoscopy
Onakpoya, Oluwatoyin H.; Adenekan, Anthony T.; Awe, Oluwaseun. O.
2016-01-01
Background and Objectives: Pneumoperitoneum during laparoscopy can produce changes in intraocular pressure (IOP) that may be influenced by several factors. In this study, we investigated changes in IOP during laparoscopy with different positioning. Methods: We recruited adult patients without eye disease scheduled to undergo laparoscopic operation requiring a reverse Trendelenburg tilt (rTr; group A; n = 20) or Trendelenburg tilt (Tr; Group B; n = 20). IOP was measured at 7 time points (T1–T7). All procedures were performed with standardized anaesthetic protocol. Mean arterial pressure (MAP), heart rate (HR), peak and plateau airway pressure, and end-tidal carbon dioxide (ETCO2) measurements were taken at each time point. Results: Both groups were similar in age, sex, mean body mass index (BMI), duration of surgery, and preoperative IOP. A decrease in IOP was observed in both groups after induction of anaesthesia (T2), whereas induction of pneumoperitoneum produced a mild increase in IOP (T3) in both groups. The Trendelenburg tilt produced IOP elevations in 80% of patients compared to 45% after the reverse Trendelenburg tilt (P = .012). A significant IOP increase of 5 mm Hg or more was recorded in 3 (15%) patients in the Trendelenburg tilt group and in none in the reverse Trendelenburg group. At T7, IOP had returned to preoperative levels in all but 3 (15%) in the Trendelenburg and 1 (5%) in the reverse Trendelenburg group. Reversible changes were observed in the MAP, HR, ETCO2, and airway pressures in both groups. Conclusions: IOP changes induced by laparoscopy are realigned after evacuation of pneumoperitoneum. A Trendelenburg tilt however produced significant changes that may require careful patient monitoring during laparoscopic procedures. PMID:28028381
Walsh, Mike J; Tharratt, Steven R; Offerman, Steven R
2010-06-01
Liquid nitrogen (LN) ingestion is unusual, but may be encountered by poison centers, emergency physicians, and general surgeons. Unique properties of LN produce a characteristic pattern of injury. A 19-year-old male college student presented to the Emergency Department complaining of abdominal pain and "bloating" after drinking LN. His presentation vital signs were remarkable only for mild tachypnea and tachycardia. On physical examination, he had mild respiratory difficulty due to abdominal distention. His abdomen was tense and distended. Abdominal X-ray studies revealed a massive pneumoperitoneum. At laparotomy, he was found to have a large amount of peritoneal gas. No perforation was identified. After surgery, the patient made an uneventful recovery and was discharged 5 days later. At 2-week clinic follow-up, he was doing well without complications. Nitrogen is a colorless, odorless gas at room temperature. Due to its low boiling point (-195 degrees C), LN rapidly evaporates when in contact with body surface temperatures. Therefore, ingested LN causes damage by two mechanisms: rapid freezing injury upon mucosal contact and rapid volume expansion as nitrogen gas is formed. Patients who ingest LN may develop gastrointestinal perforation and massive pneumoperitoneum. Because rapid gas formation may allow large volumes to escape from tiny perforations, the exact site of perforation may never be identified. In cases of LN ingestion, mucosal injury and rapid gas formation can cause massive pneumoperitoneum. Although laparotomy is recommended for all patients with signs of perforation, the site of injury may never be identified. Copyright 2010 Elsevier Inc. All rights reserved.
Kesici, Ugur; Kesici, Sevgi; Polat, Erdal; Agca, Birol; Turkmen, Ulku A; Ozcan, Deniz; Sari, Musa K
2011-08-01
To investigate the safety of laparoscopic intervention for diagnosis and treatment at 8 mm Hg pressure in one-hour period on acute peritonitis related intra-abdominal sepsis model. In this study, we included 32 female Wistar-Albino rats, weighing 250 +/- 20 g, and divided them into 4 groups. This study was conducted in Istanbul University Experimental Medical Research Institution (DETAE) laboratory from April to May 2009. Intra-abdominal sepsis was created with intraperitoneal (i.p.) one mL (109 CFU/mL) Escherichia coli (E. coli) injection, and pneumoperitoneum was formed with CO2 insufflation at 8 mm Hg pressure for one hour i.p. The rats were administered with: Group 1 - one mL i.p. isotonic saline; Group 2 - one mL i.p. isotonic saline + pneumoperitoneum; Group 3 - i.p E. coli; and Group 4 - i.p. E.coli + pneumoperitoneum. Data were analyzed using the Statistical Package for Social Sciences version 15 for Windows (SPSS Inc, Chicago, IL, USA). Fever and leukocyte values were considered high in Groups 3 and 4 compared with Groups 1 and 2 (p=0.001). The administered reproduction ratio of the E. coli strain was determined as 0% in Groups 1 and 2, and 100% in Groups 3 and 4. In this study, as pneumoperitoneum was formed for one hour at 8 mm Hg pressure, in case of intra-abdominal derived sepsis where emergency intervention is needed, we consider that laparoscopic approaches with low pressure may be used safely for diagnosis and treatment.
Bueno-Lledó, José; Torregrosa Gallud, Antonio; Jiménez Rosellón, Raquel; Carbonell Tatay, Fernando; García Pastor, Providencia; Bonafé Diana, Santiago; Iserte Hernández, José
2017-05-01
Preoperative progressive pneumoperitoneum and botulinum toxin type A are useful tools in the preparation of patients with loss of domain hernias. Both procedures are complementary in the surgical repair, especially with the use of prosthetic techniques without tension, that allow a integral management of these patients. The aim of this paper is to update concepts related to both procedures, emphasizing the advantages that take place in the preoperative management of loss of domain hernias. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
Management of mechanical ventilation during laparoscopic surgery.
Valenza, Franco; Chevallard, Giorgio; Fossali, Tommaso; Salice, Valentina; Pizzocri, Marta; Gattinoni, Luciano
2010-06-01
Laparoscopy is widely used in the surgical treatment of a number of diseases. Its advantages are generally believed to lie on its minimal invasiveness, better cosmetic outcome and shorter length of hospital stay based on surgical expertise and state-of-the-art equipment. Thousands of laparoscopic surgical procedures performed safely prove that mechanical ventilation during anaesthesia for laparoscopy is well tolerated by a vast majority of patients. However, the effects of pneumoperitoneum are particularly relevant to patients with underlying lung disease as well as to the increasing number of patients with higher-than-normal body mass index. Moreover, many surgical procedures are significantly longer in duration when performed with laparoscopic techniques. Taken together, these factors impose special care for the management of mechanical ventilation during laparoscopic surgery. The purpose of the review is to summarise the consequences of pneumoperitoneum on the standard monitoring of mechanical ventilation during anaesthesia and to discuss the rationale of using a protective ventilation strategy during laparoscopic surgery. The consequences of chest wall derangement occurring during pneumoperitoneum on airway pressure and central venous pressure, together with the role of end-tidal-CO2 monitoring are emphasised. Ventilatory and non-ventilatory strategies to protect the lung are discussed.
Cinnella, Gilda; Grasso, Salvatore; Spadaro, Savino; Rauseo, Michela; Mirabella, Lucia; Salatto, Potito; De Capraris, Antonella; Nappi, Luigi; Greco, Pantaleo; Dambrosio, Michele
2013-01-01
The authors tested the hypothesis that during laparoscopic surgery, Trendelenburg position and pneumoperitoneum may worsen chest wall elastance, concomitantly decreasing transpulmonary pressure, and that a protective ventilator strategy applied after pneumoperitoneum induction, by increasing transpulmonary pressure, would result in alveolar recruitment and improvement in respiratory mechanics and gas exchange. In 29 consecutive patients, a recruiting maneuver followed by positive end-expiratory pressure 5 cm H(2)O maintained until the end of surgery was applied after pneumoperitoneum induction. Respiratory mechanics, gas exchange, blood pressure, and cardiac index were measured before (T(BSL)) and after pneumoperitoneum with zero positive end-expiratory pressure (T(preOLS)), after recruitment with positive end-expiratory pressure (T(postOLS)), and after peritoneum desufflation with positive end-expiratory pressure (T(end)). Esophageal pressure was used for partitioning respiratory mechanics between lung and chest wall (data are mean ± SD): on T(preOLS), chest wall elastance (E(cw)) and elastance of the lung (E(L)) increased (8.2 ± 0.9 vs. 6.2 ± 1.2 cm H(2)O/L, respectively, on T(BSL); P = 0.00016; and 11.69 ± 1.68 vs. 9.61 ± 1.52 cm H(2)O/L on T(BSL); P = 0.0007). On T(postOLS), both chest wall elastance and E(L) decreased (5.2 ± 1.2 and 8.62 ± 1.03 cm H(2)O/L, respectively; P = 0.00015 vs. T(preOLS)), and Pao(2)/inspiratory oxygen fraction improved (491 ± 107 vs. 425 ± 97 on T(preOLS); P = 0.008) remaining stable thereafter. Recruited volume (the difference in lung volume for the same static airway pressure) was 194 ± 80 ml. Pplat(RS) remained stable while inspiratory transpulmonary pressure increased (11.65 + 1.37 cm H(2)O vs. 9.21 + 2.03 on T(preOLS); P = 0.007). All respiratory mechanics parameters remained stable after abdominal desufflation. Hemodynamic parameters remained stable throughout the study. In patients submitted to laparoscopic surgery in Trendelenburg position, an open lung strategy applied after pneumoperitoneum induction increased transpulmonary pressure and led to alveolar recruitment and improvement of E(cw) and gas exchange.
[Effect of remifentanil on urine output during gynecological laparoscopic surgery].
Yago, Yasuko; Tajiri, Osamu; Ito, Hiroyuki; Kanazawa, Masashi; Tateda, Takeshi
2009-05-01
We retrospectively examined the effect of remifentanil on urine output during gynecological laparoscopic surgery under general anesthesia performed from April 2006 to July 2007. Forty six patients undergoing gynecological laparoscopic surgery under general anesthesia were divided into 2 groups. In group C (n=23), anesthesia was performed using sevoflurane and/or propofol with intermittent fentanyl. In group R (n=23), remifentanil was additionally used with the method of group C. Patient's demography was not different between the two groups. Intraoperative conditions were compatible in both groups. In group R, total dose of fentanyl is significantly lower than group C. BP and HR measured at 20 min after pneumoperitoneum were significantly lower in group R. Intraoperative urine output was significantly greater in group R than group C. A decrease in urine output is commonly seen particularly in laparoscopic surgery. Increased stress hormonal responses due to pneumoperitoneum have been explained as one of the causes of this phenomenon. Remifentanil has been reported to maintain urine output as well as to blunt hormonal responses in CABG surgery. Although we did not measure hormonal responses in the present study, increased urine output could be attributed to decreased catecholamine levels by remifentanil.
Impact of pneumoperitoneum on tumor growth.
Lécuru, F; Agostini, A; Camatte, S; Robin, F; Aggerbeck, M; Jaïs, J P; Vilde, F; Taurelle, R
2002-08-01
To compare intraperitoneal tumor growth after CO2 laparoscopy (L), gasless laparoscopy (GL), midline laparotomy (ML), and general anesthesia (GA) as a control. A prospective randomized trial was carried out in nude rats. A carcinomatosis was obtained by intraperitoneal injection of either one of the two human ovarian cancer cell lines IGR-OV1 or NIH:OVCAR-3. Rats secondly underwent randomly different kind of procedures: CO2 L (8 mmHg, 60 min), GL (traction by a balloon for 60 min), ML (bowel removed and let on a mesh for 60 min), or GA. The rats were finally killed 10 or 35 days after surgery (respectively in IGR-OV1, or NIH:OVCAR-3 models). Tumor growth was assessed by the weight of the omental metastasis and MIB1 immunostaining. Peritoneal dissemination as well as abdominal wall metastases were assessed by pathological examination. Statistical analysis used the chi-square test (or Fisher exact test) and Bonferroni method for multiple comparison between groups. Fifteen rats were included in each group. Mean omental weight was significantly increased after surgery (3.1 to 5.6 g), when compared to control (2.4 g), but no significant difference was recorded between the three surgical accesses. MIB1 immunostaining was poor in the PNP group (37%), whereas it was higher after midline laparotomy (51%), but the difference was not significant (p = 0.07). Similarly, no significant variation was recorded in the NIH:OVCAR-3 model for omental weight or MIB1 staining. CO2 pneumoperitoneum significantly increased right diaphragmatic dome involvement in the NIH:OVCAR-3 model. Abdominal wall metastases were significantly more frequent after surgery when compared to the control group, but no significant difference could be demonstrated between surgical groups in each model. In these solid tumor models, CO2 pneumoperitoneum had no deleterious effect on tumor growth when compared to gasless laparoscopy or midline laparotomy.
Davarcı, I; Karcıoğlu, M; Tuzcu, K; İnanoğlu, K; Yetim, T D; Motor, S; Ulutaş, K T; Yüksel, R
2015-01-01
To compare the effects of pneumoperitoneum on lung mechanics, end-tidal CO2 (ETCO2), arterial blood gases (ABG), and oxidative stress markers in blood and bronchoalveolar lavage fluid (BALF) during laparoscopic cholecystectomy (LC) by using lung-protective ventilation strategy. Forty-six patients undergoing LC and abdominal wall hernia (AWH) surgery were assigned into 2 groups. Measurements and blood samples were obtained before, during pneumoperitoneum, and at the end of surgery. BALF samples were obtained after anesthesia induction and at the end of surgery. Peak inspiratory pressure, ETCO2, and pCO2 values at the 30th minute were significantly increased, while there was a significant decrease in dynamic lung compliance, pH, and pO2 values in LC group. In BALF samples, total oxidant status (TOS), arylesterase, paraoxonase, and malondialdehyde levels were significantly increased; the glutathione peroxidase levels were significantly decreased in LC group. The serum levels of TOS and paraoxonase were significantly higher at the end of surgery in LC group. In addition, arylesterase level in the 30th minute was increased compared to baseline. Serum paraoxonase level at the end of surgery was significantly increased when compared to AWH group. Our study showed negative effects of pneumoperitoneum in both lung and systemic levels despite lung-protective ventilation strategy.
Saline-filled laparoscopic surgery: A basic study on partial hepatectomy in a rabbit model.
Shimada, Masanari; Kawaguchi, Masahiko; Ishikawa, Norihiko; Watanabe, Go
2015-01-01
There is still a poor understanding of the effects of pneumoperitoneum with insufflation of carbon dioxide gas (CO2) on malignant cells, and pneumoperitoneum has a negative impact on cardiopulmonary responses. A novel saline-filled laparoscopic surgery (SAFLS) is proposed, and the technical feasibility of performing saline-filled laparoscopic partial hepatectomy (LPH) was evaluated in a rabbit model. Twelve LPH were performed in rabbits, with six procedures performed using an ultrasonic device with CO2 pneumoperitoneum (CO2 group) and six procedures performed using a bipolar resectoscope (RS) in a saline-filled environment (saline group). Resection time, CO2 and saline consumption, vital signs, blood gas analysis, complications, interleukin-1 beta (IL-1β) and C-reactive protein (CRP) levels were measured. The effectiveness of the resections was evaluated by the pathological findings. LPH was successfully performed with clear observation by irrigation and good control of bleeding by coagulation with RS. There were no significant differences in all perioperative values, IL-1βand CRP levels between the two groups. All pathological specimens of the saline group showed that the resected lesions were coagulated and regenerated as well as in the CO2 group. SAFLS is feasible and provides a good surgical view with irrigation and identification of bleeding sites.
La Falce, Sabrina; Novara, Giacomo; Gandaglia, Giorgio; Umari, Paolo; De Naeyer, Geert; D'Hondt, Frederiek; Beresian, Jean; Carette, Rik; Penicka, Martin; Mo, Yujiing; Vandenbroucke, Geert; Mottrie, Alexandre
2017-12-01
Limited studies examined effects of pneumoperiotneum during robot-assisted radical prostatectomy (RARP) and with AirSeal. The aim of this study was to assess the effect on hemodynamics of a lower pressure pneumoperitoneum (8 mmHg) with AirSeal, during RARP in steep Trendelenburg 45° (ST). This is an institutional review board-approved, prospective, interventional, single-center study including patients treated with RARP at OLV Hospital by one extremely experienced surgeon (July 2015-February 2016). Intraoperative monitoring included: arterial pressure, central venous pressure, cardiac output, heart rate, stroke volume, systemic vascular resistance, intrathoracic pressure, airways pressures, left ventricular end-diastolic and end-systolic areas/volumes and ejection fraction, by transesophageal echocardiography, an esophageal catheter, and FloTrac/Vigileo system. Measurements were performed after induction of anesthesia with patient in horizontal (T0), 5 minutes after 8 mmHg pneumoperitoneum (TP), 5 minutes after ST (TT1) and every 30 minutes thereafter until the end of surgery (TH). Parameters modification at the prespecified times was assessed by Wilcoxon and Friedman tests, as appropriate. All analyses were performed by SPSS v. 23.0. A total of 53 consecutive patients were enrolled. The mean patients age was 62.6 ± 6.9 years. Comorbidity was relatively limited (51% with Charlson Comorbidity Index as low as 0). Despite the ST, working always at 8 mmHg with AirSeal, only central venous pressure and mean airways pressure showed a statistically significant variation during the operative time. Although other significant hemodynamic/respiratory changes were observed adding pneumoperitoneum and then ST, all variables remained always within limits safely manageable by anesthesiologists. The combination of ST, lower pressure pneumoperitoneum and extreme surgeon's experience enables to safely perform RARP. Copyright © 2017 Elsevier Inc. All rights reserved.
Miyano, Go; Morita, Keiichi; Kaneshiro, Masakatsu; Miyake, Hiromu; Nouso, Hiroshi; Yamoto, Masaya; Koyama, Mariko; Nakano, Reiji; Tanaka, Yasuhiko; Fukumoto, Koji; Urushihara, Naoto
2015-08-01
We report a case of a 1.8-kg infant who had laparoscopic Toupet fundoplication (LTF) using the AirSeal Intelligent Flow System and Anchor Port (AP). Our case had severe gastroesophageal reflux in association with genetic and cardiac anomalies. Despite the patient being continuously fed, persistent vomiting caused failure to thrive, and LTF was performed at 4 months of age when he weighed 1.8 kg. The AirSeal Intelligent Flow System is a novel laparoscopic CO2 insufflation system that improves the visual field by constantly evacuating smoke and providing a more stable pneumoperitoneum. The AP is a recently developed, stretchable, elastomeric, low-profile cannula. Three 5-mm AP were inserted: one subumbilically for the scope and one in both the right and left upper abdomen for the surgeon. A 5-mm AirSeal trocar was inserted in the left lower abdomen for the assistant. The gastrosplenic ligament was dissected free, and the intra-abdominal esophagus was prepared. A posterior hiatoplasty was performed, followed by the 270° fundoplication. During the fundoplication, the esophagus was fixed to the crus and then the right and left wraps were fixed to the esophagus. Pneumoperitoneum was maintained stably throughout the LTF procedure, with optimal operative field. Total operating time for LTF was 90 min. Body temperature dropped from 37.4°C to 35.7°C during pneumoperitoneum but resolved once pneumoperitoneum was ceased. Postoperative progress was uneventful, and an upper gastrointestinal study on postoperative day 2 showed no residual gastroesophageal reflux. We believe the AirSeal Intelligent Flow System and AP contributed to the successful completion of LTF in a 1.8-kg infant. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.
Liu, Yang; Cao, Wen; Liu, Yu; Wang, Yun; Lang, Ren; Yue, Yun; Wu, An-Shi
2017-03-20
A moderate insufflation pressure and deep neuromuscular blockade (NMB) have been recommended in laparoscopic surgery in consideration of the possible reduction in splanchnic perfusion due to the CO 2 -pneumoperitoneum. Since the liver is the major organ for rocuronium metabolism, the question of whether NMB of rocuronium would change with the variation of liver perfusion during pneumoperitoneum during laparoscopic surgery merits investigation. In this prospective study, a total of sixty female patients scheduled for either selective laparoscopic gynaecological surgery (group laparoscopy) or laparotomy for gynaecological surgery (group control) were analyzed. Rocuronium was administered with closed-loop feedback infusion system, which was also applied to monitor NMB complied with good clinical research practice (GCRP). The onset time, clinical duration, and recovery index were measured. Hepatic blood flow was assessed by laparoscopic intraoperative ultrasonography before insufflation/after entering the abdominal cavity (T1), 5 min after insufflation in the Trendelenburg position/5 min after skin incision (T2), 15 min after insufflation in the Trendelenburg position/15 min after skin incision (T3), 30 min after insufflation in the Trendelenburg position/30 min after skin incision (T4), and 5 min after deflation/before closing the abdomen (T5) in group laparoscopy/group control respectively. The relationship between the clinical duration of rocuronium and portal venous blood flow was analyzed using linear or quadratic regression. The clinical duration and RI of rocuronium were both prolonged significantly in group laparoscopy (36.8 ± 8.3 min; 12.8 ± 5.5 min) compared to group control (29.0 ± 5.8 min; 9.8 ± 4.0 min) (P < 0.0001; P = 0.018). A significant decrease was found in portal venous blood flow during the entire pneumoperitoneum period in group laparoscopy compared with group control (P < 0.0001). There was a significant correlation between the clinical duration of rocuronium and portal venous blood flow (Y = 51.800-0.043X + (1.86E-005) X 2 ; r 2 = 0.491; P < 0.0001). Rocuronium-induced NMB during laparoscopic gynaecological surgery might be prolonged due to the decrease in portal venous blood flow induced by CO 2 -pneumoperitoneum. Less rocuronium could be required to achieve a desirable NMB in laparoscopic gynaecological surgery. ChiCTR. Registry number: ChiCTR-OPN-15007524 . Date of registration: December 4, 2015.
Sabbagh, C; Dumont, F; Fuks, D; Yzet, T; Verhaeghe, P; Regimbeau, J-M
2012-02-01
Progressive preoperative pneumoperitoneum (PPP) is used to prepare incisional hernias with loss of domain (IHLD) operations. The aim of the present study was to analyze the effect of PPP on peritoneal volume [measured using a new computed tomography (CT)-based method] and respiratory function. From July 2004 to July 2008, 19 patients were included in a prospective, observational study. The volumes of the incisional hernia (VIH), the abdominal cavity (VAC), the total peritoneal content (VP) and the VIH/VP ratio were measured before and after PPP using abdominal CT scan data. Spirometric parameters were measured before and after PPP, and postoperative clinical data were evaluated. Before and after PPP, the mean VIH was 1,420 cc and 2,110 cc (P < 0.01), and the mean VAC was 9,083 cc and 11,104 cc (P < 0.01). The VAC increased by 2,021 cc (P < 0.01) and was greater than the mean VIH before PPP. After PPP, the spirometric measurements revealed a restrictive syndrome. The overall postoperative morbidity rate was 37%. PPP increased the hernia and abdominal volumes. PPP induced a progressive, restrictive syndrome.
Muramori, Katsumi; Takahashi, Yukiko; Handa, Noritoshi; Aikawa, Hisayuki
2009-04-01
A 7-year-old girl with concurrent subcutaneous emphysema, pneumomediastinum, pneumothorax, pneumoperitoneum, and pneumoretroperitoneum arrived at our facility. Compressed air at 5 atm of pressure was insufflated through the nozzle of a spray gun over her external genitalia. She was admitted for a small amount of genital bleeding and significant subcutaneous emphysema extending from the cheek to the upper body. Radiographic examination of the abdomen was suggestive of a visceral perforation, but she was managed conservatively and discharged in satisfactory condition without surgical intervention. The female genitalia possibly served as the entry point for air into the retroperitoneum and peritoneal cavity, with subsequent migration of air through the esophageal hiatus that resulted in pneumomediastinum, pneumothorax, and extensive subcutaneous emphysema.
Kozanhan, Betül; Başaran, Betül; Aygın, Feride; Akkoyun, İbrahim; Özmen, Sadık
2016-02-01
Laparoscopic repair has several advantages with a minimally invasive surgical option for children with Morgagni hernias; however, a number of physiological sequelae results from pneumoperitoneum and insufflation. These physiological changes may be more significant in patients with a congenital heart disease. Perioperative detailed evaluation, meticulous monitorization and cooperation with a surgical team are important in cases with patent foramen ovale for the possible risk of the paradoxical gas embolism. We present the anaesthetic management of a patient with patent foramen ovale, Down syndrome and pectus carinatus who successfully underwent laparoscopic Morgagni hernia repair. Under a well-managed anaesthesia that prevented complications because of pneumoperitoneum, laparoscopic surgery would be safe enough for patients with Morgagni hernia having an associated congenital heart disease.
Iskandar, Mazen E; Chory, Fiona M; Goodman, Elliot R; Surick, Burton G
2015-01-01
Perforated duodenal ulcers are rare complications seen after roux-en-Y gastric bypass (RYGP). They often present as a diagnostic dilemma as they rarely present with pneumoperitoneum on radiologic evaluation. There is no consensus as to the pathophysiology of these ulcers; however expeditious treatment is necessary. We present two patients with perforated duodenal ulcers and a distant history of RYGP who were successfully treated. Their individual surgical management is discussed as well as a literature review. We conclude that, in patients who present with acute abdominal pain and a history of RYGB, perforated ulcer needs to be very high in the differential diagnosis even in the absence of pneumoperitoneum. In these patients an early surgical exploration is paramount to help diagnose and treat these patients.
Iskandar, Mazen E.; Chory, Fiona M.; Goodman, Elliot R.; Surick, Burton G.
2015-01-01
Perforated duodenal ulcers are rare complications seen after roux-en-Y gastric bypass (RYGP). They often present as a diagnostic dilemma as they rarely present with pneumoperitoneum on radiologic evaluation. There is no consensus as to the pathophysiology of these ulcers; however expeditious treatment is necessary. We present two patients with perforated duodenal ulcers and a distant history of RYGP who were successfully treated. Their individual surgical management is discussed as well as a literature review. We conclude that, in patients who present with acute abdominal pain and a history of RYGB, perforated ulcer needs to be very high in the differential diagnosis even in the absence of pneumoperitoneum. In these patients an early surgical exploration is paramount to help diagnose and treat these patients. PMID:25949843
Gerlach, Trevor J; Sadler, Valerie M; Ball, Ray L
2013-12-01
Two distressed Florida manatees (Trichechus manatus latirostris) were reported to the Florida Fish and Wildlife Conservation Commission. The first animal was determined to be an abandoned, emaciated calf. The second animal was a nursing calf that had sustained watercraft-related trauma. Both animals were captured and transported to Tampa's Lowry Park Zoo, where diagnostic evaluations, including physical examinations, blood work, computed tomography (CT), and radiographs were performed. Radiograph and CT scans identified the presence of free air within the pleural and abdominal cavities of both animals. Based on the lack of substantial findings in the first animal and a rapid resolution of clinical signs in the second animal, both animals were managed conservatively. This report documents simultaneous pneumothorax and pneumoperitoneum, the associated clinical and diagnostic findings, and conservative medical management of these conditions in the Florida manatee.
Veres, Tünde Gyöngyvér; Takács, Ildikó; Nagy, Tibor; Jancsó, Gábor; Kondor, Ariella; Pótó, László; Vereczkei, András
2018-04-13
Laparoscopy is more beneficial than the conventional open technique, however the pneumoperitoneum created may have an ischemic side effect. Our aim was to evaluate the protective effects of preconditioning during laparoscopic cholecystectomies (LC). 30 patients were randomized into 2 groups: I. PreC (preconditioning: 5 min. inflation, 5 min. deflation, followed by conventional LC), II: LC (conventional LC). Blood samples were taken before hospitalization (C = control), before surgery, after anaesthesia (B.S.), after surgery (A.S.) and 24 hours after the procedure (24 h). Measured parameters were: malondialdehyde (MDA), reduced glutathione (GSH), sulfhydril groups (-SH), superoxide-dismutase (SOD), catalase (CAT), myeloperoxidase (MPO), length of hospitalization and pain (VAS = visual analogue scale). Compared to the BS levels, no significant changes were detected in SOD's activity and MDA levels. GSH concentrations were significantly increased in the PreC group after operation. SH-, MPO, CAT and liver function enzymes were not significantly different. Hospitalization was shorter in the PreC group. Based on the VAS score patients had less pain in the PreC group. Significant differences concerning PreC group were found in GSH values. In the PreC group pain decreased by 2-2.5 units following the procedure, 24 h after surgery, and hospitalisation was also significantly shorter. In our pilot study the potential protective effect of preconditioning could be defined.
Angioli, Roberto; Terranova, Corrado; Plotti, Francesco; Cafà, Ester Valentina; Gennari, Paolo; Ricciardi, Roberto; Aloisi, Alessia; Miranda, Andrea; Montera, Roberto; De Cicco Nardone, Carlo
2015-04-01
Studies on the influence of CO₂ pneumoperitoneum on the abdominal cavity during robotic procedures are lacking. This is the first study to evaluate surgical field modifications related to CO₂ pressure, during laparoscopic and robotic surgery. Consecutive patients scheduled for laparoscopic or robotic hysterectomy were enrolled in the study. To evaluate the level of operative field visualization, a dedicated form has been designed based on the evaluation of four different areas: Douglas space, vesico-uterine fold and, bilaterally, the broad ligament. During the initial inspection, an assistant randomly set the CO₂ pressure at 15, 10 and 5 mmHg, and the surgeon, not aware of the CO₂ values, was asked to give an evaluation of the four areas for each set pressure. In laparoscopic group, CO₂ pressure significantly influenced the surgical field visualization in all four areas analyzed. The surgeon had a good visualization only at 15 mmHg CO₂ pressure; visualization decreased with a statistically significant difference from 15 to 5, 15-10 and 10-5 mmHg. In robotic group, influence of CO₂ pressure on surgical areas visualization was not straightforward; operative field visualization remained stable at any pressure value with no significant difference. Pneumoperitoneum pressure significantly affects the visualization of the abdomino-pelvic cavity in laparoscopic procedures. Otherwise, CO₂ pressure does not affect the visualization of surgical field during robotic surgery. These findings are particularly significant especially at low CO₂ pressure with potential implications on peritoneal environment and the subsequent post-operative patient recovery.
Zhan, Chenyang; Maria, Pedro P; Dym, R Joshua
2017-11-01
Indwelling Foley catheter is a rare cause of urinary bladder perforation, a serious injury with high mortality that demands accurate and prompt diagnosis. While the gold standard for diagnosis of bladder injury is computed tomography (CT) cystography, few bladder ruptures associated with Foley catheter have been reported to be diagnosed in the emergency department (ED). An 83-year-old man with indwelling Foley catheter presented to the ED for hematuria and altered mental status. He was diagnosed to have intraperitoneal rupture of the urinary bladder in the ED using abdominal and pelvic CT without contrast, which demonstrated bladder wall discontinuity, intraperitoneal free fluid, and pneumoperitoneum. The patient was treated successfully with medical management and bladder drainage. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: To our knowledge, this is the first report of intraperitoneal urinary bladder perforation associated with Foley catheter diagnosed in the ED by CT without contrast. Pneumoperitoneum found in this case was a clue to the diagnosis and is a benign finding that does not necessitate urgent surgical intervention. The early and accurate diagnosis in this case allowed for effective management with good clinical outcome. The use of indwelling Foley catheter has a high prevalence, especially in long-term care facility residents, who are frequent visitors in the ED. Therefore, emergency physicians and radiologists should be familiar with the presentation and imaging findings of this potential injury associated with Foley catheters. Copyright © 2017 Elsevier Inc. All rights reserved.
Trocars: Site Selection, Instrumentation, and Overcoming Complications.
Gaunay, Geoffrey S; Elsamra, Sammy E; Richstone, Lee
2016-08-01
In recent years, laparoscopy and robot-assisted procedures have become more commonplace in urology. Incorporation of these techniques into clinical practice requires extensive knowledge of the surgical approaches and complex instrumentation unique to minimally invasive surgery. In this review, focus will be directed to laparoscopic trocars including differing subtypes, placement in select urologic procedures, and proper use with emphasis on the avoidance of complications. Differing methods for the development of pneumoperitoneum and the associated risks of each will be discussed. The aim of this article is to provide a complete review of laparoscopic trocar use for the practicing urologist.
Clostridium perfringens's necrotizing acute pancreatitis: a case of success
Mendes, Joana; Amaral, Luís; Quintanilha, Rui; Rama, Tiago; Melo, António
2017-01-01
Abstract The authors report a case of a 62-year-old man with upper abdominal pain with few hours of onset and vomits. The initial serum amylase was 2306 U/L. The first CT showed signs of a non-complicated acute pancreatitis. He suffered clinical deterioration and for this reason he was admitted on the intensive care unit where he progressed to multiple organ failure in <24 h. A new CT scan was performed that showed pneumoperitoneum and pneumoretroperitoneum. He underwent an exploratory laparotomy and pancreatic necrosectomy and vacuum pack laparostomy were performed. Intraoperative peritoneal fluid culture was positive for Clostridium perfringens confirming the diagnosis. He was discharged from hospital after 61 days. According to our research this is the second case reported in literature of a spontaneous acute necrotizing pancreatitis caused by C. perfringens, with pneumoretroperitoneum and pneumoperitoneum on evaluation by CT scan, that survived after surgical treatment and vigorous resuscitation. PMID:28702167
Karantonis, Fotios-Filippos; Nikiteas, Nikolaos; Perrea, Despina; Vlachou, Antonia; Giamarellos-Bourboulis, Evangelos J; Tsigris, Christos; Kostakis, Alkiviadis
2008-01-01
This review portrays the most common experimental models of intra-abdominal sepsis. Additionally, it outlines the facts that distinguish laparotomy from laparoscopy, in respect to the immune response, when comparing these two techniques in experimental models of intra-abdominal sepsis. It describes the consequences of pneumoperitoneum and trauma produced by laparoscopy or laparotomy, respectively, on bacterial translocation and immunity. Furthermore, we report the few efforts that have been made in clinical settings, where surgeons have attempted to utilize laparoscopy as a therapeutic module when treating peritonitis or sepsis of abdominal origin. Certainly there is a need for more research in order to fortify the role of pneumoperitoneum in sepsis of abdominal origin. It seems that minimally invasive surgery will inevitably gain acceptance by surgeons, as evidence points that by inflicting less trauma the healing response is expected to be more efficient, especially in septic patients.
Perforated peptic ulcer in an adolescent girl.
Schwartz, Shepard; Edden, Yair; Orkin, Boris; Erlichman, Matityahu
2012-07-01
A perforated peptic ulcer in a child is a rare entity. Severe abdominal pain in an ill-appearing child with a rigid abdomen and possibly with signs of shock is the typical presenting feature of this life-threatening complication of peptic ulcer disease. We present a case of a 14.5-year-old adolescent girl who developed abdominal and shoulder pain that resolved after 1 day. She was then completely well for 2 days until the abdominal and shoulder pain recurred. On examination, she appeared well, but in pain. A chest radiograph revealed a large pneumoperitoneum. She underwent emergent laparoscopic omental patch repair of a perforated ulcer on the anterior wall of her stomach. Result of a urea breath test to detect Helicobacter pylori was negative. The differential diagnosis of pneumoperitoneum in children is discussed, as are childhood perforated peptic ulcer in general, and the unique clinical features present in this case in particular.
Bradycardia as an early warning sign for cardiac arrest during routine laparoscopic surgery.
Yong, Jonathan; Hibbert, Peter; Runciman, William B; Coventry, Brendon J
2015-12-01
The aim of this study was to identify clinical patterns of occurrence, management and outcomes surrounding cardiac arrest during laparoscopic surgery using the Australian Incident Monitoring Study (AIMS) database to guide possible prevention and treatment. The AIMS database includes incident reports from participating clinicians from secondary and tertiary healthcare centres across Australia and New Zealand. The AIMS database holds over 11 000 peri- and intraoperative incidents. The primary outcome was to characterize the pattern of events surrounding cardiac arrest. The secondary outcome was to identify successful management strategies in the possible prevention and treatment of cardiac arrest during laparoscopic surgery. Fourteen cases of cardiac arrest during laparoscopic surgery were identified. The majority of cases occurred in 'fit and healthy' patients during elective gynaecological and general surgical procedures. Twelve cases of cardiac arrest were directly associated with pneumoperitoneum with bradycardia preceding cardiac arrest in 75% of these. Management included deflation of pneumoperitoneum, atropine administration and cardiopulmonary resuscitation with circulatory restoration in all cases. The results imply vagal mechanisms associated with peritoneal distension as the predominant contributor to bradycardia and subsequent cardiac arrest during laparoscopy. Bradycardia during gas insufflation is not necessarily a benign event and appears to be a critical early warning sign for possible impending and unexpected cardiac arrest. Immediate deflation of pneumoperitoneum and atropine administration are effective measures that may alleviate bradycardia and possibly avert progression to cardiac arrest. © The Author 2015. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.
Diana, Michele; Noll, Eric; Legnèr, Andras; Kong, Seong-Ho; Liu, Yu-Yin; Schiraldi, Luigi; Marchegiani, Francesco; Bano, Jordan; Geny, Bernard; Charles, Anne-Laure; Dallemagne, Bernard; Lindner, Véronique; Mutter, Didier; Diemunsch, Pierre; Marescaux, Jacques
2018-07-01
Standard insufflators compensate for intra-abdominal pressure variations with pressure spikes. Our aim was to evaluate the impact of a stable, low-pressure pneumoperitoneum induced by a valve-less insufflator, on working space, hemodynamics, inflammation, and peritoneal physiology, in a model of laparoscopic sigmoid resection. Twelve pigs (47 ± 3.3 kg) were equipped for invasive hemodynamic monitoring and randomly assigned to Standard (n = 6) vs. valve-less (n = 6) insufflation. Animals were positioned in a 30° Trendelenburg on a CT scan bed. A low-pressure pneumoperitoneum (8 mmHg) was started and duration was set for 180 min. Abdominal CT scans were performed, under neuromuscular blockade, before, immediately after, and 1 and 3 h after insufflation. Pneumoperitoneum volumes were calculated on 3D reconstructed CT scans. After creation of a mesenteric window, capillary blood was obtained by puncturing the sigmoid serosa and local lactatemia (mmol/L) was measured using a handheld analyzer. Surgical resection was performed according to the level of lactates, in order to standardize bowel stump perfusion. IL-1 and IL-6 (ng/mL) were measured repeatedly. The peritoneum was sampled close to the surgical site and distantly for the oxygraphic assessment of mitochondrial respiration. A pathologist applied a semi-quantitative score to evaluate the anastomosis. Mean arterial pressure, pulse, body temperature, oximetry, systemic lactatemia, and local lactates were similar. IL-6 was lower in the valve-less group, reaching a statistically significant difference after 3 h of insufflation (64.85 ± 32.5 vs. 133.95 ± 59.73; p = 0.038) and 48 h (77.53 ± 68.4 vs. 190.74 ± 140.79; p = 0.029). Peritoneal mitochondrial respiration was significantly increased after the survival period, with no difference among the groups. The anastomoses in the valve-less group demonstrated a lower acute (p = 0.04) inflammatory infiltration. The mean anterior posterior thickness was slightly, yet significantly higher in the valve-less group, on all post-insufflation CT scans. Valve-less insufflation achieved a slightly higher working space and a lower systemic and localized inflammatory response in this experimental setting.
Hydrostatic pressure-induced colon trauma from a pool whip.
Tong, T K; McGill, L; Tilden, S J
1989-03-01
Hydrostatic pressure-induced colon injury is a rare occurrence in the pediatric population. We present a case of massive hydroperitoneum following a pool whip-induced injury. Although tension pneumoperitoneum or hydroperitoneum is rare, prompt recognition and surgical intervention are essential.
Zhu, Qian-lin; Deng, Yun-xin; Yu, Bu-wei; Zheng, Min-hua
2018-01-01
Background There is no adequate evidence on how the long duration of laparoscopic surgery affects splanchnic perfusion in elderly patients or the efficacy of acute hypervolemic fluid infusion (AHFI) during the induction of anesthesia. Our aim was to observe the effects of AHFI during the induction of general anesthesia on splanchnic perfusion. Material/Methods Seventy elderly patients receiving laparoscopic colorectal surgery were randomly divided into three groups: lactated Ringer’s solution group (group R), succinylated gelatin group (group G), and hypertonic sodium chloride hydroxyethyl starch 40 injection group (group H). Thirty minutes after the induction of general anesthesia, patients received an infusion of target dose of these three solutions. Corresponding hemodynamic parameters, arterial blood gas analysis, and gastric mucosal carbon dioxide tension were monitored in sequences. Results In all three groups, gastric-arterial partial CO2 pressure gaps (Pg–aCO2) were decreased at several beginning stages and then gradually increased, Pg–aCO2 also varied between groups due to certain time points. The pH values of gastric mucosa (pHi) decreased gradually after the induction of pneumoperitoneum in the three groups. Conclusions The AHFI of succinylated gelatin (12 ml/kg) during the induction of anesthesia can improve splanchnic perfusion in elderly patients undergoing laparoscopic surgery for colorectal cancer and maintain good splanchnic perfusion even after a long period of pneumoperitoneum (60 minutes). AHFI can improve splanchnic perfusion in elderly patients undergoing laparoscopic colorectal surgery. PMID:29382813
Emeljanov, S I; Fedenko, V V; Levite, E M; Panfilov, S A; Bobrinskaya, I G; Fedorov, A V; Matveev, N L; Evdoshenko, V V; Luosev, S V; Bokarev, V V; Musaeva, S R
1998-10-01
This study was initiated to find a method of determining the prognosis for possible changes in hemodynamic and respiratory parameters in patients with pneumoperitoneum (PP). We devised a model for a pseudopneumoperitoneum (PPP), which is created by encircling the wide pneumochamber on the entire abdomen and inflating it to a preset pressure. To verify the prognostic possibilities of the proposed model, we studied the pneumotachygraphy parameters, noninvasive and invasive monitoring parameters of PPP after induction of anaesthesia, and venous circulation disturbances, as well as the medical effect of the intermittent sequential compression device. In healthy patients, the restrictive lung syndrome did not approach the risky limit. In patients >/=60 years old, this syndrome was very close to the limit. In a number of patients with serious cardiovascular and pulmonary pathology, the pressure of >10 mmHg was considered to be intolerable. Lung compliance, which was the parameter most sensitive to the increased intraabdominal pressure, was 47 +/- 10 at baseline, and 29 +/- 4 (p > 0.05) at both PPP and real PP (14 mmHg). The PPP model is quite similar to the real PP and can be used for preoperative prognosis in laparoscopic surgery. The elevated intraabdominal pressure results in a significant disturbance of venous blood flow in the lower extremities. The use of the device for peristaltic pneumomassage of the lower limbs is effective in correcting negative changes in venous hemodynamics in laparoscopic surgery.
Anesthetic Considerations in Robotic-Assisted Gynecologic Surgery
Kaye, Alan D.; Vadivelu, Nalini; Ahuja, Nitin; Mitra, Sukanya; Silasi, Dan; Urman, Richard D.
2013-01-01
Background Robotic-assisted surgery has evolved over the past 2 decades with constantly improving technology that assists surgeons in multiple subspecialty disciplines. The surgical requirements of lithotomy and steep Trendelenburg positions, along with the creation of a pneumoperitoneum and lack of direct access to the patient all present management challenges in gynecologic surgery. Patient positioning requirements can have significant physiologic effects and can result in many complications. Methods This review focuses on the anesthetic and surgical implications of robot-assisted technology in gynecologic surgery. Conclusion Good communication among team members and knowledge of the nuances of robotic surgery have the potential to improve patient outcomes, increase efficiency, and reduce complications. PMID:24358000
Hypolito, Octavio; Azevedo, João Luiz; Gama, Fernanda; Azevedo, Otavio; Miyahira, Susana Abe; Pires, Oscar César; Caldeira, Fabiana Alvarenga; Silva, Thamiris
2014-01-01
to evaluate the clinical, hemodynamic, gas analysis and metabolic repercussions of high transient pressures of pneumoperitoneum for a short period of time to ensure greater security for introduction of the first trocar. sixty-seven patients undergoing laparoscopic procedures were studied and randomly distributed in P12 group: n=30 (intraperitoneal pressure [IPP] 12mmHg) and P20 group: n=37 (IPP of 20mmHg). Mean arterial pressure (MAP) was evaluated by catheterization of the radial artery; and through gas analysis, pH, partial pressure of oxygen (PaO2), partial pressure of CO2 (PaCO2), bicarbonate (HCO3) and alkalinity (BE) were evaluated. These parameters were measured in both groups at time zero before pneumoperitoneum (TP0); at time 1 (TP1) when IPP reaches 12mmHg in both groups; at time 2 (TP2) after five min with IPP=12mmHg in P12 and after 5min with IPP=20mmHg at P20; and at time 3 (TP3) after 10min with IPP=12mmHg in P12 and with return of IPP from 20 to 12mmHg, starting 10min after TP1 in P20. Different values from those considered normal for all parameters assessed, or the appearance of atypical organic phenomena, were considered as clinical changes. there were statistically significant differences in P20 group in MAP, pH, HCO3 and BE, but within normal limits. No clinical and pathological changes were observed. high and transient intra-abdominal pressure causes changes in MAP, pH, HCO3 and BE, but without any clinical impact on the patient. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
de Figueiredo Locks, Giovani; Simões de Almeida, Maria Cristina; Sperotto Ceccon, Maurício; Campos Pastório, Karen Adriana
2015-01-01
To examine whether there are changes in the distance between the orotracheal tubeand carina induced by orthostatic retractor placement or by pneumoperitoneum insufflation in obese patients undergoing gastroplasty. 60 patients undergoing bariatric surgery by two techniques: open (G1) or videola-paroscopic (G2) gastroplasty were studied. After tracheal intubation, adequate ventilation of both hemitoraxes was confirmed by lung auscultation. The distance orotracheal tube-carina was estimated with the use of a fiber bronchoscope before and after installation of orthostatic retractors in G1 or before and after insufflation of pneumoperitoneum in patients in G2. G1 was composed of 22 and G2 of 38 patients. No cases of endobronchial intubationwere detected in either group. The mean orotracheal tube-carina distance variation was estimated in -0.03 cm (95% CI 0.06 to -0.13) in the group of patients undergoing open gastroplastyand in -0.42 cm (95% CI -0.56 to -1.4) in the group of patients undergoing videolaparoscopic gastroplasty. The extremes of variation in each group were: 0.5 cm to -1.6 cm in patients under-going open surgery and 0.1 cm to -2.2 cm in patients undergoing videolaparoscopic surgery. There was no significant change in orotracheal tube-CA distance after placementof orthostatic retractors in patients undergoing open gastroplasty. There was a reduction inorotracheal tube-CA distance after insufflation of pneumoperitoneum in patients undergoing videolaparoscopic gastroplasty. We recommend attention to lung auscultation and to signals of ventilation monitoring and reevaluation of orotracheal tube placement after peritoneal insufflation. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
de Figueiredo Locks, Giovani; Simões de Almeida, Maria Cristina; Sperotto Ceccon, Maurício; Campos Pastório, Karen Adriana
2015-01-01
To examine whether there are changes in the distance between the orotracheal tube and carina induced by orthostatic retractor placement or by pneumoperitoneum insufflation in obese patients undergoing gastroplasty. 60 patients undergoing bariatric surgery by two techniques: open (G1) or videolaparoscopic (G2) gastroplasty were studied. After tracheal intubation, adequate ventilation of both hemitoraxes was confirmed by lung auscultation. The distance orotracheal tube-carina was estimated with the use of a fiber bronchoscope before and after installation of orthostatic retractors in G1 or before and after insufflation of pneumoperitoneum in patients in G2. G1 was composed of 22 and G2 of 38 patients. No cases of endobronchial intubation were detected in either group. The mean orotracheal tube-carina distance variation was estimated in -0.03cm (95% CI 0.06 to -0.13) in the group of patients undergoing open gastroplasty and in -0.42cm (95% CI -0.56 to -1.4) in the group of patients undergoing videolaparoscopic gastroplasty. The extremes of variation in each group were: 0.5cm to -1.6cm in patients undergoing open surgery and 0.1cm to -2.2cm in patients undergoing videolaparoscopic surgery. There was no significant change in orotracheal tube-CA distance after placement of orthostatic retractors in patients undergoing open gastroplasty. There was a reduction in orotracheal tube-CA distance after insufflation of pneumoperitoneum in patients undergoing videolaparoscopic gastroplasty. We recommend attention to lung auscultation and to signals of ventilation monitoring and reevaluation of orotracheal tube placement after peritoneal insufflation. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Fernandes, Adriano; Ettinger, João; Amaral, Fabiano; Ramalho, Maria José; Alves, Rodrigo; Módolo, Norma Sueli Pinheiro
2014-12-01
Video laparoscopic bariatric surgery is the preferred surgical technique for treating morbid obesity. However, pneumoperitoneum can pose risks to the kidneys by causing a decrease in renal blood flow. Furthermore, as in other surgical procedures, laparoscopic bariatric surgery triggers an acute inflammatory response. Neutrophil gelatinase-associated lipocalin is an early and accurate biomarker of renal injury, as well as of the inflammatory response. Anesthetic drugs could offer some protection for the kidneys and could attenuate the acute inflammatory response from surgical trauma. The objective of this study was to compare the effects of two types of anesthetics, propofol and sevoflurane, on the serum levels of neutrophil gelatinase-associated lipocalin during the perioperative period in laparoscopic bariatric surgery. Sixty-four patients scheduled for laparoscopic bariatric surgery were randomized into two anesthesia groups and were administered either total intravenous anesthesia (propofol) or inhalation anesthesia (sevoflurane). In the perioperative period, blood samples were collected at three time points (before anesthesia, 6 hours after pneumoperitoneum and 24 hours after pneumoperitoneum) and urine output was measured for 24 hours. Acute kidney injuries were evaluated by examining both the clinical and laboratory parameters during the postoperative period. The differences between the groups were compared using non-parametric tests. ReBEC (http://www.ensaiosclinicos.gov.br/rg/recruiting/): RBR-8wt2fy None of the patients developed an acute kidney injury during the study and no significant differences were found between the serum neutrophil gelatinase-associated lipocalin levels of the groups during the perioperative period. The choice of anesthetic drug, either propofol or sevoflurane, did not affect the serum levels of neutrophil gelatinase-associated lipocalin during the perioperative period in laparoscopic bariatric surgery.
Shoar, Saeed; Naderan, Mohammad; Ebrahimpour, Hossein; Soroush, Ahmadreza; Nasiri, Shirzad; Movafegh, Ali; Khorgami, Zhamak
2016-04-01
Laparoscopic cholecystectomy (LC) has become the gold-standard treatment for gallstone diseases. However, despite huge reduction in operative injury, systemic stress response remains high. This randomized controlled trial (RCT) aimed to compare systemic stress response between 2 different techniques of CO2 pneumoperitoneum. Trough a prospective, double-blinded RCT, serum levels of cortisol, adrenaline, glucose, and C-reactive protein (CRP) were compared between the two groups consisted of 50 patients undergoing LC under low-pressure and standard-pressure CO2 pneimoperitoneum. A total of fifty patients undergoing LC were equally assigned to 2 groups of twenty five patients. Average age was 48 ± 13.8 years (range, 19-74 years). Operative time was similar between standard-pressure group (47.8 ± 16.8 min) and low-pressure group (53.6 ± 25.1). Moreover, intra-operative IV volume administration and urine output did not differ significantly between the 2 groups (p > 0.05). Although the average heart rate and mean arterial pressure were slightly higher in a standard-pressure group compared with a low-pressure group, serial measurements of these parameters were statistically similar between the 2 groups. Serial changes of serum levels of cortisol, glucose, adrenaline, and CRP were compared between surgery day, postoperative 6-h and 1st postoperative day, which did not differ significantly between the standard-pressure and the low-pressure groups (p > 0.05). Our study did not reveal any alteration in systemic stress response with reduction in intra-abdominal pressure of pneumoperitoneum in LC. RCT REGISTRATION: irct.ir ID: IRCT201110072982N5. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.
Perforated peptic ulcer associated with abdominal compartment syndrome.
Lynn, Jiun-Jen; Weng, Yi-Ming; Weng, Chia-Sui
2008-11-01
Abdominal compartment syndrome (ACS) is defined as an increased intra-abdominal pressure with adverse physiologic consequences. Abdominal compartment syndrome caused by perforated peptic ulcer is rare owing to early diagnosis and management. Delayed recognition of perforated peptic ulcer with pneumoperitoneum, bowel distension, and decreased abdominal wall compliance can make up a vicious circle and lead to ACS. We report a case of perforated peptic ulcer associated with ACS. A 74-year-old man with old stroke and dementia history was found to have distended abdomen, edema of bilateral legs, and cyanosis. Laboratory tests revealed deterioration of liver and kidney function. Abdominal compartment syndrome was suspected, and image study was arranged to find the cause. The study showed pneumoperitoneum, contrast stasis in heart with decreased caliber of vessels below the abdominal aortic level, and diffuse lymphedema at the abdominal walls. Emergent laparotomy was performed. Perforated peptic ulcer was noted and the gastrorrhaphy was done. The symptoms, and liver and kidney function improved right after emergent operation.
Belizon, A; Kirman, I; Balik, E; Karten, M; Jain, S; Whelan, R L
2007-04-01
The authors previously demonstrated a significant decrease in plasma levels of intact insulin-like growth factor binding protein-3 (IGFBP-3) after major open but not after laparoscopic-assisted surgery in humans. They postulated that this decrease may have an effect on postoperative tumor growth. It also has been shown that plasma levels of matrix metalloproteinase-9 (MMP-9), a protease capable of degrading IGFBP-3, are transiently increased after open colectomy in humans. The authors aimed to develop an animal model that would allow further study of the effect that surgical trauma has on plasma levels IGFBP-3 and MMP-9. In addition, they set out to assess the concentration of MMP-9 in circulating monocytes before and after surgery. The 30 mice included in this study were divided into three groups: sham laparotomy, carbon dioxide (CO2) pneumoperitoneum, and anesthesia control. All mice were IGFBP-3 transgenics (overexpressing human IGFBP-3) on a CD1 background. The mice were anesthetized using ketamine and xylazine. Blood was drawn retroorbitally 48 h before the procedure. The duration of the procedure was 30 min. The animals were killed 24 h postoperatively and blood was drawn. Intact IGFBP-3 levels were measured using a combination of Western blot analysis and enzyme-linked immunoassay (ELISA) at the two time points: before and after the operation. Plasma and peripheral blood mononuclear cell levels of MMP-9 were measured at each time point using zymography. Mononuclear cell lysates were used to determine intracellular MMP-9 levels. Plasma levels of intact IGFBP-3 were significantly lower than preoperative levels after sham laparotomy. A mean decrease of 76.6% was noted (p < 0.05). Zymography demonstrated significantly higher plasma MMP-9-related proteolytic activity than observed preoperatively after sham laparotomy (78.5 vs 42.3 Relative Units [RU]; p < 0.05). In the pneumoperitoneum group, no significant decrease was found between the pre- and postoperative levels of intact IGFBP-3. A nonsignificant increase in MMP-9 was noted after CO2 pneumoperitoneum (38 RU preoperatively vs. 46.4 RU postoperatively; p > 0.05). The anesthesia control group did not demonstrate a significant change in either circulating intact IGFBP-3 levels or MMP-9 levels. Mononuclear intracellular levels of MMP-9 were significantly lower after laparotomy than the preoperative levels (3 vs 37 RU). The postprocedure intracellular levels of MMP-9 were not significantly decreased in the pneumoperitoneum or anesthesia control group. Plasma levels of intact IGFBP-3, a cell growth regulating factor, were found to be decreased significantly after laparotomy. This decrease was not seen after pneumoperitoneum. Depletion of intact IGFBP-3 after laparotomy correlated with a rapid release of MMP-9 from mononuclear cells and an increase in circulating plasma MMP-9 levels. Matrix metalloproteinase-9 may play an important role in IGFBP-3 proteolysis after surgical trauma. Furthermore, circulating mononuclear cells are one source of MMP-9 after surgery. Finally, the model used reproduces events in humans after surgery, and thus should permit further study on the mechanism of IGFBP-3 proteolysis after surgical trauma.
