Sample records for virtual slice setup

  1. The virtual slice setup.

    PubMed

    Lytton, William W; Neymotin, Samuel A; Hines, Michael L

    2008-06-30

    In an effort to design a simulation environment that is more similar to that of neurophysiology, we introduce a virtual slice setup in the NEURON simulator. The virtual slice setup runs continuously and permits parameter changes, including changes to synaptic weights and time course and to intrinsic cell properties. The virtual slice setup permits shocks to be applied at chosen locations and activity to be sampled intra- or extracellularly from chosen locations. By default, a summed population display is shown during a run to indicate the level of activity and no states are saved. Simulations can run for hours of model time, therefore it is not practical to save all of the state variables. These, in any case, are primarily of interest at discrete times when experiments are being run: the simulation can be stopped momentarily at such times to save activity patterns. The virtual slice setup maintains an automated notebook showing shocks and parameter changes as well as user comments. We demonstrate how interaction with a continuously running simulation encourages experimental prototyping and can suggest additional dynamical features such as ligand wash-in and wash-out-alternatives to typical instantaneous parameter change. The virtual slice setup currently uses event-driven cells and runs at approximately 2 min/h on a laptop.

  2. Subsurface data visualization in Virtual Reality

    NASA Astrophysics Data System (ADS)

    Krijnen, Robbert; Smelik, Ruben; Appleton, Rick; van Maanen, Peter-Paul

    2017-04-01

    Due to their increasing complexity and size, visualization of geological data is becoming more and more important. It enables detailed examining and reviewing of large volumes of geological data and it is often used as a communication tool for reporting and education to demonstrate the importance of the geology to policy makers. In the Netherlands two types of nation-wide geological models are available: 1) Layer-based models in which the subsurface is represented by a series of tops and bases of geological or hydrogeological units, and 2) Voxel models in which the subsurface is subdivided in a regular grid of voxels that can contain different properties per voxel. The Geological Survey of the Netherlands (GSN) provides an interactive web portal that delivers maps and vertical cross-sections of such layer-based and voxel models. From this portal you can download a 3D subsurface viewer that can visualize the voxel model data of an area of 20 × 25 km with 100 × 100 × 5 meter voxel resolution on a desktop computer. Virtual Reality (VR) technology enables us to enhance the visualization of this volumetric data in a more natural way as compared to a standard desktop, keyboard mouse setup. The use of VR for data visualization is not new but recent developments has made expensive hardware and complex setups unnecessary. The availability of consumer of-the-shelf VR hardware enabled us to create an new intuitive and low visualization tool. A VR viewer has been implemented using the HTC Vive head set and allows visualization and analysis of the GSN voxel model data with geological or hydrogeological units. The user can navigate freely around the voxel data (20 × 25 km) which is presented in a virtual room at a scale of 2 × 2 or 3 × 3 meters. To enable analysis, e.g. hydraulic conductivity, the user can select filters to remove specific hydrogeological units. The user can also use slicing to cut-off specific sections of the voxel data to get a closer look. This slicing can be done in any direction using a 'virtual knife'. Future plans are to further improve performance from 30 up to 90 Hz update rate to reduce possible motion sickness, add more advanced filtering capabilities as well as a multi user setup, annotation capabilities and visualizing of historical data.

  3. Meteorological Data Visualization in Multi-User Virtual Reality

    NASA Astrophysics Data System (ADS)

    Appleton, R.; van Maanen, P. P.; Fisher, W. I.; Krijnen, R.

    2017-12-01

    Due to their complexity and size, visualization of meteorological data is important. It enables the precise examining and reviewing of meteorological details and is used as a communication tool for reporting, education and to demonstrate the importance of the data to policy makers. Specifically for the UCAR community it is important to explore all of such possibilities.Virtual Reality (VR) technology enhances the visualization of volumetric and dynamical data in a more natural way as compared to a standard desktop, keyboard mouse setup. The use of VR for data visualization is not new but recent developments has made expensive hardware and complex setups unnecessary. The availability of consumer of the shelf VR hardware enabled us to create a very intuitive and low cost way to visualize meteorological data. A VR viewer has been implemented using multiple HTC Vive head sets and allows visualization and analysis of meteorological data in NetCDF format (e.g. of NCEP North America Model (NAM), see figure). Sources of atmospheric/meteorological data include radar and satellite as well as traditional weather stations. The data includes typical meteorological information such as temperature, humidity, air pressure, as well as those data described by the climate forecast (CF) model conventions (http://cfconventions.org). Other data such as lightning-strike data and ultra-high-resolution satellite data are also becoming available. The users can navigate freely around the data which is presented in a virtual room at a scale of up to 3.5 X 3.5 meters. The multiple users can manipulate the model simultaneously. Possible mutations include scaling/translating, filtering by value and using a slicing tool to cut-off specific sections of the data to get a closer look. The slicing can be done in any direction using the concept of a `virtual knife' in real-time. The users can also scoop out parts of the data and walk though successive states of the model. Future plans are (a.o.) to further improve the performance to a higher update rate (for the reduction of possible motion sickness) and to add more advanced filtering and annotation capabilities. We are looking for cooperation with data owners with use cases such as the above mentioned. This will help in further improving and developing our tool and to broaden its application into other domains.

  4. Phase-contrast tomography of neuronal tissues: from laboratory- to high resolution synchrotron CT

    NASA Astrophysics Data System (ADS)

    Töpperwien, Mareike; Krenkel, Martin; Müller, Kristin; Salditt, Tim

    2016-10-01

    Assessing the three-dimensional architecture of neuronal tissues with sub-cellular resolution presents a significant analytical challenge. Overcoming the limitations associated with serial slicing, phase-contrast x-ray tomography has the potential to contribute to this goal. Even compact laboratory CT at an optimized liquid-metal jet micro- focus source combined with suitable phase-retrieval algorithms and preparation protocols can yield renderings with single cell sensitivity in millimeter sized brain areas of mouse. Here, we show the capabilities of the setup by imaging a Golgi-Cox impregnated mouse brain. Towards higher resolution we extend these studies at our recently upgraded waveguide-based cone-beam holo-tomography instrument GINIX at DESY. This setup allows high resolution recordings with adjustable field of view and resolution, down to the voxel sizes in the range of a few ten nanometers. The recent results make us confident that important issues of neuronal connectivity can be addressed by these methods, and that 3D (virtual) histology with nanoscale resolution will become an attractive modality for neuroscience research.

  5. SU-F-P-18: Development of the Technical Training System for Patient Set-Up Considering Rotational Correction in the Virtual Environment Using Three-Dimensional Computer Graphic Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imura, K; Fujibuchi, T; Hirata, H

    Purpose: Patient set-up skills in radiotherapy treatment room have a great influence on treatment effect for image guided radiotherapy. In this study, we have developed the training system for improving practical set-up skills considering rotational correction in the virtual environment away from the pressure of actual treatment room by using three-dimensional computer graphic (3DCG) engine. Methods: The treatment room for external beam radiotherapy was reproduced in the virtual environment by using 3DCG engine (Unity). The viewpoints to perform patient set-up in the virtual treatment room were arranged in both sides of the virtual operable treatment couch to assume actual performancemore » by two clinical staffs. The position errors to mechanical isocenter considering alignment between skin marker and laser on the virtual patient model were displayed by utilizing numerical values expressed in SI units and the directions of arrow marks. The rotational errors calculated with a point on the virtual body axis as the center of each rotation axis for the virtual environment were corrected by adjusting rotational position of the body phantom wound the belt with gyroscope preparing on table in a real space. These rotational errors were evaluated by describing vector outer product operations and trigonometric functions in the script for patient set-up technique. Results: The viewpoints in the virtual environment allowed individual user to visually recognize the position discrepancy to mechanical isocenter until eliminating the positional errors of several millimeters. The rotational errors between the two points calculated with the center point could be efficiently corrected to display the minimum technique mathematically by utilizing the script. Conclusion: By utilizing the script to correct the rotational errors as well as accurate positional recognition for patient set-up technique, the training system developed for improving patient set-up skills enabled individual user to indicate efficient positional correction methods easily.« less

  6. [Virtual otoscopy--technique, indications and initial experiences with multislice spiral CT].

    PubMed

    Klingebiel, R; Bauknecht, H C; Lehmann, R; Rogalla, P; Werbs, M; Behrbohm, H; Kaschke, O

    2000-11-01

    We report the standardized postprocessing of high-resolution CT data acquired by incremental CT and multi-slice CT in patients with suspected middle ear disorders to generate three-dimensional endoluminal views known as virtual otoscopy. Subsequent to the definition of a postprocessing protocol, standardized endoluminal views of the middle ear were generated according to their otological relevance. The HRCT data sets of 26 ENT patients were transferred to a workstation and postprocessed to 52 virtual otoscopies. Generation of predefined endoluminal views from the HRCT data sets was possible in all patients. Virtual endoscopic views added meaningful information to the primary cross-sectional data in patients suffering from ossicular pathology, having contraindications for invasive tympanic endoscopy or being assessed for surgery of the tympanic cavity. Multi slice CT improved the visualization of subtle anatomic details such as the stapes suprastructure and reduced the scanning time. Virtual endoscopy allows for the non invasive endoluminal visualization of various tympanic lesions. Use of the multi-slice CT technique reduces the scanning time and improves image quality in terms of detail resolution.

  7. Preliminary Study of Realistic Blast Impact on Cultured Brain Slices

    DTIC Science & Technology

    2015-04-01

    and/or multiple impacts in water. 3. Experimental Setup 3.1 The Aquarium Setup A 30.5-cm by 34.5- × 65-cm water-filled polymethylmethacrylate ...sodium bicarbonate PAGE polyacrylamide gel electrophoresis PMMA polymethylmethacrylate RDECOM U.S. Army Research Development and Engineering Command

  8. Communication: Time- and space-sliced velocity map electron imaging

    NASA Astrophysics Data System (ADS)

    Lee, Suk Kyoung; Lin, Yun Fei; Lingenfelter, Steven; Fan, Lin; Winney, Alexander H.; Li, Wen

    2014-12-01

    We develop a new method to achieve slice electron imaging using a conventional velocity map imaging apparatus with two additional components: a fast frame complementary metal-oxide semiconductor camera and a high-speed digitizer. The setup was previously shown to be capable of 3D detection and coincidence measurements of ions. Here, we show that when this method is applied to electron imaging, a time slice of 32 ps and a spatial slice of less than 1 mm thick can be achieved. Each slice directly extracts 3D velocity distributions of electrons and provides electron velocity distributions that are impossible or difficult to obtain with a standard 2D imaging electron detector.

  9. Towards Gesture-Based Multi-User Interactions in Collaborative Virtual Environments

    NASA Astrophysics Data System (ADS)

    Pretto, N.; Poiesi, F.

    2017-11-01

    We present a virtual reality (VR) setup that enables multiple users to participate in collaborative virtual environments and interact via gestures. A collaborative VR session is established through a network of users that is composed of a server and a set of clients. The server manages the communication amongst clients and is created by one of the users. Each user's VR setup consists of a Head Mounted Display (HMD) for immersive visualisation, a hand tracking system to interact with virtual objects and a single-hand joypad to move in the virtual environment. We use Google Cardboard as a HMD for the VR experience and a Leap Motion for hand tracking, thus making our solution low cost. We evaluate our VR setup though a forensics use case, where real-world objects pertaining to a simulated crime scene are included in a VR environment, acquired using a smartphone-based 3D reconstruction pipeline. Users can interact using virtual gesture-based tools such as pointers and rulers.

  10. High-performance flat data center network architecture based on scalable and flow-controlled optical switching system

    NASA Astrophysics Data System (ADS)

    Calabretta, Nicola; Miao, Wang; Dorren, Harm

    2016-03-01

    Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.

  11. The Development of an Optically Active Laser Schlieren System with Application to High Pressure Solid Propellant Combustion.

    DTIC Science & Technology

    1975-09-01

    mass diffusion in the immediate region 13 wmmmm mm/mmn*****^^1 «•PIII^ BPP of the combustion zone remain major points of disagreement for many...setup (S2-2f2a S3 = 2f3 ) virtual image I • (9/2 f3 - i/2f2 ) — Fig.12 Virtual image setup(S2 =0.5 f2 aS3 = 3f3) 38 h v. / V image f + obje

  12. Geometry Processing of Conventionally Produced Mouse Brain Slice Images.

    PubMed

    Agarwal, Nitin; Xu, Xiangmin; Gopi, M

    2018-04-21

    Brain mapping research in most neuroanatomical laboratories relies on conventional processing techniques, which often introduce histological artifacts such as tissue tears and tissue loss. In this paper we present techniques and algorithms for automatic registration and 3D reconstruction of conventionally produced mouse brain slices in a standardized atlas space. This is achieved first by constructing a virtual 3D mouse brain model from annotated slices of Allen Reference Atlas (ARA). Virtual re-slicing of the reconstructed model generates ARA-based slice images corresponding to the microscopic images of histological brain sections. These image pairs are aligned using a geometric approach through contour images. Histological artifacts in the microscopic images are detected and removed using Constrained Delaunay Triangulation before performing global alignment. Finally, non-linear registration is performed by solving Laplace's equation with Dirichlet boundary conditions. Our methods provide significant improvements over previously reported registration techniques for the tested slices in 3D space, especially on slices with significant histological artifacts. Further, as one of the application we count the number of neurons in various anatomical regions using a dataset of 51 microscopic slices from a single mouse brain. To the best of our knowledge the presented work is the first that automatically registers both clean as well as highly damaged high-resolutions histological slices of mouse brain to a 3D annotated reference atlas space. This work represents a significant contribution to this subfield of neuroscience as it provides tools to neuroanatomist for analyzing and processing histological data. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Remote laboratories for optical metrology: from the lab to the cloud

    NASA Astrophysics Data System (ADS)

    Osten, W.; Wilke, M.; Pedrini, G.

    2012-10-01

    The idea of remote and virtual metrology has been reported already in 2000 with a conceptual illustration by use of comparative digital holography, aimed at the comparison of two nominally identical but physically different objects, e.g., master and sample, in industrial inspection processes. However, the concept of remote and virtual metrology can be extended far beyond this. For example, it does not only allow for the transmission of static holograms over the Internet, but also provides an opportunity to communicate with and eventually control the physical set-up of a remote metrology system. Furthermore, the metrology system can be modeled in the environment of a 3D virtual reality using CAD or similar technology, providing a more intuitive interface to the physical setup within the virtual world. An engineer or scientist who would like to access the remote real world system can log on to the virtual system, moving and manipulating the setup through an avatar and take the desired measurements. The real metrology system responds to the interaction between the avatar and the 3D virtual representation, providing a more intuitive interface to the physical setup within the virtual world. The measurement data are stored and interpreted automatically for appropriate display within the virtual world, providing the necessary feedback to the experimenter. Such a system opens up many novel opportunities in industrial inspection such as the remote master-sample-comparison and the virtual assembling of parts that are fabricated at different places. Moreover, a multitude of new techniques can be envisaged. To them belong modern ways for documenting, efficient methods for metadata storage, the possibility for remote reviewing of experimental results, the adding of real experiments to publications by providing remote access to the metadata and to the experimental setup via Internet, the presentation of complex experiments in classrooms and lecture halls, the sharing of expensive and complex infrastructure within international collaborations, the implementation of new ways for the remote test of new devices, for their maintenance and service, and many more. The paper describes the idea of remote laboratories and illustrates the potential of the approach on selected examples with special attention to optical metrology.

  14. Experimental demonstration of spectrum-sliced elastic optical path network (SLICE).

    PubMed

    Kozicki, Bartłomiej; Takara, Hidehiko; Tsukishima, Yukio; Yoshimatsu, Toshihide; Yonenaga, Kazushige; Jinno, Masahiko

    2010-10-11

    We describe experimental demonstration of spectrum-sliced elastic optical path network (SLICE) architecture. We employ optical orthogonal frequency-division multiplexing (OFDM) modulation format and bandwidth-variable optical cross-connects (OXC) to generate, transmit and receive optical paths with bandwidths of up to 1 Tb/s. We experimentally demonstrate elastic optical path setup and spectrally-efficient transmission of multiple channels with bit rates ranging from 40 to 140 Gb/s between six nodes of a mesh network. We show dynamic bandwidth scalability for optical paths with bit rates of 40 to 440 Gb/s. Moreover, we demonstrate multihop transmission of a 1 Tb/s optical path over 400 km of standard single-mode fiber (SMF). Finally, we investigate the filtering properties and the required guard band width for spectrally-efficient allocation of optical paths in SLICE.

  15. Coil compression in simultaneous multislice functional MRI with concentric ring slice-GRAPPA and SENSE.

    PubMed

    Chu, Alan; Noll, Douglas C

    2016-10-01

    Simultaneous multislice (SMS) imaging is a useful way to accelerate functional magnetic resonance imaging (fMRI). As acceleration becomes more aggressive, an increasingly larger number of receive coils are required to separate the slices, which significantly increases the computational burden. We propose a coil compression method that works with concentric ring non-Cartesian SMS imaging and should work with Cartesian SMS as well. We evaluate the method on fMRI scans of several subjects and compare it to standard coil compression methods. The proposed method uses a slice-separation k-space kernel to simultaneously compress coil data into a set of virtual coils. Five subjects were scanned using both non-SMS fMRI and SMS fMRI with three simultaneous slices. The SMS fMRI scans were processed using the proposed method, along with other conventional methods. Code is available at https://github.com/alcu/sms. The proposed method maintained functional activation with a fewer number of virtual coils than standard SMS coil compression methods. Compression of non-SMS fMRI maintained activation with a slightly lower number of virtual coils than the proposed method, but does not have the acceleration advantages of SMS fMRI. The proposed method is a practical way to compress and reconstruct concentric ring SMS data and improves the preservation of functional activation over standard coil compression methods in fMRI. Magn Reson Med 76:1196-1209, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. A Novel Computer-Based Set-Up to Study Movement Coordination in Human Ensembles

    PubMed Central

    Alderisio, Francesco; Lombardi, Maria; Fiore, Gianfranco; di Bernardo, Mario

    2017-01-01

    Existing experimental works on movement coordination in human ensembles mostly investigate situations where each subject is connected to all the others through direct visual and auditory coupling, so that unavoidable social interaction affects their coordination level. Here, we present a novel computer-based set-up to study movement coordination in human groups so as to minimize the influence of social interaction among participants and implement different visual pairings between them. In so doing, players can only take into consideration the motion of a designated subset of the others. This allows the evaluation of the exclusive effects on coordination of the structure of interconnections among the players in the group and their own dynamics. In addition, our set-up enables the deployment of virtual computer players to investigate dyadic interaction between a human and a virtual agent, as well as group synchronization in mixed teams of human and virtual agents. We show how this novel set-up can be employed to study coordination both in dyads and in groups over different structures of interconnections, in the presence as well as in the absence of virtual agents acting as followers or leaders. Finally, in order to illustrate the capabilities of the architecture, we describe some preliminary results. The platform is available to any researcher who wishes to unfold the mechanisms underlying group synchronization in human ensembles and shed light on its socio-psychological aspects. PMID:28649217

  17. [Simulation and data analysis of stereological modeling based on virtual slices].

    PubMed

    Wang, Hao; Shen, Hong; Bai, Xiao-yan

    2008-05-01

    To establish a computer-assisted stereological model for simulating the process of slice section and evaluate the relationship between section surface and estimated three-dimensional structure. The model was designed by mathematic method as a win32 software based on the MFC using Microsoft visual studio as IDE for simulating the infinite process of sections and analysis of the data derived from the model. The linearity of the fitting of the model was evaluated by comparison with the traditional formula. The win32 software based on this algorithm allowed random sectioning of the particles distributed randomly in an ideal virtual cube. The stereological parameters showed very high throughput (>94.5% and 92%) in homogeneity and independence tests. The data of density, shape and size of the section were tested to conform to normal distribution. The output of the model and that from the image analysis system showed statistical correlation and consistency. The algorithm we described can be used for evaluating the stereologic parameters of the structure of tissue slices.

  18. X-ray computed tomography for virtually unrolling damaged papyri

    NASA Astrophysics Data System (ADS)

    Allegra, Dario; Ciliberto, Enrico; Ciliberto, Paolo; Petrillo, Giuseppe; Stanco, Filippo; Trombatore, Claudia

    2016-03-01

    The regular format for ancient works of literature was the papyrus roll. Recently many efforts to perform virtual restoration of this archeological artifact have been done. In fact the case of ancient rolled papyrus is very intriguing. Old papyruses are the substrates of very important historical information, probably being the use of papyrus dated to the Pre-Dynastic Period. Papyrus degradation is often very hard so that physical unrolling is sometime absolutely impossible. In this paper, authors describe their effort in setting a new virtual restoration methodology based on software manipulation of X-ray tomographic images. A realistic model, obtained by painting a hieroglyph inscription of Thutmosis III on a papyrus substrate made by the original method described by Plinius the Elder and by pigments and binders compatible with the Egyptian use (ochers with natural glue), was made for the X-ray investigation. A GE Optima 660 64 slice was used to obtain a stack of tomographic slices of the rolled model. Each slice appears as spiral. The intensity variations along the cross-sectional result from ink on the papyrus. The files were elaborated with original software, written by the use of MATLAB high-level language, and the final result was quite similar to the radiography of the physically unrolled sheet.

  19. Mixed virtual reality simulation--taking endoscopic simulation one step further.

    PubMed

    Courteille, O; Felländer-Tsai, L; Hedman, L; Kjellin, A; Enochsson, L; Lindgren, G; Fors, U

    2011-01-01

    This pilot study aimed to assess medical students' appraisals of a "mixed" virtual reality simulation for endoscopic surgery (with a virtual patient case in addition to a virtual colonoscopy) as well as the impact of this simulation set-up on students' performance. Findings indicate that virtual patients can enhance contextualization of simulated endoscopy and thus facilitate an authentic learning environment, which is important in order to increase motivation.

  20. Large-Scale Networked Virtual Environments: Architecture and Applications

    ERIC Educational Resources Information Center

    Lamotte, Wim; Quax, Peter; Flerackers, Eddy

    2008-01-01

    Purpose: Scalability is an important research topic in the context of networked virtual environments (NVEs). This paper aims to describe the ALVIC (Architecture for Large-scale Virtual Interactive Communities) approach to NVE scalability. Design/methodology/approach: The setup and results from two case studies are shown: a 3-D learning environment…

  1. Slicing of silicon into sheet material. Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Holden, S. C.; Fleming, J. R.

    1978-01-01

    Fabrication of a prototype large capacity multiple blade slurry saw is considered. Design of the bladehead which will tension up to 1000 blades, and cut a 45 cm long silicon ingot as large as 12 cm in diameter is given. The large blade tensioning force of 270,000 kg is applied through two bolts acting on a pair of scissor toggles, significantly reducing operator set-up time. Tests with an upside-down cutting technique resulted in 100% wafering yields and the highest wafer accuracy yet experienced with MS slicing. Variations in oil and abrasives resulted only in degraded slicing results. A technique of continuous abrasive slurry separation to remove silicon debris is described.

  2. Sixteen-slice multidetector computed tomographic virtual cystoscopy in the evaluation of a patient with suspected bladder tumor and history of bladder carcinoma operation.

    PubMed

    Basak, Muzaffer; Ozkurt, Huseyin; Tanriverdi, Orhan; Cay, Esra; Aydin, Mustafa; Miroglu, Cengiz

    2009-01-01

    The purpose of this study was to evaluate the use of virtual cystoscopy performed with multidetector computed tomography (CT) in patients with suspected bladder tumors and histories of bladder carcinoma operation. Thirty-six patients (29 men and 7 women) with a mean age of 66 years (range, 24-88 years) with suspected bladder tumors and histories of bladder carcinoma operation were included in this prospective study. Virtual cystoscopy was performed by 16-slice multidetector CT scanner. The bladder was filled with diluted contrast material solution through a Foley catheter. Then, all patients underwent conventional cystoscopy examination. Two reviewers found 18 lesions detected by virtual cystoscopy by consensus, whereas 19 lesions were depicted by conventional cystoscopy. At virtual and conventional cystoscopies, the conditions of 3 patients, 2 with chronic inflammations and 1 with foreign body reaction, were wrongly diagnosed as tumors. At conventional cystoscopy, one patient's result was wrongly interpreted as normal. In pathologic evaluation, all tumors were diagnosed as transitional cell carcinoma. Bladder tumor can be noninvasively diagnosed using virtual cystoscopy. Use of virtual cystoscopy should be considered inpatients who present with hematuria or have histories of bladder carcinoma operation and are for follow-up because of its lesser complication risk and its being a less invasive, easily applied procedure without need of anesthesia. In the future, owing to the development of the CT technology and image processing technique, virtual cystoscopy may have a part in the detection of bladder cancer.

  3. [Virtual bronchoscopy in the child using multi-slice CT: initial clinical experiences].

    PubMed

    Kirchner, J; Laufer, U; Jendreck, M; Kickuth, R; Schilling, E M; Liermann, D

    2000-01-01

    Virtual bronchoscopy of the pediatric patient has been reported to be more difficult because of artifacts due to breathing or motion. We demonstrate the benefit of the accelerated examination based on multislice spiral CT (MSCT) in the pediatric patient which has not been reported so far. MSCT (tube voltage 120 kV, tube current 110 mA, 4 x 1 mm Slice thickness, 500 ms rotation time, Pitch 6) was performed on a CT scanner of the latest generation (Volume Zoom, Siemens Corp. Forchheim, Germany). In totally we examined 11 patients (median age 48 months, range 2-122 months) suspected of having tracheoesophageal fistula (n = 2), tracheobronchial narrowing (n = 8) due to intrinsic or extrinsic factors or injury of the bronchial system (n = 1). In all patients we obtained sufficient data for 3D reconstruction avoiding general anesthesia. 6/11 examinations were described to be without pathological finding. A definite diagnosis was obtained in 10 patients. Virtual bronchoscopy could avoid other invasive diagnostic examination in 8/11 patients (73%). Helical CT provides 3D-reconstruction and virtual bronchoscopy in the newborn as well as the infant. It avoids additional diagnostic bronchoscopy in a high percentage of all cases.

  4. [The virtual reality simulation research of China Mechanical Virtual Human based on the Creator/Vega].

    PubMed

    Wei, Gaofeng; Tang, Gang; Fu, Zengliang; Sun, Qiuming; Tian, Feng

    2010-10-01

    The China Mechanical Virtual Human (CMVH) is a human musculoskeletal biomechanical simulation platform based on China Visible Human slice images; it has great realistic application significance. In this paper is introduced the construction method of CMVH 3D models. Then a simulation system solution based on Creator/Vega is put forward for the complex and gigantic data characteristics of the 3D models. At last, combined with MFC technology, the CMVH simulation system is developed and a running simulation scene is given. This paper provides a new way for the virtual reality application of CMVH.

  5. Possible applications of the LEAP motion controller for more interactive simulated experiments in augmented or virtual reality

    NASA Astrophysics Data System (ADS)

    Wozniak, Peter; Vauderwange, Oliver; Mandal, Avikarsha; Javahiraly, Nicolas; Curticapean, Dan

    2016-09-01

    Practical exercises are a crucial part of many curricula. Even simple exercises can improve the understanding of the underlying subject. Most experimental setups require special hardware. To carry out e. g. a lens experiments the students need access to an optical bench, various lenses, light sources, apertures and a screen. In our previous publication we demonstrated the use of augmented reality visualization techniques in order to let the students prepare with a simulated experimental setup. Within the context of our intended blended learning concept we want to utilize augmented or virtual reality techniques for stationary laboratory exercises. Unlike applications running on mobile devices, stationary setups can be extended more easily with additional interfaces and thus allow for more complex interactions and simulations in virtual reality (VR) and augmented reality (AR). The most significant difference is the possibility to allow interactions beyond touching a screen. The LEAP Motion controller is a small inexpensive device that allows for the tracking of the user's hands and fingers in three dimensions. It is conceivable to allow the user to interact with the simulation's virtual elements by the user's very hand position, movement and gesture. In this paper we evaluate possible applications of the LEAP Motion controller for simulated experiments in augmented and virtual reality. We pay particular attention to the devices strengths and weaknesses and want to point out useful and less useful application scenarios.

  6. Creating Virtual-hand and Virtual-face Illusions to Investigate Self-representation

    PubMed Central

    Ma, Ke; Lippelt, Dominique P.; Hommel, Bernhard

    2017-01-01

    Studies investigating how people represent themselves and their own body often use variants of "ownership illusions", such as the traditional rubber-hand illusion or the more recently discovered enfacement illusion. However, these examples require rather artificial experimental setups, in which the artificial effector needs to be stroked in synchrony with the participants' real hand or face—a situation in which participants have no control over the stroking or the movements of their real or artificial effector. Here, we describe a technique to establish ownership illusions in a setup that is more realistic, more intuitive, and of presumably higher ecological validity. It allows creating the virtual-hand illusion by having participants control the movements of a virtual hand presented on a screen or in virtual space in front of them. If the virtual hand moves in synchrony with the participants' own real hand, they tend to perceive the virtual hand as part of their own body. The technique also creates the virtual-face illusion by having participants control the movements of a virtual face in front of them, again with the effect that they tend to perceive the face as their own if it moves in synchrony with their real face. Studying the circumstances that illusions of this sort can be created, increased, or reduced provides important information about how people create and maintain representations of themselves. PMID:28287602

  7. An overview of 5G network slicing architecture

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Wang, Xiaolei; Lv, Yingying

    2018-05-01

    With the development of mobile communication technology, the traditional single network model has been unable to meet the needs of users, and the demand for differentiated services is increasing. In order to solve this problem, the fifth generation of mobile communication technology came into being, and as one of the key technologies of 5G, network slice is the core technology of network virtualization and software defined network, enabling network slices to flexibly provide one or more network services according to users' needs[1]. Each slice can independently tailor the network functions according to the requirements of the business scene and the traffic model and manage the layout of the corresponding network resources, to improve the flexibility of network services and the utilization of resources, and enhance the robustness and reliability of the whole network [2].

  8. Virtual tissue alignment and cutting plane definition – a new method to obtain optimal longitudinal histological sections

    PubMed Central

    Danz, J C; Habegger, M; Bosshardt, D D; Katsaros, C; Stavropoulos, A

    2014-01-01

    Histomorphometric evaluation of the buccal aspects of periodontal tissues in rodents requires reproducible alignment of maxillae and highly precise sections containing central sections of buccal roots; this is a cumbersome and technically sensitive process due to the small specimen size. The aim of the present report is to describe and analyze a method to transfer virtual sections of micro-computer tomographic (CT)-generated image stacks to the microtome for undecalcified histological processing and to describe the anatomy of the periodontium in rat molars. A total of 84 undecalcified sections of all buccal roots of seven untreated rats was analyzed. The accuracy of section coordinate transfer from virtual micro-CT slice to the histological slice, right–left side differences and the measurement error for linear and angular measurements on micro-CT and on histological micrographs were calculated using the Bland–Altman method, interclass correlation coefficient and the method of moments estimator. Also, manual alignment of the micro-CT-scanned rat maxilla was compared with multiplanar computer-reconstructed alignment. The supra alveolar rat anatomy is rather similar to human anatomy, whereas the alveolar bone is of compact type and the keratinized gingival epithelium bends apical to join the junctional epithelium. The high methodological standardization presented herein ensures retrieval of histological slices with excellent display of anatomical microstructures, in a reproducible manner, minimizes random errors, and thereby may contribute to the reduction of number of animals needed. PMID:24266502

  9. Separation of parallel encoded complex-valued slices (SPECS) from a single complex-valued aliased coil image.

    PubMed

    Rowe, Daniel B; Bruce, Iain P; Nencka, Andrew S; Hyde, James S; Kociuba, Mary C

    2016-04-01

    Achieving a reduction in scan time with minimal inter-slice signal leakage is one of the significant obstacles in parallel MR imaging. In fMRI, multiband-imaging techniques accelerate data acquisition by simultaneously magnetizing the spatial frequency spectrum of multiple slices. The SPECS model eliminates the consequential inter-slice signal leakage from the slice unaliasing, while maintaining an optimal reduction in scan time and activation statistics in fMRI studies. When the combined k-space array is inverse Fourier reconstructed, the resulting aliased image is separated into the un-aliased slices through a least squares estimator. Without the additional spatial information from a phased array of receiver coils, slice separation in SPECS is accomplished with acquired aliased images in shifted FOV aliasing pattern, and a bootstrapping approach of incorporating reference calibration images in an orthogonal Hadamard pattern. The aliased slices are effectively separated with minimal expense to the spatial and temporal resolution. Functional activation is observed in the motor cortex, as the number of aliased slices is increased, in a bilateral finger tapping fMRI experiment. The SPECS model incorporates calibration reference images together with coefficients of orthogonal polynomials into an un-aliasing estimator to achieve separated images, with virtually no residual artifacts and functional activation detection in separated images. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Rehabilitation of Visual and Perceptual Dysfunction After Severe Traumatic Brain Injury

    DTIC Science & Technology

    2012-03-26

    about this amount. 10 C. Collision judgments in  virtual  mall walking simulator The virtual mall is a virtual reality model of a real shopping...expanded vision from the prisms (Figure 5b). Figure 4. Illustration of the virtual reality mall set-up and collision judgment task. Participants...1 AD_________________ Award Number: W81XWH-11-2-0082 TITLE: Rehabilitation of Visual and Perceptual Dysfunction after Severe

  11. Radiological tele-immersion for next generation networks.

    PubMed

    Ai, Z; Dech, F; Rasmussen, M; Silverstein, J C

    2000-01-01

    Since the acquisition of high-resolution three-dimensional patient images has become widespread, medical volumetric datasets (CT or MR) larger than 100 MB and encompassing more than 250 slices are common. It is important to make this patient-specific data quickly available and usable to many specialists at different geographical sites. Web-based systems have been developed to provide volume or surface rendering of medical data over networks with low fidelity, but these cannot adequately handle stereoscopic visualization or huge datasets. State-of-the-art virtual reality techniques and high speed networks have made it possible to create an environment for clinicians geographically distributed to immersively share these massive datasets in real-time. An object-oriented method for instantaneously importing medical volumetric data into Tele-Immersive environments has been developed at the Virtual Reality in Medicine Laboratory (VRMedLab) at the University of Illinois at Chicago (UIC). This networked-VR setup is based on LIMBO, an application framework or template that provides the basic capabilities of Tele-Immersion. We have developed a modular general purpose Tele-Immersion program that automatically combines 3D medical data with the methods for handling the data. For this purpose a DICOM loader for IRIS Performer has been developed. The loader was designed for SGI machines as a shared object, which is executed at LIMBO's runtime. The loader loads not only the selected DICOM dataset, but also methods for rendering, handling, and interacting with the data, bringing networked, real-time, stereoscopic interaction with radiological data to reality. Collaborative, interactive methods currently implemented in the loader include cutting planes and windowing. The Tele-Immersive environment has been tested on the UIC campus over an ATM network. We tested the environment with 3 nodes; one ImmersaDesk at the VRMedLab, one CAVE at the Electronic Visualization Laboratory (EVL) on east campus, and a CT scan machine in UIC Hospital. CT data was pulled directly from the scan machine to the Tele-Immersion server in our Laboratory, and then the data was synchronously distributed by our Onyx2 Rack server to all the VR setups. Instead of permitting medical volume visualization at one VR device, by combining teleconferencing, tele-presence, and virtual reality, the Tele-Immersive environment will enable geographically distributed clinicians to intuitively interact with the same medical volumetric models, point, gesture, converse, and see each other. This environment will bring together clinicians at different geographic locations to participate in Tele-Immersive consultation and collaboration.

  12. A Case-Based Study with Radiologists Performing Diagnosis Tasks in Virtual Reality.

    PubMed

    Venson, José Eduardo; Albiero Berni, Jean Carlo; Edmilson da Silva Maia, Carlos; Marques da Silva, Ana Maria; Cordeiro d'Ornellas, Marcos; Maciel, Anderson

    2017-01-01

    In radiology diagnosis, medical images are most often visualized slice by slice. At the same time, the visualization based on 3D volumetric rendering of the data is considered useful and has increased its field of application. In this work, we present a case-based study with 16 medical specialists to assess the diagnostic effectiveness of a Virtual Reality interface in fracture identification over 3D volumetric reconstructions. We developed a VR volume viewer compatible with both the Oculus Rift and handheld-based head mounted displays (HMDs). We then performed user experiments to validate the approach in a diagnosis environment. In addition, we assessed the subjects' perception of the 3D reconstruction quality, ease of interaction and ergonomics, and also the users opinion on how VR applications can be useful in healthcare. Among other results, we have found a high level of effectiveness of the VR interface in identifying superficial fractures on head CTs.

  13. Networked Experiments and Scientific Resource Sharing in Cooperative Knowledge Spaces

    ERIC Educational Resources Information Center

    Cikic, Sabine; Jeschke, Sabina; Ludwig, Nadine; Sinha, Uwe; Thomsen, Christian

    2007-01-01

    Cooperative knowledge spaces create new potentials for the experimental fields in natural sciences and engineering because they enhance the accessibility of experimental setups through virtual laboratories and remote technology, opening them for collaborative and distributed usage. A concept for extending existing virtual knowledge spaces for the…

  14. Initial experience in treating lung cancer with helical tomotherapy

    PubMed Central

    Yartsev, S; Dar, AR; Woodford, C; Wong, E; Bauman, G; Van Dyk, J

    2007-01-01

    Helical tomotherapy is a new form of image-guided radiation therapy that combines features of a linear accelerator and a helical computed tomography (CT) scanner. Megavoltage CT (MVCT) data allow the verification and correction of patient setup on the couch by comparison and image registration with the kilovoltage CT multi-slice images used for treatment planning. An 84-year-old male patient with Stage III bulky non-small cell lung cancer was treated on a Hi-ART II tomotherapy unit. Daily MVCT imaging was useful for setup corrections and signaled the need to adapt the delivery plan when the patient’s anatomy changed significantly. PMID:21614260

  15. Virtual reality systems for rodents

    PubMed Central

    Ayaz, Aslı

    2017-01-01

    Abstract Over the last decade virtual reality (VR) setups for rodents have been developed and utilized to investigate the neural foundations of behavior. Such VR systems became very popular since they allow the use of state-of-the-art techniques to measure neural activity in behaving rodents that cannot be easily used with classical behavior setups. Here, we provide an overview of rodent VR technologies and review recent results from related research. We discuss commonalities and differences as well as merits and issues of different approaches. A special focus is given to experimental (behavioral) paradigms in use. Finally we comment on possible use cases that may further exploit the potential of VR in rodent research and hence inspire future studies. PMID:29491968

  16. Virtual Slice Through Icy Layered Deposits Near Mars South Pole

    NASA Image and Video Library

    2007-03-15

    The upper image is a radargram showing data from the subsurface of Mars in the ice-rich layered deposits that surround the south pole. The lower image shows the position of the ground track white line on a topographic map

  17. A new imaging method for understanding chemical dynamics: efficient slice imaging using an in-vacuum pixel detector.

    PubMed

    Jungmann, J H; Gijsbertsen, A; Visser, J; Visschers, J; Heeren, R M A; Vrakking, M J J

    2010-10-01

    The implementation of the Timepix complementary metal oxide semiconductor pixel detector in velocity map slice imaging is presented. This new detector approach eliminates the need for gating the imaging detector. In time-of-flight mode, the detector returns the impact position and the time-of-flight of charged particles with 12.5 ns resolution and a dynamic range of about 100 μs. The implementation of the Timepix detector in combination with a microchannel plate additionally allows for high spatial resolution information via center-of-mass centroiding. Here, the detector was applied to study the photodissociation of NO(2) at 452 nm. The energy resolution observed in the experiment was ΔE/E=0.05 and is limited by the experimental setup rather than by the detector assembly. All together, this new compact detector assembly is well-suited for slice imaging and is a promising tool for imaging studies in atomic and molecular physics research.

  18. Anatomical education and surgical simulation based on the Chinese Visible Human: a three-dimensional virtual model of the larynx region.

    PubMed

    Liu, Kaijun; Fang, Binji; Wu, Yi; Li, Ying; Jin, Jun; Tan, Liwen; Zhang, Shaoxiang

    2013-09-01

    Anatomical knowledge of the larynx region is critical for understanding laryngeal disease and performing required interventions. Virtual reality is a useful method for surgical education and simulation. Here, we assembled segmented cross-section slices of the larynx region from the Chinese Visible Human dataset. The laryngeal structures were precisely segmented manually as 2D images, then reconstructed and displayed as 3D images in the virtual reality Dextrobeam system. Using visualization and interaction with the virtual reality modeling language model, a digital laryngeal anatomy instruction was constructed using HTML and JavaScript languages. The volume larynx models can thus display an arbitrary section of the model and provide a virtual dissection function. This networked teaching system of the digital laryngeal anatomy can be read remotely, displayed locally, and manipulated interactively.

  19. [Preparation of simulate craniocerebral models via three dimensional printing technique].

    PubMed

    Lan, Q; Chen, A L; Zhang, T; Zhu, Q; Xu, T

    2016-08-09

    Three dimensional (3D) printing technique was used to prepare the simulate craniocerebral models, which were applied to preoperative planning and surgical simulation. The image data was collected from PACS system. Image data of skull bone, brain tissue and tumors, cerebral arteries and aneurysms, and functional regions and relative neural tracts of the brain were extracted from thin slice scan (slice thickness 0.5 mm) of computed tomography (CT), magnetic resonance imaging (MRI, slice thickness 1mm), computed tomography angiography (CTA), and functional magnetic resonance imaging (fMRI) data, respectively. MIMICS software was applied to reconstruct colored virtual models by identifying and differentiating tissues according to their gray scales. Then the colored virtual models were submitted to 3D printer which produced life-sized craniocerebral models for surgical planning and surgical simulation. 3D printing craniocerebral models allowed neurosurgeons to perform complex procedures in specific clinical cases though detailed surgical planning. It offered great convenience for evaluating the size of spatial fissure of sellar region before surgery, which helped to optimize surgical approach planning. These 3D models also provided detailed information about the location of aneurysms and their parent arteries, which helped surgeons to choose appropriate aneurismal clips, as well as perform surgical simulation. The models further gave clear indications of depth and extent of tumors and their relationship to eloquent cortical areas and adjacent neural tracts, which were able to avoid surgical damaging of important neural structures. As a novel and promising technique, the application of 3D printing craniocerebral models could improve the surgical planning by converting virtual visualization into real life-sized models.It also contributes to functional anatomy study.

  20. Big Data Analytics Test Bed

    DTIC Science & Technology

    2013-09-01

    25 2. Backend Database Support ...............................................................25 3. Installing...29 A. SETUP VIRTUAL INFRASTRUCTURE ...................................................29 B...59 APPENDIX F. INSTALLING AND CONFIGURING BACKEND DATABASE SUPPORT FOR VCENTER

  1. Helical CT scan with 2D and 3D reconstructions and virtual endoscopy versus conventional endoscopy in the assessment of airway disease in neonates, infants and children.