Anaesthesia for laparoscopic surgery: General vs regional anaesthesia
Bajwa, Sukhminder Jit Singh; Kulshrestha, Ashish
2016-01-01
The use of laparoscopy has revolutionised the surgical field with its advantages of reduced morbidity with early recovery. Laparoscopic procedures have been traditionally performed under general anaesthesia (GA) due to the respiratory changes caused by pneumoperitoneum, which is an integral part of laparoscopy. The precise control of ventilation under controlled conditions in GA has proven it to be ideal for such procedures. However, recently the use of regional anaesthesia (RA) has emerged as an alternative choice for laparoscopy. Various reports in the literature suggest the safety of the use of spinal, epidural and combined spinal-epidural anaesthesia in laparoscopic procedures. The advantages of RA can include: Prevention of airway manipulation, an awake and spontaneously breathing patient intraoperatively, minimal nausea and vomiting, effective post-operative analgesia, and early ambulation and recovery. However, RA may be associated with a few side effects such as the requirement of a higher sensory level, more severe hypotension, shoulder discomfort due to diaphragmatic irritation, and respiratory embarrassment caused by pneumoperitoneum. Further studies may be required to establish the advantage of RA over GA for its eventual global use in different patient populations. PMID:26917912
El-Dawlatly, Abdelazeem Ali; Al-Dohayan, Abdullah; Abdel-Meguid, Mohamed Essam; El-Bakry, Abdelkareem; Manaa, Essam M
2004-02-01
The effects of pneumoperitoneum (PPM) on respiratory mechanics during bariatric surgery were investigated. 10 patients with BMI 50.5+/-8 kg/m(2) (range 40.9- 66.8) who underwent laparoscopic adjustable gastric banding with the Swedish band under general anesthesia were studied. Besides routine monitoring of vital signs and lung volumes, respiratory mechanics (compliance and resistance) were measured during positive pressure ventilation using an anesthesia delivery unit (Datex Ohmeda type A_Elec). Data were recorded at the following stages: 1). before PPM, 2). during PPM, and 3). after gas deflation. One-way analysis of variance was used for analysis of data. P <0.05 was considered significant. The airway, peak inspiratory and plateau pressures increased significantly during PPM. Dynamic lung compliances were 44.6+/-7.8 SD, 31.8+/-5.5 and 44.5+/-8.3 cm/H(2)O before, during and after PPM respectively with significant differences (P <0.05). Although significant decrease in lung mechanics was found in the present study,these variations were well tolerated in morbidly obese patients with PPM pressure of 15 mmHg.
Laparoscopic entry: a review of Canadian general surgical practice
Compeau, Christopher; McLeod, Natalie T.; Ternamian, Artin
2011-01-01
Background Laparoscopic surgery has gained popularity over open conventional surgery as it offers benefits to both patients and health care practitioners. Although the overall risk of complications during laparoscopic surgery is recognized to be lower than during laparotomy, inadvertent serious complications still occur. Creation of the pneumoperitoneum and placement of laparoscopic ports remain a critical first step during endoscopic surgery. It is estimated that up to 50% of laparoscopic complications are entry-related, and most injury-related litigations are trocar-related. We sought to evaluate the current practice of laparoscopic entry among Canadian general surgeons. Methods We conducted a national survey to identify general surgeon preferences for laparoscopic entry. Specifically, we sought to survey surgeons using the membership database from the Canadian Association of General Surgeons (CAGS) with regards to entry methods, access instruments, port insertion sites and patient safety profiles. Laparoscopic cholecystectomy was used as a representative general surgical procedure. Results The survey was completed by 248 of 1000 (24.8%) registered members of CAGS. Respondents included both community and academic surgeons, with and without formal laparoscopic fellowship training. The demographic profile of respondents was consistent nationally. A substantial proportion of general surgeons (> 80%) prefer the open primary entry technique, use the Hasson trocar and cannula and favour the periumbilical port site, irrespective of patient weight or history of peritoneal adhesions. One-third of surgeons surveyed use Veress needle insufflation in their surgical practices. More than 50% of respondents witnessed complications related to primary laparoscopic trocar insertion. Conclusion General surgeons in Canada use the open primary entry technique, with the Hasson trocar and cannula applied periumbilically to establish a pneumoperitoneum for laparoscopic surgery. This surgical approach is remarkably consistent nationally, although considerably variant across other surgical subspecialties. Peritoneal entry remains an important patient safety issue that requires ongoing evaluation and study to ensure translation into safe contemporary clinical practice. PMID:21774882
Vlot, John; Wijnen, René; Stolker, Robert Jan; Bax, Klaas N
2014-03-01
Determinants of working space in minimal access surgery have not been well studied. Using computed tomography (CT) to measure volumes and linear dimensions, we are studying the effect of a number of determinants of CO2 working space in a porcine laparoscopy model. Here we report the effects of pre-stretching of the abdominal wall. Earlier we had noted an increase in CO2 pneumoperitoneum volume at repeat insufflation with an intra-abdominal pressure (IAP) of 5 mmHg after previous stepwise insufflation up to an IAP of 15 mmHg. We reviewed the data of this serendipity group; data of 16 pigs were available. In a new group of eight pigs, we also explored this effect at repeat IAPs of 10 and 15 mmHg. Volumes and linear dimensions of the CO2 pneumoperitoneum were measured on reconstructed CT images and compared between the initial and repeat insufflation runs. Previous stepwise insufflation of the abdomen with CO2 up to 15 mmHg significantly (p < 0.01) increased subsequent working-space volume at a repeat IAP of 5 mmHg by 21 %, 7 % at a repeat IAP of 10 mmHg and 3 % at a repeat IAP of 15 mmHg. The external anteroposterior diameter significantly (p < 0.01) increased by 0.5 cm (14 %) at repeat 5 mmHg. Other linear dimensions showed a much smaller change. There was no statistically significant correlation between the duration of the insufflation run and the volume increase after pre-stretching at all IAP levels. Pre-stretching of the abdominal wall allows for the same surgical-field exposure at lower IAPs, reducing the negative effects of prolonged high-pressure CO2 pneumoperitoneum on the cardiorespiratory system and microcirculation. Pre-stretching has important scientific consequences in studies addressing ways of increasing working space in that its effect may confound the possible effects of other interventions aimed at increasing working space.
Lactate and acid base changes during laparoscopic cholecystectomy.
Ibraheim, Osama A; Samarkandi, Abdulhamid H; Alshehry, Hassan; Faden, Awatif; Farouk, Eltinay Omar
2006-02-01
The observation of hemodynamic and metabolic impairment related to CO2 pneumoperitoneum and postoperative mesenteric ischemia reports following laparoscopic procedures have raised concern about local and systemic effects of increase intraabdominal pressure during laparoscopic procedures. The present study aims to evaluate the metabolic and acid base responses of using high pressure versus low pressure pneumoperitonium in patients undergoing laparoscopic cholecystectomy in a prospective randomized clinical trial. 20 ASA I-II patients scheduled for elective laparoscopic cholecystectomy were randomly allocated to one of two study groups; high pressure pneumoperitoneum 12-14mmHg (HPP, n=10) versus low pressure pneumoperitoneum 6-8mmHg (LPP, n=10) undergoing laparoscopic cholecystectomy. Arterial blood gases and lactate levels were determined after induction of anesthesia (before pneumoperitonium), then after 10 min, then 30 min after insufflations and at the end of surgery and 1 hour postoperatively. Nurses in recovery unit reported pain assessment starting postoperatively until 3 hours on a 10mm VAS (0-10). Statistical significant was established at P<0.05. Bicarbonate was significantly (P>0.0412) lower in high pressure group at 30 min and 60 min after insufflations. In high pressure group lactate levels increased significantly as compared to low pressure group, (at 30 minutes after the establishment of abdominal pneumatic inflation P<0.006 and remained significantly increased (P<0.001) until the end of surgery and one hour thereafter) (P<0.001). The mean postoperative pain score during second hour (VAS) at HPP group was 7.4 +/- 1.17 which is significantly (P < or = 0.006) higher than pain score in LPP group 5.0 +/- 1.886. Shoulder tip pain was reported in 3 patients in the high pressure group and only one patient in the lower pressure group. High-pressure pneumoperitonium causes statistically significant elevation in the arterial lactate level intraoperatively until one hour post operatively. It also causes higher pain score and shoulder tip pain.
Clonidine Versus Nitroglycerin Infusion in Laparoscopic Cholecystectomy
Mishra, Manjaree; Mishra, Shashi Prakash
2014-01-01
Background and Objectives: Laparoscopic surgery offers the advantages of minimally invasive surgery; however, pneumoperitoneum and the patient's position induce pathophysiological changes that may complicate anesthetic management. We studied the effect of clonidine and nitroglycerin on heart rate and blood pressure, if any, in association with these drugs or the procedure, as well as the effect of these drugs, if any, on end-tidal carbon dioxide pressure and intraocular pressure. Methods: Sixty patients (minimum age of 20 years and maximum age of 65 years, American Society of Anesthesiologists class I or II) undergoing laparoscopic cholecystectomy were randomized into 3 groups and given an infusion of clonidine (group I), nitroglycerin (group II), or normal saline solution (group III) after induction and before creation of pneumoperitoneum. We observed and recorded the following parameters: heart rate, mean arterial blood pressure, end-tidal carbon dioxide pressure, and intraocular pressure. The mean and standard deviation of the parameters studied during the observation period were calculated for the 3 treatment groups and compared by use of analysis of variance tests. Intragroup comparison was performed with the paired t test. The critical value of P, indicating the probability of a significant difference, was taken as < .05 for comparisons. Results: Statistically significant differences in heart rate were observed among the various groups, whereas comparisons of mean arterial pressure, intraocular pressure, and end-tidal carbon dioxide pressure showed statistically significant differences only between groups I and III and between groups II and III. Conclusion: We found clonidine to be more effective than nitroglycerin at preventing changes in hemodynamic parameters and intraocular pressure induced by carbon dioxide insufflation during laparoscopic cholecystectomy. It was also found not to cause hypotension severe enough to stop the infusion and warrant treatment. PMID:25392635
Laparoscopic cholecystectomy under spinal anaesthesia: A prospective, randomised study
Tiwari, Sangeeta; Chauhan, Ashutosh; Chaterjee, Pallab; Alam, Mohammed T
2013-01-01
CONTEXT: Spinal anaesthesia has been reported as an alternative to general anaesthesia for performing laparoscopic cholecystectomy (LC). AIMS: Study aimed to evaluate efficacy, safety and cost benefit of conducting laparoscopic cholecystectomy under spinal anaesthesia (SA) in comparison to general anaesthesia(GA) SETTINGS AND DESIGN: A prospective, randomised study conducted over a two year period at an urban, non teaching hospital. MATERIALS AND METHODS: Patients meeting inclusion criteria e randomised into two groups. Group A and Group B received general and spinal anaesthesia by standardised techniques. Both groups underwent standard four port laparoscopic cholecystectomy. Mean anaesthesia time, pneumoperitoneum time and surgery time defined primary outcome measures. Intraoperative events and post operative pain score were secondary outcome measure. STATISTICAL ANALYSIS USED: The Student t test, Pearson′s chi-square test and Fisher exact test. RESULTS: Out of 235 cases enrolled in the study, 114 cases in Group A and 110 in Group B analysed. Mean anaesthesia time appeared to be more in the GA group (49.45 vs. 40.64, P = 0.02) while pneumoperitoneum time and corresponding the total surgery time was slightly longer in the SA group. 27/117 cases who received SA experienced intraoperative events, four significant enough to convert to GA. No postoperative complications noted in either group. Pain relief significantly more in SA group in immediate post operative period (06 and 12 hours) but same as GA group at time of discharge (24 hours). No late postoperative complication or readmission noted in either group. CONCLUSION: Laparoscopic cholecystectomy done under spinal anaesthesia as a routine anaesthesia of choice is feasible and safe. Spinal anaesthesia can be recommended to be the anaesthesia technique of choice for conducting laparoscopic cholecystectomy in hospital setups in developing countries where cost factor is a major factor. PMID:23741111
Tissue identification during Pneumoperitoneum in laparoscopy
NASA Astrophysics Data System (ADS)
Chang, Yin; Tseng, Chi-Yang
2015-03-01
Pneumoperitoneum is the beginning procedure of laparoscopy to enlarge the abdominal cavity in order to allow the surgical instruments to insert for surgical purpose. However, the insertion of Veress needle is a blind fashion that could cause blood vessels or visceral injury without attention and results in undetectable internal bleeding. Seriously it may cause a life-threatened complication. We have developed a method that can monitor the tissue reflective spectrum, which can be used for tissue discrimination, in real time during the puncture of the Veress needle. The system includes a modified Veress needle which containes an optical bundle, a light spectrum analyzing and control unit. Therefore, the tissue reflective spectrum can be vivid observed and analyzed through the fiber optical technology during the procedure of the Veress needle insertion. In this study, we have measured the reflective spectra of various porcine abdominal tissues. The features of their spectra were analyzed and characterized to build up the data base and create an algorithm for tissue discrimination in laparoscopy. The results showed that the correlation coefficient (r) of the reflective spectrum can be 0.79-0.95 for the wavelength range of 350-1000 nm and 0.85-0.98 for the wavelength range of 350-650 nm in the same tissue of various samples which were obtained from different days. An alternative way for tissue discrimination is achieved through a decision making tree according to the characteristics of tissue spectrum. For single blind test the success rate is nearly 100%. It seems that both the algorithms mentioned above for tissue discrimination are all very promising. Therefore, these algorithms will be applied to in vivo study in animal in the near future.
[Pneumatosis cystoides intestinalis associated with Steinert disease].
Boland, C; De Ronde, T; Lacrosse, M; Trigaux, J P; Delaunois, L; Melange, M
1995-03-01
We report the case of a 63-year-old patient suffering from myotonic dystrophy, complicated with respiratory insufficiency, who presented a pneumoperitoneum without sign of peritonitis. Diagnosis of pneumatosis cystoides coli was based on CT scan evidence. Given oxygenotherapy and antibiotherapy, the patient rapidly improved. The association between the two affections has, to our knowledge, not been previously described.
Bertozzi, Mirko; Melissa, Berardino; Radicioni, Maurizio; Magrini, Elisa; Appignani, Antonino
2013-09-01
This study aimed to review the literature about symptomatic Meckel's diverticulum (MD) in the neonatal period with 2 additional uncommon cases. The authors describe 2 interesting neonatal cases of symptomatic MD and analyze the literature on this topic, with particular reference to the prevalence of sex, age at presentation, most common signs and symptoms, treatment, histology, associated anomalies, and outcome. The first patient was a term newborn with bowel obstruction by a pseudocystic MD. The second patient was a preterm infant with double perforation of the MD and ileum. Literature search for published case reports and case series on this topic reveals only 18 cases of neonatal symptomatic MD. Males are more frequently involved than females, and even preterm infants may be affected. Bowel obstruction (58.3%) and pneumoperitoneum (33.3%) are the most frequent clinical manifestation. Acute inflammation of the MD is the prominent histopathological finding (75%), although it does not seem to be related with the presence of heterotopic tissue within the MD. Surgical treatment is essential. The association of neonatal symptomatic MD with other anomalies is exceptional but is otherwise life threatening despite surgery. Bowel obstruction and pneumoperitoneum are the most frequent clinical manifestations of symptomatic MD in the newborn. Surgery is required for a definitive diagnosis and successful outcome.
A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods
2014-08-01
Approved for public release; distribution is unlimited. A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods...ABSTRACT A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods Report Title This experiment tests whether a virtual... PEDAGOGICAL EFFECTIVENESS OF VIRTUAL WORLDS AND OF TRADITIONAL TRAINING METHODS A Thesis by BENJAMIN PETERS
Davis, S S; Mikami, D J; Newlin, M; Needleman, B J; Barrett, M S; Fries, R; Larson, T; Dundon, J; Goldblatt, M I; Melvin, W S
2006-01-01
Carbon dioxide (CO2) pneumoperitoneum usually is created by a compressed gas source. This exposes the patient to cool dry gas delivered at room temperature (21 degrees C) with 0% relative humidity. Various delivery methods are available for humidifying and heating CO2 gas. This study was designed to determine the effects of heating and humidifying gas for the intraabdominal environment. For this study, 44 patients undergoing laparoscopic Roux-en-Y gastric bypass were randomly assigned to one of four arms in a prospective, randomized, single-blinded fashion: raw CO2 (group 1), heated CO2 (group 2), humidified CO2 (group 3), and heated and humidified CO2 (group 4). A commercially available CO2 heater-humidifier was used. Core temperatures, intraabdominal humidity, perioperative data, and postoperative outcomes were monitored. Peritoneal biopsies were taken in each group at the beginning and end of the case. Biopsies were subjected staining protocols designed to identify structural damage and macrophage activity. Postoperative narcotic use, pain scale scores, recovery room time, and length of hospital stay were recorded. One-way analysis of variance (ANOVA) and the nonparametric Kruskal-Wallis test were used to compare the groups. Demographics, volume of CO2 used, intraabdominal humidity, bladder temperatures, lens fogging, and operative times were not significantly different between the groups. Core temperatures were stable, and intraabdominal humidity measurements approached 100% for all the patients over the entire procedure. Total narcotic dosage and pain scale scores were not statistically different. Recovery room times and length of hospital stay were similar in all the groups. Only one biopsy in the heated-humidified group showed an increase in macrophage activity. The intraabdominal environment in terms of temperature and humidity was similar in all the groups. There was no significant difference in the intraoperative body temperatures or the postoperative variable measured. No histologic changes were identified. Heating or humidifying of CO2 is not justified for patients undergoing laparoscopic bariatric surgery.
Virtual World Currency Value Fluctuation Prediction System Based on User Sentiment Analysis.
Kim, Young Bin; Lee, Sang Hyeok; Kang, Shin Jin; Choi, Myung Jin; Lee, Jung; Kim, Chang Hun
2015-01-01
In this paper, we present a method for predicting the value of virtual currencies used in virtual gaming environments that support multiple users, such as massively multiplayer online role-playing games (MMORPGs). Predicting virtual currency values in a virtual gaming environment has rarely been explored; it is difficult to apply real-world methods for predicting fluctuating currency values or shares to the virtual gaming world on account of differences in domains between the two worlds. To address this issue, we herein predict virtual currency value fluctuations by collecting user opinion data from a virtual community and analyzing user sentiments or emotions from the opinion data. The proposed method is straightforward and applicable to predicting virtual currencies as well as to gaming environments, including MMORPGs. We test the proposed method using large-scale MMORPGs and demonstrate that virtual currencies can be effectively and efficiently predicted with it.
Virtual World Currency Value Fluctuation Prediction System Based on User Sentiment Analysis
Kim, Young Bin; Lee, Sang Hyeok; Kang, Shin Jin; Choi, Myung Jin; Lee, Jung; Kim, Chang Hun
2015-01-01
In this paper, we present a method for predicting the value of virtual currencies used in virtual gaming environments that support multiple users, such as massively multiplayer online role-playing games (MMORPGs). Predicting virtual currency values in a virtual gaming environment has rarely been explored; it is difficult to apply real-world methods for predicting fluctuating currency values or shares to the virtual gaming world on account of differences in domains between the two worlds. To address this issue, we herein predict virtual currency value fluctuations by collecting user opinion data from a virtual community and analyzing user sentiments or emotions from the opinion data. The proposed method is straightforward and applicable to predicting virtual currencies as well as to gaming environments, including MMORPGs. We test the proposed method using large-scale MMORPGs and demonstrate that virtual currencies can be effectively and efficiently predicted with it. PMID:26241496
Methods and systems relating to an augmented virtuality environment
Nielsen, Curtis W; Anderson, Matthew O; McKay, Mark D; Wadsworth, Derek C; Boyce, Jodie R; Hruska, Ryan C; Koudelka, John A; Whetten, Jonathan; Bruemmer, David J
2014-05-20
Systems and methods relating to an augmented virtuality system are disclosed. A method of operating an augmented virtuality system may comprise displaying imagery of a real-world environment in an operating picture. The method may further include displaying a plurality of virtual icons in the operating picture representing at least some assets of a plurality of assets positioned in the real-world environment. Additionally, the method may include displaying at least one virtual item in the operating picture representing data sensed by one or more of the assets of the plurality of assets and remotely controlling at least one asset of the plurality of assets by interacting with a virtual icon associated with the at least one asset.
[Laparoscopic sterilization with electrocautery: complications and reliability (author's transl)].
Bänninger, U; Kunz, J; Schreiner, W E
1979-05-01
1084 laparoscopic sterilizations were evaluated in a retrospective study at the Universitäts-Frauenklinik Zürich. The operative and early postoperative complications and the reliability of the method were analysed and compared to the results in the literature. Based on a cumulative statistical analysis 0,5% intraoperative complications required laparotomy, the main indications being haemorrhages and bowel injuries. Failed attempts were encountered in one of 150 patients, the main causes of which were adhaesions and difficulties at establishing pneumoperitoneum. The failure rate of the laparoscopic electrocoagulation of the fallopian tube after a long-term follow-up was about 0,5%, 20--25% of these were ectopic pregnancies. The transection of the fallopian tubes did not diminish the pregnancy rate, but the risk of bleeding was considerably higher with this technic. Concurrently performed therapeutic abortion or preceeeding laparotomy did not increase the operative complication rate.
Complex inguinal hernia repairs.
Beitler, J C; Gomes, S M; Coelho, A C J; Manso, J E F
2009-02-01
Complex inguinal hernia treatment is a challenge for general surgeons. The gold standard for the repair of inguinal hernias is the Lichtenstein repair (anterior approach). However, when multiple recurrent hernias or giant hernias are present, it is necessary to choose different approaches because the incidence of poor results increases. There are many preperitoneal approaches described in the literature. For example: (a) open procedure-Nyhus and Stoppa (b) laparoscopic technique-transabdominal pre-peritoneal (TAPP) and totally extraperitoneal (TEP). In this study, we show how we repair complicated cases using open access in huge unilateral or bilateral, recurrent, or multiple recurrent inguinal hernias. The present study includes the period from November 1993 through December 2007. One hundred and eighty-eight patients, divided into 121 with unilateral hernias and 67 with bilateral hernias, totaling 255 inguinal hernia repairs, were treated by the Nyhus or Stoppa preperitoneal approach, depending on whether they were unilateral or bilateral. We used progressive preoperative pneumoperitoneum for oversize inguinal hernias in all patients. Orchiectomy was necessary on only two occasions. Despite the repair complexity involved, we had only two known recurrences. The mortality was zero and the morbidity was acceptable. We conclude that an accurate open preperitoneal approach using mesh prosthesis for complex inguinal hernias is safe, with very low recurrent rates and low morbidity. Progressive preoperative pneumoperitoneum for giant hernias was shown to be an important factor in accomplishing good intraoperative and immediate postoperative results.
Harris, Heather S.; Oates, Stori C.; Staedler, Michelle M.; Tinker, M. Tim; Jessup, David A.; Harvey, James T.; Miller, Melissa A.
2010-01-01
Nineteen occurrences of interspecific sexual behavior between male southern sea otters (Enhydra lutris nereis) and juvenile Pacific harbor seals (Phoca vitulina richardsi) were reported in Monterey Bay, California, between 2000 and 2002. At least three different male sea otters were observed harassing, dragging, guarding, and copulating with harbor seals for up to 7 d postmortem. Carcasses of 15 juvenile harbor seals were recovered, and seven were necropsied in detail by a veterinary pathologist. Necropsy findings from two female sea otters that were recovered dead from male sea otters exhibiting similar behavior are also presented to facilitate a comparison of lesions. The most frequent lesions included superficial skin lacerations; hemorrhage around the nose, eyes, flippers, and perineum; and traumatic corneal erosions or ulcers. The harbor seals sustained severe genital trauma, ranging from vaginal perforation to vagino-cervical transection, and colorectal perforations as a result of penile penetration. One harbor seal developed severe pneumoperitoneum subsequent to vaginal perforation, which was also observed in both female sea otters and has been reported as a postcoital lesion in humans. This study represents the first description of lesions resulting from forced copulation of harbor seals by sea otters and is also the first report of pneu-moperitoneum secondary to forced copulation in a nonhuman animal. Possible explanations for this behavior are discussed in the context of sea otter biology and population demographics.
Marolf, Angela; Blaik, Margaret; Ackerman, Norman; Watson, Elizabeth; Gibson, Nicole; Thompson, Margret
2008-01-01
The role of digital imaging is increasing as these systems are becoming more affordable and accessible. Advantages of computed radiography compared with conventional film/screen combinations include improved contrast resolution and postprocessing capabilities. Computed radiography's spatial resolution is inferior to conventional radiography; however, this limitation is considered clinically insignificant. This study prospectively compared digital imaging and conventional radiography in detecting small volume pneumoperitoneum. Twenty cadaver dogs (15-30 kg) were injected with 0.25, 0.25, and 0.5 ml for 1 ml total of air intra-abdominally, and radiographed sequentially using computed and conventional radiographic technologies. Three radiologists independently evaluated the images, and receiver operating curve (ROC) analysis compared the two imaging modalities. There was no statistical difference between computed and conventional radiography in detecting free abdominal air, but overall computed radiography was relatively more sensitive based on ROC analysis. Computed radiographic images consistently and significantly demonstrated a minimal amount of 0.5 ml of free air based on ROC analysis. However, no minimal air amount was consistently or significantly detected with conventional film. Readers were more likely to detect free air on lateral computed images than the other projections, with no significant increased sensitivity between film/screen projections. Further studies are indicated to determine the differences or lack thereof between various digital imaging systems and conventional film/screen systems.
Virtual goods recommendations in virtual worlds.
Chen, Kuan-Yu; Liao, Hsiu-Yu; Chen, Jyun-Hung; Liu, Duen-Ren
2015-01-01
Virtual worlds (VWs) are computer-simulated environments which allow users to create their own virtual character as an avatar. With the rapidly growing user volume in VWs, platform providers launch virtual goods in haste and stampede users to increase sales revenue. However, the rapidity of development incurs virtual unrelated items which will be difficult to remarket. It not only wastes virtual global companies' intelligence resources, but also makes it difficult for users to find suitable virtual goods fit for their virtual home in daily virtual life. In the VWs, users decorate their houses, visit others' homes, create families, host parties, and so forth. Users establish their social life circles through these activities. This research proposes a novel virtual goods recommendation method based on these social interactions. The contact strength and contact influence result from interactions with social neighbors and influence users' buying intention. Our research highlights the importance of social interactions in virtual goods recommendation. The experiment's data were retrieved from an online VW platform, and the results show that the proposed method, considering social interactions and social life circle, has better performance than existing recommendation methods.
Virtual Goods Recommendations in Virtual Worlds
Chen, Kuan-Yu; Liao, Hsiu-Yu; Chen, Jyun-Hung; Liu, Duen-Ren
2015-01-01
Virtual worlds (VWs) are computer-simulated environments which allow users to create their own virtual character as an avatar. With the rapidly growing user volume in VWs, platform providers launch virtual goods in haste and stampede users to increase sales revenue. However, the rapidity of development incurs virtual unrelated items which will be difficult to remarket. It not only wastes virtual global companies' intelligence resources, but also makes it difficult for users to find suitable virtual goods fit for their virtual home in daily virtual life. In the VWs, users decorate their houses, visit others' homes, create families, host parties, and so forth. Users establish their social life circles through these activities. This research proposes a novel virtual goods recommendation method based on these social interactions. The contact strength and contact influence result from interactions with social neighbors and influence users' buying intention. Our research highlights the importance of social interactions in virtual goods recommendation. The experiment's data were retrieved from an online VW platform, and the results show that the proposed method, considering social interactions and social life circle, has better performance than existing recommendation methods. PMID:25834837
Liu, Shijiang; Sun, Jie; Chen, Xing; Yu, Yingying; Liu, Xuan; Liu, Cunming
2014-01-01
To investigate the correlation and accuracy of transcutaneous carbon dioxide partial pressure (PTCCO2) with regard to arterial carbon dioxide partial pressure (PaCO2) in severe obese patients undergoing laparoscopic bariatric surgery. Twenty-one patients with BMI>35 kg/m2 were enrolled in our study. Their PaCO2, end-tidal carbon dioxide partial pressure (PetCO2), as well as PTCCO2 values were measured at before pneumoperitoneum and 30 min, 60 min, 120 min after pneumoperitoneum respectively. Then the differences between each pair of values (PetCO2–PaCO2) and. (PTCCO2–PaCO2) were calculated. Bland–Altman method, correlation and regression analysis, as well as exact probability method and two way contingency table were employed for the data analysis. 21 adults (aged 19–54 yr, mean 29, SD 9 yr; weight 86–160 kg, mean119.3, SD 22.1 kg; BMI 35.3–51.1 kg/m2, mean 42.1,SD 5.4 kg/m2) were finally included in this study. One patient was eliminated due to the use of vaso-excitor material phenylephrine during anesthesia induction. Eighty-four sample sets were obtained. The average PaCO2–PTCCO2 difference was 0.9±1.3 mmHg (mean±SD). And the average PaCO2–PetCO2 difference was 10.3±2.3 mmHg (mean±SD). The linear regression equation of PaCO2–PetCO2 is PetCO2 = 11.58+0.57×PaCO2 (r2 = 0.64, P<0.01), whereas the one of PaCO2–PTCCO2 is PTCCO2 = 0.60+0.97×PaCO2 (r2 = 0.89). The LOA (limits of agreement) of 95% average PaCO2–PetCO2 difference is 10.3±4.6 mmHg (mean±1.96 SD), while the LOA of 95% average PaCO2–PTCCO2 difference is 0.9±2.6 mmHg (mean±1.96 SD). In conclusion, transcutaneous carbon dioxide monitoring provides a better estimate of PaCO2 than PetCO2 in severe obese patients undergoing laparoscopic bariatric surgery. PMID:24699267
A fast simulation method for radiation maps using interpolation in a virtual environment.
Li, Meng-Kun; Liu, Yong-Kuo; Peng, Min-Jun; Xie, Chun-Li; Yang, Li-Qun
2018-05-10
In nuclear decommissioning, virtual simulation technology is a useful tool to achieve an effective work process by using virtual environments to represent the physical and logical scheme of a real decommissioning project. This technology is cost-saving and time-saving, with the capacity to develop various decommissioning scenarios and reduce the risk of retrofitting. The method utilises a radiation map in a virtual simulation as the basis for the assessment of exposure to a virtual human. In this paper, we propose a fast simulation method using a known radiation source. The method has a unique advantage over point kernel and Monte Carlo methods because it generates the radiation map using interpolation in a virtual environment. The simulation of the radiation map including the calculation and the visualisation were realised using UNITY and MATLAB. The feasibility of the proposed method was tested on a hypothetical case and the results obtained are discussed in this paper.
Fulminant abdominal gas gangrene in metastatic colon cancer.
Bozkurt, Mustafa; Okutur, Kerem; Aydin, Kübra; Namal, Esat; Oztürk, Akin; Balci, Cem; Demir, Gökhan
2012-02-01
We report a case of fulminant abdominal gas gangrene in a patient with metastatic colon cancer. A 39-year-old patient with descending colon, high-grade adenocarcinoma and coexisting liver and lymph node metastases received two courses of chemotherapy. The patient developed sudden acute abdominal symptoms accompanied by septic shock parameters. The imaging findings on computed tomography were characteristic for abdominal gas gangrene, involving liver metastases, portal vein and lymph nodes with associated pneumoperitoneum. The patient succumbed to the disease within hours following the onset of symptoms.
Sensitivity-based virtual fields for the non-linear virtual fields method
NASA Astrophysics Data System (ADS)
Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice
2017-09-01
The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.
Harris, H.S.; Oates, S.C.; Staedler, M.M.; Tinker, M.T.; Jessup, David A.; Harvey, J.T.; Miller, M.A.
2010-01-01
Nineteen occurrences of interspecific sexual behavior between male southern sea otters (Enhydra lutris nereis) and juvenile Pacific harbor seals (Phoca vitulina richardsi) were reported in Monterey Bay, California, between 2000 and 2002. At least three different male sea otters were observed harassing, dragging, guarding, and copulating with harbor seals for up to 7 d postmortem. Carcasses of 15 juvenile harbor seals were recovered, and seven were necropsied in detail by a veterinary pathologist. Necropsy findings from two female sea otters that were recovered dead from male sea otters exhibiting similar behavior are also presented to facilitate a comparison of lesions. The most frequent lesions included superficial skin lacerations; hemorrhage around the nose, eyes, flippers, and perineum; and traumatic corneal erosions or ulcers. The harbor seals sustained severe genital trauma, ranging from vaginal perforation to vagino-cervical transection, and colorectal perforations as a result of penile penetration. One harbor seal developed severe pneumoperitoneum subsequent to vaginal perforation, which was also observed in both female sea otters and has been reported as a postcoital lesion in humans. This study represents the first description of lesions resulting from forced copulation of harbor seals by sea otters and is also the first report of pneumoperitoneum secondary to forced copulation in a nonhuman animal. Possible explanations for this behavior are discussed in the context of sea otter biology and population demographics.
Endoscopic Ultrasound-guided Bilio-pancreatic Drainage
Giovannini, Marc; Bories, Erwan; Téllez-Ávila, Félix I.
2012-01-01
The echoendoscopic biliary drainage is an option to treat obstructive jaundices when endoscopic retrograde cholangiopancreatography (ERCP) drainage fails. These procedures compose alternative methods to the side of surgery and percutaneous transhepatic biliary drainage, and it was only possible by the continuous development and improvement of echoendoscopes and accessories. The development of linear sectorial array echoendoscopes in early 1990 brought a new approach to diagnostic and therapeutic dimension on echoendoscopy capabilities, opening the possibility to perform punction over direct ultrasonografic view. Despite of the high success rate and low morbidity of biliary drainage obtained by ERCP, difficulty could be found at the presence of stent tumor ingrown, tumor gut compression, periampullary diverticula and anatomic variation. The echoendoscopic technique starts performing punction and contrast of the left biliary tree. When performed from gastric wall, the access is made through hepatic segment III. From duodenum, direct common bile duct punction. Diathermic dilatation of the puncturing tract is required using a 6-Fr cystostome and a plastic or metal stent is introducted. The techincal success of hepaticogastrostomy is near 98%, and complications are present in 20%: pneumoperitoneum, choleperitoneum, infection and stent disfunction. To prevent bile leakage, we have used the 2-stent techniques. The first stent introduced was a long uncovered metal stent (8 or 10 cm) and inside this first stent a second fully covered stent of 6 cm was delivered to bridge the bile duct and the stomach. Choledochoduodenostomy overall success rate is 92%, and described complications include, in frequency order, pneumoperitoneum and focal bile peritonitis, present in 14%. By the last 10 years, the technique was especially performed in reference centers, by ERCP experienced groups, and this seems to be a general guideline to safer procedure execution. The ideal approach for pancreatic pseudocyst (PPC) puncture combines endos-copy with real time endosonography using an interventional echoendoscope. Several authors have described the use of endoscopic ultrasound (EUS) longitudinal scanners for guidance of transmural puncture and drainage procedures. The same technique could be used to access a dilated pancreatic duct in cases in which the duct cannot be drained by conventional ERCP because of complete obstruction. PMID:24949349
NASA Astrophysics Data System (ADS)
Wang, H.; Jing, X. J.
2017-02-01
This paper proposes a novel method for the fault diagnosis of complex structures based on an optimized virtual beam-like structure approach. A complex structure can be regarded as a combination of numerous virtual beam-like structures considering the vibration transmission path from vibration sources to each sensor. The structural 'virtual beam' consists of a sensor chain automatically obtained by an Improved Bacterial Optimization Algorithm (IBOA). The biologically inspired optimization method (i.e. IBOA) is proposed for solving the discrete optimization problem associated with the selection of the optimal virtual beam for fault diagnosis. This novel virtual beam-like-structure approach needs less or little prior knowledge. Neither does it require stationary response data, nor is it confined to a specific structure design. It is easy to implement within a sensor network attached to the monitored structure. The proposed fault diagnosis method has been tested on the detection of loosening screws located at varying positions in a real satellite-like model. Compared with empirical methods, the proposed virtual beam-like structure method has proved to be very effective and more reliable for fault localization.
Lee, S W; Southall, J C; Gleason, N R; Huang, E H; Bessler, M; Whelan, R L
2000-03-01
Our laboratory has demonstrated that significantly more cell-mediated immunosuppression occurs after full laparotomy than after either anesthesia control or carbon dioxide (CO2) pneumoperitoneum. We further demonstrated that the postoperative immunosuppression is related to the length of the incision. Other investigators believe that the immunosuppression observed after laparotomy is caused by peritoneal exposure to small amounts of lipopolysaccharide found in circulating air. They believe that the better-preserved immune function associated with laparoscopic surgery results from the avoidance of air contamination of the peritoneal cavity. To investigate this hypothesis, we determined and compared postoperative lymphocyte proliferation rates after (a) laparotomy in room air, (b) laparotomy in a CO2 chamber, (c) CO2 insufflation in a murine model, and (d) anesthesia alone. Female C3H/He mice (n = 21) were divided randomly into four groups: (a) anesthesia control, (b) air laparotomy, (c) CO2 laparotomy, and (d) CO2 insufflation. The control mice underwent no procedure. The group 2 animals underwent a full midline incision (xiphoid to pubis) and exposure to room air for 20 min and then were clipped closed. The group 3 mice underwent a full midline incision in a sealed CO2 chamber for 20 min, and the group 4 mice insufflation with CO2 gas at 4 to 6 mm Hg for 20 min. Splenocytes were harvested from all the animals on day 2 after the interventions. Lymphocyte proliferation then was assessed using the nonradioactive colorimetric MTS/PMS system 72 h after concanavalin-A stimulation. There was no significant difference in lymphocyte proliferation between the air and CO2 laparotomy groups. Lymphocyte proliferation in the anesthesia control and CO2 insufflation groups was significantly higher than in both the air laparotomy (p<0.05) and CO2 laparotomy (p<0.05) groups (p values by Tukey-Kramer test). There was no significant difference between the anesthesia control and CO2 pneumoperitoneum groups. Our results suggest that full laparotomy performed in a sealed CO2 chamber compared to room air laparotomy resulted in similar suppression of lymphocyte proliferation. Furthermore, no significant suppression of lymphocyte proliferation was observed in the CO2 pneumoperitoneum group. These results, with regard to lymphocyte proliferation rates, refute the hypothesis that postoperative immunosuppression is related to air exposure and support the alternative hypothesis that immunosuppression is related to incision length.
Exploring Non-Traditional Learning Methods in Virtual and Real-World Environments
ERIC Educational Resources Information Center
Lukman, Rebeka; Krajnc, Majda
2012-01-01
This paper identifies the commonalities and differences within non-traditional learning methods regarding virtual and real-world environments. The non-traditional learning methods in real-world have been introduced within the following courses: Process Balances, Process Calculation, and Process Synthesis, and within the virtual environment through…
Interference Cognizant Network Scheduling
NASA Technical Reports Server (NTRS)
Hall, Brendan (Inventor); Bonk, Ted (Inventor); DeLay, Benjamin F. (Inventor); Varadarajan, Srivatsan (Inventor); Smithgall, William Todd (Inventor)
2017-01-01
Systems and methods for interference cognizant network scheduling are provided. In certain embodiments, a method of scheduling communications in a network comprises identifying a bin of a global timeline for scheduling an unscheduled virtual link, wherein a bin is a segment of the timeline; identifying a pre-scheduled virtual link in the bin; and determining if the pre-scheduled and unscheduled virtual links share a port. In certain embodiments, if the unscheduled and pre-scheduled virtual links don't share a port, scheduling transmission of the unscheduled virtual link to overlap with the scheduled transmission of the pre-scheduled virtual link; and if the unscheduled and pre-scheduled virtual links share a port: determining a start time delay for the unscheduled virtual link based on the port; and scheduling transmission of the unscheduled virtual link in the bin based on the start time delay to overlap part of the scheduled transmission of the pre-scheduled virtual link.
Fulminant abdominal gas gangrene in metastatic colon cancer
BOZKURT, MUSTAFA; OKUTUR, KEREM; AYDIN, KÜBRA; NAMAL, ESAT; ÖZTÜRK, AKIN; BALCI, CEM; DEMIR, GÖKHAN
2012-01-01
We report a case of fulminant abdominal gas gangrene in a patient with metastatic colon cancer. A 39-year-old patient with descending colon, high-grade adenocarcinoma and coexisting liver and lymph node metastases received two courses of chemotherapy. The patient developed sudden acute abdominal symptoms accompanied by septic shock parameters. The imaging findings on computed tomography were characteristic for abdominal gas gangrene, involving liver metastases, portal vein and lymph nodes with associated pneumoperitoneum. The patient succumbed to the disease within hours following the onset of symptoms. PMID:22740933
Veres needle in the pleural space.
Jenkins, D W; McKinney, M K; Szpak, M W; Booker, J L
1983-11-01
The Veres needle is designed to allow entry into body cavities without trauma to underlying organs. Its major use has been in the induction of a pneumoperitoneum for peritoneoscopy. An initial successful evaluation of its use was in the pleural space of dogs. A subsequent analysis of complications in 69 thoracenteses using the Veres needle and 152 thoracenteses using a conventional needle favored the Veres needle (P = .05). We believe that the Veres needle is a safe and technically superior instrument for thoracentesis and that it deserves further application and study.
Anesthetic Challenges in Robotic-assisted Urologic Surgery
Hsu, Richard L; Kaye, Alan D; Urman, Richard D
2013-01-01
Robotic-assisted surgery has evolved over the past two decades with constantly improving technology, assisting surgeons in multiple subspecialty disciplines. The surgical requirements of lithotomy and steep Trendelenburg positions, along with the creation of a pneumoperitoneum and limited access to the patient, all present anesthetic management challenges in urologic surgery. Patient positioning requirements can cause significant physiologic effects and may result in many complications. Good communication among team members and knowledge of the nuances of robotic surgery have the potential to improve patient outcomes, increase efficiency, and reduce surgical and anesthetic complications. PMID:24659914
LAPAROSCOPY AFTER PREVIOUS LAPAROTOMY
Godinjak, Zulfo; Idrizbegović, Edin; Begić, Kerim
2006-01-01
Following the abdominal surgery, extensive adhesions often occur and they can cause difficulties during laparoscopic operations. However, previous laparotomy is not considered to be a contraindication for lap-aroscopy. The aim of this study is to present that an insertion of Veres needle in the region of umbilicus is a safe method for creating a pneumoperitoneum for laparoscopic operations after previous laparotomy. In the last three years, we have performed 144 laparoscopic operations in patients that previously underwent one or two laparotomies. Pathology of digestive system, genital organs, Cesarean Section or abdominal war injuries were the most common causes of previous laparotomy. During those operations or during entering into abdominal cavity we have not experienced any complications, while in 7 patients we performed conversion to laparotomy following the diagnostic laparoscopy. In all patients an insertion of Veres needle and trocar insertion in the umbilical region was performed, namely a technique of closed laparoscopy. Not even in one patient adhesions in the region of umbilicus were found, and no abdominal organs were injured. PMID:17177649
NASA Astrophysics Data System (ADS)
Shi, Chenchen; Zhan, Jinyan
Virtual water refers to the volumes of water required to produce a commodity or service. It reflects human's actual consumption of water resources and therefore has certain significance in water resources management. Over the years, the concept of virtual water has caught the attentions of water manager and decision maker. In order to utilize this concept, the accounting and estimation of virtual water is the foundation that lies in this issue. Till now, the accounting methods mainly include the method provided by Food and Agriculture Organization of the United Nations (FAO), water footprint and input-output analysis method. In this paper, we chose Northwest China, which is a typical arid region that is facing with rapid economic development, as the study area and built an Input-Output (IO) analysis method to estimate virtual water among different industry sectors in the northwest China. The accounting and estimation results could be used to give suggestions to increase water use efficiency and promote virtual water trade in the study area. Comparison of the proposed method with other prevailing method was also analyzed. The introduced method could be utilized for accounting and estimation of virtual water by sectors, with its superiority in characterizing industrial water consumption and the accounting results could lend certain credence to the water resource management and industrial transformation for the future economic development of northwest China.
Analysis of a virtual memory model for maintaining database views
NASA Technical Reports Server (NTRS)
Kinsley, Kathryn C.; Hughes, Charles E.
1992-01-01
This paper presents an analytical model for predicting the performance of a new support strategy for database views. This strategy, called the virtual method, is compared with traditional methods for supporting views. The analytical model's predictions of improved performance by the virtual method are then validated by comparing these results with those achieved in an experimental implementation.
Virtual Enterprise: Transforming Entrepreneurship Education
ERIC Educational Resources Information Center
Borgese, Anthony
2011-01-01
Entrepreneurship education is ripe for utilizing experiential learning methods. Experiential methods are best learned when there is constant immersion into the subject matter. One such transformative learning methodology is Virtual Enterprise (VE). Virtual Enterprise is a multi-faceted, experiential learning methodology disseminated by the City…
A three phase optimization method for precopy based VM live migration.
Sharma, Sangeeta; Chawla, Meenu
2016-01-01
Virtual machine live migration is a method of moving virtual machine across hosts within a virtualized datacenter. It provides significant benefits for administrator to manage datacenter efficiently. It reduces service interruption by transferring the virtual machine without stopping at source. Transfer of large number of virtual machine memory pages results in long migration time as well as downtime, which also affects the overall system performance. This situation becomes unbearable when migration takes place over slower network or a long distance migration within a cloud. In this paper, precopy based virtual machine live migration method is thoroughly analyzed to trace out the issues responsible for its performance drops. In order to address these issues, this paper proposes three phase optimization (TPO) method. It works in three phases as follows: (i) reduce the transfer of memory pages in first phase, (ii) reduce the transfer of duplicate pages by classifying frequently and non-frequently updated pages, and (iii) reduce the data sent in last iteration of migration by applying the simple RLE compression technique. As a result, each phase significantly reduces total pages transferred, total migration time and downtime respectively. The proposed TPO method is evaluated using different representative workloads on a Xen virtualized environment. Experimental results show that TPO method reduces total pages transferred by 71 %, total migration time by 70 %, downtime by 3 % for higher workload, and it does not impose significant overhead as compared to traditional precopy method. Comparison of TPO method with other methods is also done for supporting and showing its effectiveness. TPO method and precopy methods are also tested at different number of iterations. The TPO method gives better performance even with less number of iterations.
A review of virtual cutting methods and technology in deformable objects.
Wang, Monan; Ma, Yuzheng
2018-06-05
Virtual cutting of deformable objects has been a research topic for more than a decade and has been used in many areas, especially in surgery simulation. We refer to the relevant literature and briefly describe the related research. The virtual cutting method is introduced, and we discuss the benefits and limitations of these methods and explore possible research directions. Virtual cutting is a category of object deformation. It needs to represent the deformation of models in real time as accurately, robustly and efficiently as possible. To accurately represent models, the method must be able to: (1) model objects with different material properties; (2) handle collision detection and collision response; and (3) update the geometry and topology of the deformable model that is caused by cutting. Virtual cutting is widely used in surgery simulation, and research of the cutting method is important to the development of surgery simulation. Copyright © 2018 John Wiley & Sons, Ltd.
One New Method to Generate 3-Dimensional Virtual Mannequin
NASA Astrophysics Data System (ADS)
Xiu-jin, Shi; Zhi-jun, Wang; Jia-jin, Le
The personal virtual mannequin is very important in electronic made to measure (eMTM) system. There is one new easy method to generate personal virtual mannequin. First, the characteristic information of customer's body is got from two photos. Secondly, some human body part templates corresponding with the customer are selected from the templates library. Thirdly, these templates are modified and assembled according to certain rules to generate a personalized 3-dimensional human, and then the virtual mannequin is realized. Experimental result shows that the method is easy and feasible.
Hirarchical emotion calculation model for virtual human modellin - biomed 2010.
Zhao, Yue; Wright, David
2010-01-01
This paper introduces a new emotion generation method for virtual human modelling. The method includes a novel hierarchical emotion structure, a group of emotion calculation equations and a simple heuristics decision making mechanism, which enables virtual humans to perform emotionally in real-time according to their internal and external factors. Emotion calculation equations used in this research were derived from psychologic emotion measurements. Virtual humans can utilise the information in virtual memory and emotion calculation equations to generate their own numerical emotion states within the hierarchical emotion structure. Those emotion states are important internal references for virtual humans to adopt appropriate behaviours and also key cues for their decision making. A simple heuristics theory is introduced and integrated into decision making process in order to make the virtual humans decision making more like a real human. A data interface which connects the emotion calculation and the decision making structure together has also been designed and simulated to test the method in Virtools environment.
Registration-free laparoscope augmentation for intra-operative liver resection planning
NASA Astrophysics Data System (ADS)
Feuerstein, Marco; Mussack, Thomas; Heining, Sandro M.; Navab, Nassir
2007-03-01
In recent years, an increasing number of liver tumor indications were treated by minimally invasive laparoscopic resection. Besides the restricted view, a major issue in laparoscopic liver resection is the enhanced visualization of (hidden) vessels, which supply the tumorous liver segment and thus need to be divided prior to the resection. To navigate the surgeon to these vessels, pre-operative abdominal imaging data can hardly be used due to intraoperative organ deformations mainly caused by appliance of carbon dioxide pneumoperitoneum and respiratory motion. While regular respiratory motion can be gated and synchronized intra-operatively, motion caused by pneumoperitoneum is individual for every patient and difficult to estimate. Therefore, we propose to use an optically tracked mobile C-arm providing cone-beam CT imaging capability intraoperatively. The C-arm is able to visualize soft tissue by means of its new flat panel detector and is calibrated offline to relate its current position and orientation to the coordinate system of a reconstructed volume. Also the laparoscope is optically tracked and calibrated offline, so both laparoscope and C-arm are registered in the same tracking coordinate system. Intra-operatively, after patient positioning, port placement, and carbon dioxide insufflation, the liver vessels are contrasted and scanned during patient exhalation. Immediately, a three-dimensional volume is reconstructed. Without any further need for patient registration, the volume can be directly augmented on the live laparoscope video, visualizing the contrasted vessels. This augmentation provides the surgeon with advanced visual aid for the localization of veins, arteries, and bile ducts to be divided or sealed.
Bueno-Lledó, J; Torregrosa, A; Ballester, N; Carreño, O; Carbonell, F; Pastor, P G; Pamies, J; Cortés, V; Bonafé, S; Iserte, J
2017-04-01
Combination of preoperative progressive pneumoperitoneum (PPP) and botulinum toxin type A (BT) has not been previously reported in the management of large incisional hernia (LIH). Observational study of 45 consecutive patients with LIH between June 2010 and July 2014. The diameters of the hernia sac, the volumes of the incisional hernia (VIH) and the abdominal cavity (VAC), and the VIH/VAC ratio were measured before and after PPP and BT using abdominal CT scan data. We indicated the combination of both techniques when the volume of the incisional hernia (VIH)/volume of the abdominal cavity (VAC) ratio was >20%. The median insufflated volume of air for PPP was 8.600 ± 3.200 cc (4.500-13.250), over a period of 14.3 ± 1.3 days (13-16). BT administration time was 40.2 ± 3.3 days (37-44). We obtained an average value of reduction of 14% of the VIH/VAC ratio after PPP and BT (p < 0.05). Complications associated with PPP were 15.5%, and with surgical technique, 26.6%. No complications occurred during the BT administration. Reconstructive technique was anterior CST and primary fascial closure was achieved in all patients. Median follow-up was 40.5 ± 19 months (12-60) and we reported 2 cases of hernia recurrence (4.4%). Preoperative combination of PPP and BT is feasible and a useful tool in the surgical management of LIH, although at the cost of some specific complications.
Huang, Zhi-Heng; Song, Zai; Zhang, Ping; Wu, Jie; Huang, Ying
2016-01-01
AIM: To investigate multiple polyps in a Chinese Peutz-Jeghers syndrome (PJS) infant. METHODS: A nine-month-old PJS infant was admitted to our hospital for recurrent prolapsed rectal polyps for one month. The clinical characteristics, a colonoscopic image, the pathological characteristics of the polyps and X-ray images of the intestinal perforation were obtained. Serine threonine-protein kinase 11 (STK11) gene analysis was also performed using a DNA sample from this infant. RESULTS: Here we describe the youngest known Chinese infant with PJS. Five polyps, including a giant polyp of approximately 4 cm × 2 cm in size, were removed from the infant’s intestine. Laparotomy was performed to repair a perforation caused by pneumoperitoneum. The pathological results showed that this child had PJS. Molecular analysis of the STK11 gene further revealed a novel frameshift mutation (c.64_65het_delAT) in exon 1 in this PJS infant. CONCLUSION: The appropriate treatment method for multiple polyps in an infant must be carefully considered. Our results also show that the STK11 gene mutation is the primary cause of PJS. PMID:27004004
Virtual Screening with AutoDock: Theory and Practice
Cosconati, Sandro; Forli, Stefano; Perryman, Alex L.; Harris, Rodney; Goodsell, David S.; Olson, Arthur J.
2011-01-01
Importance to the field Virtual screening is a computer-based technique for identifying promising compounds to bind to a target molecule of known structure. Given the rapidly increasing number of protein and nucleic acid structures, virtual screening continues to grow as an effective method for the discovery of new inhibitors and drug molecules. Areas covered in this review We describe virtual screening methods that are available in the AutoDock suite of programs, and several of our successes in using AutoDock virtual screening in pharmaceutical lead discovery. What the reader will gain A general overview of the challenges of virtual screening is presented, along with the tools available in the AutoDock suite of programs for addressing these challenges. Take home message Virtual screening is an effective tool for the discovery of compounds for use as leads in drug discovery, and the free, open source program AutoDock is an effective tool for virtual screening. PMID:21532931
ERIC Educational Resources Information Center
Carter, E. Vincent
2015-01-01
This study examines an original dramaturgical method for creating virtual world experience called virtual world drama. The instructional focus is improving students' aptitude for analyzing ethnic identity by instilling both conceptual and multicultural competency. An exploratory research method is used, relying on observation (disguised and…
Ma, Xiao H; Jia, Jia; Zhu, Feng; Xue, Ying; Li, Ze R; Chen, Yu Z
2009-05-01
Machine learning methods have been explored as ligand-based virtual screening tools for facilitating drug lead discovery. These methods predict compounds of specific pharmacodynamic, pharmacokinetic or toxicological properties based on their structure-derived structural and physicochemical properties. Increasing attention has been directed at these methods because of their capability in predicting compounds of diverse structures and complex structure-activity relationships without requiring the knowledge of target 3D structure. This article reviews current progresses in using machine learning methods for virtual screening of pharmacodynamically active compounds from large compound libraries, and analyzes and compares the reported performances of machine learning tools with those of structure-based and other ligand-based (such as pharmacophore and clustering) virtual screening methods. The feasibility to improve the performance of machine learning methods in screening large libraries is discussed.
A Typology of Ethnographic Scales for Virtual Worlds
NASA Astrophysics Data System (ADS)
Boellstorff, Tom
This chapter outlines a typology of genres of ethnographic research with regard to virtual worlds, informed by extensive research the author has completed both in Second Life and in Indonesia. It begins by identifying four confusions about virtual worlds: they are not games, they need not be graphical or even visual, they are not mass media, and they need not be defined in terms of escapist role-playing. A three-part typology of methods for ethnographic research in virtual worlds focuses on the relationship between research design and ethnographic scale. One class of methods for researching virtual worlds with regard to ethnographic scale explores interfaces between virtual worlds and the actual world, whereas a second examines interfaces between two or more virtual worlds. The third class involves studying a single virtual world in its own terms. Recognizing that all three approaches have merit for particular research purposes, ethnography of virtual worlds can be a vibrant field of research, contributing to central debates about human selfhood and sociality.
Virtual reality for spherical images
NASA Astrophysics Data System (ADS)
Pilarczyk, Rafal; Skarbek, Władysław
2017-08-01
Paper presents virtual reality application framework and application concept for mobile devices. Framework uses Google Cardboard library for Android operating system. Framework allows to create virtual reality 360 video player using standard OpenGL ES rendering methods. Framework provides network methods in order to connect to web server as application resource provider. Resources are delivered using JSON response as result of HTTP requests. Web server also uses Socket.IO library for synchronous communication between application and server. Framework implements methods to create event driven process of rendering additional content based on video timestamp and virtual reality head point of view.
Reynolds, Christopher R; Muggleton, Stephen H; Sternberg, Michael J E
2015-01-01
The use of virtual screening has become increasingly central to the drug development pipeline, with ligand-based virtual screening used to screen databases of compounds to predict their bioactivity against a target. These databases can only represent a small fraction of chemical space, and this paper describes a method of exploring synthetic space by applying virtual reactions to promising compounds within a database, and generating focussed libraries of predicted derivatives. A ligand-based virtual screening tool Investigational Novel Drug Discovery by Example (INDDEx) is used as the basis for a system of virtual reactions. The use of virtual reactions is estimated to open up a potential space of 1.21×1012 potential molecules. A de novo design algorithm known as Partial Logical-Rule Reactant Selection (PLoRRS) is introduced and incorporated into the INDDEx methodology. PLoRRS uses logical rules from the INDDEx model to select reactants for the de novo generation of potentially active products. The PLoRRS method is found to increase significantly the likelihood of retrieving molecules similar to known actives with a p-value of 0.016. Case studies demonstrate that the virtual reactions produce molecules highly similar to known actives, including known blockbuster drugs. PMID:26583052
Visual field examination method using virtual reality glasses compared with the Humphrey perimeter.