    PubMed

    Yunus, Mahira

    2012-11-01

    To study the use of helical computed tomography 2-D and 3-D images, and virtual endoscopy in the evaluation of airway disease in neonates, infants and children and its value in lesion detection, characterisation and extension. Conducted at Al-Noor Hospital, Makkah, Saudi Arabia, from January 1 to June 30, 2006, the study comprised of 40 patients with strider, having various causes of airway obstruction. They were examined by helical CT scan with 2-D and 3-D reconstructions and virtual endoscopy. The level and characterisation of lesions were carried out and results were compared with actual endoscopic findings. Conventional endoscopy was chosen as the gold standard, and the evaluation of endoscopy was done in terms of sensitivity and specificity of the procedure. For statistical purposes, SPSS version 10 was used. All CT methods detected airway stenosis or obstruction. Accuracy was 98% (n=40) for virtual endoscopy, 96% (n=48) for 3-D external rendering, 90% (n=45) for multiplanar reconstructions and 86% (n=43) for axial images. Comparing the results of 3-D internal and external volume rendering images with conventional endoscopy for detection and grading of stenosis were closer than with 2-D minimum intensity multiplanar reconstruction and axial CT slices. Even high-grade stenosis could be evaluated with virtual endoscope through which conventional endoscope cannot be passed. A case of 4-year-old patient with tracheomalacia could not be diagnosed by helical CT scan and virtual bronchoscopy which was diagriosed on conventional endoscopy and needed CT scan in inspiration and expiration. Virtual endoscopy [VE] enabled better assessment of stenosis compared to the reading of 3-D external rendering, 2-D multiplanar reconstruction [MPR] or axial slices. It can replace conventional endoscopy in the assessment of airway disease without any additional risk.

  2. Image quality characteristics for virtual monoenergetic images using dual-layer spectral detector CT: Comparison with conventional tube-voltage images.

    PubMed

    Sakabe, Daisuke; Funama, Yoshinori; Taguchi, Katsuyuki; Nakaura, Takeshi; Utsunomiya, Daisuke; Oda, Seitaro; Kidoh, Masafumi; Nagayama, Yasunori; Yamashita, Yasuyuki

    2018-05-01

    To investigate the image quality characteristics for virtual monoenergetic images compared with conventional tube-voltage image with dual-layer spectral CT (DLCT). Helical scans were performed using a first-generation DLCT scanner, two different sizes of acrylic cylindrical phantoms, and a Catphan phantom. Three different iodine concentrations were inserted into the phantom center. The single-tube voltage for obtaining virtual monoenergetic images was set to 120 or 140 kVp. Conventional 120- and 140-kVp images and virtual monoenergetic images (40-200-keV images) were reconstructed from slice thicknesses of 1.0 mm. The CT number and image noise were measured for each iodine concentration and water on the 120-kVp images and virtual monoenergetic images. The noise power spectrum (NPS) was also calculated. The iodine CT numbers for the iodinated enhancing materials were similar regardless of phantom size and acquisition method. Compared with the iodine CT numbers of the conventional 120-kVp images, those for the monoenergetic 40-, 50-, and 60-keV images increased by approximately 3.0-, 1.9-, and 1.3-fold, respectively. The image noise values for each virtual monoenergetic image were similar (for example, 24.6 HU at 40 keV and 23.3 HU at 200 keV obtained at 120 kVp and 30-cm phantom size). The NPS curves of the 70-keV and 120-kVp images for a 1.0-mm slice thickness over the entire frequency range were similar. Virtual monoenergetic images represent stable image noise over the entire energy spectrum and improved the contrast-to-noise ratio than conventional tube voltage using the dual-layer spectral detector CT. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Development of Data Acquisition Set-up for Steady-state Experiments

    NASA Astrophysics Data System (ADS)

    Srivastava, Amit K.; Gupta, Arnab D.; Sunil, S.; Khan, Ziauddin

    2017-04-01

    For short duration experiments, generally digitized data is transferred for processing and storage after the experiment whereas in case of steady-state experiment the data is acquired, processed, displayed and stored continuously in pipelined manner. This requires acquiring data through special techniques for storage and on-the-go viewing data to display the current data trends for various physical parameters. A small data acquisition set-up is developed for continuously acquiring signals from various physical parameters at different sampling rate for long duration experiment. This includes the hardware set-up for signal digitization, Field Programmable Gate Arrays (FPGA) based timing system for clock synchronization and event/trigger distribution, time slicing of data streams for storage of data chunks to enable viewing of data during acquisition and channel profile display through down sampling etc. In order to store a long data stream of indefinite/long time duration, the data stream is divided into data slices/chunks of user defined time duration. Data chunks avoid the problem of non-access of server data until the channel data file is closed at the end of the long duration experiment. A graphical user interface has been developed in Lab VIEW application development environment for configuring the data acquisition hardware and storing data chunks on local machine as well as at remote data server through Python for further data access. The data plotting and analysis utilities have been developed with Python software, which provides tools for further data processing. This paper describes the development and implementation of data acquisition for steady-state experiment.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moura, Eduardo S., E-mail: emoura@wisc.edu; Micka, John A.; Hammer, Cliff G.

    Purpose: This work presents the development of a phantom to verify the treatment planning system (TPS) algorithms used for high-dose-rate (HDR) brachytherapy. It is designed to measure the relative dose in a heterogeneous media. The experimental details used, simulation methods, and comparisons with a commercial TPS are also provided. Methods: To simulate heterogeneous conditions, four materials were used: Virtual Water™ (VM), BR50/50™, cork, and aluminum. The materials were arranged in 11 heterogeneity configurations. Three dosimeters were used to measure the relative response from a HDR {sup 192}Ir source: TLD-100™, Gafchromic{sup ®} EBT3 film, and an Exradin™ A1SL ionization chamber. Tomore » compare the results from the experimental measurements, the various configurations were modeled in the PENELOPE/penEasy Monte Carlo code. Images of each setup geometry were acquired from a CT scanner and imported into BrachyVision™ TPS software, which includes a grid-based Boltzmann solver Acuros™. The results of the measurements performed in the heterogeneous setups were normalized to the dose values measured in the homogeneous Virtual Water™ setup and the respective differences due to the heterogeneities were considered. Additionally, dose values calculated based on the American Association of Physicists in Medicine-Task Group 43 formalism were compared to dose values calculated with the Acuros™ algorithm in the phantom. Calculated doses were compared at the same points, where measurements have been performed. Results: Differences in the relative response as high as 11.5% were found from the homogeneous setup when the heterogeneous materials were inserted into the experimental phantom. The aluminum and cork materials produced larger differences than the plastic materials, with the BR50/50™ material producing results similar to the Virtual Water™ results. Our experimental methods agree with the PENELOPE/penEasy simulations for most setups and dosimeters. The TPS relative differences with the Acuros™ algorithm were similar in both experimental and simulated setups. The discrepancy between the BrachyVision™, Acuros™, and TG-43 dose responses in the phantom described by this work exceeded 12% for certain setups. Conclusions: The results derived from the phantom measurements show good agreement with the simulations and TPS calculations, using Acuros™ algorithm. Differences in the dose responses were evident in the experimental results when heterogeneous materials were introduced. These measurements prove the usefulness of the heterogeneous phantom for verification of HDR treatment planning systems based on model-based dose calculation algorithms.« less

  5. Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360° Panoramas, and Virtual Reality.

    PubMed

    Higuera-Trujillo, Juan Luis; López-Tarruella Maldonado, Juan; Llinares Millán, Carmen

    2017-11-01

    Psychological research into human factors frequently uses simulations to study the relationship between human behaviour and the environment. Their validity depends on their similarity with the physical environments. This paper aims to validate three environmental-simulation display formats: photographs, 360° panoramas, and virtual reality. To do this we compared the psychological and physiological responses evoked by simulated environments set-ups to those from a physical environment setup; we also assessed the users' sense of presence. Analysis show that 360° panoramas offer the closest to reality results according to the participants' psychological responses, and virtual reality according to the physiological responses. Correlations between the feeling of presence and physiological and other psychological responses were also observed. These results may be of interest to researchers using environmental-simulation technologies currently available in order to replicate the experience of physical environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dynamic provisioning of a HEP computing infrastructure on a shared hybrid HPC system

    NASA Astrophysics Data System (ADS)

    Meier, Konrad; Fleig, Georg; Hauth, Thomas; Janczyk, Michael; Quast, Günter; von Suchodoletz, Dirk; Wiebelt, Bernd

    2016-10-01

    Experiments in high-energy physics (HEP) rely on elaborate hardware, software and computing systems to sustain the high data rates necessary to study rare physics processes. The Institut fr Experimentelle Kernphysik (EKP) at KIT is a member of the CMS and Belle II experiments, located at the LHC and the Super-KEKB accelerators, respectively. These detectors share the requirement, that enormous amounts of measurement data must be processed and analyzed and a comparable amount of simulated events is required to compare experimental results with theoretical predictions. Classical HEP computing centers are dedicated sites which support multiple experiments and have the required software pre-installed. Nowadays, funding agencies encourage research groups to participate in shared HPC cluster models, where scientist from different domains use the same hardware to increase synergies. This shared usage proves to be challenging for HEP groups, due to their specialized software setup which includes a custom OS (often Scientific Linux), libraries and applications. To overcome this hurdle, the EKP and data center team of the University of Freiburg have developed a system to enable the HEP use case on a shared HPC cluster. To achieve this, an OpenStack-based virtualization layer is installed on top of a bare-metal cluster. While other user groups can run their batch jobs via the Moab workload manager directly on bare-metal, HEP users can request virtual machines with a specialized machine image which contains a dedicated operating system and software stack. In contrast to similar installations, in this hybrid setup, no static partitioning of the cluster into a physical and virtualized segment is required. As a unique feature, the placement of the virtual machine on the cluster nodes is scheduled by Moab and the job lifetime is coupled to the lifetime of the virtual machine. This allows for a seamless integration with the jobs sent by other user groups and honors the fairshare policies of the cluster. The developed thin integration layer between OpenStack and Moab can be adapted to other batch servers and virtualization systems, making the concept also applicable for other cluster operators. This contribution will report on the concept and implementation of an OpenStack-virtualized cluster used for HEP workflows. While the full cluster will be installed in spring 2016, a test-bed setup with 800 cores has been used to study the overall system performance and dedicated HEP jobs were run in a virtualized environment over many weeks. Furthermore, the dynamic integration of the virtualized worker nodes, depending on the workload at the institute's computing system, will be described.

  7. Control performance of a road vehicle with four independent single-wheel electric motors and steer-by-wire system

    NASA Astrophysics Data System (ADS)

    Weiskircher, Thomas; Müller, Steffen

    2012-01-01

    This article presents a motion controller for a road vehicle equipped with a steer-by-wire system and four independent electric rim-mounted drives. The motion controller separates the control law from the specific actuator setup by the usage of virtual global control variables acting on the vehicle centre of gravity. A control allocation algorithm distributes the virtual control variables to the available actuators. An approximation of the real actuator dynamics is used to analyse the performance of different motion controller types in the linear and nonlinear driving regions. In addition, a vehicle state observer consisting of a traction force observer and an unscented Kalman filter is discussed to analyse the control behaviour in the case of a real sensor setup.

  8. Integrating 3D facial scanning in a digital workflow to CAD/CAM design and fabricate complete dentures for immediate total mouth rehabilitation

    PubMed Central

    Greven, Marcus; Wismeijer, Daniel

    2017-01-01

    PURPOSE To integrate extra-oral facial scanning information with CAD/CAM complete dentures to immediately rehabilitate terminal dentition. MATERIALS AND METHODS Ten patients with terminal dentition scheduled for total extraction and immediate denture placement were recruited for this study. The patients were submitted to a facial scanning procedure using the in-office PritiMirror scanner with bite registration records in-situ. Definitive stone cast models and bite records were subsequently submitted to a lab scanning procedure using the lab scanner (iSeries DWOS; Dental Wings). The scanned models were used to create a virtual teeth setup of a complete denture. Using the intra-oral bite records as a reference, the virtual setup was incorporated in the facial scan thereby facilitating a virtual clinical evaluation (teeth try-in) phase. After applying necessary adjustments, the virtual setup was submitted to a CAM procedure where a 5-axis industrial milling machine (M7 CNC; Darton AG General) was used to fabricate a full-milled PMMA immediate provisional prosthesis. RESULTS Total extractions were performed, the dentures were immediately inserted, and subjective clinical fit was evaluated. The immediate provisional prostheses were inserted and clinical fit, occlusion/articulation, and esthetics were subjectively assessed; the results were deemed satisfactory. All provisional prostheses remained three months in function with no notable technical complications. CONCLUSION Ten patients with terminal dentition were treated using a complete digital approach to fabricate complete dentures using CAD/CAM technology. The proposed technique has the potential to accelerate the rehabilitation procedure starting from immediate denture to final implant-supported prosthesis leading to more predictable functional and aesthetics outcomes. PMID:29142646

  9. Planning Image-Based Measurements in Wind Tunnels by Virtual Imaging

    NASA Technical Reports Server (NTRS)

    Kushner, Laura Kathryn; Schairer, Edward T.

    2011-01-01

    Virtual imaging is routinely used at NASA Ames Research Center to plan the placement of cameras and light sources for image-based measurements in production wind tunnel tests. Virtual imaging allows users to quickly and comprehensively model a given test situation, well before the test occurs, in order to verify that all optical testing requirements will be met. It allows optimization of the placement of cameras and light sources and leads to faster set-up times, thereby decreasing tunnel occupancy costs. This paper describes how virtual imaging was used to plan optical measurements for three tests in production wind tunnels at NASA Ames.

  10. Virtual k -Space Modulation Optical Microscopy

    NASA Astrophysics Data System (ADS)

    Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Zheng, Guoan; Fang, Yue; Xu, Yingke; Liu, Xu; So, Peter T. C.

    2016-07-01

    We report a novel superresolution microscopy approach for imaging fluorescence samples. The reported approach, termed virtual k -space modulation optical microscopy (VIKMOM), is able to improve the lateral resolution by a factor of 2, reduce the background level, improve the optical sectioning effect and correct for unknown optical aberrations. In the acquisition process of VIKMOM, we used a scanning confocal microscope setup with a 2D detector array to capture sample information at each scanned x -y position. In the recovery process of VIKMOM, we first modulated the captured data by virtual k -space coding and then employed a ptychography-inspired procedure to recover the sample information and correct for unknown optical aberrations. We demonstrated the performance of the reported approach by imaging fluorescent beads, fixed bovine pulmonary artery endothelial (BPAE) cells, and living human astrocytes (HA). As the VIKMOM approach is fully compatible with conventional confocal microscope setups, it may provide a turn-key solution for imaging biological samples with ˜100 nm lateral resolution, in two or three dimensions, with improved optical sectioning capabilities and aberration correcting.

  11. Virtualisation Devices for Student Learning: Comparison between Desktop-Based (Oculus Rift) and Mobile-Based (Gear VR) Virtual Reality in Medical and Health Science Education

    ERIC Educational Resources Information Center

    Moro, Christian; Stromberga, Zane; Stirling, Allan

    2017-01-01

    Consumer-grade virtual reality has recently become available for both desktop and mobile platforms and may redefine the way that students learn. However, the decision regarding which device to utilise within a curriculum is unclear. Desktop-based VR has considerably higher setup costs involved, whereas mobile-based VR cannot produce the quality of…

  12. Surgery-first approach using a three-dimensional virtual setup and surgical simulation for skeletal Class III correction

    PubMed Central

    Im, Joon; Kang, Sang Hoon; Lee, Ji Yeon; Kim, Moon Key

    2014-01-01

    A 19-year-old woman presented to our dental clinic with anterior crossbite and mandibular prognathism. She had a concave profile, long face, and Angle Class III molar relationship. She showed disharmony in the crowding of the maxillomandibular dentition and midline deviation. The diagnosis and treatment plan were established by a three-dimensional (3D) virtual setup and 3D surgical simulation, and a surgical wafer was produced using the stereolithography technique. No presurgical orthodontic treatment was performed. Using the surgery-first approach, Le Fort I maxillary osteotomy and mandibular bilateral intraoral vertical ramus osteotomy setback were carried out. Treatment was completed with postorthodontic treatment. Thus, symmetrical and balanced facial soft tissue and facial form as well as stabilized and well-balanced occlusion were achieved. PMID:25473649

  13. Evaluation of a head-repositioner and Z-plate system for improved accuracy of dose delivery.

    PubMed

    Charney, Sarah C; Lutz, Wendell R; Klein, Mary K; Jones, Pamela D

    2009-01-01

    Radiation therapy requires accurate dose delivery to targets often identifiable only on computed tomography (CT) images. Translation between the isocenter localized on CT and laser setup for radiation treatment, and interfractional head repositioning are frequent sources of positioning error. The objective was to design a simple, accurate apparatus to eliminate these sources of error. System accuracy was confirmed with phantom and in vivo measurements. A head repositioner that fixates the maxilla via dental mold with fiducial marker Z-plates attached was fabricated to facilitate the connection between the isocenter on CT and laser treatment setup. A phantom study targeting steel balls randomly located within the head repositioner was performed. The center of each ball was marked on a transverse CT slice on which six points of the Z-plate were also visible. Based on the relative position of the six Z-plate points and the ball center, the laser setup position on each Z-plate and a top plate was calculated. Based on these setup marks, orthogonal port films, directed toward each target, were evaluated for accuracy without regard to visual setup. A similar procedure was followed to confirm accuracy of in vivo treatment setups in four dogs using implanted gold seeds. Sequential port films of three dogs were made to confirm interfractional accuracy. Phantom and in vivo measurements confirmed accuracy of 2 mm between isocenter on CT and the center of the treatment dose distribution. Port films confirmed similar accuracy for interfractional treatments. The system reliably connects CT target localization to accurate initial and interfractional radiation treatment setup.

  14. Virtual building environments (VBE) - Applying information modeling to buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazjanac, Vladimir

    2004-06-21

    A Virtual Building Environment (VBE) is a ''place'' where building industry project staffs can get help in creating Building Information Models (BIM) and in the use of virtual buildings. It consists of a group of industry software that is operated by industry experts who are also experts in the use of that software. The purpose of a VBE is to facilitate expert use of appropriate software applications in conjunction with each other to efficiently support multidisciplinary work. This paper defines BIM and virtual buildings, and describes VBE objectives, set-up and characteristics of operation. It informs about the VBE Initiative andmore » the benefits from a couple of early VBE projects.« less

  15. Virtual arthroscopy of the visible human female temporomandibular joint.

    PubMed

    Ishimaru, T; Lew, D; Haller, J; Vannier, M W

    1999-07-01

    This study was designed to obtain views of the temporomandibular joint (TMJ) by means of computed arthroscopic simulation (virtual arthroscopy) using three-dimensional (3D) processing. Volume renderings of the TMJ from very thin cryosection slices of the Visible Human Female were taken off the Internet. Analyze(AVW) software (Biomedical Imaging Resource, Mayo Foundation, Rochester, MN) on a Silicon Graphics 02 workstation (Mountain View, CA) was then used to obtain 3D images and allow the navigation "fly-through" of the simulated joint. Good virtual arthroscopic views of the upper and lower joint spaces of both TMJs were obtained by fly-through simulation from the lateral and endaural sides. It was possible to observe the presence of a partial defect in the articular disc and an osteophyte on the condyle. Virtual arthroscopy provided visualization of regions not accessible to real arthroscopy. These results indicate that virtual arthroscopy will be a new technique to investigate the TMJ of the patient with TMJ disorders in the near future.

  16. Liberating Virtual Machines from Physical Boundaries through Execution Knowledge

    DTIC Science & Technology

    2015-12-01

    trivial infrastructures such as VM distribution networks, clients need to wait for an extended period of time before launching a VM. In cloud settings...hardware support. MobiDesk [28] efficiently supports virtual desktops in mobile environments by decou- pling the user’s workload from host systems and...experiment set-up. VMs are migrated between a pair of source and destination hosts, which are connected through a backend 10 Gbps network for

  17. Mapping, Awareness, and Virtualization Network Administrator Training Tool (MAVNATT) Architecture and Framework

    DTIC Science & Technology

    2015-06-01

    unit may setup and teardown the entire tactical infrastructure multiple times per day. This tactical network administrator training is a critical...language and runs on Linux and Unix based systems. All provisioning is based around the Nagios Core application, a powerful backend solution for network...start up a large number of virtual machines quickly. CORE supports the simulation of fixed and mobile networks. CORE is open-source, written in Python

  18. Fiber optic biofluorometer for physiological research on muscle slices

    NASA Astrophysics Data System (ADS)

    Belz, Mathias; Dendorfer, Andreas; Werner, Jan; Lambertz, Daniel; Klein, Karl-Friedrich

    2016-03-01

    A focus of research in cell physiology is the detection of Ca2+, NADH, FAD, ATPase activity or membrane potential, only to name a few, in muscle tissues. In this work, we report on a biofluorometer using ultraviolet light emitting diodes (UV-LEDs), optical fibers and two photomultipliers (PMTs) using synchronized fluorescence detection with integrated background correction to detect free calcium, Ca2+, in cardiac muscle tissue placed in a horizontal tissue bath and a microscope setup. Fiber optic probes with imaging optics have been designed to transport excitation light from the biofluorometer's light output to a horizontal tissue bath and to collect emission light from a tissue sample of interest to two PMTs allowing either single excitation / single emission or ratiometric, dual excitation / single emission or single excitation / dual emission fluorescence detection of indicator dyes or natural fluorophores. The efficient transport of light from the excitation LEDs to the tissue sample, bleaching effects of the excitation light in both, polymer and fused silica-based fibers will be discussed. Furthermore, a new approach to maximize light collection of the emission light using high NA fibers and high NA coupling optics will be shown. Finally, first results on Ca2+ measurements in cardiac muscle slices in a traditional microscope setup and a horizontal tissue bath using fiber optic probes will be introduced and discussed.

  19. Visuo-acoustic stimulation that helps you to relax: A virtual reality setup for patients in the intensive care unit.

    PubMed

    Gerber, Stephan M; Jeitziner, Marie-Madlen; Wyss, Patric; Chesham, Alvin; Urwyler, Prabitha; Müri, René M; Jakob, Stephan M; Nef, Tobias

    2017-10-16

    After prolonged stay in an intensive care unit (ICU) patients often complain about cognitive impairments that affect health-related quality of life after discharge. The aim of this proof-of-concept study was to test the feasibility and effects of controlled visual and acoustic stimulation in a virtual reality (VR) setup in the ICU. The VR setup consisted of a head-mounted display in combination with an eye tracker and sensors to assess vital signs. The stimulation consisted of videos featuring natural scenes and was tested in 37 healthy participants in the ICU. The VR stimulation led to a reduction of heart rate (p = 0. 049) and blood pressure (p = 0.044). Fixation/saccade ratio (p < 0.001) was increased when a visual target was presented superimposed on the videos (reduced search activity), reflecting enhanced visual processing. Overall, the VR stimulation had a relaxing effect as shown in vital markers of physical stress and participants explored less when attending the target. Our study indicates that VR stimulation in ICU settings is feasible and beneficial for critically ill patients.

  20. Representation of Patients’ Hand Modulates Fear Reactions of Patients with Spider Phobia in Virtual Reality

    PubMed Central

    Peperkorn, Henrik M.; Diemer, Julia E.; Alpers, Georg W.; Mühlberger, Andreas

    2016-01-01

    Embodiment (i.e., the involvement of a bodily representation) is thought to be relevant in emotional experiences. Virtual reality (VR) is a capable means of activating phobic fear in patients. The representation of the patient’s body (e.g., the right hand) in VR enhances immersion and increases presence, but its effect on phobic fear is still unknown. We analyzed the influence of the presentation of the participant’s hand in VR on presence and fear responses in 32 women with spider phobia and 32 matched controls. Participants sat in front of a table with an acrylic glass container within reaching distance. During the experiment this setup was concealed by a head-mounted display (HMD). The VR scenario presented via HMD showed the same setup, i.e., a table with an acrylic glass container. Participants were randomly assigned to one of two experimental groups. In one group, fear responses were triggered by fear-relevant visual input in VR (virtual spider in the virtual acrylic glass container), while information about a real but unseen neutral control animal (living snake in the acrylic glass container) was given. The second group received fear-relevant information of the real but unseen situation (living spider in the acrylic glass container), but visual input was kept neutral VR (virtual snake in the virtual acrylic glass container). Participants were instructed to touch the acrylic glass container with their right hand in 20 consecutive trials. Visibility of the hand was varied randomly in a within-subjects design. We found for all participants that visibility of the participant’s hand increased presence independently of the fear trigger. However, in patients, the influence of the virtual hand on fear depended on the fear trigger. When fear was triggered perceptually, i.e., by a virtual spider, the virtual hand increased fear. When fear was triggered by information about a real spider, the virtual hand had no effect on fear. Our results shed light on the significance of different fear triggers (visual, conceptual) in interaction with body representations. PMID:26973566

  1. Representation of Patients' Hand Modulates Fear Reactions of Patients with Spider Phobia in Virtual Reality.

    PubMed

    Peperkorn, Henrik M; Diemer, Julia E; Alpers, Georg W; Mühlberger, Andreas

    2016-01-01

    Embodiment (i.e., the involvement of a bodily representation) is thought to be relevant in emotional experiences. Virtual reality (VR) is a capable means of activating phobic fear in patients. The representation of the patient's body (e.g., the right hand) in VR enhances immersion and increases presence, but its effect on phobic fear is still unknown. We analyzed the influence of the presentation of the participant's hand in VR on presence and fear responses in 32 women with spider phobia and 32 matched controls. Participants sat in front of a table with an acrylic glass container within reaching distance. During the experiment this setup was concealed by a head-mounted display (HMD). The VR scenario presented via HMD showed the same setup, i.e., a table with an acrylic glass container. Participants were randomly assigned to one of two experimental groups. In one group, fear responses were triggered by fear-relevant visual input in VR (virtual spider in the virtual acrylic glass container), while information about a real but unseen neutral control animal (living snake in the acrylic glass container) was given. The second group received fear-relevant information of the real but unseen situation (living spider in the acrylic glass container), but visual input was kept neutral VR (virtual snake in the virtual acrylic glass container). Participants were instructed to touch the acrylic glass container with their right hand in 20 consecutive trials. Visibility of the hand was varied randomly in a within-subjects design. We found for all participants that visibility of the participant's hand increased presence independently of the fear trigger. However, in patients, the influence of the virtual hand on fear depended on the fear trigger. When fear was triggered perceptually, i.e., by a virtual spider, the virtual hand increased fear. When fear was triggered by information about a real spider, the virtual hand had no effect on fear. Our results shed light on the significance of different fear triggers (visual, conceptual) in interaction with body representations.

  2. Virtual embryology: a 3D library reconstructed from human embryo sections and animation of development process.

    PubMed

    Komori, M; Miura, T; Shiota, K; Minato, K; Takahashi, T

    1995-01-01

    The volumetric shape of a human embryo and its development is hard to comprehend as they have been viewed as a 2D schemes in a textbook or microscopic sectional image. In this paper, a CAI and research support system for human embryology using multimedia presentation techniques is described. In this system, 3D data is acquired from a series of sliced specimens. Its 3D structure can be viewed interactively by rotating, extracting, and truncating its whole body or organ. Moreover, the development process of embryos can be animated using a morphing technique applied to the specimen in several stages. The system is intended to be used interactively, like a virtual reality system. Hence, the system is called Virtual Embryology.

  3. Digital image compression for a 2f multiplexing optical setup

    NASA Astrophysics Data System (ADS)

    Vargas, J.; Amaya, D.; Rueda, E.

    2016-07-01

    In this work a virtual 2f multiplexing system was implemented in combination with digital image compression techniques and redundant information elimination. Depending on the image type to be multiplexed, a memory-usage saving of as much as 99% was obtained. The feasibility of the system was tested using three types of images, binary characters, QR codes, and grey level images. A multiplexing step was implemented digitally, while a demultiplexing step was implemented in a virtual 2f optical setup following real experimental parameters. To avoid cross-talk noise, each image was codified with a specially designed phase diffraction carrier that would allow the separation and relocation of the multiplexed images on the observation plane by simple light propagation. A description of the system is presented together with simulations that corroborate the method. The present work may allow future experimental implementations that will make use of all the parallel processing capabilities of optical systems.

  4. The impact of different cone beam computed tomography and multi-slice computed tomography scan parameters on virtual three-dimensional model accuracy using a highly precise ex vivo evaluation method.

    PubMed

    Matta, Ragai-Edward; von Wilmowsky, Cornelius; Neuhuber, Winfried; Lell, Michael; Neukam, Friedrich W; Adler, Werner; Wichmann, Manfred; Bergauer, Bastian

    2016-05-01

    Multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT) are indispensable imaging techniques in advanced medicine. The possibility of creating virtual and corporal three-dimensional (3D) models enables detailed planning in craniofacial and oral surgery. The objective of this study was to evaluate the impact of different scan protocols for CBCT and MSCT on virtual 3D model accuracy using a software-based evaluation method that excludes human measurement errors. MSCT and CBCT scans with different manufacturers' predefined scan protocols were obtained from a human lower jaw and were superimposed with a master model generated by an optical scan of an industrial noncontact scanner. To determine the accuracy, the mean and standard deviations were calculated, and t-tests were used for comparisons between the different settings. Averaged over 10 repeated X-ray scans per method and 19 measurement points per scan (n = 190), it was found that the MSCT scan protocol 140 kV delivered the most accurate virtual 3D model, with a mean deviation of 0.106 mm compared to the master model. Only the CBCT scans with 0.2-voxel resolution delivered a similar accurate 3D model (mean deviation 0.119 mm). Within the limitations of this study, it was demonstrated that the accuracy of a 3D model of the lower jaw depends on the protocol used for MSCT and CBCT scans. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  5. Evaluation of two 3D virtual computer reconstructions for comparison of cleft lip and palate to normal fetal microanatomy.

    PubMed

    Landes, Constantin A; Weichert, Frank; Geis, Philipp; Helga, Fritsch; Wagner, Mathias

    2006-03-01

    Cleft lip and palate reconstructive surgery requires thorough knowledge of normal and pathological labial, palatal, and velopharyngeal anatomy. This study compared two software algorithms and their 3D virtual anatomical reconstruction because exact 3D micromorphological reconstruction may improve learning, reveal spatial relationships, and provide data for mathematical modeling. Transverse and frontal serial sections of the midface of 18 fetal specimens (11th to 32nd gestational week) were used for two manual segmentation approaches. The first manual segmentation approach used bitmap images and either Windows-based or Mac-based SURFdriver commercial software that allowed manual contour matching, surface generation with average slice thickness, 3D triangulation, and real-time interactive virtual 3D reconstruction viewing. The second manual segmentation approach used tagged image format and platform-independent prototypical SeViSe software developed by one of the authors (F.W.). Distended or compressed structures were dynamically transformed. Registration was automatic but allowed manual correction, such as individual section thickness, surface generation, and interactive virtual 3D real-time viewing. SURFdriver permitted intuitive segmentation, easy manual offset correction, and the reconstruction showed complex spatial relationships in real time. However, frequent software crashes and erroneous landmarks appearing "out of the blue," requiring manual correction, were tedious. Individual section thickness, defined smoothing, and unlimited structure number could not be integrated. The reconstruction remained underdimensioned and not sufficiently accurate for this study's reconstruction problem. SeViSe permitted unlimited structure number, late addition of extra sections, and quantified smoothing and individual slice thickness; however, SeViSe required more elaborate work-up compared to SURFdriver, yet detailed and exact 3D reconstructions were created.

  6. Neuronal network imaging in acute slices using Ca2+ sensitive bioluminescent reporter.

    PubMed

    Tricoire, Ludovic; Lambolez, Bertrand

    2014-01-01

    Genetically encoded indicators are valuable tools to study intracellular signaling cascades in real time using fluorescent or bioluminescent imaging techniques. Imaging of Ca(2+) indicators is widely used to record transient intracellular Ca(2+) increases associated with bioelectrical activity. The natural bioluminescent Ca(2+) sensor aequorin has been historically the first Ca(2+) indicator used to address biological questions. Aequorin imaging offers several advantages over fluorescent reporters: it is virtually devoid of background signal; it does not require light excitation and interferes little with intracellular processes. Genetically encoded sensors such as aequorin are commonly used in dissociated cultured cells; however it becomes more challenging to express them in differentiated intact specimen such as brain tissue. Here we describe a method to express a GFP-aequorin (GA) fusion protein in pyramidal cells of neocortical acute slices using recombinant Sindbis virus. This technique allows expressing GA in several hundreds of neurons on the same slice and to perform the bioluminescence recording of Ca(2+) transients in single neurons or multiple neurons simultaneously.

  7. A Fully Immersive Set-Up for Remote Interaction and Neurorehabilitation Based on Virtual Body Ownership

    PubMed Central

    Perez-Marcos, Daniel; Solazzi, Massimiliano; Steptoe, William; Oyekoya, Oyewole; Frisoli, Antonio; Weyrich, Tim; Steed, Anthony; Tecchia, Franco; Slater, Mel; Sanchez-Vives, Maria V.

    2012-01-01

    Although telerehabilitation systems represent one of the most technologically appealing clinical solutions for the immediate future, they still present limitations that prevent their standardization. Here we propose an integrated approach that includes three key and novel factors: (a) fully immersive virtual environments, including virtual body representation and ownership; (b) multimodal interaction with remote people and virtual objects including haptic interaction; and (c) a physical representation of the patient at the hospital through embodiment agents (e.g., as a physical robot). The importance of secure and rapid communication between the nodes is also stressed and an example implemented solution is described. Finally, we discuss the proposed approach with reference to the existing literature and systems. PMID:22787454

  8. New dimensions in surgical training: immersive virtual reality laparoscopic simulation exhilarates surgical staff.

    PubMed

    Huber, Tobias; Paschold, Markus; Hansen, Christian; Wunderling, Tom; Lang, Hauke; Kneist, Werner

    2017-11-01

    Virtual reality (VR) and head mount displays (HMDs) have been advanced for multimedia and information technologies but have scarcely been used in surgical training. Motion sickness and individual psychological changes have been associated with VR. The goal was to observe first experiences and performance scores using a new combined highly immersive virtual reality (IVR) laparoscopy setup. During the study, 10 members of the surgical department performed three tasks (fine dissection, peg transfer, and cholecystectomy) on a VR simulator. We then combined a VR HMD with the VR laparoscopic simulator and displayed the simulation on a 360° video of a laparoscopic operation to create an IVR laparoscopic simulation. The tasks were then repeated. Validated questionnaires on immersion and motion sickness were used for the study. Participants' times for fine dissection were significantly longer during the IVR session (regular: 86.51 s [62.57 s; 119.62 s] vs. IVR: 112.35 s [82.08 s; 179.40 s]; p = 0.022). The cholecystectomy task had higher error rates during IVR. Motion sickness did not occur at any time for any participant. Participants experienced a high level of exhilaration, rarely thought about others in the room, and had a high impression of presence in the generated IVR world. This is the first clinical and technical feasibility study using the full IVR laparoscopy setup combined with the latest laparoscopic simulator in a 360° surrounding. Participants were exhilarated by the high level of immersion. The setup enables a completely new generation of surgical training.

  9. An experimental setup to characterize MR switched gradient-induced potentials.

    PubMed

    Fokapu, Odette; El-Tatar, Aziz

    2013-06-01

    We have developed an experimental setup as an in vitro research tool for studying the contamination of electrophysiological signals (EPS) by MRI environment; particularly, when due to the switched gradient-induced potentials. The system is composed of: 1) a MRI compatible module for the transmission of the EPS into the MRI tunnel, 2) a gelatin-based tissue-mimicking phantom, placed inside the tunnel, in which EPS is injected, 3) a detection module composed of a five input channel MRI compatible transmitter placed inside the tunnel, allowing an on-site pre-amplification of the bio-potentials and their transmission, via an optical fiber cable, to a four filtered output per channel receiver (350 Hz, 160 Hz, 80 Hz, and 40 Hz, for a total of 20 channels) placed in the control room, and 4) a signal processing algorithm used to analyze the generated induced potentials. A set of tests were performed to validate the electronic performances of the setup. We also present in this work an interesting application of the setup, i.e., the acquisition and analysis of the induced potentials with respect of the slice orientation for a given MRI sequence. Significant modifications of the time and frequency characteristics were observed with respect to axial, coronal or sagittal orientations.

  10. Reconstituted Three-Dimensional Interactive Imaging

    NASA Technical Reports Server (NTRS)

    Hamilton, Joseph; Foley, Theodore; Duncavage, Thomas; Mayes, Terrence

    2010-01-01

    A method combines two-dimensional images, enhancing the images as well as rendering a 3D, enhanced, interactive computer image or visual model. Any advanced compiler can be used in conjunction with any graphics library package for this method, which is intended to take digitized images and virtually stack them so that they can be interactively viewed as a set of slices. This innovation can take multiple image sources (film or digital) and create a "transparent" image with higher densities in the image being less transparent. The images are then stacked such that an apparent 3D object is created in virtual space for interactive review of the set of images. This innovation can be used with any application where 3D images are taken as slices of a larger object. These could include machines, materials for inspection, geological objects, or human scanning. Illuminous values were stacked into planes with different transparency levels of tissues. These transparency levels can use multiple energy levels, such as density of CT scans or radioactive density. A desktop computer with enough video memory to produce the image is capable of this work. The memory changes with the size and resolution of the desired images to be stacked and viewed.

  11. Surgical positioning of orthodontic mini-implants with guides fabricated on models replicated with cone-beam computed tomography.

    PubMed

    Kim, Seong-Hun; Choi, Yong-Suk; Hwang, Eui-Hwan; Chung, Kyu-Rhim; Kook, Yoon-Ah; Nelson, Gerald

    2007-04-01

    This article illustrates a new surgical guide system that uses cone-beam computed tomography (CBCT) images to replicate dental models; surgical guides for the proper positioning of orthodontic mini-implants were fabricated on the replicas, and the guides were used for precise placement. The indications, efficacy, and possible complications of this method are discussed. Patients who were planning to have orthodontic mini-implant treatment were recruited for this study. A CBCT system (PSR 9000N, Asahi Roentgen, Kyoto, Japan) was used to acquire virtual slices of the posterior maxilla that were 0.1 to 0.15 mm thick. Color 3-dimensional rapid prototyping was used to differentiate teeth, alveolus, and maxillary sinus wall. A surgical guide for the mini-implant was fabricated on the replica model. Proper positioning for mini-implants on the posterior maxilla was determined by viewing the CBCT images. The surgical guide was placed on the clinical site, and it allowed precise pilot drilling and accurate placement of the mini-implant. CBCT imaging allows remarkably lower radiation doses and thinner acquisition slices compared with medical computed tomography. Virtually reproduced replica models enable precise planning for mini-implant positions in anatomically complex sites.

  12. A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinke, I.; Lehmkühler, F., E-mail: felix.lehmkuehler@desy.de; Schroer, M. A.

    2016-06-15

    In this paper we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXSmore » and WAXS experiments. As a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.« less

  13. A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources

    DOE PAGES

    Steinke, I.; Walther, M.; Lehmkühler, F.; ...

    2016-06-01

    In this study we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXSmore » and WAXS experiments. Finally, as a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.« less

  14. Virtually the ultimate research lab.

    PubMed

    Kulik, Alexander

    2018-04-26

    Virtual reality (VR) can serve as a viable platform for psychological research. The real world with many uncontrolled variables can be masked to immerse participants in complex interactive environments that are under full experimental control. However, as any other laboratory setting, these simulations are not perceived equally to reality and they also afford different behaviour. We need a better understanding of these differences, which are often related to parameters of the technical setup, to support valid interpretations of experimental results. © 2018 The British Psychological Society.

  15. Development of real-time motion capture system for 3D on-line games linked with virtual character

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyeong; Ryu, Young Kee; Cho, Hyung Suck

    2004-10-01

    Motion tracking method is being issued as essential part of the entertainment, medical, sports, education and industry with the development of 3-D virtual reality. Virtual human character in the digital animation and game application has been controlled by interfacing devices; mouse, joysticks, midi-slider, and so on. Those devices could not enable virtual human character to move smoothly and naturally. Furthermore, high-end human motion capture systems in commercial market are expensive and complicated. In this paper, we proposed a practical and fast motion capturing system consisting of optic sensors, and linked the data with 3-D game character with real time. The prototype experiment setup is successfully applied to a boxing game which requires very fast movement of human character.

  16. Building a virtual ligand screening pipeline using free software: a survey.

    PubMed

    Glaab, Enrico

    2016-03-01

    Virtual screening, the search for bioactive compounds via computational methods, provides a wide range of opportunities to speed up drug development and reduce the associated risks and costs. While virtual screening is already a standard practice in pharmaceutical companies, its applications in preclinical academic research still remain under-exploited, in spite of an increasing availability of dedicated free databases and software tools. In this survey, an overview of recent developments in this field is presented, focusing on free software and data repositories for screening as alternatives to their commercial counterparts, and outlining how available resources can be interlinked into a comprehensive virtual screening pipeline using typical academic computing facilities. Finally, to facilitate the set-up of corresponding pipelines, a downloadable software system is provided, using platform virtualization to integrate pre-installed screening tools and scripts for reproducible application across different operating systems. © The Author 2015. Published by Oxford University Press.

  17. Building a virtual ligand screening pipeline using free software: a survey

    PubMed Central

    2016-01-01

    Virtual screening, the search for bioactive compounds via computational methods, provides a wide range of opportunities to speed up drug development and reduce the associated risks and costs. While virtual screening is already a standard practice in pharmaceutical companies, its applications in preclinical academic research still remain under-exploited, in spite of an increasing availability of dedicated free databases and software tools. In this survey, an overview of recent developments in this field is presented, focusing on free software and data repositories for screening as alternatives to their commercial counterparts, and outlining how available resources can be interlinked into a comprehensive virtual screening pipeline using typical academic computing facilities. Finally, to facilitate the set-up of corresponding pipelines, a downloadable software system is provided, using platform virtualization to integrate pre-installed screening tools and scripts for reproducible application across different operating systems. PMID:26094053

  18. Two-photon calcium imaging in mice navigating a virtual reality environment.

    PubMed

    Leinweber, Marcus; Zmarz, Pawel; Buchmann, Peter; Argast, Paul; Hübener, Mark; Bonhoeffer, Tobias; Keller, Georg B

    2014-02-20

    In recent years, two-photon imaging has become an invaluable tool in neuroscience, as it allows for chronic measurement of the activity of genetically identified cells during behavior(1-6). Here we describe methods to perform two-photon imaging in mouse cortex while the animal navigates a virtual reality environment. We focus on the aspects of the experimental procedures that are key to imaging in a behaving animal in a brightly lit virtual environment. The key problems that arise in this experimental setup that we here address are: minimizing brain motion related artifacts, minimizing light leak from the virtual reality projection system, and minimizing laser induced tissue damage. We also provide sample software to control the virtual reality environment and to do pupil tracking. With these procedures and resources it should be possible to convert a conventional two-photon microscope for use in behaving mice.

  19. SU-F-T-642: Sub Millimeter Accurate Setup of More Than Three Vertebrae in Spinal SBRT with 6D Couch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X; Zhao, Z; Yang, J

    Purpose: To assess the initial setup accuracy in treating more than 3 vertebral body levels in spinal SBRT using a 6D couch. Methods: We retrospectively analyzed last 20 spinal SBRT patients (4 cervical, 9 thoracic, 7 lumbar/sacrum) treated in our clinic. These patients in customized immobilization device were treated in 1 or 3 fractions. Initial setup used ExacTrac and Brainlab 6D couch to align target within 1 mm and 1 degree, following by a cone beam CT (CBCT) for verification. Our current standard practice allows treating a maximum of three continuous vertebrae. Here we assess the possibility to achieve submore » millimeter setup accuracy for more than three vertebrae by examining the residual error in every slice of CBCT. The CBCT had a range of 17.5 cm, which covered 5 to 9 continuous vertebrae depending on the patient and target location. In the study, CBCT from the 1st fraction treatment was rigidly registered with the planning CT in Pinnacle. The residual setup error of a vertebra was determined by expanding the vertebra contour on the planning CT to be large enough to enclose the corresponding vertebra on CBCT. The margin of the expansion was considered as setup error. Results: Out of the 20 patients analyzed, initial setup accuracy can be achieved within 1 mm for a span of 5 or more vertebrae starting from T2 vertebra to inferior vertebra levels. 2 cervical and 2 upper thoracic patients showed the cervical spine was difficult to achieve sub millimeter accuracy for multi levels without a customized immobilization headrest. Conclusion: If the curvature of spinal columns can be reproduced in customized immobilization device during treatment as simulation, multiple continuous vertebrae can be setup within 1 mm with the use of a 6D couch.« less

  20. Value of C-Arm Cone Beam Computed Tomography Image Fusion in Maximizing the Versatility of Endovascular Robotics.

    PubMed

    Chinnadurai, Ponraj; Duran, Cassidy; Al-Jabbari, Odeaa; Abu Saleh, Walid K; Lumsden, Alan; Bismuth, Jean

    2016-01-01

    To report our initial experience and highlight the value of using intraoperative C-arm cone beam computed tomography (CT; DynaCT(®)) image fusion guidance along with steerable robotic endovascular catheter navigation to optimize vessel cannulation. Between May 2013 and January 2015, all patients who underwent endovascular procedures using DynaCT image fusion technique along with Hansen Magellan vascular robotic catheter were included in this study. As a part of preoperative planning, relevant vessel landmarks were electronically marked in contrast-enhanced multi-slice computed tomography images and stored. At the beginning of procedure, an intraoperative noncontrast C-arm cone beam CT (syngo DynaCT(®), Siemens Medical Solutions USA Inc.) was acquired in the hybrid suite. Preoperative images were then coregistered to intraoperative DynaCT images using aortic wall calcifications and bone landmarks. Stored landmarks were then overlaid on 2-dimensional (2D) live fluoroscopic images as virtual markers that are updated in real-time with C-arm, table movements and image zoom. Vascular access and robotic catheter (Magellan(®), Hansen Medical) was setup per standard. Vessel cannulation was performed based on electronic virtual markers on live fluoroscopy using robotic catheter. The impact of 3-dimensional (3D) image fusion guidance on robotic vessel cannulation was evaluated retrospectively, by assessing quantitative parameters like number of angiograms acquired before vessel cannulation and qualitative parameters like accuracy of vessel ostium and centerline markers. All 17 vessels were cannulated successfully in 14 patients' attempted using robotic catheter and image fusion guidance. Median vessel diameter at origin was 5.4 mm (range, 2.3-13 mm), whereas 12 of 17 (70.6%) vessels had either calcified and/or stenosed origin from parent vessel. Nine of 17 vessels (52.9 %) were cannulated without any contrast injection. Median number of angiograms required before cannulation was 0 (range, 0-2). On qualitative assessment, 14 of 15 vessels (93.3%) had grade = 1 accuracy (guidewire inside virtual ostial marker). Fourteen of 14 vessels had grade = 1 accuracy (virtual centerlines that matched with the actual vessel trajectory during cannulation). In this small series, the experience of using DynaCT image fusion guidance together with a steerable endovascular robotic catheter indicates that such image fusion strategies can enhance intraoperative 2D fluoroscopy by bringing preoperative 3D information about vascular stenosis and/or calcification, angulation, and take off from main vessel thereby facilitating ultimate vessel cannulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. TU-H-207A-03: CT Hounsfield Unit Accuracy: Effect of Beam Hardening On Phantom and Clinical Whole-Body CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, H; Wendt, R

    2016-06-15

    Purpose: To assess the effect of beam hardening on measured CT HU values. Methods: An anthropomorphic knee phantom was scanned with the CT component of a GE Discovery 690 PET/CT scanner (120kVp, 300mAs, 40?0.625mm collimation, pitch=0.984, FOV=500mm, matrix=512?512) with four different scan setups, each of which induces different degrees of beam hardening by introducing additional attenuation media into the field of view. Homogeneous voxels representing “soft tissue” and “bone” were segmented by HU thresholding followed by a 3D morphological erosion operation which removes the non-homogenous voxels located on the interface of thresholded tissue mask. HU values of segmented “soft tissue”more » and “bone” were compared.Additionally, whole-body CT data with coverage from the skull apex to the end of toes were retrospectively retrieved from seven PET/CT exams to evaluate the effect of beam hardening in vivo. Homogeneous bone voxels were segmented with the same method previously described. Total In-Slice Attenuation (TISA) for each CT slice, defined as the summation of HU values over all voxels within a CT slice, was calculated for all slices of the seven whole-body CT datasets and evaluated against the mean HU values of homogeneous bone voxels within that slice. Results: HU values measured from the phantom showed that while “soft tissue” HU values were unaffected, added attenuation within the FOV caused noticeable decreases in the measured HU values of “bone” voxels. A linear relationship was observed between bone HU and TISA for slices of the torso and legs, but not of the skull. Conclusion: Beam hardening effect is not an issue of concern for voxels with HU in the soft tissue range, but should not be neglected for bone voxels. A linear relationship exists between bone HU and the associated TISA in non-skull CT slices, which can be exploited to develop a correction strategy.« less

  2. Solid Freeform Fabrication Proceedings -1999

    DTIC Science & Technology

    1999-08-11

    geometry of the stylus. Some geometries cannot be used to acquire data if the part geometry interferes 48 with a feature on the part. Thus, the data...fabrication processing systems such as surface micro- machining and lithography . 63 Conclusion The LCVD system (figure 6) has the versatility and...part, creating STL (STereo Lithography ) or VRML (Virtual Reality Modeling Language) files, slicing them, converting into laser path files, and

  3. A Planetarium Inside Your Office: Virtual Reality in the Dome Production Pipeline

    NASA Astrophysics Data System (ADS)

    Summers, Frank

    2018-01-01

    Producing astronomy visualization sequences for a planetarium without ready access to a dome is a distorted geometric challenge. Fortunately, one can now use virtual reality (VR) to simulate a dome environment without ever leaving one's office chair. The VR dome experience has proven to be a more than suitable pre-visualization method that requires only modest amounts of processing beyond the standard production pipeline. It also provides a crucial testbed for identifying, testing, and fixing the visual constraints and artifacts that arise in a spherical presentation environment. Topics adreesed here will include rendering, geometric projection, movie encoding, software playback, and hardware setup for a virtual dome using VR headsets.

  4. Stroke rehabilitation at home using virtual reality, haptics and telemedicine.

    PubMed

    Rydmark, Martin; Broeren, Jörgen; Pascher, Ragnar

    2002-01-01

    The objective of this pilot study is to identify the level of difficulty in which subjects with left hemisphere damage in the acute phase after stroke can start practicing in a virtual environment. Second, to test an application of Virtual Reality technology to existing occupational treatment methods in stroke rehabilitation and develop a platform for home rehabilitation controlled telemedically. The findings indicate that the system shows potential as an assessment and training device. The feasibility study setup is working well likewise the assessment method. Developing and increasing the complexity of the tasks must be based on the patient individual neurology, and that the cinematic motion patterns of the patient's are the basis for exercise design.

  5. Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis.

    PubMed

    Koenig, Alexander; Wellner, Mathias; Köneke, Susan; Meyer-Heim, Andreas; Lünenburger, Lars; Riener, Robert

    2008-01-01

    The Lokomat gait orthosis was developed in the Spinal Cord Injury Center at the University Hospital Balgrist Zurich and provides automatic gait training for patients with neurological gait impairments, such as Cerebral Palsy (CP). Each patient undergoes a task-oriented Lokomat rehabilitation training program via a virtual reality setup. In four virtual scenarios, the patient is able to exercise tasks such as wading through water, playing soccer, overstepping obstacles or training in a street scenario, each task offering varying levels of difficulty. Patients provided positive feedback in reference to the utilized haptic method, specifically addressing the sufficient degree of realism. In a single case study, we verified the task difficulty.

  6. Feedback from video for virtual reality Navigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsap, L V

    2000-10-27

    Important preconditions for wide acceptance of virtual reality (VR) systems include their comfort, ease and naturalness to use. Most existing trackers super from discomfort-related issues. For example, body-based trackers (hand controllers, joysticks, helmet attachments, etc.) restrict spontaneity and naturalness of motion, while ground-based devices (e.g., hand controllers) limit the workspace by literally binding an operator to the ground. There are similar problems with controls. This paper describes using real-time video with registered depth information (from a commercially available camera) for virtual reality navigation. Camera-based setup can replace cumbersome trackers. The method includes selective depth processing for increased speed, and amore » robust skin-color segmentation for accounting illumination variations.« less

  7. Real-time and interactive virtual Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Hirji, Samira; Downey, Donal B.; Holdsworth, David W.; Steinman, David A.

    2005-04-01

    This paper describes our "virtual" Doppler ultrasound (DUS) system, in which colour DUS (CDUS) images and DUS spectrograms are generated on-the-fly and displayed in real-time in response to position and orientation cues provided by a magnetically tracked handheld probe. As the presence of complex flow often confounds the interpretation of Doppler ultrasound data, this system will serve to be a fundamental tool for training sonographers and gaining insight into the relationship between ambiguous DUS images and complex blood flow dynamics. Recently, we demonstrated that DUS spectra could be realistically simulated in real-time, by coupling a semi-empirical model of the DUS physics to a 3-D computational fluid dynamics (CFD) model of a clinically relevant flow field. Our system is an evolution of this approach where a motion-tracking device is used to continuously update the origin and orientation of a slice passing through a CFD model of a stenosed carotid bifurcation. After calibrating our CFD model onto a physical representation of a human neck, virtual CDUS images from an instantaneous slice are then displayed at a rate of approximately 15 Hz by simulating, on-the-fly, an array of DUS spectra and colour coding the resulting spectral mean velocity using a traditional Doppler colour scale. Mimicking a clinical examination, the operator can freeze the CDUS image on-screen, and a spectrogram corresponding to the selected sample volume location is rendered at a higher frame rate of at least 30 Hz. All this is achieved using an inexpensive desktop workstation and commodity graphics card.

  8. Augmented reality in the surgery of cerebral arteriovenous malformations: technique assessment and considerations.

    PubMed

    Cabrilo, Ivan; Bijlenga, Philippe; Schaller, Karl

    2014-09-01

    Augmented reality technology has been used for intraoperative image guidance through the overlay of virtual images, from preoperative imaging studies, onto the real-world surgical field. Although setups based on augmented reality have been used for various neurosurgical pathologies, very few cases have been reported for the surgery of arteriovenous malformations (AVM). We present our experience with AVM surgery using a system designed for image injection of virtual images into the operating microscope's eyepiece, and discuss why augmented reality may be less appealing in this form of surgery. N = 5 patients underwent AVM resection assisted by augmented reality. Virtual three-dimensional models of patients' heads, skulls, AVM nidi, and feeder and drainage vessels were selectively segmented and injected into the microscope's eyepiece for intraoperative image guidance, and their usefulness was assessed in each case. Although the setup helped in performing tailored craniotomies, in guiding dissection and in localizing drainage veins, it did not provide the surgeon with useful information concerning feeder arteries, due to the complexity of AVM angioarchitecture. The difficulty in intraoperatively conveying useful information on feeder vessels may make augmented reality a less engaging tool in this form of surgery, and might explain its underrepresentation in the literature. Integrating an AVM's hemodynamic characteristics into the augmented rendering could make it more suited to AVM surgery.

  9. Quantitative assessment of anatomical change using a virtual proton depth radiograph for adaptive head and neck proton therapy.

    PubMed

    Wang, Peng; Yin, Lingshu; Zhang, Yawei; Kirk, Maura; Song, Gang; Ahn, Peter H; Lin, Alexander; Gee, James; Dolney, Derek; Solberg, Timothy D; Maughan, Richard; McDonough, James; Teo, Boon-Keng Kevin

    2016-03-08

    The aim of this work is to demonstrate the feasibility of using water-equivalent thickness (WET) and virtual proton depth radiographs (PDRs) of intensity corrected cone-beam computed tomography (CBCT) to detect anatomical change and patient setup error to trigger adaptive head and neck proton therapy. The planning CT (pCT) and linear accelerator (linac) equipped CBCTs acquired weekly during treatment of a head and neck patient were used in this study. Deformable image registration (DIR) was used to register each CBCT with the pCT and map Hounsfield units (HUs) from the planning CT (pCT) onto the daily CBCT. The deformed pCT is referred as the corrected CBCT (cCBCT). Two dimensional virtual lateral PDRs were generated using a ray-tracing technique to project the cumulative WET from a virtual source through the cCBCT and the pCT onto a virtual plane. The PDRs were used to identify anatomic regions with large variations in the proton range between the cCBCT and pCT using a threshold of 3 mm relative difference of WET and 3 mm search radius criteria. The relationship between PDR differences and dose distribution is established. Due to weight change and tumor response during treatment, large variations in WETs were observed in the relative PDRs which corresponded spatially with an increase in the number of failing points within the GTV, especially in the pharynx area. Failing points were also evident near the posterior neck due to setup variations. Differences in PDRs correlated spatially to differences in the distal dose distribution in the beam's eye view. Virtual PDRs generated from volumetric data, such as pCTs or CBCTs, are potentially a useful quantitative tool in proton therapy. PDRs and WET analysis may be used to detect anatomical change from baseline during treatment and trigger further analysis in adaptive proton therapy.

  10. Measurements of the virtual bremsstrahlung yields in the p+p system

    NASA Astrophysics Data System (ADS)

    Messchendorp, J. G.; Bacelar, J. C. S.; Fülöp, J. A.; van Goethem, M. J.; Harakeh, M. N.; Hoefman, M.; Huisman, H.; Kalantar-Nayestanaki, N.; Löhner, H.; Ostendorf, R. W.; Schadmand, S.; Turrisi, R.; Volkerts, M.; Wilschut, H. W.; van der Woude, A.; Holzmann, R.; Simon, R.; Kugler, A.; Tcherkashenko, K.; Wagner, V.

    1998-03-01

    In this paper recent results obtained from the p+ p→ p+ p+ e++ e- experiment are presented. This experiment has been performed with a 190 MeV polarized proton beam obtained from the new cyclotron AGOR at KVI in Groningen. Differential cross sections have been obtained in exclusive measurements in which all four exit particles have been measured in a coincidence setup between SALAD and TAPS. The data are compared with LET calculations. A reasonable agreement is found for virtual-photon invariant masses up to 80 MeV/c 2.

  11. Development of a remote laser-induced breakdown spectroscopy system for investigation of calcified tissue samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrdlicka, Ales; Prokes, Lubomir; Stankova, Alice

    2010-05-01

    The development of a remote laser-induced breakdown spectroscopy (LIBS) setup with an off-axis Newtonian collection optics, Galilean-based focusing telescope, and a 532 nm flattop laser beam source is presented. The device was tested at a 6 m distance on a slice of bone to simulate its possible use in the field, e.g., during archaeological excavations. It is shown that this setup is sufficiently sensitive to both major (P, Mg) and minor elements (Na, Zn, Sr). The measured quantities of Mg, Zn, and Sr correspond to the values obtained by reference laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) measurements within an approximatelymore » 20% range of uncertainty. A single point calibration was performed by use of a bone meal standard . The radial element distribution is almost invariable by use of LA-ICP-MS, whereas the LIBS measurement showed a strong dependence on the sample porosity. Based on these results, this remote LIBS setup with a relatively large (350 mm) collecting mirror is capable of semiquantitative analysis at the level of units of mg kg{sup -1}.« less

  12. TinyONet: A Cache-Based Sensor Network Bridge Enabling Sensing Data Reusability and Customized Wireless Sensor Network Services

    PubMed Central

    Jung, Eui-Hyun; Park, Yong-Jin

    2008-01-01

    In recent years, a few protocol bridge research projects have been announced to enable a seamless integration of Wireless Sensor Networks (WSNs) with the TCP/IP network. These studies have ensured the transparent end-to-end communication between two network sides in the node-centric manner. Researchers expect this integration will trigger the development of various application domains. However, prior research projects have not fully explored some essential features for WSNs, especially the reusability of sensing data and the data-centric communication. To resolve these issues, we suggested a new protocol bridge system named TinyONet. In TinyONet, virtual sensors play roles as virtual counterparts of physical sensors and they dynamically group to make a functional entity, Slice. Instead of direct interaction with individual physical sensors, each sensor application uses its own WSN service provided by Slices. If a new kind of service is required in TinyONet, the corresponding function can be dynamically added at runtime. Beside the data-centric communication, it also supports the node-centric communication and the synchronous access. In order to show the effectiveness of the system, we implemented TinyONet on an embedded Linux machine and evaluated it with several experimental scenarios. PMID:27873968

  13. [Quality assurance of a virtual simulation software: application to IMAgo and SIMAgo (ISOgray)].

    PubMed

    Isambert, A; Beaudré, A; Ferreira, I; Lefkopoulos, D

    2007-06-01

    Virtual simulation process is often used to prepare three dimensional conformal radiation therapy treatments. As the quality of the treatment is widely dependent on this step, it is mandatory to perform extensive controls on this software before clinical use. The tests presented in this work have been carried out on the treatment planning system ISOgray (DOSIsoft), including the delineation module IMAgo and the virtual simulation module SIMAgo. According to our experience, the most relevant controls of international protocols have been selected. These tests mainly focused on measuring and delineation tools, virtual simulation functionalities, and have been performed with three phantoms: the Quasar Multi-Purpose Body Phantom, the Quasar MLC Beam Geometry Phantom (Modus Medical Devices Inc.) and a phantom developed at Hospital Tenon. No major issues have been identified while performing the tests. These controls have emphasized the necessity for the user to consider with a critical eye the results displayed by a virtual simulation software. The contrast of visualisation, the slice thickness, the calculation and display mode of 3D structures used by the software are many factors of uncertainties. A virtual simulation software quality assurance procedure has been written and applied on a set of CT images. Similar tests have to be performed periodically and at minimum at each change of major version.

  14. Development of a high-throughput brain slice method for studying drug distribution in the central nervous system.

    PubMed

    Fridén, Markus; Ducrozet, Frederic; Middleton, Brian; Antonsson, Madeleine; Bredberg, Ulf; Hammarlund-Udenaes, Margareta

    2009-06-01

    New, more efficient methods of estimating unbound drug concentrations in the central nervous system (CNS) combine the amount of drug in whole brain tissue samples measured by conventional methods with in vitro estimates of the unbound brain volume of distribution (V(u,brain)). Although the brain slice method is the most reliable in vitro method for measuring V(u,brain), it has not previously been adapted for the needs of drug discovery research. The aim of this study was to increase the throughput and optimize the experimental conditions of this method. Equilibrium of drug between the buffer and the brain slice within the 4 to 5 h of incubation is a fundamental requirement. However, it is difficult to meet this requirement for many of the extensively binding, lipophilic compounds in drug discovery programs. In this study, the dimensions of the incubation vessel and mode of stirring influenced the equilibration time, as did the amount of brain tissue per unit of buffer volume. The use of cassette experiments for investigating V(u,brain) in a linear drug concentration range increased the throughput of the method. The V(u,brain) for the model compounds ranged from 4 to 3000 ml . g brain(-1), and the sources of variability are discussed. The optimized setup of the brain slice method allows precise, robust estimation of V(u,brain) for drugs with diverse properties, including highly lipophilic compounds. This is a critical step forward for the implementation of relevant measurements of CNS exposure in the drug discovery setting.

  15. Capitalizing Resolving Power of Density Gradient Ultracentrifugation by Freezing and Precisely Slicing Centrifuged Solution: Enabling Identification of Complex Proteins from Mitochondria by Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    PubMed Central

    Yu, Haiqing; Lu, Joann J.; Rao, Wei

    2016-01-01

    Density gradient centrifugation is widely utilized for various high purity sample preparations, and density gradient ultracentrifugation (DGU) is often used for more resolution-demanding purification of organelles and protein complexes. Accurately locating different isopycnic layers and precisely extracting solutions from these layers play a critical role in achieving high-resolution DGU separations. In this technique note, we develop a DGU procedure by freezing the solution rapidly (but gently) after centrifugation to fix the resolved layers and by slicing the frozen solution to fractionate the sample. Because the thickness of each slice can be controlled to be as thin as 10 micrometers, we retain virtually all the resolution produced by DGU. To demonstrate the effectiveness of this method, we fractionate complex V from HeLa mitochondria using a conventional technique and this freezing-slicing (F-S) method. The comparison indicates that our F-S method can reduce complex V layer thicknesses by ~40%. After fractionation, we analyze complex V proteins directly on a matrix assisted laser desorption/ionization, time-of-flight mass spectrometer. Twelve out of fifteen subunits of complex V are positively identified. Our method provides a practical protocol to identify proteins from complexes, which is useful to investigate biomolecular complexes and pathways in various conditions and cell types. PMID:27668122

  16. Can we use virtual reality tools in the planning of an experiment?

    NASA Astrophysics Data System (ADS)

    Kucaba-Pietal, Anna; Szumski, Marek; Szczerba, Piotr

    2015-03-01

    Virtual reality (VR) has proved to be a particularly useful tool in engineering and design. A related area of aviation in which VR is particularly significant is a flight training, as it requires many hours of practice and using real planes for all training is both expensive and more dangerous. Research conducted at the Rzeszow University of Technology (RUT) showed that virtual reality can be successfully used for planning experiment during a flight tests. Motivation to the study were a wing deformation measurements of PW-6 glider in flight by use Image Pattern Correlation Technique (IPCT) planned within the frame of AIM2 project. The tool VirlIPCT was constructed, which permits to perform virtual IPCT setup on an airplane. Using it, we can test a camera position, camera resolution, pattern application. Moreover performed tests on RUT indicate, that VirlIPCT can be used as a virtual IPCT image generator. This paper presents results of the research on VirlIPCT.

  17. A setup for combined multiphoton laser scanning microscopic and multi-electrode patch clamp experiments on brain slices

    NASA Astrophysics Data System (ADS)

    Helm, P. Johannes; Reppen, Trond; Heggelund, Paul

    2009-02-01

    Multi Photon Laser Scanning Microscopy (MPLSM) appears today as one of the most powerful experimental tools in cellular neurophysiology, notably in studies of the functional dynamics of signal processing in single neurons. Simultaneous recording of fluorescence signals at high spatial and temporal resolution and electric signals by means of multi electrode patch clamp techniques have provided new paths for the systematic investigation of neuronal mechanisms. In particular, this approach has opened for direct studies of dendritic signal processing in neurons. We report about a setup optimized for simultaneous electrophysiological multi electrode patch clamp and multi photon laser scanning fluorescence microscopic experiments on brain slices. The microscopic system is based on a modified commercially available confocal scanning laser microscope (CLSM). From a technical and operational point of view, two developments are important: Firstly, in order to reduce the workload for the experimentalist, who in general is forced to concentrate on controlling the electrophysiological parameters during the recordings, a system of shutters has been installed together with dedicated electronic modules protecting the photo detectors against destructive light levels caused by erroneous opening or closing of microscopic light paths by the experimentalist. Secondly, the standard detection unit has been improved by installing the photomultiplier tubes (PMT) in a Peltier cooled thermal box shielding the detector from both room temperature and distortions caused by external electromagnetic fields. The electrophysiological system is based on an industrial standard multi patch clamp unit ergonomically arranged around the microscope stage. The electrophysiological and scanning processes can be time coordinated by standard trigger electronics.

  18. A novel Brain Computer Interface for classification of social joint attention in autism and comparison of 3 experimental setups: A feasibility study.

    PubMed

    Amaral, Carlos P; Simões, Marco A; Mouga, Susana; Andrade, João; Castelo-Branco, Miguel

    2017-10-01

    We present a novel virtual-reality P300-based Brain Computer Interface (BCI) paradigm using social cues to direct the focus of attention. We combined interactive immersive virtual-reality (VR) technology with the properties of P300 signals in a training tool which can be used in social attention disorders such as autism spectrum disorder (ASD). We tested the novel social attention training paradigm (P300-based BCI paradigm for rehabilitation of joint-attention skills) in 13 healthy participants, in 3 EEG systems. The more suitable setup was tested online with 4 ASD subjects. Statistical accuracy was assessed based on the detection of P300, using spatial filtering and a Naïve-Bayes classifier. We compared: 1 - g.Mobilab+ (active dry-electrodes, wireless transmission); 2 - g.Nautilus (active electrodes, wireless transmission); 3 - V-Amp with actiCAP Xpress dry-electrodes. Significant statistical classification was achieved in all systems. g.Nautilus proved to be the best performing system in terms of accuracy in the detection of P300, preparation time, speed and reported comfort. Proof of concept tests in ASD participants proved that this setup is feasible for training joint attention skills in ASD. This work provides a unique combination of 'easy-to-use' BCI systems with new technologies such as VR to train joint-attention skills in autism. Our P300 BCI paradigm is feasible for future Phase I/II clinical trials to train joint-attention skills, with successful classification within few trials, online in ASD participants. The g.Nautilus system is the best performing one to use with the developed BCI setup. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery.

    PubMed

    Kockro, Ralf A; Hwang, Peter Y K

    2009-05-01

    We have developed an interactive virtual model of the temporal bone for the training and teaching of cranial base surgery. The virtual model was based on the tomographic data of the Visible Human Project. The male Visible Human's computed tomographic data were volumetrically reconstructed as virtual bone tissue, and the individual photographic slices provided the basis for segmentation of the middle and inner ear structures, cranial nerves, vessels, and brainstem. These structures were created by using outlining and tube editing tools, allowing structural modeling either directly on the basis of the photographic data or according to information from textbooks and cadaver dissections. For training and teaching, the virtual model was accessed in the previously described 3-dimensional workspaces of the Dextroscope or Dextrobeam (Volume Interactions Pte, Ltd., Singapore), whose interfaces enable volumetric exploration from any perspective and provide virtual tools for drilling and measuring. We have simulated several cranial base procedures including approaches via the floor of the middle fossa and the lateral petrous bone. The virtual model suitably illustrated the core facts of anatomic spatial relationships while simulating different stages of bone drilling along a variety of surgical corridors. The system was used for teaching during training courses to plan and discuss operative anatomy and strategies. The Virtual Temporal Bone and its surrounding 3-dimensional workspace provide an effective way to study the essential surgical anatomy of this complex region and to teach and train operative strategies, especially when used as an adjunct to cadaver dissections.

  20. The HEPiX Virtualisation Working Group: Towards a Grid of Clouds

    NASA Astrophysics Data System (ADS)

    Cass, Tony

    2012-12-01

    The use of virtual machine images, as for example with Cloud services such as Amazon's Elastic Compute Cloud, is attractive for users as they have a guaranteed execution environment, something that cannot today be provided across sites participating in computing grids such as the Worldwide LHC Computing Grid. However, Grid sites often operate within computer security frameworks which preclude the use of remotely generated images. The HEPiX Virtualisation Working Group was setup with the objective to enable use of remotely generated virtual machine images at Grid sites and, to this end, has introduced the idea of trusted virtual machine images which are guaranteed to be secure and configurable by sites such that security policy commitments can be met. This paper describes the requirements and details of these trusted virtual machine images and presents a model for their use to facilitate the integration of Grid- and Cloud-based computing environments for High Energy Physics.

  1. Automatic thoracic body region localization

    NASA Astrophysics Data System (ADS)

    Bai, PeiRui; Udupa, Jayaram K.; Tong, YuBing; Xie, ShiPeng; Torigian, Drew A.

    2017-03-01

    Radiological imaging and image interpretation for clinical decision making are mostly specific to each body region such as head & neck, thorax, abdomen, pelvis, and extremities. For automating image analysis and consistency of results, standardizing definitions of body regions and the various anatomic objects, tissue regions, and zones in them becomes essential. Assuming that a standardized definition of body regions is available, a fundamental early step needed in automated image and object analytics is to automatically trim the given image stack into image volumes exactly satisfying the body region definition. This paper presents a solution to this problem based on the concept of virtual landmarks and evaluates it on whole-body positron emission tomography/computed tomography (PET/CT) scans. The method first selects a (set of) reference object(s), segments it (them) roughly, and identifies virtual landmarks for the object(s). The geometric relationship between these landmarks and the boundary locations of body regions in the craniocaudal direction is then learned through a neural network regressor, and the locations are predicted. Based on low-dose unenhanced CT images of 180 near whole-body PET/CT scans (which includes 34 whole-body PET/CT scans), the mean localization error for the boundaries of superior of thorax (TS) and inferior of thorax (TI), expressed as number of slices (slice spacing ≍ 4mm)), and using either the skeleton or the pleural spaces as reference objects, is found to be 3,2 (using skeleton) and 3, 5 (using pleural spaces) respectively, or in mm 13, 10 mm (using skeleton) and 10.5, 20 mm (using pleural spaces), respectively. Improvements of this performance via optimal selection of objects and virtual landmarks and other object analytics applications are currently being pursued. and the skeleton and pleural spaces used as a reference objects

  2. An Indirect Method to Measure Abutment Screw Preload: A Pilot Study Based on Micro-CT Scanning.

    PubMed

    Rezende, Carlos Eduardo E; Griggs, Jason Alan; Duan, Yuanyuan; Mushashe, Amanda M; Nolasco, Gisele Maria Correr; Borges, Ana Flávia Sanches; Rubo, José Henrique

    2015-01-01

    This study aimed to measure the preload in different implant platform geometries based on micro-CT images. External hexagon (EH) implants and Morse Tapered (MT) implants (n=5) were used for the preload measurement. The abutment screws were scanned in micro-CT to obtain their virtual models, which were used to record their initial length. The abutments were screwed on the implant with a 20 Ncm torque and the set composed by implant, abutment screw and abutment were taken to the micro-CT scanner to obtain virtual slices of the specimens. These slices allowed the measurement of screw lengths after torque application and based on the screw elongation. Preload values were calculated using the Hooke's Law. The preloads of both groups were compared by independent t-test. Removal torque of each specimen was recorded. To evaluate the accuracy of the micro-CT technique, three rods with known lengths were scanned and the length of their virtual model was measured and compared with the original length. One rod was scanned four times to evaluate the measuring method variation. There was no difference between groups for preload (EH = 461.6 N and MT = 477.4 N), but the EH group showed higher removal torque values (13.8 ± 4.7 against 8.2 ± 3.6 N cm for MT group). The micro-CT technique showed a variability of 0.053% and repeatability showed an error of 0.23 to 0.28%. Within the limitations of this study, there was no difference between external hexagon and Morse taper for preload. The method using micro-CT may be considered for preload calculation.

  3. SU-C-206-03: Metal Artifact Reduction in X-Ray Computed Tomography Based On Local Anatomical Similarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, X; Yang, X; Rosenfield, J

    Purpose: Metal implants such as orthopedic hardware and dental fillings cause severe bright and dark streaking in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. Additionally, such artifacts negatively impact patient set-up in image guided radiation therapy (IGRT). In this work, we propose a novel method for metal artifact reduction which utilizes the anatomical similarity between neighboring CT slices. Methods: Neighboring CT slices show similar anatomy. Based on this anatomical similarity, the proposed method replaces corrupted CT pixels with pixels from adjacent, artifact-free slices. A gamma map,more » which is the weighted summation of relative HU error and distance error, is calculated for each pixel in the artifact-corrupted CT image. The minimum value in each pixel’s gamma map is used to identify a pixel from the adjacent CT slice to replace the corresponding artifact-corrupted pixel. This replacement only occurs if the minimum value in a particular pixel’s gamma map is larger than a threshold. The proposed method was evaluated with clinical images. Results: Highly attenuating dental fillings and hip implants cause severe streaking artifacts on CT images. The proposed method eliminates the dark and bright streaking and improves the implant delineation and visibility. In particular, the image non-uniformity in the central region of interest was reduced from 1.88 and 1.01 to 0.28 and 0.35, respectively. Further, the mean CT HU error was reduced from 328 HU and 460 HU to 60 HU and 36 HU, respectively. Conclusions: The proposed metal artifact reduction method replaces corrupted image pixels with pixels from neighboring slices that are free of metal artifacts. This method proved capable of suppressing streaking artifacts, improving HU accuracy and image detectability.« less

  4. Modelling the mid-infrared drying of sweet potato: kinetics, mass and heat transfer parameters, and energy consumption

    NASA Astrophysics Data System (ADS)

    Onwude, Daniel I.; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan

    2018-04-01

    This study investigated the drying kinetics, mass and heat transfer characteristics of sweet potato slices (0.4-0.6 cm thickness) during drying based on mid-infrared experimental set-up (intensity of 1100-1400 W/m2). Thin layer drying models were used to evaluate the drying kinetics of sweet potato slices. Two analytical models (Fick's diffusion model, and Dincer and Dost model) were used to study the mass transfer behaviour of sweet potato slices with and without shrinkage during mid-infrared drying. The heat transfer flux between the emitter and sweet potato slices was also investigated. Results demonstrated that an increase in infrared intensity from 1100 W/m2 to 1400 W/m2 resulted in increased in average radiation heat flux by 3.4 times and a 15% reduction in the overall drying time. The two-term exponential model was found to be the best in predicting the drying kinetics of sweet potato slices during mid-infrared drying. The specific heat consumption varied from 0.91-4.82 kWh/kg. The effective moisture diffusivity with and without shrinkage using the Fick's diffusion model varied from 2.632 × 10-9 to 1.596 × 10-8 m2/s, and 1.24 × 10-8 to 2.4 × 10-8 m2/s using Dincer and Dost model, respectively. The obtained values of mass transfer coefficient, Biot number and activation energy varied from 5.99 × 10-6 to 1.17 × 10-5 m/s, 0.53 to 2.62, and 12.83 kJ/mol to 34.64 kJ/mol, respectively. The values obtained for Biot number implied the existence of simultaneous internal and external resistances. The findings further explained that mid-infrared intensity of 1100 W/m2 did not significantly affect the quality of sweet potato during drying, demonstrating a great potential of applying low intensity mid-infrared radiation in the drying of agricultural crops.

  5. AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.

    PubMed

    Gaffary, Yoren; Le Gouis, Benoit; Marchal, Maud; Argelaguet, Ferran; Arnaldi, Bruno; Lecuyer, Anatole

    2017-11-01

    Does it feel the same when you touch an object in Augmented Reality (AR) or in Virtual Reality (VR)? In this paper we study and compare the haptic perception of stiffness of a virtual object in two situations: (1) a purely virtual environment versus (2) a real and augmented environment. We have designed an experimental setup based on a Microsoft HoloLens and a haptic force-feedback device, enabling to press a virtual piston, and compare its stiffness successively in either Augmented Reality (the virtual piston is surrounded by several real objects all located inside a cardboard box) or in Virtual Reality (the same virtual piston is displayed in a fully virtual scene composed of the same other objects). We have conducted a psychophysical experiment with 12 participants. Our results show a surprising bias in perception between the two conditions. The virtual piston is on average perceived stiffer in the VR condition compared to the AR condition. For instance, when the piston had the same stiffness in AR and VR, participants would select the VR piston as the stiffer one in 60% of cases. This suggests a psychological effect as if objects in AR would feel "softer" than in pure VR. Taken together, our results open new perspectives on perception in AR versus VR, and pave the way to future studies aiming at characterizing potential perceptual biases.

  6. Force Exertion Capacity Measurements in Haptic Virtual Environments

    ERIC Educational Resources Information Center

    Munih, Marko; Bardorfer, Ales; Ceru, Bojan; Bajd, Tadej; Zupan, Anton

    2010-01-01

    An objective test for evaluating functional status of the upper limbs (ULs) in patients with muscular distrophy (MD) is presented. The method allows for quantitative assessment of the UL functional state with an emphasis on force exertion capacity. The experimental measurement setup and the methodology for the assessment of maximal exertable force…

  7. Problem-Based Learning in Wind Energy Using Virtual and Real Setups

    ERIC Educational Resources Information Center

    Santos-Martin, D.; Alonso-Martinez, J.; Eloy-Garcia Carrasco, J.; Arnaltes, S.

    2012-01-01

    The use of wind energy is now an established fact, and many educational institutions are introducing this topic into their engineering studies. Problem-based learning (PBL), as a student-centered instructional approach, has contributed to important developments in engineering education over the last few years. This paper presents the experience of…

  8. CFD study on the effects of boundary conditions on air flow through an air-cooled condenser

    NASA Astrophysics Data System (ADS)

    Sumara, Zdeněk; Šochman, Michal

    2018-06-01

    This study focuses on the effects of boundary conditions on effectiveness of an air-cooled condenser (ACC). Heat duty of ACC is very often calculated for ideal uniform velocity field which does not correspond to reality. Therefore, this study studies the effect of wind and different landscapes on air flow through ACC. For this study software OpenFOAM was used and the flow was simulated with the use of RANS equations. For verification of numerical setup a model of one ACC cell with dimensions of platform 1.5×1.5 [m] was used. In this experiment static pressures behind fan and air flows through a model of surface of condenser for different rpm of fan were measured. In OpenFOAM software a virtual clone of this experiment was built and different meshes, turbulent models and numerical schemes were tested. After tuning up numerical setup virtual model of real ACC system was built. Influence of wind, landscape and height of ACC on air flow through ACC has been investigated.

  9. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    NASA Astrophysics Data System (ADS)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  10. Single-channel, box-shaped, monopole-type antenna for B1+ field manipulation in conjunction with the traveling-wave concept in 9.4 T MRI.

    PubMed

    Zivkovic, Irena; Scheffler, Klaus

    2015-08-01

    We have developed a single-channel, box-shaped, monopole-type antenna which, if used in two different configurations, excites complementary B1+ field distributions in the traveling-wave setup. A new monopole-type, single-channel antenna for RF excitation in 9.4 T magnetic resonance imaging is proposed. The antenna is entirely made of copper without lumped elements. Two complementary B1+ field distributions of two different antenna configurations were measured and combined as a root sum of squares. B1+ field inhomogeneity of the combined maps was calculated and compared with published results. By combining B1+ field distributions generated by two antenna configurations, a "no voids" pattern was achieved for the entire upper brain. B1+ inhomogeneity of approximately 20 % was achieved for sagittal and transverse slices; it was <24 % for coronal slices. The results were comparable with those from CP, with "no voids" in slice B1+ inhomogeneity of multichannel loop arrays. The efficiency of the proposed antenna was lower than that of a multichannel array but comparable with that of a patch antenna. The proposed single-channel antenna is a promising candidate for traveling-wave brain imaging. It can be combined with the time-interleaved acquisition of modes (TIAMO) concept if reconfigurability is obtained with a single-antenna element.

  11. White matter segmentation by estimating tissue optical attenuation from volumetric OCT massive histology of whole rodent brains

    NASA Astrophysics Data System (ADS)

    Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric

    2017-02-01

    A whole rodent brain was imaged using an automated massive histology setup and an Optical Coherence Tomography (OCT) microscope. Thousands of OCT volumetric tiles were acquired, each covering a size of about 2.5x2.5x0.8 mm3 with a sampling resolution of 4.9x4.9x6.5 microns. This paper shows the techniques for reconstruction, attenuation compensation and segmentation of the sliced brains. The tile positions within the mosaic were evaluated using a displacement model of the motorized stage and pairwise coregistration. Volume blending was then performed by solving the 3D Laplace equation, and consecutive slices were assembled using the cross-correlation of their 2D image gradient. This reconstruction algorithm resulted in a 3D map of optical reflectivity for the whole brain at micrometric resolution. OCT tissue slices were then used to estimate the local attenuation coefficient based on a single scattering photon model. The attenuation map obtained exhibits a high contrast for all white matter fibres, regardless of their orientation. The tissue optical attenuation from the intrinsic OCT reflectivity contributes to better white matter tissue segmentation. The combined 3D maps of reflectivity and attenuation is a step toward the study of white matter at a microscopic scale for the whole brain in small animals.

  12. BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences

    PubMed Central

    Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola

    2015-01-01

    Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org. PMID:26401099

  13. BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences.

    PubMed

    Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola

    2015-01-01

    Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org.

  14. High speed stereovision setup for position and motion estimation of fertilizer particles leaving a centrifugal spreader.

    PubMed

    Hijazi, Bilal; Cool, Simon; Vangeyte, Jürgen; Mertens, Koen C; Cointault, Frédéric; Paindavoine, Michel; Pieters, Jan G

    2014-11-13

    A 3D imaging technique using a high speed binocular stereovision system was developed in combination with corresponding image processing algorithms for accurate determination of the parameters of particles leaving the spinning disks of centrifugal fertilizer spreaders. Validation of the stereo-matching algorithm using a virtual 3D stereovision simulator indicated an error of less than 2 pixels for 90% of the particles. The setup was validated using the cylindrical spread pattern of an experimental spreader. A 2D correlation coefficient of 90% and a Relative Error of 27% was found between the experimental results and the (simulated) spread pattern obtained with the developed setup. In combination with a ballistic flight model, the developed image acquisition and processing algorithms can enable fast determination and evaluation of the spread pattern which can be used as a tool for spreader design and precise machine calibration.

  15. Development and comparison of projection and image space 3D nodule insertion techniques

    NASA Astrophysics Data System (ADS)

    Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Samei, Ehsan

    2016-04-01

    This study aimed to develop and compare two methods of inserting computerized virtual lesions into CT datasets. 24 physical (synthetic) nodules of three sizes and four morphologies were inserted into an anthropomorphic chest phantom (LUNGMAN, KYOTO KAGAKU). The phantom was scanned (Somatom Definition Flash, Siemens Healthcare) with and without nodules present, and images were reconstructed with filtered back projection and iterative reconstruction (SAFIRE) at 0.6 mm slice thickness using a standard thoracic CT protocol at multiple dose settings. Virtual 3D CAD models based on the physical nodules were virtually inserted (accounting for the system MTF) into the nodule-free CT data using two techniques. These techniques include projection-based and image-based insertion. Nodule volumes were estimated using a commercial segmentation tool (iNtuition, TeraRecon, Inc.). Differences were tested using paired t-tests and R2 goodness of fit between the virtually and physically inserted nodules. Both insertion techniques resulted in nodule volumes very similar to the real nodules (<3% difference) and in most cases the differences were not statistically significant. Also, R2 values were all <0.97 for both insertion techniques. These data imply that these techniques can confidently be used as a means of inserting virtual nodules in CT datasets. These techniques can be instrumental in building hybrid CT datasets composed of patient images with virtually inserted nodules.