Tsapakis, Stylianos; Papaconstantinou, Dimitrios; Diagourtas, Andreas; Droutsas, Konstantinos; Andreanos, Konstantinos; Moschos, Marilita M; Brouzas, Dimitrios
2017-01-01
To present a visual field examination method using virtual reality glasses and evaluate the reliability of the method by comparing the results with those of the Humphrey perimeter. Virtual reality glasses, a smartphone with a 6 inch display, and software that implements a fast-threshold 3 dB step staircase algorithm for the central 24° of visual field (52 points) were used to test 20 eyes of 10 patients, who were tested in a random and consecutive order as they appeared in our glaucoma department. The results were compared with those obtained from the same patients using the Humphrey perimeter. High correlation coefficient ( r =0.808, P <0.0001) was found between the virtual reality visual field test and the Humphrey perimeter visual field. Visual field examination results using virtual reality glasses have a high correlation with the Humphrey perimeter allowing the method to be suitable for probable clinical use.
NASA Astrophysics Data System (ADS)
Peng, Bo; Zheng, Sifa; Liao, Xiangning; Lian, Xiaomin
2018-03-01
In order to achieve sound field reproduction in a wide frequency band, multiple-type speakers are used. The reproduction accuracy is not only affected by the signals sent to the speakers, but also depends on the position and the number of each type of speaker. The method of optimizing a mixed speaker array is investigated in this paper. A virtual-speaker weighting method is proposed to optimize both the position and the number of each type of speaker. In this method, a virtual-speaker model is proposed to quantify the increment of controllability of the speaker array when the speaker number increases. While optimizing a mixed speaker array, the gain of the virtual-speaker transfer function is used to determine the priority orders of the candidate speaker positions, which optimizes the position of each type of speaker. Then the relative gain of the virtual-speaker transfer function is used to determine whether the speakers are redundant, which optimizes the number of each type of speaker. Finally the virtual-speaker weighting method is verified by reproduction experiments of the interior sound field in a passenger car. The results validate that the optimum mixed speaker array can be obtained using the proposed method.
Assessment method of digital Chinese dance movements based on virtual reality technology
NASA Astrophysics Data System (ADS)
Feng, Wei; Shao, Shuyuan; Wang, Shumin
2008-03-01
Virtual reality has played an increasing role in such areas as medicine, architecture, aviation, engineering science and advertising. However, in the art fields, virtual reality is still in its infancy in the representation of human movements. Based on the techniques of motion capture and reuse of motion capture data in virtual reality environment, this paper presents an assessment method in order to evaluate the quantification of dancers' basic Arm Position movements in Chinese traditional dance. In this paper, the data for quantifying traits of dance motions are defined and measured on dancing which performed by an expert and two beginners, with results indicating that they are beneficial for evaluating dance skills and distinctiveness, and the assessment method of digital Chinese dance movements based on virtual reality technology is validity and feasibility.
[Giant hernias with loss of domain: what is the best way to prepare patients?].
Balaphas, Alexandre; Morel, Philippe; Breguet, Romain; Assalino, Michela
2016-06-15
Giant hernias with loss of domain induce physiological modifications that impair quality of life and make more complex their surgical management. A good preparation of patients before surgery is the key to an eventless postoperative course. The progressive pre-operative pneumoperitoneum (PPP) is one of the described abdominal augmentation protocols which can help patients to tolerate hernia content reintegration and avoid components separation technique during hernia repair. This article describes the management of these complex patients. We also report the case of a patient who follows successfully a PPP protocol.
Hardware assisted hypervisor introspection.
Shi, Jiangyong; Yang, Yuexiang; Tang, Chuan
2016-01-01
In this paper, we introduce hypervisor introspection, an out-of-box way to monitor the execution of hypervisors. Similar to virtual machine introspection which has been proposed to protect virtual machines in an out-of-box way over the past decade, hypervisor introspection can be used to protect hypervisors which are the basis of cloud security. Virtual machine introspection tools are usually deployed either in hypervisor or in privileged virtual machines, which might also be compromised. By utilizing hardware support including nested virtualization, EPT protection and #BP, we are able to monitor all hypercalls belongs to the virtual machines of one hypervisor, include that of privileged virtual machine and even when the hypervisor is compromised. What's more, hypercall injection method is used to simulate hypercall-based attacks and evaluate the performance of our method. Experiment results show that our method can effectively detect hypercall-based attacks with some performance cost. Lastly, we discuss our furture approaches of reducing the performance cost and preventing the compromised hypervisor from detecting the existence of our introspector, in addition with some new scenarios to apply our hypervisor introspection system.
Virtual screening methods as tools for drug lead discovery from large chemical libraries.
Ma, X H; Zhu, F; Liu, X; Shi, Z; Zhang, J X; Yang, S Y; Wei, Y Q; Chen, Y Z
2012-01-01
Virtual screening methods have been developed and explored as useful tools for searching drug lead compounds from chemical libraries, including large libraries that have become publically available. In this review, we discussed the new developments in exploring virtual screening methods for enhanced performance in searching large chemical libraries, their applications in screening libraries of ~ 1 million or more compounds in the last five years, the difficulties in their applications, and the strategies for further improving these methods.
A virtual screening method for inhibitory peptides of Angiotensin I-converting enzyme.
Wu, Hongxi; Liu, Yalan; Guo, Mingrong; Xie, Jingli; Jiang, XiaMin
2014-09-01
Natural small peptides from foods have been proven to be efficient inhibitors of Angiotensin I-converting enzyme (ACE) for the regulation of blood pressure. The traditional ACE inhibitory peptides screening method is both time consuming and money costing, to the contrary, virtual screening method by computation can break these limitations. We establish a virtual screening method to obtain ACE inhibitory peptides with the help of Libdock module of Discovery Studio 3.5 software. A significant relationship between Libdock score and experimental IC(50) was found, Libdock score = 10.063 log(1/IC(50)) + 68.08 (R(2) = 0.62). The credibility of the relationship was confirmed by testing the coincidence of the estimated log(1/IC(50)) and measured log(1/IC(50)) (IC(50) is 50% inhibitory concentration toward ACE, in μmol/L) of 5 synthetic ACE inhibitory peptides, which was virtual hydrolyzed and screened from a kind of seafood, Phascolosoma esculenta. Accordingly, Libdock method is a valid IC(50) estimation tool and virtual screening method for small ACE inhibitory peptides. © 2014 Institute of Food Technologists®
Jones, Jake S.
1999-01-01
An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch.
A Reliable, Feasible Method to Observe Neighborhoods at High Spatial Resolution
Kepper, Maura M.; Sothern, Melinda S.; Theall, Katherine P.; Griffiths, Lauren A.; Scribner, Richard; Tseng, Tung-Sung; Schaettle, Paul; Cwik, Jessica M.; Felker-Kantor, Erica; Broyles, Stephanie T.
2016-01-01
Introduction Systematic social observation (SSO) methods traditionally measure neighborhoods at street level and have been performed reliably using virtual applications to increase feasibility. Research indicates that collection at even higher spatial resolution may better elucidate the health impact of neighborhood factors, but whether virtual applications can reliably capture social determinants of health at the smallest geographic resolution (parcel level) remains uncertain. This paper presents a novel, parcel-level SSO methodology and assesses whether this new method can be collected reliably using Google Street View and is feasible. Methods Multiple raters (N=5) observed 42 neighborhoods. In 2016, inter-rater reliability (observed agreement and kappa coefficient) was compared for four SSO methods: (1) street-level in person; (2) street-level virtual; (3) parcel-level in person; and (4) parcel-level virtual. Intra-rater reliability (observed agreement and kappa coefficient) was calculated to determine whether parcel-level methods produce results comparable to traditional street-level observation. Results Substantial levels of inter-rater agreement were documented across all four methods; all methods had >70% of items with at least substantial agreement. Only physical decay showed higher levels of agreement (83% of items with >75% agreement) for direct versus virtual rating source. Intra-rater agreement comparing street- versus parcel-level methods resulted in observed agreement >75% for all but one item (90%). Conclusions Results support the use of Google Street View as a reliable, feasible tool for performing SSO at the smallest geographic resolution. Validation of a new parcel-level method collected virtually may improve the assessment of social determinants contributing to disparities in health behaviors and outcomes. PMID:27989289
Fast localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates.
Subotnik, Joseph E; Dutoi, Anthony D; Head-Gordon, Martin
2005-09-15
We present here an algorithm for computing stable, well-defined localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates. The algorithm is very fast, limited only by diagonalization of two matrices with dimension the size of the number of virtual orbitals. Furthermore, we require no more than quadratic (in the number of electrons) storage. The basic premise behind our algorithm is that one can decompose any given atomic-orbital (AO) vector space as a minimal basis space (which includes the occupied and valence virtual spaces) and a hard-virtual (HV) space (which includes everything else). The valence virtual space localizes easily with standard methods, while the hard-virtual space is constructed to be atom centered and automatically local. The orbitals presented here may be computed almost as quickly as projecting the AO basis onto the virtual space and are almost as local (according to orbital variance), while our orbitals are orthonormal (rather than redundant and nonorthogonal). We expect this algorithm to find use in local-correlation methods.
ERIC Educational Resources Information Center
Stadtlander, Lee; Giles, Martha; Sickel, Amy
2013-01-01
This paper examines the complexities of working with student researchers in a virtual lab setting, logistics, and methods to resolve issues. To demonstrate the feasibility of a virtual lab, a mixed-methods study consisting of quantitative surveys and qualitative data examined changes in doctoral students' confidence as measured by research outcome…
Development of a virtual speaking simulator using Image Based Rendering.
Lee, J M; Kim, H; Oh, M J; Ku, J H; Jang, D P; Kim, I Y; Kim, S I
2002-01-01
The fear of speaking is often cited as the world's most common social phobia. The rapid growth of computer technology has enabled the use of virtual reality (VR) for the treatment of the fear of public speaking. There are two techniques for building virtual environments for the treatment of this fear: a model-based and a movie-based method. Both methods have the weakness that they are unrealistic and not controllable individually. To understand these disadvantages, this paper presents a virtual environment produced with Image Based Rendering (IBR) and a chroma-key simultaneously. IBR enables the creation of realistic virtual environments where the images are stitched panoramically with the photos taken from a digital camera. And the use of chroma-keys puts virtual audience members under individual control in the environment. In addition, real time capture technique is used in constructing the virtual environments enabling spoken interaction between the subject and a therapist or another subject.
Shape-Based Virtual Screening with Volumetric Aligned Molecular Shapes
Koes, David Ryan; Camacho, Carlos J.
2014-01-01
Shape-based virtual screening is an established and effective method for identifying small molecules that are similar in shape and function to a reference ligand. We describe a new method of shape-based virtual screening, volumetric aligned molecular shapes (VAMS). VAMS uses efficient data structures to encode and search molecular shapes. We demonstrate that VAMS is an effective method for shape-based virtual screening and that it can be successfully used as a pre-filter to accelerate more computationally demanding search algorithms. Unique to VAMS is a novel minimum/maximum shape constraint query for precisely specifying the desired molecular shape. Shape constraint searches in VAMS are particularly efficient and millions of shapes can be searched in a fraction of a second. We compare the performance of VAMS with two other shape-based virtual screening algorithms a benchmark of 102 protein targets consisting of more than 32 million molecular shapes and find that VAMS provides a competitive trade-off between run-time performance and virtual screening performance. PMID:25049193
Jones, J.S.
1999-01-12
An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.
A constraint optimization based virtual network mapping method
NASA Astrophysics Data System (ADS)
Li, Xiaoling; Guo, Changguo; Wang, Huaimin; Li, Zhendong; Yang, Zhiwen
2013-03-01
Virtual network mapping problem, maps different virtual networks onto the substrate network is an extremely challenging work. This paper proposes a constraint optimization based mapping method for solving virtual network mapping problem. This method divides the problem into two phases, node mapping phase and link mapping phase, which are all NP-hard problems. Node mapping algorithm and link mapping algorithm are proposed for solving node mapping phase and link mapping phase, respectively. Node mapping algorithm adopts the thinking of greedy algorithm, mainly considers two factors, available resources which are supplied by the nodes and distance between the nodes. Link mapping algorithm is based on the result of node mapping phase, adopts the thinking of distributed constraint optimization method, which can guarantee to obtain the optimal mapping with the minimum network cost. Finally, simulation experiments are used to validate the method, and results show that the method performs very well.
Virtual fringe projection system with nonparallel illumination based on iteration
NASA Astrophysics Data System (ADS)
Zhou, Duo; Wang, Zhangying; Gao, Nan; Zhang, Zonghua; Jiang, Xiangqian
2017-06-01
Fringe projection profilometry has been widely applied in many fields. To set up an ideal measuring system, a virtual fringe projection technique has been studied to assist in the design of hardware configurations. However, existing virtual fringe projection systems use parallel illumination and have a fixed optical framework. This paper presents a virtual fringe projection system with nonparallel illumination. Using an iterative method to calculate intersection points between rays and reference planes or object surfaces, the proposed system can simulate projected fringe patterns and captured images. A new explicit calibration method has been presented to validate the precision of the system. Simulated results indicate that the proposed iterative method outperforms previous systems. Our virtual system can be applied to error analysis, algorithm optimization, and help operators to find ideal system parameter settings for actual measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.
The FY17Q2 milestone of the ECP/VTK-m project, which is the first milestone, includes the completion of design documents for the introduction of virtual methods into the VTK-m framework. Specifically, the ability from within the code of a device (e.g. GPU or Xeon Phi) to jump to a virtual method specified at run time. This change will enable us to drastically reduce the compile time and the executable code size for the VTK-m library. Our first design introduced the idea of adding virtual functions to classes that are used during algorithm execution. (Virtual methods were previously banned from the so calledmore » execution environment.) The design was straightforward. VTK-m already has the generic concepts of an “array handle” that provides a uniform interface to memory of different structures and an “array portal” that provides generic access to said memory. These array handles and portals use C++ templating to adjust them to different memory structures. This composition provides a powerful ability to adapt to data sources, but requires knowing static types. The proposed design creates a template specialization of an array portal that decorates another array handle while hiding its type. In this way we can wrap any type of static array handle and then feed it to a single compiled instance of a function. The second design focused on the mechanics of implementing virtual methods on parallel devices with a focus on CUDA. Our initial experiments on CUDA showed a very large overhead for using virtual C++ classes with virtual methods, the standard approach. Instead, we are using an alternate method provided by C that uses function pointers. With the completion of this milestone, we are able to move to the implementation of objects with virtual (like) methods. The upshot will be much faster compile times and much smaller library/executable sizes.« less
Design of virtual display and testing system for moving mass electromechanical actuator
NASA Astrophysics Data System (ADS)
Gao, Zhigang; Geng, Keda; Zhou, Jun; Li, Peng
2015-12-01
Aiming at the problem of control, measurement and movement virtual display of moving mass electromechanical actuator(MMEA), the virtual testing system of MMEA was developed based on the PC-DAQ architecture and the software platform of LabVIEW, and the comprehensive test task such as drive control of MMEA, tests of kinematic parameter, measurement of centroid position and virtual display of movement could be accomplished. The system could solve the alignment for acquisition time between multiple measurement channels in different DAQ cards, then on this basis, the researches were focused on the dynamic 3D virtual display by the LabVIEW, and the virtual display of MMEA were realized by the method of calling DLL and the method of 3D graph drawing controls. Considering the collaboration with the virtual testing system, including the hardware drive, the measurement software of data acquisition, and the 3D graph drawing controls method was selected, which could obtained the synchronization measurement, control and display. The system can measure dynamic centroid position and kinematic position of movable mass block while controlling the MMEA, and the interface of 3D virtual display has realistic effect and motion smooth, which can solve the problem of display and playback about MMEA in the closed shell.
Richter, Jack; McFarland, Lela; Bredfeldt, Christine
2012-01-01
Background/Aims Integrating data across systems can be a daunting process. The traditional method of moving data to a common location, mapping fields with different formats and meanings, and performing data cleaning activities to ensure valid and reliable integration across systems can be both expensive and extremely time consuming. As the scope of needed research data increases, the traditional methodology may not be sustainable. Data Virtualization provides an alternative to traditional methods that may reduce the effort required to integrate data across disparate systems. Objective Our goal was to survey new methods in data integration, cloud computing, enterprise data management and virtual data management for opportunities to increase the efficiency of producing VDW and similar data sets. Methods Kaiser Permanente Information Technology (KPIT), in collaboration with the Mid-Atlantic Permanente Research Institute (MAPRI) reviewed methodologies in the burgeoning field of Data Virtualization. We identified potential strengths and weaknesses of new approaches to data integration. For each method, we evaluated its potential application for producing effective research data sets. Results Data Virtualization provides opportunities to reduce the amount of data movement required to integrate data sources on different platforms in order to produce research data sets. Additionally, Data Virtualization also includes methods for managing “fuzzy” matching used to match fields known to have poor reliability such as names, addresses and social security numbers. These methods could improve the efficiency of integrating state and federal data such as patient race, death, and tumors with internal electronic health record data. Discussion The emerging field of Data Virtualization has considerable potential for increasing the efficiency of producing research data sets. An important next step will be to develop a proof of concept project that will help us understand to benefits and drawbacks of these techniques.
Spinal anesthesia for laparoscopic cholecystectomy: Thoracic vs. Lumbar Technique
Imbelloni, Luiz Eduardo
2014-01-01
Aims: In our group, after a study showing that spinal anesthesia is safe when compared with general anesthesia, spinal anesthesia has been the technique of choice for this procedure. This is a prospective study with all patients undergoing LC under spinal anesthesia in our department since 2007. Settings and Design: Prospective observational. Materials and Methods: From 2007 to 2011, 369 patients with symptoms of colelithiasis, laparoscopic cholecystectomy were operated under spinal anesthesia with pneumoperitoneum and low pressure CO2. We compared 15 mg of hyperbaric bupivacaine and lumbar puncture with 10 or 7.5 mg of hyperbaric bupivacaine thoracic puncture, all with 25 μg fentanyl until the sensory level reached T3. Intraoperative parameters, post-operative pain, complications, recovery, patient satisfaction, and cost were compared between both groups. Statistical Analysis Used: Means were compared by ANOVA or Kruskal-Wallis test, the percentages of the Chi-square test or Fisher's exact test when appropriate. Time of motor and sensory block in spinal anesthesia group was compared by paired t test or Mann-Whitney test. Differences were considered significant when P ≤ 0.05, and for comparisons of mean pain visual scale, we employed the Bonferroni correction applied to be considered significant only with P ≤ 0.0125 Results: All procedures were completed under spinal anesthesia. The use of lidocaine 1% was successful in the prevention of shoulder pain in 329 (89%) patients. There were significant differences in time to reach T3, obtaining 15 mg > 10 mg = 7.5 mg. There is a positive correlation between the dose and the incidence of hypotension. The lowest doses gave a decrease of 52.2% in the incidence of hypotension. There was a positive correlation between the dose and duration of sensory and motor block. Sensory block was almost twice the motor block at all doses. With low doses, 60% of patients went from table to stretcher. Satisfaction occurred in 99% of patients. Conclusions: Laparoscopic cholecystectomy can be performed successfully under spinal anesthesia with low-pressure pneumoperitoneum of CO2. The use of thoracic puncture and low doses of hyperbaric bupivacaine provided better hemodynamic stability, less hypotension, and shorter duration of sensory and motor blockade than lumbar spinal anesthesia with conventional doses. PMID:25422604
Chen, H F; Dong, X C; Zen, B S; Gao, K; Yuan, S G; Panaye, A; Doucet, J P; Fan, B T
2003-08-01
An efficient virtual and rational drug design method is presented. It combines virtual bioactive compound generation with 3D-QSAR model and docking. Using this method, it is possible to generate a lot of highly diverse molecules and find virtual active lead compounds. The method was validated by the study of a set of anti-tumor drugs. With the constraints of pharmacophore obtained by DISCO implemented in SYBYL 6.8, 97 virtual bioactive compounds were generated, and their anti-tumor activities were predicted by CoMFA. Eight structures with high activity were selected and screened by the 3D-QSAR model. The most active generated structure was further investigated by modifying its structure in order to increase the activity. A comparative docking study with telomeric receptor was carried out, and the results showed that the generated structures could form more stable complexes with receptor than the reference compound selected from experimental data. This investigation showed that the proposed method was a feasible way for rational drug design with high screening efficiency.
Evaluating Remapped Physical Reach for Hand Interactions with Passive Haptics in Virtual Reality.
Han, Dustin T; Suhail, Mohamed; Ragan, Eric D
2018-04-01
Virtual reality often uses motion tracking to incorporate physical hand movements into interaction techniques for selection and manipulation of virtual objects. To increase realism and allow direct hand interaction, real-world physical objects can be aligned with virtual objects to provide tactile feedback and physical grasping. However, unless a physical space is custom configured to match a specific virtual reality experience, the ability to perfectly match the physical and virtual objects is limited. Our research addresses this challenge by studying methods that allow one physical object to be mapped to multiple virtual objects that can exist at different virtual locations in an egocentric reference frame. We study two such techniques: one that introduces a static translational offset between the virtual and physical hand before a reaching action, and one that dynamically interpolates the position of the virtual hand during a reaching motion. We conducted two experiments to assess how the two methods affect reaching effectiveness, comfort, and ability to adapt to the remapping techniques when reaching for objects with different types of mismatches between physical and virtual locations. We also present a case study to demonstrate how the hand remapping techniques could be used in an immersive game application to support realistic hand interaction while optimizing usability. Overall, the translational technique performed better than the interpolated reach technique and was more robust for situations with larger mismatches between virtual and physical objects.
Clonidine versus nitroglycerin infusion in laparoscopic cholecystectomy.
Mishra, Manjaree; Mishra, Shashi Prakash; Mathur, Sharad Kumar
2014-01-01
Laparoscopic surgery offers the advantages of minimally invasive surgery; however, pneumoperitoneum and the patient's position induce pathophysiological changes that may complicate anesthetic management. We studied the effect of clonidine and nitroglycerin on heart rate and blood pressure, if any, in association with these drugs or the procedure, as well as the effect of these drugs, if any, on end-tidal carbon dioxide pressure and intraocular pressure. Sixty patients (minimum age of 20 years and maximum age of 65 years, American Society of Anesthesiologists class I or II) undergoing laparoscopic cholecystectomy were randomized into 3 groups and given an infusion of clonidine (group I), nitroglycerin (group II), or normal saline solution (group III) after induction and before creation of pneumoperitoneum. We observed and recorded the following parameters: heart rate, mean arterial blood pressure, end-tidal carbon dioxide pressure, and intraocular pressure. The mean and standard deviation of the parameters studied during the observation period were calculated for the 3 treatment groups and compared by use of analysis of variance tests. Intragroup comparison was performed with the paired t test. The critical value of P, indicating the probability of a significant difference, was taken as < .05 for comparisons. Statistically significant differences in heart rate were observed among the various groups, whereas comparisons of mean arterial pressure, intraocular pressure, and end-tidal carbon dioxide pressure showed statistically significant differences only between groups I and III and between groups II and III. We found clonidine to be more effective than nitroglycerin at preventing changes in hemodynamic parameters and intraocular pressure induced by carbon dioxide insufflation during laparoscopic cholecystectomy. It was also found not to cause hypotension severe enough to stop the infusion and warrant treatment.
Sen, Oznur; Erdogan Doventas, Yasemin
General anesthesia causes reduction of functional residual capacity. And this decrease can lead to atelectasis and intrapulmonary shunting in the lung. In this study we want to evaluate the effects of 5 and 10cmH 2 O PEEP levels on gas exchange, hemodynamic, respiratory mechanics and systemic stress response in laparoscopic cholecystectomy. American Society of Anesthesiologist I-II physical status 43 patients scheduled for laparoscopic cholecystectomy were randomly selected to receive external PEEP of 5cmH 2 O (PEEP 5 group) or 10cmH 2 O PEEP (PEEP 10 group) during pneumoperitoneum. Basal hemodynamic parameters were recorded, and arterial blood gases (ABG) and blood sampling were done for cortisol, insulin and glucose level estimations to assess the systemic stress response before induction of anesthesia. Thirty minutes after the pneumoperitoneum, the respiratory and hemodynamic parameters were recorded again and ABG and sampling for cortisol, insulin, and glucose levels were repeated. Lastly hemodynamic parameters were recorded; ABG analysis and sampling for stress response levels were taken after 60minutes from extubation. There were no statistical differences between the two groups about hemodynamic and respiratory parameters except mean airway pressure (P mean ). P mean , compliance and PaO 2 ; pH values were higher in 'PEEP 10 group'. Also, PaCO 2 values were lower in 'PEEP 10 group'. No differences were observed between insulin and lactic acid levels in the two groups. But postoperative cortisol level was significantly lower in 'PEEP 10 group'. Ventilation with 10cmH 2 O PEEP increases compliance and oxygenation, does not cause hemodynamic and respiratory complications and reduces the postoperative stress response. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Sen, Oznur; Erdogan Doventas, Yasemin
General anesthesia causes reduction of functional residual capacity. And this decrease can lead to atelectasis and intrapulmonary shunting in the lung. In this study we want to evaluate the effects of 5 and 10cmH 2 O PEEP levels on gas exchange, hemodynamic, respiratory mechanics and systemic stress response in laparoscopic cholecystectomy. American Society of Anesthesiologist I-II physical status 43 patients scheduled for laparoscopic cholecystectomy were randomly selected to receive external PEEP of 5cmH 2 O (PEEP 5 group) or 10cmH 2 O PEEP (PEEP 10 group) during pneumoperitoneum. Basal hemodynamic parameters were recorded, and arterial blood gases (ABG) and blood sampling were done for cortisol, insulin and glucose level estimations to assess the systemic stress response before induction of anesthesia. Thirty minutes after the pneumoperitoneum, the respiratory and hemodynamic parameters were recorded again and ABG and sampling for cortisol, insulin, and glucose levels were repeated. Lastly hemodynamic parameters were recorded; ABG analysis and sampling for stress response levels were taken after 60minutes from extubation. There were no statistical differences between the two groups about hemodynamic and respiratory parameters except mean airway pressure (P mean ). P mean , compliance and PaO 2 ; pH values were higher in 'PEEP 10 group'. Also, PaCO 2 values were lower in 'PEEP 10 group'. No differences were observed between insulin and lactic acid levels in the two groups. But postoperative cortisol level was significantly lower in 'PEEP 10 group'. Ventilation with 10cmH 2 O PEEP increases compliance and oxygenation, does not cause hemodynamic and respiratory complications and reduces the postoperative stress response. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Ansell, James; Warren, Neil; Wall, Pete; Cocks, Kim; Goddard, Stuart; Whiston, Richard; Stechman, Michael; Scott-Coombes, David; Torkington, Jared
2014-07-01
Ultravision™ is a new device that utilizes electrostatic precipitation to clear surgical smoke. The aim was to evaluate its performance during laparoscopic cholecystectomy. Patients undergoing laparoscopic cholecystectomy were randomized into "active (device on)" or "control (device off)." Three operating surgeons scored the percentage effective visibility and three reviewers scored the percentage of the procedure where smoke was present. All assessors also used a 5-point scale (1 = imperceptible/excellent and 5 = very annoying/bad) to rate visual impairment. Secondary outcomes were the number of smoke-related pauses, camera cleaning, and pneumoperitoneum reductions. Mean results are presented with 95% confidence intervals (CI). In 30 patients (active 13, control 17), the effective visibility was 89.2% (83.3-95.0) for active cases and 71.2% (65.7-76.7) for controls. The proportion of the procedure where smoke was present was 41.1% (33.8-48.3) for active cases and 61.5% (49.0-74.1) for controls. Operating surgeons rated the visual impairment as 2.2 (1.7-2.6) for active cases and 3.2 (2.8-3.5) for controls. Reviewers rated the visual impairment as 2.3 (2.0-2.5) for active cases and 3.2 (2.8-3.7) for controls. In the active group, 23% of procedures were paused to allow smoke clearance compared to 94% of control cases. Camera cleaning was not needed in 85% of active procedures and 35% of controls. The pneumoperitoneum was reduced in 0% of active cases and 88% of controls. Ultravision™ improves visibility during laparoscopic surgery and reduces delays in surgery for smoke clearance and camera cleaning.
Bueno-Lledó, José; Torregrosa, Antonio; Jiménez, Raquel; Pastor, Providencia García
2018-02-15
Preoperative progressive pneumoperitoneum (PPP) and botulinum toxin type A (BT) are tools in the surgical preparation of patients with loss of domain hernias (LODH). The aim of this paper is to report our experience with these preoperative techniques in 70 patients with LODH. Observational study of 70 consecutive patients with LODH was conducted between May 2010 and May 2016. Diameters of the hernia sac, incisional hernia (VIH), and abdominal cavity (VAC) volumes, and VIH/VAC ratio were measured before and after PPP and BT, using abdominal CT scan data. Combination of both techniques was performed when the VIH/VAC ratio was > 20%. Median insufflated volume of air for PPP was 8450 ± 3400 cc (4500-13,450), over a period of 11.3 ± 2.3 days (9-16). BT administration time was 38.1 ± 3.7 days (35-44). An average reduction of 16.6% of the VIH/VAC ratio after PPP and BT was obtained (p < 0.05). Complications associated with PPP were 20%, and with surgical technique 29.6%. No complications occurred during the BT administration. Reconstructive technique was anterior CST in 54 patients, TAR in 14 cases and Rives-Stoppa technique in two patients. Median follow-up was 34.5 ± 22.3 months (12-60) and four cases of hernia recurrence (5.7%) were reported. Using a CT volumetric protocol, combination of PPP and BT decreases the VIH/VAC ratio and hernia defect diameters, which constitutes a key factor in the treatment of LODH.
The anticipation and management of air leaks and residual spaces post lung resection
Marzluf, Beatrice A.
2014-01-01
The incidence of any kind of air leaks after lung resections is reportedly around 50% of patients. The majority of these leaks doesn’t require any specific intervention and ceases within a few hours or days. The recent literature defines a prolonged air leak (PAL) as an air leak lasting beyond postoperative day 5. PAL is associated with a generally worse outcome with a more complicated postoperative course anxd prolonged hospital stay and increased costs. Some authors therefore consider any PAL as surgical complication. PAL is the most prevalent postoperative complication following lung resection and the most important determinant of postoperative length of hospital stay. A low predicted postoperative forced expiratory volume in 1 second (ppoFEV1) and upper lobe disease have been identified as significant risk factors involved in developing air leaks. Infectious conditions have also been reported to increase the risk of PAL. In contrast to the problem of PAL, there is only limited information from the literature regarding apical spaces after lung resection, probably because this common finding rarely leads to clinical consequences. This article addresses the pathogenesis of PAL and apical spaces, their prediction, prevention and treatment with a special focus on surgery for infectious conditions. Different predictive models to identify patients at higher risk for the development of PAL are provided. The discussion of surgical treatment options includes the use of pneumoperitoneum, blood patch, intrabronchial valves (IBV) and the flutter valve, and addresses the old question, whether or not to apply suction to chest tubes. The discussed prophylactic armentarium comprises of pleural tenting, prophylactic intraoperative pneumoperitoneum, sealing of the lung, buttressing of staple lines, capitonnage after resection of hydatid cysts, and plastic surgical options. PMID:24624291
Özdemir-van Brunschot, D M D; Braat, A E; van der Jagt, M F P; Scheffer, G J; Martini, C H; Langenhuijsen, J F; Dam, R E; Huurman, V A; Lam, D; d'Ancona, F C; Dahan, A; Warlé, M C
2018-01-01
Evidence indicates that low-pressure pneumoperitoneum (PNP) reduces postoperative pain and analgesic consumption. A lower insufflation pressure may hamper visibility and working space. The aim of the study is to investigate whether deep neuromuscular blockade (NMB) improves surgical conditions during low-pressure PNP. This study was a blinded randomized controlled multicenter trial. 34 kidney donors scheduled for laparoscopic donor nephrectomy randomly received low-pressure PNP (6 mmHg) with either deep (PTC 1-5) or moderate NMB (TOF 0-1). In case of insufficient surgical conditions, the insufflation pressure was increased stepwise. Surgical conditions were rated by the Leiden-Surgical Rating Scale (L-SRS) ranging from 1 (extremely poor) to 5 (optimal). Mean surgical conditions were significantly better for patients allocated to a deep NMB (SRS 4.5 versus 4.0; p < 0.01). The final insufflation pressure was 7.7 mmHg in patients with deep NMB as compared to 9.1 mmHg with moderate NMB (p = 0.19). The cumulative opiate consumption during the first 48 h was significantly lower in patients receiving deep NMB, while postoperative pain scores were similar. In four patients allocated to a moderate NMB, a significant intraoperative complication occurred, and in two of these patients a conversion to an open procedure was required. Our data show that deep NMB facilitates the use of low-pressure PNP during laparoscopic donor nephrectomy by improving the quality of the surgical field. The relatively high incidence of intraoperative complications indicates that the use of low pressure with moderate NMB may compromise safety during LDN. Clinicaltrials.gov identifier: NCT 02602964.
Özdemir-van Brunschot, Denise M D; Scheffer, Gert J; van der Jagt, Michel; Langenhuijsen, Hans; Dahan, Albert; Mulder, Janneke E E A; Willems, Simone; Hilbrands, Luuk B; Donders, Rogier; van Laarhoven, Cees J H M; d'Ancona, Frank A; Warlé, Michiel C
2017-11-01
The use of low intra-abdominal pressure (<10 mmHg) reduces postoperative pain scores after laparoscopic surgery. To investigate whether low-pressure pneumoperitoneum with deep neuromuscular blockade improves the quality of recovery after laparoscopic donor nephrectomy (LDN). In a single-center randomized controlled trial, 64 live kidney donors were randomly assigned to 6 or 12 mmHg insufflation pressure. A deep neuromuscular block was used in both groups. Surgical conditions were rated by the five-point Leiden-surgical rating scale (L-SRS), ranging from 5 (optimal) to 1 (extremely poor) conditions. If the L-SRS was insufficient, the pressure was increased stepwise. The primary outcome measure was the overall score on the quality of recovery-40 (QOR-40) questionnaire at postoperative day 1. The difference in the QOR-40 scores on day 1 between the low- and standard-pressure group was not significant (p = .06). Also the overall pain scores and analgesic consumption did not differ. Eight procedures (24%), initially started with low pressure, were converted to a standard pressure (≥10 mmHg). A L-SRS score of 5 was significantly more prevalent in the standard pressure as compared to the low-pressure group at 30 min after insufflation (p < .01). Low-pressure pneumoperitoneum facilitated by deep neuromuscular blockade during LDN does not reduce postoperative pain scores nor improve the quality of recovery in the early postoperative phase. The question whether the use of deep neuromuscular blockade during laparoscopic surgery reduces postoperative pain scores independent of the intra-abdominal pressure should be pursued in future studies. The trial was registered at clinicaltrial.gov before the start of the trial (NCT02146417).
Tuna, Ayca Tas; Akkoyun, Ibrahim; Darcin, Sevtap; Palabiyik, Onur
2016-01-01
Laparoscopic surgery has become a popular surgical tool when compared to traditional open surgery. There are limited data on pediatric patients regarding whether pneumoperitoneum affects cerebral oxygenation although end-tidal CO2 concentration remains normal. Therefore, this study was designed to evaluate the changes of cerebral oxygen saturation using near-infrared spectroscope during laparoscopic surgery in children. The study comprised forty children who were scheduled for laparoscopic (Group L, n=20) or open (Group O, n=20) appendectomy. Hemodynamic variables, right and left regional cerebral oxygen saturation (RrSO2 and LrSO2), fraction of inspired oxygen, end-tidal carbon dioxide pressure (PETCO2), peak inspiratory pressure (Ppeak), respiratory minute volume, inspiratory and end-tidal concentrations of sevoflurane and body temperature were recorded. All parameters were recorded after anesthesia induction and before start of surgery (T0, baseline), 15min after start of surgery (T1), 30min after start of surgery (T2), 45min after start of surgery (T3), 60min after start of surgery (T4) and end of the surgery (T5). There were progressive decreases in both RrSO2 and LrSO2 levels in both groups, which were not statistically significant at T1, T2, T3, T4. The RrSO2 levels of Group L at T5 were significantly lower than that of Group O. One patient in Group L had an rSO2 value <80% of the baseline value. Carbon dioxide insufflation during pneumoperitoneum in pediatric patients may not affect cerebral oxygenation under laparoscopic surgery. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Tuna, Ayca Tas; Akkoyun, Ibrahim; Darcin, Sevtap; Palabiyik, Onur
2016-01-01
Laparoscopic surgery has become a popular surgical tool when compared to traditional open surgery. There are limited data on pediatric patients regarding whether pneumoperitoneum affects cerebral oxygenation although end-tidal CO2 concentration remains normal. Therefore, this study was designed to evaluate the changes of cerebral oxygen saturation using near-infrared spectroscope during laparoscopic surgery in children. The study comprised forty children who were scheduled for laparoscopic (Group L, n=20) or open (Group O, n=20) appendectomy. Hemodynamic variables, right and left regional cerebral oxygen saturation (RrSO2 and LrSO2), fraction of inspired oxygen, end-tidal carbon dioxide pressure (PETCO2), peak inspiratory pressure (Ppeak), respiratory minute volume, inspiratory and end-tidal concentrations of sevoflurane and body temperature were recorded. All parameters were recorded after anesthesia induction and before start of surgery (T0, baseline), 15min after start of surgery (T1), 30min after start of surgery (T2), 45min after start of surgery (T3), 60min after start of surgery (T4) and end of the surgery (T5). There were progressive decreases in both RrSO2 and LrSO2 levels in both groups, which were not statistically significant at T1, T2, T3, T4. The RrSO2 levels of Group L at T5 were significantly lower than that of Group O. One patient in Group L had an rSO2 value <80% of the baseline value. Carbon dioxide insufflation during pneumoperitoneum in pediatric patients may not affect cerebral oxygenation under laparoscopic surgery. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Source fields reconstruction with 3D mapping by means of the virtual acoustic volume concept
NASA Astrophysics Data System (ADS)
Forget, S.; Totaro, N.; Guyader, J. L.; Schaeffer, M.
2016-10-01
This paper presents the theoretical framework of the virtual acoustic volume concept and two related inverse Patch Transfer Functions (iPTF) identification methods (called u-iPTF and m-iPTF depending on the chosen boundary conditions for the virtual volume). They are based on the application of Green's identity on an arbitrary closed virtual volume defined around the source. The reconstruction of sound source fields combines discrete acoustic measurements performed at accessible positions around the source with the modal behavior of the chosen virtual acoustic volume. The mode shapes of the virtual volume can be computed by a Finite Element solver to handle the geometrical complexity of the source. As a result, it is possible to identify all the acoustic source fields at the real surface of an irregularly shaped structure and irrespective of its acoustic environment. The m-iPTF method is introduced for the first time in this paper. Conversely to the already published u-iPTF method, the m-iPTF method needs only acoustic pressure and avoids particle velocity measurements. This paper is focused on its validation, both with numerical computations and by experiments on a baffled oil pan.
ERIC Educational Resources Information Center
Seamster, Christina Lambert
2016-01-01
According to Molnar (2014), full time virtual school education lacks a measurement tool that accurately measures effective virtual teacher practice. Using both qualitative and quantitative methods, the current study sought to understand the common practices among full time K-8 virtual school teachers, the extent to which teachers believed such…
Robotics virtual rail system and method
Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID; Walton, Miles C [Idaho Falls, ID
2011-07-05
A virtual track or rail system and method is described for execution by a robot. A user, through a user interface, generates a desired path comprised of at least one segment representative of the virtual track for the robot. Start and end points are assigned to the desired path and velocities are also associated with each of the at least one segment of the desired path. A waypoint file is generated including positions along the virtual track representing the desired path with the positions beginning from the start point to the end point including the velocities of each of the at least one segment. The waypoint file is sent to the robot for traversing along the virtual track.
Vidal, Victoria L; Ohaeri, Beatrice M; John, Pamela; Helen, Delles
2013-01-01
This quasi-experimental study, with a control group and experimental group, compares the effectiveness of virtual reality simulators on developing phlebotomy skills of nursing students with the effectiveness of traditional methods of teaching. Performance of actual phlebotomy on a live client was assessed after training, using a standardized form. Findings showed that students who were exposed to the virtual reality simulator performed better in the following performance metrics: pain factor, hematoma formation, and number of reinsertions. This study confirms that the use of the virtual reality-based system to supplement the traditional method may be the optimal program for training.
Accuracy of contacts calculated from 3D images of occlusal surfaces.
DeLong, R; Knorr, S; Anderson, G C; Hodges, J; Pintado, M R
2007-06-01
Compare occlusal contacts calculated from 3D virtual models created from clinical records to contacts identified clinically using shimstock and transillumination. Upper and lower full arch alginate impressions and vinyl polysiloxane centric interocclusal records were made of 12 subjects. Stone casts made from the alginate impressions and the interocclusal records were optically scanned. Three-dimensional virtual models of the dental arches and interocclusal records were constructed using the Virtual Dental Patient Software. Contacts calculated from the virtual interocclusal records and from the aligned upper and lower virtual arch models were compared to those identified clinically using 0.01mm shimstock and transillumination of the interocclusal record. Virtual contacts and transillumination contacts were compared by anatomical region and by contacting tooth pairs to shimstock contacts. Because there is no accepted standard for identifying occlusal contacts, methods were compared in pairs with one labeled "standard" and the second labeled "test". Accuracy was defined as the number of contacts and non-contacts of the "test" that were in agreement with the "standard" divided by the total number of contacts and non-contacts of the "standard". Accuracy of occlusal contacts calculated from virtual interocclusal records and aligned virtual casts compared to transillumination were: 0.87+/-0.05 and 0.84+/-0.06 by region and 0.95+/-0.07 and 0.95+/-0.05 by tooth, respectively. Comparisons with shimstock were: 0.85+/-0.15 (record), 0.84+/-0.14 (casts), and 81+/-17 (transillumination). The virtual record, aligned virtual arches, and transillumination methods of identifying contacts are equivalent, and show better agreement with each other than with the shimstock method.
Chapman, Tara; Lefevre, Philippe; Semal, Patrick; Moiseev, Fedor; Sholukha, Victor; Louryan, Stéphane; Rooze, Marcel; Van Sint Jan, Serge
2014-01-01
The hip bone is one of the most reliable indicators of sex in the human body due to the fact it is the most dimorphic bone. Probabilistic Sex Diagnosis (DSP: Diagnose Sexuelle Probabiliste) developed by Murail et al., in 2005, is a sex determination method based on a worldwide hip bone metrical database. Sex is determined by comparing specific measurements taken from each specimen using sliding callipers and computing the probability of specimens being female or male. In forensic science it is sometimes not possible to sex a body due to corpse decay or injury. Skeletalization and dissection of a body is a laborious process and desecrates the body. There were two aims to this study. The first aim was to examine the accuracy of the DSP method in comparison with a current visual sexing method on sex determination. A further aim was to see if it was possible to virtually utilise the DSP method on both the hip bone and the pelvic girdle in order to utilise this method for forensic sciences. For the first part of the study, forty-nine dry hip bones of unknown sex were obtained from the Body Donation Programme of the Université Libre de Bruxelles (ULB). A comparison was made between DSP analysis and visual sexing on dry bone by two researchers. CT scans of bones were then analysed to obtain three-dimensional (3D) virtual models and the method of DSP was analysed virtually by importing the models into a customised software programme called lhpFusionBox which was developed at ULB. The software enables DSP distances to be measured via virtually-palpated bony landmarks. There was found to be 100% agreement of sex between the manual and virtual DSP method. The second part of the study aimed to further validate the method by analysing thirty-nine supplementary pelvic girdles of known sex blind. There was found to be a 100% accuracy rate further demonstrating that the virtual DSP method is robust. Statistically significant differences were found in the identification of sex between researchers in the visual sexing method although both researchers identified the same sex in all cases in the manual and virtual DSP methods for both the hip bones and pelvic girdles. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
ViRPET--combination of virtual reality and PET brain imaging
Majewski, Stanislaw; Brefczynski-Lewis, Julie
2017-05-23
Various methods, systems and apparatus are provided for brain imaging during virtual reality stimulation. In one example, among others, a system for virtual ambulatory environment brain imaging includes a mobile brain imager configured to obtain positron emission tomography (PET) scans of a subject in motion, and a virtual reality (VR) system configured to provide one or more stimuli to the subject during the PET scans. In another example, a method for virtual ambulatory environment brain imaging includes providing stimulation to a subject through a virtual reality (VR) system; and obtaining a positron emission tomography (PET) scan of the subject while moving in response to the stimulation from the VR system. The mobile brain imager can be positioned on the subject with an array of imaging photodetector modules distributed about the head of the subject.
Sheet metals characterization using the virtual fields method
NASA Astrophysics Data System (ADS)
Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice
2018-05-01
In this work, a characterisation method involving a deep-notched specimen subjected to a tensile loading is introduced. This specimen leads to heterogeneous states of stress and strain, the latter being measured using a stereo DIC system (MatchID). This heterogeneity enables the identification of multiple material parameters in a single test. In order to identify material parameters from the DIC data, an inverse method called the Virtual Fields Method is employed. The method combined with recently developed sensitivity-based virtual fields allows to optimally locate areas in the test where information about each material parameter is encoded, improving accuracy of the identification over the traditional user-defined virtual fields. It is shown that a single test performed at 45° to the rolling direction is sufficient to obtain all anisotropic plastic parameters, thus reducing experimental effort involved in characterisation. The paper presents the methodology and some numerical validation.
Education about Hallucinations Using an Internet Virtual Reality System: A Qualitative Survey
ERIC Educational Resources Information Center
Yellowlees, Peter M.; Cook, James N.
2006-01-01
Objective: The authors evaluate an Internet virtual reality technology as an education tool about the hallucinations of psychosis. Method: This is a pilot project using Second Life, an Internet-based virtual reality system, in which a virtual reality environment was constructed to simulate the auditory and visual hallucinations of two patients…
Virtualization and cloud computing in dentistry.
Chow, Frank; Muftu, Ali; Shorter, Richard
2014-01-01
The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.
NASA Astrophysics Data System (ADS)
Gao, Lingli; Pan, Yudi
2018-05-01
The correct estimation of the seismic source signature is crucial to exploration geophysics. Based on seismic interferometry, the virtual real source (VRS) method provides a model-independent way for source signature estimation. However, when encountering multimode surface waves, which are commonly seen in the shallow seismic survey, strong spurious events appear in seismic interferometric results. These spurious events introduce errors in the virtual-source recordings and reduce the accuracy of the source signature estimated by the VRS method. In order to estimate a correct source signature from multimode surface waves, we propose a mode-separated VRS method. In this method, multimode surface waves are mode separated before seismic interferometry. Virtual-source recordings are then obtained by applying seismic interferometry to each mode individually. Therefore, artefacts caused by cross-mode correlation are excluded in the virtual-source recordings and the estimated source signatures. A synthetic example showed that a correct source signature can be estimated with the proposed method, while strong spurious oscillation occurs in the estimated source signature if we do not apply mode separation first. We also applied the proposed method to a field example, which verified its validity and effectiveness in estimating seismic source signature from shallow seismic shot gathers containing multimode surface waves.
The NonConforming Virtual Element Method for the Stokes Equations
Cangiani, Andrea; Gyrya, Vitaliy; Manzini, Gianmarco
2016-01-01
In this paper, we present the nonconforming virtual element method (VEM) for the numerical approximation of velocity and pressure in the steady Stokes problem. The pressure is approximated using discontinuous piecewise polynomials, while each component of the velocity is approximated using the nonconforming virtual element space. On each mesh element the local virtual space contains the space of polynomials of up to a given degree, plus suitable nonpolynomial functions. The virtual element functions are implicitly defined as the solution of local Poisson problems with polynomial Neumann boundary conditions. As typical in VEM approaches, the explicit evaluation of the non-polynomial functionsmore » is not required. This approach makes it possible to construct nonconforming (virtual) spaces for any polynomial degree regardless of the parity, for two- and three-dimensional problems, and for meshes with very general polygonal and polyhedral elements. We show that the nonconforming VEM is inf-sup stable and establish optimal a priori error estimates for the velocity and pressure approximations. Finally, numerical examples confirm the convergence analysis and the effectiveness of the method in providing high-order accurate approximations.« less
Prosthetic Leg Control in the Nullspace of Human Interaction.
Gregg, Robert D; Martin, Anne E
2016-07-01
Recent work has extended the control method of virtual constraints, originally developed for autonomous walking robots, to powered prosthetic legs for lower-limb amputees. Virtual constraints define desired joint patterns as functions of a mechanical phasing variable, which are typically enforced by torque control laws that linearize the output dynamics associated with the virtual constraints. However, the output dynamics of a powered prosthetic leg generally depend on the human interaction forces, which must be measured and canceled by the feedback linearizing control law. This feedback requires expensive multi-axis load cells, and actively canceling the interaction forces may minimize the human's influence over the prosthesis. To address these limitations, this paper proposes a method for projecting virtual constraints into the nullspace of the human interaction terms in the output dynamics. The projected virtual constraints naturally render the output dynamics invariant with respect to the human interaction forces, which instead enter into the internal dynamics of the partially linearized prosthetic system. This method is illustrated with simulations of a transfemoral amputee model walking with a powered knee-ankle prosthesis that is controlled via virtual constraints with and without the proposed projection.
Working Group Reports and Presentations: Virtual Worlds and Virtual Exploration
NASA Technical Reports Server (NTRS)
LAmoreaux, Claudia
2006-01-01
Scientists and engineers are continually developing innovative methods to capitalize on recent developments in computational power. Virtual worlds and virtual exploration present a new toolset for project design, implementation, and resolution. Replication of the physical world in the virtual domain provides stimulating displays to augment current data analysis techniques and to encourage public participation. In addition, the virtual domain provides stakeholders with a low cost, low risk design and test environment. The following document defines a virtual world and virtual exploration, categorizes the chief motivations for virtual exploration, elaborates upon specific objectives, identifies roadblocks and enablers for realizing the benefits, and highlights the more immediate areas of implementation (i.e. the action items). While the document attempts a comprehensive evaluation of virtual worlds and virtual exploration, the innovative nature of the opportunities presented precludes completeness. The authors strongly encourage readers to derive additional means of utilizing the virtual exploration toolset.
Performance evaluation of the inverse dynamics method for optimal spacecraft reorientation
NASA Astrophysics Data System (ADS)
Ventura, Jacopo; Romano, Marcello; Walter, Ulrich
2015-05-01
This paper investigates the application of the inverse dynamics in the virtual domain method to Euler angles, quaternions, and modified Rodrigues parameters for rapid optimal attitude trajectory generation for spacecraft reorientation maneuvers. The impact of the virtual domain and attitude representation is numerically investigated for both minimum time and minimum energy problems. Owing to the nature of the inverse dynamics method, it yields sub-optimal solutions for minimum time problems. Furthermore, the virtual domain improves the optimality of the solution, but at the cost of more computational time. The attitude representation also affects solution quality and computational speed. For minimum energy problems, the optimal solution can be obtained without the virtual domain with any considered attitude representation.
Chen, Haining; Li, Sijia; Hu, Yajiao; Chen, Guo; Jiang, Qinglin; Tong, Rongsheng; Zang, Zhihe; Cai, Lulu
2016-01-01
Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) is an important regulator of focal adhesion, actomyosin contraction and cell motility. In this manuscript, a combination of the multi-complex-based pharmacophore (MCBP), molecular dynamics simulation and a hybrid protocol of a virtual screening method, comprised of multipharmacophore- based virtual screening (PBVS) and ensemble docking-based virtual screening (DBVS) methods were used for retrieving novel ROCK1 inhibitors from the natural products database embedded in the ZINC database. Ten hit compounds were selected from the hit compounds, and five compounds were tested experimentally. Thus, these results may provide valuable information for further discovery of more novel ROCK1 inhibitors.
Rai, Binod Kumar; Mirza, Bilal; Hashim, Imran; Saleem, Muhammad
2016-01-01
Congenital segmental dilatation (CSD) of the intestine is a rare developmental anomaly characterized by sharply demarcated dilatation of a gastrointestinal segment and may present with intestinal obstruction. We report three cases of CSD of the intestine in neonates with varied presentation. First patient was mistaken as pneumoperitoneum on abdominal radiograph, which led to initial abdominal drain placement. The 2nd patient was a case of anorectal malformation associated with congenital pouch colon (CPC) and CSD of ileum; and the third case presented as neonatal intestinal obstruction and found to have CSD of ileum. All the patients were successfully managed in our department. PMID:27896163
Virtual pyramid wavefront sensor for phase unwrapping.
Akondi, Vyas; Vohnsen, Brian; Marcos, Susana
2016-10-10
Noise affects wavefront reconstruction from wrapped phase data. A novel method of phase unwrapping is proposed with the help of a virtual pyramid wavefront sensor. The method was tested on noisy wrapped phase images obtained experimentally with a digital phase-shifting point diffraction interferometer. The virtuality of the pyramid wavefront sensor allows easy tuning of the pyramid apex angle and modulation amplitude. It is shown that an optimal modulation amplitude obtained by monitoring the Strehl ratio helps in achieving better accuracy. Through simulation studies and iterative estimation, it is shown that the virtual pyramid wavefront sensor is robust to random noise.
NASA Technical Reports Server (NTRS)
Hall, Brendan (Inventor); Bonk, Ted (Inventor); Varadarajan, Srivatsan (Inventor); Smithgall, William Todd (Inventor); DeLay, Benjamin F. (Inventor)
2017-01-01
Systems and methods for systematic hybrid network scheduling for multiple traffic classes with host timing and phase constraints are provided. In certain embodiments, a method of scheduling communications in a network comprises scheduling transmission of virtual links pertaining to a first traffic class on a global schedule to coordinate transmission of the virtual links pertaining to the first traffic class across all transmitting end stations on the global schedule; and scheduling transmission of each virtual link pertaining to a second traffic class on a local schedule of the respective transmitting end station from which each respective virtual link pertaining to the second traffic class is transmitted such that transmission of each virtual link pertaining to the second traffic class is coordinated only at the respective end station from which each respective virtual link pertaining to the second traffic class is transmitted.
The Information Needs of Virtual Users: A Study of Second Life Libraries
ERIC Educational Resources Information Center
Chow, Anthony S.; Baity, C. Chase; Zamarripa, Marilyn; Chappell, Pam; Rachlin, David; Vinson, Curtis
2012-01-01
As virtual worlds continue to proliferate globally, libraries are faced with the question of whether to provide information services to virtual patrons. This study, utilizing a mixed-method approach of interviews, focus groups, and surveys, represents one of the largest studies of virtual libraries attempted to date. Taking a holistic perspective,…
Percutaneous transgastric computed tomography-guided biopsy of the pancreas using large needles
Tseng, Hsiuo-Shan; Chen, Chia-Yuen; Chan, Wing P; Chiang, Jen-Huey
2009-01-01
AIM: To assess the safety, yield and clinical utility of percutaneous transgastric computed tomography (CT)-guided biopsy of pancreatic tumor using large needles, in selected patients. METHODS: We reviewed 34 CT-guided biopsies in patients with pancreas mass, of whom 24 (71%) had a direct path to the mass without passing through a major organ. The needle passed through the liver in one case (3%). Nine passes (26%) were made through the stomach. These nine transgastric biopsies which used a coaxial technique (i.e. a 17-gauge coaxial introducer needle and an 18-gauge biopsy needle) were the basis of this study. Immediate and late follow-up CT images to detect complications were obtained. RESULTS: Tumor tissues were obtained in nine pancreatic biopsies, and histologic specimens for diagnosis were obtained in all cases. One patient, who had a rare sarcomatoid carcinoma, received a second biopsy. One patient had a complication of transient pneumoperitoneum but no subjective complaints. An immediate imaging study and clinical follow-up detected neither hemorrhage nor peritonitis. No delayed procedure-related complication was seen during the survival period of our patients. CONCLUSION: Pancreatic biopsy can be obtained by a transgastric route using a large needle as an alternative method, without complications of peritonitis or bleeding. PMID:20014462
Virtual performer: single camera 3D measuring system for interaction in virtual space
NASA Astrophysics Data System (ADS)
Sakamoto, Kunio; Taneji, Shoto
2006-10-01
The authors developed interaction media systems in the 3D virtual space. In these systems, the musician virtually plays an instrument like the theremin in the virtual space or the performer plays a show using the virtual character such as a puppet. This interactive virtual media system consists of the image capture, measuring performer's position, detecting and recognizing motions and synthesizing video image using the personal computer. In this paper, we propose some applications of interaction media systems; a virtual musical instrument and superimposing CG character. Moreover, this paper describes the measuring method of the positions of the performer, his/her head and both eyes using a single camera.
Chen, Karen B; Ponto, Kevin; Tredinnick, Ross D; Radwin, Robert G
2015-06-01
This study was a proof of concept for virtual exertions, a novel method that involves the use of body tracking and electromyography for grasping and moving projections of objects in virtual reality (VR). The user views objects in his or her hands during rehearsed co-contractions of the same agonist-antagonist muscles normally used for the desired activities to suggest exerting forces. Unlike physical objects, virtual objects are images and lack mass. There is currently no practical physically demanding way to interact with virtual objects to simulate strenuous activities. Eleven participants grasped and lifted similar physical and virtual objects of various weights in an immersive 3-D Cave Automatic Virtual Environment. Muscle activity, localized muscle fatigue, ratings of perceived exertions, and NASA Task Load Index were measured. Additionally, the relationship between levels of immersion (2-D vs. 3-D) was studied. Although the overall magnitude of biceps activity and workload were greater in VR, muscle activity trends and fatigue patterns for varying weights within VR and physical conditions were the same. Perceived exertions for varying weights were not significantly different between VR and physical conditions. Perceived exertion levels and muscle activity patterns corresponded to the assigned virtual loads, which supported the hypothesis that the method evoked the perception of physical exertions and showed that the method was promising. Ultimately this approach may offer opportunities for research and training individuals to perform strenuous activities under potentially safer conditions that mimic situations while seeing their own body and hands relative to the scene. © 2014, Human Factors and Ergonomics Society.
NASA Astrophysics Data System (ADS)
Wapenaar, C. P. A.; Van der Neut, J.; Thorbecke, J.; Broggini, F.; Slob, E. C.; Snieder, R.
2015-12-01
Imagine one could place seismic sources and receivers at any desired position inside the earth. Since the receivers would record the full wave field (direct waves, up- and downward reflections, multiples, etc.), this would give a wealth of information about the local structures, material properties and processes in the earth's interior. Although in reality one cannot place sources and receivers anywhere inside the earth, it appears to be possible to create virtual sources and receivers at any desired position, which accurately mimics the desired situation. The underlying method involves some major steps beyond standard seismic interferometry. With seismic interferometry, virtual sources can be created at the positions of physical receivers, assuming these receivers are illuminated isotropically. Our proposed method does not need physical receivers at the positions of the virtual sources; moreover, it does not require isotropic illumination. To create virtual sources and receivers anywhere inside the earth, it suffices to record the reflection response with physical sources and receivers at the earth's surface. We do not need detailed information about the medium parameters; it suffices to have an estimate of the direct waves between the virtual-source positions and the acquisition surface. With these prerequisites, our method can create virtual sources and receivers, anywhere inside the earth, which record the full wave field. The up- and downward reflections, multiples, etc. in the virtual responses are extracted directly from the reflection response at the surface. The retrieved virtual responses form an ideal starting point for accurate seismic imaging, characterization and monitoring.
The need for virtual reality simulators in dental education: A review.
Roy, Elby; Bakr, Mahmoud M; George, Roy
2017-04-01
Virtual reality simulators are becoming an essential part of modern education. The benefits of Virtual reality in dentistry is constantly being assessed as a method or an adjunct to improve fine motor skills, hand-eye coordination in pre-clinical settings and overcome the monetary and intellectual challenges involved with such training. This article, while providing an overview of the virtual reality dental simulators, also looks at the link between virtual reality simulation and current pedagogical knowledge.
ERIC Educational Resources Information Center
Ullman, Ellen
2009-01-01
From using virtualization technology to accepting lunch payments online, school districts are seeking money-saving methods. In this article, the author discusses some methods used by school districts that allow them to save money from using virtualization technology to accepting lunch payments online.
Virtual screening of cocrystal formers for CL-20
NASA Astrophysics Data System (ADS)
Zhou, Jun-Hong; Chen, Min-Bo; Chen, Wei-Ming; Shi, Liang-Wei; Zhang, Chao-Yang; Li, Hong-Zhen
2014-08-01
According to the structure characteristics of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) and the kinetic mechanism of the cocrystal formation, the method of virtual screening CL-20 cocrystal formers by the criterion of the strongest intermolecular site pairing energy (ISPE) was proposed. In this method the strongest ISPE was thought to determine the first step of the cocrystal formation. The prediction results for four sets of common drug molecule cocrystals by this method were compared with those by the total ISPE method from the reference (Musumeci et al., 2011), and the experimental results. This method was then applied to virtually screen the CL-20 cocrystal formers, and the prediction results were compared with the experimental results.
Virtual education effect on cognitive learning and attitude of nursing students towards it.
Borhani, Fariba; Vatanparast, Mahboubeh; Zadeh, Abbas Abbas; Ranjbar, Hadi; Pour, Reza Shojaei
2011-01-01
Along with emersion of the Internet, virtual education increasingly has been growing. Many studies discussed this method and its impact on learning. Present study investigated students' attitude towards virtual education as well as its effect on learning. This was a pretest-posttest quasi-experimental study. The nursing students, who had selected fluids and electrolyte disorders course, were randomly divided into two virtual and conventional education groups. The knowledge of students was assessed through a written exam and students' attitude towards virtual education assessed by a researcher-made questionnaire. Mean scores of students in pretest were 0.8 (0.3) and 1.1 (0.59) in virtual and conventional group respectively [mean (SD)]. At the end of the semester their scores were 15.9 (0.58) and 16.51 (0.89) respectively. Mean attitude scores at baseline were 3.19 (0.48) and 3.21 (0.33) followed by 3.55 (0.45) and 3.21 (0.46) at the end of the semester in virtual and conventional groups respectively. Although the scores of conventional group at the end of the course were higher than virtual group, both methods acted similarly in terms of increasing the knowledge. Passing a virtual education course may improve the attitude of the nurses towards it.
Virtual TeleRehab: a case study.
Pareto, Lena; Johansson, Britt; Zeller, Sally; Sunnerhagen, Katharina S; Rydmark, Martin; Broeren, Jurgen
2011-01-01
We examined the efficacy of a remotely based occupational therapy intervention. A 40-year-old woman who suffered a stroke participated in a telerehabilitation program. The intervention method is based on virtual reality gaming to enhance the training experience and to facilitate the relearning processes. The results indicate that Virtual TeleRehab is an effective method for motivational, economical, and practical reasons by combining game-based rehabilitation in the home with weekly distance meetings.
ERIC Educational Resources Information Center
Chatzarakis, G. E.
2009-01-01
This paper presents a new pedagogical method for nodal analysis optimization based on the use of virtual current sources, applicable to any linear electric circuit (LEC), regardless of its complexity. The proposed method leads to straightforward solutions, mostly arrived at by inspection. Furthermore, the method is easily adapted to computer…
Al-Dahir, Sara; Bryant, Kendrea; Kennedy, Kathleen B; Robinson, Donna S
2014-05-15
To evaluate the efficacy of faculty-led problem-based learning (PBL) vs online simulated-patient case in fourth-year (P4) pharmacy students. Fourth-year pharmacy students were randomly assigned to participate in either online branched-case learning using a virtual simulation platform or a small-group discussion. Preexperience and postexperience student assessments and a survey instrument were completed. While there were no significant differences in the preexperience test scores between the groups, there was a significant increase in scores in both the virtual-patient group and the PBL group between the preexperience and postexperience tests. The PBL group had higher postexperience test scores (74.8±11.7) than did the virtual-patient group (66.5±13.6) (p=0.001). The PBL method demonstrated significantly greater improvement in postexperience test scores than did the virtual-patient method. Both were successful learning methods, suggesting that a diverse approach to simulated patient cases may reach more student learning styles.
ERIC Educational Resources Information Center
Annetta, Leonard; Klesath, Marta; Meyer, John
2009-01-01
A 3-D virtual field trip was integrated into an online college entomology course and developed as a trial for the possible incorporation of future virtual environments to supplement online higher education laboratories. This article provides an explanation of the rationale behind creating the virtual experience, the Bug Farm; the method and…
Butterfly valve in a virtual environment
NASA Astrophysics Data System (ADS)
Talekar, Aniruddha; Patil, Saurabh; Thakre, Prashant; Rajkumar, E.
2017-11-01
Assembly of components is one of the processes involved in product design and development. The present paper deals with the assembly of a simple butterfly valve components in a virtual environment. The assembly has been carried out using virtual reality software by trial and error methods. The parts are modelled using parametric software (SolidWorks), meshed accordingly, and then called into virtual environment for assembly.
The Reality of Virtual Schools: A Review of the Literature
ERIC Educational Resources Information Center
Barbour, Michael K.; Reeves, Thomas C.
2009-01-01
Virtual schooling was first employed in the mid-1990s and has become a common method of distance education used in K-12 jurisdictions. The most accepted definition of a virtual school is an entity approved by a state or governing body that offers courses through distance delivery--most commonly using the Internet. While virtual schools can be…
Selective structural source identification
NASA Astrophysics Data System (ADS)
Totaro, Nicolas
2018-04-01
In the field of acoustic source reconstruction, the inverse Patch Transfer Function (iPTF) has been recently proposed and has shown satisfactory results whatever the shape of the vibrating surface and whatever the acoustic environment. These two interesting features are due to the virtual acoustic volume concept underlying the iPTF methods. The aim of the present article is to show how this concept of virtual subsystem can be used in structures to reconstruct the applied force distribution. Some virtual boundary conditions can be applied on a part of the structure, called virtual testing structure, to identify the force distribution applied in that zone regardless of the presence of other sources outside the zone under consideration. In the present article, the applicability of the method is only demonstrated on planar structures. However, the final example show how the method can be applied to a complex shape planar structure with point welded stiffeners even in the tested zone. In that case, if the virtual testing structure includes the stiffeners the identified force distribution only exhibits the positions of external applied forces. If the virtual testing structure does not include the stiffeners, the identified force distribution permits to localize the forces due to the coupling between the structure and the stiffeners through the welded points as well as the ones due to the external forces. This is why this approach is considered here as a selective structural source identification method. It is demonstrated that this approach clearly falls in the same framework as the Force Analysis Technique, the Virtual Fields Method or the 2D spatial Fourier transform. Even if this approach has a lot in common with these latters, it has some interesting particularities like its low sensitivity to measurement noise.
The development of the virtual reality system for the treatment of the fears of public speaking.
Jo, H J; Ku, J H; Jang, D P; Shin, M B; Ahn, H B; Lee, J M; Cho, B H; Kim, S I
2001-01-01
The fear of public speaking is a kind of social phobias. The patients having the fear of public speaking show some symptoms like shame and timidity in the daily personal relationship. They are afraid that the other person would be puzzled, feel insulted, and they also fear that they should be underestimated for their mistakes. For the treatment of the fear of public speaking, the cognitive-behavioral therapy has been generally used. The cognitive-behavioral therapy is the method that makes the patients gradually experience some situations inducing the fears and overcome those at last. Recently, the virtual reality technology has been introduced as an alternative method for providing phobic situations. In this study, we developed the public speaking simulator and the virtual environments for the treatment of the fear of public speaking. The head-mounted display, the head-tracker and the 3 dimensional sound system were used for the immersive virtual environment. The imagery of the virtual environment consists of a seminar room and 8 virtual audiences. The patient will speak in front of these virtual audiences and the therapist can control motions, facial expressions, sounds, and voices of each virtual audience.
High-immersion three-dimensional display of the numerical computer model
NASA Astrophysics Data System (ADS)
Xing, Shujun; Yu, Xunbo; Zhao, Tianqi; Cai, Yuanfa; Chen, Duo; Chen, Zhidong; Sang, Xinzhu
2013-08-01
High-immersion three-dimensional (3D) displays making them valuable tools for many applications, such as designing and constructing desired building houses, industrial architecture design, aeronautics, scientific research, entertainment, media advertisement, military areas and so on. However, most technologies provide 3D display in the front of screens which are in parallel with the walls, and the sense of immersion is decreased. To get the right multi-view stereo ground image, cameras' photosensitive surface should be parallax to the public focus plane and the cameras' optical axes should be offset to the center of public focus plane both atvertical direction and horizontal direction. It is very common to use virtual cameras, which is an ideal pinhole camera to display 3D model in computer system. We can use virtual cameras to simulate the shooting method of multi-view ground based stereo image. Here, two virtual shooting methods for ground based high-immersion 3D display are presented. The position of virtual camera is determined by the people's eye position in the real world. When the observer stand in the circumcircle of 3D ground display, offset perspective projection virtual cameras is used. If the observer stands out the circumcircle of 3D ground display, offset perspective projection virtual cameras and the orthogonal projection virtual cameras are adopted. In this paper, we mainly discussed the parameter setting of virtual cameras. The Near Clip Plane parameter setting is the main point in the first method, while the rotation angle of virtual cameras is the main point in the second method. In order to validate the results, we use the D3D and OpenGL to render scenes of different viewpoints and generate a stereoscopic image. A realistic visualization system for 3D models is constructed and demonstrated for viewing horizontally, which provides high-immersion 3D visualization. The displayed 3D scenes are compared with the real objects in the real world.
Molecular dynamics coupled with a virtual system for effective conformational sampling.
Hayami, Tomonori; Kasahara, Kota; Nakamura, Haruki; Higo, Junichi
2018-07-15
An enhanced conformational sampling method is proposed: virtual-system coupled canonical molecular dynamics (VcMD). Although VcMD enhances sampling along a reaction coordinate, this method is free from estimation of a canonical distribution function along the reaction coordinate. This method introduces a virtual system that does not necessarily obey a physical law. To enhance sampling the virtual system couples with a molecular system to be studied. Resultant snapshots produce a canonical ensemble. This method was applied to a system consisting of two short peptides in an explicit solvent. Conventional molecular dynamics simulation, which is ten times longer than VcMD, was performed along with adaptive umbrella sampling. Free-energy landscapes computed from the three simulations mutually converged well. The VcMD provided quicker association/dissociation motions of peptides than the conventional molecular dynamics did. The VcMD method is applicable to various complicated systems because of its methodological simplicity. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Computer network defense system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urias, Vincent; Stout, William M. S.; Loverro, Caleb
A method and apparatus for protecting virtual machines. A computer system creates a copy of a group of the virtual machines in an operating network in a deception network to form a group of cloned virtual machines in the deception network when the group of the virtual machines is accessed by an adversary. The computer system creates an emulation of components from the operating network in the deception network. The components are accessible by the group of the cloned virtual machines as if the group of the cloned virtual machines was in the operating network. The computer system moves networkmore » connections for the group of the virtual machines in the operating network used by the adversary from the group of the virtual machines in the operating network to the group of the cloned virtual machines, enabling protecting the group of the virtual machines from actions performed by the adversary.« less
Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan
2016-08-01
Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Paolini, Gabriele; Peruzzi, Agnese; Mirelman, Anat; Cereatti, Andrea; Gaukrodger, Stephen; Hausdorff, Jeffrey M; Della Croce, Ugo
2014-09-01
The use of virtual reality for the provision of motor-cognitive gait training has been shown to be effective for a variety of patient populations. The interaction between the user and the virtual environment is achieved by tracking the motion of the body parts and replicating it in the virtual environment in real time. In this paper, we present the validation of a novel method for tracking foot position and orientation in real time, based on the Microsoft Kinect technology, to be used for gait training combined with virtual reality. The validation of the motion tracking method was performed by comparing the tracking performance of the new system against a stereo-photogrammetric system used as gold standard. Foot position errors were in the order of a few millimeters (average RMSD from 4.9 to 12.1 mm in the medio-lateral and vertical directions, from 19.4 to 26.5 mm in the anterior-posterior direction); the foot orientation errors were also small (average %RMSD from 5.6% to 8.8% in the medio-lateral and vertical directions, from 15.5% to 18.6% in the anterior-posterior direction). The results suggest that the proposed method can be effectively used to track feet motion in virtual reality and treadmill-based gait training programs.
Norris, E; Dunsmuir, S; Duke-Williams, O; Stamatakis, E; Shelton, N
2018-02-02
Physically active lessons integrating movement into academic content are a way to increase children's physical activity levels. Virtual Traveller was a physically active lesson intervention set in Year 4 (aged 8-9) primary school classes in Greater London, UK. Implemented by classroom teachers, it was a six-week intervention providing 10-min physically active Virtual Field Trips three times a week. The aim of this paper is to report the process evaluation of the Virtual Traveller randomized controlled trial according to RE-AIM framework criteria (Reach, Effectiveness, Adoption, Implementation and Maintenance). A mixed methods approach to evaluation was conducted with five intervention group classes. Six sources of data were collected via informed consent logs, teacher session logs, teacher and pupil questionnaires, teacher interviews and pupil focus groups. High participation and low attrition rates were identified (Reach) alongside positive evaluations of Virtual Traveller sessions from pupil and teachers (Effectiveness). Participants were from more deprived and ethnic backgrounds than local and national averages, with Virtual Traveller having the potential to be a free intervention (Adoption). 70% of sessions were delivered overall (Implementation) but no maintenance of the programme was evident at three month follow-up (Maintenance). Mixed method evaluation of Virtual Traveller showed potential for it to be implemented as a low-cost physically active lesson intervention in UK primary schools. Copyright © 2018 Elsevier Ltd. All rights reserved.
Design of Education Methods in a Virtual Environment
ERIC Educational Resources Information Center
Yavich, Roman; Starichenko, Boris
2017-01-01
The purpose of the presented article is to review existing approaches to modern training methods design and to create a variant of its technology in virtual educational environments in order to develop general cultural and professional students' competence in pedagogical education. The conceptual modeling of a set of methods for students' training…
Wave field synthesis of a virtual source located in proximity to a loudspeaker array.
Lee, Jung-Min; Choi, Jung-Woo; Kim, Yang-Hann
2013-09-01
For the derivation of 2.5-dimensional operator in wave field synthesis, a virtual source is assumed to be positioned far from a loudspeaker array. However, such far-field approximation inevitably results in a reproduction error when the virtual source is placed adjacent to an array. In this paper, a method is proposed to generate a virtual source close to and behind a continuous line array of loudspeakers. A driving function is derived by reducing a surface integral (Rayleigh integral) to a line integral based on the near-field assumption. The solution is then combined with the far-field formula of wave field synthesis by introducing a weighting function that can adjust the near- and far-field contribution of each driving function. This enables production of a virtual source anywhere in relation to the array. Simulations show the proposed method can reduce the reproduction error to below -18 dB, regardless of the virtual source position.
Virtual view image synthesis for eye-contact in TV conversation system
NASA Astrophysics Data System (ADS)
Murayama, Daisuke; Kimura, Keiichi; Hosaka, Tadaaki; Hamamoto, Takayuki; Shibuhisa, Nao; Tanaka, Seiichi; Sato, Shunichi; Saito, Sakae
2010-02-01
Eye-contact plays an important role for human communications in the sense that it can convey unspoken information. However, it is highly difficult to realize eye-contact in teleconferencing systems because of camera configurations. Conventional methods to overcome this difficulty mainly resorted to space-consuming optical devices such as half mirrors. In this paper, we propose an alternative approach to achieve eye-contact by techniques of arbitrary view image synthesis. In our method, multiple images captured by real cameras are converted to the virtual viewpoint (the center of the display) by homography, and evaluation of matching errors among these projected images provides the depth map and the virtual image. Furthermore, we also propose a simpler version of this method by using a single camera to save the computational costs, in which the only one real image is transformed to the virtual viewpoint based on the hypothesis that the subject is located at a predetermined distance. In this simple implementation, eye regions are separately generated by comparison with pre-captured frontal face images. Experimental results of both the methods show that the synthesized virtual images enable the eye-contact favorably.
Integration of virtual and real scenes within an integral 3D imaging environment
NASA Astrophysics Data System (ADS)
Ren, Jinsong; Aggoun, Amar; McCormick, Malcolm
2002-11-01
The Imaging Technologies group at De Montfort University has developed an integral 3D imaging system, which is seen as the most likely vehicle for 3D television avoiding psychological effects. To create real fascinating three-dimensional television programs, a virtual studio that performs the task of generating, editing and integrating the 3D contents involving virtual and real scenes is required. The paper presents, for the first time, the procedures, factors and methods of integrating computer-generated virtual scenes with real objects captured using the 3D integral imaging camera system. The method of computer generation of 3D integral images, where the lens array is modelled instead of the physical camera is described. In the model each micro-lens that captures different elemental images of the virtual scene is treated as an extended pinhole camera. An integration process named integrated rendering is illustrated. Detailed discussion and deep investigation are focused on depth extraction from captured integral 3D images. The depth calculation method from the disparity and the multiple baseline method that is used to improve the precision of depth estimation are also presented. The concept of colour SSD and its further improvement in the precision is proposed and verified.
V-ROOM: a virtual meeting system with intelligent structured summarisation
NASA Astrophysics Data System (ADS)
James, Anne E.; Nanos, Antonios G.; Thompson, Philip
2016-10-01
With the growth of virtual organisations and multinational companies, virtual collaboration tasks are becoming more important for employees. This paper describes the development of a virtual meeting system called V-ROOM. An exploration of facilities required in such a system has been conducted. The findings highlighted that intelligent systems are needed, especially since information that individuals have to know and process is vast. The survey results showed that meeting summarisation is one of the most important new features that should be added to virtual meeting systems for enterprises. This paper highlights the innovative methods employed in V-ROOM to produce relevant meeting summaries. V-ROOM's approach is compared to other methods from the literature, and it is shown how the use of metadata provided by parts of the V-ROOM system can improve the quality of summaries produced.
Cheng, Yufeng; Jin, Shuying; Wang, Mi; Zhu, Ying; Dong, Zhipeng
2017-06-20
The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper proposes a high accuracy image mosaicking approach based on the big virtual camera (BVC) in the double-camera system on the GaoFen2 optical remote sensing satellite (GF2). A big virtual camera can be built according to the rigorous imaging model of a single camera; then, each single image strip obtained by each TDI-CCD detector can be re-projected to the virtual detector of the big virtual camera coordinate system using forward-projection and backward-projection to obtain the corresponding single virtual image. After an on-orbit calibration and relative orientation, the complete final virtual image can be obtained by stitching the single virtual images together based on their coordinate information on the big virtual detector image plane. The paper subtly uses the concept of the big virtual camera to obtain a stitched image and the corresponding high accuracy rational function model (RFM) for concurrent post processing. Experiments verified that the proposed method can achieve seamless mosaicking while maintaining the geometric accuracy.
Three-dimensional compound comparison methods and their application in drug discovery.
Shin, Woong-Hee; Zhu, Xiaolei; Bures, Mark Gregory; Kihara, Daisuke
2015-07-16
Virtual screening has been widely used in the drug discovery process. Ligand-based virtual screening (LBVS) methods compare a library of compounds with a known active ligand. Two notable advantages of LBVS methods are that they do not require structural information of a target receptor and that they are faster than structure-based methods. LBVS methods can be classified based on the complexity of ligand structure information utilized: one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D). Unlike 1D and 2D methods, 3D methods can have enhanced performance since they treat the conformational flexibility of compounds. In this paper, a number of 3D methods will be reviewed. In addition, four representative 3D methods were benchmarked to understand their performance in virtual screening. Specifically, we tested overall performance in key aspects including the ability to find dissimilar active compounds, and computational speed.
Benchmarking Distance Control and Virtual Drilling for Lateral Skull Base Surgery.
Voormolen, Eduard H J; Diederen, Sander; van Stralen, Marijn; Woerdeman, Peter A; Noordmans, Herke Jan; Viergever, Max A; Regli, Luca; Robe, Pierre A; Berkelbach van der Sprenkel, Jan Willem
2018-01-01
Novel audiovisual feedback methods were developed to improve image guidance during skull base surgery by providing audiovisual warnings when the drill tip enters a protective perimeter set at a distance around anatomic structures ("distance control") and visualizing bone drilling ("virtual drilling"). To benchmark the drill damage risk reduction provided by distance control, to quantify the accuracy of virtual drilling, and to investigate whether the proposed feedback methods are clinically feasible. In a simulated surgical scenario using human cadavers, 12 unexperienced users (medical students) drilled 12 mastoidectomies. Users were divided into a control group using standard image guidance and 3 groups using distance control with protective perimeters of 1, 2, or 3 mm. Damage to critical structures (sigmoid sinus, semicircular canals, facial nerve) was assessed. Neurosurgeons performed another 6 mastoidectomy/trans-labyrinthine and retro-labyrinthine approaches. Virtual errors as compared with real postoperative drill cavities were calculated. In a clinical setting, 3 patients received lateral skull base surgery with the proposed feedback methods. Users drilling with distance control protective perimeters of 3 mm did not damage structures, whereas the groups using smaller protective perimeters and the control group injured structures. Virtual drilling maximum cavity underestimations and overestimations were 2.8 ± 0.1 and 3.3 ± 0.4 mm, respectively. Feedback methods functioned properly in the clinical setting. Distance control reduced the risks of drill damage proportional to the protective perimeter distance. Errors in virtual drilling reflect spatial errors of the image guidance system. These feedback methods are clinically feasible. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Codd, Anthony M.; Choudhury, Bipasha
2011-01-01
The use of cadavers to teach anatomy is well established, but limitations with this approach have led to the introduction of alternative teaching methods. One such method is the use of three-dimensional virtual reality computer models. An interactive, three-dimensional computer model of human forearm anterior compartment musculoskeletal anatomy…
Health care globalization: a need for virtual leadership.
Holland, J Brian; Malvey, Donna; Fottler, Myron D
2009-01-01
As health care organizations expand and move into global markets, they face many leadership challenges, including the difficulty of leading individuals who are geographically dispersed. This article provides global managers with guidelines for leading and motivating individuals or teams from a distance while overcoming the typical challenges that "virtual leaders" and "virtual teams" face: employee isolation, confusion, language barriers, cultural differences, and technological breakdowns. Fortunately, technological advances in communications have provided various methods to accommodate geographically dispersed or "global virtual teams." Health care leaders now have the ability to lead global teams from afar by becoming "virtual leaders" with a responsibility to lead a "virtual team." Three models of globalization presented and discussed are outsourcing of health care services, medical tourism, and telerobotics. These models require global managers to lead virtually, and a positive relationship between the virtual leader and the virtual team member is vital in the success of global health care organizations.
Analysing neutron scattering data using McStas virtual experiments
NASA Astrophysics Data System (ADS)
Udby, L.; Willendrup, P. K.; Knudsen, E.; Niedermayer, Ch.; Filges, U.; Christensen, N. B.; Farhi, E.; Wells, B. O.; Lefmann, K.
2011-04-01
With the intention of developing a new data analysis method using virtual experiments we have built a detailed virtual model of the cold triple-axis spectrometer RITA-II at PSI, Switzerland, using the McStas neutron ray-tracing package. The parameters characterising the virtual instrument were carefully tuned against real experiments. In the present paper we show that virtual experiments reproduce experimentally observed linewidths within 1-3% for a variety of samples. Furthermore we show that the detailed knowledge of the instrumental resolution found from virtual experiments, including sample mosaicity, can be used for quantitative estimates of linewidth broadening resulting from, e.g., finite domain sizes in single-crystal samples.
A new second-puncture probe for CO2 laser laparoscopy.
Daniell, J F; Herbert, C M
1985-02-01
A new second-puncture probe system was designed for aiming and firing the CO2 laser under laparoscopic control. The probe allows simultaneous suction of the smoke from vaporization and insufflation of fresh CO2 for maintenance of an adequate pneumoperitoneum during use. A 200-mm focusing lens attaches the probe to any surgical CO2 laser with an articulated arm. The new probe is 10 cm shorter than standard probes, allowing the application of a wider range of power densities during laser laparoscopy and making surgery easier to perform. Our initial experiences with this new instrument have involved both laboratory animals and patients with endometriosis, adnexal adhesions and distal tubal obstruction.
ERIC Educational Resources Information Center
Wright, Sharon L.
2013-01-01
Businesses and governmental agencies are increasingly reliant on virtual teams composed of team members in different location. However, such virtual teams face all the interpersonal challenges inherent in working in a group, plus additional challenges that are a consequence from communicating through electronic methods. Numerous technological…
Research and Development of Web-Based Virtual Online Classroom
ERIC Educational Resources Information Center
Yang, Zongkai; Liu, Qingtang
2007-01-01
To build a web-based virtual learning environment depends on information technologies, concerns technology supporting learning methods and theories. A web-based virtual online classroom is designed and developed based on learning theories and streaming media technologies. And it is composed of two parts: instructional communicating environment…
Building a Virtual Learning Network for Teachers in a Suburban School District
ERIC Educational Resources Information Center
Kurtzworth-Keen, Kristin A.
2011-01-01
Emerging research indicates that learning management systems such as Moodle can function as virtual, collaborative environments, where collegial interactions promote professional learning opportunities. This study deployed a mixed methods design in order to describe and analyze teacher participation in a virtual learning network (VLN) that was…
Multi-viewpoint Image Array Virtual Viewpoint Rapid Generation Algorithm Based on Image Layering
NASA Astrophysics Data System (ADS)
Jiang, Lu; Piao, Yan
2018-04-01
The use of multi-view image array combined with virtual viewpoint generation technology to record 3D scene information in large scenes has become one of the key technologies for the development of integrated imaging. This paper presents a virtual viewpoint rendering method based on image layering algorithm. Firstly, the depth information of reference viewpoint image is quickly obtained. During this process, SAD is chosen as the similarity measure function. Then layer the reference image and calculate the parallax based on the depth information. Through the relative distance between the virtual viewpoint and the reference viewpoint, the image layers are weighted and panned. Finally the virtual viewpoint image is rendered layer by layer according to the distance between the image layers and the viewer. This method avoids the disadvantages of the algorithm DIBR, such as high-precision requirements of depth map and complex mapping operations. Experiments show that, this algorithm can achieve the synthesis of virtual viewpoints in any position within 2×2 viewpoints range, and the rendering speed is also very impressive. The average result proved that this method can get satisfactory image quality. The average SSIM value of the results relative to real viewpoint images can reaches 0.9525, the PSNR value can reaches 38.353 and the image histogram similarity can reaches 93.77%.
Direct Visuo-Haptic 4D Volume Rendering Using Respiratory Motion Models.
Fortmeier, Dirk; Wilms, Matthias; Mastmeyer, Andre; Handels, Heinz
2015-01-01
This article presents methods for direct visuo-haptic 4D volume rendering of virtual patient models under respiratory motion. Breathing models are computed based on patient-specific 4D CT image data sequences. Virtual patient models are visualized in real-time by ray casting based rendering of a reference CT image warped by a time-variant displacement field, which is computed using the motion models at run-time. Furthermore, haptic interaction with the animated virtual patient models is provided by using the displacements computed at high rendering rates to translate the position of the haptic device into the space of the reference CT image. This concept is applied to virtual palpation and the haptic simulation of insertion of a virtual bendable needle. To this aim, different motion models that are applicable in real-time are presented and the methods are integrated into a needle puncture training simulation framework, which can be used for simulated biopsy or vessel puncture in the liver. To confirm real-time applicability, a performance analysis of the resulting framework is given. It is shown that the presented methods achieve mean update rates around 2,000 Hz for haptic simulation and interactive frame rates for volume rendering and thus are well suited for visuo-haptic rendering of virtual patients under respiratory motion.
Adapting Document Similarity Measures for Ligand-Based Virtual Screening.
Himmat, Mubarak; Salim, Naomie; Al-Dabbagh, Mohammed Mumtaz; Saeed, Faisal; Ahmed, Ali
2016-04-13
Quantifying the similarity of molecules is considered one of the major tasks in virtual screening. There are many similarity measures that have been proposed for this purpose, some of which have been derived from document and text retrieving areas as most often these similarity methods give good results in document retrieval and can achieve good results in virtual screening. In this work, we propose a similarity measure for ligand-based virtual screening, which has been derived from a text processing similarity measure. It has been adopted to be suitable for virtual screening; we called this proposed measure the Adapted Similarity Measure of Text Processing (ASMTP). For evaluating and testing the proposed ASMTP we conducted several experiments on two different benchmark datasets: the Maximum Unbiased Validation (MUV) and the MDL Drug Data Report (MDDR). The experiments have been conducted by choosing 10 reference structures from each class randomly as queries and evaluate them in the recall of cut-offs at 1% and 5%. The overall obtained results are compared with some similarity methods including the Tanimoto coefficient, which are considered to be the conventional and standard similarity coefficients for fingerprint-based similarity calculations. The achieved results show that the performance of ligand-based virtual screening is better and outperforms the Tanimoto coefficients and other methods.
Evaluating the Predictivity of Virtual Screening for Abl Kinase Inhibitors to Hinder Drug Resistance
Gani, Osman A B S M; Narayanan, Dilip; Engh, Richard A
2013-01-01
Virtual screening methods are now widely used in early stages of drug discovery, aiming to rank potential inhibitors. However, any practical ligand set (of active or inactive compounds) chosen for deriving new virtual screening approaches cannot fully represent all relevant chemical space for potential new compounds. In this study, we have taken a retrospective approach to evaluate virtual screening methods for the leukemia target kinase ABL1 and its drug-resistant mutant ABL1-T315I. ‘Dual active’ inhibitors against both targets were grouped together with inactive ligands chosen from different decoy sets and tested with virtual screening approaches with and without explicit use of target structures (docking). We show how various scoring functions and choice of inactive ligand sets influence overall and early enrichment of the libraries. Although ligand-based methods, for example principal component analyses of chemical properties, can distinguish some decoy sets from active compounds, the addition of target structural information via docking improves enrichment, and explicit consideration of multiple target conformations (i.e. types I and II) achieves best enrichment of active versus inactive ligands, even without assuming knowledge of the binding mode. We believe that this study can be extended to other therapeutically important kinases in prospective virtual screening studies. PMID:23746052
Assessing the Impact of a Virtual Lab in an Allied Health Program.
Kay, Robin; Goulding, Helene; Li, Jia
2018-01-01
Competency-based education in health care requires rigorous standards to ensure professional proficiency. Demonstrating competency in hands-on laboratories calls for effective preparation, knowledge, and experience, all of which can be difficult to achieve using traditional teaching methods. Virtual laboratories are an alternative, cost-effective approach to providing students with sufficient preparatory information. Research on the use of virtual labs in allied health education is limited. The current study investigated the benefits, challenges, and perceived impact of a virtual lab in an allied health program. The sample consisted of 64 students (55 females, 9 males) enrolled in a university medical laboratory science program. A convergent mixed-methods approach (Likert survey, open-ended questions, think-aloud protocol data) revealed that students had positive attitudes towards visual learning, authenticity, learner control, organization, and scaffolding afforded by the virtual lab. Challenges reported included navigational difficulties, an absence of control over content selection, and lack of understanding for certain concepts. Over 90% of students agreed that the virtual lab helped them prepare for hands-on laboratory sessions and that they would use this format of instruction again. Overall, 84% of the students agreed that the virtual lab helped them to achieve greater success in learning.
Preceptor Perceptions of Virtual Quality Assurance Experiential Site Visits.
Clarke, Cheryl L; Schott, Kathryn A; Arnold, Austin D
2018-05-01
Objective. To determine preceptor perceptions of the value of experiential quality assurance site visits between virtual and onsite visits, and to gauge preceptor opinions of the optimal method of site visits based on the type of visit received. Methods. Site visits (12 virtual and 17 onsite) were conducted with 29 APPE sites located at least 200 miles from campus. Participating preceptors were invited to complete an online post-visit survey adapted from a previously validated and published survey tool measuring preceptor perceptions of the value of traditional onsite visits. Results. Likert-type score averages for survey questions ranged from 4.2 to 4.6 in the virtual group and from 4.3 to 4.7 in the onsite group. No statistically significant difference was found between the two groups. Preceptors were more inclined to prefer the type of visit they received. Preceptors receiving onsite visits were also more likely to indicate no visit type preference. Conclusion. Preceptors perceived value from both onsite and virtual site visits. Preceptors who experienced virtual site visits highly preferred that methodology. This study suggests that virtual site visits may be a viable alternative for providing experiential quality assurance site visits from a preceptor's perspective.
Majdak, Piotr; Goupell, Matthew J; Laback, Bernhard
2010-02-01
The ability to localize sound sources in three-dimensional space was tested in humans. In Experiment 1, naive subjects listened to noises filtered with subject-specific head-related transfer functions. The tested conditions included the pointing method (head or manual pointing) and the visual environment (VE; darkness or virtual VE). The localization performance was not significantly different between the pointing methods. The virtual VE significantly improved the horizontal precision and reduced the number of front-back confusions. These results show the benefit of using a virtual VE in sound localization tasks. In Experiment 2, subjects were provided with sound localization training. Over the course of training, the performance improved for all subjects, with the largest improvements occurring during the first 400 trials. The improvements beyond the first 400 trials were smaller. After the training, there was still no significant effect of pointing method, showing that the choice of either head- or manual-pointing method plays a minor role in sound localization performance. The results of Experiment 2 reinforce the importance of perceptual training for at least 400 trials in sound localization studies.
[Virtual water content of livestock products in China].
Wang, Hong-rui; Wang, Jun-hong
2006-04-01
The paper expatiated the virtual water content concept of livestock products and the study meaning on developing virtual water trade of livestock products in China, then summarized the calculation methods on virtual water and virtual water trade of livestock products. Based on these, the paper analyzed and researched every province virtual water content of livestock products in details, then elicited various situation of every province virtual water content of livestock products in China by year. Moreover, it compared virtual water content of livestock products with local water resources. The study indicated the following results: (1) The virtual water content of livestock products is increasing rapidly in China recently, especially poultry eggs and pork. (2) The distribution of virtual water content of livestock products is not balanced, mainly lies in North China, East China and so on; (3) The increasing production of livestock in Beijing City, Tianjin City, Hebei, Nei Monggol, Liaononing, Jilin, Shandong, Henan and Ningxia province and autonom ous region will bring pressure to local water shortage.
NASA Astrophysics Data System (ADS)
Zheng, Xianwei; Xiong, Hanjiang; Gong, Jianya; Yue, Linwei
2017-07-01
Virtual globes play an important role in representing three-dimensional models of the Earth. To extend the functioning of a virtual globe beyond that of a "geobrowser", the accuracy of the geospatial data in the processing and representation should be of special concern for the scientific analysis and evaluation. In this study, we propose a method for the processing of large-scale terrain data for virtual globe visualization and analysis. The proposed method aims to construct a morphologically preserved multi-resolution triangulated irregular network (TIN) pyramid for virtual globes to accurately represent the landscape surface and simultaneously satisfy the demands of applications at different scales. By introducing cartographic principles, the TIN model in each layer is controlled with a data quality standard to formulize its level of detail generation. A point-additive algorithm is used to iteratively construct the multi-resolution TIN pyramid. The extracted landscape features are also incorporated to constrain the TIN structure, thus preserving the basic morphological shapes of the terrain surface at different levels. During the iterative construction process, the TIN in each layer is seamlessly partitioned based on a virtual node structure, and tiled with a global quadtree structure. Finally, an adaptive tessellation approach is adopted to eliminate terrain cracks in the real-time out-of-core spherical terrain rendering. The experiments undertaken in this study confirmed that the proposed method performs well in multi-resolution terrain representation, and produces high-quality underlying data that satisfy the demands of scientific analysis and evaluation.
Transforming Clinical Imaging Data for Virtual Reality Learning Objects
ERIC Educational Resources Information Center
Trelease, Robert B.; Rosset, Antoine
2008-01-01
Advances in anatomical informatics, three-dimensional (3D) modeling, and virtual reality (VR) methods have made computer-based structural visualization a practical tool for education. In this article, the authors describe streamlined methods for producing VR "learning objects," standardized interactive software modules for anatomical sciences…
Youngblood, Patricia; Harter, Phillip M; Srivastava, Sakti; Moffett, Shannon; Heinrichs, Wm LeRoy; Dev, Parvati
2008-01-01
Training interdisciplinary trauma teams to work effectively together using simulation technology has led to a reduction in medical errors in emergency department, operating room, and delivery room contexts. High-fidelity patient simulators (PSs)-the predominant method for training healthcare teams-are expensive to develop and implement and require that trainees be present in the same place at the same time. In contrast, online computer-based simulators are more cost effective and allow simultaneous participation by students in different locations and time zones. In this pilot study, the researchers created an online virtual emergency department (Virtual ED) for team training in crisis management, and compared the effectiveness of the Virtual ED with the PS. We hypothesized that there would be no difference in learning outcomes for graduating medical students trained with each method. In this pilot study, we used a pretest-posttest control group, experimental design in which 30 subjects were randomly assigned to either the Virtual ED or the PS system. In the Virtual ED each subject logged into the online environment and took the role of a team member. Four-person teams worked together in the Virtual ED, communicating in real time with live voice over Internet protocol, to manage computer-controlled patients who exhibited signs and symptoms of physical trauma. Each subject had the opportunity to be the team leader. The subjects' leadership behavior as demonstrated in both a pretest case and a posttest case was assessed by 3 raters, using a behaviorally anchored scale. In the PS environment, 4-person teams followed the same research protocol, using the same clinical scenarios in a Simulation Center. Guided by the Emergency Medicine Crisis Resource Management curriculum, both the Virtual ED and the PS groups applied the basic principles of team leadership and trauma management (Advanced Trauma Life Support) to manage 6 trauma cases-a pretest case, 4 training cases, and a posttest case. The subjects in each group were assessed individually with the same simulation method that they used for the training cases. Subjects who used either the Virtual ED or the PS showed significant improvement in performance between pretest and posttest cases (P < 0.05). In addition, there was no significant difference in subjects' performance between the 2 types of simulation, suggesting that the online Virtual ED may be as effective for learning team skills as the PS, the method widely used in Simulation Centers. Data on usability and attitudes toward both simulation methods as learning tools were equally positive. This study shows the potential value of using virtual learning environments for developing medical students' and resident physicians' team leadership and crisis management skills.
Two methods of Haustral fold detection from computed tomographic virtual colonoscopy images
NASA Astrophysics Data System (ADS)
Chowdhury, Ananda S.; Tan, Sovira; Yao, Jianhua; Linguraru, Marius G.; Summers, Ronald M.
2009-02-01
Virtual colonoscopy (VC) has gained popularity as a new colon diagnostic method over the last decade. VC is a new, less invasive alternative to the usually practiced optical colonoscopy for colorectal polyp and cancer screening, the second major cause of cancer related deaths in industrial nations. Haustral (colonic) folds serve as important landmarks for virtual endoscopic navigation in the existing computer-aided-diagnosis (CAD) system. In this paper, we propose and compare two different methods of haustral fold detection from volumetric computed tomographic virtual colonoscopy images. The colon lumen is segmented from the input using modified region growing and fuzzy connectedness. The first method for fold detection uses a level set that evolves on a mesh representation of the colon surface. The colon surface is obtained from the segmented colon lumen using the Marching Cubes algorithm. The second method for fold detection, based on a combination of heat diffusion and fuzzy c-means algorithm, is employed on the segmented colon volume. Folds obtained on the colon volume using this method are then transferred to the corresponding colon surface. After experimentation with different datasets, results are found to be promising. The results also demonstrate that the first method has a tendency of slight under-segmentation while the second method tends to slightly over-segment the folds.
Augmented reality glass-free three-dimensional display with the stereo camera
NASA Astrophysics Data System (ADS)
Pang, Bo; Sang, Xinzhu; Chen, Duo; Xing, Shujun; Yu, Xunbo; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu
2017-10-01
An improved method for Augmented Reality (AR) glass-free three-dimensional (3D) display based on stereo camera used for presenting parallax contents from different angle with lenticular lens array is proposed. Compared with the previous implementation method of AR techniques based on two-dimensional (2D) panel display with only one viewpoint, the proposed method can realize glass-free 3D display of virtual objects and real scene with 32 virtual viewpoints. Accordingly, viewers can get abundant 3D stereo information from different viewing angles based on binocular parallax. Experimental results show that this improved method based on stereo camera can realize AR glass-free 3D display, and both of virtual objects and real scene have realistic and obvious stereo performance.
Collaborative voxel-based surgical virtual environments.
Acosta, Eric; Muniz, Gilbert; Armonda, Rocco; Bowyer, Mark; Liu, Alan
2008-01-01
Virtual Reality-based surgical simulators can utilize Collaborative Virtual Environments (C-VEs) to provide team-based training. To support real-time interactions, C-VEs are typically replicated on each user's local computer and a synchronization method helps keep all local copies consistent. This approach does not work well for voxel-based C-VEs since large and frequent volumetric updates make synchronization difficult. This paper describes a method that allows multiple users to interact within a voxel-based C-VE for a craniotomy simulator being developed. Our C-VE method requires smaller update sizes and provides faster synchronization update rates than volumetric-based methods. Additionally, we address network bandwidth/latency issues to simulate networked haptic and bone drilling tool interactions with a voxel-based skull C-VE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Z; Jiang, W; Stuart, B
Purpose: Since electrons are easily scattered, the virtual source position for electrons is expected to locate below the x-ray target of Medical Linacs. However, the effective SSD method yields the electron virtual position above the x-ray target for some applicators for some energy in Siemens Linacs. In this study, we propose to use IC Profiler (Sun Nuclear) for evaluating the electron virtual source position for the standard electron applicators for various electron energies. Methods: The profile measurements for various nominal source-to-detector distances (SDDs) of 100–115 cm were carried out for electron beam energies of 6–18 MeV. Two methods were used:more » one was to use a 0.125 cc ion chamber (PTW, Type 31010) with buildup mounted in a PTW water tank without water filled; and the other was to use IC Profiler with a buildup to achieve charge particle equilibrium. The full width at half-maximum (FWHM) method was used to determine the field sizes for the measured profiles. Backprojecting (by a straight line) the distance between the 50% points on the beam profiles for the various SDDs, yielded the virtual source position for each applicator. Results: The profiles were obtained and the field sizes were determined by FWHM. The virtual source positions were determined through backprojection of profiles for applicators (5, 10, 15, 20, 25). For instance, they were 96.415 cm (IC Profiler) vs 95.844 cm (scanning ion chamber) for 9 MeV electrons with 10×10 cm applicator and 97.160 cm vs 97.161 cm for 12 MeV electrons with 10×10 cm applicator. The differences in the virtual source positions between IC profiler and scanning ion chamber were within 1.5%. Conclusion: IC Profiler provides a practical method for determining the electron virtual source position and its results are consistent with those obtained by profiles of scanning ion chamber with buildup.« less
SU-F-T-436: A Method to Evaluate Dosimetric Properties of SFGRT in Eclipse TPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, M; Tobias, R; Pankuch, M
Purpose: The objective was to develop a method for dose distribution calculation of spatially-fractionated-GRID-radiotherapy (SFGRT) in Eclipse treatment-planning-system (TPS). Methods: Patient treatment-plans with SFGRT for bulky tumors were generated in Varian Eclipse version11. A virtual structure based on the GRID pattern was created and registered to a patient CT image dataset. The virtual GRID structure was positioned on the iso-center level together with matching beam geometries to simulate a commercially available GRID block made of brass. This method overcame the difficulty in treatment-planning and dose-calculation due to the lack o-the option to insert a GRID block add-on in Eclipse TPS.more » The patient treatment-planning displayed GRID effects on the target, critical structures, and dose distribution. The dose calculations were compared to the measurement results in phantom. Results: The GRID block structure was created to follow the beam divergence to the patient CT images. The inserted virtual GRID block made it possible to calculate the dose distributions and profiles at various depths in Eclipse. The virtual GRID block was added as an option to TPS. The 3D representation of the isodose distribution of the spatially-fractionated beam was generated in axial, coronal, and sagittal planes. Physics of GRID can be different from that for fields shaped by regular blocks because the charge-particle-equilibrium cannot be guaranteed for small field openings. Output factor (OF) measurement was required to calculate the MU to deliver the prescribed dose. The calculated OF based on the virtual GRID agreed well with the measured OF in phantom. Conclusion: The method to create the virtual GRID block has been proposed for the first time in Eclipse TPS. The dosedistributions, in-plane and cross-plane profiles in PTV can be displayed in 3D-space. The calculated OF’s based on the virtual GRID model compare well to the measured OF’s for SFGRT clinical use.« less
Liu, Yong-Kuo; Chao, Nan; Xia, Hong; Peng, Min-Jun; Ayodeji, Abiodun
2018-05-17
This paper presents an improved and efficient virtual reality-based adaptive dose assessment method (VRBAM) applicable to the cutting and dismantling tasks in nuclear facility decommissioning. The method combines the modeling strength of virtual reality with the flexibility of adaptive technology. The initial geometry is designed with the three-dimensional computer-aided design tools, and a hybrid model composed of cuboids and a point-cloud is generated automatically according to the virtual model of the object. In order to improve the efficiency of dose calculation while retaining accuracy, the hybrid model is converted to a weighted point-cloud model, and the point kernels are generated by adaptively simplifying the weighted point-cloud model according to the detector position, an approach that is suitable for arbitrary geometries. The dose rates are calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The geometric modeling capability of VRBAM was verified by simulating basic geometries, which included a convex surface, a concave surface, a flat surface and their combination. The simulation results show that the VRBAM is more flexible and superior to other approaches in modeling complex geometries. In this paper, the computation time and dose rate results obtained from the proposed method were also compared with those obtained using the MCNP code and an earlier virtual reality-based method (VRBM) developed by the same authors. © 2018 IOP Publishing Ltd.
NASA Technical Reports Server (NTRS)
Frank, Andreas O.; Twombly, I. Alexander; Barth, Timothy J.; Smith, Jeffrey D.; Dalton, Bonnie P. (Technical Monitor)
2001-01-01
We have applied the linear elastic finite element method to compute haptic force feedback and domain deformations of soft tissue models for use in virtual reality simulators. Our results show that, for virtual object models of high-resolution 3D data (>10,000 nodes), haptic real time computations (>500 Hz) are not currently possible using traditional methods. Current research efforts are focused in the following areas: 1) efficient implementation of fully adaptive multi-resolution methods and 2) multi-resolution methods with specialized basis functions to capture the singularity at the haptic interface (point loading). To achieve real time computations, we propose parallel processing of a Jacobi preconditioned conjugate gradient method applied to a reduced system of equations resulting from surface domain decomposition. This can effectively be achieved using reconfigurable computing systems such as field programmable gate arrays (FPGA), thereby providing a flexible solution that allows for new FPGA implementations as improved algorithms become available. The resulting soft tissue simulation system would meet NASA Virtual Glovebox requirements and, at the same time, provide a generalized simulation engine for any immersive environment application, such as biomedical/surgical procedures or interactive scientific applications.
Wichmann, D; Heinemann, A; Zähler, S; Vogel, H; Höpker, W; Püschel, K; Kluge, S
2018-06-01
There has been increasing use of invasive techniques, such as extracorporeal organ support, in intensive care units (ICU), and declining autopsy rates. Thus, new measures are needed to maintain high-quality standards. We investigated the potential of computed tomography (CT)-based virtual autopsy to substitute for medical autopsy in this setting. We investigated the potential of virtual autopsy by post-mortem CT to identify complications associated with medical devices in a prospective study of patients who had died in the ICU. Clinical records were reviewed to determine the number and types of medical devices used, and findings from medical and virtual autopsies, related and unrelated to the medical devices, were compared. Medical and virtual autopsies could be performed in 61 patients (Group M/V), and virtual autopsy only in 101 patients (Group V). In Group M/V, 41 device-related complications and 30 device malpositions were identified, but only with a low inter-method agreement. Major findings unrelated to a device were identified in about 25% of patients with a high level of agreement between methods. In Group V, 8 device complications and 36 device malpositions were identified. Device-related complications are frequent in ICU patients. Virtual and medical autopsies showed clear differences in the detection of complications and device malpositions. Both methods should supplement each other rather than one alone for quality control of medical devices in the ICU. Further studies should focus on the identification of special patient populations in which virtual autopsy might be of particular benefit. NCT01541982. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sieradzan, Adam K.; Makowski, Mariusz; Augustynowicz, Antoni; Liwo, Adam
2017-03-01
A general and systematic method for the derivation of the functional expressions for the effective energy terms in coarse-grained force fields of polymer chains is proposed. The method is based on the expansion of the potential of mean force of the system studied in the cluster-cumulant series and expanding the all-atom energy in the Taylor series in the squares of interatomic distances about the squares of the distances between coarse-grained centers, to obtain approximate analytical expressions for the cluster cumulants. The primary degrees of freedom to average about are the angles for collective rotation of the atoms contained in the coarse-grained interaction sites about the respective virtual-bond axes. The approach has been applied to the revision of the virtual-bond-angle, virtual-bond-torsional, and backbone-local-and-electrostatic correlation potentials for the UNited RESidue (UNRES) model of polypeptide chains, demonstrating the strong dependence of the torsional and correlation potentials on virtual-bond angles, not considered in the current UNRES. The theoretical considerations are illustrated with the potentials calculated from the ab initio potential-energy surface of terminally blocked alanine by numerical integration and with the statistical potentials derived from known protein structures. The revised torsional potentials correctly indicate that virtual-bond angles close to 90° result in the preference for the turn and helical structures, while large virtual-bond angles result in the preference for polyproline II and extended backbone geometry. The revised correlation potentials correctly reproduce the preference for the formation of β-sheet structures for large values of virtual-bond angles and for the formation of α-helical structures for virtual-bond angles close to 90°.
Lee, Hyemin; Cha, Jooly; Chun, Youn-Sic; Kim, Minji
2018-06-19
The occlusal registration of virtual models taken by intraoral scanners sometimes shows patterns which seem much different from the patients' occlusion. Therefore, this study aims to evaluate the accuracy of virtual occlusion by comparing virtual occlusal contact area with actual occlusal contact area using a plaster model in vitro. Plaster dental models, 24 sets of Class I models and 20 sets of Class II models, were divided into a Molar, Premolar, and Anterior group. The occlusal contact areas calculated by the Prescale method and the virtual occlusion by scanning method were compared, and the ratio of the molar and incisor area were compared in order to find any particular tendencies. There was no significant difference between the Prescale results and the scanner results in both the molar and premolar groups (p = 0.083 and 0.053, respectively). On the other hand, there was a significant difference between the Prescale and the scanner results in the anterior group with the scanner results presenting overestimation of the occlusal contact points (p < 0.05). In Molars group, the regression analysis shows that the two variables express linear correlation and has a linear equation with a slope of 0.917. R 2 is 0.930. Groups of Premolars and Anteriors had a week linear relationship and greater dispersion. Difference between the actual and virtual occlusion revealed in the anterior portion, where overestimation was observed in the virtual model obtained from the scanning method. Nevertheless, molar and premolar areas showed relatively accurate occlusal contact area in the virtual model.
ERIC Educational Resources Information Center
Passonneau, Sarah; Coffey, Dan
2011-01-01
Electronic communication technologies continue to change the landscape of reference services. For many users, virtual communication is the preferred means of conversing. Synchronous virtual reference, similar to other synchronous means of communication, is an important method for reaching students and for providing teaching and learning…
Temporal Issues in the Design of Virtual Learning Environments.
ERIC Educational Resources Information Center
Bergeron, Bryan; Obeid, Jihad
1995-01-01
Describes design methods used to influence user perception of time in virtual learning environments. Examines the use of temporal cues in medical education and clinical competence testing. Finds that user perceptions of time affects user acceptance, ease of use, and the level of realism of a virtual learning environment. Contains 51 references.…
The Effect of Virtual versus Traditional Learning in Achieving Competency-Based Skills
ERIC Educational Resources Information Center
Mosalanejad, Leili; Shahsavari, Sakine; Sobhanian, Saeed; Dastpak, Mehdi
2012-01-01
Background: By rapid developing of the network technology, the internet-based learning methods are substituting the traditional classrooms making them expand to the virtual network learning environment. The purpose of this study was to determine the effectiveness of virtual systems on competency-based skills of first-year nursing students.…
ERIC Educational Resources Information Center
Passarelli, Brasilina
2008-01-01
Introduction: The ToLigado Project--Your School Interactive Newspaper is an interactive virtual learning environment conceived, developed, implemented and supported by researchers at the School of the Future Research Laboratory of the University of Sao Paulo, Brazil. Method: This virtual learning environment aims to motivate trans-disciplinary…
Virtual Chironomia: A Multimodal Study of Verbal and Non-Verbal Communication in a Virtual World
ERIC Educational Resources Information Center
Verhulsdonck, Gustav
2010-01-01
This mixed methods study examined the various aspects of multimodal use of non-verbal communication in virtual worlds during dyadic negotiations. Quantitative analysis uncovered a treatment effect whereby people with more rhetorical certainty used more neutral non-verbal communication; whereas people that were rhetorically less certain used more…
ERIC Educational Resources Information Center
Hartwick, Peggy
2018-01-01
This article investigates research approaches used in traditional classroom-based interaction studies for identifying a suitable research method for studies in three-dimensional virtual learning environments (3DVLEs). As opportunities for language learning and teaching in virtual worlds emerge, so too do new research questions. An understanding of…
Investigation of virtual reality concept based on system analysis of conceptual series
NASA Astrophysics Data System (ADS)
Romanova, A.; Shuklin, D. A.; Kalinkina, M. E.; Gotskaya, I. B.; Ponomarev, Y. E.