  16. Real-time supervisor system based on trinary logic to control experiments with behaving animals and humans.

    PubMed

    Kutz, D F; Marzocchi, N; Fattori, P; Cavalcanti, S; Galletti, C

    2005-06-01

    A new method is presented based on trinary logic able to check the state of different control variables and synchronously record the physiological and behavioral data of behaving animals and humans. The basic information structure of the method is a time interval of defined maximum duration, called time slice, during which the supervisor system periodically checks the status of a specific subset of input channels. An experimental condition is a sequence of time slices subsequently executed according to the final status of the previous time slice. The proposed method implements in its data structure the possibility to branch like an if-else cascade and the possibility to repeat parts of it recursively like the while-loop. Therefore its data structure contains the most basic control structures of programming languages. The method was implemented using a real-time version of LabVIEW programming environment to program and control our experimental setup. Using this supervision system, we synchronously record four analog data channels at 500 Hz (including eye movements) and the time stamps of up to six neurons at 100 kHz. The system reacts with a resolution within 1 ms to changes of state of digital input channels. The system is set to react to changes in eye position with a resolution within 4 ms. The time slices, experimental conditions, and data are handled by relational databases. This facilitates the construction of new experimental conditions and data analysis. The proposed implementation allows continuous recording without an inter-trial gap for data storage or task management. The implementation can be used to drive electrophysiological experiments of behaving animals and psychophysical studies with human subjects.

  17. Three-dimensional virtual histology of human cerebellum by X-ray phase-contrast tomography.

    PubMed

    Töpperwien, Mareike; van der Meer, Franziska; Stadelmann, Christine; Salditt, Tim

    2018-06-18

    To quantitatively evaluate brain tissue and its corresponding function, knowledge of the 3D cellular distribution is essential. The gold standard to obtain this information is histology, a destructive and labor-intensive technique where the specimen is sliced and examined under a light microscope, providing 3D information at nonisotropic resolution. To overcome the limitations of conventional histology, we use phase-contrast X-ray tomography with optimized optics, reconstruction, and image analysis, both at a dedicated synchrotron radiation endstation, which we have equipped with X-ray waveguide optics for coherence and wavefront filtering, and at a compact laboratory source. As a proof-of-concept demonstration we probe the 3D cytoarchitecture in millimeter-sized punches of unstained human cerebellum embedded in paraffin and show that isotropic subcellular resolution can be reached at both setups throughout the specimen. To enable a quantitative analysis of the reconstructed data, we demonstrate automatic cell segmentation and localization of over 1 million neurons within the cerebellar cortex. This allows for the analysis of the spatial organization and correlation of cells in all dimensions by borrowing concepts from condensed-matter physics, indicating a strong short-range order and local clustering of the cells in the granular layer. By quantification of 3D neuronal "packing," we can hence shed light on how the human cerebellum accommodates 80% of the total neurons in the brain in only 10% of its volume. In addition, we show that the distribution of neighboring neurons in the granular layer is anisotropic with respect to the Purkinje cell dendrites. Copyright © 2018 the Author(s). Published by PNAS.

  18. Virtual anthropology: useful radiological tools for age assessment in clinical forensic medicine and thanatology.

    PubMed

    Dedouit, Fabrice; Saint-Martin, Pauline; Mokrane, Fatima-Zohra; Savall, Frédéric; Rousseau, Hervé; Crubézy, Eric; Rougé, Daniel; Telmon, Norbert

    2015-09-01

    Virtual anthropology consists of the introduction of modern slice imaging to biological and forensic anthropology. Thanks to this non-invasive scientific revolution, some classifications and staging systems, first based on dry bone analysis, can be applied to cadavers with no need for specific preparation, as well as to living persons. Estimation of bone and dental age is one of the possibilities offered by radiology. Biological age can be estimated in clinical forensic medicine as well as in living persons. Virtual anthropology may also help the forensic pathologist to estimate a deceased person's age at death, which together with sex, geographical origin and stature, is one of the important features determining a biological profile used in reconstructive identification. For this forensic purpose, the radiological tools used are multislice computed tomography and, more recently, X-ray free imaging techniques such as magnetic resonance imaging and ultrasound investigations. We present and discuss the value of these investigations for age estimation in anthropology.

  19. A Downloadable Three-Dimensional Virtual Model of the Visible Ear

    PubMed Central

    Wang, Haobing; Merchant, Saumil N.; Sorensen, Mads S.

    2008-01-01

    Purpose To develop a three-dimensional (3-D) virtual model of a human temporal bone and surrounding structures. Methods A fresh-frozen human temporal bone was serially sectioned and digital images of the surface of the tissue block were recorded (the ‘Visible Ear’). The image stack was resampled at a final resolution of 50 × 50 × 50/100 µm/voxel, registered in custom software and segmented in PhotoShop® 7.0. The segmented image layers were imported into Amira® 3.1 to generate smooth polygonal surface models. Results The 3-D virtual model presents the structures of the middle, inner and outer ears in their surgically relevant surroundings. It is packaged within a cross-platform freeware, which allows for full rotation, visibility and transparency control, as well as the ability to slice the 3-D model open at any section. The appropriate raw image can be superimposed on the cleavage plane. The model can be downloaded at https://research.meei.harvard.edu/Otopathology/3dmodels/ PMID:17124433

  20. Immersive virtual reality for visualization of abdominal CT

    NASA Astrophysics Data System (ADS)

    Lin, Qiufeng; Xu, Zhoubing; Li, Bo; Baucom, Rebeccah; Poulose, Benjamin; Landman, Bennett A.; Bodenheimer, Robert E.

    2013-03-01

    Immersive virtual environments use a stereoscopic head-mounted display and data glove to create high fidelity virtual experiences in which users can interact with three-dimensional models and perceive relationships at their true scale. This stands in stark contrast to traditional PACS-based infrastructure in which images are viewed as stacks of two dimensional slices, or, at best, disembodied renderings. Although there has substantial innovation in immersive virtual environments for entertainment and consumer media, these technologies have not been widely applied in clinical applications. Here, we consider potential applications of immersive virtual environments for ventral hernia patients with abdominal computed tomography imaging data. Nearly a half million ventral hernias occur in the United States each year, and hernia repair is the most commonly performed general surgery operation worldwide. A significant problem in these conditions is communicating the urgency, degree of severity, and impact of a hernia (and potential repair) on patient quality of life. Hernias are defined by ruptures in the abdominal wall (i.e., the absence of healthy tissues) rather than a growth (e.g., cancer); therefore, understanding a hernia necessitates understanding the entire abdomen. Our environment allows surgeons and patients to view body scans at scale and interact with these virtual models using a data glove. This visualization and interaction allows users to perceive the relationship between physical structures and medical imaging data. The system provides close integration of PACS-based CT data with immersive virtual environments and creates opportunities to study and optimize interfaces for patient communication, operative planning, and medical education.

  1. Immersive Virtual Reality for Visualization of Abdominal CT.

    PubMed

    Lin, Qiufeng; Xu, Zhoubing; Li, Bo; Baucom, Rebeccah; Poulose, Benjamin; Landman, Bennett A; Bodenheimer, Robert E

    2013-03-28

    Immersive virtual environments use a stereoscopic head-mounted display and data glove to create high fidelity virtual experiences in which users can interact with three-dimensional models and perceive relationships at their true scale. This stands in stark contrast to traditional PACS-based infrastructure in which images are viewed as stacks of two-dimensional slices, or, at best, disembodied renderings. Although there has substantial innovation in immersive virtual environments for entertainment and consumer media, these technologies have not been widely applied in clinical applications. Here, we consider potential applications of immersive virtual environments for ventral hernia patients with abdominal computed tomography imaging data. Nearly a half million ventral hernias occur in the United States each year, and hernia repair is the most commonly performed general surgery operation worldwide. A significant problem in these conditions is communicating the urgency, degree of severity, and impact of a hernia (and potential repair) on patient quality of life. Hernias are defined by ruptures in the abdominal wall (i.e., the absence of healthy tissues) rather than a growth (e.g., cancer); therefore, understanding a hernia necessitates understanding the entire abdomen. Our environment allows surgeons and patients to view body scans at scale and interact with these virtual models using a data glove. This visualization and interaction allows users to perceive the relationship between physical structures and medical imaging data. The system provides close integration of PACS-based CT data with immersive virtual environments and creates opportunities to study and optimize interfaces for patient communication, operative planning, and medical education.

  2. Fast and Efficient Radiological Interventions via a Graphical User Interface Commanded Magnetic Resonance Compatible Robotic Device

    PubMed Central

    Özcan, Alpay; Christoforou, Eftychios; Brown, Daniel; Tsekos, Nikolaos

    2011-01-01

    The graphical user interface for an MR compatible robotic device has the capability of displaying oblique MR slices in 2D and a 3D virtual environment along with the representation of the robotic arm in order to swiftly complete the intervention. Using the advantages of the MR modality the device saves time and effort, is safer for the medical staff and is more comfortable for the patient. PMID:17946067

  3. Applicability of three-dimensional imaging techniques in fetal medicine*

    PubMed Central

    Werner Júnior, Heron; dos Santos, Jorge Lopes; Belmonte, Simone; Ribeiro, Gerson; Daltro, Pedro; Gasparetto, Emerson Leandro; Marchiori, Edson

    2016-01-01

    Objective To generate physical models of fetuses from images obtained with three-dimensional ultrasound (3D-US), magnetic resonance imaging (MRI), and, occasionally, computed tomography (CT), in order to guide additive manufacturing technology. Materials and Methods We used 3D-US images of 31 pregnant women, including 5 who were carrying twins. If abnormalities were detected by 3D-US, both MRI and in some cases CT scans were then immediately performed. The images were then exported to a workstation in DICOM format. A single observer performed slice-by-slice manual segmentation using a digital high resolution screen. Virtual 3D models were obtained from software that converts medical images into numerical models. Those models were then generated in physical form through the use of additive manufacturing techniques. Results Physical models based upon 3D-US, MRI, and CT images were successfully generated. The postnatal appearance of either the aborted fetus or the neonate closely resembled the physical models, particularly in cases of malformations. Conclusion The combined use of 3D-US, MRI, and CT could help improve our understanding of fetal anatomy. These three screening modalities can be used for educational purposes and as tools to enable parents to visualize their unborn baby. The images can be segmented and then applied, separately or jointly, in order to construct virtual and physical 3D models. PMID:27818540

  4. Virtual Reality Compared with Bench-Top Simulation in the Acquisition of Arthroscopic Skill: A Randomized Controlled Trial.

    PubMed

    Banaszek, Daniel; You, Daniel; Chang, Justues; Pickell, Michael; Hesse, Daniel; Hopman, Wilma M; Borschneck, Daniel; Bardana, Davide

    2017-04-05

    Work-hour restrictions as set forth by the Accreditation Council for Graduate Medical Education (ACGME) and other governing bodies have forced training programs to seek out new learning tools to accelerate acquisition of both medical skills and knowledge. As a result, competency-based training has become an important part of residency training. The purpose of this study was to directly compare arthroscopic skill acquisition in both high-fidelity and low-fidelity simulator models and to assess skill transfer from either modality to a cadaveric specimen, simulating intraoperative conditions. Forty surgical novices (pre-clerkship-level medical students) voluntarily participated in this trial. Baseline demographic data, as well as data on arthroscopic knowledge and skill, were collected prior to training. Subjects were randomized to 5-week independent training sessions on a high-fidelity virtual reality arthroscopic simulator or on a bench-top arthroscopic setup, or to an untrained control group. Post-training, subjects were asked to perform a diagnostic arthroscopy on both simulators and in a simulated intraoperative environment on a cadaveric knee. A more difficult surprise task was also incorporated to evaluate skill transfer. Subjects were evaluated using the Global Rating Scale (GRS), the 14-point arthroscopic checklist, and a timer to determine procedural efficiency (time per task). Secondary outcomes focused on objective measures of virtual reality simulator motion analysis. Trainees on both simulators demonstrated a significant improvement (p < 0.05) in arthroscopic skills compared with baseline scores and untrained controls, both in and ex vivo. The virtual reality simulation group consistently outperformed the bench-top model group in the diagnostic arthroscopy crossover tests and in the simulated cadaveric setup. Furthermore, the virtual reality group demonstrated superior skill transfer in the surprise skill transfer task. Both high-fidelity and low-fidelity simulation trainings were effective in arthroscopic skill acquisition. High-fidelity virtual reality simulation was superior to bench-top simulation in the acquisition of arthroscopic skills, both in the laboratory and in vivo. Further clinical investigation is needed to interpret the importance of these results.

  5. From 2D slices to 3D volumes: image based reconstruction and morphological characterization of hippocampal cells on charged and uncharged surfaces using FIB/SEM serial sectioning.

    PubMed

    Schmidt, Franziska; Kühbacher, Markus; Gross, Ulrich; Kyriakopoulos, Antonius; Schubert, Helmut; Zehbe, Rolf

    2011-03-01

    3D imaging at a subcellular resolution is a powerful tool in the life sciences to investigate cells and their interactions with native tissues or artificial objects. While a tomographic experimental setup achieving a sufficient structural resolution can be established with either X-rays or electrons, the use of electrons is usually limited to very thin samples in transmission electron microscopy due to the poor penetration depths of electrons. The combination of a serial sectioning approach and scanning electron microscopy in state of the art dual beam experimental setups therefore offers a means to image highly resolved spatial details using a focused ion beam for slicing and an electron beam for imaging. The advantage of this technique over X-ray μCT or X-ray microscopy attributes to the fact that absorption is not a limiting factor in imaging and therefore even strong absorbing structures can be spatially reconstructed with a much higher possible resolution. This approach was used in this study to elucidate the effect of an electric potential on the morphology of cells from a hippocampal cell line (HT22) deposited on gold microelectrodes. While cells cultivated on two different controls (gold and polymer substrates) did show the expected stretched morphology, cells on both the anode and the cathode differed significantly. Cells deposited on the anode part of the electrode exhibited the most extreme deviation, being almost spherical and showed signs of chromatin condensation possibly indicating cell death. Furthermore, EDX was used as supplemental methodology for combined chemical and structural analyses. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Changes in entrance surface dose in relation to the location of shielding material in chest computed tomography

    NASA Astrophysics Data System (ADS)

    Kang, Y. M.; Cho, J. H.; Kim, S. C.

    2015-07-01

    This study examined the effects of entrance surface dose (ESD) on the abdomen and pelvis of the patient when undergoing chest computed tomography (CT) procedure, and evaluated the effects of ESD reduction depending on the location of radiation shield. For CT scanner, the 64-slice multi-detector computed tomography was used. The alderson radiation therapy phantom and optically stimulated luminescence dosimeter (OSLD), which enabled measurement from low to high dose, were also used. For measurement of radiation dose, the slice number from 9 to 21 of the phantom was set as the test range, which included apex up to both costophrenic angles. A total of 10 OSLD nanoDots were attached for measurement of the front and rear ESD. Cyclic tests were performed using the low-dose chest CT and high-resolution CT (HRCT) protocol on the following set-ups: without shielding; shielding only on the front side; shielding only on the rear side; and shielding for both front and rear sides. According to the test results, ESD for both front and rear sides was higher in HRCT than low-dose CT when radiation shielding was not used. It was also determined that, compared to the set-up that did not use the radiation shield, locating the radiation shield on the front side was effective in reducing front ESD, while locating the radiation shield on the rear side reduced rear ESD level. Shielding both the front and rear sides resulted in ESD reduction. In conclusion, it was confirmed that shielding the front and rear sides was the most effective method to reduce the ESD effect caused by scatter ray during radiography.

  7. Virtual Civilian Aeromedical Evacuation Sustainment Training Project (V-CAEST)

    DTIC Science & Technology

    2015-08-01

    evacuation liaison team (AELT), and the mobile aeromedical staging facility (MASF). The content covered in the V-CAEST environment therefore covered the...environment was set-up in a large gymnasium building including a mock military plane and Mobile Aeromedical Staging Facility (MASF) located just...staffing exam backhoe scenarios exam infrastructure interface tsunami infrastructure commander telecommunication disrupting commander

  8. Millikan's Oil-Drop Experiment: A Centennial Setup Revisited in Virtual World

    ERIC Educational Resources Information Center

    Gagnon, Michel

    2012-01-01

    Early in the last century, Robert Millikan developed a precise method of determining the electric charge carried by oil droplets. Using a microscope and a small incandescent lamp, he observed the fall of charged droplets under the influence of an electric field inside a small observation chamber. In so doing, Millikan demonstrated the existence of…

  9. Zγ production at NNLO including anomalous couplings

    NASA Astrophysics Data System (ADS)

    Campbell, John M.; Neumann, Tobias; Williams, Ciaran

    2017-11-01

    In this paper we present a next-to-next-to-leading order (NNLO) QCD calculation of the processes pp → l + l -γ and pp\\to ν \\overline{ν}γ that we have implemented in MCFM. Our calculation includes QCD corrections at NNLO both for the Standard Model (SM) and additionally in the presence of Zγγ and ZZγ anomalous couplings. We compare our implementation, obtained using the jettiness slicing approach, with a previous SM calculation and find broad agreement. Focusing on the sensitivity of our results to the slicing parameter, we show that using our setup we are able to compute NNLO cross sections with numerical uncertainties of about 0.1%, which is small compared to residual scale uncertainties of a few percent. We study potential improvements using two different jettiness definitions and the inclusion of power corrections. At √{s}=13 TeV we present phenomenological results and consider Zγ as a background to H → Zγ production. We find that, with typical cuts, the inclusion of NNLO corrections represents a small effect and loosens the extraction of limits on anomalous couplings by about 10%.

  10. Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants

    PubMed Central

    Smith, Selena Y.; Collinson, Margaret E.; Rudall, Paula J.; Simpson, David A.; Marone, Federica; Stampanoni, Marco

    2009-01-01

    While more commonly applied in zoology, synchrotron radiation X-ray tomographic microscopy (SRXTM) is well-suited to nondestructive study of the morphology and anatomy of both fossil and modern plants. SRXTM uses hard X-rays and a monochromatic light source to provide high-resolution data with little beam-hardening, resulting in slice data with clear boundaries between materials. Anatomy is readily visualized, including various planes of section from a single specimen, as clear as in traditional histological sectioning at low magnifications. Thus, digital sectioning of rare or difficult material is possible. Differential X-ray attenuation allows visualization of different layers or chemistries to enable virtual 3-dimensional (3D) dissections of material. Virtual potential fossils can be visualized and digital tissue removal reveals cryptic underlying morphology. This is essential for fossil identification and for comparisons between assemblages where fossils are preserved by different means. SRXTM is a powerful approach for botanical studies using morphology and anatomy. The ability to gain search images in both 2D and 3D for potential fossils gives paleobotanists a tool—virtual taphonomy—to improve our understanding of plant evolution and paleobiogeography. PMID:19574457

  11. Short Term Motor-Skill Acquisition Improves with Size of Self-Controlled Virtual Hands

    PubMed Central

    Ossmy, Ori; Mukamel, Roy

    2017-01-01

    Visual feedback in general, and from the body in particular, is known to influence the performance of motor skills in humans. However, it is unclear how the acquisition of motor skills depends on specific visual feedback parameters such as the size of performing effector. Here, 21 healthy subjects physically trained to perform sequences of finger movements with their right hand. Through the use of 3D Virtual Reality devices, visual feedback during training consisted of virtual hands presented on the screen, tracking subject’s hand movements in real time. Importantly, the setup allowed us to manipulate the size of the displayed virtual hands across experimental conditions. We found that performance gains increase with the size of virtual hands. In contrast, when subjects trained by mere observation (i.e., in the absence of physical movement), manipulating the size of the virtual hand did not significantly affect subsequent performance gains. These results demonstrate that when it comes to short-term motor skill learning, the size of visual feedback matters. Furthermore, these results suggest that highest performance gains in individual subjects are achieved when the size of the virtual hand matches their real hand size. These results may have implications for optimizing motor training schemes. PMID:28056023

  12. Implementation of a virtual laboratory for training on sound insulation testing and uncertainty calculations in acoustic tests.

    PubMed

    Asensio, C; Gasco, L; Ruiz, M; Recuero, M

    2015-02-01

    This paper describes a methodology and case study for the implementation of educational virtual laboratories for practice training on acoustic tests according to international standards. The objectives of this activity are (a) to help the students understand and apply the procedures described in the standards and (b) to familiarize the students with the uncertainty in measurement and its estimation in acoustics. The virtual laboratory will not focus on the handling and set-up of real acoustic equipment but rather on procedures and uncertainty. The case study focuses on the application of the virtual laboratory for facade sound insulation tests according to ISO 140-5:1998 (International Organization for Standardization, Geneva, Switzerland, 1998), and the paper describes the causal and stochastic models and the constraints applied in the virtual environment under consideration. With a simple user interface, the laboratory will provide measurement data that the students will have to process to report the insulation results that must converge with the "virtual true values" in the laboratory. The main advantage of the virtual laboratory is derived from the customization of factors in which the student will be instructed or examined (for instance, background noise correction, the detection of sporadic corrupted observations, and the effect of instrument precision).

  13. Algorithms for extraction of structural attitudes from 3D outcrop models

    NASA Astrophysics Data System (ADS)

    Duelis Viana, Camila; Endlein, Arthur; Ademar da Cruz Campanha, Ginaldo; Henrique Grohmann, Carlos

    2016-05-01

    The acquisition of geological attitudes on rock cuts using traditional field compass survey can be a time consuming, dangerous, or even impossible task depending on the conditions and location of outcrops. The importance of this type of data in rock-mass classifications and structural geology has led to the development of new techniques, in which the application of photogrammetric 3D digital models has had an increasing use. In this paper we present two algorithms for extraction of attitudes of geological discontinuities from virtual outcrop models: ply2atti and scanline, implemented with the Python programming language. The ply2atti algorithm allows for the virtual sampling of planar discontinuities appearing on the 3D model as individual exposed surfaces, while the scanline algorithm allows the sampling of discontinuities (surfaces and traces) along a virtual scanline. Application to digital models of a simplified test setup and a rock cut demonstrated a good correlation between the surveys undertaken using traditional field compass reading and virtual sampling on 3D digital models.

  14. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.

    PubMed

    Aronov, Dmitriy; Tank, David W

    2014-10-22

    Virtual reality (VR) enables precise control of an animal's environment and otherwise impossible experimental manipulations. Neural activity in rodents has been studied on virtual 1D tracks. However, 2D navigation imposes additional requirements, such as the processing of head direction and environment boundaries, and it is unknown whether the neural circuits underlying 2D representations can be sufficiently engaged in VR. We implemented a VR setup for rats, including software and large-scale electrophysiology, that supports 2D navigation by allowing rotation and walking in any direction. The entorhinal-hippocampal circuit, including place, head direction, and grid cells, showed 2D activity patterns similar to those in the real world. Furthermore, border cells were observed, and hippocampal remapping was driven by environment shape, suggesting functional processing of virtual boundaries. These results illustrate that 2D spatial representations can be engaged by visual and rotational vestibular stimuli alone and suggest a novel VR tool for studying rat navigation.

  15. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system

    PubMed Central

    Aronov, Dmitriy; Tank, David W.

    2015-01-01

    SUMMARY Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any direction. The entorhinal-hippocampal circuit, including place cells, grid cells, head direction cells and border cells, showed 2D activity patterns in VR similar to those in the real world. Hippocampal neurons exhibited various remapping responses to changes in the appearance or the shape of the virtual environment, including a novel form in which a VR-induced cue conflict caused remapping to lock to geometry rather than salient cues. These results suggest a general-purpose tool for novel types of experimental manipulations in navigating rats. PMID:25374363

  16. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation

    PubMed Central

    Dombeck, Daniel A.; Harvey, Christopher D.; Tian, Lin; Looger, Loren L.; Tank, David W.

    2010-01-01

    Spatial navigation is a widely employed behavior in rodent studies of neuronal circuits underlying cognition, learning and memory. In vivo microscopy combined with genetically-encoded indicators provides important new tools to study neuronal circuits, but has been technically difficult to apply during navigation. We describe methods to image the activity of hippocampal CA1 neurons with sub-cellular resolution in behaving mice. Neurons expressing the genetically encoded calcium indicator GCaMP3 were imaged through a chronic hippocampal window. Head-fixed mice performed spatial behaviors within a setup combining a virtual reality system and a custom built two-photon microscope. Populations of place cells were optically identified, and the correlation between the location of their place fields in the virtual environment and their anatomical location in the local circuit was measured. The combination of virtual reality and high-resolution functional imaging should allow for a new generation of studies to probe neuronal circuit dynamics during behavior. PMID:20890294

  17. Effect of sound level on virtual and free-field localization of brief sounds in the anterior median plane.

    PubMed

    Marmel, Frederic; Marrufo-Pérez, Miriam I; Heeren, Jan; Ewert, Stephan; Lopez-Poveda, Enrique A

    2018-06-14

    The detection of high-frequency spectral notches has been shown to be worse at 70-80 dB sound pressure level (SPL) than at higher levels up to 100 dB SPL. The performance improvement at levels higher than 70-80 dB SPL has been related to an 'ideal observer' comparison of population auditory nerve spike trains to stimuli with and without high-frequency spectral notches. Insofar as vertical localization partly relies on information provided by pinna-based high-frequency spectral notches, we hypothesized that localization would be worse at 70-80 dB SPL than at higher levels. Results from a first experiment using a virtual localization set-up and non-individualized head-related transfer functions (HRTFs) were consistent with this hypothesis, but a second experiment using a free-field set-up showed that vertical localization deteriorates monotonically with increasing level up to 100 dB SPL. These results suggest that listeners use different cues when localizing sound sources in virtual and free-field conditions. In addition, they confirm that the worsening in vertical localization with increasing level continues beyond 70-80 dB SPL, the highest levels tested by previous studies. Further, they suggest that vertical localization, unlike high-frequency spectral notch detection, does not rely on an 'ideal observer' analysis of auditory nerve spike trains. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. The geometrical precision of virtual bone models derived from clinical computed tomography data for forensic anthropology.

    PubMed

    Colman, Kerri L; Dobbe, Johannes G G; Stull, Kyra E; Ruijter, Jan M; Oostra, Roelof-Jan; van Rijn, Rick R; van der Merwe, Alie E; de Boer, Hans H; Streekstra, Geert J

    2017-07-01

    Almost all European countries lack contemporary skeletal collections for the development and validation of forensic anthropological methods. Furthermore, legal, ethical and practical considerations hinder the development of skeletal collections. A virtual skeletal database derived from clinical computed tomography (CT) scans provides a potential solution. However, clinical CT scans are typically generated with varying settings. This study investigates the effects of image segmentation and varying imaging conditions on the precision of virtual modelled pelves. An adult human cadaver was scanned using varying imaging conditions, such as scanner type and standard patient scanning protocol, slice thickness and exposure level. The pelvis was segmented from the various CT images resulting in virtually modelled pelves. The precision of the virtual modelling was determined per polygon mesh point. The fraction of mesh points resulting in point-to-point distance variations of 2 mm or less (95% confidence interval (CI)) was reported. Colour mapping was used to visualise modelling variability. At almost all (>97%) locations across the pelvis, the point-to-point distance variation is less than 2 mm (CI = 95%). In >91% of the locations, the point-to-point distance variation was less than 1 mm (CI = 95%). This indicates that the geometric variability of the virtual pelvis as a result of segmentation and imaging conditions rarely exceeds the generally accepted linear error of 2 mm. Colour mapping shows that areas with large variability are predominantly joint surfaces. Therefore, results indicate that segmented bone elements from patient-derived CT scans are a sufficiently precise source for creating a virtual skeletal database.

  19. Virtual grasping: closed-loop force control using electrotactile feedback.

    PubMed

    Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario

    2014-01-01

    Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  20. Agreement and reliability of pelvic floor measurements during contraction using three-dimensional pelvic floor ultrasound and virtual reality.

    PubMed

    Speksnijder, L; Rousian, M; Steegers, E A P; Van Der Spek, P J; Koning, A H J; Steensma, A B

    2012-07-01

    Virtual reality is a novel method of visualizing ultrasound data with the perception of depth and offers possibilities for measuring non-planar structures. The levator ani hiatus has both convex and concave aspects. The aim of this study was to compare levator ani hiatus volume measurements obtained with conventional three-dimensional (3D) ultrasound and with a virtual reality measurement technique and to establish their reliability and agreement. 100 symptomatic patients visiting a tertiary pelvic floor clinic with a normal intact levator ani muscle diagnosed on translabial ultrasound were selected. Datasets were analyzed using a rendered volume with a slice thickness of 1.5 cm at the level of minimal hiatal dimensions during contraction. The levator area (in cm(2)) was measured and multiplied by 1.5 to get the levator ani hiatus volume in conventional 3D ultrasound (in cm(3)). Levator ani hiatus volume measurements were then measured semi-automatically in virtual reality (cm(3) ) using a segmentation algorithm. An intra- and interobserver analysis of reliability and agreement was performed in 20 randomly chosen patients. The mean difference between levator ani hiatus volume measurements performed using conventional 3D ultrasound and virtual reality was 0.10 (95% CI, - 0.15 to 0.35) cm(3). The intraclass correlation coefficient (ICC) comparing conventional 3D ultrasound with virtual reality measurements was > 0.96. Intra- and interobserver ICCs for conventional 3D ultrasound measurements were > 0.94 and for virtual reality measurements were > 0.97, indicating good reliability for both. Levator ani hiatus volume measurements performed using virtual reality were reliable and the results were similar to those obtained with conventional 3D ultrasonography. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  1. Software platform virtualization in chemistry research and university teaching

    PubMed Central

    2009-01-01

    Background Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Results Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Conclusion Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide. PMID:20150997

  2. Software platform virtualization in chemistry research and university teaching.

    PubMed

    Kind, Tobias; Leamy, Tim; Leary, Julie A; Fiehn, Oliver

    2009-11-16

    Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide.

  3. Effects of ammonia and hepatic failure on the net efflux of endogenous glutamate, aspartate and taurine from rat cerebrocortical slices: modulation by elevated K+ concentrations.

    PubMed

    Zielińska, M; Hilgier, W; Law, R O; Gorynski, P; Albrecht, J

    2002-01-01

    Cerebrocortical minislices derived from control rats ("control slices") and from rats with thioacetamide (TAA)-induced hepatic failure showing moderate hyperammonemia and symptoms of hepatic encephalopathy (HE) ("HE slices"), were incubated with physiological saline in the absence or presence of 5 mM ammonium acetate ("ammonia"), at potassium ion (K+) concentrations ranging from 5 to 15 mM. The efflux of endogenous aspartate (Asp), glutamate (Glu) and taurine (Tau) to the incubation medium was assayed by HPLC. At 5 mM K+, perfusion of control slices with ammonia did not affect Glu and slightly depressed Asp efflux. Raising K+ concentrations in the incubation medium to 7.5 led to inhibition of Glu and Asp efflux by ammonia and the inhibitory effect was further potentiated at 10 mM K+. The inhibition was also significant at 15 mM K+. This suggests that, depression of excitatory neurotransmission associated with acute hyperammonemia is more pronounced under conditions of intense neuronal activity than in the resting state. HE moderately increased the efflux of Glu and Asp, and the stimulatory effect of HE on Glu and Asp efflux showed virtually no variation upon changing K+ concentration up to 15 mM. Ammonia strongly, and HE moderately, increased Tau efflux at 5 mM K+. However, both the ammonia- and HE-dependent Tau efflux decreased with increasing K+ concentration in the medium and was no longer significant at 10 mM concentration, indicating that intense neuronal activity obliterates the neuroprotective functions of this amino acid triggered by hyperammonemia.

  4. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.

    PubMed

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2011-06-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.

  5. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery

    PubMed Central

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2013-01-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information. PMID:24398557

  6. Assimilation of virtual legs and perception of floor texture by complete paraplegic patients receiving artificial tactile feedback.

    PubMed

    Shokur, Solaiman; Gallo, Simone; Moioli, Renan C; Donati, Ana Rita C; Morya, Edgard; Bleuler, Hannes; Nicolelis, Miguel A L

    2016-09-19

    Spinal cord injuries disrupt bidirectional communication between the patient's brain and body. Here, we demonstrate a new approach for reproducing lower limb somatosensory feedback in paraplegics by remapping missing leg/foot tactile sensations onto the skin of patients' forearms. A portable haptic display was tested in eight patients in a setup where the lower limbs were simulated using immersive virtual reality (VR). For six out of eight patients, the haptic display induced the realistic illusion of walking on three different types of floor surfaces: beach sand, a paved street or grass. Additionally, patients experienced the movements of the virtual legs during the swing phase or the sensation of the foot rolling on the floor while walking. Relying solely on this tactile feedback, patients reported the position of the avatar leg during virtual walking. Crossmodal interference between vision of the virtual legs and tactile feedback revealed that patients assimilated the virtual lower limbs as if they were their own legs. We propose that the addition of tactile feedback to neuroprosthetic devices is essential to restore a full lower limb perceptual experience in spinal cord injury (SCI) patients, and will ultimately, lead to a higher rate of prosthetic acceptance/use and a better level of motor proficiency.

  7. Assimilation of virtual legs and perception of floor texture by complete paraplegic patients receiving artificial tactile feedback

    PubMed Central

    Shokur, Solaiman; Gallo, Simone; Moioli, Renan C.; Donati, Ana Rita C.; Morya, Edgard; Bleuler, Hannes; Nicolelis, Miguel A.L.

    2016-01-01

    Spinal cord injuries disrupt bidirectional communication between the patient’s brain and body. Here, we demonstrate a new approach for reproducing lower limb somatosensory feedback in paraplegics by remapping missing leg/foot tactile sensations onto the skin of patients’ forearms. A portable haptic display was tested in eight patients in a setup where the lower limbs were simulated using immersive virtual reality (VR). For six out of eight patients, the haptic display induced the realistic illusion of walking on three different types of floor surfaces: beach sand, a paved street or grass. Additionally, patients experienced the movements of the virtual legs during the swing phase or the sensation of the foot rolling on the floor while walking. Relying solely on this tactile feedback, patients reported the position of the avatar leg during virtual walking. Crossmodal interference between vision of the virtual legs and tactile feedback revealed that patients assimilated the virtual lower limbs as if they were their own legs. We propose that the addition of tactile feedback to neuroprosthetic devices is essential to restore a full lower limb perceptual experience in spinal cord injury (SCI) patients, and will ultimately, lead to a higher rate of prosthetic acceptance/use and a better level of motor proficiency. PMID:27640345

  8. Illusion-related brain activations: a new virtual reality mirror box system for use during functional magnetic resonance imaging.

    PubMed

    Diers, Martin; Kamping, Sandra; Kirsch, Pinar; Rance, Mariela; Bekrater-Bodmann, Robin; Foell, Jens; Trojan, Joerg; Fuchs, Xaver; Bach, Felix; Maaß, Heiko; Cakmak, Hüseyin; Flor, Herta

    2015-01-12

    Extended viewing of movements of one's intact limb in a mirror as well as motor imagery have been shown to decrease pain in persons with phantom limb pain or complex regional pain syndrome and to increase the movement ability in hemiparesis following stroke. In addition, mirrored movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. However, using a so-called mirror box has technical limitations, some of which can be overcome by virtual reality applications. We developed a virtual reality mirror box application and evaluated its comparability to a classical mirror box setup. We applied both paradigms to 20 healthy controls and analyzed vividness and authenticity of the illusion as well as brain activation patterns. In both conditions, subjects reported similar intensities for the sensation that movements of the virtual left hand felt as if they were executed by their own left hand. We found activation in the primary sensorimotor cortex contralateral to the actual movement, with stronger activation for the virtual reality 'mirror box' compared to the classical mirror box condition, as well as activation in the primary sensorimotor cortex contralateral to the mirrored/virtual movement. We conclude that a virtual reality application of the mirror box is viable and that it might be useful for future research. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Check the Lambert-Beer-Bouguer law: a simple trick to boost the confidence of students toward both exponential laws and the discrete approach to experimental physics

    NASA Astrophysics Data System (ADS)

    Di Capua, R.; Offi, F.; Fontana, F.

    2014-07-01

    Exponential decay is a prototypical functional behaviour for many physical phenomena, and therefore it deserves great attention in physics courses at an academic level. The absorption of the electromagnetic radiation that propagates in a dissipative medium provides an example of the decay of light intensity, as stated by the law of Lambert-Beer-Bourguer. We devised a very simple experiment to check this law. The experimental setup, its realization, and the data analysis of the experiment are definitely simple. Our main goal was to create an experiment that is accessible to all students, including those in their first year of academic courses and those with poorly equipped laboratories. As illustrated in this paper, our proposal allowed us to develop a deep discussion about some general mathematical and numerical features of exponential decay. Furthermore, the special setup of the absorbing medium (sliced in finite thickness slabs) and the experimental outcomes allow students to understand the transition from the discrete to the continuum approach in experimental physics.

  10. Virtual Exercise Training Software System

    NASA Technical Reports Server (NTRS)

    Vu, L.; Kim, H.; Benson, E.; Amonette, W. E.; Barrera, J.; Perera, J.; Rajulu, S.; Hanson, A.

    2018-01-01

    The purpose of this study was to develop and evaluate a virtual exercise training software system (VETSS) capable of providing real-time instruction and exercise feedback during exploration missions. A resistive exercise instructional system was developed using a Microsoft Kinect depth-camera device, which provides markerless 3-D whole-body motion capture at a small form factor and minimal setup effort. It was hypothesized that subjects using the newly developed instructional software tool would perform the deadlift exercise with more optimal kinematics and consistent technique than those without the instructional software. Following a comprehensive evaluation in the laboratory, the system was deployed for testing and refinement in the NASA Extreme Environment Mission Operations (NEEMO) analog.

  11. Spatial Visualization in Introductory Geology Courses

    NASA Astrophysics Data System (ADS)

    Reynolds, S. J.

    2004-12-01

    Visualization is critical to solving most geologic problems, which involve events and processes across a broad range of space and time. Accordingly, spatial visualization is an essential part of undergraduate geology courses. In such courses, students learn to visualize three-dimensional topography from two-dimensional contour maps, to observe landscapes and extract clues about how that landscape formed, and to imagine the three-dimensional geometries of geologic structures and how these are expressed on the Earth's surface or on geologic maps. From such data, students reconstruct the geologic history of areas, trying to visualize the sequence of ancient events that formed a landscape. To understand the role of visualization in student learning, we developed numerous interactive QuickTime Virtual Reality animations to teach students the most important visualization skills and approaches. For topography, students can spin and tilt contour-draped, shaded-relief terrains, flood virtual landscapes with water, and slice into terrains to understand profiles. To explore 3D geometries of geologic structures, they interact with virtual blocks that can be spun, sliced into, faulted, and made partially transparent to reveal internal structures. They can tilt planes to see how they interact with topography, and spin and tilt geologic maps draped over digital topography. The GeoWall system allows students to see some of these materials in true stereo. We used various assessments to research the effectiveness of these materials and to document visualization strategies students use. Our research indicates that, compared to control groups, students using such materials improve more in their geologic visualization abilities and in their general visualization abilities as measured by a standard spatial visualization test. Also, females achieve greater gains, improving their general visualization abilities to the same level as males. Misconceptions that students carry obstruct learning, but are largely undocumented. Many students, for example, cannot visualize that the landscape in which rock layers were deposited was different than the landscape in which the rocks are exposed today, even in the Grand Canyon.

  12. Owning an overweight or underweight body: distinguishing the physical, experienced and virtual body.

    PubMed

    Piryankova, Ivelina V; Wong, Hong Yu; Linkenauger, Sally A; Stinson, Catherine; Longo, Matthew R; Bülthoff, Heinrich H; Mohler, Betty J

    2014-01-01

    Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant's experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups.

  13. Owning an Overweight or Underweight Body: Distinguishing the Physical, Experienced and Virtual Body

    PubMed Central

    Piryankova, Ivelina V.; Wong, Hong Yu; Linkenauger, Sally A.; Stinson, Catherine; Longo, Matthew R.; Bülthoff, Heinrich H.; Mohler, Betty J.

    2014-01-01

    Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant's experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups. PMID:25083784

  14. Effectiveness of Telerehabilitation for OIF/OEF Returnees with Combat Related Trauma

    DTIC Science & Technology

    2015-02-01

    Our telerehabilitation care coordination team is organized under Steve Scott, MD, Chief Physical Medicine and Rehabilitation Services VA at the...for communication between care coordinators and study enrollees. Separate “ virtual rooms” have been setup on the 5 VA server to facilitate care...characterize rehabilitation trajectories over time in the areas of function, cognition, psychosocial adjustment, integration into society and mental health

  15. Color transfer algorithm in medical images

    NASA Astrophysics Data System (ADS)

    Wang, Weihong; Xu, Yangfa

    2007-12-01

    In digital virtual human project, image data acquires from the freezing slice of human body specimen. The color and brightness between a group of images of a certain organ could be quite different. The quality of these images could bring great difficulty in edge extraction, segmentation, as well as 3D reconstruction process. Thus it is necessary to unify the color of the images. The color transfer algorithm is a good algorithm to deal with this kind of problem. This paper introduces the principle of this algorithm and uses it in the medical image processing.

  16. On the usefulness of the concept of presence in virtual reality applications

    NASA Astrophysics Data System (ADS)

    Mestre, Daniel R.

    2015-03-01

    Virtual Reality (VR) leads to realistic experimental situations, while enabling researchers to have deterministic control on these situations, and to precisely measure participants' behavior. However, because more realistic and complex situations can be implemented, important questions arise, concerning the validity and representativeness of the observed behavior, with reference to a real situation. One example is the investigation of a critical (virtually dangerous) situation, in which the participant knows that no actual threat is present in the simulated situation, and might thus exhibit a behavioral response that is far from reality. This poses serious problems, for instance in training situations, in terms of transfer of learning to a real situation. Facing this difficult question, it seems necessary to study the relationships between three factors: immersion (physical realism), presence (psychological realism) and behavior. We propose a conceptual framework, in which presence is a necessary condition for the emergence of a behavior that is representative of what is observed in real conditions. Presence itself depends not only on physical immersive characteristics of the Virtual Reality setup, but also on contextual and psychological factors.

  17. Improved human observer performance in digital reconstructed radiograph verification in head and neck cancer radiotherapy.

    PubMed

    Sturgeon, Jared D; Cox, John A; Mayo, Lauren L; Gunn, G Brandon; Zhang, Lifei; Balter, Peter A; Dong, Lei; Awan, Musaddiq; Kocak-Uzel, Esengul; Mohamed, Abdallah Sherif Radwan; Rosenthal, David I; Fuller, Clifton David

    2015-10-01

    Digitally reconstructed radiographs (DRRs) are routinely used as an a priori reference for setup correction in radiotherapy. The spatial resolution of DRRs may be improved to reduce setup error in fractionated radiotherapy treatment protocols. The influence of finer CT slice thickness reconstruction (STR) and resultant increased resolution DRRs on physician setup accuracy was prospectively evaluated. Four head and neck patient CT-simulation images were acquired and used to create DRR cohorts by varying STRs at 0.5, 1, 2, 2.5, and 3 mm. DRRs were displaced relative to a fixed isocenter using 0-5 mm random shifts in the three cardinal axes. Physician observers reviewed DRRs of varying STRs and displacements and then aligned reference and test DRRs replicating daily KV imaging workflow. A total of 1,064 images were reviewed by four blinded physicians. Observer errors were analyzed using nonparametric statistics (Friedman's test) to determine whether STR cohorts had detectably different displacement profiles. Post hoc bootstrap resampling was applied to evaluate potential generalizability. The observer-based trial revealed a statistically significant difference between cohort means for observer displacement vector error ([Formula: see text]) and for [Formula: see text]-axis [Formula: see text]. Bootstrap analysis suggests a 15% gain in isocenter translational setup error with reduction of STR from 3 mm to [Formula: see text]2 mm, though interobserver variance was a larger feature than STR-associated measurement variance. Higher resolution DRRs generated using finer CT scan STR resulted in improved observer performance at shift detection and could decrease operator-dependent geometric error. Ideally, CT STRs [Formula: see text]2 mm should be utilized for DRR generation in the head and neck.