2018-05-01
The paper covers approaches to the definition of virtual reality from the point of view of the humanitarian sciences and technology. Each approach analyzing problems of concept perception of methods interpreted by representatives of philosophy, psychology and sociology is singled out. Terminological analysis of the basic concepts is carried out and their refinement is constructed in the process of comparing the concepts of virtuality and virtual reality. Using the analysis of selected sources, a number of singularity characteristics of the given concept are singled out and its definition is specified. Results consist in combining the interpretation of all approaches to determine the concept of virtual reality. Due to the use of a comprehensive approach to the definition of the investigated concept, which allows us to consider the object of research as a set of elements that are subject to study with the help of a corresponding set of methods, one can conclude that the concept under study is complex and multifaceted. The authors noted that virtual reality technologies have a flexible concept depending on the field of application.
GPURFSCREEN: a GPU based virtual screening tool using random forest classifier.
Jayaraj, P B; Ajay, Mathias K; Nufail, M; Gopakumar, G; Jaleel, U C A
2016-01-01
In-silico methods are an integral part of modern drug discovery paradigm. Virtual screening, an in-silico method, is used to refine data models and reduce the chemical space on which wet lab experiments need to be performed. Virtual screening of a ligand data model requires large scale computations, making it a highly time consuming task. This process can be speeded up by implementing parallelized algorithms on a Graphical Processing Unit (GPU). Random Forest is a robust classification algorithm that can be employed in the virtual screening. A ligand based virtual screening tool (GPURFSCREEN) that uses random forests on GPU systems has been proposed and evaluated in this paper. This tool produces optimized results at a lower execution time for large bioassay data sets. The quality of results produced by our tool on GPU is same as that on a regular serial environment. Considering the magnitude of data to be screened, the parallelized virtual screening has a significantly lower running time at high throughput. The proposed parallel tool outperforms its serial counterpart by successfully screening billions of molecules in training and prediction phases.
LivePhantom: Retrieving Virtual World Light Data to Real Environments.
Kolivand, Hoshang; Billinghurst, Mark; Sunar, Mohd Shahrizal
2016-01-01
To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera's position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems.
LivePhantom: Retrieving Virtual World Light Data to Real Environments
2016-01-01
To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera’s position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems. PMID:27930663
Virtual network embedding in cross-domain network based on topology and resource attributes
NASA Astrophysics Data System (ADS)
Zhu, Lei; Zhang, Zhizhong; Feng, Linlin; Liu, Lilan
2018-03-01
Aiming at the network architecture ossification and the diversity of access technologies issues, this paper researches the cross-domain virtual network embedding algorithm. By analysing the topological attribute from the local and global perspective of nodes in the virtual network and the physical network, combined with the local network resource property, we rank the embedding priority of the nodes with PCA and TOPSIS methods. Besides, the link load distribution is considered. Above all, We proposed an cross-domain virtual network embedding algorithm based on topology and resource attributes. The simulation results depicts that our algorithm increases the acceptance rate of multi-domain virtual network requests, compared with the existing virtual network embedding algorithm.
Research on virtual Guzheng based on Kinect
NASA Astrophysics Data System (ADS)
Li, Shuyao; Xu, Kuangyi; Zhang, Heng
2018-05-01
There are a lot of researches on virtual instruments, but there are few on classical Chinese instruments, and the techniques used are very limited. This paper uses Unity 3D and Kinect camera combined with virtual reality technology and gesture recognition method to design a virtual playing system of Guzheng, a traditional Chinese musical instrument, with demonstration function. In this paper, the real scene obtained by Kinect camera is fused with virtual Guzheng in Unity 3D. The depth data obtained by Kinect and the Suzuki85 algorithm are used to recognize the relative position of the user's right hand and the virtual Guzheng, and the hand gesture of the user is recognized by Kinect.
NASA Astrophysics Data System (ADS)
Bolodurina, I. P.; Parfenov, D. I.
2018-01-01
We have elaborated a neural network model of virtual network flow identification based on the statistical properties of flows circulating in the network of the data center and characteristics that describe the content of packets transmitted through network objects. This enabled us to establish the optimal set of attributes to identify virtual network functions. We have established an algorithm for optimizing the placement of virtual data functions using the data obtained in our research. Our approach uses a hybrid method of visualization using virtual machines and containers, which enables to reduce the infrastructure load and the response time in the network of the virtual data center. The algorithmic solution is based on neural networks, which enables to scale it at any number of the network function copies.
[Distribution of virtual water of crops in Beijing].
Wang, Hong-Rui; Dong, Yan-Yan; Wang, Jun-Hong; Wang, Yan; Han, Zhao-Xing
2007-11-01
Virtual water content of grains and vegetables in Beijing's districts is calculated and analyzed for many years by irrigating water quota method, which is compared with the distribution and exploitation of groundwater in Beijing. The results indicate the virtual water content of grains shows a downward trend in all the districts, but the grain production in Yanqing district brings great pressure to the local groundwater. Secondly, the virtual water content of vegetables shows an upward trend in Shunyi District, Daxing district and Pinggu District and is accounting for more and more gradually. Thirdly, the total virtual water volume of grains is decreasing, and the total virtual water volume of vegetables is increasing and the total virtual water volume of crops in Beijing is reducing in recent years, which corresponds with the structural adjustment of policies.
Image-based 3D reconstruction and virtual environmental walk-through
NASA Astrophysics Data System (ADS)
Sun, Jifeng; Fang, Lixiong; Luo, Ying
2001-09-01
We present a 3D reconstruction method, which combines geometry-based modeling, image-based modeling and rendering techniques. The first component is an interactive geometry modeling method which recovery of the basic geometry of the photographed scene. The second component is model-based stereo algorithm. We discus the image processing problems and algorithms of walking through in virtual space, then designs and implement a high performance multi-thread wandering algorithm. The applications range from architectural planning and archaeological reconstruction to virtual environments and cinematic special effects.
Vision-based overlay of a virtual object into real scene for designing room interior
NASA Astrophysics Data System (ADS)
Harasaki, Shunsuke; Saito, Hideo
2001-10-01
In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system, interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is developed as an example of an AR application of the proposed method. Using interior simulator, users can visually simulate the location of virtual furniture and articles in the living room so that they can easily design the living room interior without placing real furniture and articles, by viewing from many different locations and orientations in real-time. In our system, two base images of a real world space are captured from two different views for defining a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are registered interactively. After such coordinate determination, an image sequence of a real world space is captured by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects. Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a living room nearly at video rate (20 frames per second).
Lecueder, Silvia; Manyari, Dante E.
2000-01-01
A new form of scientific medical meeting has emerged in the last few years—the virtual congress. This article describes the general role of computer technologies and the Internet in the development of this new means of scientific communication, by reviewing the history of “cyber sessions” in medical education and the rationale, methods, and initial results of the First Virtual Congress of Cardiology. Instructions on how to participate in this virtual congress, either actively or as an observer, are included. Current advantages and disadvantages of virtual congresses, their impact on the scientific community at large, and future developments and possibilities in this area are discussed. PMID:10641960
Predicting Virtual World User Population Fluctuations with Deep Learning
Park, Nuri; Zhang, Qimeng; Kim, Jun Gi; Kang, Shin Jin; Kim, Chang Hun
2016-01-01
This paper proposes a system for predicting increases in virtual world user actions. The virtual world user population is a very important aspect of these worlds; however, methods for predicting fluctuations in these populations have not been well documented. Therefore, we attempt to predict changes in virtual world user populations with deep learning, using easily accessible online data, including formal datasets from Google Trends, Wikipedia, and online communities, as well as informal datasets collected from online forums. We use the proposed system to analyze the user population of EVE Online, one of the largest virtual worlds. PMID:27936009
Predicting Virtual World User Population Fluctuations with Deep Learning.
Kim, Young Bin; Park, Nuri; Zhang, Qimeng; Kim, Jun Gi; Kang, Shin Jin; Kim, Chang Hun
2016-01-01
This paper proposes a system for predicting increases in virtual world user actions. The virtual world user population is a very important aspect of these worlds; however, methods for predicting fluctuations in these populations have not been well documented. Therefore, we attempt to predict changes in virtual world user populations with deep learning, using easily accessible online data, including formal datasets from Google Trends, Wikipedia, and online communities, as well as informal datasets collected from online forums. We use the proposed system to analyze the user population of EVE Online, one of the largest virtual worlds.
Computational assessment of model-based wave separation using a database of virtual subjects.
Hametner, Bernhard; Schneider, Magdalena; Parragh, Stephanie; Wassertheurer, Siegfried
2017-11-07
The quantification of arterial wave reflection is an important area of interest in arterial pulse wave analysis. It can be achieved by wave separation analysis (WSA) if both the aortic pressure waveform and the aortic flow waveform are known. For better applicability, several mathematical models have been established to estimate aortic flow solely based on pressure waveforms. The aim of this study is to investigate and verify the model-based wave separation of the ARCSolver method on virtual pulse wave measurements. The study is based on an open access virtual database generated via simulations. Seven cardiac and arterial parameters were varied within physiological healthy ranges, leading to a total of 3325 virtual healthy subjects. For assessing the model-based ARCSolver method computationally, this method was used to perform WSA based on the aortic root pressure waveforms of the virtual patients. Asa reference, the values of WSA using both the pressure and flow waveforms provided by the virtual database were taken. The investigated parameters showed a good overall agreement between the model-based method and the reference. Mean differences and standard deviations were -0.05±0.02AU for characteristic impedance, -3.93±1.79mmHg for forward pressure amplitude, 1.37±1.56mmHg for backward pressure amplitude and 12.42±4.88% for reflection magnitude. The results indicate that the mathematical blood flow model of the ARCSolver method is a feasible surrogate for a measured flow waveform and provides a reasonable way to assess arterial wave reflection non-invasively in healthy subjects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Large bowel injuries during gynecological laparoscopy.
Ulker, Kahraman; Anuk, Turgut; Bozkurt, Murat; Karasu, Yetkin
2014-12-16
Laparoscopy is one of the most frequently preferred surgical options in gynecological surgery and has advantages over laparotomy, including smaller surgical scars, faster recovery, less pain and earlier return of bowel functions. Generally, it is also accepted as safe and effective and patients tolerate it well. However, it is still an intra-abdominal procedure and has the similar potential risks of laparotomy, including injury of a vital structure, bleeding and infection. Besides the well-known risks of open surgery, laparoscopy also has its own unique risks related to abdominal access methods, pneumoperitoneum created to provide adequate operative space and the energy modalities used during the procedures. Bowel, bladder or major blood vessel injuries and passage of gas into the intravascular space may result from laparoscopic surgical technique. In addition, the risks of aspiration, respiratory dysfunction and cardiovascular dysfunction increase during laparoscopy. Large bowel injuries during laparoscopy are serious complications because 50% of bowel injuries and 60% of visceral injuries are undiagnosed at the time of primary surgery. A missed or delayed diagnosis increases the risk of bowel perforation and consequently sepsis and even death. In this paper, we aim to focus on large bowel injuries that happen during gynecological laparoscopy and review their diagnostic and management options.
Single-Port Surgery: Laboratory Experience with the daVinci Single-Site Platform
Haber, Georges-Pascal; Kaouk, Jihad; Kroh, Matthew; Chalikonda, Sricharan; Falcone, Tommaso
2011-01-01
Background and Objectives: The purpose of this study was to evaluate the feasibility and validity of a dedicated da Vinci single-port platform in the porcine model in the performance of gynecologic surgery. Methods: This pilot study was conducted in 4 female pigs. All pigs had a general anesthetic and were placed in the supine and flank position. A 2-cm umbilical incision was made, through which a robotic single-port device was placed and pneumoperitoneum obtained. A data set was collected for each procedure and included port placement time, docking time, operative time, blood loss, and complications. Operative times were compared between cases and procedures by use of the Student t test. Results: A total of 28 surgical procedures (8 oophorectomies, 4 hysterectomies, 8 pelvic lymph node dissections, 4 aorto-caval nodal dissections, 2 bladder repairs, 1 uterine horn anastomosis, and 1 radical cystectomy) were performed. There was no statistically significant difference in operating times for symmetrical procedures among animals (P=0.3215). Conclusions: This animal study demonstrates that single-port robotic surgery using a dedicated single-site platform allows performing technically challenging procedures within acceptable operative times and without complications or insertion of additional trocars. PMID:21902962
Dean, Meara; Ramsay, Robert; Heriot, Alexander; Mackay, John; Hiscock, Richard
2016-01-01
Abstract Background Intraoperative hypothermia is linked to postoperative adverse events. The use of warmed, humidified CO2 to establish pneumoperitoneum during laparoscopy has been associated with reduced incidence of intraoperative hypothermia. However, the small number and variable quality of published studies have caused uncertainty about the potential benefit of this therapy. This meta‐analysis was conducted to specifically evaluate the effects of warmed, humidified CO2 during laparoscopy. Methods An electronic database search identified randomized controlled trials performed on adults who underwent laparoscopic abdominal surgery under general anesthesia with either warmed, humidified CO2 or cold, dry CO2. The main outcome measure of interest was change in intraoperative core body temperature. Results The database search identified 320 studies as potentially relevant, and of these, 13 met the inclusion criteria and were included in the analysis. During laparoscopic surgery, use of warmed, humidified CO2 is associated with a significant increase in intraoperative core temperature (mean temperature change, 0.3°C), when compared with cold, dry CO2 insufflation. Conclusion Warmed, humidified CO2 insufflation during laparoscopic abdominal surgery has been demonstrated to improve intraoperative maintenance of normothermia when compared with cold, dry CO2. PMID:27976517
A Five-Year Review of Perforated Peptic Ulcer Disease in Irrua, Nigeria
Uhunmwagho, O.; Eluehike, S. U.; Alufohai, E. F.
2017-01-01
Background Peptic ulcer perforation is a common cause of emergency admission and surgery. This is the first study that documents the presentation and outcome of management in Irrua, Nigeria. Patients and Method This is a prospective study of all patients operated on for perforated peptic ulcer between April 1, 2010, and March 31, 2015. A structured questionnaire containing patients' demographics, operation findings, and outcome was filled upon discharge or death. Results There were 104 patients. 81 males and 23 females (M : F = 3.5 : 1). The age range was between 17 years and 95 years. The mean age was 48.99 years ± SD 16.1 years. The ratio of gastric to duodenal perforation was 1.88 : 1. Perforation was the first sign of peptic ulcer disease in 62 (59.6%). Pneumoperitoneum was detectable with plain radiographs in 95 (91%) patients. 72 (69.2%) had Graham's Omentopexy. Death rate was 17.3%. Conclusion We note that gastric perforation is a far commoner disease in our environment. Perforation is often the first sign of peptic ulcer disease. We identify fasting amongst Christians as a risk factor for perforation. PMID:28656171
Virtual reality for intelligent and interactive operating, training, and visualization systems
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Schluse, Michael
2000-10-01
Virtual Reality Methods allow a new and intuitive way of communication between man and machine. The basic idea of Virtual Reality (VR) is the generation of artificial computer simulated worlds, which the user not only can look at but also can interact with actively using data glove and data helmet. The main emphasis for the use of such techniques at the IRF is the development of a new generation of operator interfaces for the control of robots and other automation components and for intelligent training systems for complex tasks. The basic idea of the methods developed at the IRF for the realization of Projective Virtual Reality is to let the user work in the virtual world as he would act in reality. The user actions are recognized by the Virtual reality System and by means of new and intelligent control software projected onto the automation components like robots which afterwards perform the necessary actions in reality to execute the users task. In this operation mode the user no longer has to be a robot expert to generate tasks for robots or to program them, because intelligent control software recognizes the users intention and generated automatically the commands for nearly every automation component. Now, Virtual Reality Methods are ideally suited for universal man-machine-interfaces for the control and supervision of a big class of automation components, interactive training and visualization systems. The Virtual Reality System of the IRF-COSIMIR/VR- forms the basis for different projects starting with the control of space automation systems in the projects CIROS, VITAL and GETEX, the realization of a comprehensive development tool for the International Space Station and last but not least with the realistic simulation fire extinguishing, forest machines and excavators which will be presented in the final paper in addition to the key ideas of this Virtual Reality System.
Teitelbaum, Ezra N; Boris, Lubomyr; Arafat, Fahd O; Nicodème, Frédéric; Lin, Zhiyue; Kahrilas, Peter J; Pandolfino, John E; Soper, Nathaniel J; Hungness, Eric S
2013-12-01
Peroral endoscopic myotomy (POEM) is a novel endoscopic surgical procedure for the treatment of achalasia. The comparative effects of POEM and laparoscopic Heller myotomy (LHM) on esophagogastric junction (EGJ) physiology are unknown. A novel measurement catheter, the functional lumen imaging probe (FLIP), allows for intraoperative evaluation of EGJ compliance by measuring luminal geometry and pressure during volume-controlled distensions. Distensibility index (DI) (defined as the minimum cross-sectional area at the EGJ divided by pressure) was measured with FLIP intraoperatively in patients undergoing LHM and POEM. Separate measurements were taken after each operative step. During LHM, measurements were performed after: (1) induction of anesthesia, (2) insufflation of pneumoperitoneum, (3) hiatal dissection and esophageal mobilization, (4) myotomy, (5) partial fundoplication, and (6) deinsufflation. During POEM, they were performed after: (1) induction of anesthesia, (2) submucosal tunnel creation, and (3) myotomy. Eleven LHM and 14 POEM patients underwent intraoperative FLIP. Baseline DI was similar between groups. LHM resulted in an overall increase in mean DI (pre 1.4 vs. post 7.6 mm(2)/mmHg, using a 40-ml distension volume; p < 0.001). Insufflation of pneumoperitoneum and hiatal dissection did not affect DI. Myotomy caused an increase in DI. Partial fundoplication (6 Toupet, 5 Dor) caused a decrease in DI, and deinsufflation caused an increase in DI. POEM also resulted in an overall increase in mean DI (pre 1.4 vs. post 7.9 mm(2)/mmHg; p < 0.001). Measured individually, both submucosal tunnel creation and myotomy caused increases in DI. When overall changes were compared, there were no differences in the amount of DI increase between LHM and POEM. POEM and LHM result in a similar improvement in EGJ distensibility intraoperatively. Further study is needed to correlate intraoperative FLIP measurements with postoperative symptomatic and physiologic outcomes.
Vlot, John; Wijnen, Rene; Stolker, Robert Jan; Bax, Klaas
2013-05-01
Several factors may affect volume and dimensions of the working space in laparoscopic surgery. The precise impact of these factors has not been well studied. In a porcine model, we used computed tomographic (CT) scanning for measuring working space volume and distances. In a first series of experiments, we studied the relationship between intra-abdominal pressure (IAP) and working space. Eleven 20 kg pigs were studied under standardized anesthesia and volume-controlled ventilation. Cardiorespiratory parameters were monitored continuously, and blood gas samples were taken at different IAP levels. Respiratory rate was increased when ETCO₂ exceeded 7 kPa. Breath-hold CT scans were made at IAP levels of 0, 5, 10, and 15 mmHg. Insufflator volumes were compared to CT-measured volumes. Maximum dimensions of pneumoperitoneum were measured on reconstructed CT images. Respiratory rate had to be increased in three animals. Mild hypercapnia and acidosis occurred at 15 mmHg IAP. Peak inspiratory pressure rose significantly at 10 and 15 mmHg. CT-measured volume increased relatively by 93 % from 5 to 10 mmHg IAP and by 19 % from 10 to 15 mmHg IAP. Comparing CT volumes to insufflator volumes gave a bias of 76 mL. The limits of agreement were -0.31 to +0.47, a range of 790 mL. The internal anteroposterior diameter increased by 18 % by increasing IAP from 5 to 10 mmHg and by 5 % by increasing IAP from 10 to 15 mmHg. At 15 mmHg, the total relative increase of the pubis-diaphragm distance was only 6 %. Abdominal width did not increase. CT allows for precise calculation of the actual CO₂ pneumoperitoneum volume, whereas the volume of CO₂ released by the insufflator does not. Increasing IAP up to 10 mmHg achieved most gain in volume and in internal anteroposterior diameter. At an IAP of 10 mmHg, higher peak inspiratory pressure was significantly elevated.
Hakeem, Abdul R; Birks, Theodore; Azeem, Qasim; Di Franco, Filippo; Gergely, Szabolcs; Harris, Adrian M
2016-06-01
There is conflicting evidence for the use of warmed, humidified carbon dioxide (CO2) for creating pneumoperitoneum during laparoscopic cholecystectomy. Few studies have reported less post-operative pain and analgesic requirement when warmed CO2 was used. This systematic review and meta-analysis aims to analyse the literature on the use of warmed CO2 in comparison to standard temperature CO2 during laparoscopic cholecystectomy. Systematic review and meta-analysis carried out in line with the PRISMA guidelines. Primary outcomes of interest were post-operative pain at 6 h, day 1 and day 2 following laparoscopic cholecystectomy. Secondary outcomes were analgesic usage and drop in intra-operative core body temperature. Standard Mean Difference (SMD) was calculated for continuous variables. Six randomised controlled trials (RCTs) met the inclusion criteria (n = 369). There was no significant difference in post-operative pain at 6 h [3 RCTs; SMD = -0.66 (-1.33, 0.02) (Z = 1.89) (P = 0.06)], day 1 [4 RCTs; SMD = -0.51 (-1.47, 0.44) (Z = 1.05) (P = 0.29)] and day 2 [2 RCTs; SMD = -0.96 (-2.30, 0.37) (Z = 1.42) (P = 0.16)] between the warmed CO2 and standard CO2 group. There was no difference in analgesic usage between the two groups, but pooled analysis was not possible. Two RCTs reported significant drop in intra-operative core body temperature, but there were no adverse events related to this. This review showed no difference in post-operative pain and analgesic requirements between the warmed and standard CO2 insufflation during laparoscopic cholecystectomy. Currently there is not enough high quality evidence to suggest routine usage of warmed CO2 for creating pneumoperitoneum during laparoscopic cholecystectomy. Copyright © 2015 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.
Yu, Jiang-Hong; Wu, Ji-Xiang; Yu, Lei; Li, Jian-Ye
2016-12-01
Giant hiatal hernia (GHH) comprises 5% of hiatal hernia and is associated with significant complications. The traditional operative procedure, no matter transthoracic or transabdomen repair of giant hiatal hernia, is characteristic of more invasion and more complications. Although laparoscopic repair as a minimally invasive surgery is accepted, a part of patients can not tolerate pneumoperitoneum because of combination with cardiopulmonary diseases or severe posterior mediastinal and neck emphesema during operation. The aim of this article was to analyze our experience in gasless laparoscopic repair with abdominal wall lifting to treat the giant hiatal hernia. We performed a retrospective review of patients undergoing gasless laparoscopic repair of GHH with abdominal wall lifting from 2012 to 2015 at our institution. The GHH was defined as greater than one-third of the stomach in the chest. Gasless laparoscopic repair of GHH with abdominal wall lifting was attempted in 27 patients. Mean age was 67 years. The results showed that there were no conversions to open surgery and no intraoperative deaths. The mean duration of operation was 100 min (range: 90-130 min). One-side pleura was injured in 4 cases (14.8%). The mean postoperative length of stay was 4 days (range: 3-7 days). Median follow- up was 26 months (range: 6-38 months). Transient dysphagia for solid food occurred in three patients (11.1%), and this symptom disappeared within three months. There was one patient with recurrent hiatal hernia who was reoperated on. Two patients still complained of heartburn three months after surgery. Neither reoperation nor endoscopic treatment due to signs of postoperative esophageal stenosis was required in any patient. Totally, satisfactory outcome was reported in 88.9% patients. It was concluded that the gasless laparoscopic approach with abdominal wall lifting to the repair of GHH is feasible, safe, and effective for the patients who cannot tolerate the pneumoperitoneum.
Novel regenerative therapy combined with transphrenic peritoneoscopy-assisted omentopexy.
Kainuma, Satoshi; Nakajima, Kiyokazu; Miyagawa, Shigeru; Fukushima, Satsuki; Saito, Atsuhiro; Harada, Akima; Hirota, Masashi; Miyazaki, Yasuhiro; Sawabata, Noriyoshi; Watabe, Tadashi; Watabe, Hiroshi; Toda, Koichi; Hatazawa, Jun; Okumura, Meinoshin; Sawa, Yoshiki
2018-06-01
We previously reported that cell sheet transplantation combined with an omentopexy (OP) procedure is more effective for repairing heart damage when compared with cell sheet transplantation alone. However, a simultaneous (conventional) laparotomy as part of the OP may adversely affect the general condition of critically ill heart failure patients who would otherwise benefit from cell sheet transplantation, which is a paradox to be reconciled before this treatment can be applied in a clinical setting. We devised a novel endoscopic approach termed 'transphrenic peritoneoscopy' (TPP) for minimal access to abdominal organs from the thoracic cavity. Herein, we evaluated the feasibility and safety of TPP with an OP in a porcine myocardial infarction model. Myocardial infarction was induced in 4 mini pigs by placing an ameroid constrictor around the left anterior descending artery. One month later, a left thoracotomy was performed in 2 randomly selected mini pigs, and a laparoscopic port was placed on the left diaphragm to gain access into the abdominal cavity. Using a low-pressure pneumoperitoneum, a flexible gastrointestinal endoscope was advanced, then the omentum was partially grasped with endoscopic forceps and brought back into the thoracic cavity via the diaphragm. Skeletal myoblast cell sheets were then implanted over the impaired myocardium, followed by placing the omentum over the sheets. TPP-assisted OP was accomplished in 2 post-myocardial infarction mini pigs with severe heart failure with an intra-abdominal pressure ≤8 mmHg within 30 min (22 and 27 min, respectively). Necropsy findings revealed a viable omentum flap and pedicle in both animals, with no evidence of procedure-related complications. Angiographic and histological analyses confirmed vessel communication between the omentum and the left ventricle. Our TPP approach was shown to be feasible and safe with a low-pressure pneumoperitoneum, while the omentum flap was durable. This successful combination of techniques may provide less-invasive endoscopic intervention and regenerative therapy.
Codd, Anthony M; Choudhury, Bipasha
2011-01-01
The use of cadavers to teach anatomy is well established, but limitations with this approach have led to the introduction of alternative teaching methods. One such method is the use of three-dimensional virtual reality computer models. An interactive, three-dimensional computer model of human forearm anterior compartment musculoskeletal anatomy was produced using the open source 3D imaging program "Blender." The aim was to evaluate the use of 3D virtual reality when compared with traditional anatomy teaching methods. Three groups were identified from the University of Manchester second year Human Anatomy Research Skills Module class: a "control" group (no prior knowledge of forearm anatomy), a "traditional methods" group (taught using dissection and textbooks), and a "model" group (taught solely using e-resource). The groups were assessed on anatomy of the forearm by a ten question practical examination. ANOVA analysis showed the model group mean test score to be significantly higher than the control group (mean 7.25 vs. 1.46, P < 0.001) and not significantly different to the traditional methods group (mean 6.87, P > 0.5). Feedback from all users of the e-resource was positive. Virtual reality anatomy learning can be used to compliment traditional teaching methods effectively. Copyright © 2011 American Association of Anatomists.
Virtual reality for emergency training
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altinkemer, K.
1995-12-31
Virtual reality is a sequence of scenes generated by a computer as a response to the five different senses. These senses are sight, sound, taste, touch, smell. Other senses that can be used in virtual reality include balance, pheromonal, and immunological senses. Many application areas include: leisure and entertainment, medicine, architecture, engineering, manufacturing, and training. Virtual reality is especially important when it is used for emergency training and management of natural disasters including earthquakes, floods, tornados and other situations which are hard to emulate. Classical training methods for these extraordinary environments lack the realistic surroundings that virtual reality can provide.more » In order for virtual reality to be a successful training tool the design needs to include certain aspects; such as how real virtual reality should be and how much fixed cost is entailed in setting up the virtual reality trainer. There are also pricing questions regarding the price per training session on virtual reality trainer, and the appropriate training time length(s).« less
NASA Astrophysics Data System (ADS)
Myrcha, Julian; Trzciński, Tomasz; Rokita, Przemysław
2017-08-01
Analyzing massive amounts of data gathered during many high energy physics experiments, including but not limited to the LHC ALICE detector experiment, requires efficient and intuitive methods of visualisation. One of the possible approaches to that problem is stereoscopic 3D data visualisation. In this paper, we propose several methods that provide high quality data visualisation and we explain how those methods can be applied in virtual reality headsets. The outcome of this work is easily applicable to many real-life applications needed in high energy physics and can be seen as a first step towards using fully immersive virtual reality technologies within the frames of the ALICE experiment.
Inquiry style interactive virtual experiments: a case on circular motion
NASA Astrophysics Data System (ADS)
Zhou, Shaona; Han, Jing; Pelz, Nathaniel; Wang, Xiaojun; Peng, Liangyu; Xiao, Hua; Bao, Lei
2011-11-01
Interest in computer-based learning, especially in the use of virtual reality simulations is increasing rapidly. While there are good reasons to believe that technologies have the potential to improve teaching and learning, how to utilize the technology effectively in teaching specific content difficulties is challenging. To help students develop robust understandings of correct physics concepts, we have developed interactive virtual experiment simulations that have the unique feature of enabling students to experience force and motion via an analogue joystick, allowing them to feel the applied force and simultaneously see its effects. The simulations provide students learning experiences that integrate both scientific representations and low-level sensory cues such as haptic cues under a single setting. In this paper, we introduce a virtual experiment module on circular motion. A controlled study has been conducted to evaluate the impact of using this virtual experiment on students' learning of force and motion in the context of circular motion. The results show that the interactive virtual experiment method is preferred by students and is more effective in helping students grasp the physics concepts than the traditional education method such as problem-solving practices. Our research suggests that well-developed interactive virtual experiments can be useful tools in teaching difficult concepts in science.
NASA Astrophysics Data System (ADS)
Herbuś, K.; Ociepka, P.
2016-08-01
The development of methods of computer aided design and engineering allows conducting virtual tests, among others concerning motion simulation of technical means. The paper presents a method of integrating an object in the form of a virtual model of a Stewart platform with an avatar of a vehicle moving in a virtual environment. The area of the problem includes issues related to the problem of fidelity of mapping the work of the analyzed technical mean. The main object of investigations is a 3D model of a Stewart platform, which is a subsystem of the simulator designated for driving learning for disabled persons. The analyzed model of the platform, prepared for motion simulation, was created in the “Motion Simulation” module of a CAD/CAE class system Siemens PLM NX. Whereas the virtual environment, in which the moves the avatar of the passenger car, was elaborated in a VR class system EON Studio. The element integrating both of the mentioned software environments is a developed application that reads information from the virtual reality (VR) concerning the current position of the car avatar. Then, basing on the accepted algorithm, it sends control signals to respective joints of the model of the Stewart platform (CAD).
Patient Satisfaction with Virtual Obstetric Care.
Pflugeisen, Bethann Mangel; Mou, Jin
2017-07-01
Introduction The importance of patient satisfaction in US healthcare is increasing, in tandem with the advent of new patient care modalities, including virtual care. The purpose of this study was to compare the satisfaction of obstetric patients who received one-third of their antenatal visits in videoconference ("Virtual-care") compared to those who received 12-14 face-to-face visits in-clinic with their physician/midwife ("Traditional-care"). Methods We developed a four-domain satisfaction questionnaire; Virtual-care patients were asked additional questions about technology. Using a modified Dillman method, satisfaction surveys were sent to Virtual-care (N = 378) and Traditional-care (N = 795) patients who received obstetric services at our institution between January 2013 and June 2015. Chi-squared tests of association, t-tests, logistic regression, and ANOVA models were used to evaluate differences in satisfaction and self-reported demographics between respondents. Results Overall satisfaction was significantly higher in the Virtual-care cohort (4.76 ± 0.44 vs. 4.47 ± 0.59; p < .001). Parity ≥ 1 was the sole significant demographic variable impacting Virtual-care selection (OR = 2.4, 95% CI: 1.5-3.8; p < .001). Satisfaction of Virtual-care respondents was not significantly impacted by the incorporation of videoconferencing, Doppler, and blood pressure monitoring technology into their care. The questionnaire demonstrated high internal consistency as measured by domain-based correlations and Cronbach's alpha. Discussion Respondents from both models were highly satisfied with care, but those who had selected the Virtual-care model reported significantly higher mean satisfaction scores. The Virtual-care model was selected by significantly more women who already have children than those experiencing pregnancy for the first time. This model of care may be a reasonable alternative to traditional care.
Role of post-mapping computed tomography in virtual-assisted lung mapping.
Sato, Masaaki; Nagayama, Kazuhiro; Kuwano, Hideki; Nitadori, Jun-Ichi; Anraku, Masaki; Nakajima, Jun
2017-02-01
Background Virtual-assisted lung mapping is a novel bronchoscopic preoperative lung marking technique in which virtual bronchoscopy is used to predict the locations of multiple dye markings. Post-mapping computed tomography is performed to confirm the locations of the actual markings. This study aimed to examine the accuracy of marking locations predicted by virtual bronchoscopy and elucidate the role of post-mapping computed tomography. Methods Automated and manual virtual bronchoscopy was used to predict marking locations. After bronchoscopic dye marking under local anesthesia, computed tomography was performed to confirm the actual marking locations before surgery. Discrepancies between marking locations predicted by the different methods and the actual markings were examined on computed tomography images. Forty-three markings in 11 patients were analyzed. Results The average difference between the predicted and actual marking locations was 30 mm. There was no significant difference between the latest version of the automated virtual bronchoscopy system (30.7 ± 17.2 mm) and manual virtual bronchoscopy (29.8 ± 19.1 mm). The difference was significantly greater in the upper vs. lower lobes (37.1 ± 20.1 vs. 23.0 ± 6.8 mm, for automated virtual bronchoscopy; p < 0.01). Despite this discrepancy, all targeted lesions were successfully resected using 3-dimensional image guidance based on post-mapping computed tomography reflecting the actual marking locations. Conclusions Markings predicted by virtual bronchoscopy were dislocated from the actual markings by an average of 3 cm. However, surgery was accurately performed using post-mapping computed tomography guidance, demonstrating the indispensable role of post-mapping computed tomography in virtual-assisted lung mapping.
Estimation of Image Sensor Fill Factor Using a Single Arbitrary Image
Wen, Wei; Khatibi, Siamak
2017-01-01
Achieving a high fill factor is a bottleneck problem for capturing high-quality images. There are hardware and software solutions to overcome this problem. In the solutions, the fill factor is known. However, this is an industrial secrecy by most image sensor manufacturers due to its direct effect on the assessment of the sensor quality. In this paper, we propose a method to estimate the fill factor of a camera sensor from an arbitrary single image. The virtual response function of the imaging process and sensor irradiance are estimated from the generation of virtual images. Then the global intensity values of the virtual images are obtained, which are the result of fusing the virtual images into a single, high dynamic range radiance map. A non-linear function is inferred from the original and global intensity values of the virtual images. The fill factor is estimated by the conditional minimum of the inferred function. The method is verified using images of two datasets. The results show that our method estimates the fill factor correctly with significant stability and accuracy from one single arbitrary image according to the low standard deviation of the estimated fill factors from each of images and for each camera. PMID:28335459
Ardalan, Ali; Balikuddembe, Joseph Kimuli; Ingrassia, Pier Luigi; Carenzo, Luca; Della Corte, Francesco; Akbarisari, Ali; Djalali, Ahmadreza
2015-07-13
Disaster education needs innovative educational methods to be more effective compared to traditional approaches. This can be done by using virtual simulation method. This article presents an experience about using virtual simulation methods to teach health professional on disaster medicine in Iran. The workshop on the "Application of New Technologies in Disaster Management Simulation" was held in Tehran in January 2015. It was co-organized by the Disaster and Emergency Health Academy of Tehran University of Medical Sciences and Emergency and the Research Center in Disaster Medicine and Computer Science applied to Medicine (CRIMEDIM), Università del Piemonte Orientale. Different simulators were used by the participants, who were from the health system and other relevant fields, both inside and outside Iran. As a result of the workshop, all the concerned stakeholders are called on to support this new initiative of incorporating virtual training and exercise simulation in the field of disaster medicine, so that its professionals are endowed with field-based and practical skills in Iran and elsewhere. Virtual simulation technology is recommended to be used in education of disaster management. This requires capacity building of instructors, and provision of technologies. International collaboration can facilitate this process.
ERIC Educational Resources Information Center
Demirer, Veysel; Erbas, Cagdas
2016-01-01
This study aims to review studies on virtual learning environments in Turkey through the content analysis method. 63 studies consisting of thesis, articles and proceedings published in Turkish and English between 1996-2014 years were analyzed. It was observed that "Second Life" was mostly preferred as the virtual learning environment.…
Code of Federal Regulations, 2010 CFR
2010-10-01
... elements include, but are not limited to: (1) Physical collocation and virtual collocation at the premises... seeking a particular collocation arrangement, either physical or virtual, is entitled to a presumption... incumbent LEC shall be required to provide virtual collocation, except at points where the incumbent LEC...
The Development of a Virtual Dinosaur Museum
ERIC Educational Resources Information Center
Tarng, Wernhuar; Liou, Hsin-Hun
2007-01-01
The objective of this article is to study the network and virtual reality technologies for developing a virtual dinosaur museum, which provides a Web-learning environment for students of all ages and the general public to know more about dinosaurs. We first investigate the method for building the 3D dynamic models of dinosaurs, and then describe…
ERIC Educational Resources Information Center
Tilley, C. M.; Bruce, C. S.; Hallam, G.; Hills, A. P.
2006-01-01
Introduction: This paper reports results of an investigation into the needs of persons with disabilities wanting to participate in the use of virtual communities. The aim was to investigate "how virtual communities for persons with long-term, severe physical disabilities can best be facilitated"? Method: A Grounded Theory approach was…
A novel scene management technology for complex virtual battlefield environment
NASA Astrophysics Data System (ADS)
Sheng, Changchong; Jiang, Libing; Tang, Bo; Tang, Xiaoan
2018-04-01
The efficient scene management of virtual environment is an important research content of computer real-time visualization, which has a decisive influence on the efficiency of drawing. However, Traditional scene management methods do not suitable for complex virtual battlefield environments, this paper combines the advantages of traditional scene graph technology and spatial data structure method, using the idea of management and rendering separation, a loose object-oriented scene graph structure is established to manage the entity model data in the scene, and the performance-based quad-tree structure is created for traversing and rendering. In addition, the collaborative update relationship between the above two structural trees is designed to achieve efficient scene management. Compared with the previous scene management method, this method is more efficient and meets the needs of real-time visualization.
Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M.
2016-01-01
Background Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. Aims To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Method Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. Results In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Conclusion Cognitive therapy using virtual reality could prove highly effective in treating delusions. PMID:27151071
Virtual reality and paranoid ideations in people with an 'at-risk mental state' for psychosis.
Valmaggia, Lucia R; Freeman, Daniel; Green, Catherine; Garety, Philippa; Swapp, David; Antley, Angus; Prescott, Corinne; Fowler, David; Kuipers, Elizabeth; Bebbington, Paul; Slater, Mel; Broome, Matthew; McGuire, Philip K
2007-12-01
Virtual reality provides a means of studying paranoid thinking in controlled laboratory conditions. However, this method has not been used with a clinical group. To establish the feasibility and safety of using virtual reality methodology in people with an at-risk mental state and to investigate the applicability of a cognitive model of paranoia to this group. Twenty-one participants with an at-risk mental state were assessed before and after entering a virtual reality environment depicting the inside of an underground train. Virtual reality did not raise levels of distress at the time of testing or cause adverse experiences over the subsequent week. Individuals attributed mental states to virtual reality characters including hostile intent. Persecutory ideation in virtual reality was predicted by higher levels of trait paranoia, anxiety, stress, immersion in virtual reality, perseveration and interpersonal sensitivity. Virtual reality is an acceptable experimental technique for use with individuals with at-risk mental states. Paranoia in virtual reality was understandable in terms of the cognitive model of persecutory delusions.
Measuring Reduction Methods for VR Sickness in Virtual Environments
ERIC Educational Resources Information Center
Magaki, Takurou; Vallance, Michael
2017-01-01
Recently, virtual reality (VR) technologies have developed remarkably. However, some users have negative symptoms during VR experiences or post-experiences. Consequently, alleviating VR sickness is a major challenge, but an effective reduction method has not yet been discovered. The purpose of this article is to compare and evaluate VR sickness in…
Cooperative Learning in Virtual Environments: The Jigsaw Method in Statistical Courses
ERIC Educational Resources Information Center
Vargas-Vargas, Manuel; Mondejar-Jimenez, Jose; Santamaria, Maria-Letica Meseguer; Alfaro-Navarro, Jose-Luis; Fernandez-Aviles, Gema
2011-01-01
This document sets out a novel teaching methodology as used in subjects with statistical content, traditionally regarded by students as "difficult". In a virtual learning environment, instructional techniques little used in mathematical courses were employed, such as the Jigsaw cooperative learning method, which had to be adapted to the…
General Anisotropy Identification of Paperboard with Virtual Fields Method
J.M. Considine; F. Pierron; K.T. Turner; D.W. Vahey
2014-01-01
This work extends previous efforts in plate bending of Virtual Fields Method (VFM) parameter identification to include a general 2-D anisotropicmaterial. Such an extension was needed for instances in which material principal directions are unknown or when specimen orientation is not aligned with material principal directions. A new fixture with a multiaxial force...
Mixed Methods for Mixed Reality: Understanding Users' Avatar Activities in Virtual Worlds
ERIC Educational Resources Information Center
Feldon, David F.; Kafai, Yasmin B.
2008-01-01
This paper examines the use of mixed methods for analyzing users' avatar-related activities in a virtual world. Server logs recorded keystroke-level activity for 595 participants over a six-month period in Whyville.net, an informal science website. Participants also completed surveys and participated in interviews regarding their experiences.…
Faculty Perceptions of Cooperative Learning and Traditional Discussion Strategies in Online Courses
ERIC Educational Resources Information Center
Kupczynski, Lori; Mundy, Marie-Anne; Maxwell, Gerri
2012-01-01
Due to the recent developments in technology, distance learning and education questions regarding the best teaching methods for the virtual classroom have emerged. Thus, it becomes increasingly necessary to examine how these methods translate into the virtual classroom. This qualitative case study examined how instructors of online courses…
An Effective Construction Method of Modular Manipulator 3D Virtual Simulation Platform
NASA Astrophysics Data System (ADS)
Li, Xianhua; Lv, Lei; Sheng, Rui; Sun, Qing; Zhang, Leigang
2018-06-01
This work discusses about a fast and efficient method of constructing an open 3D manipulator virtual simulation platform which make it easier for teachers and students to learn about positive and inverse kinematics of a robot manipulator. The method was carried out using MATLAB. In which, the Robotics Toolbox, MATLAB GUI and 3D animation with the help of modelling using SolidWorks, were fully applied to produce a good visualization of the system. The advantages of using quickly build is its powerful function of the input and output and its ability to simulate a 3D manipulator realistically. In this article, a Schunk six DOF modular manipulator was constructed by the author's research group to be used as example. The implementation steps of this method was detailed described, and thereafter, a high-level open and realistic visualization manipulator 3D virtual simulation platform was achieved. With the graphs obtained from simulation, the test results show that the manipulator 3D virtual simulation platform can be constructed quickly with good usability and high maneuverability, and it can meet the needs of scientific research and teaching.
NASA Astrophysics Data System (ADS)
Wang, H.; Jing, X. J.
2017-07-01
This paper presents a virtual beam based approach suitable for conducting diagnosis of multiple faults in complex structures with limited prior knowledge of the faults involved. The "virtual beam", a recently-proposed concept for fault detection in complex structures, is applied, which consists of a chain of sensors representing a vibration energy transmission path embedded in the complex structure. Statistical tests and adaptive threshold are particularly adopted for fault detection due to limited prior knowledge of normal operational conditions and fault conditions. To isolate the multiple faults within a specific structure or substructure of a more complex one, a 'biased running' strategy is developed and embedded within the bacterial-based optimization method to construct effective virtual beams and thus to improve the accuracy of localization. The proposed method is easy and efficient to implement for multiple fault localization with limited prior knowledge of normal conditions and faults. With extensive experimental results, it is validated that the proposed method can localize both single fault and multiple faults more effectively than the classical trust index subtract on negative add on positive (TI-SNAP) method.
Virtual Collaboration Readiness Measurement a Case Study in the Automobile Industry
NASA Astrophysics Data System (ADS)
Ziarati, Koorush; Khayami, Raouf; Parvinnia, Elham; Afroozi Milani, Ghazal
In end of the last century information and communication technology caused a veritable evolution in the world of business and commerce. Globalization has changed all the commerce equations and business plans. Old companies have to change their strategies if they want to survive after this technological revolution. A new form of collaboration between the distributed and networked organizations has emerged as the "Virtual Organization" paradigm. A company can not join a virtual organization before obtaining a virtual maturity. This maturity shows the readiness of the company to begin a virtual collaboration. In this paper, based on the coherent and formal definition of virtual organizations, the criteria for measuring the readiness of companies are proposed. Our criteria are confirmed, modified or combined by using the factor analysis method on a sufficient number of virtual companies in the automobile manufacturing industry.
A calibration method based on virtual large planar target for cameras with large FOV
NASA Astrophysics Data System (ADS)
Yu, Lei; Han, Yangyang; Nie, Hong; Ou, Qiaofeng; Xiong, Bangshu
2018-02-01
In order to obtain high precision in camera calibration, a target should be large enough to cover the whole field of view (FOV). For cameras with large FOV, using a small target will seriously reduce the precision of calibration. However, using a large target causes many difficulties in making, carrying and employing the large target. In order to solve this problem, a calibration method based on the virtual large planar target (VLPT), which is virtually constructed with multiple small targets (STs), is proposed for cameras with large FOV. In the VLPT-based calibration method, first, the positions and directions of STs are changed several times to obtain a number of calibration images. Secondly, the VLPT of each calibration image is created by finding the virtual point corresponding to the feature points of the STs. Finally, intrinsic and extrinsic parameters of the camera are calculated by using the VLPTs. Experiment results show that the proposed method can not only achieve the similar calibration precision as those employing a large target, but also have good stability in the whole measurement area. Thus, the difficulties to accurately calibrate cameras with large FOV can be perfectly tackled by the proposed method with good operability.
Hybrid rendering of the chest and virtual bronchoscopy [corrected].
Seemann, M D; Seemann, O; Luboldt, W; Gebicke, K; Prime, G; Claussen, C D
2000-10-30
Thin-section spiral computed tomography was used to acquire the volume data sets of the thorax. The tracheobronchial system and pathological changes of the chest were visualized using a color-coded surface rendering method. The structures of interest were then superimposed on a volume rendering of the other thoracic structures, thus producing a hybrid rendering. The hybrid rendering technique exploit the advantages of both rendering methods and enable virtual bronchoscopic examinations using different representation models. Virtual bronchoscopic examinations with a transparent color-coded shaded-surface model enables the simultaneous visualization of both the airways and the adjacent structures behind of the tracheobronchial wall and therefore, offers a practical alternative to fiberoptic bronchoscopy. Hybrid rendering and virtual endoscopy obviate the need for time consuming detailed analysis and presentation of axial source images.
Seemann, M D; Gebicke, K; Luboldt, W; Albes, J M; Vollmar, J; Schäfer, J F; Beinert, T; Englmeier, K H; Bitzer, M; Claussen, C D
2001-07-01
The aim of this study was to demonstrate the possibilities of a hybrid rendering method, the combination of a color-coded surface and volume rendering method, with the feasibility of performing surface-based virtual endoscopy with different representation models in the operative and interventional therapy control of the chest. In 6 consecutive patients with partial lung resection (n = 2) and lung transplantation (n = 4) a thin-section spiral computed tomography of the chest was performed. The tracheobronchial system and the introduced metallic stents were visualized using a color-coded surface rendering method. The remaining thoracic structures were visualized using a volume rendering method. For virtual bronchoscopy, the tracheobronchial system was visualized using a triangle surface model, a shaded-surface model and a transparent shaded-surface model. The hybrid 3D visualization uses the advantages of both the color-coded surface and volume rendering methods and facilitates a clear representation of the tracheobronchial system and the complex topographical relationship of morphological and pathological changes without loss of diagnostic information. Performing virtual bronchoscopy with the transparent shaded-surface model facilitates a reasonable to optimal, simultaneous visualization and assessment of the surface structure of the tracheobronchial system and the surrounding mediastinal structures and lesions. Hybrid rendering relieve the morphological assessment of anatomical and pathological changes without the need for time-consuming detailed analysis and presentation of source images. Performing virtual bronchoscopy with a transparent shaded-surface model offers a promising alternative to flexible fiberoptic bronchoscopy.
Liu, Chi; He, Gu; Jiang, Qinglin; Han, Bo; Peng, Cheng
2013-01-01
Methione tRNA synthetase (MetRS) is an essential enzyme involved in protein biosynthesis in all living organisms and is a potential antibacterial target. In the current study, the structure-based pharmacophore (SBP)-guided method has been suggested to generate a comprehensive pharmacophore of MetRS based on fourteen crystal structures of MetRS-inhibitor complexes. In this investigation, a hybrid protocol of a virtual screening method, comprised of pharmacophore model-based virtual screening (PBVS), rigid and flexible docking-based virtual screenings (DBVS), is used for retrieving new MetRS inhibitors from commercially available chemical databases. This hybrid virtual screening approach was then applied to screen the Specs (202,408 compounds) database, a structurally diverse chemical database. Fifteen hit compounds were selected from the final hits and shifted to experimental studies. These results may provide important information for further research of novel MetRS inhibitors as antibacterial agents. PMID:23839093
Ramasamy, Thilagavathi; Selvam, Chelliah
2015-10-15
Virtual screening has become an important tool in drug discovery process. Structure based and ligand based approaches are generally used in virtual screening process. To date, several benchmark sets for evaluating the performance of the virtual screening tool are available. In this study, our aim is to compare the performance of both structure based and ligand based virtual screening methods. Ten anti-cancer targets and their corresponding benchmark sets from 'Demanding Evaluation Kits for Objective In silico Screening' (DEKOIS) library were selected. X-ray crystal structures of protein-ligand complexes were selected based on their resolution. Openeye tools such as FRED, vROCS were used and the results were carefully analyzed. At EF1%, vROCS produced better results but at EF5% and EF10%, both FRED and ROCS produced almost similar results. It was noticed that the enrichment factor values were decreased while going from EF1% to EF5% and EF10% in many cases. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nugraha, Andri Dian; Adisatrio, Philipus Ronnie
2013-09-09
Seismic refraction survey is one of geophysical method useful for imaging earth interior, definitely for imaging near surface. One of the common problems in seismic refraction survey is weak amplitude due to attenuations at far offset. This phenomenon will make it difficult to pick first refraction arrival, hence make it challenging to produce the near surface image. Seismic interferometry is a new technique to manipulate seismic trace for obtaining Green's function from a pair of receiver. One of its uses is for improving first refraction arrival quality at far offset. This research shows that we could estimate physical properties suchmore » as seismic velocity and thickness from virtual refraction processing. Also, virtual refraction could enhance the far offset signal amplitude since there is stacking procedure involved in it. Our results show super - virtual refraction processing produces seismic image which has higher signal-to-noise ratio than its raw seismic image. In the end, the numbers of reliable first arrival picks are also increased.« less
Verification of Emmert's law in actual and virtual environments.
Nakamizo, Sachio; Imamura, Mariko
2004-11-01
We examined Emmert's law by measuring the perceived size of an afterimage and the perceived distance of the surface on which the afterimage was projected in actual and virtual environments. The actual environment consisted of a corridor with ample cues as to distance and depth. The virtual environment was made from the CAVE of a virtual reality system. The afterimage, disc-shaped and one degree in diameter, was produced by flashing with an electric photoflash. The observers were asked to estimate the perceived distance to surfaces located at various physical distances (1 to 24 m) by the magnitude estimation method and to estimate the perceived size of the afterimage projected on the surfaces by a matching method. The results show that the perceived size of the afterimage was directly proportional to the perceived distance in both environments; thus, Emmert's law holds in virtual as well as actual environments. We suggest that Emmert's law is a specific case of a functional principle of distance scaling by the visual system.
Seemann, M D; Claussen, C D
2001-06-01
A hybrid rendering method which combines a color-coded surface rendering method and a volume rendering method is described, which enables virtual endoscopic examinations using different representation models. 14 patients with malignancies of the lung and mediastinum (n=11) and lung transplantation (n=3) underwent thin-section spiral computed tomography. The tracheobronchial system and anatomical and pathological features of the chest were segmented using an interactive threshold interval volume-growing segmentation algorithm and visualized with a color-coded surface rendering method. The structures of interest were then superimposed on a volume rendering of the other thoracic structures. For the virtual endoscopy of the tracheobronchial system, a shaded-surface model without color coding, a transparent color-coded shaded-surface model and a triangle-surface model were tested and compared. The hybrid rendering technique exploit the advantages of both rendering methods, provides an excellent overview of the tracheobronchial system and allows a clear depiction of the complex spatial relationships of anatomical and pathological features. Virtual bronchoscopy with a transparent color-coded shaded-surface model allows both a simultaneous visualization of an airway, an airway lesion and mediastinal structures and a quantitative assessment of the spatial relationship between these structures, thus improving confidence in the diagnosis of endotracheal and endobronchial diseases. Hybrid rendering and virtual endoscopy obviate the need for time consuming detailed analysis and presentation of axial source images. Virtual bronchoscopy with a transparent color-coded shaded-surface model offers a practical alternative to fiberoptic bronchoscopy and is particularly promising for patients in whom fiberoptic bronchoscopy is not feasible, contraindicated or refused. Furthermore, it can be used as a complementary procedure to fiberoptic bronchoscopy in evaluating airway stenosis and guiding bronchoscopic biopsy, surgical intervention and palliative therapy and is likely to be increasingly accepted as a screening method for people with suspected endobronchial malignancy and as control examination in the aftercare of patients with malignant diseases.
Quality knowledge of science through virtual laboratory as an element of visualization
NASA Astrophysics Data System (ADS)
Rizman Herga, Natasa
Doctoral dissertation discusses the use of virtual laboratory for learning and teaching chemical concepts at science classes in the seventh grade of primary school. The dissertation has got a two-part structure. In the first theoretical part presents a general platform of teaching science in elementary school, teaching forms and methods of teaching and among modern approaches we highlight experimental work. Particular emphasis was placed on the use of new technologies in education and virtual laboratories. Scientific findings on the importance of visualization of science concepts and their triple nature of their understanding are presented. These findings represent a fundamental foundation of empirical research presented in the second part of the doctoral dissertation, whose basic purpose was to examine the effectiveness of using virtual laboratory for teaching and learning chemical contents at science from students' point of view on knowledge and interest. We designed a didactic experiment in which 225 pupils participated. The work was conducted in the experimental and control group. Prior to its execution, the existing school practice among science and chemistry teachers was analysed in terms of: (1) inclusion of experimental work as a fundamental method of active learning chemical contents, (2) the use of visualization methods in the classroom and (3) the use of a virtual laboratory. The main findings of the empirical research, carried out in the school year 2012/2013, in which 48 science and chemistry participated, are that teachers often include experimental work when teaching chemical contents. Interviewed science teachers use a variety of visualization methods when presenting science concepts, in particular computer animation and simulation. Using virtual laboratory as a new strategy for teaching and learning chemical contents is not common because teachers lack special-didactic skills, enabling them to use virtual reality technology. Based on the didactic experiment, carried out over a period of two school years (2012/2013 and 2013/2014) in ten primary schools, the effectiveness of teaching carried out with the support of a virtual laboratory was analyzed. The obtained empirical findings reveal that the use of virtual laboratory has great impact on the pupils' knowledge and interest. At the end of the experiment, pupils in the experimental group had an advantage according to knowledge of chemical contents in science. Also, the use of virtual laboratory had an impact on the sustainability of the acquired knowledge of science contents and pupils' interest at the end of the experiment, because the pupils in the experimental group had a higher interest for learning science contents. The didactic experiment determined, that the use of virtual laboratory enables quality learning and teaching chemical contents of science, because it allows: (1) experimental work as an active learning method, (2) the visualization of abstract concepts and phenomena, (3) dynamic sub micro presentations (4) integration of all three levels of the chemical concept as a whole and (5) positively impacts pupils' interest, knowledge and sustainability of the acquired knowledge.
Vision-based navigation in a dynamic environment for virtual human
NASA Astrophysics Data System (ADS)
Liu, Yan; Sun, Ji-Zhou; Zhang, Jia-Wan; Li, Ming-Chu
2004-06-01
Intelligent virtual human is widely required in computer games, ergonomics software, virtual environment and so on. We present a vision-based behavior modeling method to realize smart navigation in a dynamic environment. This behavior model can be divided into three modules: vision, global planning and local planning. Vision is the only channel for smart virtual actor to get information from the outside world. Then, the global and local planning module use A* and D* algorithm to find a way for virtual human in a dynamic environment. Finally, the experiments on our test platform (Smart Human System) verify the feasibility of this behavior model.
Tomography for two-dimensional gas temperature distribution based on TDLAS
NASA Astrophysics Data System (ADS)
Luo, Can; Wang, Yunchu; Xing, Fei
2018-03-01
Based on tunable diode laser absorption spectroscopy (TDLAS), the tomography is used to reconstruct the combustion gas temperature distribution. The effects of number of rays, number of grids, and spacing of rays on the temperature reconstruction results for parallel ray are researched. The reconstruction quality is proportional to the ray number. The quality tends to be smoother when the ray number exceeds a certain value. The best quality is achieved when η is between 0.5 and 1. A virtual ray method combined with the reconstruction algorithms is tested. It is found that virtual ray method is effective to improve the accuracy of reconstruction results, compared with the original method. The linear interpolation method and cubic spline interpolation method, are used to improve the calculation accuracy of virtual ray absorption value. According to the calculation results, cubic spline interpolation is better. Moreover, the temperature distribution of a TBCC combustion chamber is used to validate those conclusions.
[Arterial pressure curve and fluid status].
Pestel, G; Fukui, K
2009-04-01
Fluid optimization is a major contributor to improved outcome in patients. Unfortunately, anesthesiologists are often in doubt whether an additional fluid bolus will improve the hemodynamics of the patient or not as excess fluid may even jeopardize the condition. This article discusses physiological concepts of liberal versus restrictive fluid management followed by a discussion on the respective capabilities of various monitors to predict fluid responsiveness. The parameter difference in pulse pressure (dPP), derived from heart-lung interaction in mechanically ventilated patients is discussed in detail. The dPP cutoff value of 13% to predict fluid responsiveness is presented together with several assessment techniques of dPP. Finally, confounding variables on dPP measurements, such as ventilation parameters, pneumoperitoneum and use of norepinephrine are also mentioned.
Owning an overweight or underweight body: distinguishing the physical, experienced and virtual body.
Piryankova, Ivelina V; Wong, Hong Yu; Linkenauger, Sally A; Stinson, Catherine; Longo, Matthew R; Bülthoff, Heinrich H; Mohler, Betty J
2014-01-01
Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant's experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups.
Owning an Overweight or Underweight Body: Distinguishing the Physical, Experienced and Virtual Body
Piryankova, Ivelina V.; Wong, Hong Yu; Linkenauger, Sally A.; Stinson, Catherine; Longo, Matthew R.; Bülthoff, Heinrich H.; Mohler, Betty J.
2014-01-01
Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant's experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups. PMID:25083784
NASA Astrophysics Data System (ADS)
Nelson, H. Roice
1997-06-01
A virtual seminar (SM) is an economic and effective instructional tool for teaching students who are at a distance from their instructor. Like conventional class room teaching, a virtual seminar requires an instructor, a student, and a method of communication. Teleconferencing, video conferencing, intranets and the Internet give learners in a Virtual Seminar the ability to interact immediately with their mentors and receive real and relevant answers. This paper shows how industry and academia can benefit from using methods developed and experience gained in presenting the first virtual seminars to academic and petroleum industry participants in mid-1996. The information explosion in industry means that business or technical information is worthless until it is assimilated into a corporate knowledge management system. A search for specific information often turns into a filtering exercise or an attempt to find patterns and classify retrieved material. In the setting of an interactive corporate information system, virtual seminars meet the need for a productive new relationship between creative people and the flux of corporate knowledge. Experience shows that it is more efficient to circulate timesensitive and confidential information electronically through a virtual seminar. Automating the classification of information and removing that task from the usual work load creates an electronic corporate memory and enhances the value of the knowledge to both users and a corporation. Catalogued benchmarks, best-practice standards, and Knowledge Maps (SM) of experience serve as key aids to communicating knowledge through virtual seminars and converting that knowledge into a profit-making asset.
Phase unwrapping with a virtual Hartmann-Shack wavefront sensor.
Akondi, Vyas; Falldorf, Claas; Marcos, Susana; Vohnsen, Brian
2015-10-05
The use of a spatial light modulator for implementing a digital phase-shifting (PS) point diffraction interferometer (PDI) allows tunability in fringe spacing and in achieving PS without the need for mechanically moving parts. However, a small amount of detector or scatter noise could affect the accuracy of wavefront sensing. Here, a novel method of wavefront reconstruction incorporating a virtual Hartmann-Shack (HS) wavefront sensor is proposed that allows easy tuning of several wavefront sensor parameters. The proposed method was tested and compared with a Fourier unwrapping method implemented on a digital PS PDI. The rewrapping of the Fourier reconstructed wavefronts resulted in phase maps that matched well the original wrapped phase and the performance was found to be more stable and accurate than conventional methods. Through simulation studies, the superiority of the proposed virtual HS phase unwrapping method is shown in comparison with the Fourier unwrapping method in the presence of noise. Further, combining the two methods could improve accuracy when the signal-to-noise ratio is sufficiently high.
2017-08-08
Usability Studies In Virtual And Traditional Computer Aided Design Environments For Fault Identification Dr. Syed Adeel Ahmed, Xavier University...virtual environment with wand interfaces compared directly with a workstation non-stereoscopic traditional CAD interface with keyboard and mouse. In...the differences in interaction when compared with traditional human computer interfaces. This paper provides analysis via usability study methods
Human Machine Interfaces for Teleoperators and Virtual Environments
NASA Technical Reports Server (NTRS)
Durlach, Nathaniel I. (Compiler); Sheridan, Thomas B. (Compiler); Ellis, Stephen R. (Compiler)
1991-01-01
In Mar. 1990, a meeting organized around the general theme of teleoperation research into virtual environment display technology was conducted. This is a collection of conference-related fragments that will give a glimpse of the potential of the following fields and how they interplay: sensorimotor performance; human-machine interfaces; teleoperation; virtual environments; performance measurement and evaluation methods; and design principles and predictive models.
Self- directed learning barriers in a virtual environment: a qualitative study
KOHAN, NOUSHIN; SOLTANI ARABSHAHI, KAMRAN; MOJTAHEDZADEH, RITA; ABBASZADEH, ABBAS; RAKHSHANI, TAYEBEH; EMAMI, AMIRHOUSEIN
2017-01-01
Introduction: There is a growing trend in online education courses in higher education institutes. Previous studies have shown that high levels of self-direction are essential for successful online learning. The present study aims to investigate challenges of and barriers to self-directed virtual-learning among postgraduate students of medical sciences. Method: 23 postgraduate virtual students of medical sciences in Iran, collected through maximum variation purposive sampling and semi-structured interviews, served as the sample of this study. The collected data were analyzed using the inductive content analysis method. Results: Three themes and six sub-themes were identified as barriers to self-directed learning in virtual education, including cognitive barriers (information overload and lack of focus on learning or mind wondering), communication barriers (inadequate coping skills and inadequate writing skills) and educational environment barriers (heavy workload and role ambiguity). Conclusion: By the importance of self-direction in online education, the present study results can be used by virtual education planners in the review and design of courses, so as to adequately equip students, obviate barriers to self-directed virtual education, and ultimately train highly self-directed learners in online medical education. PMID:28761885
Embodying self-compassion within virtual reality and its effects on patients with depression
Falconer, Caroline J.; Rovira, Aitor; King, John A.; Gilbert, Paul; Antley, Angus; Fearon, Pasco; Ralph, Neil; Slater, Mel
2016-01-01
Background Self-criticism is a ubiquitous feature of psychopathology and can be combatted by increasing levels of self-compassion. However, some patients are resistant to self-compassion. Aims To investigate whether the effects of self-identification with virtual bodies within immersive virtual reality could be exploited to increase self-compassion in patients with depression. Method We developed an 8-minute scenario in which 15 patients practised delivering compassion in one virtual body and then experienced receiving it from themselves in another virtual body. Results In an open trial, three repetitions of this scenario led to significant reductions in depression severity and self-criticism, as well as to a significant increase in self-compassion, from baseline to 4-week follow-up. Four patients showed clinically significant improvement. Conclusions The results indicate that interventions using immersive virtual reality may have considerable clinical potential and that further development of these methods preparatory to a controlled trial is now warranted. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) licence. PMID:27703757
Ueguchi, Takashi; Ogihara, Ryota; Yamada, Sachiko
2018-03-21
To investigate the accuracy of dual-energy virtual monochromatic computed tomography (CT) numbers obtained by two typical hardware and software implementations: the single-source projection-based method and the dual-source image-based method. A phantom with different tissue equivalent inserts was scanned with both single-source and dual-source scanners. A fast kVp-switching feature was used on the single-source scanner, whereas a tin filter was used on the dual-source scanner. Virtual monochromatic CT images of the phantom at energy levels of 60, 100, and 140 keV were obtained by both projection-based (on the single-source scanner) and image-based (on the dual-source scanner) methods. The accuracy of virtual monochromatic CT numbers for all inserts was assessed by comparing measured values to their corresponding true values. Linear regression analysis was performed to evaluate the dependency of measured CT numbers on tissue attenuation, method, and their interaction. Root mean square values of systematic error over all inserts at 60, 100, and 140 keV were approximately 53, 21, and 29 Hounsfield unit (HU) with the single-source projection-based method, and 46, 7, and 6 HU with the dual-source image-based method, respectively. Linear regression analysis revealed that the interaction between the attenuation and the method had a statistically significant effect on the measured CT numbers at 100 and 140 keV. There were attenuation-, method-, and energy level-dependent systematic errors in the measured virtual monochromatic CT numbers. CT number reproducibility was comparable between the two scanners, and CT numbers had better accuracy with the dual-source image-based method at 100 and 140 keV. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
2014-01-01
Background The importance of using technologies such as e-learning in different disciplines is discussed in the literature. Researchers have measured the effectiveness of e-learning in a number of fields. Considering the lack of research on the effectiveness of online learning in dental education particularly in Iran, the advantages of these learning methods and the positive university atmosphere regarding the use of online learning. This study, therefore, aims to compare the effects of two methods of teaching (virtual versus traditional) on student learning. Methods This post-test only design study approached 40, fifth year dental students of Shiraz University of Medical Sciences. From this group, 35 students agreed to participate. These students were randomly allocated into two groups, experimental (virtual learning) and comparison (traditional learning). To ensure similarity between groups, we compared GPAs of all participants by the Mann–Whitney U test (P > 0.05). The experimental group received a virtual learning environment courseware package specifically designed for this study, whereas the control group received the same module structured in a traditional lecture form. The virtual learning environment consisted of online and offline materials. Two identical valid, reliable post-tests that consisted of 40 multiple choice questions (MCQs) and 4 essay questions were administered immediately (15 min) after the last session and two months later to assess for knowledge retention. Data were analyzed by SPSS version 20. Results A comparison of the mean knowledge score of both groups showed that virtual learning was more effective than traditional learning (effect size = 0.69). Conclusion The newly designed virtual learning package is feasible and will result in more effective learning in comparison with lecture-based training. However further studies are needed to generalize the findings of this study. PMID:24597923
ERIC Educational Resources Information Center
Ince, Elif; Kirbaslar, Fatma Gulay; Yolcu, Ergun; Aslan, Ayse Esra; Kayacan, Zeynep Cigdem; Alkan Olsson, Johanna; Akbasli, Ayse Ceylan; Aytekin, Mesut; Bauer, Thomas; Charalambis, Dimitris; Gunes, Zeliha Ozsoy; Kandemir, Ceyhan; Sari, Umit; Turkoglu, Suleyman; Yaman, Yavuz; Yolcu, Ozgu
2014-01-01
The purpose of this study is to develop a 3-dimensional interactive multi-user and multi-admin IUVIRLAB featuring active learning methods and techniques for university students and to introduce the Virtual Laboratory of Istanbul University and to show effects of IUVIRLAB on students' attitudes on communication skills and IUVIRLAB. Although there…
Efficacy of Virtual Patients in Medical Education: A Meta-Analysis of Randomized Studies
ERIC Educational Resources Information Center
Consorti, Fabrizio; Mancuso, Rosaria; Nocioni, Martina; Piccolo, Annalisa
2012-01-01
A meta-analysis was performed to assess the Effect Size (ES) from randomized studies comparing the effect of educational interventions in which Virtual patients (VPs) were used either as an alternative method or additive to usual curriculum versus interventions based on more traditional methods. Meta-analysis was designed, conducted and reported…
ERIC Educational Resources Information Center
Khoshsima, Hooshang; Sayadi, Fatemeh
2016-01-01
This study aimed at investigating the effect of virtual language learning method on Iranian intermediate EFL learners writing ability. The study was conducted with 20 English Translation students at Chabahar Maritime University who were assigned into two groups, control and experimental, after ensuring of their homogeneity by administering a TOEFL…
[Virtual reality in neurosurgery].
Tronnier, V M; Staubert, A; Bonsanto, M M; Wirtz, C R; Kunze, S
2000-03-01
Virtual reality enables users to immerse themselves in a virtual three-dimensional world and to interact in this world. The simulation is different from the kind in computer games, in which the viewer is active but acts in a nonrealistic world, or on the TV screen, where we are passively driven in an active world. In virtual reality elements look realistic, they change their characteristics and have almost real-world unpredictability. Virtual reality is not only implemented in gambling dens and the entertainment industry but also in manufacturing processes (cars, furniture etc.), military applications and medicine. Especially the last two areas are strongly correlated, because telemedicine or telesurgery was originated for military reasons to operate on war victims from a secure distance or to perform surgery on astronauts in an orbiting space station. In medicine and especially neurosurgery virtual-reality methods are used for education, surgical planning and simulation on a virtual patient.
European Pharmacy Students' Experience With Virtual Patient Technology
Madeira, Filipe
2012-01-01
Objective. To describe how virtual patients are being used to simulate real-life clinical scenarios in undergraduate pharmacy education in Europe. Methods. One hundred ninety-four participants at the 2011 Congress of the European Pharmaceutical Students Association (EPSA) completed an exploratory cross-sectional survey instrument. Results. Of the 46 universities and 23 countries represented at the EPSA Congress, only 12 students from 6 universities in 6 different countries reported having experience with virtual patient technology. The students were satisfied with the virtual patient technology and considered it more useful as a teaching and learning tool than an assessment tool. Respondents who had not used virtual patient technology expressed support regarding its potential benefits in pharmacy education. French and Dutch students were significantly less interested in virtual patient technology than were their counterparts from other European countries. Conclusion. The limited use of virtual patients in pharmacy education in Europe suggests the need for initiatives to increase the use of virtual patient technology and the benefits of computer-assisted learning in pharmacy education. PMID:22919082
Evaluation of virtual simulation in a master's-level nurse education certificate program.
Foronda, Cynthia; Lippincott, Christine; Gattamorta, Karina
2014-11-01
Master's-level, nurse education certificate students performed virtual clinical simulations as a portion of their clinical practicum. Virtual clinical simulation is an innovative pedagogy using avatars in Web-based platforms to provide simulated clinical experiences. The purpose of this mixed-methods study was to evaluate nurse educator students' experience with virtual simulation and the effect of virtual simulation on confidence in teaching ability. Aggregated quantitative results yielded no significant change in confidence in teaching ability. Individually, some students indicated change of either increased or decreased confidence, whereas others exhibited no change in confidence after engaging in virtual simulation. Qualitative findings revealed a process of precursors of anxiety and frustration with technical difficulties followed by outcomes of appreciation and learning. Instructor support was a mediating factor to decrease anxiety and technical difficulties. This study served as a starting point regarding the application of a virtual world to teach the art of instruction. As the movement toward online education continues, educators should further explore use of virtual simulation to prepare nurse educators.
Can virtual reality be used to conduct mass prophylaxis clinic training? A pilot program.
Yellowlees, Peter; Cook, James N; Marks, Shayna L; Wolfe, Daniel; Mangin, Elanor
2008-03-01
To create and evaluate a pilot bioterrorism defense training environment using virtual reality technology. The present pilot project used Second Life, an internet-based virtual world system, to construct a virtual reality environment to mimic an actual setting that might be used as a Strategic National Stockpile (SNS) distribution site for northern California in the event of a bioterrorist attack. Scripted characters were integrated into the system as mock patients to analyze various clinic workflow scenarios. Users tested the virtual environment over two sessions. Thirteen users who toured the environment were asked to complete an evaluation survey. Respondents reported that the virtual reality system was relevant to their practice and had potential as a method of bioterrorism defense training. Computer simulations of bioterrorism defense training scenarios are feasible with existing personal computer technology. The use of internet-connected virtual environments holds promise for bioterrorism defense training. Recommendations are made for public health agencies regarding the implementation and benefits of using virtual reality for mass prophylaxis clinic training.
NASA Astrophysics Data System (ADS)
Adlisia Puspa Harani, Sandhika
2018-05-01
The study is conducted by gathering data from interviews an in-home experiment, to examine the impacts of both virtual and physical SED toward user engagement. Business opportunity and benefits of virtual SED for stake holders are also discussed in this study. The research was conducted by interviewing method to respondens in Nottingham, UK. By comparing consumers’ energy saving behaviour from physical and virtual SED users, virtual SED shows similar level of effectiveness as physical SED, but there is no evidence that the virtual versions are better than the physical ones in terms of reducing energy consumption. Nevertheless, virtual SED can be more beneficial for consumers who can get easier access. They also help educating users to be more concern about energy issue. Energy suppliers get benefits by having virtual versions of SED, in which they can reduce production and distribution costs, as well as diminishing waste from physical SED.
Hierarchical virtual screening approaches in small molecule drug discovery.
Kumar, Ashutosh; Zhang, Kam Y J
2015-01-01
Virtual screening has played a significant role in the discovery of small molecule inhibitors of therapeutic targets in last two decades. Various ligand and structure-based virtual screening approaches are employed to identify small molecule ligands for proteins of interest. These approaches are often combined in either hierarchical or parallel manner to take advantage of the strength and avoid the limitations associated with individual methods. Hierarchical combination of ligand and structure-based virtual screening approaches has received noteworthy success in numerous drug discovery campaigns. In hierarchical virtual screening, several filters using ligand and structure-based approaches are sequentially applied to reduce a large screening library to a number small enough for experimental testing. In this review, we focus on different hierarchical virtual screening strategies and their application in the discovery of small molecule modulators of important drug targets. Several virtual screening studies are discussed to demonstrate the successful application of hierarchical virtual screening in small molecule drug discovery. Copyright © 2014 Elsevier Inc. All rights reserved.
Chase, J Geoffrey; Preiser, Jean-Charles; Dickson, Jennifer L; Pironet, Antoine; Chiew, Yeong Shiong; Pretty, Christopher G; Shaw, Geoffrey M; Benyo, Balazs; Moeller, Knut; Safaei, Soroush; Tawhai, Merryn; Hunter, Peter; Desaive, Thomas
2018-02-20
Critical care, like many healthcare areas, is under a dual assault from significantly increasing demographic and economic pressures. Intensive care unit (ICU) patients are highly variable in response to treatment, and increasingly aging populations mean ICUs are under increasing demand and their cohorts are increasingly ill. Equally, patient expectations are growing, while the economic ability to deliver care to all is declining. Better, more productive care is thus the big challenge. One means to that end is personalised care designed to manage the significant inter- and intra-patient variability that makes the ICU patient difficult. Thus, moving from current "one size fits all" protocolised care to adaptive, model-based "one method fits all" personalised care could deliver the required step change in the quality, and simultaneously the productivity and cost, of care. Computer models of human physiology are a unique tool to personalise care, as they can couple clinical data with mathematical methods to create subject-specific models and virtual patients to design new, personalised and more optimal protocols, as well as to guide care in real-time. They rely on identifying time varying patient-specific parameters in the model that capture inter- and intra-patient variability, the difference between patients and the evolution of patient condition. Properly validated, virtual patients represent the real patients, and can be used in silico to test different protocols or interventions, or in real-time to guide care. Hence, the underlying models and methods create the foundation for next generation care, as well as a tool for safely and rapidly developing personalised treatment protocols over large virtual cohorts using virtual trials. This review examines the models and methods used to create virtual patients. Specifically, it presents the models types and structures used and the data required. It then covers how to validate the resulting virtual patients and trials, and how these virtual trials can help design and optimise clinical trial. Links between these models and higher order, more complex physiome models are also discussed. In each section, it explores the progress reported up to date, especially on core ICU therapies in glycemic, circulatory and mechanical ventilation management, where high cost and frequency of occurrence provide a significant opportunity for model-based methods to have measurable clinical and economic impact. The outcomes are readily generalised to other areas of medical care.
Virtual collaboration in the online educational setting: a concept analysis.
Breen, Henny
2013-01-01
This study was designed to explore the concept of virtual collaboration within the context of an online learning environment in an academic setting. Rodgers' method of evolutionary concept analysis was used to provide a contextual view of the concept to identify attributes, antecedents, and consequences of virtual collaboration. Commonly used terms to describe virtual collaboration are collaborative and cooperative learning, group work, group interaction, group learning, and teamwork. A constructivist pedagogy, group-based process with a shared purpose, support, and web-based technology is required for virtual collaboration to take place. Consequences of virtual collaboration are higher order thinking and learning to work with others. A comprehensive definition of virtual collaboration is offered as an outcome of this analysis. Clarification of virtual collaboration prior to using it as a pedagogical tool in the online learning environment will enhance nursing education with the changes in nursing curriculum being implemented today. Further research is recommended to describe the developmental stages of the collaborative process among nursing students in online education and how virtual collaboration facilitates collaboration in practice. © 2013 Wiley Periodicals, Inc.
Virtual endoscopic imaging of the spine.
Kotani, Toshiaki; Nagaya, Shigeyuki; Sonoda, Masaru; Akazawa, Tsutomu; Lumawig, Jose Miguel T; Nemoto, Tetsuharu; Koshi, Takana; Kamiya, Koshiro; Hirosawa, Naoya; Minami, Shohei
2012-05-20
Prospective trial of virtual endoscopy in spinal surgery. To investigate the utility of virtual endoscopy of the spine in conjunction with spinal surgery. Several studies have described clinical applications of virtual endoscopy to visualize the inside of the bronchi, paranasal sinus, stomach, small intestine, pancreatic duct, and bile duct, but, to date, no study has described the use of virtual endoscopy in the spine. Virtual endoscopy is a realistic 3-dimensional intraluminal simulation of tubular structures that is generated by postprocessing of computed tomographic data sets. Five patients with spinal disease were selected: 2 patients with degenerative disease, 2 patients with spinal deformity, and 1 patient with spinal injury. Virtual endoscopy software allows an observer to explore the spinal canal with a mouse, using multislice computed tomographic data. Our study found that virtual endoscopy of the spine has advantages compared with standard imaging methods because surgeons can noninvasively explore the spinal canal in all directions. Virtual endoscopy of the spine may be useful to surgeons for diagnosis, preoperative planning, and postoperative assessment by obviating the need to mentally construct a 3-dimensional picture of the spinal canal from 2-dimensional computed tomographic scans.
Moazami, Fariborz; Bahrampour, Ehsan; Azar, Mohammad Reza; Jahedi, Farzad; Moattari, Marzieh
2014-03-05
The importance of using technologies such as e-learning in different disciplines is discussed in the literature. Researchers have measured the effectiveness of e-learning in a number of fields.Considering the lack of research on the effectiveness of online learning in dental education particularly in Iran, the advantages of these learning methods and the positive university atmosphere regarding the use of online learning. This study, therefore, aims to compare the effects of two methods of teaching (virtual versus traditional) on student learning. This post-test only design study approached 40, fifth year dental students of Shiraz University of Medical Sciences. From this group, 35 students agreed to participate. These students were randomly allocated into two groups, experimental (virtual learning) and comparison (traditional learning). To ensure similarity between groups, we compared GPAs of all participants by the Mann-Whitney U test (P > 0.05). The experimental group received a virtual learning environment courseware package specifically designed for this study, whereas the control group received the same module structured in a traditional lecture form. The virtual learning environment consisted of online and offline materials. Two identical valid, reliable post-tests that consisted of 40 multiple choice questions (MCQs) and 4 essay questions were administered immediately (15 min) after the last session and two months later to assess for knowledge retention. Data were analyzed by SPSS version 20. A comparison of the mean knowledge score of both groups showed that virtual learning was more effective than traditional learning (effect size = 0.69). The newly designed virtual learning package is feasible and will result in more effective learning in comparison with lecture-based training. However further studies are needed to generalize the findings of this study.
Ray Tracing with Virtual Objects.
ERIC Educational Resources Information Center
Leinoff, Stuart
1991-01-01
Introduces the method of ray tracing to analyze the refraction or reflection of real or virtual images from multiple optical devices. Discusses ray-tracing techniques for locating images using convex and concave lenses or mirrors. (MDH)
Demonstration of three gorges archaeological relics based on 3D-visualization technology
NASA Astrophysics Data System (ADS)
Xu, Wenli
2015-12-01
This paper mainly focuses on the digital demonstration of three gorges archeological relics to exhibit the achievements of the protective measures. A novel and effective method based on 3D-visualization technology, which includes large-scaled landscape reconstruction, virtual studio, and virtual panoramic roaming, etc, is proposed to create a digitized interactive demonstration system. The method contains three stages: pre-processing, 3D modeling and integration. Firstly, abundant archaeological information is classified according to its history and geographical information. Secondly, build up a 3D-model library with the technology of digital images processing and 3D modeling. Thirdly, use virtual reality technology to display the archaeological scenes and cultural relics vividly and realistically. The present work promotes the application of virtual reality to digital projects and enriches the content of digital archaeology.
Robust kernel collaborative representation for face recognition
NASA Astrophysics Data System (ADS)
Huang, Wei; Wang, Xiaohui; Ma, Yanbo; Jiang, Yuzheng; Zhu, Yinghui; Jin, Zhong
2015-05-01
One of the greatest challenges of representation-based face recognition is that the training samples are usually insufficient. In other words, the training set usually does not include enough samples to show varieties of high-dimensional face images caused by illuminations, facial expressions, and postures. When the test sample is significantly different from the training samples of the same subject, the recognition performance will be sharply reduced. We propose a robust kernel collaborative representation based on virtual samples for face recognition. We think that the virtual training set conveys some reasonable and possible variations of the original training samples. Hence, we design a new object function to more closely match the representation coefficients generated from the original and virtual training sets. In order to further improve the robustness, we implement the corresponding representation-based face recognition in kernel space. It is noteworthy that any kind of virtual training samples can be used in our method. We use noised face images to obtain virtual face samples. The noise can be approximately viewed as a reflection of the varieties of illuminations, facial expressions, and postures. Our work is a simple and feasible way to obtain virtual face samples to impose Gaussian noise (and other types of noise) specifically to the original training samples to obtain possible variations of the original samples. Experimental results on the FERET, Georgia Tech, and ORL face databases show that the proposed method is more robust than two state-of-the-art face recognition methods, such as CRC and Kernel CRC.
[Research on the virtual water composition and virtual water trade for agriculture in Beijing].
Wang, Hong-rui; Wang, Yan; Wang, Jun-hong; Dong, Yan-yan; Han, Zhao-xing
2007-12-01
Based on the irrigation norm of typical district and county, and revised by the isoline map of Chinese crops water demand, the change of crops program was analyzed as well as the agricultural water use and its GDP benefits. Then the virtual water was calculated for years. At last, the input-output method was used to calculate the trade of virtual water in Beijing. As the results, the virtual water for cereal crops has been decreasing in Beijing, from 1.832 x 10(9) m3 in 1990 to 4.283 x 10(8) m3 in 2004. Otherwise the virtual water for technical crops has been increasing, which is from 9.06 x 10(8) m3 in 1990 to 1.492 x 10(9) m3 in 2004. On the whole, the virtual water for crops has been decreasing in Beijing. From the angle of primary products Beijing is a virtual water importing area. Virtual water importing of annual average is 2.37 x 10(8) m3, which is about 5.93% of the total water of Beijing. Virtual water has been an important supplement of local real water of Beijing.
Fat ViP MRI: Virtual Phantom Magnetic Resonance Imaging of water-fat systems.
Salvati, Roberto; Hitti, Eric; Bellanger, Jean-Jacques; Saint-Jalmes, Hervé; Gambarota, Giulio
2016-06-01
Virtual Phantom Magnetic Resonance Imaging (ViP MRI) is a method to generate reference signals on MR images, using external radiofrequency (RF) signals. The aim of this study was to assess the feasibility of ViP MRI to generate complex-data images of phantoms mimicking water-fat systems. Various numerical phantoms with a given fat fraction, T2* and field map were designed. The k-space of numerical phantoms was converted into RF signals to generate virtual phantoms. MRI experiments were performed at 4.7T using a multi-gradient-echo sequence on virtual and physical phantoms. The data acquisition of virtual and physical phantoms was simultaneous. Decomposition of the water and fat signals was performed using a complex-based water-fat separation algorithm. Overall, a good agreement was observed between the fat fraction, T2* and phase map values of the virtual and numerical phantoms. In particular, fat fractions of 10.5±0.1 (vs 10% of the numerical phantom), 20.3±0.1 (vs 20%) and 30.4±0.1 (vs 30%) were obtained in virtual phantoms. The ViP MRI method allows for generating imaging phantoms that i) mimic water-fat systems and ii) can be analyzed with water-fat separation algorithms based on complex data. Copyright © 2016 Elsevier Inc. All rights reserved.
Kobayashi, Hajime; Ohkubo, Masaki; Narita, Akihiro; Marasinghe, Janaka C; Murao, Kohei; Matsumoto, Toru; Sone, Shusuke
2017-01-01
Objective: We propose the application of virtual nodules to evaluate the performance of computer-aided detection (CAD) of lung nodules in cancer screening using low-dose CT. Methods: The virtual nodules were generated based on the spatial resolution measured for a CT system used in an institution providing cancer screening and were fused into clinical lung images obtained at that institution, allowing site specificity. First, we validated virtual nodules as an alternative to artificial nodules inserted into a phantom. In addition, we compared the results of CAD analysis between the real nodules (n = 6) and the corresponding virtual nodules. Subsequently, virtual nodules of various sizes and contrasts between nodule density and background density (ΔCT) were inserted into clinical images (n = 10) and submitted for CAD analysis. Results: In the validation study, 46 of 48 virtual nodules had the same CAD results as artificial nodules (kappa coefficient = 0.913). Real nodules and the corresponding virtual nodules showed the same CAD results. The detection limits of the tested CAD system were determined in terms of size and density of peripheral lung nodules; we demonstrated that a nodule with a 5-mm diameter was detected when the nodule had a ΔCT > 220 HU. Conclusion: Virtual nodules are effective in evaluating CAD performance using site-specific scan/reconstruction conditions. Advances in knowledge: Virtual nodules can be an effective means of evaluating site-specific CAD performance. The methodology for guiding the detection limit for nodule size/density might be a useful evaluation strategy. PMID:27897029
NASA Technical Reports Server (NTRS)
Begault, Durand R.; Null, Cynthia H. (Technical Monitor)
1994-01-01
Speech intelligibility was evaluated using a virtual acoustic ("3-D audio") display using the method specified by ANSI. Ten subjects were evaluated with stimuli either unfiltered or low-pass filtered at 4 kHz. Results show virtual acoustic techniques are advantageous for both full-bandwidth (44.1 kHz srate) and low (8 kHz srate) bandwidth "telephone-grade" teleconferencing systems.
ERIC Educational Resources Information Center
D'Alba, Adriana
2012-01-01
The main purpose of this mixed methods research was to explore and analyze visitors' overall experience while they attended a museum exhibition, and examine how this experience was affected by previously using a virtual 3dimensional representation of the museum itself. The research measured knowledge acquisition in a virtual museum, and compared…
ERIC Educational Resources Information Center
Garrett Dikkers, Amy
2015-01-01
This mixed-method study reports perspectives of virtual school teachers on the impact of online teaching on their face-to-face practice. Data from a large-scale survey of teachers in the North Carolina Virtual Public School (n = 214), focus groups (n = 7), and interviews (n = 5) demonstrate multiple intersections between online and face-to-face…
Web-based interactive 3D visualization as a tool for improved anatomy learning.
Petersson, Helge; Sinkvist, David; Wang, Chunliang; Smedby, Orjan
2009-01-01
Despite a long tradition, conventional anatomy education based on dissection is declining. This study tested a new virtual reality (VR) technique for anatomy learning based on virtual contrast injection. The aim was to assess whether students value this new three-dimensional (3D) visualization method as a learning tool and what value they gain from its use in reaching their anatomical learning objectives. Several 3D vascular VR models were created using an interactive segmentation tool based on the "virtual contrast injection" method. This method allows users, with relative ease, to convert computer tomography or magnetic resonance images into vivid 3D VR movies using the OsiriX software equipped with the CMIV CTA plug-in. Once created using the segmentation tool, the image series were exported in Quick Time Virtual Reality (QTVR) format and integrated within a web framework of the Educational Virtual Anatomy (EVA) program. A total of nine QTVR movies were produced encompassing most of the major arteries of the body. These movies were supplemented with associated information, color keys, and notes. The results indicate that, in general, students' attitudes towards the EVA-program were positive when compared with anatomy textbooks, but results were not the same with dissections. Additionally, knowledge tests suggest a potentially beneficial effect on learning.
Locally linear regression for pose-invariant face recognition.
Chai, Xiujuan; Shan, Shiguang; Chen, Xilin; Gao, Wen
2007-07-01
The variation of facial appearance due to the viewpoint (/pose) degrades face recognition systems considerably, which is one of the bottlenecks in face recognition. One of the possible solutions is generating virtual frontal view from any given nonfrontal view to obtain a virtual gallery/probe face. Following this idea, this paper proposes a simple, but efficient, novel locally linear regression (LLR) method, which generates the virtual frontal view from a given nonfrontal face image. We first justify the basic assumption of the paper that there exists an approximate linear mapping between a nonfrontal face image and its frontal counterpart. Then, by formulating the estimation of the linear mapping as a prediction problem, we present the regression-based solution, i.e., globally linear regression. To improve the prediction accuracy in the case of coarse alignment, LLR is further proposed. In LLR, we first perform dense sampling in the nonfrontal face image to obtain many overlapped local patches. Then, the linear regression technique is applied to each small patch for the prediction of its virtual frontal patch. Through the combination of all these patches, the virtual frontal view is generated. The experimental results on the CMU PIE database show distinct advantage of the proposed method over Eigen light-field method.
Taglieri, Catherine A; Crosby, Steven J; Zimmerman, Kristin; Schneider, Tulip; Patel, Dhiren K
2017-06-01
Objective. To assess the effect of incorporating virtual patient activities in a pharmacy skills lab on student competence and confidence when conducting real-time comprehensive clinic visits with mock patients. Methods. Students were randomly assigned to a control or intervention group. The control group completed the clinic visit prior to completing virtual patient activities. The intervention group completed the virtual patient activities prior to the clinic visit. Student proficiency was evaluated in the mock lab. All students completed additional exercises with the virtual patient and were subsequently assessed. Student impressions were assessed via a pre- and post-experience survey. Results. Student performance conducting clinic visits was higher in the intervention group compared to the control group. Overall student performance continued to improve in the subsequent module. There was no change in student confidence from pre- to post-experience. Student rating of the ease of use and realistic simulation of the virtual patient increased; however, student rating of the helpfulness of the virtual patient decreased. Despite student rating of the helpfulness of the virtual patient program, student performance improved. Conclusion. Virtual patient activities enhanced student performance during mock clinic visits. Students felt the virtual patient realistically simulated a real patient. Virtual patients may provide additional learning opportunities for students.
Comparing maximum intercuspal contacts of virtual dental patients and mounted dental casts.
Delong, Ralph; Ko, Ching-Chang; Anderson, Gary C; Hodges, James S; Douglas, W H
2002-12-01
Quantitative measures of occlusal contacts are of paramount importance in the study of chewing dysfunction. A tool is needed to identify and quantify occlusal parameters without occlusal interference caused by the technique of analysis. This laboratory simulation study compared occlusal contacts constructed from 3-dimensional images of dental casts and interocclusal records with contacts found by use of conventional methods. Dental casts of 10 completely dentate adults were mounted in a semi-adjustable Denar articulator. Maximum intercuspal contacts were marked on the casts using red film. Intercuspal records made with an experimental vinyl polysiloxane impression material recorded maximum intercuspation. Three-dimensional virtual models of the casts and interocclusal records were made using custom software and an optical scanner. Contacts were calculated between virtual casts aligned manually (CM), aligned with interocclusal records scanned seated on the mandibular casts (C1) or scanned independently (C2), and directly from virtual interocclusal records (IR). Sensitivity and specificity calculations used the marked contacts as the standard. Contact parameters were compared between method pairs. Statistical comparisons used analysis of variance and the Tukey-Kramer post hoc test (P=<.05). Sensitivities (range 0.76-0.89) did not differ significantly among the 4 methods (P=.14); however, specificities (range 0.89-0.98) were significantly lower for IR (P=.0001). Contact parameters of methods CM, C1, and C2 differed significantly from those of method IR (P<.02). The ranking based on method pair comparisons was C2/C1 > CM/C1 = CM/C2 > C2/IR > CM/IR > C1/IR, where ">" means "closer than." Within the limits of this study, occlusal contacts calculated from aligned virtual casts accurately reproduce articulator contacts.
Integrated bronchoscopic video tracking and 3D CT registration for virtual bronchoscopy
NASA Astrophysics Data System (ADS)
Higgins, William E.; Helferty, James P.; Padfield, Dirk R.
2003-05-01
Lung cancer assessment involves an initial evaluation of 3D CT image data followed by interventional bronchoscopy. The physician, with only a mental image inferred from the 3D CT data, must guide the bronchoscope through the bronchial tree to sites of interest. Unfortunately, this procedure depends heavily on the physician's ability to mentally reconstruct the 3D position of the bronchoscope within the airways. In order to assist physicians in performing biopsies of interest, we have developed a method that integrates live bronchoscopic video tracking and 3D CT registration. The proposed method is integrated into a system we have been devising for virtual-bronchoscopic analysis and guidance for lung-cancer assessment. Previously, the system relied on a method that only used registration of the live bronchoscopic video to corresponding virtual endoluminal views derived from the 3D CT data. This procedure only performs the registration at manually selected sites; it does not draw upon the motion information inherent in the bronchoscopic video. Further, the registration procedure is slow. The proposed method has the following advantages: (1) it tracks the 3D motion of the bronchoscope using the bronchoscopic video; (2) it uses the tracked 3D trajectory of the bronchoscope to assist in locating sites in the 3D CT "virtual world" to perform the registration. In addition, the method incorporates techniques to: (1) detect and exclude corrupted video frames (to help make the video tracking more robust); (2) accelerate the computation of the many 3D virtual endoluminal renderings (thus, speeding up the registration process). We have tested the integrated tracking-registration method on a human airway-tree phantom and on real human data.
Virtual Heritage Tours: Developing Interactive Narrative-Based Environments for Historical Sites
NASA Astrophysics Data System (ADS)
Tuck, Deborah; Kuksa, Iryna
In the last decade there has been a noticeable growth in the use of virtual reality (VR) technologies for reconstructing cultural heritage sites. However, many of these virtual reconstructions evidence little of sites' social histories. Narrating the Past is a research project that aims to re-address this issue by investigating methods for embedding social histories within cultural heritage sites and by creating narrative based virtual environments (VEs) within them. The project aims to enhance the visitor's knowledge and understanding by developing a navigable 3D story space, in which participants are immersed. This has the potential to create a malleable virtual environment allowing the visitor to configure their own narrative paths.
Chalil Madathil, Kapil; Greenstein, Joel S
2017-11-01
Collaborative virtual reality-based systems have integrated high fidelity voice-based communication, immersive audio and screen-sharing tools into virtual environments. Such three-dimensional collaborative virtual environments can mirror the collaboration among usability test participants and facilitators when they are physically collocated, potentially enabling moderated usability tests to be conducted effectively when the facilitator and participant are located in different places. We developed a virtual collaborative three-dimensional remote moderated usability testing laboratory and employed it in a controlled study to evaluate the effectiveness of moderated usability testing in a collaborative virtual reality-based environment with two other moderated usability testing methods: the traditional lab approach and Cisco WebEx, a web-based conferencing and screen sharing approach. Using a mixed methods experimental design, 36 test participants and 12 test facilitators were asked to complete representative tasks on a simulated online shopping website. The dependent variables included the time taken to complete the tasks; the usability defects identified and their severity; and the subjective ratings on the workload index, presence and satisfaction questionnaires. Remote moderated usability testing methodology using a collaborative virtual reality system performed similarly in terms of the total number of defects identified, the number of high severity defects identified and the time taken to complete the tasks with the other two methodologies. The overall workload experienced by the test participants and facilitators was the least with the traditional lab condition. No significant differences were identified for the workload experienced with the virtual reality and the WebEx conditions. However, test participants experienced greater involvement and a more immersive experience in the virtual environment than in the WebEx condition. The ratings for the virtual environment condition were not significantly different from those for the traditional lab condition. The results of this study suggest that participants were productive and enjoyed the virtual lab condition, indicating the potential of a virtual world based approach as an alternative to conventional approaches for synchronous usability testing. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Perera, Indika
2010-01-01
ICT (information and communication technologies) add enormous approaches to utilize computing into users' daily lives. Every aspect of social needs has been touched by ICT, including learning. VL (virtual learning), with the life span of slightly above a decade, still looks for possible approaches to enhance its functions with significant pressure…
Real-time global illumination on mobile device
NASA Astrophysics Data System (ADS)
Ahn, Minsu; Ha, Inwoo; Lee, Hyong-Euk; Kim, James D. K.
2014-02-01
We propose a novel method for real-time global illumination on mobile devices. Our approach is based on instant radiosity, which uses a sequence of virtual point lights in order to represent the e ect of indirect illumination. Our rendering process consists of three stages. With the primary light, the rst stage generates a local illumination with the shadow map on GPU The second stage of the global illumination uses the re ective shadow map on GPU and generates the sequence of virtual point lights on CPU. Finally, we use the splatting method of Dachsbacher et al 1 and add the indirect illumination to the local illumination on GPU. With the limited computing resources in mobile devices, a small number of virtual point lights are allowed for real-time rendering. Our approach uses the multi-resolution sampling method with 3D geometry and attributes simultaneously and reduce the total number of virtual point lights. We also use the hybrid strategy, which collaboratively combines the CPUs and GPUs available in a mobile SoC due to the limited computing resources in mobile devices. Experimental results demonstrate the global illumination performance of the proposed method.
A Method for the Control of Multigrasp Myoelectric Prosthetic Hands
Dalley, Skyler Ashton; Varol, Huseyin Atakan; Goldfarb, Michael
2012-01-01
This paper presents the design and preliminary experimental validation of a multigrasp myoelectric controller. The described method enables direct and proportional control of multigrasp prosthetic hand motion among nine characteristic postures using two surface electromyography electrodes. To assess the efficacy of the control method, five nonamputee subjects utilized the multigrasp myoelectric controller to command the motion of a virtual prosthesis between random sequences of target hand postures in a series of experimental trials. For comparison, the same subjects also utilized a data glove, worn on their native hand, to command the motion of the virtual prosthesis for similar sequences of target postures during each trial. The time required to transition from posture to posture and the percentage of correctly completed transitions were evaluated to characterize the ability to control the virtual prosthesis using each method. The average overall transition times across all subjects were found to be 1.49 and 0.81 s for the multigrasp myoelectric controller and the native hand, respectively. The average transition completion rates for both were found to be the same (99.2%). Supplemental videos demonstrate the virtual prosthesis experiments, as well as a preliminary hardware implementation. PMID:22180515
Face recognition based on symmetrical virtual image and original training image
NASA Astrophysics Data System (ADS)
Ke, Jingcheng; Peng, Yali; Liu, Shigang; Li, Jun; Pei, Zhao
2018-02-01
In face representation-based classification methods, we are able to obtain high recognition rate if a face has enough available training samples. However, in practical applications, we only have limited training samples to use. In order to obtain enough training samples, many methods simultaneously use the original training samples and corresponding virtual samples to strengthen the ability of representing the test sample. One is directly using the original training samples and corresponding mirror samples to recognize the test sample. However, when the test sample is nearly symmetrical while the original training samples are not, the integration of the original training and mirror samples might not well represent the test samples. To tackle the above-mentioned problem, in this paper, we propose a novel method to obtain a kind of virtual samples which are generated by averaging the original training samples and corresponding mirror samples. Then, the original training samples and the virtual samples are integrated to recognize the test sample. Experimental results on five face databases show that the proposed method is able to partly overcome the challenges of the various poses, facial expressions and illuminations of original face image.
Modeling and visualizing borehole information on virtual globes using KML
NASA Astrophysics Data System (ADS)
Zhu, Liang-feng; Wang, Xi-feng; Zhang, Bing
2014-01-01
Advances in virtual globes and Keyhole Markup Language (KML) are providing the Earth scientists with the universal platforms to manage, visualize, integrate and disseminate geospatial information. In order to use KML to represent and disseminate subsurface geological information on virtual globes, we present an automatic method for modeling and visualizing a large volume of borehole information. Based on a standard form of borehole database, the method first creates a variety of borehole models with different levels of detail (LODs), including point placemarks representing drilling locations, scatter dots representing contacts and tube models representing strata. Subsequently, the level-of-detail based (LOD-based) multi-scale representation is constructed to enhance the efficiency of visualizing large numbers of boreholes. Finally, the modeling result can be loaded into a virtual globe application for 3D visualization. An implementation program, termed Borehole2KML, is developed to automatically convert borehole data into KML documents. A case study of using Borehole2KML to create borehole models in Shanghai shows that the modeling method is applicable to visualize, integrate and disseminate borehole information on the Internet. The method we have developed has potential use in societal service of geological information.
Neuro-parity pattern recognition system and method
Gross, Kenneth C.; Singer, Ralph M.; Van Alstine, Rollin G.; Wegerich, Stephan W.; Yue, Yong
2000-01-01
A method and system for monitoring a process and determining its condition. Initial data is sensed, a first set of virtual data is produced by applying a system state analyzation to the initial data, a second set of virtual data is produced by applying a neural network analyzation to the initial data and a parity space analyzation is applied to the first and second set of virtual data and also to the initial data to provide a parity space decision about the condition of the process. A logic test can further be applied to produce a further system decision about the state of the process.
Shaw, James; Jamieson, Trevor; Agarwal, Payal; Griffin, Bailey; Wong, Ivy; Bhatia, R Sacha
2017-01-01
Background The development of new virtual care technologies (including telehealth and telemedicine) is growing rapidly, leading to a number of challenges related to health policy and planning for health systems around the world. Methods We brought together a diverse group of health system stakeholders, including patient representatives, to engage in policy dialogue to set health system priorities for the application of virtual care in the primary care sector in the Province of Ontario, Canada. We applied a nominal group technique (NGT) process to determine key priorities, and synthesized these priorities with group discussion to develop recommendations for virtual care policy. Methods included a structured priority ranking process, open-ended note-taking, and thematic analysis to identify priorities. Results Recommendations were summarized under the following themes: (a) identify clear health system leadership to embed virtual care strategies into all aspects of primary and community care; (b) make patients the focal point of health system decision-making; (c) leverage incentives to achieve meaningful health system improvements; and (d) building virtual care into streamlined workflows. Two key implications of our policy dialogue are especially relevant for an international audience. First, shifting the dialogue away from technology toward more meaningful patient engagement will enable policy planning for applications of technology that better meet patients' needs. Second, a strong conceptual framework on guiding the meaningful use of technology in health care settings is essential for intelligent planning of virtual care policy. Conclusions Policy planning for virtual care needs to shift toward a stronger focus on patient engagement to understand patients' needs.
Measurement of bedload transport in sand-bed rivers: a look at two indirect sampling methods
Holmes, Robert R.; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.
2010-01-01
Sand-bed rivers present unique challenges to accurate measurement of the bedload transport rate using the traditional direct sampling methods of direct traps (for example the Helley-Smith bedload sampler). The two major issues are: 1) over sampling of sand transport caused by “mining” of sand due to the flow disturbance induced by the presence of the sampler and 2) clogging of the mesh bag with sand particles reducing the hydraulic efficiency of the sampler. Indirect measurement methods hold promise in that unlike direct methods, no transport-altering flow disturbance near the bed occurs. The bedform velocimetry method utilizes a measure of the bedform geometry and the speed of bedform translation to estimate the bedload transport through mass balance. The bedform velocimetry method is readily applied for the estimation of bedload transport in large sand-bed rivers so long as prominent bedforms are present and the streamflow discharge is steady for long enough to provide sufficient bedform translation between the successive bathymetric data sets. Bedform velocimetry in small sandbed rivers is often problematic due to rapid variation within the hydrograph. The bottom-track bias feature of the acoustic Doppler current profiler (ADCP) has been utilized to accurately estimate the virtual velocities of sand-bed rivers. Coupling measurement of the virtual velocity with an accurate determination of the active depth of the streambed sediment movement is another method to measure bedload transport, which will be termed the “virtual velocity” method. Much research remains to develop methods and determine accuracy of the virtual velocity method in small sand-bed rivers.
Research on three-dimensional visualization based on virtual reality and Internet
NASA Astrophysics Data System (ADS)
Wang, Zongmin; Yang, Haibo; Zhao, Hongling; Li, Jiren; Zhu, Qiang; Zhang, Xiaohong; Sun, Kai
2007-06-01
To disclose and display water information, a three-dimensional visualization system based on Virtual Reality (VR) and Internet is researched for demonstrating "digital water conservancy" application and also for routine management of reservoir. To explore and mine in-depth information, after completion of modeling high resolution DEM with reliable quality, topographical analysis, visibility analysis and reservoir volume computation are studied. And also, some parameters including slope, water level and NDVI are selected to classify easy-landslide zone in water-level-fluctuating zone of reservoir area. To establish virtual reservoir scene, two kinds of methods are used respectively for experiencing immersion, interaction and imagination (3I). First virtual scene contains more detailed textures to increase reality on graphical workstation with virtual reality engine Open Scene Graph (OSG). Second virtual scene is for internet users with fewer details for assuring fluent speed.
NASA Astrophysics Data System (ADS)
Orngreen, Rikke; Clemmensen, Torkil; Pejtersen, Annelise Mark
The boundaries and work processes for how virtual teams interact are undergoing changes, from a tool and stand-alone application orientation, to the use of multiple generic platforms chosen and redesigned to the specific context. These are often at the same time designed both by professional software developers and the individual members of the virtual teams, rather than determined on a single organizational level. There may be no impact of the technology per se on individuals, groups or organizations, as the technology for virtual teams rather enhance situation ambiguity and disrupt existing task-artifact cycles. This ambiguous situation calls for new methods for empirical work analysis and interaction design that can help us understand how organizations, teams and individuals learn to organize, design and work in virtual teams in various networked contexts.
Automated recycling of chemistry for virtual screening and library design.
Vainio, Mikko J; Kogej, Thierry; Raubacher, Florian
2012-07-23
An early stage drug discovery project needs to identify a number of chemically diverse and attractive compounds. These hit compounds are typically found through high-throughput screening campaigns. The diversity of the chemical libraries used in screening is therefore important. In this study, we describe a virtual high-throughput screening system called Virtual Library. The system automatically "recycles" validated synthetic protocols and available starting materials to generate a large number of virtual compound libraries, and allows for fast searches in the generated libraries using a 2D fingerprint based screening method. Virtual Library links the returned virtual hit compounds back to experimental protocols to quickly assess the synthetic accessibility of the hits. The system can be used as an idea generator for library design to enrich the screening collection and to explore the structure-activity landscape around a specific active compound.
NASA Technical Reports Server (NTRS)
Bonk, Ted (Inventor); Hall, Brendan (Inventor); Smithgall, William Todd (Inventor); Varadarajan, Srivatsan (Inventor); DeLay, Benjamin F. (Inventor)
2017-01-01
Systems and methods for network bandwidth, buffers and timing management using hybrid scheduling of traffic with different priorities and guarantees are provided. In certain embodiments, a method of managing network scheduling and configuration comprises, for each transmitting end station, reserving one exclusive buffer for each virtual link to be transmitted from the transmitting end station; for each receiving end station, reserving exclusive buffers for each virtual link to be received at the receiving end station; and for each switch, reserving a exclusive buffer for each virtual link to be received at an input port of the switch. The method further comprises determining if each respective transmitting end station, receiving end station, and switch has sufficient capability to support the reserved buffers; and reporting buffer infeasibility if each respective transmitting end station, receiving end station, and switch does not have sufficient capability to support the reserved buffers.
NASA Astrophysics Data System (ADS)
Drwal, Malgorzata N.; Agama, Keli; Pommier, Yves; Griffith, Renate
2013-12-01
Purely structure-based pharmacophores (SBPs) are an alternative method to ligand-based approaches and have the advantage of describing the entire interaction capability of a binding pocket. Here, we present the development of SBPs for topoisomerase I, an anticancer target with an unusual ligand binding pocket consisting of protein and DNA atoms. Different approaches to cluster and select pharmacophore features are investigated, including hierarchical clustering and energy calculations. In addition, the performance of SBPs is evaluated retrospectively and compared to the performance of ligand- and complex-based pharmacophores. SBPs emerge as a valid method in virtual screening and a complementary approach to ligand-focussed methods. The study further reveals that the choice of pharmacophore feature clustering and selection methods has a large impact on the virtual screening hit lists. A prospective application of the SBPs in virtual screening reveals that they can be used successfully to identify novel topoisomerase inhibitors.
An imperialist competitive algorithm for virtual machine placement in cloud computing
NASA Astrophysics Data System (ADS)
Jamali, Shahram; Malektaji, Sepideh; Analoui, Morteza
2017-05-01
Cloud computing, the recently emerged revolution in IT industry, is empowered by virtualisation technology. In this paradigm, the user's applications run over some virtual machines (VMs). The process of selecting proper physical machines to host these virtual machines is called virtual machine placement. It plays an important role on resource utilisation and power efficiency of cloud computing environment. In this paper, we propose an imperialist competitive-based algorithm for the virtual machine placement problem called ICA-VMPLC. The base optimisation algorithm is chosen to be ICA because of its ease in neighbourhood movement, good convergence rate and suitable terminology. The proposed algorithm investigates search space in a unique manner to efficiently obtain optimal placement solution that simultaneously minimises power consumption and total resource wastage. Its final solution performance is compared with several existing methods such as grouping genetic and ant colony-based algorithms as well as bin packing heuristic. The simulation results show that the proposed method is superior to other tested algorithms in terms of power consumption, resource wastage, CPU usage efficiency and memory usage efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cangiani, Andrea; Gyrya, Vitaliy; Manzini, Gianmarco
In this paper, we present the nonconforming virtual element method (VEM) for the numerical approximation of velocity and pressure in the steady Stokes problem. The pressure is approximated using discontinuous piecewise polynomials, while each component of the velocity is approximated using the nonconforming virtual element space. On each mesh element the local virtual space contains the space of polynomials of up to a given degree, plus suitable nonpolynomial functions. The virtual element functions are implicitly defined as the solution of local Poisson problems with polynomial Neumann boundary conditions. As typical in VEM approaches, the explicit evaluation of the non-polynomial functionsmore » is not required. This approach makes it possible to construct nonconforming (virtual) spaces for any polynomial degree regardless of the parity, for two- and three-dimensional problems, and for meshes with very general polygonal and polyhedral elements. We show that the nonconforming VEM is inf-sup stable and establish optimal a priori error estimates for the velocity and pressure approximations. Finally, numerical examples confirm the convergence analysis and the effectiveness of the method in providing high-order accurate approximations.« less
NASA Astrophysics Data System (ADS)
Prusten, Mark J.; McIntyre, Michelle; Landis, Marvin
2006-02-01
A 3D workflow pipeline is presented for High Dynamic Range (HDR) image capture of projected scenes or objects for presentation in CAVE virtual environments. The methods of HDR digital photography of environments vs. objects are reviewed. Samples of both types of virtual authoring being the actual CAVE environment and a sculpture are shown. A series of software tools are incorporated into a pipeline called CAVEPIPE, allowing for high-resolution objects and scenes to be composited together in natural illumination environments [1] and presented in our CAVE virtual reality environment. We also present a way to enhance the user interface for CAVE environments. The traditional methods of controlling the navigation through virtual environments include: glove, HUD's and 3D mouse devices. By integrating a wireless network that includes both WiFi (IEEE 802.11b/g) and Bluetooth (IEEE 802.15.1) protocols the non-graphical input control device can be eliminated. Therefore wireless devices can be added that would include: PDA's, Smart Phones, TabletPC's, Portable Gaming consoles, and PocketPC's.