  18. The polar amplification asymmetry: role of Antarctic surface height

    NASA Astrophysics Data System (ADS)

    Salzmann, Marc

    2017-05-01

    Previous studies have attributed an overall weaker (or slower) polar amplification in Antarctica compared to the Arctic to a weaker Antarctic surface albedo feedback and also to more efficient ocean heat uptake in the Southern Ocean in combination with Antarctic ozone depletion. Here, the role of the Antarctic surface height for meridional heat transport and local radiative feedbacks, including the surface albedo feedback, was investigated based on CO2-doubling experiments in a low-resolution coupled climate model. When Antarctica was assumed to be flat, the north-south asymmetry of the zonal mean top of the atmosphere radiation budget was notably reduced. Doubling CO2 in a flat Antarctica (flat AA) model setup led to a stronger increase in southern hemispheric poleward atmospheric and oceanic heat transport compared to the base model setup. Based on partial radiative perturbation (PRP) computations, it was shown that local radiative feedbacks and an increase in the CO2 forcing in the deeper atmospheric column also contributed to stronger Antarctic warming in the flat AA model setup, and the roles of the individual radiative feedbacks are discussed in some detail. A considerable fraction (between 24 and 80 % for three consecutive 25-year time slices starting in year 51 and ending in year 126 after CO2 doubling) of the polar amplification asymmetry was explained by the difference in surface height, but the fraction was subject to transient changes and might to some extent also depend on model uncertainties. In order to arrive at a more reliable estimate of the role of land height for the observed polar amplification asymmetry, additional studies based on ensemble runs from higher-resolution models and an improved model setup with a more realistic gradual increase in the CO2 concentration are required.

  19. The Improvement of the Closed Bounded Volume (CBV) Evaluation Methods to Compute a Feasible Rough Machining Area Based on Faceted Models

    NASA Astrophysics Data System (ADS)

    Hadi Sutrisno, Himawan; Kiswanto, Gandjar; Istiyanto, Jos

    2017-06-01

    The rough machining is aimed at shaping a workpiece towards to its final form. This process takes up a big proportion of the machining time due to the removal of the bulk material which may affect the total machining time. In certain models, the rough machining has limitations especially on certain surfaces such as turbine blade and impeller. CBV evaluation is one of the concepts which is used to detect of areas admissible in the process of machining. While in the previous research, CBV area detection used a pair of normal vectors, in this research, the writer simplified the process to detect CBV area with a slicing line for each point cloud formed. The simulation resulted in three steps used for this method and they are: 1. Triangulation from CAD design models, 2. Development of CC point from the point cloud, 3. The slicing line method which is used to evaluate each point cloud position (under CBV and outer CBV). The result of this evaluation method can be used as a tool for orientation set-up on each CC point position of feasible areas in rough machining.

  20. A new extracellular multirecording system for electrophysiological studies: application to hippocampal organotypic cultures.

    PubMed

    Stoppini, L; Duport, S; Corrèges, P

    1997-03-01

    The present paper describes a new multirecording device which performs continuous electrophysiological studies on organotypic cultures. This device is formed by a card (Physiocard) carrying the culture which is inserted into an electronic module. Electrical activities are recorded by an array of 30 biocompatible microelectrodes which are adjusted into close contact with the upper surface of the slice culture. The microelectrode array is integrated into the card enabling electrical stimulation and recording of neurons over periods ranging from several hours to a few days outside a Faraday cage. Neuronal responses are recorded and analyzed by a dedicated electronic and acquisition chain. A perfusion chamber is contained in the card, allowing continuous perfusion in sterile conditions. Electrophysiological extracellular recordings and some drugs' effects obtained with this system in hippocampal slice cultures were identical to conventional electrophysiological set-up results with tetrodotoxin, bicuculline, kainate, dexamethasone and NBQX. The Physiocard system allows new insights for studies on nervous tissue and allows sophisticated approaches to be used quicker and more easily. It could be used for various neurophysiological studies or screening tests such as neural network mapping, nervous recovery, epilepsy, neurotoxicity or neuropharmacology.

  1. SU-E-J-13: Six Degree of Freedom Image Fusion Accuracy for Cranial Target Localization On the Varian Edge Stereotactic Radiosurgery System: Comparison Between 2D/3D and KV CBCT Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, H; Song, K; Chetty, I

    Purpose: To determine the 6 degree of freedom systematic deviations between 2D/3D and CBCT image registration with various imaging setups and fusion algorithms on the Varian Edge Linac. Methods: An anthropomorphic head phantom with radio opaque targets embedded was scanned with CT slice thicknesses of 0.8, 1, 2, and 3mm. The 6 DOF systematic errors were assessed by comparing 2D/3D (kV/MV with CT) with 3D/3D (CBCT with CT) image registrations with different offset positions, similarity measures, image filters, and CBCT slice thicknesses (1 and 2 mm). The 2D/3D registration accuracy of 51 fractions for 26 cranial SRS patients was alsomore » evaluated by analyzing 2D/3D pre-treatment verification taken after 3D/3D image registrations. Results: The systematic deviations of 2D/3D image registration using kV- kV, MV-kV and MV-MV image pairs were within ±0.3mm and ±0.3° for translations and rotations with 95% confidence interval (CI) for a reference CT with 0.8 mm slice thickness. No significant difference (P>0.05) on target localization was observed between 0.8mm, 1mm, and 2mm CT slice thicknesses with CBCT slice thicknesses of 1mm and 2mm. With 3mm CT slice thickness, both 2D/3D and 3D/3D registrations performed less accurately in longitudinal direction than thinner CT slice thickness (0.60±0.12mm and 0.63±0.07mm off, respectively). Using content filter and using similarity measure of pattern intensity instead of mutual information, improved the 2D/3D registration accuracy significantly (P=0.02 and P=0.01, respectively). For the patient study, means and standard deviations of residual errors were 0.09±0.32mm, −0.22±0.51mm and −0.07±0.32mm in VRT, LNG and LAT directions, respectively, and 0.12°±0.46°, −0.12°±0.39° and 0.06°±0.28° in RTN, PITCH, and ROLL directions, respectively. 95% CI of translational and rotational deviations were comparable to those in phantom study. Conclusion: 2D/3D image registration provided on the Varian Edge radiosurgery, 6 DOF-based system provides accurate target positioning for frameless image-guided cranial stereotactic radiosurgery.« less

  2. Scientific Visualization for Atmospheric Data Analysis in Collaborative Virtual Environments

    NASA Astrophysics Data System (ADS)

    Engelke, Wito; Flatken, Markus; Garcia, Arturo S.; Bar, Christian; Gerndt, Andreas

    2016-04-01

    1 INTRODUCTION The three year European research project CROSS DRIVE (Collaborative Rover Operations and Planetary Science Analysis System based on Distributed Remote and Interactive Virtual Environments) started in January 2014. The research and development within this project is motivated by three use case studies: landing site characterization, atmospheric science and rover target selection [1]. Currently the implementation for the second use case is in its final phase [2]. Here, the requirements were generated based on the domain experts input and lead to development and integration of appropriate methods for visualization and analysis of atmospheric data. The methods range from volume rendering, interactive slicing, iso-surface techniques to interactive probing. All visualization methods are integrated in DLR's Terrain Rendering application. With this, the high resolution surface data visualization can be enriched with additional methods appropriate for atmospheric data sets. This results in an integrated virtual environment where the scientist has the possibility to interactively explore his data sets directly within the correct context. The data sets include volumetric data of the martian atmosphere, precomputed two dimensional maps and vertical profiles. In most cases the surface data as well as the atmospheric data has global coverage and is of time dependent nature. Furthermore, all interaction is synchronized between different connected application instances, allowing for collaborative sessions between distant experts. 2 VISUALIZATION TECHNIQUES Also the application is currently used for visualization of data sets related to Mars the techniques can be used for other data sets as well. Currently the prototype is capable of handling 2 and 2.5D surface data as well as 4D atmospheric data. Specifically, the surface data is presented using an LoD approach which is based on the HEALPix tessellation of a sphere [3, 4, 5] and can handle data sets in the order of terabytes. The combination of different data sources (e.g., MOLA, HRSC, HiRISE) and selection of presented data (e.g., infrared, spectral, imagery) is also supported. Furthermore, the data is presented unchanged and with the highest possible resolution for the target setup (e.g., power-wall, workstation, laptop) and view distance. The visualization techniques for the volumetric data sets can handle VTK [6] based data sets and also support different grid types as well as a time component. In detail, the integrated volume rendering uses a GPU based ray casting algorithm which was adapted to work in spherical coordinate systems. This approach results in interactive frame-rates without compromising visual fidelity. Besides direct visualization via volume rendering the prototype supports interactive slicing, extraction of iso-surfaces and probing. The latter can also be used for side-by-side comparison and on-the-fly diagram generation within the application. Similarily to the surface data a combination of different data sources is supported as well. For example, the extracted iso-surface of a scalar pressure field can be used for the visualization of the temperature. The software development is supported by the ViSTA VR-toolkit [7] and supports different target systems as well as a wide range of VR-devices. Furthermore, the prototype is scalable to run on laptops, workstations and cluster setups. REFERENCES [1] A. S. Garcia, D. J. Roberts, T. Fernando, C. Bar, R. Wolff, J. Dodiya, W. Engelke, and A. Gerndt, "A collaborative workspace architecture for strengthening collaboration among space scientists," in IEEE Aerospace Conference, (Big Sky, Montana, USA), 7-14 March 2015. [2] W. Engelke, "Mars Cartography VR System 2/3." German Aerospace Center (DLR), 2015. Project Deliverable D4.2. [3] E. Hivon, F. K. Hansen, and A. J. Banday, "The healpix primer," arXivpreprint astro-ph/9905275, 1999. [4] K. M. Gorski, E. Hivon, A. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and M. Bartelmann, "Healpix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere," The Astrophysical Journal, vol. 622, no. 2, p. 759, 2005. [5] R. Westerteiger, A. Gerndt, and B. Hamann, "Spherical terrain render- ing using the hierarchical healpix grid," VLUDS, vol. 11, pp. 13-23, 2011. [6] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit. Kitware, 4 ed., 2006. [7] T. van Reimersdahl, T. Kuhlen, A. Gerndt, J. Henrichs, and C. Bischof, "ViSTA: a multimodal, platform-independent VR-toolkit based on WTK, VTK, and MPI," in Proceedings of the 4th International Immersive Projection Technology Workshop (IPT), 2000.

  3. Hybrid 2-D and 3-D Immersive and Interactive User Interface for Scientific Data Visualization

    DTIC Science & Technology

    2017-08-01

    visualization, 3-D interactive visualization, scientific visualization, virtual reality, real -time ray tracing 16. SECURITY CLASSIFICATION OF: 17...scientists to employ in the real world. Other than user-friendly software and hardware setup, scientists also need to be able to perform their usual...and scientific visualization communities mostly have different research priorities. For the VR community, the ability to support real -time user

  4. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules.

    PubMed

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2015-01-01

    Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM) is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM) introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926-1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf) of the non-contact atomic force microscope (NC-AFM) tuning fork sensor as well as the magnitude of the electric current (I) flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111) surface.

  5. System Integration and In Vivo Testing of a Robot for Ultrasound Guidance and Monitoring During Radiotherapy.

    PubMed

    Sen, Hasan Tutkun; Bell, Muyinatu A Lediju; Zhang, Yin; Ding, Kai; Boctor, Emad; Wong, John; Iordachita, Iulian; Kazanzides, Peter

    2017-07-01

    We are developing a cooperatively controlled robot system for image-guided radiation therapy (IGRT) in which a clinician and robot share control of a 3-D ultrasound (US) probe. IGRT involves two main steps: 1) planning/simulation and 2) treatment delivery. The goals of the system are to provide guidance for patient setup and real-time target monitoring during fractionated radiotherapy of soft tissue targets, especially in the upper abdomen. To compensate for soft tissue deformations created by the probe, we present a novel workflow where the robot holds the US probe on the patient during acquisition of the planning computerized tomography image, thereby ensuring that planning is performed on the deformed tissue. The robot system introduces constraints (virtual fixtures) to help to produce consistent soft tissue deformation between simulation and treatment days, based on the robot position, contact force, and reference US image recorded during simulation. This paper presents the system integration and the proposed clinical workflow, validated by an in vivo canine study. The results show that the virtual fixtures enable the clinician to deviate from the recorded position to better reproduce the reference US image, which correlates with more consistent soft tissue deformation and the possibility for more accurate patient setup and radiation delivery.

  6. Communication Architecture in Mixed-Reality Simulations of Unmanned Systems

    PubMed Central

    2018-01-01

    Verification of the correct functionality of multi-vehicle systems in high-fidelity scenarios is required before any deployment of such a complex system, e.g., in missions of remote sensing or in mobile sensor networks. Mixed-reality simulations where both virtual and physical entities can coexist and interact have been shown to be beneficial for development, testing, and verification of such systems. This paper deals with the problems of designing a certain communication subsystem for such highly desirable realistic simulations. Requirements of this communication subsystem, including proper addressing, transparent routing, visibility modeling, or message management, are specified prior to designing an appropriate solution. Then, a suitable architecture of this communication subsystem is proposed together with solutions to the challenges that arise when simultaneous virtual and physical message transmissions occur. The proposed architecture can be utilized as a high-fidelity network simulator for vehicular systems with implicit mobility models that are given by real trajectories of the vehicles. The architecture has been utilized within multiple projects dealing with the development and practical deployment of multi-UAV systems, which support the architecture’s viability and advantages. The provided experimental results show the achieved similarity of the communication characteristics of the fully deployed hardware setup to the setup utilizing the proposed mixed-reality architecture. PMID:29538290

  7. So ware-Defined Network Solutions for Science Scenarios: Performance Testing Framework and Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Settlemyer, Bradley; Kettimuthu, R.; Boley, Josh

    High-performance scientific work flows utilize supercomputers, scientific instruments, and large storage systems. Their executions require fast setup of a small number of dedicated network connections across the geographically distributed facility sites. We present Software-Defined Network (SDN) solutions consisting of site daemons that use dpctl, Floodlight, ONOS, or OpenDaylight controllers to set up these connections. The development of these SDN solutions could be quite disruptive to the infrastructure, while requiring a close coordination among multiple sites; in addition, the large number of possible controller and device combinations to investigate could make the infrastructure unavailable to regular users for extended periods ofmore » time. In response, we develop a Virtual Science Network Environment (VSNE) using virtual machines, Mininet, and custom scripts that support the development, testing, and evaluation of SDN solutions, without the constraints and expenses of multi-site physical infrastructures; furthermore, the chosen solutions can be directly transferred to production deployments. By complementing VSNE with a physical testbed, we conduct targeted performance tests of various SDN solutions to help choose the best candidates. In addition, we propose a switching response method to assess the setup times and throughput performances of different SDN solutions, and present experimental results that show their advantages and limitations.« less

  8. Communication Architecture in Mixed-Reality Simulations of Unmanned Systems.

    PubMed

    Selecký, Martin; Faigl, Jan; Rollo, Milan

    2018-03-14

    Verification of the correct functionality of multi-vehicle systems in high-fidelity scenarios is required before any deployment of such a complex system, e.g., in missions of remote sensing or in mobile sensor networks. Mixed-reality simulations where both virtual and physical entities can coexist and interact have been shown to be beneficial for development, testing, and verification of such systems. This paper deals with the problems of designing a certain communication subsystem for such highly desirable realistic simulations. Requirements of this communication subsystem, including proper addressing, transparent routing, visibility modeling, or message management, are specified prior to designing an appropriate solution. Then, a suitable architecture of this communication subsystem is proposed together with solutions to the challenges that arise when simultaneous virtual and physical message transmissions occur. The proposed architecture can be utilized as a high-fidelity network simulator for vehicular systems with implicit mobility models that are given by real trajectories of the vehicles. The architecture has been utilized within multiple projects dealing with the development and practical deployment of multi-UAV systems, which support the architecture's viability and advantages. The provided experimental results show the achieved similarity of the communication characteristics of the fully deployed hardware setup to the setup utilizing the proposed mixed-reality architecture.

  9. Automatized set-up procedure for transcranial magnetic stimulation protocols.

    PubMed

    Harquel, S; Diard, J; Raffin, E; Passera, B; Dall'Igna, G; Marendaz, C; David, O; Chauvin, A

    2017-06-01

    Transcranial Magnetic Stimulation (TMS) established itself as a powerful technique for probing and treating the human brain. Major technological evolutions, such as neuronavigation and robotized systems, have continuously increased the spatial reliability and reproducibility of TMS, by minimizing the influence of human and experimental factors. However, there is still a lack of efficient set-up procedure, which prevents the automation of TMS protocols. For example, the set-up procedure for defining the stimulation intensity specific to each subject is classically done manually by experienced practitioners, by assessing the motor cortical excitability level over the motor hotspot (HS) of a targeted muscle. This is time-consuming and introduces experimental variability. Therefore, we developed a probabilistic Bayesian model (AutoHS) that automatically identifies the HS position. Using virtual and real experiments, we compared the efficacy of the manual and automated procedures. AutoHS appeared to be more reproducible, faster, and at least as reliable as classical manual procedures. By combining AutoHS with robotized TMS and automated motor threshold estimation methods, our approach constitutes the first fully automated set-up procedure for TMS protocols. The use of this procedure decreases inter-experimenter variability while facilitating the handling of TMS protocols used for research and clinical routine. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. WeaVR: a self-contained and wearable immersive virtual environment simulation system.

    PubMed

    Hodgson, Eric; Bachmann, Eric R; Vincent, David; Zmuda, Michael; Waller, David; Calusdian, James

    2015-03-01

    We describe WeaVR, a computer simulation system that takes virtual reality technology beyond specialized laboratories and research sites and makes it available in any open space, such as a gymnasium or a public park. Novel hardware and software systems enable HMD-based immersive virtual reality simulations to be conducted in any arbitrary location, with no external infrastructure and little-to-no setup or site preparation. The ability of the WeaVR system to provide realistic motion-tracked navigation for users, to improve the study of large-scale navigation, and to generate usable behavioral data is shown in three demonstrations. First, participants navigated through a full-scale virtual grocery store while physically situated in an open grass field. Trajectory data are presented for both normal tracking and for tracking during the use of redirected walking that constrained users to a predefined area. Second, users followed a straight path within a virtual world for distances of up to 2 km while walking naturally and being redirected to stay within the field, demonstrating the ability of the system to study large-scale navigation by simulating virtual worlds that are potentially unlimited in extent. Finally, the portability and pedagogical implications of this system were demonstrated by taking it to a regional high school for live use by a computer science class on their own school campus.

  11. Experimental demonstration of building and operating QoS-aware survivable vSD-EONs with transparent resiliency.

    PubMed

    Yin, Jie; Guo, Jiannan; Kong, Bingxin; Yin, Heqing; Zhu, Zuqing

    2017-06-26

    Software-defined elastic optical networks (SD-EONs) provide operators more flexibility to customize their optical infrastructures dynamically. By leveraging infrastructure-as-a-service (IaaS), virtual SD-EONs (vSD-EONs) can be realized to further enhance the adaptivity of SD-EONs and shorten the time-to-market of new services. In this paper, we design and demonstrate the building and operating of quality-of-service (QoS) aware survivable vSD-EONs that are equipped with transparent data plane (DP) resiliency. Specifically, when slicing a vSD-EON, our network hypervisor (NHV) chooses to use "1:1" virtual link (VL) protection or on-demand VL remapping as the DP restoration scheme, according to the service-level agreement (SLA) between the vSD-EON's operator and the infrastructure provider (InP). Then, during an actual substrate link (SL) failure, the NHV realizes automatic DP restoration that is transparent to the controllers of vSD-EONs. We build a network testbed to demonstrate the creation of QoS-aware survivable vSD-EONs, the activation of lightpaths in the vSD-EONs to support upper-layer applications, and the automatic and simultaneous QoS-aware DP restorations during an SL failure. The experimental results indicate that our vSD-EON slicing system can build QoS-aware survivable vSD-EONs on-demand, operate them to set up lightpaths for carrying real application traffic, and facilitate differentiated DP restorations during SL failures to recover the vSD-EONs' services according to their SLAs.

  12. Knowledge Retention for Computer Simulations: A study comparing virtual and hands-on laboratories

    NASA Astrophysics Data System (ADS)

    Croom, John R., III

    The use of virtual laboratories has the potential to change physics education. These low-cost, interactive computer activities interest students, allow for easy setup, and give educators a way to teach laboratory based online classes. This study investigated whether virtual laboratories could replace traditional hands-on laboratories and whether students could retain the same long-term knowledge in virtual laboratories as compared to hands-on laboratories. This study is a quantitative quasi-experiment that used a multiple posttest design to determine if students using virtual laboratories would retain the same knowledge as students who performed hands-on laboratories after 9 weeks. The study was composed of 336 students from 14 school districts. Students had their performances on the laboratories and their retention of the laboratories compared to a series of factors that might have affected their retention using a pretest and two posttests, which were compared using a t test. The results showed no significant difference in short-term learning between the hands-on laboratory groups and virtual laboratory groups. There was, however, a significant difference (p = .005) between the groups in long-term retention; students in the hands-on laboratory groups retained more information than those in the virtual laboratory groups. These results suggest that long-term learning is enhanced when a laboratory contains a hands-on component. Finally, the results showed that both groups of students felt their particular laboratory style was superior to the alternative method. The findings of this study can be used to improve the integration of virtual laboratories into science curriculum.

  13. An 8-channel transceiver 7-channel receive RF coil setup for high SNR ultrahigh-field MRI of the shoulder at 7T.

    PubMed

    Rietsch, Stefan H G; Pfaffenrot, Viktor; Bitz, Andreas K; Orzada, Stephan; Brunheim, Sascha; Lazik-Palm, Andrea; Theysohn, Jens M; Ladd, Mark E; Quick, Harald H; Kraff, Oliver

    2017-12-01

    In this work, we present an 8-channel transceiver (Tx/Rx) 7-channel receive (Rx) radiofrequency (RF) coil setup for 7 T ultrahigh-field MR imaging of the shoulder. A C-shaped 8-channel Tx/Rx coil was combined with an anatomically close-fitting 7-channel Rx-only coil. The safety and performance parameters of this coil setup were evaluated on the bench and in phantom experiments. The 7 T MR imaging performance of the shoulder RF coil setup was evaluated in in vivo measurements using a 3D DESS, a 2D PD-weighted TSE sequence, and safety supervision based on virtual observation points. Distinct SNR gain and acceleration capabilities provided by the additional 7-channel Rx-only coil were demonstrated in phantom and in vivo measurements. The power efficiency indicated good performance of each channel and a maximum B 1 + of 19 μT if the hardware RF power limits of the MR system were exploited. MR imaging of the shoulder was demonstrated with clinically excellent image quality and submillimeter spatial resolution. The presented 8-channel transceiver 7-channel receive RF coil setup was successfully applied for in vivo 7 T MRI of the shoulder providing a clear SNR gain vs the transceiver array without the additional receive array. Homogeneous images across the shoulder region were obtained using 8-channel subject-specific phase-only RF shimming. © 2017 American Association of Physicists in Medicine.

  14. An evaluation of different setups for simulating lighting characteristics

    NASA Astrophysics Data System (ADS)

    Salters, Bart; Murdoch, Michael; Sekulovksi, Dragan; Chen, Shih-Han; Seuntiens, Pieter

    2012-03-01

    The advance of technology continuously enables new luminaire designs and concepts. Evaluating such designs has traditionally been done using actual prototypes, in a real environment. The iterations needed to build, verify, and improve luminaire designs incur substantial costs and slow down the design process. A more attractive way is to evaluate designs using simulations, as they can be made cheaper and quicker for a wider variety of prototypes. However, the value of such simulations is determined by how closely they predict the outcome of actual perception experiments. In this paper, we discuss an actual perception experiment including several lighting settings in a normal office environment. The same office environment also has been modeled using different software tools, and photo-realistic renderings have been created of these models. These renderings were subsequently processed using various tonemapping operators in preparation for display. The total imaging chain can be considered a simulation setup, and we have executed several perception experiments on different setups. Our real interest is in finding which imaging chain gives us the best result, or in other words, which of them yields the closest match between virtual and real experiment. To answer this question, first of all an answer has to be found to the question, "which simulation setup matches the real world best?" As there is no unique, widely accepted measure to describe the performance of a certain setup, we consider a number of options and discuss the reasoning behind them along with their advantages and disadvantages.

  15. Technology for detecting spectral radiance by a snapshot multi-imaging spectroradiometer

    NASA Astrophysics Data System (ADS)

    Zuber, Ralf; Stührmann, Ansgar; Gugg-Helminger, Anton; Seckmeyer, Gunther

    2017-12-01

    Technologies to determine spectral sky radiance distributions have evolved in recent years and have enabled new applications in remote sensing, for sky radiance measurements, in biological/diagnostic applications and luminance measurements. Most classical spectral imaging radiance technologies are based on mechanical and/or spectral scans. However, these methods require scanning time in which the spectral radiance distribution might change. To overcome this limitation, different so-called snapshot spectral imaging technologies have been developed that enable spectral and spatial non-scanning measurements. We present a new setup based on a facet mirror that is already used in imaging slicing spectrometers. By duplicating the input image instead of slicing it and using a specially designed entrance slit, we are able to select nearly 200 (14 × 14) channels within the field of view (FOV) for detecting spectral radiance in different directions. In addition, a megapixel image of the FOV is captured by an additional RGB camera. This image can be mapped onto the snapshot spectral image. In this paper, the mechanical setup, technical design considerations and first measurement results of a prototype are presented. For a proof of concept, the device is radiometrically calibrated and a 10 mm × 10 mm test pattern measured within a spectral range of 380 nm-800 nm with an optical bandwidth of 10 nm (full width at half maximum or FWHM). To show its potential in the UV spectral region, zenith sky radiance measurements in the UV of a clear sky were performed. Hence, the prototype was equipped with an entrance optic with a FOV of 0.5° and modified to obtain a radiometrically calibrated spectral range of 280 nm-470 nm with a FWHM of 3 nm. The measurement results have been compared to modeled data processed by UVSPEC, which showed deviations of less than 30%. This is far from being ideal, but an acceptable result with respect to available state-of-the-art intercomparisons.

  16. 1001 Ways to run AutoDock Vina for virtual screening

    NASA Astrophysics Data System (ADS)

    Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D.

    2016-03-01

    Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.

  17. 1001 Ways to run AutoDock Vina for virtual screening.

    PubMed

    Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D

    2016-03-01

    Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.

  18. Evaluation of Sensor Configurations for Robotic Surgical Instruments

    PubMed Central

    Gómez-de-Gabriel, Jesús M.; Harwin, William

    2015-01-01

    Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included. PMID:26516863

  19. Speaking in Character: Voice Communication in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Wadley, Greg; Gibbs, Martin R.

    This chapter summarizes 5 years of research on the implications of introducing voice communication systems to virtual worlds. Voice introduces both benefits and problems for players of fast-paced team games, from better coordination of groups and greater social presence of fellow players on the positive side, to negative features such as channel congestion, transmission of noise, and an unwillingness by some to use voice with strangers online. Similarly, in non-game worlds like Second Life, issues related to identity and impression management play important roles, as voice may build greater trust that is especially important for business users, yet it erodes the anonymity and ability to conceal social attributes like gender that are important for other users. A very different mixture of problems and opportunities exists when users conduct several simultaneous conversations in multiple text and voice channels. Technical difficulties still exist with current systems, including the challenge of debugging and harmonizing all the participants' voice setups. Different groups use virtual worlds for very different purposes, so a single modality may not suit all.

  20. Haptic feedback in OP:Sense - augmented reality in telemanipulated robotic surgery.

    PubMed

    Beyl, T; Nicolai, P; Mönnich, H; Raczkowksy, J; Wörn, H

    2012-01-01

    In current research, haptic feedback in robot assisted interventions plays an important role. However most approaches to haptic feedback only regard the mapping of the current forces at the surgical instrument to the haptic input devices, whereas surgeons demand a combination of medical imaging and telemanipulated robotic setups. In this paper we describe how this feature is integrated in our robotic research platform OP:Sense. The proposed method allows the automatic transfer of segmented imaging data to the haptic renderer and therefore allows enriching the haptic feedback with virtual fixtures based on imaging data. Anatomical structures are extracted from pre-operative generated medical images or virtual walls are defined by the surgeon inside the imaging data. Combining real forces with virtual fixtures can guide the surgeon to the regions of interest as well as helps to prevent the risk of damage to critical structures inside the patient. We believe that the combination of medical imaging and telemanipulation is a crucial step for the next generation of MIRS-systems.

  1. Evaluation of Sensor Configurations for Robotic Surgical Instruments.

    PubMed

    Gómez-de-Gabriel, Jesús M; Harwin, William

    2015-10-27

    Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included.

  2. Augmented reality visualization of deformable tubular structures for surgical simulation.

    PubMed

    Ferrari, Vincenzo; Viglialoro, Rosanna Maria; Nicoli, Paola; Cutolo, Fabrizio; Condino, Sara; Carbone, Marina; Siesto, Mentore; Ferrari, Mauro

    2016-06-01

    Surgical simulation based on augmented reality (AR), mixing the benefits of physical and virtual simulation, represents a step forward in surgical training. However, available systems are unable to update the virtual anatomy following deformations impressed on actual anatomy. A proof-of-concept solution is described providing AR visualization of hidden deformable tubular structures using nitinol tubes sensorized with electromagnetic sensors. This system was tested in vitro on a setup comprised of sensorized cystic, left and right hepatic, and proper hepatic arteries. In the trial session, the surgeon deformed the tubular structures with surgical forceps in 10 positions. The mean, standard deviation, and maximum misalignment between virtual and real arteries were 0.35, 0.22, and 0.99 mm, respectively. The alignment accuracy obtained demonstrates the feasibility of the approach, which can be adopted in advanced AR simulations, in particular as an aid to the identification and isolation of tubular structures. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Circumferential fit assessment of CAD/CAM single crowns--a pilot investigation on a new virtual analytical protocol.

    PubMed

    Matta, Ragai E; Schmitt, Johannes; Wichmann, Manfred; Holst, Stefan

    2012-10-01

    Techniques currently applied to determine the marginal accuracy of dental crown restorations yield inadequate information. This investigation aimed to test a new virtual approach for determining the precision of fit of single-crown copings. Zirconia single crown copings were manufactured on 10 gypsum, single-tooth master casts with two different established computer-aided design/computer-assisted manufacture (CAD/CAM) systems (groups A and B). After cementation, the circumferential fit was assessed with an industrial noncontact scanner and virtual 3D analysis, following a triple-scan protocol. Marginal fit was determined by virtual sectioning; each abutment-coping complex was digitally sliced in 360 vertical sections (1 degree per section). Standardized measurement distances for analyzing the marginal fit (z, xy, xyz) were selected, and a crosshair alignment was utilized to determine whether crowns were horizontally and/or vertically too large or small. The Mann-Whitney test was applied to test for differences between groups. Significant differences in the xy direction (P = .008) were measured between groups. Group A showed a greater number of horizontally overextended margins and a higher frequency of xy distances greater than 150 Μm, in addition to a tendency for excessive z distances (P = .095). The mean marginal gap values were clinically acceptable in the present investigation; however, a full circumferential analysis revealed significant differences in marginal coping quality.

  4. Employing a Secure Virtual Private Network (VPN) Infrastructure as a Global Command and Control Gateway to Dynamically Connect and Disconnect Diverse Forces an a Task-Force-By-Task-Force Basis

    DTIC Science & Technology

    2009-09-01

    DIFFIE-HELLMAN KEY EXCHANGE .......................14 III. GHOSTNET SETUP .........................................15 A. INSTALLATION OF OPENVPN FOR...16 3. Verifying the Secure Connection ..............16 B. RUNNING OPENVPN AS A SERVER ON WINDOWS ............17 1. Creating...Generating Server and Client Keys ............20 5. Keys to Transfer to the Client ...............21 6. Configuring OpenVPN to Use Certificates

  5. A comparative analysis of dynamic grids vs. virtual grids using the A3pviGrid framework.

    PubMed

    Shankaranarayanan, Avinas; Amaldas, Christine

    2010-11-01

    With the proliferation of Quad/Multi-core micro-processors in mainstream platforms such as desktops and workstations; a large number of unused CPU cycles can be utilized for running virtual machines (VMs) as dynamic nodes in distributed environments. Grid services and its service oriented business broker now termed cloud computing could deploy image based virtualization platforms enabling agent based resource management and dynamic fault management. In this paper we present an efficient way of utilizing heterogeneous virtual machines on idle desktops as an environment for consumption of high performance grid services. Spurious and exponential increases in the size of the datasets are constant concerns in medical and pharmaceutical industries due to the constant discovery and publication of large sequence databases. Traditional algorithms are not modeled at handing large data sizes under sudden and dynamic changes in the execution environment as previously discussed. This research was undertaken to compare our previous results with running the same test dataset with that of a virtual Grid platform using virtual machines (Virtualization). The implemented architecture, A3pviGrid utilizes game theoretic optimization and agent based team formation (Coalition) algorithms to improve upon scalability with respect to team formation. Due to the dynamic nature of distributed systems (as discussed in our previous work) all interactions were made local within a team transparently. This paper is a proof of concept of an experimental mini-Grid test-bed compared to running the platform on local virtual machines on a local test cluster. This was done to give every agent its own execution platform enabling anonymity and better control of the dynamic environmental parameters. We also analyze performance and scalability of Blast in a multiple virtual node setup and present our findings. This paper is an extension of our previous research on improving the BLAST application framework using dynamic Grids on virtualization platforms such as the virtual box.

  6. Virtual commissioning of automated micro-optical assembly

    NASA Astrophysics Data System (ADS)

    Schlette, Christian; Losch, Daniel; Haag, Sebastian; Zontar, Daniel; Roßmann, Jürgen; Brecher, Christian

    2015-02-01

    In this contribution, we present a novel approach to enable virtual commissioning for process developers in micro-optical assembly. Our approach aims at supporting micro-optics experts to effectively develop assisted or fully automated assembly solutions without detailed prior experience in programming while at the same time enabling them to easily implement their own libraries of expert schemes and algorithms for handling optical components. Virtual commissioning is enabled by a 3D simulation and visualization system in which the functionalities and properties of automated systems are modeled, simulated and controlled based on multi-agent systems. For process development, our approach supports event-, state- and time-based visual programming techniques for the agents and allows for their kinematic motion simulation in combination with looped-in simulation results for the optical components. First results have been achieved for simply switching the agents to command the real hardware setup after successful process implementation and validation in the virtual environment. We evaluated and adapted our system to meet the requirements set by industrial partners-- laser manufacturers as well as hardware suppliers of assembly platforms. The concept is applied to the automated assembly of optical components for optically pumped semiconductor lasers and positioning of optical components for beam-shaping

  7. [Preliminary construction of three-dimensional visual educational system for clinical dentistry based on world wide web webpage].

    PubMed

    Hu, Jian; Xu, Xiang-yang; Song, En-min; Tan, Hong-bao; Wang, Yi-ning

    2009-09-01

    To establish a new visual educational system of virtual reality for clinical dentistry based on world wide web (WWW) webpage in order to provide more three-dimensional multimedia resources to dental students and an online three-dimensional consulting system for patients. Based on computer graphics and three-dimensional webpage technologies, the software of 3Dsmax and Webmax were adopted in the system development. In the Windows environment, the architecture of whole system was established step by step, including three-dimensional model construction, three-dimensional scene setup, transplanting three-dimensional scene into webpage, reediting the virtual scene, realization of interactions within the webpage, initial test, and necessary adjustment. Five cases of three-dimensional interactive webpage for clinical dentistry were completed. The three-dimensional interactive webpage could be accessible through web browser on personal computer, and users could interact with the webpage through rotating, panning and zooming the virtual scene. It is technically feasible to implement the visual educational system of virtual reality for clinical dentistry based on WWW webpage. Information related to clinical dentistry can be transmitted properly, visually and interactively through three-dimensional webpage.

  8. Investigating the Mechanisms Underlying Neuronal Death in Ischemia Using In Vitro Oxygen-Glucose Deprivation: Potential Involvement of Protein SUMOylation

    PubMed Central

    CIMAROSTI, HELENA; HENLEY, JEREMY M.

    2012-01-01

    It is well established that brain ischemia can cause neuronal death via different signaling cascades. The relative importance and interrelationships between these pathways, however, remain poorly understood. Here is presented an overview of studies using oxygen-glucose deprivation of organotypic hippocampal slice cultures to investigate the molecular mechanisms involved in ischemia. The culturing techniques, setup of the oxygen-glucose deprivation model, and analytical tools are reviewed. The authors focus on SUMOylation, a posttranslational protein modification that has recently been implicated in ischemia from whole animal studies as an example of how these powerful tools can be applied and could be of interest to investigate the molecular pathways underlying ischemic cell death. PMID:19029060

  9. Accuracy of both virtual and printed 3-dimensional models for volumetric measurement of alveolar clefts before grafting with alveolar bone compared with a validated algorithm: a preliminary investigation.

    PubMed

    Kasaven, C P; McIntyre, G T; Mossey, P A

    2017-01-01

    Our objective was to assess the accuracy of virtual and printed 3-dimensional models derived from cone-beam computed tomographic (CT) scans to measure the volume of alveolar clefts before bone grafting. Fifteen subjects with unilateral cleft lip and palate had i-CAT cone-beam CT scans recorded at 0.2mm voxel and sectioned transversely into slices 0.2mm thick using i-CAT Vision. Volumes of alveolar clefts were calculated using first a validated algorithm; secondly, commercially-available virtual 3-dimensional model software; and finally 3-dimensional printed models, which were scanned with microCT and analysed using 3-dimensional software. For inter-observer reliability, a two-way mixed model intraclass correlation coefficient (ICC) was used to evaluate the reproducibility of identification of the cranial and caudal limits of the clefts among three observers. We used a Friedman test to assess the significance of differences among the methods, and probabilities of less than 0.05 were accepted as significant. Inter-observer reliability was almost perfect (ICC=0.987). There were no significant differences among the three methods. Virtual and printed 3-dimensional models were as precise as the validated computer algorithm in the calculation of volumes of the alveolar cleft before bone grafting, but virtual 3-dimensional models were the most accurate with the smallest 95% CI and, subject to further investigation, could be a useful adjunct in clinical practice. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Online Event Reconstruction in the CBM Experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Akishina, Valentina; Kisel, Ivan

    2018-02-01

    Targeting for rare observables, the CBM experiment will operate at high interaction rates of up to 10 MHz, which is unprecedented in heavy-ion experiments so far. It requires a novel free-streaming readout system and a new concept of data processing. The huge data rates of the CBM experiment will be reduced online to the recordable rate before saving the data to the mass storage. Full collision reconstruction and selection will be performed online in a dedicated processor farm. In order to make an efficient event selection online a clean sample of particles has to be provided by the reconstruction package called First Level Event Selection (FLES). The FLES reconstruction and selection package consists of several modules: track finding, track fitting, event building, short-lived particles finding, and event selection. Since detector measurements contain also time information, the event building is done at all stages of the reconstruction process. The input data are distributed within the FLES farm in a form of time-slices. A time-slice is reconstructed in parallel between processor cores. After all tracks of the whole time-slice are found and fitted, they are collected into clusters of tracks originated from common primary vertices, which then are fitted, thus identifying the interaction points. Secondary tracks are associated with primary vertices according to their estimated production time. After that short-lived particles are found and the full event building process is finished. The last stage of the FLES package is a selection of events according to the requested trigger signatures. The event reconstruction procedure and the results of its application to simulated collisions in the CBM detector setup are presented and discussed in detail.

  11. A LED-based method for monitoring NAD(P)H and FAD fluorescence in cell cultures and brain slices.

    PubMed

    Rösner, Jörg; Liotta, Agustin; Schmitz, Dietmar; Heinemann, Uwe; Kovács, Richard

    2013-01-30

    Nicotinamide- and flavine-adenine-dinucleotides (NAD(P)H and FADH₂) are electron carriers involved in cellular energy metabolism and in a multitude of enzymatic processes. As reduced NAD(P)H and oxidised FAD molecules are fluorescent, changes in tissue auto-fluorescence provide valuable information on the cellular redox state and energy metabolism. Since fluorescence excitation, by mercury arc lamps (HBO) is inherently coupled to photo-bleaching and photo-toxicity, microfluorimetric monitoring of energy metabolism might benefit from the replacement of HBO lamps by light emitting diodes (LEDs). Here we describe a LED-based custom-built setup for monitoring NAD(P)H and FAD fluorescence at the level of single cells (HEK293) and of brain slices. We compared NAD(P)H bleaching characteristics with two light sources (HBO lamp and LED) as well as sensitivity and signal to noise ratio of three different detector types (multi-pixel photon counter (MPPC), photomultiplier tube (PMT) and photodiode). LED excitation resulted in reduced photo-bleaching at the same fluorescence output in comparison to excitation with the HBO lamp. Transiently increasing LED power resulted in reversible bleaching of NAD(P)H fluorescence. Recovery kinetics were dependent on metabolic substrates indicating coupling of NAD(P)H fluorescence to metabolism. Electrical stimulation of brain slices induced biphasic redox changes, as indicated by NAD(P)H/FAD fluorescence transients. Increasing the gain of PMT and decreasing the LED power resulted in similar sensitivity as obtained with the MPPC and the photodiode, without worsening the signal to noise ratio. In conclusion, replacement of HBO lamp with LED might improve conventional PMT based microfluorimetry of tissue auto-fluorescence. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Single slice US-MRI registration for neurosurgical MRI-guided US

    NASA Astrophysics Data System (ADS)

    Pardasani, Utsav; Baxter, John S. H.; Peters, Terry M.; Khan, Ali R.

    2016-03-01

    Image-based ultrasound to magnetic resonance image (US-MRI) registration can be an invaluable tool in image-guided neuronavigation systems. State-of-the-art commercial and research systems utilize image-based registration to assist in functions such as brain-shift correction, image fusion, and probe calibration. Since traditional US-MRI registration techniques use reconstructed US volumes or a series of tracked US slices, the functionality of this approach can be compromised by the limitations of optical or magnetic tracking systems in the neurosurgical operating room. These drawbacks include ergonomic issues, line-of-sight/magnetic interference, and maintenance of the sterile field. For those seeking a US vendor-agnostic system, these issues are compounded with the challenge of instrumenting the probe without permanent modification and calibrating the probe face to the tracking tool. To address these challenges, this paper explores the feasibility of a real-time US-MRI volume registration in a small virtual craniotomy site using a single slice. We employ the Linear Correlation of Linear Combination (LC2) similarity metric in its patch-based form on data from MNI's Brain Images for Tumour Evaluation (BITE) dataset as a PyCUDA enabled Python module in Slicer. By retaining the original orientation information, we are able to improve on the poses using this approach. To further assist the challenge of US-MRI registration, we also present the BOXLC2 metric which demonstrates a speed improvement to LC2, while retaining a similar accuracy in this context.

  13. Feasibility and validation of virtual autopsy for dental identification using the Interpol dental codes.

    PubMed

    Franco, Ademir; Thevissen, Patrick; Coudyzer, Walter; Develter, Wim; Van de Voorde, Wim; Oyen, Raymond; Vandermeulen, Dirk; Jacobs, Reinhilde; Willems, Guy

    2013-05-01

    Virtual autopsy is a medical imaging technique, using full body computed tomography (CT), allowing for a noninvasive and permanent observation of all body parts. For dental identification clinically and radiologically observed ante-mortem (AM) and post-mortem (PM) oral identifiers are compared. The study aimed to verify if a PM dental charting can be performed on virtual reconstructions of full-body CT's using the Interpol dental codes. A sample of 103 PM full-body CT's was collected from the forensic autopsy files of the Department of Forensic Medicine University Hospitals, KU Leuven, Belgium. For validation purposes, 3 of these bodies underwent a complete dental autopsy, a dental radiological and a full-body CT examination. The bodies were scanned in a Siemens Definition Flash CT Scanner (Siemens Medical Solutions, Germany). The images were examined on 8- and 12-bit screen resolution as three-dimensional (3D) reconstructions and as axial, coronal and sagittal slices. InSpace(®) (Siemens Medical Solutions, Germany) software was used for 3D reconstruction. The dental identifiers were charted on pink PM Interpol forms (F1, F2), using the related dental codes. Optimal dental charting was obtained by combining observations on 3D reconstructions and CT slices. It was not feasible to differentiate between different kinds of dental restoration materials. The 12-bit resolution enabled to collect more detailed evidences, mainly related to positions within a tooth. Oral identifiers, not implemented in the Interpol dental coding were observed. Amongst these, the observed (3D) morphological features of dental and maxillofacial structures are important identifiers. The latter can become particularly more relevant towards the future, not only because of the inherent spatial features, yet also because of the increasing preventive dental treatment, and the decreasing application of dental restorations. In conclusion, PM full-body CT examinations need to be implemented in the PM dental charting protocols and the Interpol dental codes should be adapted accordingly. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  14. Towards open-source, low-cost haptics for surgery simulation.

    PubMed

    Suwelack, Stefan; Sander, Christian; Schill, Julian; Serf, Manuel; Danz, Marcel; Asfour, Tamim; Burger, Wolfgang; Dillmann, Rüdiger; Speidel, Stefanie

    2014-01-01

    In minimally invasive surgery (MIS), virtual reality (VR) training systems have become a promising education tool. However, the adoption of these systems in research and clinical settings is still limited by the high costs of dedicated haptics hardware for MIS. In this paper, we present ongoing research towards an open-source, low-cost haptic interface for MIS simulation. We demonstrate the basic mechanical design of the device, the sensor setup as well as its software integration.

  15. Using a wireless motion controller for 3D medical image catheter interactions

    NASA Astrophysics Data System (ADS)

    Vitanovski, Dime; Hahn, Dieter; Daum, Volker; Hornegger, Joachim

    2009-02-01

    State-of-the-art morphological imaging techniques usually provide high resolution 3D images with a huge number of slices. In clinical practice, however, 2D slice-based examinations are still the method of choice even for these large amounts of data. Providing intuitive interaction methods for specific 3D medical visualization applications is therefore a critical feature for clinical imaging applications. For the domain of catheter navigation and surgery planning, it is crucial to assist the physician with appropriate visualization techniques, such as 3D segmentation maps, fly-through cameras or virtual interaction approaches. There has been an ongoing development and improvement for controllers that help to interact with 3D environments in the domain of computer games. These controllers are based on both motion and infrared sensors and are typically used to detect 3D position and orientation. We have investigated how a state-of-the-art wireless motion sensor controller (Wiimote), developed by Nintendo, can be used for catheter navigation and planning purposes. By default the Wiimote controller only measure rough acceleration over a range of +/- 3g with 10% sensitivity and orientation. Therefore, a pose estimation algorithm was developed for computing accurate position and orientation in 3D space regarding 4 Infrared LEDs. Current results show that for the translation it is possible to obtain a mean error of (0.38cm, 0.41cm, 4.94cm) and for the rotation (0.16, 0.28) respectively. Within this paper we introduce a clinical prototype that allows steering of a virtual fly-through camera attached to the catheter tip by the Wii controller on basis of a segmented vessel tree.

  16. Virtual Specimens

    NASA Astrophysics Data System (ADS)

    de Paor, D. G.

    2009-12-01

    Virtual Field Trips have been around almost as long as the Worldwide Web itself yet virtual explorers do not generally return to their desktops with folders full of virtual hand specimens. Collection of real specimens on fields trips for later analysis in the lab (or at least in the pub) has been an important part of classical field geoscience education and research for generations but concern for the landscape and for preservation of key outcrops from wanton destruction has lead to many restrictions. One of the author’s favorite outcrops was recently vandalized presumably by a geologist who felt the need to bash some of the world’s most spectacular buckle folds with a rock sledge. It is not surprising, therefore, that geologists sometimes leave fragile localities out of field trip itineraries. Once analyzed, most specimens repose in drawers or bins, never to be seen again. Some end up in teaching collections but recent pedagogical research shows that undergraduate students have difficulty relating specimens both to their collection location and ultimate provenance in the lithosphere. Virtual specimens can be created using 3D modeling software and imported into virtual globes such as Google Earth (GE) where, they may be linked to virtual field trip stops or restored to their source localities on the paleo-globe. Sensitive localities may be protected by placemark approximation. The GE application program interface (API) has a distinct advantage over the stand-alone GE application when it comes to viewing and manipulating virtual specimens. When instances of the virtual globe are embedded in web pages using the GE plug-in, Collada models of specimens can be manipulated with javascript controls residing in the enclosing HTML, permitting specimens to be magnified, rotated in 3D, and sliced. Associated analytical data may be linked into javascript and localities for comparison at various points on the globe referenced by ‘fetching’ KML. Virtual specimens open up new possibilities for distance learning, where design of effective lab exercises has long been an issue, and they permit independent evaluation of published field research by reviewers who do not have access to the physical field area. Although their creation can be labor intensive, the benefits of virtual specimens for education and research are potentially great. Interactive 3D Specimen of Sierra Granodiorite at Outcrop Location

  17. Efficient bone cutting with the novel diode pumped Er:YAG laser system: in vitro investigation and optimization of the treatment parameters

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Diebolder, Rolf; Hausladen, Florian; Hibst, Raimund

    2014-03-01

    It is well known that flashlamp pumped Er:YAG lasers allow efficient bone ablation due to strong absorption at 3μm by water. Preliminary experiments revealed also a newly developed diode pumped Er:YAG laser system (Pantec Engineering AG) to be an efficient tool for use for bone surgery. The aim of the present in vitro study is the investigation of a new power increased version of the laser system with higher pulse energy and optimization of the treatment set-up to get high cutting quality, efficiency, and ablation depth. Optical simulations were performed to achieve various focus diameters and homogeneous beam profile. An appropriate experimental set-up with two different focusing units, a computer controlled linear stage with sample holder, and a shutter unit was realized. By this we are able to move the sample (slices of pig bone) with a defined velocity during the irradiation. Cutting was performed under appropriate water spray by moving the sample back and forth. After each path the ablation depth was measured and the focal plane was tracked to the actual bottom of the groove. Finally, the cuts were analyzed by light microcopy regarding the ablation quality and geometry, and thermal effects. In summary, the results show that with carefully adapted irradiation parameters narrow and deep cuts (ablation depth > 6mm, aspect ratio approx. 20) are possible without carbonization. In conclusion, these in vitro investigations demonstrate that high efficient bone cutting is possible with the diode pumped Er:YAG laser system using appropriate treatment set-up and parameters.

  18. Predicting field-scale dispersion under realistic conditions with the polar Markovian velocity process model

    NASA Astrophysics Data System (ADS)

    Dünser, Simon; Meyer, Daniel W.

    2016-06-01

    In most groundwater aquifers, dispersion of tracers is dominated by flow-field inhomogeneities resulting from the underlying heterogeneous conductivity or transmissivity field. This effect is referred to as macrodispersion. Since in practice, besides a few point measurements the complete conductivity field is virtually never available, a probabilistic treatment is needed. To quantify the uncertainty in tracer concentrations from a given geostatistical model for the conductivity, Monte Carlo (MC) simulation is typically used. To avoid the excessive computational costs of MC, the polar Markovian velocity process (PMVP) model was recently introduced delivering predictions at about three orders of magnitude smaller computing times. In artificial test cases, the PMVP model has provided good results in comparison with MC. In this study, we further validate the model in a more challenging and realistic setup. The setup considered is derived from the well-known benchmark macrodispersion experiment (MADE), which is highly heterogeneous and non-stationary with a large number of unevenly scattered conductivity measurements. Validations were done against reference MC and good overall agreement was found. Moreover, simulations of a simplified setup with a single measurement were conducted in order to reassess the model's most fundamental assumptions and to provide guidance for model improvements.

  19. Physical-Layer Network Coding for VPN in TDM-PON

    NASA Astrophysics Data System (ADS)

    Wang, Qike; Tse, Kam-Hon; Chen, Lian-Kuan; Liew, Soung-Chang

    2012-12-01

    We experimentally demonstrate a novel optical physical-layer network coding (PNC) scheme over time-division multiplexing (TDM) passive optical network (PON). Full-duplex error-free communications between optical network units (ONUs) at 2.5 Gb/s are shown for all-optical virtual private network (VPN) applications. Compared to the conventional half-duplex communications set-up, our scheme can increase the capacity by 100% with power penalty smaller than 3 dB. Synchronization of two ONUs is not required for the proposed VPN scheme

  20. High-Fidelity Modeling of Computer Network Worms

    DTIC Science & Technology

    2004-06-22

    plots the propagation of the TCP-based worm. This execution is among the largest TCP worm models simulated to date at packet-level. TCP vs . UDP Worm...the mapping of the virtual IP addresses to honeyd’s MAC address in the proxy’s ARP table. The proxy server listens for packets from both sides of...experimental setup, we used two ntium-4 ThinkPad , and an IBM Pentium-III ThinkPad ), running the proxy server and honeyd respectively. The Code Red II worm

  1. DOVIS 2.0: An Efficient and Easy to Use Parallel Virtual Screening Tool Based on AutoDock 4.0

    DTIC Science & Technology

    2008-09-08

    under the GNU General Public License. Background Molecular docking is a computational method that pre- dicts how a ligand interacts with a receptor...Hence, it is an important tool in studying receptor-ligand interactions and plays an essential role in drug design. Particularly, molecular docking has...libraries from OpenBabel and setup a molecular data structure as a C++ object in our program. This makes handling of molecular structures (e.g., atoms

  2. True 3D digital holographic tomography for virtual reality applications

    NASA Astrophysics Data System (ADS)

    Downham, A.; Abeywickrema, U.; Banerjee, P. P.

    2017-09-01

    Previously, a single CCD camera has been used to record holograms of an object while the object is rotated about a single axis to reconstruct a pseudo-3D image, which does not show detailed depth information from all perspectives. To generate a true 3D image, the object has to be rotated through multiple angles and along multiple axes. In this work, to reconstruct a true 3D image including depth information, a die is rotated along two orthogonal axes, and holograms are recorded using a Mach-Zehnder setup, which are subsequently numerically reconstructed. This allows for the generation of multiple images containing phase (i.e., depth) information. These images, when combined, create a true 3D image with depth information which can be exported to a Microsoft® HoloLens for true 3D virtual reality.

  3. SU-E-J-114: Towards Integrated CT and Ultrasound Guided Radiation Therapy Using A Robotic Arm with Virtual Springs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, K; Zhang, Y; Sen, H

    Purpose: Currently there is an urgent need in Radiation Therapy for noninvasive and nonionizing soft tissue target guidance such as localization before treatment and continuous monitoring during treatment. Ultrasound is a portable, low cost option that can be easily integrated with the LINAC room. We are developing a cooperatively controlled robot arm that has high intrafraction reproducibility with repositioning of the ultrasound probe. In this study, we introduce virtual springs (VS) to assist with interfraction probe repositioning and we compare the soft tissue deformation introduced by VS to the deformation that would exist without them. Methods: Three metal markers weremore » surgically implanted in the kidney of one dog. The dog was anesthetized and immobilized supine in an alpha cradle. The reference ultrasound probe position and force to ideally visualize the kidney was defined by an experienced ultrasonographer using the Clarity ultrasound system and robot sensor. For each interfraction study, the dog was removed from the cradle and re-setup based on CBCT with bony anatomy alignment to mimic regular patient setup. The ultrasound probe was automatically returned to the reference position using the robot. To accommodate the soft tissue anatomy changes between each setup the operator used the VS feature to adjust the probe and obtain an ultrasound image that matched the reference image. CBCT images were acquired and each interfraction marker location was compared with the first interfraction Result. Results: Analysis of the marker positions revealed that the kidney was displaced by 18.8 ± 6.4 mm without VS and 19.9 ± 10.5 mm with VS. No statistically significant differences were found between two procedures. Conclusion: The VS feature is necessary to obtain matching ultrasound images, and they do not introduce further changes to the tissue deformation. Future work will focus on automatic VS based on ultrasound feedback. Supported in part by: NCI R01 CA161613; Elekta Sponsored Research.« less

  4. Volumetric depth peeling for medical image display

    NASA Astrophysics Data System (ADS)

    Borland, David; Clarke, John P.; Fielding, Julia R.; TaylorII, Russell M.

    2006-01-01

    Volumetric depth peeling (VDP) is an extension to volume rendering that enables display of otherwise occluded features in volume data sets. VDP decouples occlusion calculation from the volume rendering transfer function, enabling independent optimization of settings for rendering and occlusion. The algorithm is flexible enough to handle multiple regions occluding the object of interest, as well as object self-occlusion, and requires no pre-segmentation of the data set. VDP was developed as an improvement for virtual arthroscopy for the diagnosis of shoulder-joint trauma, and has been generalized for use in other simple and complex joints, and to enable non-invasive urology studies. In virtual arthroscopy, the surfaces in the joints often occlude each other, allowing limited viewpoints from which to evaluate these surfaces. In urology studies, the physician would like to position the virtual camera outside the kidney collecting system and see inside it. By rendering invisible all voxels between the observer's point of view and objects of interest, VDP enables viewing from unconstrained positions. In essence, VDP can be viewed as a technique for automatically defining an optimal data- and task-dependent clipping surface. Radiologists using VDP display have been able to perform evaluations of pathologies more easily and more rapidly than with clinical arthroscopy, standard volume rendering, or standard MRI/CT slice viewing.

  5. Wake measurements of a dechirper jaw with nonzero tilt angle

    NASA Astrophysics Data System (ADS)

    Bane, Karl; Guetg, Marc; Lutman, Alberto

    2018-05-01

    The RadiaBeam/SLAC dechirper at the Linac Coherent Light Source (LCLS) is being used as a fast kicker, by inducing transverse wakefields, to, e.g., facilitate Fresh-slice, two-color laser operation. The dechirper jaws are independently adjustable at both ends, and it is difficult to avoid leaving residual (longitudinal) tilt in them during setup. In this report we develop a model independent method of removing unknown tilt in a jaw. In addition, for a short uniform bunch passing by a single dechirper plate, we derive an explicit analytical formula for the transverse wake kick as function of average plate offset and tilt angle. We perform wake kick measurements for the different dechirper jaws of the RadiaBeam/SLAC dechirper, and find that the agreement between measurement and theory is excellent.

  6. Options in virtual 3D, optical-impression-based planning of dental implants.

    PubMed

    Reich, Sven; Kern, Thomas; Ritter, Lutz

    2014-01-01

    If a 3D radiograph, which in today's dentistry often consists of a CBCT dataset, is available for computerized implant planning, the 3D planning should also consider functional prosthetic aspects. In a conventional workflow, the CBCT is done with a specially produced radiopaque prosthetic setup that makes the desired prosthetic situation visible during virtual implant planning. If an exclusively digital workflow is chosen, intraoral digital impressions are taken. On these digital models, the desired prosthetic suprastructures are designed. The entire datasets are virtually superimposed by a "registration" process on the corresponding structures (teeth) in the CBCTs. Thus, both the osseous and prosthetic structures are visible in one single 3D application and make it possible to consider surgical and prosthetic aspects. After having determined the implant positions on the computer screen, a drilling template is designed digitally. According to this design (CAD), a template is printed or milled in CAM process. This template is the first physically extant product in the entire workflow. The article discusses the options and limitations of this workflow.

  7. Virtual Reality Glasses and "Eye-Hands Blind Technique" for Microsurgical Training in Neurosurgery.

    PubMed

    Choque-Velasquez, Joham; Colasanti, Roberto; Collan, Juhani; Kinnunen, Riina; Rezai Jahromi, Behnam; Hernesniemi, Juha

    2018-04-01

    Microsurgical skills and eye-hand coordination need continuous training to be developed and refined. However, well-equipped microsurgical laboratories are not so widespread as their setup is expensive. Herein, we present a novel microsurgical training system that requires a high-resolution personal computer screen, smartphones, and virtual reality glasses. A smartphone placed on a holder at a height of about 15-20 cm from the surgical target field is used as the webcam of the computer. A specific software is used to duplicate the video camera image. The video may be transferred from the computer to another smartphone, which may be connected to virtual reality glasses. Using the previously described training model, we progressively performed more and more complex microsurgical exercises. It did not take long to set up our system, thus saving time for the training sessions. Our proposed training model may represent an affordable and efficient system to improve eye-hand coordination and dexterity in using not only the operating microscope but also endoscopes and exoscopes. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Highly immersive virtual reality laparoscopy simulation: development and future aspects.

    PubMed

    Huber, Tobias; Wunderling, Tom; Paschold, Markus; Lang, Hauke; Kneist, Werner; Hansen, Christian

    2018-02-01

    Virtual reality (VR) applications with head-mounted displays (HMDs) have had an impact on information and multimedia technologies. The current work aimed to describe the process of developing a highly immersive VR simulation for laparoscopic surgery. We combined a VR laparoscopy simulator (LapSim) and a VR-HMD to create a user-friendly VR simulation scenario. Continuous clinical feedback was an essential aspect of the development process. We created an artificial VR (AVR) scenario by integrating the simulator video output with VR game components of figures and equipment in an operating room. We also created a highly immersive VR surrounding (IVR) by integrating the simulator video output with a [Formula: see text] video of a standard laparoscopy scenario in the department's operating room. Clinical feedback led to optimization of the visualization, synchronization, and resolution of the virtual operating rooms (in both the IVR and the AVR). Preliminary testing results revealed that individuals experienced a high degree of exhilaration and presence, with rare events of motion sickness. The technical performance showed no significant difference compared to that achieved with the standard LapSim. Our results provided a proof of concept for the technical feasibility of an custom highly immersive VR-HMD setup. Future technical research is needed to improve the visualization, immersion, and capability of interacting within the virtual scenario.

  9. Fronto-Parietal Brain Responses to Visuotactile Congruence in an Anatomical Reference Frame

    PubMed Central

    Limanowski, Jakub; Blankenburg, Felix

    2018-01-01

    Spatially and temporally congruent visuotactile stimulation of a fake hand together with one’s real hand may result in an illusory self-attribution of the fake hand. Although this illusion relies on a representation of the two touched body parts in external space, there is tentative evidence that, for the illusion to occur, the seen and felt touches also need to be congruent in an anatomical reference frame. We used functional magnetic resonance imaging and a somatotopical, virtual reality-based setup to isolate the neuronal basis of such a comparison. Participants’ index or little finger was synchronously touched with the index or little finger of a virtual hand, under congruent or incongruent orientations of the real and virtual hands. The left ventral premotor cortex responded significantly more strongly to visuotactile co-stimulation of the same versus different fingers of the virtual and real hand. Conversely, the left anterior intraparietal sulcus responded significantly more strongly to co-stimulation of different versus same fingers. Both responses were independent of hand orientation congruence and of spatial congruence of the visuotactile stimuli. Our results suggest that fronto-parietal areas previously associated with multisensory processing within peripersonal space and with tactile remapping evaluate the congruence of visuotactile stimulation on the body according to an anatomical reference frame. PMID:29556183

  10. VERSE - Virtual Equivalent Real-time Simulation

    NASA Technical Reports Server (NTRS)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  11. Fronto-Parietal Brain Responses to Visuotactile Congruence in an Anatomical Reference Frame.

    PubMed

    Limanowski, Jakub; Blankenburg, Felix

    2018-01-01

    Spatially and temporally congruent visuotactile stimulation of a fake hand together with one's real hand may result in an illusory self-attribution of the fake hand. Although this illusion relies on a representation of the two touched body parts in external space, there is tentative evidence that, for the illusion to occur, the seen and felt touches also need to be congruent in an anatomical reference frame. We used functional magnetic resonance imaging and a somatotopical, virtual reality-based setup to isolate the neuronal basis of such a comparison. Participants' index or little finger was synchronously touched with the index or little finger of a virtual hand, under congruent or incongruent orientations of the real and virtual hands. The left ventral premotor cortex responded significantly more strongly to visuotactile co-stimulation of the same versus different fingers of the virtual and real hand. Conversely, the left anterior intraparietal sulcus responded significantly more strongly to co-stimulation of different versus same fingers. Both responses were independent of hand orientation congruence and of spatial congruence of the visuotactile stimuli. Our results suggest that fronto-parietal areas previously associated with multisensory processing within peripersonal space and with tactile remapping evaluate the congruence of visuotactile stimulation on the body according to an anatomical reference frame.

  12. A pilot study of surgical training using a virtual robotic surgery simulator.

    PubMed

    Tergas, Ana I; Sheth, Sangini B; Green, Isabel C; Giuntoli, Robert L; Winder, Abigail D; Fader, Amanda N

    2013-01-01

    Our objectives were to compare the utility of learning a suturing task on the virtual reality da Vinci Skills Simulator versus the da Vinci Surgical System dry laboratory platform and to assess user satisfaction among novice robotic surgeons. Medical trainees were enrolled prospectively; one group trained on the virtual reality simulator, and the other group trained on the da Vinci dry laboratory platform. Trainees received pretesting and post-testing on the dry laboratory platform. Participants then completed an anonymous online user experience and satisfaction survey. We enrolled 20 participants. Mean pretest completion times did not significantly differ between the 2 groups. Training with either platform was associated with a similar decrease in mean time to completion (simulator platform group, 64.9 seconds [P = .04]; dry laboratory platform group, 63.9 seconds [P < .01]). Most participants (58%) preferred the virtual reality platform. The majority found the training "definitely useful" in improving robotic surgical skills (mean, 4.6) and would attend future training sessions (mean, 4.5). Training on the virtual reality robotic simulator or the dry laboratory robotic surgery platform resulted in significant improvements in time to completion and economy of motion for novice robotic surgeons. Although there was a perception that both simulators improved performance, there was a preference for the virtual reality simulator. Benefits unique to the simulator platform include autonomy of use, computerized performance feedback, and ease of setup. These features may facilitate more efficient and sophisticated simulation training above that of the conventional dry laboratory platform, without loss of efficacy.

  13. The use of low cost compact cameras with focus stacking functionality in entomological digitization projects

    PubMed Central

    Mertens, Jan E.J.; Roie, Martijn Van; Merckx, Jonas; Dekoninck, Wouter

    2017-01-01

    Abstract Digitization of specimen collections has become a key priority of many natural history museums. The camera systems built for this purpose are expensive, providing a barrier in institutes with limited funding, and therefore hampering progress. An assessment is made on whether a low cost compact camera with image stacking functionality can help expedite the digitization process in large museums or provide smaller institutes and amateur entomologists with the means to digitize their collections. Images of a professional setup were compared with the Olympus Stylus TG-4 Tough, a low-cost compact camera with internal focus stacking functions. Parameters considered include image quality, digitization speed, price, and ease-of-use. The compact camera’s image quality, although inferior to the professional setup, is exceptional considering its fourfold lower price point. Producing the image slices in the compact camera is a matter of seconds and when optimal image quality is less of a priority, the internal stacking function omits the need for dedicated stacking software altogether, further decreasing the cost and speeding up the process. In general, it is found that, aware of its limitations, this compact camera is capable of digitizing entomological collections with sufficient quality. As technology advances, more institutes and amateur entomologists will be able to easily and affordably catalogue their specimens. PMID:29134038

  14. Endogenous GFAP-Positive Neural Stem/Progenitor Cells in the Postnatal Mouse Cortex Are Activated following Traumatic Brain Injury

    PubMed Central

    Ahmed, Aminul I.; Shtaya, Anan B.; Zaben, Malik J.; Owens, Emma V.; Kiecker, Clemens

    2012-01-01

    Abstract Interest in promoting regeneration of the injured nervous system has recently turned toward the use of endogenous stem cells. Elucidating cues involved in driving these precursor cells out of quiescence following injury, and the signals that drive them toward neuronal and glial lineages, will help to harness these cells for repair. Using a biomechanically validated in vitro organotypic stretch injury model, cortico-hippocampal slices from postnatal mice were cultured and a stretch injury equivalent to a severe traumatic brain injury (TBI) applied. In uninjured cortex, proliferative potential under in vitro conditions is virtually absent in older slices (equivalent postnatal day 15 compared to 8). However, following a severe stretch injury, this potential is restored in injured outer cortex. Using slices from mice expressing a fluorescent reporter on the human glial fibrillary acidic protein (GFAP) promoter, we show that GFAP+ cells account for the majority of proliferating neurospheres formed, and that these cells are likely to arise from the cortical parenchyma and not from the subventricular zone. Moreover, we provide evidence for a correlation between upregulation of sonic hedgehog signaling, a pathway known to regulate stem cell proliferation, and this restoration of regenerative potential following TBI. Our results indicate that a source of quiescent endogenous stem cells residing in the cortex and subcortical tissue proliferate in vitro following TBI. Moreover, these proliferating cells are multipotent and are derived mostly from GFAP-expressing cells. This raises the possibility of using this endogenous source of stem cells for repair following TBI. PMID:21895532

  15. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulson, Eric S., E-mail: epaulson@mcw.edu; Erickson, Beth; Schultz, Chris

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP ofmore » brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In their experience, these strategies provide robust, high fidelity, high contrast MR images suitable for external beam RTP.« less

  16. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization

    PubMed Central

    Domínguez-Iturza, Nuria; Calvo, María; Benoist, Marion; Esteban, José Antonio; Morales, Miguel

    2016-01-01

    Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine. PMID:26881098

  17. The MAGIC-5 CAD for nodule detection in low dose and thin slice lung CTs

    NASA Astrophysics Data System (ADS)

    Cerello, Piergiorgio; MAGIC-5 Collaboration

    2010-11-01

    Lung cancer is the leading cause of cancer-related mortality in developed countries. Only 10-15% of all men and women diagnosed with lung cancer live 5 years after the diagnosis. However, the 5-year survival rate for patients diagnosed in the early asymptomatic stage of the disease can reach 70%. Early-stage lung cancers can be diagnosed by detecting non-calcified small pulmonary nodules with computed tomography (CT). Computer-aided detection (CAD) could support radiologists in the analysis of the large amount of noisy images generated in screening programs, where low-dose and thin-slice settings are used. The MAGIC-5 project, funded by the Istituto Nazionale di Fisica Nucleare (INFN, Italy) and Ministero dell'Università e della Ricerca (MUR, Italy), developed a multi-method approach based on three CAD algorithms to be used in parallel with a merging of their results: the Channeler Ant Model (CAM), based on Virtual Ant Colonies, the Dot-Enhancement/Pleura Surface Normals/VBNA (DE-PSN-VBNA), and the Region Growing Volume Plateau (RGVP). Preliminary results show quite good performances, to be improved with the refining of the single algorithm and the added value of the results merging.

  18. Mastoid Cavity Dimensions and Shape: Method of Measurement and Virtual Fitting of Implantable Devices

    PubMed Central

    Handzel, Ophir; Wang, Haobing; Fiering, Jason; Borenstein, Jeffrey T.; Mescher, Mark J.; Leary Swan, Erin E.; Murphy, Brian A.; Chen, Zhiqiang; Peppi, Marcello; Sewell, William F.; Kujawa, Sharon G.; McKenna, Michael J.

    2009-01-01

    Temporal bone implants can be used to electrically stimulate the auditory nerve, to amplify sound, to deliver drugs to the inner ear and potentially for other future applications. The implants require storage space and access to the middle or inner ears. The most acceptable space is the cavity created by a canal wall up mastoidectomy. Detailed knowledge of the available space for implantation and pathways to access the middle and inner ears is necessary for the design of implants and successful implantation. Based on temporal bone CT scans a method for three-dimensional reconstruction of a virtual canal wall up mastoidectomy space is described. Using Amira® software the area to be removed during such surgery is marked on axial CT slices, and a three-dimensional model of that space is created. The average volume of 31 reconstructed models is 12.6 cm3 with standard deviation of 3.69 cm3, ranging from 7.97 to 23.25 cm3. Critical distances were measured directly from the model and their averages were calculated: height 3.69 cm, depth 2.43 cm, length above the external auditory canal (EAC) 4.45 cm and length posterior to EAC 3.16 cm. These linear measurements did not correlate well with volume measurements. The shape of the models was variable to a significant extent making the prediction of successful implantation for a given design based on linear and volumetric measurement unreliable. Hence, to assure successful implantation, preoperative assessment should include a virtual fitting of an implant into the intended storage space. The above-mentioned three-dimensional models were exported from Amira to a Solidworks application where virtual fitting was performed. Our results are compared to other temporal bone implant virtual fitting studies. Virtual fitting has been suggested for other human applications. PMID:19372649

  19. Poor Man's Virtual Camera: Real-Time Simultaneous Matting and Camera Pose Estimation.

    PubMed

    Szentandrasi, Istvan; Dubska, Marketa; Zacharias, Michal; Herout, Adam

    2016-03-18

    Today's film and advertisement production heavily uses computer graphics combined with living actors by chromakeying. The matchmoving process typically takes a considerable manual effort. Semi-automatic matchmoving tools exist as well, but they still work offline and require manual check-up and correction. In this article, we propose an instant matchmoving solution for green screen. It uses a recent technique of planar uniform marker fields. Our technique can be used in indie and professional filmmaking as a cheap and ultramobile virtual camera, and for shot prototyping and storyboard creation. The matchmoving technique based on marker fields of shades of green is very computationally efficient: we developed and present in the article a mobile application running at 33 FPS. Our technique is thus available to anyone with a smartphone at low cost and with easy setup, opening space for new levels of filmmakers' creative expression.

  20. Implementation of a graphical user interface for the virtual multifrequency spectrometer: The VMS-Draw tool.

    PubMed

    Licari, Daniele; Baiardi, Alberto; Biczysko, Malgorzata; Egidi, Franco; Latouche, Camille; Barone, Vincenzo

    2015-02-15

    This article presents the setup and implementation of a graphical user interface (VMS-Draw) for a virtual multifrequency spectrometer. Special attention is paid to ease of use, generality and robustness for a panel of spectroscopic techniques and quantum mechanical approaches. Depending on the kind of data to be analyzed, VMS-Draw produces different types of graphical representations, including two-dimensional or three-dimesional (3D) plots, bar charts, or heat maps. Among other integrated features, one may quote the convolution of stick spectra to obtain realistic line-shapes. It is also possible to analyze and visualize, together with the structure, the molecular orbitals and/or the vibrational motions of molecular systems thanks to 3D interactive tools. On these grounds, VMS-Draw could represent a useful additional tool for spectroscopic studies integrating measurements and computer simulations. Copyright © 2014 Wiley Periodicals, Inc.

  1. An Immersive VR System for Sports Education

    NASA Astrophysics Data System (ADS)

    Song, Peng; Xu, Shuhong; Fong, Wee Teck; Chin, Ching Ling; Chua, Gim Guan; Huang, Zhiyong

    The development of new technologies has undoubtedly promoted the advances of modern education, among which Virtual Reality (VR) technologies have made the education more visually accessible for students. However, classroom education has been the focus of VR applications whereas not much research has been done in promoting sports education using VR technologies. In this paper, an immersive VR system is designed and implemented to create a more intuitive and visual way of teaching tennis. A scalable system architecture is proposed in addition to the hardware setup layout, which can be used for various immersive interactive applications such as architecture walkthroughs, military training simulations, other sports game simulations, interactive theaters, and telepresent exhibitions. Realistic interaction experience is achieved through accurate and robust hybrid tracking technology, while the virtual human opponent is animated in real time using shader-based skin deformation. Potential future extensions are also discussed to improve the teaching/learning experience.

  2. A review of the use of simulation in dental education.

    PubMed

    Perry, Suzanne; Bridges, Susan Margaret; Burrow, Michael Francis

    2015-02-01

    In line with the advances in technology and communication, medical simulations are being developed to support the acquisition of requisite psychomotor skills before real-life clinical applications. This review article aimed to give a general overview of simulation in a cognate field, clinical dental education. Simulations in dentistry are not a new phenomenon; however, recent developments in virtual-reality technology using computer-generated medical simulations of 3-dimensional images or environments are providing more optimal practice conditions to smooth the transition from the traditional model-based simulation laboratory to the clinic. Evidence as to the positive aspects of virtual reality include increased effectiveness in comparison with traditional simulation teaching techniques, more efficient learning, objective and reproducible feedback, unlimited training hours, and enhanced cost-effectiveness for teaching establishments. Negative aspects have been indicated as initial setup costs, faculty training, and the lack of a variety of content and current educational simulation programs.

  3. Automatic online adaptive radiation therapy techniques for targets with significant shape change: a feasibility study.

    PubMed

    Court, Laurence E; Tishler, Roy B; Petit, Joshua; Cormack, Robert; Chin, Lee

    2006-05-21

    This work looks at the feasibility of an online adaptive radiation therapy concept that would detect the daily position and shape of the patient, and would then correct the daily treatment to account for any changes compared with planning position. In particular, it looks at the possibility of developing algorithms to correct for large complicated shape change. For co-planar beams, the dose in an axial plane is approximately associated with the positions of a single multi-leaf collimator (MLC) pair. We start with a primary plan, and automatically generate several secondary plans with gantry angles offset by regular increments. MLC sequences for each plan are calculated keeping monitor units (MUs) and number of segments constant for a given beam (fluences are different). Bulk registration (3D) of planning and daily CT images gives global shifts. Slice-by-slice (2D) registration gives local shifts and rotations about the longitudinal axis for each axial slice. The daily MLC sequence is then created for each axial slice/MLC leaf pair combination, by taking the MLC positions from the pre-calculated plan with the nearest rotation, and shifting using a beam's-eye-view calculation to account for local linear shifts. A planning study was carried out using two head and neck region MR images of a healthy volunteer which were contoured to simulate a base-of-tongue treatment: one with the head straight (used to simulate the planning image) and the other with the head tilted to the left (the daily image). Head and neck treatment was chosen to evaluate this technique because of its challenging nature, with varying internal and external contours, and multiple degrees of freedom. Shape change was significant: on a slice-by-slice basis, local rotations in the daily image varied from 2 to 31 degrees, and local shifts ranged from -0.2 to 0.5 cm and -0.4 to 0.0 cm in right-left and posterior-anterior directions, respectively. The adapted treatment gave reasonable target coverage (100%, 90% and 80% of the base-of-tongue, left nodes and right nodes, respectively, receiving the daily prescription dose), and kept the daily cord dose below the limit used in the original plan (65%, equivalent to 46 Gy over 35 fractions). Most of the loss of coverage was due to one shoulder being raised more superior relative to the other shoulder compared with the plan. This type of skew-like motion is not accounted for by the proposed ART technique. In conclusion, this technique has potential to correct for fairly extreme daily changes in patient setup, but some control of the daily position would still be necessary. Importantly, it was possible to combine treatments from different plans (MLC sequences) to correct for position and shape change.

  4. Shoulder Kinematics and Spatial Pattern of Trapezius Electromyographic Activity in Real and Virtual Environments

    PubMed Central

    Samani, Afshin; Pontonnier, Charles; Dumont, Georges; Madeleine, Pascal

    2015-01-01

    The design of an industrial workstation tends to include ergonomic assessment steps based on a digital mock-up and a virtual reality setup. Lack of interaction and system fidelity is often reported as a main issue in such virtual reality applications. This limitation is a crucial issue as thorough ergonomic analysis is required for an investigation of the biomechanics. In the current study, we investigated the biomechanical responses of the shoulder joint in a simulated assembly task for comparison with the biomechanical responses in virtual environments. Sixteen male healthy novice subjects performed the task on three different platforms: real (RE), virtual (VE), and virtual environment with force feedback (VEF) with low and high precision demands. The subjects repeated the task 12 times (i.e., 12 cycles). High density electromyography from the upper trapezius and rotation angles of the shoulder joint were recorded and split into the cycles. The angular trajectories and velocity profiles of the shoulder joint angles over a cycle were computed in 3D. The inter-subject similarity in terms of normalized mutual information on kinematics and electromyography was investigated. Compared with RE the task in VE and VEF was characterized by lower kinematic maxima. The inter-subject similarity in RE compared with intra-subject similarity across the platforms was lower in terms of movement trajectories and greater in terms of trapezius muscle activation. The precision demand resulted in lower inter- and intra-subject similarity across platforms. The proposed approach identifies biomechanical differences in the shoulder joint in both VE and VEF compared with the RE platform, but these differences are less marked in VE mostly due to technical limitations of co-localizing the force feedback system in the VEF platform. PMID:25768123

  5. A Framework for Analyzing the Whole Body Surface Area from a Single View

    PubMed Central

    Doretto, Gianfranco; Adjeroh, Donald

    2017-01-01

    We present a virtual reality (VR) framework for the analysis of whole human body surface area. Usual methods for determining the whole body surface area (WBSA) are based on well known formulae, characterized by large errors when the subject is obese, or belongs to certain subgroups. For these situations, we believe that a computer vision approach can overcome these problems and provide a better estimate of this important body indicator. Unfortunately, using machine learning techniques to design a computer vision system able to provide a new body indicator that goes beyond the use of only body weight and height, entails a long and expensive data acquisition process. A more viable solution is to use a dataset composed of virtual subjects. Generating a virtual dataset allowed us to build a population with different characteristics (obese, underweight, age, gender). However, synthetic data might differ from a real scenario, typical of the physician’s clinic. For this reason we develop a new virtual environment to facilitate the analysis of human subjects in 3D. This framework can simulate the acquisition process of a real camera, making it easy to analyze and to create training data for machine learning algorithms. With this virtual environment, we can easily simulate the real setup of a clinic, where a subject is standing in front of a camera, or may assume a different pose with respect to the camera. We use this newly designated environment to analyze the whole body surface area (WBSA). In particular, we show that we can obtain accurate WBSA estimations with just one view, virtually enabling the possibility to use inexpensive depth sensors (e.g., the Kinect) for large scale quantification of the WBSA from a single view 3D map. PMID:28045895

  6. Large Scale Beam-Tests of the Silicon and Scintillator-SiPM Modules for the CMS High Granularity Calorimeter at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Jain, Shilpi

    The High Granularity Calorimeter (HGCAL) will replace the existing CMS endcap calorimeters during the High Luminosity run of the LHC (HL-LHC) era. The electromagnetic part, as well as the first layers of the hadronic part, foresees around 600 square metres of silicon sensors as the active material. The remainder of the HGCAL, in the lower radiation environment, will use plastic scintillators with on-tile silicon photomultiplier (SiPM) readout. Prototype hexagonal silicon modules, featuring a new ASIC (Skiroc2-CMS), together with a modified version of the scintillator-SiPM CALICE AHCAL, have been tested in beams at CERN. This setup represents a full slice through HGCAL. Results from MIP calibration, energy resolution, electromagnetic and hadronic shower-shapes are presented using electrons, pions and muons.

  7. Virtual cranial endocast of the oldest giant panda (Ailuropoda microta) reveals great similarity to that of its extant relative.

    PubMed

    Dong, Wei

    2008-11-01

    Recent development of computed tomography and three-dimensional visualization techniques has enabled the non-destructive inspection of the endocast morphology of fossil neurocranium, the basic material for paleoneurological study. A virtual cranial endocast was reconstructed based on the first skull of the oldest giant panda, Ailuropoda microta, discovered recently and dated at more than 2 Myr (million years) ago. It was compared with that of the extant giant panda (A. melanoleuca) and that of the polar bear (Ursus maritimus), as well as CT slices of the late Pleistocene A. baconi. The overall endocast morphology of A. microta is more similar to that of A. baconi and A. melanoleuca than to that of U. maritimus. The absolute endocast size is the smallest in A. microta, largest in A. baconi, and intermediate in A. melanoleuca. However, the proportion of cerebral volume to total endocast size is very close to each other between the oldest and extant giant panda, as well as the sulcal length per unit area of cerebral endocast surface.

  8. Virtual modeling of robot-assisted manipulations in abdominal surgery.

    PubMed

    Berelavichus, Stanislav V; Karmazanovsky, Grigory G; Shirokov, Vadim S; Kubyshkin, Valeriy A; Kriger, Andrey G; Kondratyev, Evgeny V; Zakharova, Olga P

    2012-06-27

    To determine the effectiveness of using multidetector computed tomography (MDCT) data in preoperative planning of robot-assisted surgery. Fourteen patients indicated for surgery underwent MDCT using 64 and 256-slice MDCT. Before the examination, a specially constructed navigation net was placed on the patient's anterior abdominal wall. Processing of MDCT data was performed on a Brilliance Workspace 4 (Philips). Virtual vectors that imitate robotic and assistant ports were placed on the anterior abdominal wall of the 3D model of the patient, considering the individual anatomy of the patient and the technical capabilities of robotic arms. Sites for location of the ports were directed by projection on the roentgen-positive tags of the navigation net. There were no complications observed during surgery or in the post-operative period. We were able to reduce robotic arm interference during surgery. The surgical area was optimal for robotic and assistant manipulators without any need for reinstallation of the trocars. This method allows modeling of the main steps in robot-assisted intervention, optimizing operation of the manipulator and lowering the risk of injuries to internal organs.

  9. Virtual cranial endocast of the oldest giant panda ( Ailuropoda microta) reveals great similarity to that of its extant relative

    NASA Astrophysics Data System (ADS)

    Dong, Wei

    2008-11-01

    Recent development of computed tomography and three-dimensional visualization techniques has enabled the non-destructive inspection of the endocast morphology of fossil neurocranium, the basic material for paleoneurological study. A virtual cranial endocast was reconstructed based on the first skull of the oldest giant panda, Ailuropoda microta, discovered recently and dated at more than 2 Myr (million years) ago. It was compared with that of the extant giant panda ( A. melanoleuca) and that of the polar bear ( Ursus maritimus), as well as CT slices of the late Pleistocene A. baconi. The overall endocast morphology of A. microta is more similar to that of A. baconi and A. melanoleuca than to that of U. maritimus. The absolute endocast size is the smallest in A. microta, largest in A. baconi, and intermediate in A. melanoleuca. However, the proportion of cerebral volume to total endocast size is very close to each other between the oldest and extant giant panda, as well as the sulcal length per unit area of cerebral endocast surface.