Real-time, rapidly updating severe weather products for virtual globes
NASA Astrophysics Data System (ADS)
Smith, Travis M.; Lakshmanan, Valliappa
2011-01-01
It is critical that weather forecasters are able to put severe weather information from a variety of observational and modeling platforms into a geographic context so that warning information can be effectively conveyed to the public, emergency managers, and disaster response teams. The availability of standards for the specification and transport of virtual globe data products has made it possible to generate spatially precise, geo-referenced images and to distribute these centrally created products via a web server to a wide audience. In this paper, we describe the data and methods for enabling severe weather threat analysis information inside a KML framework. The method of creating severe weather diagnosis products that are generated and translating them to KML and image files is described. We illustrate some of the practical applications of these data when they are integrated into a virtual globe display. The availability of standards for interoperable virtual globe clients has not completely alleviated the need for custom solutions. We conclude by pointing out several of the limitations of the general-purpose virtual globe clients currently available.
Virtual Alternative to the Oral Examination for Emergency Medicine Residents
McGrath, Jillian; Kman, Nicholas; Danforth, Douglas; Bahner, David P.; Khandelwal, Sorabh; Martin, Daniel R.; Nagel, Rollin; Verbeck, Nicole; Way, David P.; Nelson, Richard
2015-01-01
Introduction The oral examination is a traditional method for assessing the developing physician’s medical knowledge, clinical reasoning and interpersonal skills. The typical oral examination is a face-to-face encounter in which examiners quiz examinees on how they would confront a patient case. The advantage of the oral exam is that the examiner can adapt questions to the examinee’s response. The disadvantage is the potential for examiner bias and intimidation. Computer-based virtual simulation technology has been widely used in the gaming industry. We wondered whether virtual simulation could serve as a practical format for delivery of an oral examination. For this project, we compared the attitudes and performance of emergency medicine (EM) residents who took our traditional oral exam to those who took the exam using virtual simulation. Methods EM residents (n=35) were randomized to a traditional oral examination format (n=17) or a simulated virtual examination format (n=18) conducted within an immersive learning environment, Second Life (SL). Proctors scored residents using the American Board of Emergency Medicine oral examination assessment instruments, which included execution of critical actions and ratings on eight competency categories (1–8 scale). Study participants were also surveyed about their oral examination experience. Results We observed no differences between virtual and traditional groups on critical action scores or scores on eight competency categories. However, we noted moderate effect sizes favoring the Second Life group on the clinical competence score. Examinees from both groups thought that their assessment was realistic, fair, objective, and efficient. Examinees from the virtual group reported a preference for the virtual format and felt that the format was less intimidating. Conclusion The virtual simulated oral examination was shown to be a feasible alternative to the traditional oral examination format for assessing EM residents. Virtual environments for oral examinations should continue to be explored, particularly since they offer an inexpensive, more comfortable, yet equally rigorous alternative. PMID:25834684
Virtual Diving in the Underwater Archaeological Site of Cala Minnola
NASA Astrophysics Data System (ADS)
Bruno, F.; Lagudi, A.; Barbieri, L.; Muzzupappa, M.; Mangeruga, M.; Pupo, F.; Cozza, M.; Cozza, A.; Ritacco, G.; Peluso, R.; Tusa, S.
2017-02-01
The paper presents the application of the technologies and methods defined in the VISAS project for the case study of the underwater archaeological site of Cala Minnola located in the island of Levanzo, in the archipelago of the Aegadian Islands (Sicily, Italy). The VISAS project (http://visas-project.eu) aims to improve the responsible and sustainable exploitation of the Underwater Cultural Heritage by means the development of new methods and technologies including an innovative virtual tour of the submerged archaeological sites. In particular, the paper describes the 3D reconstruction of the underwater archaeological site of Cala Minnola and focus on the development of the virtual scene for its visualization and exploitation. The virtual dive of the underwater archaeological site allows users to live a recreational and educational experience by receiving historical, archaeological and biological information about the submerged exhibits, the flora and fauna of the place.
A study of navigation in virtual space
NASA Technical Reports Server (NTRS)
Darken, Rudy; Sibert, John L.; Shumaker, Randy
1994-01-01
In the physical world, man has developed efficient methods for navigation and orientation. These methods are dependent on the high-fidelity stimuli presented by the environment. When placed in a virtual world which cannot offer stimuli of the same quality due to computing constraints and immature technology, tasks requiring the maintenance of position and orientation knowledge become laborious. In this paper, we present a representative set of techniques based on principles of navigation derived from real world analogs including human and avian navigation behavior and cartography. A preliminary classification of virtual worlds is presented based on the size of the world, the density of objects in the world, and the level of activity taking place in the world. We also summarize an informal study we performed to determine how the tools influenced the subjects' navigation strategies and behavior. We conclude that principles extracted from real world navigation aids such as maps can be seen to apply in virtual environments.
Assessment of wheelchair driving performance in a virtual reality-based simulator
Mahajan, Harshal P.; Dicianno, Brad E.; Cooper, Rory A.; Ding, Dan
2013-01-01
Objective To develop a virtual reality (VR)-based simulator that can assist clinicians in performing standardized wheelchair driving assessments. Design A completely within-subjects repeated measures design. Methods Participants drove their wheelchairs along a virtual driving circuit modeled after the Power Mobility Road Test (PMRT) and in a hallway with decreasing width. The virtual simulator was displayed on computer screen and VR screens and participants interacted with it using a set of instrumented rollers and a wheelchair joystick. Driving performances of participants were estimated and compared using quantitative metrics from the simulator. Qualitative ratings from two experienced clinicians were used to estimate intra- and inter-rater reliability. Results Ten regular wheelchair users (seven men, three women; mean age ± SD, 39.5 ± 15.39 years) participated. The virtual PMRT scores from the two clinicians show high inter-rater reliability (78–90%) and high intra-rater reliability (71–90%) for all test conditions. More research is required to explore user preferences and effectiveness of the two control methods (rollers and mathematical model) and the display screens. Conclusions The virtual driving simulator seems to be a promising tool for wheelchair driving assessment that clinicians can use to supplement their real-world evaluations. PMID:23820148
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Hu, Liyazhou; Wang, Wei; Li, Yajie; Zhang, Jie
2017-01-01
With the continuous opening of resource acquisition and application, there are a large variety of network hardware appliances deployed as the communication infrastructure. To lunch a new network application always implies to replace the obsolete devices and needs the related space and power to accommodate it, which will increase the energy and capital investment. Network function virtualization1 (NFV) aims to address these problems by consolidating many network equipment onto industry standard elements such as servers, switches and storage. Many types of IT resources have been deployed to run Virtual Network Functions (vNFs), such as virtual switches and routers. Then how to deploy NFV in optical transport networks is a of great importance problem. This paper focuses on this problem, and gives an implementation architecture of NFV-enabled optical transport networks based on Software Defined Optical Networking (SDON) with the procedure of vNFs call and return. Especially, an implementation solution of NFV-enabled optical transport node is designed, and a parallel processing method for NFV-enabled OTN nodes is proposed. To verify the performance of NFV-enabled SDON, the protocol interaction procedures of control function virtualization and node function virtualization are demonstrated on SDON testbed. Finally, the benefits and challenges of the parallel processing method for NFV-enabled OTN nodes are simulated and analyzed.
Efficient Checkpointing of Virtual Machines using Virtual Machine Introspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aderholdt, Ferrol; Han, Fang; Scott, Stephen L
Cloud Computing environments rely heavily on system-level virtualization. This is due to the inherent benefits of virtualization including fault tolerance through checkpoint/restart (C/R) mechanisms. Because clouds are the abstraction of large data centers and large data centers have a higher potential for failure, it is imperative that a C/R mechanism for such an environment provide minimal latency as well as a small checkpoint file size. Recently, there has been much research into C/R with respect to virtual machines (VM) providing excellent solutions to reduce either checkpoint latency or checkpoint file size. However, these approaches do not provide both. This papermore » presents a method of checkpointing VMs by utilizing virtual machine introspection (VMI). Through the usage of VMI, we are able to determine which pages of memory within the guest are used or free and are better able to reduce the amount of pages written to disk during a checkpoint. We have validated this work by using various benchmarks to measure the latency along with the checkpoint size. With respect to checkpoint file size, our approach results in file sizes within 24% or less of the actual used memory within the guest. Additionally, the checkpoint latency of our approach is up to 52% faster than KVM s default method.« less
Tsirlin, Inna; Dupierrix, Eve; Chokron, Sylvie; Coquillart, Sabine; Ohlmann, Theophile
2009-04-01
Unilateral spatial neglect is a disabling condition frequently occurring after stroke. People with neglect suffer from various spatial deficits in several modalities, which in many cases impair everyday functioning. A successful treatment is yet to be found. Several techniques have been proposed in the last decades, but only a few showed long-lasting effects and none could completely rehabilitate the condition. Diagnostic methods of neglect could be improved as well. The disorder is normally diagnosed with pen-and-paper methods, which generally do not assess patients in everyday tasks and do not address some forms of the disorder. Recently, promising new methods based on virtual reality have emerged. Virtual reality technologies hold great opportunities for the development of effective assessment and treatment techniques for neglect because they provide rich, multimodal, and highly controllable environments. In order to stimulate advancements in this domain, we present a review and an analysis of the current work. We describe past and ongoing research of virtual reality applications for unilateral neglect and discuss the existing problems and new directions for development.
Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee
2015-07-01
[Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.
[Application of virtual reality in surgical treatment of complex head and neck carcinoma].
Zhou, Y Q; Li, C; Shui, C Y; Cai, Y C; Sun, R H; Zeng, D F; Wang, W; Li, Q L; Huang, L; Tu, J; Jiang, J
2018-01-07
Objective: To investigate the application of virtual reality technology in the preoperative evaluation of complex head and neck carcinoma and he value of virtual reality technology in surgical treatment of head and neck carcinoma. Methods: The image data of eight patients with complex head and neck carcinoma treated from December 2016 to May 2017 was acquired. The data were put into virtual reality system to built the three-dimensional anatomical model of carcinoma and to created the surgical scene. The process of surgery was stimulated by recognizing the relationship between tumor and surrounding important structures. Finally all patients were treated with surgery. And two typical cases were reported. Results: With the help of virtual reality, surgeons could adequately assess the condition of carcinoma and the security of operation and ensured the safety of operations. Conclusions: Virtual reality can provide the surgeons with the sensory experience in virtual surgery scenes and achieve the man-computer cooperation and stereoscopic assessment, which will ensure the safety of surgery. Virtual reality has a huge impact on guiding the traditional surgical procedure of head and neck carcinoma.
The Role of Virtual Rehabilitation in Total Knee and Hip Arthroplasty.
Chughtai, Morad; Newman, Jared M; Sultan, Assem A; Khlopas, Anton; Navarro, Sergio M; Bhave, Anil; Mont, Michael A
2018-06-01
Virtual rehabilitation therapies have been developed to focus on improving care for those suffering from various musculoskeletal disorders. There has been evidence suggesting that real-time virtual rehabilitation may be equivalent to conventional methods for adherence, improvement of function, and relief of pain seen in these conditions. This study specifically evaluated the use of a virtual physical therapy/rehabilitation platform for use during the postoperative period after total hip arthroplasty (THA) and total knee arthroplasty (TKA). The use of this technology has the potential benefits that allow for patient adherence, cost reductions, and coordination of care.
Wei, Gaofeng; Tang, Gang; Fu, Zengliang; Sun, Qiuming; Tian, Feng
2010-10-01
The China Mechanical Virtual Human (CMVH) is a human musculoskeletal biomechanical simulation platform based on China Visible Human slice images; it has great realistic application significance. In this paper is introduced the construction method of CMVH 3D models. Then a simulation system solution based on Creator/Vega is put forward for the complex and gigantic data characteristics of the 3D models. At last, combined with MFC technology, the CMVH simulation system is developed and a running simulation scene is given. This paper provides a new way for the virtual reality application of CMVH.
NASA Astrophysics Data System (ADS)
Cawood, A.; Bond, C. E.; Howell, J.; Totake, Y.
2016-12-01
Virtual outcrops derived from techniques such as LiDAR and SfM (digital photogrammetry) provide a viable and potentially powerful addition or alternative to traditional field studies, given the large amounts of raw data that can be acquired rapidly and safely. The use of these digital representations of outcrops as a source of geological data has increased greatly in the past decade, and as such, the accuracy and precision of these new acquisition methods applied to geological problems has been addressed by a number of authors. Little work has been done, however, on the integration of virtual outcrops into fundamental structural geology workflows and to systematically studying the fidelity of the data derived from them. Here, we use the classic Stackpole Quay syncline outcrop in South Wales to quantitatively evaluate the accuracy of three virtual outcrop models (LiDAR, aerial and terrestrial digital photogrammetry) compared to data collected directly in the field. Using these structural data, we have built 2D and 3D geological models which make predictions of fold geometries. We examine the fidelity of virtual outcrops generated using different acquisition techniques to outcrop geology and how these affect model building and final outcomes. Finally, we utilize newly acquired data to deterministically test model validity. Based upon these results, we find that acquisition of digital imagery by UAS (Unmanned Autonomous Vehicle) yields highly accurate virtual outcrops when compared to terrestrial methods, allowing the construction of robust data-driven predictive models. Careful planning, survey design and choice of suitable acquisition method are, however, of key importance for best results.
ERIC Educational Resources Information Center
Kurtulus, Aytac
2013-01-01
The aim of this study was to investigate the effects of web-based interactive virtual tours on the development of prospective mathematics teachers' spatial skills. The study was designed based on experimental method. The "one-group pre-test post-test design" of this method was taken as the research model. The study was conducted with 3rd year…
ERIC Educational Resources Information Center
Mroz, Aurore
2015-01-01
This article presents a process-oriented mixed-method study, focusing on the emergence of second language (L2) critical thinking (CT) skills in the collaborative discourse produced by a focal group of five college-level students of French working in a virtual language learning environment (the VLLE Cinet Second Life). Levels of CT ability were…
Influence of System Operation Method on CO2 Emissions of PV/Solar Heat/Cogeneration System
NASA Astrophysics Data System (ADS)
Oke, Shinichiro; Kemmoku, Yoshishige; Takikawa, Hirofumi; Sakakibara, Tateki
A PV/solar heat/cogeneration system is assumed to be installed in a hotel. The system is operated with various operation methods: CO2 minimum operation, fees minimum operation, seasonal operation, daytime operation and heat demand following operation. Of these five operations, the former two are virtual operations that are operated with the dynamic programming method, and the latter three are actual operations. Computer simulation is implemented using hourly data of solar radiation intensity, atmospheric temperature, electric, cooling, heating and hot water supply demands for one year, and the life-cycle CO2 emission and the total cost are calculated for every operations. The calculation results show that the virtual two and the actual three operations reduce the life-cycle CO2 emission by 21% and 13% compared with the conventional system, respectively. In regard to both the CO2 emission and the cost, there is no significant difference between the virtual two operation methods or among actual three operation methods.
Virtual substrate method for nanomaterials characterization
Da, Bo; Liu, Jiangwei; Yamamoto, Mahito; Ueda, Yoshihiro; Watanabe, Kazuyuki; Cuong, Nguyen Thanh; Li, Songlin; Tsukagoshi, Kazuhito; Yoshikawa, Hideki; Iwai, Hideo; Tanuma, Shigeo; Guo, Hongxuan; Gao, Zhaoshun; Sun, Xia; Ding, Zejun
2017-01-01
Characterization techniques available for bulk or thin-film solid-state materials have been extended to substrate-supported nanomaterials, but generally non-quantitatively. This is because the nanomaterial signals are inevitably buried in the signals from the underlying substrate in common reflection-configuration techniques. Here, we propose a virtual substrate method, inspired by the four-point probe technique for resistance measurement as well as the chop-nod method in infrared astronomy, to characterize nanomaterials without the influence of underlying substrate signals from four interrelated measurements. By implementing this method in secondary electron (SE) microscopy, a SE spectrum (white electrons) associated with the reflectivity difference between two different substrates can be tracked and controlled. The SE spectrum is used to quantitatively investigate the covering nanomaterial based on subtle changes in the transmission of the nanomaterial with high efficiency rivalling that of conventional core-level electrons. The virtual substrate method represents a benchmark for surface analysis to provide ‘free-standing' information about supported nanomaterials. PMID:28548114
A cross docking pipeline for improving pose prediction and virtual screening performance
NASA Astrophysics Data System (ADS)
Kumar, Ashutosh; Zhang, Kam Y. J.
2018-01-01
Pose prediction and virtual screening performance of a molecular docking method depend on the choice of protein structures used for docking. Multiple structures for a target protein are often used to take into account the receptor flexibility and problems associated with a single receptor structure. However, the use of multiple receptor structures is computationally expensive when docking a large library of small molecules. Here, we propose a new cross-docking pipeline suitable to dock a large library of molecules while taking advantage of multiple target protein structures. Our method involves the selection of a suitable receptor for each ligand in a screening library utilizing ligand 3D shape similarity with crystallographic ligands. We have prospectively evaluated our method in D3R Grand Challenge 2 and demonstrated that our cross-docking pipeline can achieve similar or better performance than using either single or multiple-receptor structures. Moreover, our method displayed not only decent pose prediction performance but also better virtual screening performance over several other methods.
Virtual Morality: Transitioning from Moral Judgment to Moral Action?
Francis, Kathryn B.; Howard, Charles; Howard, Ian S.; Gummerum, Michaela; Ganis, Giorgio; Anderson, Grace; Terbeck, Sylvia
2016-01-01
The nature of moral action versus moral judgment has been extensively debated in numerous disciplines. We introduce Virtual Reality (VR) moral paradigms examining the action individuals take in a high emotionally arousing, direct action-focused, moral scenario. In two studies involving qualitatively different populations, we found a greater endorsement of utilitarian responses–killing one in order to save many others–when action was required in moral virtual dilemmas compared to their judgment counterparts. Heart rate in virtual moral dilemmas was significantly increased when compared to both judgment counterparts and control virtual tasks. Our research suggests that moral action may be viewed as an independent construct to moral judgment, with VR methods delivering new prospects for investigating and assessing moral behaviour. PMID:27723826
Rus-Calafell, M; Garety, P; Sason, E; Craig, T J K; Valmaggia, L R
2018-02-01
Over the last two decades, there has been a rapid increase of studies testing the efficacy and acceptability of virtual reality in the assessment and treatment of mental health problems. This systematic review was carried out to investigate the use of virtual reality in the assessment and the treatment of psychosis. Web of Science, PsychInfo, EMBASE, Scopus, ProQuest and PubMed databases were searched, resulting in the identification of 638 articles potentially eligible for inclusion; of these, 50 studies were included in the review. The main fields of research in virtual reality and psychosis are: safety and acceptability of the technology; neurocognitive evaluation; functional capacity and performance evaluation; assessment of paranoid ideation and auditory hallucinations; and interventions. The studies reviewed indicate that virtual reality offers a valuable method of assessing the presence of symptoms in ecologically valid environments, with the potential to facilitate learning new emotional and behavioural responses. Virtual reality is a promising method to be used in the assessment of neurocognitive deficits and the study of relevant clinical symptoms. Furthermore, preliminary findings suggest that it can be applied to the delivery of cognitive rehabilitation, social skills training interventions and virtual reality-assisted therapies for psychosis. The potential benefits for enhancing treatment are highlighted. Recommendations for future research include demonstrating generalisability to real-life settings, examining potential negative effects, larger sample sizes and long-term follow-up studies. The present review has been registered in the PROSPERO register: CDR 4201507776.
DOT National Transportation Integrated Search
2014-05-01
Immersive Virtual Learning Environments (IVLEs) are extensively used in training, but few rigorous scientific investigations regarding the : transfer of learning have been conducted. Measurement of learning transfer through evaluative methods is key ...
Ogourtsova, Tatiana; Archambault, Philippe S; Lamontagne, Anouk
2017-11-07
Hemineglect, defined as a failure to attend to the contralesional side of space, is a prevalent and disabling post-stroke deficit. Conventional hemineglect assessments lack sensitivity as they contain mainly non-functional tasks performed in near-extrapersonal space, using static, two-dimensional methods. This is of concern given that hemineglect is a strong predictor for functional deterioration, limited post-stroke recovery, and difficulty in community reintegration. With the emerging field of virtual reality, several virtual tools have been proposed and have reported better sensitivity in neglect-related deficits detection than conventional methods. However, these and future virtual reality-based tools are yet to be implemented in clinical practice. The present study aimed to explore the barriers/facilitators perceived by clinicians in the use of virtual reality for hemineglect assessment; and to identify features of an optimal virtual assessment. A qualitative descriptive process, in the form of focus groups, self-administered questionnaire and individual interviews was used. Two focus groups (n = 11 clinicians) were conducted and experts in the field (n = 3) were individually interviewed. Several barriers and facilitators, including personal, institutional, client suitability, and equipment factors, were identified. Clinicians and experts in the field reported numerous features for the virtual tool optimization. Factors identified through this study lay the foundation for the development of a knowledge translation initiative towards an implementation of a virtual assessment for hemineglect. Addressing the identified barriers/facilitators during implementation and incorporating the optimal features in the design of the virtual assessment could assist and promote its eventual adoption in clinical settings. Implications for rehabilitation A multimodal and active knowledge translation intervention built on the presently identified modifiable factors is suggested to be implemented to support the clinical integration of a virtual reality-based assessment for post-stroke hemineglect. To amplify application and usefulness of a virtual-reality based tool in the assessment of post-stroke hemineglect, optimal features identified in the present study should be incorporated in the design of such technology.
NASA Astrophysics Data System (ADS)
Feodorova, Valentina A.; Saltykov, Yury V.; Zaytsev, Sergey S.; Ulyanov, Sergey S.; Ulianova, Onega V.
2018-04-01
Method of phase-shifting speckle-interferometry has been used as a new tool with high potency for modern bioinformatics. Virtual phase-shifting speckle-interferometry has been applied for detection of polymorphism in the of Chlamydia trachomatis omp1 gene. It has been shown, that suggested method is very sensitive to natural genetic mutations as single nucleotide polymorphism (SNP). Effectiveness of proposed method has been compared with effectiveness of the newest bioinformatic tools, based on nucleotide sequence alignment.
Comparative assessment of three standardized robotic surgery training methods.
Hung, Andrew J; Jayaratna, Isuru S; Teruya, Kara; Desai, Mihir M; Gill, Inderbir S; Goh, Alvin C
2013-10-01
To evaluate three standardized robotic surgery training methods, inanimate, virtual reality and in vivo, for their construct validity. To explore the concept of cross-method validity, where the relative performance of each method is compared. Robotic surgical skills were prospectively assessed in 49 participating surgeons who were classified as follows: 'novice/trainee': urology residents, previous experience <30 cases (n = 38) and 'experts': faculty surgeons, previous experience ≥30 cases (n = 11). Three standardized, validated training methods were used: (i) structured inanimate tasks; (ii) virtual reality exercises on the da Vinci Skills Simulator (Intuitive Surgical, Sunnyvale, CA, USA); and (iii) a standardized robotic surgical task in a live porcine model with performance graded by the Global Evaluative Assessment of Robotic Skills (GEARS) tool. A Kruskal-Wallis test was used to evaluate performance differences between novices and experts (construct validity). Spearman's correlation coefficient (ρ) was used to measure the association of performance across inanimate, simulation and in vivo methods (cross-method validity). Novice and expert surgeons had previously performed a median (range) of 0 (0-20) and 300 (30-2000) robotic cases, respectively (P < 0.001). Construct validity: experts consistently outperformed residents with all three methods (P < 0.001). Cross-method validity: overall performance of inanimate tasks significantly correlated with virtual reality robotic performance (ρ = -0.7, P < 0.001) and in vivo robotic performance based on GEARS (ρ = -0.8, P < 0.0001). Virtual reality performance and in vivo tissue performance were also found to be strongly correlated (ρ = 0.6, P < 0.001). We propose the novel concept of cross-method validity, which may provide a method of evaluating the relative value of various forms of skills education and assessment. We externally confirmed the construct validity of each featured training tool. © 2013 BJU International.
Wong, Alex M; Toh, Cheng-Hong; Lien, Reyin; Chao, An-Shine; Wong, Ho-Fai; Ng, Koon-Kwan
2006-11-01
Meconium pseudocyst results from a loculated inflammation occurring in response to spillage of meconium into the peritoneal cavity after a bowel perforation. Certain cystic lesions, such as abscesses and dermoid and epidermoid cysts, are known to show reduced water diffusion on DWI. MRI has recently become a valuable adjunct to ultrasonography for fetal gastrointestinal anomalies. Complementary to ultrasonography, prenatal MRI can help further characterize the lesion and can clearly demonstrate the anatomical relationship between the lesion and adjacent organs. We report a case of meconium pseudocyst that was prenatally imaged with ultrasonography and MRI, postnatally complicated by pneumoperitoneum, and proved by postnatal surgery and histopathology. We emphasize the MRI of the pseudocyst, particularly T1-weighted and diffusion-weighted imaging.
Colorectal injury by compressed air--a report of 2 cases.
Suh, H. H.; Kim, Y. J.; Kim, S. K.
1996-01-01
We report two colorectal trauma patients whose rectosigmoid region was ruptured due to a jet of compressed air directed to their anus while they were playing practical jokes with their colleagues in their place of work. It was difficult to diagnose in one patient due to vague symptoms and signs and due to being stunned by a stroke of the compressed air. Both patients suffered from abdominal pain and distension, tension pneumoperitoneum and mild respiratory alkalosis. One patient was treated with primary two layer closure, and the other with primary two layer closure and sigmoid loop colostomy. Anorectal manometry and transanal ultrasonography checked 4 weeks after surgery, revealed normal anorectal function and anatomy. The postoperative courses were favorable without any wound infection or intraabdominal sepsis. PMID:8835767
Direct stimulation of the retina by the method of virtual-quanta for heavy cosmic-ray nuclei
NASA Technical Reports Server (NTRS)
Mcnulty, P. J.; Madey, R.
1972-01-01
The contribution to the frequency of visual sensations induced in the dark-adapted eye by the virtual photon field was calculated, this field is associated with the heavy nuclei that exist in space beyond the geomagnetic field. In order to determine the probability that the virtual photon field induces a light flash, only the portion of the virtual photon spectrum that corresponds to the known frequency dependence of the sensitivity of human rods to visible light was utilized. The results can be expressed as a curve of the mean frequency of light flashes induced by the absorption of at least R virtual photons versus the threshold number R. The contribution to the light flash frequency from the virtual photon field of heavy cosmic ray nuclei is smaller than that from Cerenkov photons. The flux and energy spectra of galactic cosmic ray nuclei helium to iron were used.
Collier, Larissa; Dunham, Stacey; Braun, Mark W; O'Loughlin, Valerie Dean
2012-01-01
Many studies that evaluate the introduction of technology in the classroom focus on student performance and student evaluations. This study focuses on instructor evaluation of the introduction of virtual microscopy into an undergraduate anatomy class. Semi-structured interviews were conducted with graduate teaching assistants (TA) and analyzed through qualitative methods. This analysis showed that the teaching assistants found the virtual microscope to be an advantageous change in the classroom. They cite the ease of use of the virtual microscope, access to histology outside of designated laboratory time, and increasing student collaboration in class as the primary advantages. The teaching assistants also discuss principal areas where the use of the virtual microscope can be improved from a pedagogical standpoint, including requiring students to spend more time working on histology in class. Copyright © 2011 American Association of Anatomists.
Web-based Three-dimensional Virtual Body Structures: W3D-VBS
Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex
2002-01-01
Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user’s progress through evaluation tools helps customize lesson plans. A self-guided “virtual tour” of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it. PMID:12223495
Virtual reality in a children's hospital.
Nihei, K; Shirakawa, K; Isshiki, N; Hirose, M; Iwata, H; Kobayashi, N
1999-01-01
We used virtual reality technology to improve the quality of life and amenity of in-patients in a children's hospital. Children in the hospital could enjoy a zoo, amusement park, and aquarium, in virtual. They played soccer, skiing and horse riding in virtual. They could communicate with persons who were out of the hospital and attend the school which they had gone to before entering hospital. They played music with children who had been admitted to other children's hospitals. By using this virtual technology, the quality of life of children who suffered from psychological and physiological stress in the hospital greatly improved. It is not only useful for their QOL but also for the healing of illness. However, these methods are very rare. Our systemic in our children's hospital is the first to be reported in Japan both software and hardware of virtual reality technology to increase the QOL of sick children need further development.
Marshall Engineers Use Virtual Reality
NASA Technical Reports Server (NTRS)
1993-01-01
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).
Web-based three-dimensional Virtual Body Structures: W3D-VBS.
Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex
2002-01-01
Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user's progress through evaluation tools helps customize lesson plans. A self-guided "virtual tour" of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it.
The Virtual Pelvic Floor, a tele-immersive educational environment.
Pearl, R. K.; Evenhouse, R.; Rasmussen, M.; Dech, F.; Silverstein, J. C.; Prokasy, S.; Panko, W. B.
1999-01-01
This paper describes the development of the Virtual Pelvic Floor, a new method of teaching the complex anatomy of the pelvic region utilizing virtual reality and advanced networking technology. Virtual reality technology allows improved visualization of three-dimensional structures over conventional media because it supports stereo vision, viewer-centered perspective, large angles of view, and interactivity. Two or more ImmersaDesk systems, drafting table format virtual reality displays, are networked together providing an environment where teacher and students share a high quality three-dimensional anatomical model, and are able to converse, see each other, and to point in three dimensions to indicate areas of interest. This project was realized by the teamwork of surgeons, medical artists and sculptors, computer scientists, and computer visualization experts. It demonstrates the future of virtual reality for surgical education and applications for the Next Generation Internet. Images Figure 1 Figure 2 Figure 3 PMID:10566378
Computer Applications and Virtual Environments (CAVE)
NASA Technical Reports Server (NTRS)
1993-01-01
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall SPace Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).
ComputerApplications and Virtual Environments (CAVE)
NASA Technical Reports Server (NTRS)
1993-01-01
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Center (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability providedgeneral visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.
ComputerApplications and Virtual Environments (CAVE)
NASA Technical Reports Server (NTRS)
1993-01-01
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Centerr (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provided general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.
Dockres: a computer program that analyzes the output of virtual screening of small molecules
2010-01-01
Background This paper describes a computer program named Dockres that is designed to analyze and summarize results of virtual screening of small molecules. The program is supplemented with utilities that support the screening process. Foremost among these utilities are scripts that run the virtual screening of a chemical library on a large number of processors in parallel. Methods Dockres and some of its supporting utilities are written Fortran-77; other utilities are written as C-shell scripts. They support the parallel execution of the screening. The current implementation of the program handles virtual screening with Autodock-3 and Autodock-4, but can be extended to work with the output of other programs. Results Analysis of virtual screening by Dockres led to both active and selective lead compounds. Conclusions Analysis of virtual screening was facilitated and enhanced by Dockres in both the authors' laboratories as well as laboratories elsewhere. PMID:20205801
[Chemical databases and virtual screening].
Rognan, Didier; Bonnet, Pascal
2014-12-01
A prerequisite to any virtual screening is the definition of compound libraries to be screened. As we describe here, various sources are available. The selection of the proper library is usually project-dependent but at least as important as the screening method itself. This review details the main compound libraries that are available for virtual screening and guide the reader to the best possible selection according to its needs. © 2014 médecine/sciences – Inserm.
Cue reactivity in virtual reality: the role of context.
Paris, Megan M; Carter, Brian L; Traylor, Amy C; Bordnick, Patrick S; Day, Susan X; Armsworth, Mary W; Cinciripini, Paul M
2011-07-01
Cigarette smokers in laboratory experiments readily respond to smoking stimuli with increased craving. An alternative to traditional cue-reactivity methods (e.g., exposure to cigarette photos), virtual reality (VR) has been shown to be a viable cue presentation method to elicit and assess cigarette craving within complex virtual environments. However, it remains poorly understood whether contextual cues from the environment contribute to craving increases in addition to specific cues, like cigarettes. This study examined the role of contextual cues in a VR environment to evoke craving. Smokers were exposed to a virtual convenience store devoid of any specific cigarette cues followed by exposure to the same convenience store with specific cigarette cues added. Smokers reported increased craving following exposure to the virtual convenience store without specific cues, and significantly greater craving following the convenience store with cigarette cues added. However, increased craving recorded after the second convenience store may have been due to the pre-exposure to the first convenience store. This study offers evidence that an environmental context where cigarette cues are normally present (but are not), elicits significant craving in the absence of specific cigarette cues. This finding suggests that VR may have stronger ecological validity over traditional cue reactivity exposure methods by exposing smokers to the full range of cigarette-related environmental stimuli, in addition to specific cigarette cues, that smokers typically experience in their daily lives. Copyright © 2011 Elsevier Ltd. All rights reserved.
Stroke rehabilitation at home using virtual reality, haptics and telemedicine.
Rydmark, Martin; Broeren, Jörgen; Pascher, Ragnar
2002-01-01
The objective of this pilot study is to identify the level of difficulty in which subjects with left hemisphere damage in the acute phase after stroke can start practicing in a virtual environment. Second, to test an application of Virtual Reality technology to existing occupational treatment methods in stroke rehabilitation and develop a platform for home rehabilitation controlled telemedically. The findings indicate that the system shows potential as an assessment and training device. The feasibility study setup is working well likewise the assessment method. Developing and increasing the complexity of the tasks must be based on the patient individual neurology, and that the cinematic motion patterns of the patient's are the basis for exercise design.
Djukic, Tijana; Mandic, Vesna; Filipovic, Nenad
2013-12-01
Medical education, training and preoperative diagnostics can be drastically improved with advanced technologies, such as virtual reality. The method proposed in this paper enables medical doctors and students to visualize and manipulate three-dimensional models created from CT or MRI scans, and also to analyze the results of fluid flow simulations. Simulation of fluid flow using the finite element method is performed, in order to compute the shear stress on the artery walls. The simulation of motion through the artery is also enabled. The virtual reality system proposed here could shorten the length of training programs and make the education process more effective. © 2013 Published by Elsevier Ltd.
Sik Lányi, Cecília; Laky, Viktória; Tilinger, Adám; Pataky, Ilona; Simon, Lajos; Kiss, Bernadett; Simon, Viktória; Szabó, Júlianna; Páll, Attila
2004-01-01
The multimedia and virtual reality projects performed at our laboratory during the last ten years can be grouped into the following groups: 1) tutorial and entertainment programs for handicapped children, 2) rehabilitation programs for stroke patients and patients with phobias. We have developed multimedia software for handicapped children with various impairments: partial vision, hearing difficulties, locomotive difficulties, mental retardation, dyslexia etc. In the present paper we show the advantages of using multimedia software to develop mental skills in handicapped people and deal with the special needs of handicapped children. For the rehabilitation of stroke patients we have developed a computer-controlled method, which enables - contrary to methods used internationally - not only the establishment of a diagnosis, but also measurement of therapy effectiveness: 1) it enables us to produce a database of patients, which contains not only their personal data but also test results, their drawings and audio recordings, 2) it is in itself an intensive therapeutic test and contains tutorial programs. We are currently collecting test results. We have also developed some virtual worlds for treating phobias: a virtual balcony and a ten-story building with an external glass elevator as well as an internal glass elevator in the virtual Atrium Hyatt hotel. We have developed a virtual environment for treating claustrophobia too: a closed lift and a room where the walls can move. For specific phobias (fear of travelling) we have modelled the underground railway system in Budapest. For autistic children, we have developed virtual shopping software too. In this paper we present the advantages of virtual reality in the investigation, evaluation and treatment of perception, behaviour and neuropsychological disorders.
DOT National Transportation Integrated Search
2014-05-01
mmersive Virtual Learning Environments (IVLEs) are extensively used in training, but few rigorous scienti c investigations regarding : the transfer of learning have been conducted. Measurement of learning transfer through evaluative methods is key...
Large-scale virtual screening on public cloud resources with Apache Spark.
Capuccini, Marco; Ahmed, Laeeq; Schaal, Wesley; Laure, Erwin; Spjuth, Ola
2017-01-01
Structure-based virtual screening is an in-silico method to screen a target receptor against a virtual molecular library. Applying docking-based screening to large molecular libraries can be computationally expensive, however it constitutes a trivially parallelizable task. Most of the available parallel implementations are based on message passing interface, relying on low failure rate hardware and fast network connection. Google's MapReduce revolutionized large-scale analysis, enabling the processing of massive datasets on commodity hardware and cloud resources, providing transparent scalability and fault tolerance at the software level. Open source implementations of MapReduce include Apache Hadoop and the more recent Apache Spark. We developed a method to run existing docking-based screening software on distributed cloud resources, utilizing the MapReduce approach. We benchmarked our method, which is implemented in Apache Spark, docking a publicly available target receptor against [Formula: see text]2.2 M compounds. The performance experiments show a good parallel efficiency (87%) when running in a public cloud environment. Our method enables parallel Structure-based virtual screening on public cloud resources or commodity computer clusters. The degree of scalability that we achieve allows for trying out our method on relatively small libraries first and then to scale to larger libraries. Our implementation is named Spark-VS and it is freely available as open source from GitHub (https://github.com/mcapuccini/spark-vs).Graphical abstract.
ANTONIOU, EFSTATHIOS A; KAIRI, EVI; MARGONIS, GEORGIOS A; ANDREATOS, NIKOLAOS; SASAKI, KAZUNARI; DAMASKOS, CHRISTOS; GARMPIS, NIKOLAOS; SAMAHA, MARIO; ARGYRA, ERIPHYLI; POLYMENEAS, GEORGE; WEISS, MATTHEW J; PAWLIK, TIMOTHY M; VOROS, DIONYSIOS; KOURAKLIS, GREGORY
2018-01-01
Background: While reduction of portal venous (PV) blood flow has been described in animal models of intra-abdominal hypertension, reports on compensatory changes in hepatic arterial (HA) flow, known as the hepatic arterial buffer response are controversial. Materials and Methods: Pneumoperitoneum with helium was induced in 13 piglets. Hemodynamic measurements and pathological assessment were conducted at baseline and during the three subsequent phases: Phase A: 45 minutes with a stable intra-abdominal pressure of 25 mmHg; phase B: 45 minutes with a stable intra-abdominal pressure of 40 mmHg; and phase C during which the abdomen was re-explored and reperfusion of the liver was allowed to take place. Results: Phase B pressure was significantly greater than phase A pressure in both the PV and the inferior vena cava, demonstrating a positive association between escalating intra-abdominal hypertension and the pressure in these two vessels (all p<0.001). In contrast, HA pressure was comparable between baseline and phase A, while it tended to decrease in phase B. Regarding histology, the most notable abnormality was the presence of inflammatory infiltrates and hepatocyte necrosis. Conclusion: Helium-insufflation increased PV pressure with a partial compensatory decrease of HA pressure. Nonetheless, findings consistent with hepatic ischemia were observed on pathology. PMID:29275303
Reality named endoscopic ultrasound biliary drainage
Guedes, Hugo Gonçalo; Lopes, Roberto Iglesias; de Oliveira, Joel Fernandez; Artifon, Everson Luiz de Almeida
2015-01-01
Endoscopic ultrasound (EUS) is used for diagnosis and evaluation of many diseases of the gastrointestinal (GI) tract. In the past, it was used to guide a cholangiography, but nowadays it emerges as a powerful therapeutic tool in biliary drainage. The aims of this review are: outline the rationale for endoscopic ultrasound-guided biliary drainage (EGBD); detail the procedural technique; evaluate the clinical outcomes and limitations of the method; and provide recommendations for the practicing clinician. In cases of failed endoscopic retrograde cholangiopancreatography (ERCP), patients are usually referred for either percutaneous transhepatic biliary drainage (PTBD) or surgical bypass. Both these procedures have high rates of undesirable complications. EGBD is an attractive alternative to PTBD or surgery when ERCP fails. EGBD can be performed at two locations: transhepatic or extrahepatic, and the stent can be inserted in an antegrade or retrograde fashion. The drainage route can be transluminal, duodenal or transpapillary, which, again, can be antegrade or retrograde [rendezvous (EUS-RV)]. Complications of all techniques combined include pneumoperitoneum, bleeding, bile leak/peritonitis and cholangitis. We recommend EGBD when bile duct access is not possible because of failed cannulation, altered upper GI tract anatomy, gastric outlet obstruction, a distorted ampulla or a periampullary diverticulum, as a minimally invasive alternative to surgery or radiology. PMID:26504507
Virtual simulation as a learning method in interventional radiology.
Avramov, Predrag; Avramov, Milena; Juković, Mirela; Kadić, Vuk; Till, Viktor
2013-01-01
Radiology is the fastest growing discipline of medicine thanks to the implementation of new technologies and very rapid development of imaging diagnostic procedures in the last few decades. On the other hand, the development of imaging diagnostic procedures has put aside the traditional gaining of experience by working on real patients, and the need for other alternatives of learning interventional radiology procedures has emerged. A new method of virtual approach was added as an excellent alternative to the currently known methods of training on physical models and animals. Virtual reality represents a computer-generated reconstruction of anatomical environment with tactile interactions and it enables operators not only to learn on their own mistakes without compromising the patient's safety, but also to enhance their knowledge and experience. It is true that studies published so far on the validity of endovascular simulators have shown certain improvement of operator's technical skills and reduction in time needed for the procedure, but on the other hand, it is still a question whether these skills are transferable to the real patients in the angio room. With further improvement of technology, shortcomings of virtual approach to interventional procedures learning will be less significant and this procedure is likely to become the only method of learning in the near future.
Virtual 3d City Modeling: Techniques and Applications
NASA Astrophysics Data System (ADS)
Singh, S. P.; Jain, K.; Mandla, V. R.
2013-08-01
3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3-D City model is a very useful for various kinds of applications such as for planning in Navigation, Tourism, Disasters Management, Transportations, Municipality, Urban Environmental Managements and Real-estate industry. So the Construction of Virtual 3-D city models is a most interesting research topic in recent years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imura, K; Fujibuchi, T; Hirata, H
Purpose: Patient set-up skills in radiotherapy treatment room have a great influence on treatment effect for image guided radiotherapy. In this study, we have developed the training system for improving practical set-up skills considering rotational correction in the virtual environment away from the pressure of actual treatment room by using three-dimensional computer graphic (3DCG) engine. Methods: The treatment room for external beam radiotherapy was reproduced in the virtual environment by using 3DCG engine (Unity). The viewpoints to perform patient set-up in the virtual treatment room were arranged in both sides of the virtual operable treatment couch to assume actual performancemore » by two clinical staffs. The position errors to mechanical isocenter considering alignment between skin marker and laser on the virtual patient model were displayed by utilizing numerical values expressed in SI units and the directions of arrow marks. The rotational errors calculated with a point on the virtual body axis as the center of each rotation axis for the virtual environment were corrected by adjusting rotational position of the body phantom wound the belt with gyroscope preparing on table in a real space. These rotational errors were evaluated by describing vector outer product operations and trigonometric functions in the script for patient set-up technique. Results: The viewpoints in the virtual environment allowed individual user to visually recognize the position discrepancy to mechanical isocenter until eliminating the positional errors of several millimeters. The rotational errors between the two points calculated with the center point could be efficiently corrected to display the minimum technique mathematically by utilizing the script. Conclusion: By utilizing the script to correct the rotational errors as well as accurate positional recognition for patient set-up technique, the training system developed for improving patient set-up skills enabled individual user to indicate efficient positional correction methods easily.« less
Lopez Maïté, C; Gaétane, D; Axel, C
2016-01-01
The ability to perform two tasks simultaneously has become increasingly important as attention-demanding technologies have become more common in daily life. This type of attentional resources allocation is commonly called "divided attention". Because of the importance of divided attention in natural world settings, substantial efforts have been made recently so as to promote an integrated, realistic assessment of functional abilities in dual-task paradigms. In this context, virtual reality methods appear to be a good solution. However to date, there has been little discussion on validity of such methods. Here, we offer a comparative review of conventional tools used to assess divided attention and of the first virtual reality studies (mostly from the field of road and pedestrian safety). The ecological character of virtual environments leads to a better understanding of the influence of dual-task settings and also makes it possible to clarify issues such as the utility of hands-free phones. After discussing the theoretical and clinical contributions of these studies, we discuss the limits of virtual reality assessment, focusing in particular: (i) on the challenges associated with lack of familiarity with new technological devices; (ii) on the validity of the ecological character of virtual environments; and (iii) on the question of whether the results obtained in a specific context can be generalized to all dual-task situations typical of daily life. To overcome the limitations associated with virtual reality, we propose: (i) to include a standardized familiarization phase in assessment protocols so as to limit the interference caused by the use of new technologies; (ii) to systematically compare virtual reality performance with conventional tests or real-life tests; and (iii) to design dual-task scenarios that are independent from the patient's expertise on one of the two tasks. We conclude that virtual reality appears to constitute a useful tool when used in combination with more conventional tests. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Virtual reality in ophthalmology training.
Khalifa, Yousuf M; Bogorad, David; Gibson, Vincent; Peifer, John; Nussbaum, Julian
2006-01-01
Current training models are limited by an unstructured curriculum, financial costs, human costs, and time constraints. With the newly mandated resident surgical competency, training programs are struggling to find viable methods of assessing and documenting the surgical skills of trainees. Virtual-reality technologies have been used for decades in flight simulation to train and assess competency, and there has been a recent push in surgical specialties to incorporate virtual-reality simulation into residency programs. These efforts have culminated in an FDA-approved carotid stenting simulator. What role virtual reality will play in the evolution of ophthalmology surgical curriculum is uncertain. The current apprentice system has served the art of surgery for over 100 years, and we foresee virtual reality working synergistically with our current curriculum modalities to streamline and enhance the resident's learning experience.
A computer-based training system combining virtual reality and multimedia
NASA Technical Reports Server (NTRS)
Stansfield, Sharon A.
1993-01-01
Training new users of complex machines is often an expensive and time-consuming process. This is particularly true for special purpose systems, such as those frequently encountered in DOE applications. This paper presents a computer-based training system intended as a partial solution to this problem. The system extends the basic virtual reality (VR) training paradigm by adding a multimedia component which may be accessed during interaction with the virtual environment. The 3D model used to create the virtual reality is also used as the primary navigation tool through the associated multimedia. This method exploits the natural mapping between a virtual world and the real world that it represents to provide a more intuitive way for the student to interact with all forms of information about the system.
Self-Regulated Learning in Virtual Communities
ERIC Educational Resources Information Center
Delfino, Manuela; Dettori, Giuliana; Persico, Donatella
2008-01-01
This paper investigates self-regulated learning (SRL) in a virtual learning community of adults interacting through asynchronous textual communication. The investigation method chosen is interaction analysis, a qualitative/quantitative approach allowing a systematic study of the contents of the messages exchanged within online communities. The…
Real and Virtual Images Using a Classroom Hologram.
ERIC Educational Resources Information Center
Olson, Dale W.
1992-01-01
Describes the design and fabrication of a classroom hologram and activities utilizing the hologram to teach the concepts of real and virtual images to high school and introductory college students. Contrasts this method with three other approaches to teach about images. (MDH)
Virtual Reality as a Distraction Technique in Chronic Pain Patients
Gao, Kenneth; Sulea, Camelia; Wiederhold, Mark D.
2014-01-01
Abstract We explored the use of virtual reality distraction techniques for use as adjunctive therapy to treat chronic pain. Virtual environments were specifically created to provide pleasant and engaging experiences where patients navigated on their own through rich and varied simulated worlds. Real-time physiological monitoring was used as a guide to determine the effectiveness and sustainability of this intervention. Human factors studies showed that virtual navigation is a safe and effective method for use with chronic pain patients. Chronic pain patients demonstrated significant relief in subjective ratings of pain that corresponded to objective measurements in peripheral, noninvasive physiological measures. PMID:24892196
Measurement Tools for the Immersive Visualization Environment: Steps Toward the Virtual Laboratory.
Hagedorn, John G; Dunkers, Joy P; Satterfield, Steven G; Peskin, Adele P; Kelso, John T; Terrill, Judith E
2007-01-01
This paper describes a set of tools for performing measurements of objects in a virtual reality based immersive visualization environment. These tools enable the use of the immersive environment as an instrument for extracting quantitative information from data representations that hitherto had be used solely for qualitative examination. We provide, within the virtual environment, ways for the user to analyze and interact with the quantitative data generated. We describe results generated by these methods to obtain dimensional descriptors of tissue engineered medical products. We regard this toolbox as our first step in the implementation of a virtual measurement laboratory within an immersive visualization environment.
Optimizing TLB entries for mixed page size storage in contiguous memory
Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Kriegel, Jon K.; Ohmacht, Martin; Steinmacher-Burow, Burkhard
2013-04-30
A system and method for accessing memory are provided. The system comprises a lookup buffer for storing one or more page table entries, wherein each of the one or more page table entries comprises at least a virtual page number and a physical page number; a logic circuit for receiving a virtual address from said processor, said logic circuit for matching the virtual address to the virtual page number in one of the page table entries to select the physical page number in the same page table entry, said page table entry having one or more bits set to exclude a memory range from a page.
Virtual screening of compound libraries.
Cerqueira, Nuno M F S A; Sousa, Sérgio F; Fernandes, Pedro A; Ramos, Maria João
2009-01-01
During the last decade, Virtual Screening (VS) has definitively established itself as an important part of the drug discovery and development process. VS involves the selection of likely drug candidates from large libraries of chemical structures by using computational methodologies, but the generic definition of VS encompasses many different methodologies. This chapter provides an introduction to the field by reviewing a variety of important aspects, including the different types of virtual screening methods, and the several steps required for a successful virtual screening campaign within a state-of-the-art approach, from target selection to postfilter application. This analysis is further complemented with a small collection important VS success stories.
Kirchmair, Johannes; Markt, Patrick; Distinto, Simona; Wolber, Gerhard; Langer, Thierry
2008-01-01
Within the last few years a considerable amount of evaluative studies has been published that investigate the performance of 3D virtual screening approaches. Thereby, in particular assessments of protein-ligand docking are facing remarkable interest in the scientific community. However, comparing virtual screening approaches is a non-trivial task. Several publications, especially in the field of molecular docking, suffer from shortcomings that are likely to affect the significance of the results considerably. These quality issues often arise from poor study design, biasing, by using improper or inexpressive enrichment descriptors, and from errors in interpretation of the data output. In this review we analyze recent literature evaluating 3D virtual screening methods, with focus on molecular docking. We highlight problematic issues and provide guidelines on how to improve the quality of computational studies. Since 3D virtual screening protocols are in general assessed by their ability to discriminate between active and inactive compounds, we summarize the impact of the composition and preparation of test sets on the outcome of evaluations. Moreover, we investigate the significance of both classic enrichment parameters and advanced descriptors for the performance of 3D virtual screening methods. Furthermore, we review the significance and suitability of RMSD as a measure for the accuracy of protein-ligand docking algorithms and of conformational space sub sampling algorithms.
The Use of Virtual Reality in the Study of People's Responses to Violent Incidents.
Rovira, Aitor; Swapp, David; Spanlang, Bernhard; Slater, Mel
2009-01-01
This paper reviews experimental methods for the study of the responses of people to violence in digital media, and in particular considers the issues of internal validity and ecological validity or generalisability of results to events in the real world. Experimental methods typically involve a significant level of abstraction from reality, with participants required to carry out tasks that are far removed from violence in real life, and hence their ecological validity is questionable. On the other hand studies based on field data, while having ecological validity, cannot control multiple confounding variables that may have an impact on observed results, so that their internal validity is questionable. It is argued that immersive virtual reality may provide a unification of these two approaches. Since people tend to respond realistically to situations and events that occur in virtual reality, and since virtual reality simulations can be completely controlled for experimental purposes, studies of responses to violence within virtual reality are likely to have both ecological and internal validity. This depends on a property that we call 'plausibility' - including the fidelity of the depicted situation with prior knowledge and expectations. We illustrate this with data from a previously published experiment, a virtual reprise of Stanley Milgram's 1960s obedience experiment, and also with pilot data from a new study being developed that looks at bystander responses to violent incidents.
The Use of Virtual Reality in the Study of People's Responses to Violent Incidents
Rovira, Aitor; Swapp, David; Spanlang, Bernhard; Slater, Mel
2009-01-01
This paper reviews experimental methods for the study of the responses of people to violence in digital media, and in particular considers the issues of internal validity and ecological validity or generalisability of results to events in the real world. Experimental methods typically involve a significant level of abstraction from reality, with participants required to carry out tasks that are far removed from violence in real life, and hence their ecological validity is questionable. On the other hand studies based on field data, while having ecological validity, cannot control multiple confounding variables that may have an impact on observed results, so that their internal validity is questionable. It is argued that immersive virtual reality may provide a unification of these two approaches. Since people tend to respond realistically to situations and events that occur in virtual reality, and since virtual reality simulations can be completely controlled for experimental purposes, studies of responses to violence within virtual reality are likely to have both ecological and internal validity. This depends on a property that we call ‘plausibility’ – including the fidelity of the depicted situation with prior knowledge and expectations. We illustrate this with data from a previously published experiment, a virtual reprise of Stanley Milgram's 1960s obedience experiment, and also with pilot data from a new study being developed that looks at bystander responses to violent incidents. PMID:20076762
Johnson, Jeffrey P; Krupinski, Elizabeth A; Yan, Michelle; Roehrig, Hans; Graham, Anna R; Weinstein, Ronald S
2011-02-01
A major issue in telepathology is the extremely large and growing size of digitized "virtual" slides, which can require several gigabytes of storage and cause significant delays in data transmission for remote image interpretation and interactive visualization by pathologists. Compression can reduce this massive amount of virtual slide data, but reversible (lossless) methods limit data reduction to less than 50%, while lossy compression can degrade image quality and diagnostic accuracy. "Visually lossless" compression offers the potential for using higher compression levels without noticeable artifacts, but requires a rate-control strategy that adapts to image content and loss visibility. We investigated the utility of a visual discrimination model (VDM) and other distortion metrics for predicting JPEG 2000 bit rates corresponding to visually lossless compression of virtual slides for breast biopsy specimens. Threshold bit rates were determined experimentally with human observers for a variety of tissue regions cropped from virtual slides. For test images compressed to their visually lossless thresholds, just-noticeable difference (JND) metrics computed by the VDM were nearly constant at the 95th percentile level or higher, and were significantly less variable than peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) metrics. Our results suggest that VDM metrics could be used to guide the compression of virtual slides to achieve visually lossless compression while providing 5-12 times the data reduction of reversible methods.
Directional virtual backbone based data aggregation scheme for Wireless Visual Sensor Networks.
Zhang, Jing; Liu, Shi-Jian; Tsai, Pei-Wei; Zou, Fu-Min; Ji, Xiao-Rong
2018-01-01
Data gathering is a fundamental task in Wireless Visual Sensor Networks (WVSNs). Features of directional antennas and the visual data make WVSNs more complex than the conventional Wireless Sensor Network (WSN). The virtual backbone is a technique, which is capable of constructing clusters. The version associating with the aggregation operation is also referred to as the virtual backbone tree. In most of the existing literature, the main focus is on the efficiency brought by the construction of clusters that the existing methods neglect local-balance problems in general. To fill up this gap, Directional Virtual Backbone based Data Aggregation Scheme (DVBDAS) for the WVSNs is proposed in this paper. In addition, a measurement called the energy consumption density is proposed for evaluating the adequacy of results in the cluster-based construction problems. Moreover, the directional virtual backbone construction scheme is proposed by considering the local-balanced factor. Furthermore, the associated network coding mechanism is utilized to construct DVBDAS. Finally, both the theoretical analysis of the proposed DVBDAS and the simulations are given for evaluating the performance. The experimental results prove that the proposed DVBDAS achieves higher performance in terms of both the energy preservation and the network lifetime extension than the existing methods.
Searching Fragment Spaces with feature trees.