  10. Lung segment geometry study: simulation of largest possible tumours that fit into bronchopulmonary segments.

    PubMed

    Welter, S; Stöcker, C; Dicken, V; Kühl, H; Krass, S; Stamatis, G

    2012-03-01

    Segmental resection in stage I non-small cell lung cancer (NSCLC) has been well described and is considered to have similar survival rates as lobectomy but with increased rates of local tumour recurrence due to inadequate parenchymal margins. In consequence, today segmentectomy is only performed when the tumour is smaller than 2 cm. Three-dimensional reconstructions from 11 thin-slice CT scans of bronchopulmonary segments were generated, and virtual spherical tumours were placed over the segments, respecting all segmental borders. As a next step, virtual parenchymal safety margins of 2 cm and 3 cm were subtracted and the size of the remaining tumour calculated. The maximum tumour diameters with a 30-mm parenchymal safety margin ranged from 26.1 mm in right-sided segments 7 + 8 to 59.8 mm in the left apical segments 1-3. Using a three-dimensional reconstruction of lung CT scans, we demonstrated that segmentectomy or resection of segmental groups should be feasible with adequate margins, even for larger tumours in selected cases. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. [Study on the effect of vertebrae semi-dislocation on the stress distribution in facet joint and interuertebral disc of patients with cervical syndrome based on the three dimensional finite element model].

    PubMed

    Zhang, Ming-cai; Lü, Si-zhe; Cheng, Ying-wu; Gu, Li-xu; Zhan, Hong-sheng; Shi, Yin-yu; Wang, Xiang; Huang, Shi-rong

    2011-02-01

    To study the effect of vertebrae semi-dislocation on the stress distribution in facet joint and interuertebral disc of patients with cervical syndrome using three dimensional finite element model. A patient with cervical spondylosis was randomly chosen, who was male, 28 years old, and diagnosed as cervical vertebra semidislocation by dynamic and static palpation and X-ray, and scanned from C(1) to C(7) by 0.75 mm slice thickness of CT. Based on the CT data, the software was used to construct the three dimensional finite element model of cervical vertebra semidislocation (C(4)-C(6)). Based on the model,virtual manipulation was used to correct the vertebra semidislocation by the software, and the stress distribution was analyzed. The result of finite element analysis showed that the stress distribution of C(5-6) facet joint and intervertebral disc changed after virtual manipulation. The vertebra semidislocation leads to the abnormal stress distribution of facet joint and intervertebral disc.

  12. Radiative corrections to elastic proton-electron scattering measured in coincidence

    NASA Astrophysics Data System (ADS)

    Gakh, G. I.; Konchatnij, M. I.; Merenkov, N. P.; Tomasi-Gustafsson, E.

    2017-05-01

    The differential cross section for elastic scattering of protons on electrons at rest is calculated, taking into account the QED radiative corrections to the leptonic part of interaction. These model-independent radiative corrections arise due to emission of the virtual and real soft and hard photons as well as to vacuum polarization. We analyze an experimental setup when both the final particles are recorded in coincidence and their energies are determined within some uncertainties. The kinematics, the cross section, and the radiative corrections are calculated and numerical results are presented.

  13. Architecture for the Next Generation System Management Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallard, Jerome; Lebre, I Adrien; Morin, Christine

    2011-01-01

    To get more results or greater accuracy, computational scientists execute their applications on distributed computing platforms such as Clusters, Grids and Clouds. These platforms are different in terms of hardware and software resources as well as locality: some span across multiple sites and multiple administrative domains whereas others are limited to a single site/domain. As a consequence, in order to scale their applica- tions up the scientists have to manage technical details for each target platform. From our point of view, this complexity should be hidden from the scientists who, in most cases, would prefer to focus on their researchmore » rather than spending time dealing with platform configuration concerns. In this article, we advocate for a system management framework that aims to automatically setup the whole run-time environment according to the applications needs. The main difference with regards to usual approaches is that they generally only focus on the software layer whereas we address both the hardware and the software expecta- tions through a unique system. For each application, scientists describe their requirements through the definition of a Virtual Platform (VP) and a Virtual System Environment (VSE). Relying on the VP/VSE definitions, the framework is in charge of: (i) the configuration of the physical infrastructure to satisfy the VP requirements, (ii) the setup of the VP, and (iii) the customization of the execution environment (VSE) upon the former VP. We propose a new formalism that the system can rely upon to successfully perform each of these three steps without burdening the user with the specifics of the configuration for the physical resources, and system management tools. This formalism leverages Goldberg s theory for recursive virtual machines by introducing new concepts based on system virtualization (identity, partitioning, aggregation) and emulation (simple, abstraction). This enables the definition of complex VP/VSE configurations without making assumptions about the hardware and the software re- sources. For each requirement, the system executes the corresponding operation with the appropriate management tool. As a proof of concept, we implemented a first prototype that currently interacts with several system management tools (e.g., OSCAR, the Grid 5000 toolkit, and XtreemOS) and that can be easily extended to integrate new resource brokers or cloud systems such as Nimbus, OpenNebula or Eucalyptus for instance.« less

  14. Developing a Virtual Museum for the Ancient Wine Trade in Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kazanis, S.; Kontogianni, G.; Chliverou, R.; Georgopoulos, A.

    2017-08-01

    Digital technologies for representing cultural heritage assets of any size are already maturing. Technological progress has greatly enhanced the art of virtual representation and, as a consequence, it is all the more appealing to the general public and especially to younger generations. The game industry has played a significant role towards this end and has led to the development of edutainment applications. The digital workflow implemented for developing such an application is presented in this paper. A virtual museum has been designed and developed, with the intention to convey the history of trade in the Eastern Mediterranean area, focusing on the Aegean Sea and five productive cities-ports, during a period of more than 500 years. Image based modeling methodology was preferred to ensure accuracy and reliability. The setup in the museum environment, the difficulties encountered and the solutions adopted are discussed, while processing of the images and the production and finishing of the 3D models are described in detail. The virtual museum and edutainment application, MEDWINET, has been designed and developed with the intention to convey the essential information of the wine production and trade routes in the Eastern Mediterranean basin. The user is able to examine the 3D models of the amphorae, while learning about their production and use for trade during the centuries. The application has been evaluated and the results are also discussed.

  15. Experimental and numeric stress analysis of titanium and zirconia one-piece dental implants.

    PubMed

    Mobilio, Nicola; Stefanoni, Filippo; Contiero, Paolo; Mollica, Francesco; Catapano, Santo

    2013-01-01

    To compare the stress in bone around zirconia and titanium implants under loading. A one-piece zirconia implant and a replica of the same implant made of commercially pure titanium were embedded in two self-curing acrylic resin blocks. To measure strain, a strain gauge was applied on the surface of the two samples. Loads of 50, 100, and 150 N, with orientations of 30, 45, and 60 degrees with respect to the implant axis were applied on the implant. Strain under all loading conditions on both samples was measured. Three-dimensional virtual replicas of both the implants were reproduced using the finite element method and inserted into a virtual acrylic resin block. All the materials were considered isotropic, linear, and elastic. The same geometry and loading conditions of the experimental setup were used to realize two new models, with the implants embedded within a virtual bone block. Very close values of strain in the two implants embedded in acrylic resin were obtained both experimentally and numerically. The stress states generated by the implants embedded in virtual bone were also very similar, even if the two implants moved differently. Moreover, the stress levels were higher on cortical bone than on trabecular bone. The stress levels in bone, generated by the two implants, appeared to be very similar. From a mechanical point of view, zirconia is a feasible substitute for titanium.

  16. A collaborative virtual reality environment for neurosurgical planning and training.

    PubMed

    Kockro, Ralf A; Stadie, Axel; Schwandt, Eike; Reisch, Robert; Charalampaki, Cleopatra; Ng, Ivan; Yeo, Tseng Tsai; Hwang, Peter; Serra, Luis; Perneczky, Axel

    2007-11-01

    We have developed a highly interactive virtual environment that enables collaborative examination of stereoscopic three-dimensional (3-D) medical imaging data for planning, discussing, or teaching neurosurgical approaches and strategies. The system consists of an interactive console with which the user manipulates 3-D data using hand-held and tracked devices within a 3-D virtual workspace and a stereoscopic projection system. The projection system displays the 3-D data on a large screen while the user is working with it. This setup allows users to interact intuitively with complex 3-D data while sharing this information with a larger audience. We have been using this system on a routine clinical basis and during neurosurgical training courses to collaboratively plan and discuss neurosurgical procedures with 3-D reconstructions of patient-specific magnetic resonance and computed tomographic imaging data or with a virtual model of the temporal bone. Working collaboratively with the 3-D information of a large, interactive, stereoscopic projection provides an unambiguous way to analyze and understand the anatomic spatial relationships of different surgical corridors. In our experience, the system creates a unique forum for open and precise discussion of neurosurgical approaches. We believe the system provides a highly effective way to work with 3-D data in a group, and it significantly enhances teaching of neurosurgical anatomy and operative strategies.

  17. Color appearance in stereoscopy

    NASA Astrophysics Data System (ADS)

    Gadia, Davide; Rizzi, Alessandro; Bonanomi, Cristian; Marini, Daniele; Galmonte, Alessandra; Agostini, Tiziano

    2011-03-01

    The relationship between color and lightness appearance and the perception of depth has been studied since a while in the field of perceptual psychology and psycho-physiology. It has been found that depth perception affects the final object color and lightness appearance. In the stereoscopy research field, many studies have been proposed on human physiological effects, considering e.g. geometry, motion sickness, etc., but few has been done considering lightness and color information. Goal of this paper is to realize some preliminar experiments in Virtual Reality in order to determine the effects of depth perception on object color and lightness appearance. We have created a virtual test scene with a simple 3D simultaneous contrast configuration. We have created three different versions of this scene, each with different choices of relative positions and apparent size of the objects. We have collected the perceptual responses of several users after the observation of the test scene in the Virtual Theater of the University of Milan, a VR immersive installation characterized by a semi-cylindrical screen that covers 120° of horizontal field of view from an observation distance of 3.5 m. We present a description of the experiments setup and procedure, and we discuss the obtained results.

  18. Sputnik: ad hoc distributed computation.

    PubMed

    Völkel, Gunnar; Lausser, Ludwig; Schmid, Florian; Kraus, Johann M; Kestler, Hans A

    2015-04-15

    In bioinformatic applications, computationally demanding algorithms are often parallelized to speed up computation. Nevertheless, setting up computational environments for distributed computation is often tedious. Aim of this project were the lightweight ad hoc set up and fault-tolerant computation requiring only a Java runtime, no administrator rights, while utilizing all CPU cores most effectively. The Sputnik framework provides ad hoc distributed computation on the Java Virtual Machine which uses all supplied CPU cores fully. It provides a graphical user interface for deployment setup and a web user interface displaying the current status of current computation jobs. Neither a permanent setup nor administrator privileges are required. We demonstrate the utility of our approach on feature selection of microarray data. The Sputnik framework is available on Github http://github.com/sysbio-bioinf/sputnik under the Eclipse Public License. hkestler@fli-leibniz.de or hans.kestler@uni-ulm.de Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Using Docker Compose for the Simple Deployment of an Integrated Drug Target Screening Platform.

    PubMed

    List, Markus

    2017-06-10

    Docker virtualization allows for software tools to be executed in an isolated and controlled environment referred to as a container. In Docker containers, dependencies are provided exactly as intended by the developer and, consequently, they simplify the distribution of scientific software and foster reproducible research. The Docker paradigm is that each container encapsulates one particular software tool. However, to analyze complex biomedical data sets, it is often necessary to combine several software tools into elaborate workflows. To address this challenge, several Docker containers need to be instantiated and properly integrated, which complicates the software deployment process unnecessarily. Here, we demonstrate how an extension to Docker, Docker compose, can be used to mitigate these problems by providing a unified setup routine that deploys several tools in an integrated fashion. We demonstrate the power of this approach by example of a Docker compose setup for a drug target screening platform consisting of five integrated web applications and shared infrastructure, deployable in just two lines of codes.

  20. Concept and development of a computerized positioning of prosthetic teeth for complete dentures.

    PubMed

    Busch, M; Kordass, B

    2006-04-01

    To date, CAD/CAM technology has made no noteworthy inroads into removable dentures. We want to present a new area of application for this in our study. Models of the maxilla and edentulous mandible were 3D scanned. The software detects and automatically reconstructs the reference structures that are anatomically important for the set-up of artificial teeth, such as the alveolar ridge centerlines and the interalveolar relations between the alveolar ridges. In a further step, the occlusal plane is semiautomatically defined and the front dental arch is designed. After these design features have been determined, artificial teeth are selected from a database and set up automatically. The dental technician can assess the esthetics and function of the suggested dental set-up on the computer screen and make slight corrections if necessary. Summarizing: The interplay of hardware and software components within on integrated solution including conversion of the "virtual" into a real positioning of prosthetic teeth is presented.

  1. Interactions between superficial and deep dorsal horn spinal cord neurons in the processing of nociceptive information.

    PubMed

    Petitjean, Hugues; Rodeau, Jean-Luc; Schlichter, Rémy

    2012-12-01

    In acute rat spinal cord slices, the application of capsaicin (5 μm, 90 s), an agonist of transient receptor potential vanilloid 1 receptors expressed by a subset of nociceptors that project to laminae I-II of the spinal cord dorsal horn, induced an increase in the frequency of spontaneous excitatory and spontaneous inhibitory postsynaptic currents in about half of the neurons in laminae II, III-IV and V. In the presence of tetrodotoxin, which blocks action potential generation and polysynaptic transmission, capsaicin increased the frequency of miniature excitatory postsynaptic currents in only 30% of lamina II neurons and had no effect on the frequency of miniature excitatory postsynaptic currents in laminae III-V or on the frequency of miniature inhibitory postsynaptic currents in laminae II-V. When the communication between lamina V and more superficial laminae was interrupted by performing a mechanical section between laminae IV and V, capsaicin induced an increase in spontaneous excitatory postsynaptic current frequency in laminae II-IV and an increase in spontaneous inhibitory postsynaptic current frequency in lamina II that were similar to those observed in intact slices. However, in laminae III-IV of transected slices, the increase in spontaneous inhibitory postsynaptic current frequency was virtually abolished. Our results indicate that nociceptive information conveyed by transient receptor potential vanilloid 1-expressing nociceptors is transmitted from lamina II to deeper laminae essentially by an excitatory pathway and that deep laminae exert a 'feedback' control over neurons in laminae III-IV by increasing inhibitory synaptic transmission in these laminae. Moreover, we provide evidence that laminae III-IV might play an important role in the processing of nociceptive information in the dorsal horn. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. Brain-computer interface users speak up: the Virtual Users' Forum at the 2013 International Brain-Computer Interface Meeting.

    PubMed

    Peters, Betts; Bieker, Gregory; Heckman, Susan M; Huggins, Jane E; Wolf, Catherine; Zeitlin, Debra; Fried-Oken, Melanie

    2015-03-01

    More than 300 researchers gathered at the 2013 International Brain-Computer Interface (BCI) Meeting to discuss current practice and future goals for BCI research and development. The authors organized the Virtual Users' Forum at the meeting to provide the BCI community with feedback from users. We report on the Virtual Users' Forum, including initial results from ongoing research being conducted by 2 BCI groups. Online surveys and in-person interviews were used to solicit feedback from people with disabilities who are expert and novice BCI users. For the Virtual Users' Forum, their responses were organized into 4 major themes: current (non-BCI) communication methods, experiences with BCI research, challenges of current BCIs, and future BCI developments. Two authors with severe disabilities gave presentations during the Virtual Users' Forum, and their comments are integrated with the other results. While participants' hopes for BCIs of the future remain high, their comments about available systems mirror those made by consumers about conventional assistive technology. They reflect concerns about reliability (eg, typing accuracy/speed), utility (eg, applications and the desire for real-time interactions), ease of use (eg, portability and system setup), and support (eg, technical support and caregiver training). People with disabilities, as target users of BCI systems, can provide valuable feedback and input on the development of BCI as an assistive technology. To this end, participatory action research should be considered as a valuable methodology for future BCI research. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Surface roughness and packaging tightness affect calcium lactate crystallization on Cheddar cheese.

    PubMed

    Rajbhandari, P; Kindstedt, P S

    2014-01-01

    Calcium lactate crystals that sometimes form on Cheddar cheese surfaces are a significant expense to manufacturers. Researchers have identified several postmanufacture conditions such as storage temperature and packaging tightness that contribute to crystal formation. Anecdotal reports suggest that physical characteristics at the cheese surface, such as roughness, cracks, and irregularities, may also affect crystallization. The aim of this study was to evaluate the combined effects of surface roughness and packaging tightness on crystal formation in smoked Cheddar cheese. Four 20-mm-thick cross-section slices were cut perpendicular to the long axis of a retail block (~300g) of smoked Cheddar cheese using a wire cutting device. One cut surface of each slice was lightly etched with a cheese grater to create a rough, grooved surface; the opposite cut surface was left undisturbed (smooth). The 4 slices were vacuum packaged at 1, 10, 50, and 90kPa (very tight, moderately tight, loose, very loose, respectively) and stored at 1°C. Digital images were taken at 1, 4, and 8 wk following the first appearance of crystals. The area occupied by crystals and number of discrete crystal regions (DCR) were quantified by image analysis. The experiment was conducted in triplicate. Effects of storage time, packaging tightness, surface roughness, and their interactions were evaluated by repeated-measures ANOVA. Surface roughness, packaging tightness, storage time, and their 2-way interactions significantly affected crystal area and DCR number. Extremely heavy crystallization occurred on both rough and smooth surfaces when slices were packaged loosely or very loosely and on rough surfaces with moderately tight packaging. In contrast, the combination of rough surface plus very tight packaging resulted in dramatic decreases in crystal area and DCR number. The combination of smooth surface plus very tight packaging virtually eliminated crystal formation, presumably by eliminating available sites for nucleation. Cut-and-wrap operations may significantly influence the crystallization behavior of Cheddar cheeses that are saturated with respect to calcium lactate and thus predisposed to form crystals. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Wireless Mobile Technology to Improve Workflow and Feasibility of MR-Guided Percutaneous Interventions

    PubMed Central

    Rube, Martin A.; Holbrook, Andrew B.; Cox, Benjamin F.; Buciuc, Razvan; Melzer, Andreas

    2015-01-01

    Purpose A wireless interactive display and control device combined with a platform-independent web-based User Interface (UI) was developed to improve the workflow for interventional Magnetic Resonance Imaging (iMRI). Methods The iMRI-UI enables image acquisition of up to three independent slices using various pulse sequences with different contrast weighting. Pulse sequence, scan geometry and related parameters can be changed on the fly via the iMRI-UI using a tablet computer for improved lesion detection and interventional device targeting. The iMRI-UI was validated for core biopsies with a liver phantom (n=40) and Thiel soft-embalmed human cadavers (n=24) in a clinical 1.5T MRI scanner. Results The iMRI-UI components and setup were tested and found conditionally MRI-safe to use according to current ASTM standards. Despite minor temporary touchscreen interference at a close distance to the bore (<20 cm), no other issues regarding quality or imaging artefacts were observed. The 3D root-mean-square distance error was 2.8±1.0 (phantom) / 2.9±0.8 mm (cadaver) and overall procedure times ranged between 12–22 (phantom) / 20–55 minutes (cadaver). Conclusions The wireless iMRI-UI control setup enabled fast and accurate interventional biopsy needle placements along complex trajectories and improved the workflow for percutaneous interventions under MRI guidance in a preclinical trial. PMID:25179151

  5. A framework for breast cancer visualization using augmented reality x-ray vision technique in mobile technology

    NASA Astrophysics Data System (ADS)

    Rahman, Hameedur; Arshad, Haslina; Mahmud, Rozi; Mahayuddin, Zainal Rasyid

    2017-10-01

    Breast Cancer patients who require breast biopsy has increased over the past years. Augmented Reality guided core biopsy of breast has become the method of choice for researchers. However, this cancer visualization has limitations to the extent of superimposing the 3D imaging data only. In this paper, we are introducing an Augmented Reality visualization framework that enables breast cancer biopsy image guidance by using X-Ray vision technique on a mobile display. This framework consists of 4 phases where it initially acquires the image from CT/MRI and process the medical images into 3D slices, secondly it will purify these 3D grayscale slices into 3D breast tumor model using 3D modeling reconstruction technique. Further, in visualization processing this virtual 3D breast tumor model has been enhanced using X-ray vision technique to see through the skin of the phantom and the final composition of it is displayed on handheld device to optimize the accuracy of the visualization in six degree of freedom. The framework is perceived as an improved visualization experience because the Augmented Reality x-ray vision allowed direct understanding of the breast tumor beyond the visible surface and direct guidance towards accurate biopsy targets.

  6. Effect of desensitizing agents on dentin permeability.

    PubMed

    Ishihata, Hiroshi; Kanehira, Masafumi; Nagai, Tomoko; Finger, Werner J; Shimauchi, Hidetoshi; Komatsu, Masashi

    2009-06-01

    To investigate the in vitro efficacy of two dentin desensitizing products at reducing liquid permeability through human dentin discs. The tested hypothesis was that the products, in spite of different chemical mechanisms were not different at reducing or eliminating flow through dentin discs. Dentin slices (1 mm thick) were prepared from 16 extracted human third molars and their permeability was indirectly recorded in a split chamber model, using a chemiluminescence technique, after EDTA treatment (control), after soaking with albumin, and after desensitizer application. Two products were studied: MS Coat, a self-curing resin-containing oxalate product, and Gluma Desensitizer, a glutaraldehyde/HEMA-based agent without initiator. The dentin slices were mounted between an upper chamber, filled with an aqueous solution of 1% potassium ferricyanide and 0.3% hydrogen peroxide, and a lower chamber filled with 1% sodium hydroxide solution and 0.02% luminol. The upper solution was pressurized, and upon contact with the luminol solution a photochemical signal was generated and recorded as a measure of permeability throughout two consecutive pressurizing cycles at 2.5 and 13 kPa (26 and 133 cm H2O), respectively. The permeability of the control and albumin-soaked samples was similarly high. After application of the desensitizing agents, dentin permeability was reduced to virtually zero at both pressure levels (P < 0.001).

  7. ABrIL - Advanced Brain Imaging Lab : a cloud based computation environment for cooperative neuroimaging projects.

    PubMed

    Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo

    2014-01-01

    Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability.

  8. Agreement and reliability of pelvic floor measurements during rest and on maximum Valsalva maneuver using three-dimensional translabial ultrasound and virtual reality imaging.

    PubMed

    Speksnijder, L; Oom, D M J; Koning, A H J; Biesmeijer, C S; Steegers, E A P; Steensma, A B

    2016-08-01

    Imaging of the levator ani hiatus provides valuable information for the diagnosis and follow-up of patients with pelvic organ prolapse (POP). This study compared measurements of levator ani hiatal volume during rest and on maximum Valsalva, obtained using conventional three-dimensional (3D) translabial ultrasound and virtual reality imaging. Our objectives were to establish their agreement and reliability, and their relationship with prolapse symptoms and POP quantification (POP-Q) stage. One hundred women with an intact levator ani were selected from our tertiary clinic database. Information on clinical symptoms were obtained using standardized questionnaires. Ultrasound datasets were analyzed using a rendered volume with a slice thickness of 1.5 cm, at the level of minimal hiatal dimensions, during rest and on maximum Valsalva. The levator area (in cm(2) ) was measured and multiplied by 1.5 to obtain the levator ani hiatal volume (in cm(3) ) on conventional 3D ultrasound. Levator ani hiatal volume (in cm(3) ) was measured semi-automatically by virtual reality imaging using a segmentation algorithm. Twenty patients were chosen randomly to analyze intra- and interobserver agreement. The mean difference between levator hiatal volume measurements on 3D ultrasound and by virtual reality was 1.52 cm(3) (95% CI, 1.00-2.04 cm(3) ) at rest and 1.16 cm(3) (95% CI, 0.56-1.76 cm(3) ) during maximum Valsalva (P < 0.001). Both intra- and interobserver intraclass correlation coefficients were ≥ 0.96 for conventional 3D ultrasound and > 0.99 for virtual reality. Patients with prolapse symptoms or POP-Q Stage ≥ 2 had significantly larger hiatal measurements than those without symptoms or POP-Q Stage < 2. Levator ani hiatal volume at rest and on maximum Valsalva is significantly smaller when using virtual reality compared with conventional 3D ultrasound; however, this difference does not seem clinically important. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  9. Measuring the In-Process Figure, Final Prescription, and System Alignment of Large Optics and Segmented Mirrors Using Lidar Metrology

    NASA Technical Reports Server (NTRS)

    Ohl, Raymond; Slotwinski, Anthony; Eegholm, Bente; Saif, Babak

    2011-01-01

    The fabrication of large optics is traditionally a slow process, and fabrication capability is often limited by measurement capability. W hile techniques exist to measure mirror figure with nanometer precis ion, measurements of large-mirror prescription are typically limited to submillimeter accuracy. Using a lidar instrument enables one to measure the optical surface rough figure and prescription in virtuall y all phases of fabrication without moving the mirror from its polis hing setup. This technology improves the uncertainty of mirror presc ription measurement to the micron-regime.

  10. Virtual screening of integrase inhibitors by large scale binding free energy calculations: the SAMPL4 challenge

    PubMed Central

    Gallicchio, Emilio; Deng, Nanjie; He, Peng; Wickstrom, Lauren; Perryman, Alexander L.; Santiago, Daniel N.; Forli, Stefano; Olson, Arthur J.; Levy, Ronald M.

    2014-01-01

    As part of the SAMPL4 blind challenge, filtered AutoDock Vina ligand docking predictions and large scale binding energy distribution analysis method binding free energy calculations have been applied to the virtual screening of a focused library of candidate binders to the LEDGF site of the HIV integrase protein. The computational protocol leveraged docking and high level atomistic models to improve enrichment. The enrichment factor of our blind predictions ranked best among all of the computational submissions, and second best overall. This work represents to our knowledge the first example of the application of an all-atom physics-based binding free energy model to large scale virtual screening. A total of 285 parallel Hamiltonian replica exchange molecular dynamics absolute protein-ligand binding free energy simulations were conducted starting from docked poses. The setup of the simulations was fully automated, calculations were distributed on multiple computing resources and were completed in a 6-weeks period. The accuracy of the docked poses and the inclusion of intramolecular strain and entropic losses in the binding free energy estimates were the major factors behind the success of the method. Lack of sufficient time and computing resources to investigate additional protonation states of the ligands was a major cause of mispredictions. The experiment demonstrated the applicability of binding free energy modeling to improve hit rates in challenging virtual screening of focused ligand libraries during lead optimization. PMID:24504704

  11. Simple Estimation of the Endolymphatic Volume Ratio after Intravenous Administration of a Single-dose of Gadolinium Contrast

    PubMed Central

    NAGANAWA, Shinji; KANOU, Mai; OHASHI, Toshio; KUNO, Kayao; SONE, Michihiko

    2016-01-01

    Purpose: To evaluate the feasibility of a simple estimation for the endolymphatic volume ratio (endolymph volume/total lymph volume = %ELvolume) from an area ratio obtained from only one slice (%EL1slice) or from three slices (%EL3slices). The %ELvolume, calculated from a time-consuming measurement on all magnetic resonance (MR) slices, was compared to the %EL1slice and the %EL3slices. Methods: In 40 ears of 20 patients with a clinical suspicion of endolymphatic hydrops, MR imaging was performed 4 hours after intravenous administration of a single dose of gadolinium-based contrast material (IV-SD-GBCM). Using previously reported HYDROPS2-Mi2 MR imaging, the %ELvolume values in the cochlea and the vestibule were measured separately by two observers. The correlations between the %EL1slice or the %EL3slices and the %ELvolume values were evaluated. Results: A strong linear correlation was observed between the %ELvolume and the %EL3slices or the %EL1slice in the cochlea. The Pearson correlation coefficient (r) was 0.968 (3 slices) and 0.965 (1 slice) for observer A, and 0.968 (3 slices) and 0.964 (1 slice) for observer B (P < 0.001, for all). A strong linear correlation was also observed between the %ELvolume and the %EL3slices or the %EL1slice in the vestibule. The Pearson correlation coefficient (r) was 0.980 (3 slices) and 0.953 (1 slice) for observer A, and 0.979 (3 slices) and 0.952 (1 slice) for observer B (P < 0.001, for all). The high intra-class correlation coefficients (0.991–0.997) between the endolymph volume ratios by two observers were observed in both the cochlea and the vestibule for values of the %ELvolume, the %EL3slices and the %EL1slice. Conclusion: The %ELvolume might be easily estimated from the %EL3slices or the %EL1slice. PMID:27001396

  12. Simple Estimation of the Endolymphatic Volume Ratio after Intravenous Administration of a Single-dose of Gadolinium Contrast.

    PubMed

    Naganawa, Shinji; Kanou, Mai; Ohashi, Toshio; Kuno, Kayao; Sone, Michihiko

    2016-10-11

    To evaluate the feasibility of a simple estimation for the endolymphatic volume ratio (endolymph volume/total lymph volume = %EL volume ) from an area ratio obtained from only one slice (%EL 1slice ) or from three slices (%EL 3slices ). The %EL volume, calculated from a time-consuming measurement on all magnetic resonance (MR) slices, was compared to the %EL 1slice and the %EL 3slices . In 40 ears of 20 patients with a clinical suspicion of endolymphatic hydrops, MR imaging was performed 4 hours after intravenous administration of a single dose of gadolinium-based contrast material (IV-SD-GBCM). Using previously reported HYDROPS2-Mi2 MR imaging, the %EL volume values in the cochlea and the vestibule were measured separately by two observers. The correlations between the %EL 1slice or the %EL 3slices and the %EL volume values were evaluated. A strong linear correlation was observed between the %EL volume and the %EL 3slices or the %EL 1slice in the cochlea. The Pearson correlation coefficient (r) was 0.968 (3 slices) and 0.965 (1 slice) for observer A, and 0.968 (3 slices) and 0.964 (1 slice) for observer B (P < 0.001, for all). A strong linear correlation was also observed between the %EL volume and the %EL 3slices or the %EL 1slice in the vestibule. The Pearson correlation coefficient (r) was 0.980 (3 slices) and 0.953 (1 slice) for observer A, and 0.979 (3 slices) and 0.952 (1 slice) for observer B (P < 0.001, for all). The high intra-class correlation coefficients (0.991-0.997) between the endolymph volume ratios by two observers were observed in both the cochlea and the vestibule for values of the %EL volume , the %EL 3slices and the %EL 1slice . The %EL volume might be easily estimated from the %EL 3slices or the %EL 1slice .

  13. Metric Calibration of a Focused Plenoptic Camera Based on a 3d Calibration Target

    NASA Astrophysics Data System (ADS)

    Zeller, N.; Noury, C. A.; Quint, F.; Teulière, C.; Stilla, U.; Dhome, M.

    2016-06-01

    In this paper we present a new calibration approach for focused plenoptic cameras. We derive a new mathematical projection model of a focused plenoptic camera which considers lateral as well as depth distortion. Therefore, we derive a new depth distortion model directly from the theory of depth estimation in a focused plenoptic camera. In total the model consists of five intrinsic parameters, the parameters for radial and tangential distortion in the image plane and two new depth distortion parameters. In the proposed calibration we perform a complete bundle adjustment based on a 3D calibration target. The residual of our optimization approach is three dimensional, where the depth residual is defined by a scaled version of the inverse virtual depth difference and thus conforms well to the measured data. Our method is evaluated based on different camera setups and shows good accuracy. For a better characterization of our approach we evaluate the accuracy of virtual image points projected back to 3D space.

  14. Brain-computer interface using P300 and virtual reality: a gaming approach for treating ADHD.

    PubMed

    Rohani, Darius Adam; Sorensen, Helge B D; Puthusserypady, Sadasivan

    2014-01-01

    This paper presents a novel brain-computer interface (BCI) system aiming at the rehabilitation of attention-deficit/hyperactive disorder in children. It uses the P300 potential in a series of feedback games to improve the subjects' attention. We applied a support vector machine (SVM) using temporal and template-based features to detect these P300 responses. In an experimental setup using five subjects, an average error below 30% was achieved. To make it more challenging the BCI system has been embedded inside an immersive 3D virtual reality (VR) classroom with simulated distractions, which was created by combining a low-cost infrared camera and an "off-axis perspective projection" algorithm. This system is intended for kids by operating with four electrodes, as well as a non-intrusive VR setting. With the promising results, and considering the simplicity of the scheme, we hope to encourage future studies to adapt the techniques presented in this study.

  15. Dynamic provisioning of local and remote compute resources with OpenStack

    NASA Astrophysics Data System (ADS)

    Giffels, M.; Hauth, T.; Polgart, F.; Quast, G.

    2015-12-01

    Modern high-energy physics experiments rely on the extensive usage of computing resources, both for the reconstruction of measured events as well as for Monte-Carlo simulation. The Institut fur Experimentelle Kernphysik (EKP) at KIT is participating in both the CMS and Belle experiments with computing and storage resources. In the upcoming years, these requirements are expected to increase due to growing amount of recorded data and the rise in complexity of the simulated events. It is therefore essential to increase the available computing capabilities by tapping into all resource pools. At the EKP institute, powerful desktop machines are available to users. Due to the multi-core nature of modern CPUs, vast amounts of CPU time are not utilized by common desktop usage patterns. Other important providers of compute capabilities are classical HPC data centers at universities or national research centers. Due to the shared nature of these installations, the standardized software stack required by HEP applications cannot be installed. A viable way to overcome this constraint and offer a standardized software environment in a transparent manner is the usage of virtualization technologies. The OpenStack project has become a widely adopted solution to virtualize hardware and offer additional services like storage and virtual machine management. This contribution will report on the incorporation of the institute's desktop machines into a private OpenStack Cloud. The additional compute resources provisioned via the virtual machines have been used for Monte-Carlo simulation and data analysis. Furthermore, a concept to integrate shared, remote HPC centers into regular HEP job workflows will be presented. In this approach, local and remote resources are merged to form a uniform, virtual compute cluster with a single point-of-entry for the user. Evaluations of the performance and stability of this setup and operational experiences will be discussed.

  16. “Seeing” and “feeling” architecture: how bodily self-consciousness alters architectonic experience and affects the perception of interiors

    PubMed Central

    Pasqualini, Isabella; Llobera, Joan; Blanke, Olaf

    2013-01-01

    Over the centuries architectural theory evolved several notions of embodiment, proposing in the nineteenth and twentieth century that architectonic experience is related to physiological responses of the observer. Recent advances in the cognitive neuroscience of embodiment (or bodily self-consciousness) enable empirical studies of architectonic embodiment. Here, we investigated how architecture modulates bodily self-consciousness by adapting a video-based virtual reality (VR) setup previously used to investigate visuo-tactile mechanisms of bodily self-consciousness. While standing in two different interiors, participants were filmed from behind and watched their own virtual body online on a head-mounted display (HMD). Visuo-tactile strokes were applied in synchronous or asynchronous mode to the participants and their virtual body. Two interiors were simulated in the laboratory by placing the sidewalls either far or near from the participants, generating a large and narrow room. We tested if bodily self-consciousness was differently modulated when participants were exposed to both rooms and whether these changes depend on visuo-tactile stimulation. We measured illusory touch, self-identification, and performed length estimations. Our data show that synchronous stroking of the physical and the virtual body induces illusory touch and self-identification with the virtual body, independent of room-size. Moreover, in the narrow room we observed weak feelings of illusory touch with the sidewalls and of approaching walls. These subjective changes were complemented by a stroking-dependent modulation of length estimation only in the narrow room with participants judging the room-size more accurately during conditions of illusory self-identification. We discuss our findings and previous notions of architectonic embodiment in the context of the cognitive neuroscience of bodily self-consciousness and propose an empirical framework grounded in architecture, cognitive neuroscience, and VR. PMID:23805112

  17. "Seeing" and "feeling" architecture: how bodily self-consciousness alters architectonic experience and affects the perception of interiors.

    PubMed

    Pasqualini, Isabella; Llobera, Joan; Blanke, Olaf

    2013-01-01

    Over the centuries architectural theory evolved several notions of embodiment, proposing in the nineteenth and twentieth century that architectonic experience is related to physiological responses of the observer. Recent advances in the cognitive neuroscience of embodiment (or bodily self-consciousness) enable empirical studies of architectonic embodiment. Here, we investigated how architecture modulates bodily self-consciousness by adapting a video-based virtual reality (VR) setup previously used to investigate visuo-tactile mechanisms of bodily self-consciousness. While standing in two different interiors, participants were filmed from behind and watched their own virtual body online on a head-mounted display (HMD). Visuo-tactile strokes were applied in synchronous or asynchronous mode to the participants and their virtual body. Two interiors were simulated in the laboratory by placing the sidewalls either far or near from the participants, generating a large and narrow room. We tested if bodily self-consciousness was differently modulated when participants were exposed to both rooms and whether these changes depend on visuo-tactile stimulation. We measured illusory touch, self-identification, and performed length estimations. Our data show that synchronous stroking of the physical and the virtual body induces illusory touch and self-identification with the virtual body, independent of room-size. Moreover, in the narrow room we observed weak feelings of illusory touch with the sidewalls and of approaching walls. These subjective changes were complemented by a stroking-dependent modulation of length estimation only in the narrow room with participants judging the room-size more accurately during conditions of illusory self-identification. We discuss our findings and previous notions of architectonic embodiment in the context of the cognitive neuroscience of bodily self-consciousness and propose an empirical framework grounded in architecture, cognitive neuroscience, and VR.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levegruen, Sabine, E-mail: sabine.levegruen@uni-due.de; Poettgen, Christoph; Abu Jawad, Jehad

    Purpose: To evaluate megavoltage computed tomography (MVCT)-based image guidance with helical tomotherapy in patients with vertebral tumors by analyzing factors influencing interobserver variability, considered as quality criterion of image guidance. Methods and Materials: Five radiation oncologists retrospectively registered 103 MVCTs in 10 patients to planning kilovoltage CTs by rigid transformations in 4 df. Interobserver variabilities were quantified using the standard deviations (SDs) of the distributions of the correction vector components about the observers' fraction mean. To assess intraobserver variabilities, registrations were repeated after {>=}4 weeks. Residual deviations after setup correction due to uncorrectable rotational errors and elastic deformations were determinedmore » at 3 craniocaudal target positions. To differentiate observer-related variations in minimizing these residual deviations across the 3-dimensional MVCT from image resolution effects, 2-dimensional registrations were performed in 30 single transverse and sagittal MVCT slices. Axial and longitudinal MVCT image resolutions were quantified. For comparison, image resolution of kilovoltage cone-beam CTs (CBCTs) and interobserver variability in registrations of 43 CBCTs were determined. Results: Axial MVCT image resolution is 3.9 lp/cm. Longitudinal MVCT resolution amounts to 6.3 mm, assessed as full-width at half-maximum of thin objects in MVCTs with finest pitch. Longitudinal CBCT resolution is better (full-width at half-maximum, 2.5 mm for CBCTs with 1-mm slices). In MVCT registrations, interobserver variability in the craniocaudal direction (SD 1.23 mm) is significantly larger than in the lateral and ventrodorsal directions (SD 0.84 and 0.91 mm, respectively) and significantly larger compared with CBCT alignments (SD 1.04 mm). Intraobserver variabilities are significantly smaller than corresponding interobserver variabilities (variance ratio [VR] 1.8-3.1). Compared with 3-dimensional registrations, 2-dimensional registrations have significantly smaller interobserver variability in the lateral and ventrodorsal directions (VR 3.8 and 2.8, respectively) but not in the craniocaudal direction (VR 0.75). Conclusion: Tomotherapy image guidance precision is affected by image resolution and residual deviations after setup correction. Eliminating the effect of residual deviations yields small interobserver variabilities with submillimeter precision in the axial plane. In contrast, interobserver variability in the craniocaudal direction is dominated by the poorer longitudinal MVCT image resolution. Residual deviations after image guidance exist and need to be considered when dose gradients ultimately achievable with image guided radiation therapy techniques are analyzed.« less

  19. Megavoltage computed tomography image guidance with helical tomotherapy in patients with vertebral tumors: analysis of factors influencing interobserver variability.

    PubMed

    Levegrün, Sabine; Pöttgen, Christoph; Jawad, Jehad Abu; Berkovic, Katharina; Hepp, Rodrigo; Stuschke, Martin

    2013-02-01

    To evaluate megavoltage computed tomography (MVCT)-based image guidance with helical tomotherapy in patients with vertebral tumors by analyzing factors influencing interobserver variability, considered as quality criterion of image guidance. Five radiation oncologists retrospectively registered 103 MVCTs in 10 patients to planning kilovoltage CTs by rigid transformations in 4 df. Interobserver variabilities were quantified using the standard deviations (SDs) of the distributions of the correction vector components about the observers' fraction mean. To assess intraobserver variabilities, registrations were repeated after ≥4 weeks. Residual deviations after setup correction due to uncorrectable rotational errors and elastic deformations were determined at 3 craniocaudal target positions. To differentiate observer-related variations in minimizing these residual deviations across the 3-dimensional MVCT from image resolution effects, 2-dimensional registrations were performed in 30 single transverse and sagittal MVCT slices. Axial and longitudinal MVCT image resolutions were quantified. For comparison, image resolution of kilovoltage cone-beam CTs (CBCTs) and interobserver variability in registrations of 43 CBCTs were determined. Axial MVCT image resolution is 3.9 lp/cm. Longitudinal MVCT resolution amounts to 6.3 mm, assessed as full-width at half-maximum of thin objects in MVCTs with finest pitch. Longitudinal CBCT resolution is better (full-width at half-maximum, 2.5 mm for CBCTs with 1-mm slices). In MVCT registrations, interobserver variability in the craniocaudal direction (SD 1.23 mm) is significantly larger than in the lateral and ventrodorsal directions (SD 0.84 and 0.91 mm, respectively) and significantly larger compared with CBCT alignments (SD 1.04 mm). Intraobserver variabilities are significantly smaller than corresponding interobserver variabilities (variance ratio [VR] 1.8-3.1). Compared with 3-dimensional registrations, 2-dimensional registrations have significantly smaller interobserver variability in the lateral and ventrodorsal directions (VR 3.8 and 2.8, respectively) but not in the craniocaudal direction (VR 0.75). Tomotherapy image guidance precision is affected by image resolution and residual deviations after setup correction. Eliminating the effect of residual deviations yields small interobserver variabilities with submillimeter precision in the axial plane. In contrast, interobserver variability in the craniocaudal direction is dominated by the poorer longitudinal MVCT image resolution. Residual deviations after image guidance exist and need to be considered when dose gradients ultimately achievable with image guided radiation therapy techniques are analyzed. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. [Virtual endoscopic navigation and body transparency based on computed tomography. A step towards in vivo imaging].

    PubMed

    Cabanis, Emmanuel-Alain; Gombergh, Rodolphe; Castro, Albert; Gandjbakhch, Iradj; Iba-Zizen, Marie-Thérèse; Dubois, François

    2011-06-01

    Progress in HR-CTdata processing has led to lower X-ray exposure and to better diagnostic performance. We describe 19 adult patients (among 5000) examined by HR CT with 64 detectors, acquisition and exposure protocols in mSv, spiral, 0.6-mm slices, 5To PACS. After the two usual processing steps (60 gray values, 5122 and 10242 matrices, dedicated workstations for coronaroscopy and virtual coloscopy, 2D multiplanar reformation, surfacic, 3D volumes with dissection and navigation), a third original data processing step on additional workstations was added. Variable matrix extrapolated images, flexible colored curves (different from anatomical conventions), lighting (sources) and transparencies (unavailable with traditional endoscopy) were used. The digital film is a 16-minute "journey "consisting of 19 endo-body navigations in 5 regions, from the head to the bronchi, from the heart to the coronary arteries, and from the digestive tract to the abdomen and pelvis. One possible application is post-operative verification of an aortic graft. The movie is illustrated here with ten plates. This new approach is cost-effective and beneficial for the patient, in terms of early diagnosis and therapeutic follow-up. Ethical issues are also examined.