Lessel, Uta; Wellenzohn, Bernd; Lilienthal, Markus; Claussen, Holger
2009-02-01
Virtual combinatorial chemistry easily produces billions of compounds, for which conventional virtual screening cannot be performed even with the fastest methods available. An efficient solution for such a scenario is the generation of Fragment Spaces, which encode huge numbers of virtual compounds by their fragments/reagents and rules of how to combine them. Similarity-based searches can be performed in such spaces without ever fully enumerating all virtual products. Here we describe the generation of a huge Fragment Space encoding about 5 * 10(11) compounds based on established in-house synthesis protocols for combinatorial libraries, i.e., we encode practically evaluated combinatorial chemistry protocols in a machine readable form, rendering them accessible to in silico search methods. We show how such searches in this Fragment Space can be integrated as a first step in an overall workflow. It reduces the extremely huge number of virtual products by several orders of magnitude so that the resulting list of molecules becomes more manageable for further more elaborated and time-consuming analysis steps. Results of a case study are presented and discussed, which lead to some general conclusions for an efficient expansion of the chemical space to be screened in pharmaceutical companies.
Very large virtual compound spaces: construction, storage and utility in drug discovery.
Peng, Zhengwei
2013-09-01
Recent activities in the construction, storage and exploration of very large virtual compound spaces are reviewed by this report. As expected, the systematic exploration of compound spaces at the highest resolution (individual atoms and bonds) is intrinsically intractable. By contrast, by staying within a finite number of reactions and a finite number of reactants or fragments, several virtual compound spaces have been constructed in a combinatorial fashion with sizes ranging from 10(11)11 to 10(20)20 compounds. Multiple search methods have been developed to perform searches (e.g. similarity, exact and substructure) into those compound spaces without the need for full enumeration. The up-front investment spent on synthetic feasibility during the construction of some of those virtual compound spaces enables a wider adoption by medicinal chemists to design and synthesize important compounds for drug discovery. Recent activities in the area of exploring virtual compound spaces via the evolutionary approach based on Genetic Algorithm also suggests a positive shift of focus from method development to workflow, integration and ease of use, all of which are required for this approach to be widely adopted by medicinal chemists.
Fast Virtual Stenting with Active Contour Models in Intracranical Aneurysm
Zhong, Jingru; Long, Yunling; Yan, Huagang; Meng, Qianqian; Zhao, Jing; Zhang, Ying; Yang, Xinjian; Li, Haiyun
2016-01-01
Intracranial stents are becoming increasingly a useful option in the treatment of intracranial aneurysms (IAs). Image simulation of the releasing stent configuration together with computational fluid dynamics (CFD) simulation prior to intervention will help surgeons optimize intervention scheme. This paper proposed a fast virtual stenting of IAs based on active contour model (ACM) which was able to virtually release stents within any patient-specific shaped vessel and aneurysm models built on real medical image data. In this method, an initial stent mesh was generated along the centerline of the parent artery without the need for registration between the stent contour and the vessel. Additionally, the diameter of the initial stent volumetric mesh was set to the maximum inscribed sphere diameter of the parent artery to improve the stenting accuracy and save computational cost. At last, a novel criterion for terminating virtual stent expanding that was based on the collision detection of the axis aligned bounding boxes was applied, making the stent expansion free of edge effect. The experiment results of the virtual stenting and the corresponding CFD simulations exhibited the efficacy and accuracy of the ACM based method, which are valuable to intervention scheme selection and therapy plan confirmation. PMID:26876026
[Virtual reality in the treatment of mental disorders].
Malbos, Eric; Boyer, Laurent; Lançon, Christophe
2013-11-01
Virtual reality is a media allowing users to interact in real time with computerized virtual environments. The application of this immersive technology to cognitive behavioral therapies is increasingly exploited for the treatment of mental disorders. The present study is a review of literature spanning from 1992 to 2012. It depicts the utility of this new tool for assessment and therapy through the various clinical studies carried out on subjects exhibiting diverse mental disorders. Most of the studies conducted on tested subjects attest to the significant efficacy of the Virtual Reality Exposure Therapy (VRET) for the treatment of distinct mental disorders. Comparative studies of VRET with the treatment of reference (the in vivo exposure component of the cognitive behavioral therapy) document an equal efficacy of the two methods and in some cases a superior therapeutic effect in favor of the VRET. Even though clinical experiments set on a larger scale, extended follow-up and studies about factors influencing presence are needed, virtual reality exposure represents an efficacious, confidential, affordable, flexible, interactive therapeutic method which application will progressively widened in the field of mental health. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Employing immersive virtual environments for innovative experiments in health care communication.
Persky, Susan
2011-03-01
This report reviews the literature for studies that employ immersive virtual environment technology methods to conduct experimental studies in health care communication. Advantages and challenges of using these tools for research in this area are also discussed. A literature search was conducted using the Scopus database. Results were hand searched to identify the body of studies, conducted since 1995, that are related to the report objective. The review identified four relevant studies that stem from two unique projects. One project focused on the impact of a clinician's characteristics and behavior on health care communication, the other focused on the characteristics of the patient. Both projects illustrate key methodological advantages conferred by immersive virtual environments, including, ability to maintain simultaneously high experimental control and realism, ability to manipulate variables in new ways, and unique behavioral measurement opportunities. Though implementation challenges exist for immersive virtual environment-based research methods, given the technology's unique capabilities, benefits can outweigh the costs in many instances. Immersive virtual environments may therefore prove an important addition to the array of tools available for advancing our understanding of communication in health care. Published by Elsevier Ireland Ltd.
Rodrigues-Baroni, Juliana M.; Nascimento, Lucas R.; Ada, Louise; Teixeira-Salmela, Luci F.
2014-01-01
OBJECTIVE: To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? METHOD: A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. RESULTS: Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. CONCLUSIONS: This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions. PMID:25590442
Virtual Passive Controller for Robot Systems Using Joint Torque Sensors
NASA Technical Reports Server (NTRS)
Aldridge, Hal A.; Juang, Jer-Nan
1997-01-01
This paper presents a control method based on virtual passive dynamic control that will stabilize a robot manipulator using joint torque sensors and a simple joint model. The method does not require joint position or velocity feedback for stabilization. The proposed control method is stable in the sense of Lyaponov. The control method was implemented on several joints of a laboratory robot. The controller showed good stability robustness to system parameter error and to the exclusion of nonlinear dynamic effects on the joints. The controller enhanced position tracking performance and, in the absence of position control, dissipated joint energy.
Nesaratnam, N; Thomas, P; Vivian, A
2017-10-01
IntroductionDissociated tests of strabismus provide valuable information for diagnosis and monitoring of ocular misalignment in patients with normal retinal correspondence. However, they are vulnerable to operator error and rely on a fixed head position. Virtual reality headsets obviate the need for head fixation, while providing other clear theoretical advantages, including complete control over the illumination and targets presented for the patient's interaction.PurposeWe compared the performance of a virtual reality-based test of ocular misalignment to that of the traditional Lees screen, to establish the feasibility of using virtual reality technology in ophthalmic settings in the future.MethodsThree patients underwent a traditional Lees screen test, and a virtual reality headset-based test of ocular motility. The virtual reality headset-based programme consisted of an initial test to measure horizontal and vertical deviation, followed by a test for torsion.ResultsThe pattern of deviation obtained using the virtual reality-based test showed agreement with that obtained from the Lees screen for patients with a fourth nerve palsy, comitant esotropia, and restrictive thyroid eye disease.ConclusionsThis study reports the first use of a virtual reality headset in assessing ocular misalignment, and demonstrates that it is a feasible dissociative test of strabismus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manzini, Gianmarco
2012-07-13
We develop and analyze a new family of virtual element methods on unstructured polygonal meshes for the diffusion problem in primal form, that use arbitrarily regular discrete spaces V{sub h} {contained_in} C{sup {alpha}} {element_of} N. The degrees of freedom are (a) solution and derivative values of various degree at suitable nodes and (b) solution moments inside polygons. The convergence of the method is proven theoretically and an optimal error estimate is derived. The connection with the Mimetic Finite Difference method is also discussed. Numerical experiments confirm the convergence rate that is expected from the theory.
Developing interprofessional health competencies in a virtual world
King, Sharla; Chodos, David; Stroulia, Eleni; Carbonaro, Mike; MacKenzie, Mark; Reid, Andrew; Torres, Lisa; Greidanus, Elaine
2012-01-01
Background Virtual worlds provide a promising means of delivering simulations for developing interprofessional health skills. However, developing and implementing a virtual world simulation is a challenging process, in part because of the novelty of virtual worlds as a simulation platform and also because of the degree of collaboration required among technical and subject experts. Thus, it can be difficult to ensure that the simulation is both technically satisfactory and educationally appropriate. Methods To address this challenge, we propose the use of de Freitas and Oliver's four-dimensional framework as a means of guiding the development process. We give an overview of the framework and describe how its principles can be applied to the development of virtual world simulations. Results We present two virtual world simulation pilot projects that adopted this approach, and describe our development experience in these projects. We directly connect this experience to the four-dimensional framework, thus validating the framework's applicability to the projects and to the context of virtual world simulations in general. Conclusions We present a series of recommendations for developing virtual world simulations for interprofessional health education. These recommendations are based on the four-dimensional framework and are also informed by our experience with the pilot projects. PMID:23195649
Productive confusions: learning from simulations of pandemic virus outbreaks in Second Life
NASA Astrophysics Data System (ADS)
Cárdenas, Micha; Greci, Laura S.; Hurst, Samantha; Garman, Karen; Hoffman, Helene; Huang, Ricky; Gates, Michael; Kho, Kristen; Mehrmand, Elle; Porteous, Todd; Calvitti, Alan; Higginbotham, Erin; Agha, Zia
2011-03-01
Users of immersive virtual reality environments have reported a wide variety of side and after effects including the confusion of characteristics of the real and virtual worlds. Perhaps this side effect of confusing the virtual and real can be turned around to explore the possibilities for immersion with minimal technological support in virtual world group training simulations. This paper will describe observations from my time working as an artist/researcher with the UCSD School of Medicine (SoM) and Veterans Administration San Diego Healthcare System (VASDHS) to develop trainings for nurses, doctors and Hospital Incident Command staff that simulate pandemic virus outbreaks. By examining moments of slippage between realities, both into and out of the virtual environment, moments of the confusion of boundaries between real and virtual, we can better understand methods for creating immersion. I will use the mixing of realities as a transversal line of inquiry, borrowing from virtual reality studies, game studies, and anthropological studies to better understand the mechanisms of immersion in virtual worlds. Focusing on drills conducted in Second Life, I will examine moments of training to learn the software interface, moments within the drill and interviews after the drill.
Zhong, Hongji; Wang, Furan
2014-02-01
To conduct a meta-analysis of contralateral metachronous inguinal hernia (CMIH) that originated from negative laparoscopic evaluation for contralateral patent processus vaginalis (CPPV) in children who presented with a unilateral inguinal hernia and to determine the incidence of and factors associated with such a CMIH. A PubMed search was performed for all studies concerning laparoscopic repair or evaluation of inguinal hernia in children. The search strategy was as follows: (laparoscop* OR coelioscop* OR peritoneoscop* OR laparoendoscop* OR minilaparoscop*) AND ("inguinal hernia" OR "metachronous hernia") AND child*. Inclusion criteria included unilateral inguinal hernia in children, negative laparoscopic evaluation of CPPV, without history of contralateral inguinal surgery previously, and clearly reporting CMIH development or not. Editorials, letters, review articles, case reports, animal studies, and duplicate patient series were excluded. Twenty-three studies comprising 6091 children with negative CPPV fulfilled the inclusion criteria and were included in the final analysis, of whom 80 (1.31%) subsequently presented with a CMIH. Subgroup analysis showed that CMIH incidence was lower through an umbilical approach than via an inguinal one (0.85% versus 1.78%, P=.009). As for the transinguinal approach, there was a CMIH incidence of 0.78% and 2.05%, respectively, for laparoscopy with a small angle (30° and 70°), whereas there was no CMIH development for that with a large angle (110°, 120°, and flexible). A high pneumoperitoneum pressure (>10 mm Hg, >12 mm Hg, and >14 mm Hg) was usually associated with a slightly higher CMIH incidence than a low one (≤10 mm Hg, ≤12 mm Hg, and ≤14 mm Hg), all without significant difference. CMIH incidence was slightly lower for using a broad CPPV definition than for using a narrow one (0.64% versus 1.35%, P=.183). CMIH following negative laparoscopic evaluation for CPPV was a rare but possible phenomenon. Choosing the transumbilical approach, transinguinal laparoscopy with a large angle, low-pressure pneumoperitoneum, and broad CPPV definition would probably reduce the occurrence of such CMIHs.
Park, Hee Yeon; Kim, Jong Yeop; Cho, Sang Hyun; Lee, Dongchul; Kwak, Hyun Jeong
2016-08-01
The purpose of this study was to evaluate the effects of low-dose dexmedetomidine on hemodynamics and anesthetic requirements during propofol and remifentanil anesthesia for laparoscopic cholecystectomy. Thirty adult patients were randomly allocated to receive dexmedetomidine infusion of 0.3 μg/kg/h (dexmedetomidine group, n = 15) or comparable volumes of saline infusion (control group, n = 15). Target controlled infusion of propofol and remifentanil was used for anesthetic induction and maintenance, and adjusted in order to maintain a bispectral index of 40-55 and hemodynamic stability. We measured hemodynamics and recorded total and mean infused dosages of propofol and remifentanil. For anesthesia induction and maintenance, mean infused doses of propofol (121 ± 27 vs. 144 ± 29 μg/kg/min, P = 0.04) and remifentanil (118 ± 27 vs. 150 ± 36 ng/kg/min, P = 0.01) were lower in the dexmedetomidine group than in the control group, respectively. The dexmedetomidine group required 16 % less propofol and 23 % less remifentanil. During anesthetic induction and maintenance, the dexmedetomidine group required fewer total doses of propofol (9.6 ± 2.3 vs. 12.4 ± 3.3 mg/kg, P = 0.01) and remifentanil (9.6 ± 3.4 vs. 12.7 ± 2.6 μg/kg, P = 0.01). The change in mean arterial pressure over time differed between the groups (P < 0.05). Significantly lower mean arterial pressure was observed in the dexmedetomidine group than in the control group at immediately and 5 min after pneumoperitoneum. The time to extubation after completion of drug administration did not differ between the groups (P = 0.25). This study demonstrated that a low-dose dexmedetomidine infusion of 0.3 μg/kg/h reduced propofol and remifentanil requirements as well as hemodynamic change by pneumoperitoneum without delayed recovery during propofol-remifentanil anesthesia for laparoscopic cholecystectomy.
Creating objects and object categories for studying perception and perceptual learning.
Hauffen, Karin; Bart, Eugene; Brady, Mark; Kersten, Daniel; Hegdé, Jay
2012-11-02
In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties. Many innovative and useful methods currently exist for creating novel objects and object categories (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings. First, shape variations are generally imposed by the experimenter, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints. Second, the existing methods have difficulty capturing the shape complexity of natural objects. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases. Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or 'tuned'). This allows one to formulate the underlying object recognition tasks in quantitative terms. Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called 'digital embryos' by simulating the biological process of embryogenesis. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection. Objects and object categories created by these simulations can be further manipulated by various morphing methods to generate systematic variations of shape characteristics. The VP and morphing methods can also be applied, in principle, to novel virtual objects other than digital embryos, or to virtual versions of real-world objects. Virtual objects created in this fashion can be rendered as visual images using a conventional graphical toolkit, with desired manipulations of surface texture, illumination, size, viewpoint and background. The virtual objects can also be 'printed' as haptic objects using a conventional 3-D prototyper. We also describe some implementations of these computational algorithms to help illustrate the potential utility of the algorithms. It is important to distinguish the algorithms from their implementations. The implementations are demonstrations offered solely as a 'proof of principle' of the underlying algorithms. It is important to note that, in general, an implementation of a computational algorithm often has limitations that the algorithm itself does not have. Together, these methods represent a set of powerful and flexible tools for studying object recognition and perceptual learning by biological and computational systems alike. With appropriate extensions, these methods may also prove useful in the study of morphogenesis and phylogenesis.
WE-AB-BRA-12: Virtual Endoscope Tracking for Endoscopy-CT Image Registration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, W; Rao, A; Wendt, R
Purpose: The use of endoscopy in radiotherapy will remain limited until we can register endoscopic video to CT using standard clinical equipment. In this phantom study we tested a registration method using virtual endoscopy to measure CT-space positions from endoscopic video. Methods: Our phantom is a contorted clay cylinder with 2-mm-diameter markers in the luminal surface. These markers are visible on both CT and endoscopic video. Virtual endoscope images were rendered from a polygonal mesh created by segmenting the phantom’s luminal surface on CT. We tested registration accuracy by tracking the endoscope’s 6-degree-of-freedom coordinates frame-to-frame in a video recorded asmore » it moved through the phantom, and using these coordinates to measure CT-space positions of markers visible in the final frame. To track the endoscope we used the Nelder-Mead method to search for coordinates that render the virtual frame most similar to the next recorded frame. We measured the endoscope’s initial-frame coordinates using a set of visible markers, and for image similarity we used a combination of mutual information and gradient alignment. CT-space marker positions were measured by projecting their final-frame pixel addresses through the virtual endoscope to intersect with the mesh. Registration error was quantified as the distance between this intersection and the marker’s manually-selected CT-space position. Results: Tracking succeeded for 6 of 8 videos, for which the mean registration error was 4.8±3.5mm (24 measurements total). The mean error in the axial direction (3.1±3.3mm) was larger than in the sagittal or coronal directions (2.0±2.3mm, 1.7±1.6mm). In the other 2 videos, the virtual endoscope got stuck in a false minimum. Conclusion: Our method can successfully track the position and orientation of an endoscope, and it provides accurate spatial mapping from endoscopic video to CT. This method will serve as a foundation for an endoscopy-CT registration framework that is clinically valuable and requires no specialized equipment.« less
A Context-Aware Method for Authentically Simulating Outdoors Shadows for Mobile Augmented Reality.
Barreira, Joao; Bessa, Maximino; Barbosa, Luis; Magalhaes, Luis
2018-03-01
Visual coherence between virtual and real objects is a major issue in creating convincing augmented reality (AR) applications. To achieve this seamless integration, actual light conditions must be determined in real time to ensure that virtual objects are correctly illuminated and cast consistent shadows. In this paper, we propose a novel method to estimate daylight illumination and use this information in outdoor AR applications to render virtual objects with coherent shadows. The illumination parameters are acquired in real time from context-aware live sensor data. The method works under unprepared natural conditions. We also present a novel and rapid implementation of a state-of-the-art skylight model, from which the illumination parameters are derived. The Sun's position is calculated based on the user location and time of day, with the relative rotational differences estimated from a gyroscope, compass and accelerometer. The results illustrated that our method can generate visually credible AR scenes with consistent shadows rendered from recovered illumination.
Application of image processing to calculate the number of fish seeds using raspberry-pi
NASA Astrophysics Data System (ADS)
Rahmadiansah, A.; Kusumawardhani, A.; Duanto, F. N.; Qoonita, F.
2018-03-01
Many fish cultivator in Indonesia who suffered losses due to the sale and purchase of fish seeds did not match the agreed amount. The loss is due to the calculation of fish seed still using manual method. To overcome these problems, then in this study designed fish counting system automatically and real-time fish using the image processing based on Raspberry Pi. Used image processing because it can calculate moving objects and eliminate noise. Image processing method used to calculate moving object is virtual loop detector or virtual detector method and the approach used is “double difference image”. The “double difference” approach uses information from the previous frame and the next frame to estimate the shape and position of the object. Using these methods and approaches, the results obtained were quite good with an average error of 1.0% for 300 individuals in a test with a virtual detector width of 96 pixels and a slope of 1 degree test plane.
Freeform object design and simultaneous manufacturing
NASA Astrophysics Data System (ADS)
Zhang, Wei; Zhang, Weihan; Lin, Heng; Leu, Ming C.
2003-04-01
Today's product design, especially the consuming product design, focuses more and more on individuation, originality, and the time to market. One way to meet these challenges is using the interactive and creationary product design methods and rapid prototyping/rapid tooling. This paper presents a novel Freeform Object Design and Simultaneous Manufacturing (FODSM) method that combines the natural interaction feature in the design phase and simultaneous manufacturing feature in the prototyping phase. The natural interactive three-dimensional design environment is achieved by adopting virtual reality technology. The geometry of the designed object is defined through the process of "virtual sculpting" during which the designer can touch and visualize the designed object and can hear the virtual manufacturing environment noise. During the designing process, the computer records the sculpting trajectories and automatically translates them into NC codes so as to simultaneously machine the designed part. The paper introduced the principle, implementation process, and key techniques of the new method, and compared it with other popular rapid prototyping methods.
NASA Astrophysics Data System (ADS)
Wingert, Bentley M.; Oerlemans, Rick; Camacho, Carlos J.
2018-01-01
The goal of virtual screening is to generate a substantially reduced and enriched subset of compounds from a large virtual chemistry space. Critical in these efforts are methods to properly rank the binding affinity of compounds. Prospective evaluations of ranking strategies in the D3R grand challenges show that for targets with deep pockets the best correlations (Spearman ρ 0.5) were obtained by our submissions that docked compounds to the holo-receptors with the most chemically similar ligand. On the other hand, for targets with open pockets using multiple receptor structures is not a good strategy. Instead, docking to a single optimal receptor led to the best correlations (Spearman ρ 0.5), and overall performs better than any other method. Yet, choosing a suboptimal receptor for crossdocking can significantly undermine the affinity rankings. Our submissions that evaluated the free energy of congeneric compounds were also among the best in the community experiment. Error bars of around 1 kcal/mol are still too large to significantly improve the overall rankings. Collectively, our top of the line predictions show that automated virtual screening with rigid receptors perform better than flexible docking and other more complex methods.
Elearn: A Collaborative Educational Virtual Environment.
ERIC Educational Resources Information Center
Michailidou, Anna; Economides, Anastasios A.
Virtual Learning Environments (VLEs) that support collaboration are one of the new technologies that have attracted great interest. VLEs are learning management software systems composed of computer-mediated communication software and online methods of delivering course material. This paper presents ELearn, a collaborative VLE for teaching…
Curriculum Orientations of Virtual Teachers
ERIC Educational Resources Information Center
Singleton, Nicole Y.
2013-01-01
This study explored the curriculum orientation preferences of K-12 public school teachers who provided instruction in virtual settings (n = 47) in a midwestern state. Curriculum orientations were explored using a mixed-methods design. Quantitative assessments data revealed a pattern of curriculum orientations similar to teachers working in…
The Development of Virtual Laboratory Using ICT for Physics in Senior High School
NASA Astrophysics Data System (ADS)
Masril, M.; Hidayati, H.; Darvina, Y.
2018-04-01
One of the problems found in the implementation of the curriculum in 2013 is not all competency skills can be performed well. Therefore, to overcome these problems, virtual laboratory designed to improve the mastery of concepts of physics. One of the design objectives virtual laboratories is to improve the quality of education and learning in physics in high school. The method used in this study is a research method development four D model with the definition phase, design phase, development phase, and dissemination phase. Research has reached the stage of development and has been tested valid specialist. The instrument used in the research is a questionnaire consisting of: 1) the material substance; 2) The display of visual communication; 3) instructional design; 4) the use of software; and 5) Linguistic. The research results is validity in general has been a very good category (85.6), so that the design of virtual labs designed can already be used in high school.
Virtual plane-wave imaging via Marchenko redatuming
NASA Astrophysics Data System (ADS)
Meles, Giovanni Angelo; Wapenaar, Kees; Thorbecke, Jan
2018-04-01
Marchenko redatuming is a novel scheme used to retrieve up- and down-going Green's functions in an unknown medium. Marchenko equations are based on reciprocity theorems and are derived on the assumption of the existence of functions exhibiting space-time focusing properties once injected in the subsurface. In contrast to interferometry but similarly to standard migration methods, Marchenko redatuming only requires an estimate of the direct wave from the virtual source (or to the virtual receiver), illumination from only one side of the medium, and no physical sources (or receivers) inside the medium. In this contribution we consider a different time-focusing condition within the frame of Marchenko redatuming that leads to the retrieval of virtual plane-wave responses. As a result, it allows multiple-free imaging using only a one-dimensional sampling of the targeted model at a fraction of the computational cost of standard Marchenko schemes. The potential of the new method is demonstrated on 2D synthetic models.
Garretson, Justin R [Albuquerque, NM; Parker, Eric P [Albuquerque, NM; Gladwell, T Scott [Albuquerque, NM; Rigdon, J Brian [Edgewood, NM; Oppel, III, Fred J.
2012-05-29
Apparatus and methods for modifying the operation of a robotic vehicle in a real environment to emulate the operation of the robotic vehicle in a mixed reality environment include a vehicle sensing system having a communications module attached to the robotic vehicle for communicating operating parameters related to the robotic vehicle in a real environment to a simulation controller for simulating the operation of the robotic vehicle in a mixed (live, virtual and constructive) environment wherein the affects of virtual and constructive entities on the operation of the robotic vehicle (and vice versa) are simulated. These effects are communicated to the vehicle sensing system which generates a modified control command for the robotic vehicle including the effects of virtual and constructive entities, causing the robot in the real environment to behave as if virtual and constructive entities existed in the real environment.
System and method for progressive band selection for hyperspectral images
NASA Technical Reports Server (NTRS)
Fisher, Kevin (Inventor)
2013-01-01
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for progressive band selection for hyperspectral images. A system having module configured to control a processor to practice the method calculates a virtual dimensionality of a hyperspectral image having multiple bands to determine a quantity Q of how many bands are needed for a threshold level of information, ranks each band based on a statistical measure, selects Q bands from the multiple bands to generate a subset of bands based on the virtual dimensionality, and generates a reduced image based on the subset of bands. This approach can create reduced datasets of full hyperspectral images tailored for individual applications. The system uses a metric specific to a target application to rank the image bands, and then selects the most useful bands. The number of bands selected can be specified manually or calculated from the hyperspectral image's virtual dimensionality.
Content Sharing Based on Personal Information in Virtually Secured Space
NASA Astrophysics Data System (ADS)
Sohn, Hosik; Ro, Yong Man; Plataniotis, Kostantinos N.
User generated contents (UGC) are shared in an open space like social media where users can upload and consume contents freely. Since the access of contents is not restricted, the contents could be delivered to unwanted users or misused sometimes. In this paper, we propose a method for sharing UGCs securely based on the personal information of users. With the proposed method, virtual secure space is created for contents delivery. The virtual secure space allows UGC creator to deliver contents to users who have similar personal information and they can consume the contents without any leakage of personal information. In order to verify the usefulness of the proposed method, the experiment was performed where the content was encrypted with personal information of creator, and users with similar personal information have decrypted and consumed the contents. The results showed that UGCs were securely shared among users who have similar personal information.
NASA Astrophysics Data System (ADS)
Tattoli, F.; Pierron, F.; Rotinat, R.; Casavola, C.; Pappalettere, C.
2011-01-01
One of the main problems in welding is the microstructural transformation within the area affected by the thermal history. The resulting heterogeneous microstructure within the weld nugget and the heat affected zones is often associated with changes in local material properties. The present work deals with the identification of material parameters governing the elasto—plastic behaviour of the fused and heat affected zones as well as the base material for titanium hybrid welded joints (Ti6Al4V alloy). The material parameters are identified from heterogeneous strain fields with the Virtual Fields Method. This method is based on a relevant use of the principle of virtual work and it has been shown to be useful and much less time consuming than classical finite element model updating approaches applied to similar problems. The paper will present results and discuss the problem of selection of the weld zones for the identification.
Huang, Suzhen; Wu, Min; Zhang, Yaoxue; She, Jinhua
2014-01-01
This paper presents a framework for mobile transparent computing. It extends the PC transparent computing to mobile terminals. Since resources contain different kinds of operating systems and user data that are stored in a remote server, how to manage the network resources is essential. In this paper, we apply the technologies of quick emulator (QEMU) virtualization and mobile agent for mobile transparent computing (MTC) to devise a method of managing shared resources and services management (SRSM). It has three layers: a user layer, a manage layer, and a resource layer. A mobile virtual terminal in the user layer and virtual resource management in the manage layer cooperate to maintain the SRSM function accurately according to the user's requirements. An example of SRSM is used to validate this method. Experiment results show that the strategy is effective and stable. PMID:24883353
Xiong, Yonghua; Huang, Suzhen; Wu, Min; Zhang, Yaoxue; She, Jinhua
2014-01-01
This paper presents a framework for mobile transparent computing. It extends the PC transparent computing to mobile terminals. Since resources contain different kinds of operating systems and user data that are stored in a remote server, how to manage the network resources is essential. In this paper, we apply the technologies of quick emulator (QEMU) virtualization and mobile agent for mobile transparent computing (MTC) to devise a method of managing shared resources and services management (SRSM). It has three layers: a user layer, a manage layer, and a resource layer. A mobile virtual terminal in the user layer and virtual resource management in the manage layer cooperate to maintain the SRSM function accurately according to the user's requirements. An example of SRSM is used to validate this method. Experiment results show that the strategy is effective and stable.
Altschuler, Eric Lewin
2008-01-01
Autism is a severe disease with no known cause and no cure or treatment. Recently, ourselves and subsequently others found that so-called "mirror neurons" - neurons that respond not only when a person moves, but upon observation of movement in another - are dysfunctional in autistic children. Here I suggest an easy, simple, inexpensive and fun method to improve mirror neuron functioning in autistic children, increase appreciation in autistic children for the theory of mind and thinking of others, and most importantly hopefully to improve real world functioning: play with virtual online pets that are the "embodiment" of a stuffed animal the child has. Adoption and then care and play with online pets forces, in a fun way, one to think about the world through the eyes and needs of the pet. A simple method to test this play with online virtual pet therapy is described.
NASA Astrophysics Data System (ADS)
Yu, Zhijing; Ma, Kai; Wang, Zhijun; Wu, Jun; Wang, Tao; Zhuge, Jingchang
2018-03-01
A blade is one of the most important components of an aircraft engine. Due to its high manufacturing costs, it is indispensable to come up with methods for repairing damaged blades. In order to obtain a surface model of the blades, this paper proposes a modeling method by using speckle patterns based on the virtual stereo vision system. Firstly, blades are sprayed evenly creating random speckle patterns and point clouds from blade surfaces can be calculated by using speckle patterns based on the virtual stereo vision system. Secondly, boundary points are obtained in the way of varied step lengths according to curvature and are fitted to get a blade surface envelope with a cubic B-spline curve. Finally, the surface model of blades is established with the envelope curves and the point clouds. Experimental results show that the surface model of aircraft engine blades is fair and accurate.
Conforming and nonconforming virtual element methods for elliptic problems
Cangiani, Andrea; Manzini, Gianmarco; Sutton, Oliver J.
2016-08-03
Here we present, in a unified framework, new conforming and nonconforming virtual element methods for general second-order elliptic problems in two and three dimensions. The differential operator is split into its symmetric and nonsymmetric parts and conditions for stability and accuracy on their discrete counterparts are established. These conditions are shown to lead to optimal H 1- and L 2-error estimates, confirmed by numerical experiments on a set of polygonal meshes. The accuracy of the numerical approximation provided by the two methods is shown to be comparable.
Conforming and nonconforming virtual element methods for elliptic problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cangiani, Andrea; Manzini, Gianmarco; Sutton, Oliver J.
Here we present, in a unified framework, new conforming and nonconforming virtual element methods for general second-order elliptic problems in two and three dimensions. The differential operator is split into its symmetric and nonsymmetric parts and conditions for stability and accuracy on their discrete counterparts are established. These conditions are shown to lead to optimal H 1- and L 2-error estimates, confirmed by numerical experiments on a set of polygonal meshes. The accuracy of the numerical approximation provided by the two methods is shown to be comparable.
Research on tactical information display technology for interactive virtual cockpit
NASA Astrophysics Data System (ADS)
Sun, Zhongyun; Tian, Tao; Su, Feng
2018-04-01
Based on a fact that traditional tactical information display technology suffers from disadvantages of a large number of data to be transferred and low plotting efficiency in an interactive virtual cockpit, a GID protocol-based simulation has been designed. This method dissolves complex tactical information screens into basic plotting units. The indication of plotting units is controlled via the plotting commands, which solves the incompatibility between the tactical information display in traditional simulation and the desktop-based virtual simulation training system. Having been used in desktop systems for helicopters, fighters, and transporters, this method proves to be scientific and reasonable in design and simple and efficient in usage, which exerts a significant value in establishing aviation equipment technology support training products.
The nonconforming virtual element method for eigenvalue problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardini, Francesca; Manzini, Gianmarco; Vacca, Giuseppe
We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allow to treat in the same formulation the two- and three-dimensional case.We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of the L 2-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problems. The proposed schemes provide a correct approximation of the spectrum and we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numericalmore » tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice.« less
Dyer, Bryce; Disley, B Xavier
2018-02-01
Lower-limb amputees typically require some form of prosthetic limb to ride a bicycle for recreation or when competing. At elite-level racing speeds, aerodynamic drag can represent the majority of the resistance acting against a cyclists' forward motion. As a result, the reduction of such resistance is beneficial to an amputee whereby the form and function of the prosthetic limb can be optimized through engineering. To measure the performance of such limbs, field testing provides a cost-effective and context-specific method of aerodynamic drag measurement. However, few methods have been formally validated and none have been applied to amputees with lower-limb amputations. In this paper, an elite level para-cyclist wore two different prosthetic limb designs and had their total aerodynamic drag of a wind tunnel reference method statistically correlated against a velodrome-based virtual elevation field test method. The calculated coefficient of variation was in the range of 0.7-0.9% for the wind tunnel method and 2-3% for the virtual elevation method. A 0.03 m 2 difference was identified in the absolute values recorded between the two methods. Ultimately, both methods exhibited high levels of precision, yet relative results to each other. The virtual elevation method is proposed as a suitable technique to assess the aerodynamic drag of amputee para-cyclists. Implications for rehabilitation This assessment method will provide practitioners a reliable means of assessing the impact of changes made to prosthetics design for cyclists with limb absence. The proposed method offers a low cost and geographically accessible solution compared to others proposed in the past. This assessment method has significant potential for impact among prosthetic limb users looking to improve their cycling performance whereas previous attention in this field has been extremely limited.
3D Boolean operations in virtual surgical planning.
Charton, Jerome; Laurentjoye, Mathieu; Kim, Youngjun
2017-10-01
Boolean operations in computer-aided design or computer graphics are a set of operations (e.g. intersection, union, subtraction) between two objects (e.g. a patient model and an implant model) that are important in performing accurate and reproducible virtual surgical planning. This requires accurate and robust techniques that can handle various types of data, such as a surface extracted from volumetric data, synthetic models, and 3D scan data. This article compares the performance of the proposed method (Boolean operations by a robust, exact, and simple method between two colliding shells (BORES)) and an existing method based on the Visualization Toolkit (VTK). In all tests presented in this article, BORES could handle complex configurations as well as report impossible configurations of the input. In contrast, the VTK implementations were unstable, do not deal with singular edges and coplanar collisions, and have created several defects. The proposed method of Boolean operations, BORES, is efficient and appropriate for virtual surgical planning. Moreover, it is simple and easy to implement. In future work, we will extend the proposed method to handle non-colliding components.
Virtual acoustic environments for comprehensive evaluation of model-based hearing devices.
Grimm, Giso; Luberadzka, Joanna; Hohmann, Volker
2018-06-01
Create virtual acoustic environments (VAEs) with interactive dynamic rendering for applications in audiology. A toolbox for creation and rendering of dynamic virtual acoustic environments (TASCAR) that allows direct user interaction was developed for application in hearing aid research and audiology. The software architecture and the simulation methods used to produce VAEs are outlined. Example environments are described and analysed. With the proposed software, a tool for simulation of VAEs is available. A set of VAEs rendered with the proposed software was described.
The virtual cooperation platform in enterprise and supplier cooperation models.
Chang, Che-Wei; Wu, Cheng-Ru; Liao, Chia-Chun
2010-08-01
Abstract This study examines the use of the virtual enterprise network supplier supply-chain model of business behavior in creating synergies of cooperation. To explore virtual network behavior, it evaluates 60 samples, taken from of a few supply chains, and 17 items meeting certain behavioral criteria. Such an analysis may help to reduce costs and processing time effectively, as well as promote effective communication. Furthermore, the study of behavior in this electronic setting is a reliable and useful assessment method.
Benazzi, S; Stansfield, E; Milani, C; Gruppioni, G
2009-07-01
The process of forensic identification of missing individuals is frequently reliant on the superimposition of cranial remains onto an individual's picture and/or facial reconstruction. In the latter, the integrity of the skull or a cranium is an important factor in successful identification. Here, we recommend the usage of computerized virtual reconstruction and geometric morphometrics for the purposes of individual reconstruction and identification in forensics. We apply these methods to reconstruct a complete cranium from facial remains that allegedly belong to the famous Italian humanist of the fifteenth century, Angelo Poliziano (1454-1494). Raw data was obtained by computed tomography scans of the Poliziano face and a complete reference skull of a 37-year-old Italian male. Given that the amount of distortion of the facial remains is unknown, two reconstructions are proposed: The first calculates the average shape between the original and its reflection, and the second discards the less preserved left side of the cranium under the assumption that there is no deformation on the right. Both reconstructions perform well in the superimposition with the original preserved facial surface in a virtual environment. The reconstruction by means of averaging between the original and reflection yielded better results during the superimposition with portraits of Poliziano. We argue that the combination of computerized virtual reconstruction and geometric morphometric methods offers a number of advantages over traditional plastic reconstruction, among which are speed, reproducibility, easiness of manipulation when superimposing with pictures in virtual environment, and assumptions control.
Gaber, Ramy M; Shaheen, Eman; Falter, Bart; Araya, Sebastian; Politis, Constantinus; Swennen, Gwen R J; Jacobs, Reinhilde
2017-11-01
The aim of this study was to systematically review methods used for assessing the accuracy of 3-dimensional virtually planned orthognathic surgery in an attempt to reach an objective assessment protocol that could be universally used. A systematic review of the currently available literature, published until September 12, 2016, was conducted using PubMed as the primary search engine. We performed secondary searches using the Cochrane Database, clinical trial registries, Google Scholar, and Embase, as well as a bibliography search. Included articles were required to have stated clearly that 3-dimensional virtual planning was used and accuracy assessment performed, along with validation of the planning and/or assessment method. Descriptive statistics and quality assessment of included articles were performed. The initial search yielded 1,461 studies. Only 7 studies were included in our review. An important variability was found regarding methods used for 1) accuracy assessment of virtually planned orthognathic surgery or 2) validation of the tools used. Included studies were of moderate quality; reviewers' agreement regarding quality was calculated to be 0.5 using the Cohen κ test. On the basis of the findings of this review, it is evident that the literature lacks consensus regarding accuracy assessment. Hence, a protocol is suggested for accuracy assessment of virtually planned orthognathic surgery with the lowest margin of error. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lapshin, Rostislav V.
2016-08-01
A method of distributed calibration of a probe microscope scanner is suggested. The main idea consists in a search for a net of local calibration coefficients (LCCs) in the process of automatic measurement of a standard surface, whereby each point of the movement space of the scanner can be characterized by a unique set of scale factors. Feature-oriented scanning (FOS) methodology is used as a basis for implementation of the distributed calibration permitting to exclude in situ the negative influence of thermal drift, creep and hysteresis on the obtained results. Possessing the calibration database enables correcting in one procedure all the spatial systematic distortions caused by nonlinearity, nonorthogonality and spurious crosstalk couplings of the microscope scanner piezomanipulators. To provide high precision of spatial measurements in nanometer range, the calibration is carried out using natural standards - constants of crystal lattice. One of the useful modes of the developed calibration method is a virtual mode. In the virtual mode, instead of measurement of a real surface of the standard, the calibration program makes a surface image ;measurement; of the standard, which was obtained earlier using conventional raster scanning. The application of the virtual mode permits simulation of the calibration process and detail analysis of raster distortions occurring in both conventional and counter surface scanning. Moreover, the mode allows to estimate the thermal drift and the creep velocities acting while surface scanning. Virtual calibration makes possible automatic characterization of a surface by the method of scanning probe microscopy (SPM).
1993-09-15
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall SPace Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).
1993-12-15
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).
Liu, Kaijun; Fang, Binji; Wu, Yi; Li, Ying; Jin, Jun; Tan, Liwen; Zhang, Shaoxiang
2013-09-01
Anatomical knowledge of the larynx region is critical for understanding laryngeal disease and performing required interventions. Virtual reality is a useful method for surgical education and simulation. Here, we assembled segmented cross-section slices of the larynx region from the Chinese Visible Human dataset. The laryngeal structures were precisely segmented manually as 2D images, then reconstructed and displayed as 3D images in the virtual reality Dextrobeam system. Using visualization and interaction with the virtual reality modeling language model, a digital laryngeal anatomy instruction was constructed using HTML and JavaScript languages. The volume larynx models can thus display an arbitrary section of the model and provide a virtual dissection function. This networked teaching system of the digital laryngeal anatomy can be read remotely, displayed locally, and manipulated interactively.
Virtual local target method for avoiding local minimum in potential field based robot navigation.
Zou, Xi-Yong; Zhu, Jing
2003-01-01
A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation. Through appointing appropriately some virtual local targets on the journey, it can be solved effectively. The key concept employed in this algorithm are the rules that govern when and how to appoint these virtual local targets. When the robot finds itself in danger of local minimum, a virtual local target is appointed to replace the global goal temporarily according to the rules. After the virtual target is reached, the robot continues on its journey by heading towards the global goal. The algorithm prevents the robot from running into local minima anymore. Simulation results showed that it is very effective in complex obstacle environments.
Application of 3d Model of Cultural Relics in Virtual Restoration
NASA Astrophysics Data System (ADS)
Zhao, S.; Hou, M.; Hu, Y.; Zhao, Q.
2018-04-01
In the traditional cultural relics splicing process, in order to identify the correct spatial location of the cultural relics debris, experts need to manually splice the existing debris. The repeated contact between debris can easily cause secondary damage to the cultural relics. In this paper, the application process of 3D model of cultural relic in virtual restoration is put forward, and the relevant processes and ideas are verified with the example of Terracotta Warriors data. Through the combination of traditional cultural relics restoration methods and computer virtual reality technology, virtual restoration of high-precision 3D models of cultural relics can provide a scientific reference for virtual restoration, avoiding the secondary damage to the cultural relics caused by improper restoration. The efficiency and safety of the preservation and restoration of cultural relics have been improved.
Selective Listening Point Audio Based on Blind Signal Separation and Stereophonic Technology
NASA Astrophysics Data System (ADS)
Niwa, Kenta; Nishino, Takanori; Takeda, Kazuya
A sound field reproduction method is proposed that uses blind source separation and a head-related transfer function. In the proposed system, multichannel acoustic signals captured at distant microphones are decomposed to a set of location/signal pairs of virtual sound sources based on frequency-domain independent component analysis. After estimating the locations and the signals of the virtual sources by convolving the controlled acoustic transfer functions with each signal, the spatial sound is constructed at the selected point. In experiments, a sound field made by six sound sources is captured using 48 distant microphones and decomposed into sets of virtual sound sources. Since subjective evaluation shows no significant difference between natural and reconstructed sound when six virtual sources and are used, the effectiveness of the decomposing algorithm as well as the virtual source representation are confirmed.
Sward, Katherine A; Newth, Christopher JL; Khemani, Robinder G; Cryer, Martin E; Thelen, Julie L; Enriquez, Rene; Shaoyu, Su; Pollack, Murray M; Harrison, Rick E; Meert, Kathleen L; Berg, Robert A; Wessel, David L; Shanley, Thomas P; Dalton, Heidi; Carcillo, Joseph; Jenkins, Tammara L; Dean, J Michael
2015-01-01
Objectives To examine the feasibility of deploying a virtual web service for sharing data within a research network, and to evaluate the impact on data consistency and quality. Material and Methods Virtual machines (VMs) encapsulated an open-source, semantically and syntactically interoperable secure web service infrastructure along with a shadow database. The VMs were deployed to 8 Collaborative Pediatric Critical Care Research Network Clinical Centers. Results Virtual web services could be deployed in hours. The interoperability of the web services reduced format misalignment from 56% to 1% and demonstrated that 99% of the data consistently transferred using the data dictionary and 1% needed human curation. Conclusions Use of virtualized open-source secure web service technology could enable direct electronic abstraction of data from hospital databases for research purposes. PMID:25796596
An Exploration of Interactions between Virtual Mentors and Preservice Teachers
ERIC Educational Resources Information Center
Reese, Jill
2017-01-01
This study describes interactions between preservice music teachers and experienced teachers during virtual mentoring sessions embedded in field experiences for an elementary general music methods course. Participants were preservice music teachers (mentees) and experienced teachers (mentors). Videos of six mentoring sessions were transcribed,…
Virtual Immunology: Software for Teaching Basic Immunology
ERIC Educational Resources Information Center
Berçot, Filipe Faria; Fidalgo-Neto, Antônio Augusto; Lopes, Renato Matos; Faggioni, Thais; Alves, Luiz Anastácio
2013-01-01
As immunology continues to evolve, many educational methods have found difficulty in conveying the degree of complexity inherent in its basic principles. Today, the teaching-learning process in such areas has been improved with tools such as educational software. This article introduces "Virtual Immunology," a software program available…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
...-fired furnaces, Underwriters Laboratories (UL) Standard 727-1994, ``Standard for Safety for Oil-Fired... supplementary method called a catalog teardown (or ``virtual teardown'') uses published manufacturer catalogs... similar products and in manufacturer literature and information, to estimate the costs using virtual...
Students' Experience of Problem-Based Learning in Virtual Space
ERIC Educational Resources Information Center
Gibbings, Peter; Lidstone, John; Bruce, Christine
2015-01-01
This paper reports outcomes of a study focused on discovering qualitatively different ways students experience problem-based learning in virtual space. A well-accepted and documented qualitative research method was adopted for this study. Five qualitatively different conceptions are described, each revealing characteristics of increasingly complex…
Communal Resources in Open Source Software Development
ERIC Educational Resources Information Center
Spaeth, Sebastian; Haefliger, Stefan; von Krogh, Georg; Renzl, Birgit
2008-01-01
Introduction: Virtual communities play an important role in innovation. The paper focuses on the particular form of collective action in virtual communities underlying as Open Source software development projects. Method: Building on resource mobilization theory and private-collective innovation, we propose a theory of collective action in…
PC-Based Virtual Reality for CAD Model Viewing
ERIC Educational Resources Information Center
Seth, Abhishek; Smith, Shana S.-F.
2004-01-01
Virtual reality (VR), as an emerging visualization technology, has introduced an unprecedented communication method for collaborative design. VR refers to an immersive, interactive, multisensory, viewer-centered, 3D computer-generated environment and the combination of technologies required to build such an environment. This article introduces the…
Virtual biomedical universities and e-learning.
Beux, P Le; Fieschi, M
2007-01-01
In this special issue on virtual biomedical universities and e-learning we will make a survey on the principal existing teaching applications of ICT used in medical Schools around the world. In the following we identify five types of research and experiments in this field of medical e-learning and virtual medical universities. The topics of this special issue goes from educational computer program to create and simulate virtual patients with a wide variety of medical conditions in different clinical settings and over different time frames to using distance learning in developed and developing countries program training medical informatics of clinicians. We also present the necessity of good indexing and research tools for training resources together with workflows to manage the multiple source content of virtual campus or universities and the virtual digital video resources. A special attention is given to training new generations of clinicians in ICT tools and methods to be used in clinical settings as well as in medical schools.
Interaction Design and Usability of Learning Spaces in 3D Multi-user Virtual Worlds
NASA Astrophysics Data System (ADS)
Minocha, Shailey; Reeves, Ahmad John
Three-dimensional virtual worlds are multimedia, simulated environments, often managed over the Web, which users can 'inhabit' and interact via their own graphical, self-representations known as 'avatars'. 3D virtual worlds are being used in many applications: education/training, gaming, social networking, marketing and commerce. Second Life is the most widely used 3D virtual world in education. However, problems associated with usability, navigation and way finding in 3D virtual worlds may impact on student learning and engagement. Based on empirical investigations of learning spaces in Second Life, this paper presents design guidelines to improve the usability and ease of navigation in 3D spaces. Methods of data collection include semi-structured interviews with Second Life students, educators and designers. The findings have revealed that design principles from the fields of urban planning, Human- Computer Interaction, Web usability, geography and psychology can influence the design of spaces in 3D multi-user virtual environments.
The use of the virtual source technique in computing scattering from periodic ocean surfaces.
Abawi, Ahmad T
2011-08-01
In this paper the virtual source technique is used to compute scattering of a plane wave from a periodic ocean surface. The virtual source technique is a method of imposing boundary conditions using virtual sources, with initially unknown complex amplitudes. These amplitudes are then determined by applying the boundary conditions. The fields due to these virtual sources are given by the environment Green's function. In principle, satisfying boundary conditions on an infinite surface requires an infinite number of sources. In this paper, the periodic nature of the surface is employed to populate a single period of the surface with virtual sources and m surface periods are added to obtain scattering from the entire surface. The use of an accelerated sum formula makes it possible to obtain a convergent sum with relatively small number of terms (∼40). The accuracy of the technique is verified by comparing its results with those obtained using the integral equation technique.
Statistical scaling of geometric characteristics in stochastically generated pore microstructures
Hyman, Jeffrey D.; Guadagnini, Alberto; Winter, C. Larrabee
2015-05-21
In this study, we analyze the statistical scaling of structural attributes of virtual porous microstructures that are stochastically generated by thresholding Gaussian random fields. Characterization of the extent at which randomly generated pore spaces can be considered as representative of a particular rock sample depends on the metrics employed to compare the virtual sample against its physical counterpart. Typically, comparisons against features and/patterns of geometric observables, e.g., porosity and specific surface area, flow-related macroscopic parameters, e.g., permeability, or autocorrelation functions are used to assess the representativeness of a virtual sample, and thereby the quality of the generation method. Here, wemore » rely on manifestations of statistical scaling of geometric observables which were recently observed in real millimeter scale rock samples [13] as additional relevant metrics by which to characterize a virtual sample. We explore the statistical scaling of two geometric observables, namely porosity (Φ) and specific surface area (SSA), of porous microstructures generated using the method of Smolarkiewicz and Winter [42] and Hyman and Winter [22]. Our results suggest that the method can produce virtual pore space samples displaying the symptoms of statistical scaling observed in real rock samples. Order q sample structure functions (statistical moments of absolute increments) of Φ and SSA scale as a power of the separation distance (lag) over a range of lags, and extended self-similarity (linear relationship between log structure functions of successive orders) appears to be an intrinsic property of the generated media. The width of the range of lags where power-law scaling is observed and the Hurst coefficient associated with the variables we consider can be controlled by the generation parameters of the method.« less
Interleaved EPI diffusion imaging using SPIRiT-based reconstruction with virtual coil compression.
Dong, Zijing; Wang, Fuyixue; Ma, Xiaodong; Zhang, Zhe; Dai, Erpeng; Yuan, Chun; Guo, Hua
2018-03-01
To develop a novel diffusion imaging reconstruction framework based on iterative self-consistent parallel imaging reconstruction (SPIRiT) for multishot interleaved echo planar imaging (iEPI), with computation acceleration by virtual coil compression. As a general approach for autocalibrating parallel imaging, SPIRiT improves the performance of traditional generalized autocalibrating partially parallel acquisitions (GRAPPA) methods in that the formulation with self-consistency is better conditioned, suggesting SPIRiT to be a better candidate in k-space-based reconstruction. In this study, a general SPIRiT framework is adopted to incorporate both coil sensitivity and phase variation information as virtual coils and then is applied to 2D navigated iEPI diffusion imaging. To reduce the reconstruction time when using a large number of coils and shots, a novel shot-coil compression method is proposed for computation acceleration in Cartesian sampling. Simulations and in vivo experiments were conducted to evaluate the performance of the proposed method. Compared with the conventional coil compression, the shot-coil compression achieved higher compression rates with reduced errors. The simulation and in vivo experiments demonstrate that the SPIRiT-based reconstruction outperformed the existing method, realigned GRAPPA, and provided superior images with reduced artifacts. The SPIRiT-based reconstruction with virtual coil compression is a reliable method for high-resolution iEPI diffusion imaging. Magn Reson Med 79:1525-1531, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Kaserer, Teresa; Temml, Veronika; Kutil, Zsofia; Vanek, Tomas; Landa, Premysl; Schuster, Daniela
2015-01-01
Computational methods can be applied in drug development for the identification of novel lead candidates, but also for the prediction of pharmacokinetic properties and potential adverse effects, thereby aiding to prioritize and identify the most promising compounds. In principle, several techniques are available for this purpose, however, which one is the most suitable for a specific research objective still requires further investigation. Within this study, the performance of several programs, representing common virtual screening methods, was compared in a prospective manner. First, we selected top-ranked virtual screening hits from the three methods pharmacophore modeling, shape-based modeling, and docking. For comparison, these hits were then additionally predicted by external pharmacophore- and 2D similarity-based bioactivity profiling tools. Subsequently, the biological activities of the selected hits were assessed in vitro, which allowed for evaluating and comparing the prospective performance of the applied tools. Although all methods performed well, considerable differences were observed concerning hit rates, true positive and true negative hits, and hitlist composition. Our results suggest that a rational selection of the applied method represents a powerful strategy to maximize the success of a research project, tightly linked to its aims. We employed cyclooxygenase as application example, however, the focus of this study lied on highlighting the differences in the virtual screening tool performances and not in the identification of novel COX-inhibitors. Copyright © 2015 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Analysis towards VMEM File of a Suspended Virtual Machine
NASA Astrophysics Data System (ADS)
Song, Zheng; Jin, Bo; Sun, Yongqing
With the popularity of virtual machines, forensic investigators are challenged with more complicated situations, among which discovering the evidences in virtualized environment is of significant importance. This paper mainly analyzes the file suffixed with .vmem in VMware Workstation, which stores all pseudo-physical memory into an image. The internal file structure of .vmem file is studied and disclosed. Key information about processes and threads of a suspended virtual machine is revealed. Further investigation into the Windows XP SP3 heap contents is conducted and a proof-of-concept tool is provided. Different methods to obtain forensic memory images are introduced, with both advantages and limits analyzed. We conclude with an outlook.
NASA Team Collaboration Pilot: Enabling NASA's Virtual Teams
NASA Technical Reports Server (NTRS)
Prahst, Steve
2003-01-01
Most NASA projects and work activities are accomplished by teams of people. These teams are often geographically distributed - across NASA centers and NASA external partners, both domestic and international. NASA "virtual" teams are stressed by the challenge of getting team work done - across geographic boundaries and time zones. To get distributed work done, teams rely on established methods - travel, telephones, Video Teleconferencing (NASA VITS), and email. Time is our most critical resource - and team members are hindered by the overhead of travel and the difficulties of coordinating work across their virtual teams. Modern, Internet based team collaboration tools offer the potential to dramatically improve the ability of virtual teams to get distributed work done.
Liao, Chenzhong; Liu, Bing; Shi, Leming; Zhou, Jiaju; Lu, Xian-Ping
2005-07-01
Based on the structural characters of PPAR modulators, a virtual combinatorial library containing 1226,625 compounds was constructed using SMILES strings. Selected ADME filters were employed to compel compounds having poor drug-like properties from this library. This library was converted to sdf and mol2 files by CONCORD 4.0, and was then docked to PPARgamma by DOCK 4.0 to identify new chemical entities that may be potential drug leads against type 2 diabetes and other metabolic diseases. The method to construct virtual combinatorial library using SMILES strings was further visualized by Visual Basic.net that can facilitate the needs of generating other type virtual combinatorial libraries.
A case report of the transport of an infant with a tension pneumopericardium.
Mordue, Barbara C
2005-08-01
Neonatal pneumopericardium is a potentially fatal complication of positive-pressure ventilation and has become rare with the advent of surfactant replacement therapy. The clinical diagnosis, stabilization, treatment, and nursing care of an infant with pneumopericardium has not previously been discussed in the nursing literature. In this case report, delays in the recognition and definitive treatment of the pneumopericardium were encountered, resulting in the transport of an infant with a tension pneumopericardium and pneumoperitoneum. Root-cause analysis is used to identify contributing factors and examine system changes necessary to prevent the transport of another patient with a similar potentially life-threatening condition. Pneumopericardium should be suspected in any infant with an acute deterioration, especially in the presence of normal, equal breath sounds and muffled heart sounds, because prompt recognition and definitive treatment may be life-saving.