  1. Plancton: an opportunistic distributed computing project based on Docker containers

    NASA Astrophysics Data System (ADS)

    Concas, Matteo; Berzano, Dario; Bagnasco, Stefano; Lusso, Stefano; Masera, Massimo; Puccio, Maximiliano; Vallero, Sara

    2017-10-01

    The computing power of most modern commodity computers is far from being fully exploited by standard usage patterns. In this work we describe the development and setup of a virtual computing cluster based on Docker containers used as worker nodes. The facility is based on Plancton: a lightweight fire-and-forget background service. Plancton spawns and controls a local pool of Docker containers on a host with free resources, by constantly monitoring its CPU utilisation. It is designed to release the resources allocated opportunistically, whenever another demanding task is run by the host user, according to configurable policies. This is attained by killing a number of running containers. One of the advantages of a thin virtualization layer such as Linux containers is that they can be started almost instantly upon request. We will show how fast the start-up and disposal of containers eventually enables us to implement an opportunistic cluster based on Plancton daemons without a central control node, where the spawned Docker containers behave as job pilots. Finally, we will show how Plancton was configured to run up to 10 000 concurrent opportunistic jobs on the ALICE High-Level Trigger facility, by giving a considerable advantage in terms of management compared to virtual machines.

  2. Aircraft panel with sensorless active sound power reduction capabilities through virtual mechanical impedances

    NASA Astrophysics Data System (ADS)

    Boulandet, R.; Michau, M.; Micheau, P.; Berry, A.

    2016-01-01

    This paper deals with an active structural acoustic control approach to reduce the transmission of tonal noise in aircraft cabins. The focus is on the practical implementation of the virtual mechanical impedances method by using sensoriactuators instead of conventional control units composed of separate sensors and actuators. The experimental setup includes two sensoriactuators developed from the electrodynamic inertial exciter and distributed over an aircraft trim panel which is subject to a time-harmonic diffuse sound field. The target mechanical impedances are first defined by solving a linear optimization problem from sound power measurements before being applied to the test panel using a complex envelope controller. Measured data are compared to results obtained with sensor-actuator pairs consisting of an accelerometer and an inertial exciter, particularly as regards sound power reduction. It is shown that the two types of control unit provide similar performance, and that here virtual impedance control stands apart from conventional active damping. In particular, it is clear from this study that extra vibrational energy must be provided by the actuators for optimal sound power reduction, mainly due to the high structural damping in the aircraft trim panel. Concluding remarks on the benefits of using these electrodynamic sensoriactuators to control tonal disturbances are also provided.

  3. DJINNI: A Novel Technology Supported Exposure Therapy Paradigm for SAD Combining Virtual Reality and Augmented Reality.

    PubMed

    Ben-Moussa, Maher; Rubo, Marius; Debracque, Coralie; Lange, Wolf-Gero

    2017-01-01

    The present paper explores the benefits and the capabilities of various emerging state-of-the-art interactive 3D and Internet of Things technologies and investigates how these technologies can be exploited to develop a more effective technology supported exposure therapy solution for social anxiety disorder. "DJINNI" is a conceptual design of an in vivo augmented reality (AR) exposure therapy mobile support system that exploits several capturing technologies and integrates the patient's state and situation by vision-based, audio-based, and physiology-based analysis as well as by indoor/outdoor localization techniques. DJINNI also comprises an innovative virtual reality exposure therapy system that is adaptive and customizable to the demands of the in vivo experience and therapeutic progress. DJINNI follows a gamification approach where rewards and achievements are utilized to motivate the patient to progress in her/his treatment. The current paper reviews the state of the art of technologies needed for such a solution and recommends how these technologies could be integrated in the development of an individually tailored and yet feasible and effective AR/virtual reality-based exposure therapy. Finally, the paper outlines how DJINNI could be part of classical cognitive behavioral treatment and how to validate such a setup.

  4. Tele-surgery: a new virtual tool for medical education.

    PubMed

    Russomano, Thais; Cardoso, Ricardo B; Fernandes, Jefferson; Cardoso, Paulizan G; Alves, Jarcedy M; Pianta, Christina D; Souza, Hamilton P; Lopes, Maria Helena I

    2009-01-01

    The rapid evolution of telecommunication technology has enabled advances to be made in low cost video-conferencing through the improvement of high speed computer communication networks and the enhancement of Internet security protocols. As a result of this progress, eHealth education programs are becoming a reality in universities, providing the opportunity for students to have greater interaction at live surgery classes by means of virtual participation. Undergraduate students can be introduced to new concepts of medical care, remote second opinion and to telecommunication systems, whilst virtually experiencing surgical procedures and lectures. The better access this provides to the operating theater environment, the patient and the surgeon can improve the learning process for students. An analogical system was used for this experimental pilot project due to the benefits of it being low cost with a comparatively easy setup. The tele-surgery lectures were also transmitted to other universities by means of a Pentium 4 computer using open source software and connected to a portable image acquisition device located in the São Lucas University Hospital. Telemedicine technology has proven to be an important instrument for the improvement of medical education and health care. This study allowed health professionals, professors and students to have greater interaction during surgical procedures, thus enabling a greater opportunity for knowledge exchange.

  5. DJINNI: A Novel Technology Supported Exposure Therapy Paradigm for SAD Combining Virtual Reality and Augmented Reality

    PubMed Central

    Ben-Moussa, Maher; Rubo, Marius; Debracque, Coralie; Lange, Wolf-Gero

    2017-01-01

    The present paper explores the benefits and the capabilities of various emerging state-of-the-art interactive 3D and Internet of Things technologies and investigates how these technologies can be exploited to develop a more effective technology supported exposure therapy solution for social anxiety disorder. “DJINNI” is a conceptual design of an in vivo augmented reality (AR) exposure therapy mobile support system that exploits several capturing technologies and integrates the patient’s state and situation by vision-based, audio-based, and physiology-based analysis as well as by indoor/outdoor localization techniques. DJINNI also comprises an innovative virtual reality exposure therapy system that is adaptive and customizable to the demands of the in vivo experience and therapeutic progress. DJINNI follows a gamification approach where rewards and achievements are utilized to motivate the patient to progress in her/his treatment. The current paper reviews the state of the art of technologies needed for such a solution and recommends how these technologies could be integrated in the development of an individually tailored and yet feasible and effective AR/virtual reality-based exposure therapy. Finally, the paper outlines how DJINNI could be part of classical cognitive behavioral treatment and how to validate such a setup. PMID:28503155

  6. Evaluation of a low-cost 3D sound system for immersive virtual reality training systems.

    PubMed

    Doerr, Kai-Uwe; Rademacher, Holger; Huesgen, Silke; Kubbat, Wolfgang

    2007-01-01

    Since Head Mounted Displays (HMD), datagloves, tracking systems, and powerful computer graphics resources are nowadays in an affordable price range, the usage of PC-based "Virtual Training Systems" becomes very attractive. However, due to the limited field of view of HMD devices, additional modalities have to be provided to benefit from 3D environments. A 3D sound simulation can improve the capabilities of VR systems dramatically. Unfortunately, realistic 3D sound simulations are expensive and demand a tremendous amount of computational power to calculate reverberation, occlusion, and obstruction effects. To use 3D sound in a PC-based training system as a way to direct and guide trainees to observe specific events in 3D space, a cheaper alternative has to be provided, so that a broader range of applications can take advantage of this modality. To address this issue, we focus in this paper on the evaluation of a low-cost 3D sound simulation that is capable of providing traceable 3D sound events. We describe our experimental system setup using conventional stereo headsets in combination with a tracked HMD device and present our results with regard to precision, speed, and used signal types for localizing simulated sound events in a virtual training environment.

  7. Optical simulations of laser focusing for optimization of laser betatron

    NASA Astrophysics Data System (ADS)

    Stanke, L.; Thakur, A.; Šmíd, M.; Gu, Y. J.; Falk, K.

    2017-05-01

    This work presents optical simulations that are used to design a betatron driven by a short-pulse laser based on the Laser Wakefield Acceleration (LWFA) concept. These simulations explore how the optical setup and its components influence the performance of the betatron. The impact of phase irregularities induced by optical elements is investigated. In order to obtain a good estimate of the future performance of this design a combination of two distinct techniques are used - Field Tracing for optical simulations employing a combination of the Zemax and VirtualLab computational platforms for the laser beam propagation and focusing with the given optical system and particle-in-cell simulation (PIC) for simulating the short-pulse laser interaction with a gas target. The result of the optical simulations serves as an input for the PIC simulations. Application of Field Tracing in combination with the PIC for the purposes of high power laser facility introduces the new application for VirtualLab Fusion. Based on the result of these simulations an alternative design with a hole in the final folding mirror coupled with a spherical focusing mirror is considered in favour of more commonly used off-axis parabola focusing setup. Results are demonstrating, that the decrease of the irradiance due to the presence of the central hole in the folding mirror is negligible (9.69× 1019 W/cm2 for the case without the hole vs. 9.73× 1019 W/cm2 for the case with hole). However, decrease caused by the surface irregularities (surface RMS λ/4 , λ/20 and λ/40 ) is more significant and leads to the poor performance of particle production.

  8. Embedded Multimaterial Extrusion Bioprinting.

    PubMed

    Rocca, Marco; Fragasso, Alessio; Liu, Wanjun; Heinrich, Marcel A; Zhang, Yu Shrike

    2018-04-01

    Embedded extrusion bioprinting allows for the generation of complex structures that otherwise cannot be achieved with conventional layer-by-layer deposition from the bottom, by overcoming the limits imposed by gravitational force. By taking advantage of a hydrogel bath, serving as a sacrificial printing environment, it is feasible to extrude a bioink in freeform until the entire structure is deposited and crosslinked. The bioprinted structure can be subsequently released from the supporting hydrogel and used for further applications. Combining this advanced three-dimensional (3D) bioprinting technique with a multimaterial extrusion printhead setup enables the fabrication of complex volumetric structures built from multiple bioinks. The work described in this paper focuses on the optimization of the experimental setup and proposes a workflow to automate the bioprinting process, resulting in a fast and efficient conversion of a virtual 3D model into a physical, extruded structure in freeform using the multimaterial embedded bioprinting system. It is anticipated that further development of this technology will likely lead to widespread applications in areas such as tissue engineering, pharmaceutical testing, and organs-on-chips.

  9. High-resolution handheld rigid endomicroscope based on full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Benoit a la Guillaume, Emilie; Martins, Franck; Boccara, Claude; Harms, Fabrice

    2016-02-01

    Full-field optical coherence tomography (FF-OCT) is a powerful tool for nondestructive assessment of biological tissue, i.e., for the structural examination of tissue in depth at a cellular resolution. Mostly known as a microscopy device for ex vivo analysis, FF-OCT has also been adapted to endoscopy setups since it shows good potential for in situ cancer diagnosis and biopsy guidance. Nevertheless, all the attempts to perform endoscopic FF-OCT imaging did not go beyond lab setups. We describe here, to the best of our knowledge, the first handheld FF-OCT endoscope based on a tandem interferometry assembly using incoherent illumination. A common-path passive imaging interferometer at the tip of an optical probe makes it robust and insensitive to environmental perturbations, and a low finesse Fabry-Perot processing interferometer guarantees a compact system. A good resolution (2.7 μm transverse and 6 μm axial) is maintained through the long distance, small diameter relay optics of the probe, and a good signal-to-noise ratio is achieved in a limited 100 ms acquisition time. High-resolution images and a movie of a rat brain slice have been recorded by moving the contact endoscope over the surface of the sample, allowing for tissue microscopic exploration at 20 μm under the surface. These promising ex vivo results open new perspectives for in vivo imaging of biological tissue, in particular, in the field of cancer and surgical margin assessment.

  10. Spatiotemporal Visualization of Time-Series Satellite-Derived CO2 Flux Data Using Volume Rendering and Gpu-Based Interpolation on a Cloud-Driven Digital Earth

    NASA Astrophysics Data System (ADS)

    Wu, S.; Yan, Y.; Du, Z.; Zhang, F.; Liu, R.

    2017-10-01

    The ocean carbon cycle has a significant influence on global climate, and is commonly evaluated using time-series satellite-derived CO2 flux data. Location-aware and globe-based visualization is an important technique for analyzing and presenting the evolution of climate change. To achieve realistic simulation of the spatiotemporal dynamics of ocean carbon, a cloud-driven digital earth platform is developed to support the interactive analysis and display of multi-geospatial data, and an original visualization method based on our digital earth is proposed to demonstrate the spatiotemporal variations of carbon sinks and sources using time-series satellite data. Specifically, a volume rendering technique using half-angle slicing and particle system is implemented to dynamically display the released or absorbed CO2 gas. To enable location-aware visualization within the virtual globe, we present a 3D particlemapping algorithm to render particle-slicing textures onto geospace. In addition, a GPU-based interpolation framework using CUDA during real-time rendering is designed to obtain smooth effects in both spatial and temporal dimensions. To demonstrate the capabilities of the proposed method, a series of satellite data is applied to simulate the air-sea carbon cycle in the China Sea. The results show that the suggested strategies provide realistic simulation effects and acceptable interactive performance on the digital earth.

  11. Demonstration of application-driven network slicing and orchestration in optical/packet domains: on-demand vDC expansion for Hadoop MapReduce optimization.

    PubMed

    Kong, Bingxin; Liu, Siqi; Yin, Jie; Li, Shengru; Zhu, Zuqing

    2018-05-28

    Nowadays, it is common for service providers (SPs) to leverage hybrid clouds to improve the quality-of-service (QoS) of their Big Data applications. However, for achieving guaranteed latency and/or bandwidth in its hybrid cloud, an SP might desire to have a virtual datacenter (vDC) network, in which it can manage and manipulate the network connections freely. To address this requirement, we design and implement a network slicing and orchestration (NSO) system that can create and expand vDCs across optical/packet domains on-demand. Considering Hadoop MapReduce (M/R) as the use-case, we describe the proposed architectures of the system's data, control and management planes, and present the operation procedures for creating, expanding, monitoring and managing a vDC for M/R optimization. The proposed NSO system is then realized in a small-scale network testbed that includes four optical/packet domains, and we conduct experiments in it to demonstrate the whole operations of the data, control and management planes. Our experimental results verify that application-driven on-demand vDC expansion across optical/packet domains can be achieved for M/R optimization, and after being provisioned with a vDC, the SP using the NSO system can fully control the vDC network and further optimize the M/R jobs in it with network orchestration.

  12. Local measurements of the diffusion constant in multiple scattering media: Application to human trabecular bone imaging

    NASA Astrophysics Data System (ADS)

    Aubry, Alexandre; Derode, Arnaud; Padilla, Frédéric

    2008-03-01

    We present local measurements of the diffusion constant for ultrasonic waves undergoing multiple scattering. The experimental setup uses a coherent array of programmable transducers. By achieving Gaussian beamforming at emission and reception, an array of virtual sources and receivers located in the near field is constructed. A matrix treatment is proposed to separate the incoherent intensity from the coherent backscattering peak. Local measurements of the diffusion constant D are then achieved. This technique is applied to a real case: a sample of human trabecular bone for which the ultrasonic characterization of multiple scattering is an issue.

  13. Techniques for virtual lung nodule insertion: volumetric and morphometric comparison of projection-based and image-based methods for quantitative CT

    NASA Astrophysics Data System (ADS)

    Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Sedlmair, Martin; Choudhury, Kingshuk Roy; Pezeshk, Aria; Sahiner, Berkman; Samei, Ehsan

    2017-09-01

    Virtual nodule insertion paves the way towards the development of standardized databases of hybrid CT images with known lesions. The purpose of this study was to assess three methods (an established and two newly developed techniques) for inserting virtual lung nodules into CT images. Assessment was done by comparing virtual nodule volume and shape to the CT-derived volume and shape of synthetic nodules. 24 synthetic nodules (three sizes, four morphologies, two repeats) were physically inserted into the lung cavity of an anthropomorphic chest phantom (KYOTO KAGAKU). The phantom was imaged with and without nodules on a commercial CT scanner (SOMATOM Definition Flash, Siemens) using a standard thoracic CT protocol at two dose levels (1.4 and 22 mGy CTDIvol). Raw projection data were saved and reconstructed with filtered back-projection and sinogram affirmed iterative reconstruction (SAFIRE, strength 5) at 0.6 mm slice thickness. Corresponding 3D idealized, virtual nodule models were co-registered with the CT images to determine each nodule’s location and orientation. Virtual nodules were voxelized, partial volume corrected, and inserted into nodule-free CT data (accounting for system imaging physics) using two methods: projection-based Technique A, and image-based Technique B. Also a third Technique C based on cropping a region of interest from the acquired image of the real nodule and blending it into the nodule-free image was tested. Nodule volumes were measured using a commercial segmentation tool (iNtuition, TeraRecon, Inc.) and deformation was assessed using the Hausdorff distance. Nodule volumes and deformations were compared between the idealized, CT-derived and virtual nodules using a linear mixed effects regression model which utilized the mean, standard deviation, and coefficient of variation (Mea{{n}RHD} , ST{{D}RHD} and C{{V}RHD}{) }~ of the regional Hausdorff distance. Overall, there was a close concordance between the volumes of the CT-derived and virtual nodules. Percent differences between them were less than 3% for all insertion techniques and were not statistically significant in most cases. Correlation coefficient values were greater than 0.97. The deformation according to the Hausdorff distance was also similar between the CT-derived and virtual nodules with minimal statistical significance in the (C{{V}RHD} ) for Techniques A, B, and C. This study shows that both projection-based and image-based nodule insertion techniques yield realistic nodule renderings with statistical similarity to the synthetic nodules with respect to nodule volume and deformation. These techniques could be used to create a database of hybrid CT images containing nodules of known size, location and morphology.

  14. Techniques for virtual lung nodule insertion: volumetric and morphometric comparison of projection-based and image-based methods for quantitative CT

    PubMed Central

    Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Sedlmair, Martin; Choudhury, Kingshuk Roy; Pezeshk, Aria; Sahiner, Berkman; Samei, Ehsan

    2017-01-01

    Virtual nodule insertion paves the way towards the development of standardized databases of hybrid CT images with known lesions. The purpose of this study was to assess three methods (an established and two newly developed techniques) for inserting virtual lung nodules into CT images. Assessment was done by comparing virtual nodule volume and shape to the CT-derived volume and shape of synthetic nodules. 24 synthetic nodules (three sizes, four morphologies, two repeats) were physically inserted into the lung cavity of an anthropomorphic chest phantom (KYOTO KAGAKU). The phantom was imaged with and without nodules on a commercial CT scanner (SOMATOM Definition Flash, Siemens) using a standard thoracic CT protocol at two dose levels (1.4 and 22 mGy CTDIvol). Raw projection data were saved and reconstructed with filtered back-projection and sinogram affirmed iterative reconstruction (SAFIRE, strength 5) at 0.6 mm slice thickness. Corresponding 3D idealized, virtual nodule models were co-registered with the CT images to determine each nodule’s location and orientation. Virtual nodules were voxelized, partial volume corrected, and inserted into nodule-free CT data (accounting for system imaging physics) using two methods: projection-based Technique A, and image-based Technique B. Also a third Technique C based on cropping a region of interest from the acquired image of the real nodule and blending it into the nodule-free image was tested. Nodule volumes were measured using a commercial segmentation tool (iNtuition, TeraRecon, Inc.) and deformation was assessed using the Hausdorff distance. Nodule volumes and deformations were compared between the idealized, CT-derived and virtual nodules using a linear mixed effects regression model which utilized the mean, standard deviation, and coefficient of variation (MeanRHD, and STDRHD CVRHD) of the regional Hausdorff distance. Overall, there was a close concordance between the volumes of the CT-derived and virtual nodules. Percent differences between them were less than 3% for all insertion techniques and were not statistically significant in most cases. Correlation coefficient values were greater than 0.97. The deformation according to the Hausdorff distance was also similar between the CT-derived and virtual nodules with minimal statistical significance in the (CVRHD) for Techniques A, B, and C. This study shows that both projection-based and image-based nodule insertion techniques yield realistic nodule renderings with statistical similarity to the synthetic nodules with respect to nodule volume and deformation. These techniques could be used to create a database of hybrid CT images containing nodules of known size, location and morphology. PMID:28786399

  15. X-band EPR setup with THz light excitation of Novosibirsk Free Electron Laser: Goals, means, useful extras

    NASA Astrophysics Data System (ADS)

    Veber, Sergey L.; Tumanov, Sergey V.; Fursova, Elena Yu.; Shevchenko, Oleg A.; Getmanov, Yaroslav V.; Scheglov, Mikhail A.; Kubarev, Vitaly V.; Shevchenko, Daria A.; Gorbachev, Iaroslav I.; Salikova, Tatiana V.; Kulipanov, Gennady N.; Ovcharenko, Victor I.; Fedin, Matvey V.

    2018-03-01

    Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup.

  16. Primary investigations on the potential of a novel diode pumped Er:YAG laser system for middle ear surgery

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Wurm, Holger; Hausladen, Florian

    2016-02-01

    Flashlamp pumped Er:YAG lasers are successfully used clinically for both precise soft and hard tissue ablation. Since several years a novel diode pumped Er:YAG laser system (Pantec Engineering AG) is available, with mean laser power up to 40 W and pulse repetition rate up to 1 kHz. The aim of the study was to investigate the suitability of the laser system specifically for stapedotomy. Firstly an experimental setup was realized with a beam focusing unit and a computer controlled translation stage to move the samples (slices of porcine bone) with a defined velocity while irradiation with various laser parameters. A microphone was positioned in a defined distance to the ablation point and the resulting acoustic signal of the ablation process was recorded. For comparison, measurements were also performed with a flash lamp pumped Er:YAG laser system. After irradiation the resulting ablation quality and efficacy were determined using light microscopy. Using a high speed camera and "Töpler-Schlierentechnik" the cavitation bubble in water after perforation of a bone slice was investigated. The results show efficient bone ablation using the diode pumped Er:YAG laser system. Also a decrease of the sound level and of the cavitation bubble volume was observed with decreasing pulse duration. Higher repetition rates lead to a slightly increase of thermal side effects but have no influence on the ablation efficiency. In conclusion, these first experiments demonstrate the high potential of the diode pumped Er:YAG laser system for use in middle ear surgery.

  17. Virtualization of the Y.E.S. Congress 2009 Roundtable Symposia (Invited)

    NASA Astrophysics Data System (ADS)

    Gonzales, L. M.; Gaines, S. M.

    2009-12-01

    The Y.E.S. Congress 2009 was the first international conference organized by the Y.E.S. Network, an association of early-career geoscientists who represent professional societies, geoscience companies, geoscience departments, and interested policy makers from across the world, in collaboration with the International Year of Planet Earth (IYPE). The conference, hosted by the China University of Geosciences in Beijing, focused on scientific and career challenges faced by early-career geoscientists, with a particular emphasis on how the Y.E.S. Network can work collaboratively and internationally towards solving these challenges and furthering the IYPE motto of “Earth Sciences for Society”. A key features of the Y.E.S. Congress was the implementation of “virtualized” roundtable symposia which engaged senior and early-career geoscientists via presentations, panel discussions, and working group sessions in which strategies related to scientific challenges (i.e. climate change in the polar regions, natural hazards, natural resource sustainability) and academic and career pathway challenges (i.e. academic-industry linkages, gender parity in the geosciences, geoscience education sustainability, and international licensure issues) were developed. These strategies were then tasked to the Y.E.S. Network for further development and implementation. The virtualization of the roundtable symposia facilitated active discussion between those participants and speakers who were physically located at the conference facilities in Beijing with a wider international audience of virtual participants and speakers. This talk will address the key features of the roundtable virtualization, the successes and challenges faced during the pre-conference set-up as well as during the roundtable sessions, and potential future applications.

  18. Freezing effect on bread appearance evaluated by digital imaging

    NASA Astrophysics Data System (ADS)

    Zayas, Inna Y.

    1999-01-01

    In marketing channels, bread is sometimes delivered in a frozen sate for distribution. Changes occur in physical dimensions, crumb grain and appearance of slices. Ten loaves, twelve bread slices per loaf were scanned for digital image analysis and then frozen in a commercial refrigerator. The bread slices were stored for four weeks scanned again, permitted to thaw and scanned a third time. Image features were extracted, to determine shape, size and image texture of the slices. Different thresholds of grey levels were set to detect changes that occurred in crumb, images were binarized at these settings. The number of pixels falling into these gray level settings were determined for each slice. Image texture features of subimages of each slice were calculated to quantify slice crumb grain. The image features of the slice size showed shrinking of bread slices, as a results of freezing and storage, although shape of slices did not change markedly. Visible crumb texture changes occurred and these changes were depicted by changes in image texture features. Image texture features showed that slice crumb changed differently at the center of a slice compared to a peripheral area close to the crust. Image texture and slice features were sufficient for discrimination of slices before and after freezing and after thawing.

  19. DPM — efficient storage in diverse environments

    NASA Astrophysics Data System (ADS)

    Hellmich, Martin; Furano, Fabrizio; Smith, David; Brito da Rocha, Ricardo; Álvarez Ayllón, Alejandro; Manzi, Andrea; Keeble, Oliver; Calvet, Ivan; Regala, Miguel Antonio

    2014-06-01

    Recent developments, including low power devices, cluster file systems and cloud storage, represent an explosion in the possibilities for deploying and managing grid storage. In this paper we present how different technologies can be leveraged to build a storage service with differing cost, power, performance, scalability and reliability profiles, using the popular storage solution Disk Pool Manager (DPM/dmlite) as the enabling technology. The storage manager DPM is designed for these new environments, allowing users to scale up and down as they need it, and optimizing their computing centers energy efficiency and costs. DPM runs on high-performance machines, profiting from multi-core and multi-CPU setups. It supports separating the database from the metadata server, the head node, largely reducing its hard disk requirements. Since version 1.8.6, DPM is released in EPEL and Fedora, simplifying distribution and maintenance, but also supporting the ARM architecture beside i386 and x86_64, allowing it to run the smallest low-power machines such as the Raspberry Pi or the CuBox. This usage is facilitated by the possibility to scale horizontally using a main database and a distributed memcached-powered namespace cache. Additionally, DPM supports a variety of storage pools in the backend, most importantly HDFS, S3-enabled storage, and cluster file systems, allowing users to fit their DPM installation exactly to their needs. In this paper, we investigate the power-efficiency and total cost of ownership of various DPM configurations. We develop metrics to evaluate the expected performance of a setup both in terms of namespace and disk access considering the overall cost including equipment, power consumptions, or data/storage fees. The setups tested range from the lowest scale using Raspberry Pis with only 700MHz single cores and a 100Mbps network connections, over conventional multi-core servers to typical virtual machine instances in cloud settings. We evaluate the combinations of different name server setups, for example load-balanced clusters, with different storage setups, from using a classic local configuration to private and public clouds.

  20. Comparative analysis of international standards for the fatigue testing of posterior spinal fixation systems.

    PubMed

    Villa, Tomaso; La Barbera, Luigi; Galbusera, Fabio

    2014-04-01

    Preclinical evaluation of the long-term reliability of devices for lumbar fixation is a mandatory activity before they are put into market. The experimental setups are described in two different standards edited by the International Organization for Standardization (ISO) and the American Society for Testing Materials (ASTM), but the evaluation of the suitability of such tests to simulate the actual loading with in vivo situations has never been performed. To calculate through finite element (FE) simulations the stress in the rods of the fixator when subjected to ASTM and ISO standards. To compare the calculated stresses arising in the same fixator once it has been virtually mounted in a physiological environment and loaded with physiological forces and moments. FE simulations and validation experimental tests. FE models of the ISO and ASTM setups were created to conduct simulations of the tests prescribed by standards and calculate stresses in the rods. Validation of the simulations were performed through experimental tests; the same fixator was virtually mounted in an L2-L4 FE model of the lumbar spine and stresses in the rods were calculated when the spine was subjected to physiological forces and moments. The comparison between FE simulations and experimental tests showed good agreement between results obtained using the two methodologies, thus confirming the suitability of the FE method to evaluate stresses in the device in different loading situations. The usage of a physiological load with ASTM standard is impossible due to the extreme severity of the ASTM configuration; in this circumstance, the presence of an anterior support is suggested. Also, ISO prescriptions, although the choice of the setup correctly simulates the mechanical contribution of the discs, seem to overstress the device as compared with a physiological loading condition. Some daily activities, other than walking, can induce a further state of stress in the device that should be taken into account in setting up new experimental procedures. ISO standard loading prescriptions seems to be more severe than the expected physiological ones. The ASTM standard should be completed by including some anterior supporting device and declaring the value of the load to be imposed. Moreover, a further enhancement of standards would be simulating other movements representative of daily activities different from walking. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Volumetric three-dimensional intravascular ultrasound visualization using shape-based nonlinear interpolation

    PubMed Central

    2013-01-01

    Background Intravascular ultrasound (IVUS) is a standard imaging modality for identification of plaque formation in the coronary and peripheral arteries. Volumetric three-dimensional (3D) IVUS visualization provides a powerful tool to overcome the limited comprehensive information of 2D IVUS in terms of complex spatial distribution of arterial morphology and acoustic backscatter information. Conventional 3D IVUS techniques provide sub-optimal visualization of arterial morphology or lack acoustic information concerning arterial structure due in part to low quality of image data and the use of pixel-based IVUS image reconstruction algorithms. In the present study, we describe a novel volumetric 3D IVUS reconstruction algorithm to utilize IVUS signal data and a shape-based nonlinear interpolation. Methods We developed an algorithm to convert a series of IVUS signal data into a fully volumetric 3D visualization. Intermediary slices between original 2D IVUS slices were generated utilizing the natural cubic spline interpolation to consider the nonlinearity of both vascular structure geometry and acoustic backscatter in the arterial wall. We evaluated differences in image quality between the conventional pixel-based interpolation and the shape-based nonlinear interpolation methods using both virtual vascular phantom data and in vivo IVUS data of a porcine femoral artery. Volumetric 3D IVUS images of the arterial segment reconstructed using the two interpolation methods were compared. Results In vitro validation and in vivo comparative studies with the conventional pixel-based interpolation method demonstrated more robustness of the shape-based nonlinear interpolation algorithm in determining intermediary 2D IVUS slices. Our shape-based nonlinear interpolation demonstrated improved volumetric 3D visualization of the in vivo arterial structure and more realistic acoustic backscatter distribution compared to the conventional pixel-based interpolation method. Conclusions This novel 3D IVUS visualization strategy has the potential to improve ultrasound imaging of vascular structure information, particularly atheroma determination. Improved volumetric 3D visualization with accurate acoustic backscatter information can help with ultrasound molecular imaging of atheroma component distribution. PMID:23651569

  2. Robust reflective pupil slicing technology

    NASA Astrophysics Data System (ADS)

    Meade, Jeffrey T.; Behr, Bradford B.; Cenko, Andrew T.; Hajian, Arsen R.

    2014-07-01

    Tornado Spectral Systems (TSS) has developed the High Throughput Virtual Slit (HTVSTM), robust all-reflective pupil slicing technology capable of replacing the slit in research-, commercial- and MIL-SPEC-grade spectrometer systems. In the simplest configuration, the HTVS allows optical designers to remove the lossy slit from pointsource spectrometers and widen the input slit of long-slit spectrometers, greatly increasing throughput without loss of spectral resolution or cross-dispersion information. The HTVS works by transferring etendue between image plane axes but operating in the pupil domain rather than at a focal plane. While useful for other technologies, this is especially relevant for spectroscopic applications by performing the same spectral narrowing as a slit without throwing away light on the slit aperture. HTVS can be implemented in all-reflective designs and only requires a small number of reflections for significant spectral resolution enhancement-HTVS systems can be efficiently implemented in most wavelength regions. The etendueshifting operation also provides smooth scaling with input spot/image size without requiring reconfiguration for different targets (such as different seeing disk diameters or different fiber core sizes). Like most slicing technologies, HTVS provides throughput increases of several times without resolution loss over equivalent slitbased designs. HTVS technology enables robust slit replacement in point-source spectrometer systems. By virtue of pupilspace operation this technology has several advantages over comparable image-space slicer technology, including the ability to adapt gracefully and linearly to changing source size and better vertical packing of the flux distribution. Additionally, this technology can be implemented with large slicing factors in both fast and slow beams and can easily scale from large, room-sized spectrometers through to small, telescope-mounted devices. Finally, this same technology is directly applicable to multi-fiber spectrometers to achieve similar enhancement. HTVS also provides the ability to anamorphically "stretch" the slit image in long-slit spectrometers, allowing the instrument designer to optimize the plate scale in the dispersion axis and cross-dispersion axes independently without sacrificing spatial information. This allows users to widen the input slit, with the associated gain of throughput and loss of spatial selectivity, while maintaining the spectral resolution of the spectrometer system. This "stretching" places increased requirements on detector focal plane height, as with image slicing techniques, but provides additional degrees of freedom to instrument designers to build the best possible spectrometer systems. We discuss the details of this technology for an astronomical context, covering the applicability from small telescope mounted spectrometers through long-slit imagers and radial-velocity engines. This powerful tool provides additional degrees of freedom when designing a spectrometer, enabling instrument designers to further optimize systems for the required scientific goals.

  3. Virtual Cultural Landscape Laboratory Based on Internet GIS Technology

    NASA Astrophysics Data System (ADS)

    Bill, R.

    2012-07-01

    In recent years the transfer of old documents (books, paintings, maps etc.) from analogue to digital form has gained enormous importance. Numerous interventions are concentrated in the digitalisation of library collections, but also commercial companies like Microsoft or Google try to convert large analogue stocks such as books, paintings, etc. in digital form. Data in digital form can be much easier made accessible to a large user community, especially to the interested scientific community. The aim of the described research project is to set up a virtual research environment for interdisciplinary research focusing on the landscape of the historical Mecklenburg in the north-east of Germany. Georeferenced old maps from 1786 and 1890 covering complete Mecklenburg should be combined with current geo-information, satellite and aerial imagery to support spatio-temporal research aspects in different scales in space (regional 1:200,000 to local 1:25.000) and time (nearly 250 years in three time steps, the last 30 years also in three time slices). The Virtual Laboratory for Cultural Landscape Research (VKLandLab) is designed and developed by the Chair of Geodesy and Geoinformatics, hosted at the Computing Centre (ITMZ) and linked to the Digital Library (UB) at Rostock University. VKLandLab includes new developments such as wikis, blogs, data tagging, etc. and proven components already integrated in various data-related infrastructures such as InternetGIS, data repositories and authentication structures. The focus is to build a data-related infrastructure and a work platform that supports students as well as researchers from different disciplines in their research in space and time.

  4. Computing and Visualizing Reachable Volumes for Maneuvering Satellites

    NASA Astrophysics Data System (ADS)

    Jiang, M.; de Vries, W.; Pertica, A.; Olivier, S.

    2011-09-01

    Detecting and predicting maneuvering satellites is an important problem for Space Situational Awareness. The spatial envelope of all possible locations within reach of such a maneuvering satellite is known as the Reachable Volume (RV). As soon as custody of a satellite is lost, calculating the RV and its subsequent time evolution is a critical component in the rapid recovery of the satellite. In this paper, we present a Monte Carlo approach to computing the RV for a given object. Essentially, our approach samples all possible trajectories by randomizing thrust-vectors, thrust magnitudes and time of burn. At any given instance, the distribution of the "point-cloud" of the virtual particles defines the RV. For short orbital time-scales, the temporal evolution of the point-cloud can result in complex, multi-reentrant manifolds. Visualization plays an important role in gaining insight and understanding into this complex and evolving manifold. In the second part of this paper, we focus on how to effectively visualize the large number of virtual trajectories and the computed RV. We present a real-time out-of-core rendering technique for visualizing the large number of virtual trajectories. We also examine different techniques for visualizing the computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. We compare and contrast these techniques in terms of computational cost and visualization effectiveness, and describe the main implementation issues encountered during our development process. Finally, we will present some of the results from our end-to-end system for computing and visualizing RVs using examples of maneuvering satellites.

  5. Preoperative magnetic resonance and intraoperative ultrasound fusion imaging for real-time neuronavigation in brain tumor surgery.

    PubMed

    Prada, F; Del Bene, M; Mattei, L; Lodigiani, L; DeBeni, S; Kolev, V; Vetrano, I; Solbiati, L; Sakas, G; DiMeco, F

    2015-04-01

    Brain shift and tissue deformation during surgery for intracranial lesions are the main actual limitations of neuro-navigation (NN), which currently relies mainly on preoperative imaging. Ultrasound (US), being a real-time imaging modality, is becoming progressively more widespread during neurosurgical procedures, but most neurosurgeons, trained on axial computed tomography (CT) and magnetic resonance imaging (MRI) slices, lack specific US training and have difficulties recognizing anatomic structures with the same confidence as in preoperative imaging. Therefore real-time intraoperative fusion imaging (FI) between preoperative imaging and intraoperative ultrasound (ioUS) for virtual navigation (VN) is highly desirable. We describe our procedure for real-time navigation during surgery for different cerebral lesions. We performed fusion imaging with virtual navigation for patients undergoing surgery for brain lesion removal using an ultrasound-based real-time neuro-navigation system that fuses intraoperative cerebral ultrasound with preoperative MRI and simultaneously displays an MRI slice coplanar to an ioUS image. 58 patients underwent surgery at our institution for intracranial lesion removal with image guidance using a US system equipped with fusion imaging for neuro-navigation. In all cases the initial (external) registration error obtained by the corresponding anatomical landmark procedure was below 2 mm and the craniotomy was correctly placed. The transdural window gave satisfactory US image quality and the lesion was always detectable and measurable on both axes. Brain shift/deformation correction has been successfully employed in 42 cases to restore the co-registration during surgery. The accuracy of ioUS/MRI fusion/overlapping was confirmed intraoperatively under direct visualization of anatomic landmarks and the error was < 3 mm in all cases (100 %). Neuro-navigation using intraoperative US integrated with preoperative MRI is reliable, accurate and user-friendly. Moreover, the adjustments are very helpful in correcting brain shift and tissue distortion. This integrated system allows true real-time feedback during surgery and is less expensive and time-consuming than other intraoperative imaging techniques, offering high precision and orientation. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Computational techniques to enable visualizing shapes of objects of extra spatial dimensions

    NASA Astrophysics Data System (ADS)

    Black, Don Vaughn, II

    Envisioning extra dimensions beyond the three of common experience is a daunting challenge for three dimensional observers. Intuition relies on experience gained in a three dimensional environment. Gaining experience with virtual four dimensional objects and virtual three manifolds in four-space on a personal computer may provide the basis for an intuitive grasp of four dimensions. In order to enable such a capability for ourselves, it is first necessary to devise and implement a computationally tractable method to visualize, explore, and manipulate objects of dimension beyond three on the personal computer. A technology is described in this dissertation to convert a representation of higher dimensional models into a format that may be displayed in realtime on graphics cards available on many off-the-shelf personal computers. As a result, an opportunity has been created to experience the shape of four dimensional objects on the desktop computer. The ultimate goal has been to provide the user a tangible and memorable experience with mathematical models of four dimensional objects such that the user can see the model from any user selected vantage point. By use of a 4D GUI, an arbitrary convex hull or 3D silhouette of the 4D model can be rotated, panned, scrolled, and zoomed until a suitable dimensionally reduced view or Aspect is obtained. The 4D GUI then allows the user to manipulate a 3-flat hyperplane cutting tool to slice the model at an arbitrary orientation and position to extract or "pluck" an embedded 3D slice or "aspect" from the embedding four-space. This plucked 3D aspect can be viewed from all angles via a conventional 3D viewer using three multiple POV viewports, and optionally exported to a third party CAD viewer for further manipulation. Plucking and Manipulating the Aspect provides a tangible experience for the end-user in the same manner as any 3D Computer Aided Design viewing and manipulation tool does for the engineer or a 3D video game provides for the nascent student.

  7. Current economic and sensitivity analysis for ID slicing of 4 inch and 6 inch diameter silicon ingots for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Roberts, E. G.; Johnson, C. M.

    1982-01-01

    The economics and sensitivities of slicing large diameter silicon ingots for photovoltaic applications were examined. Current economics and slicing add on cost sensitivities are calculated using variable parameters for blade life, slicing yield, and slice cutting speed. It is indicated that cutting speed has the biggest impact on slicing add on cost, followed by slicing yield, and by blade life as the blade life increases.

  8. An Efficient Implementation of the Nwat-MMGBSA Method to Rescore Docking Results in Medium-Throughput Virtual Screenings

    NASA Astrophysics Data System (ADS)

    Maffucci, Irene; Hu, Xiao; Fumagalli, Valentina; Contini, Alessandro

    2018-03-01

    Nwat-MMGBSA is a variant of MM-PB/GBSA based on the inclusion of a number of explicit water molecules that are the closest to the ligand in each frame of a molecular dynamics trajectory. This method demonstrated improved correlations between calculated and experimental binding energies in both protein-protein interactions and ligand-receptor complexes, in comparison to the standard MM-GBSA. A protocol optimization, aimed to maximize efficacy and efficiency, is discussed here considering penicillopepsin, HIV1-protease, and BCL-XL as test cases. Calculations were performed in triplicates on both classic HPC environments and on standard workstations equipped by a GPU card, evidencing no statistical differences in the results. No relevant differences in correlation to experiments were also observed when performing Nwat-MMGBSA calculations on 4 ns or 1 ns long trajectories. A fully automatic workflow for structure-based virtual screening, performing from library set-up to docking and Nwat-MMGBSA rescoring, has then been developed. The protocol has been tested against no rescoring or standard MM-GBSA rescoring within a retrospective virtual screening of inhibitors of AmpC β-lactamase and of the Rac1-Tiam1 protein-protein interaction. In both cases, Nwat-MMGBSA rescoring provided a statistically significant increase in the ROC AUCs of between 20% and 30%, compared to docking scoring or to standard MM-GBSA rescoring.

  9. Exclusive photorelease of signalling lipids at the plasma membrane.

    PubMed

    Nadler, André; Yushchenko, Dmytro A; Müller, Rainer; Stein, Frank; Feng, Suihan; Mulle, Christophe; Carta, Mario; Schultz, Carsten

    2015-12-21

    Photoactivation of caged biomolecules has become a powerful approach to study cellular signalling events. Here we report a method for anchoring and uncaging biomolecules exclusively at the outer leaflet of the plasma membrane by employing a photocleavable, sulfonated coumarin derivative. The novel caging group allows quantifying the reaction progress and efficiency of uncaging reactions in a live-cell microscopy setup, thereby greatly improving the control of uncaging experiments. We synthesized arachidonic acid derivatives bearing the new negatively charged or a neutral, membrane-permeant coumarin caging group to locally induce signalling either at the plasma membrane or on internal membranes in β-cells and brain slices derived from C57B1/6 mice. Uncaging at the plasma membrane triggers a strong enhancement of calcium oscillations in β-cells and a pronounced potentiation of synaptic transmission while uncaging inside cells blocks calcium oscillations in β-cells and causes a more transient effect on neuronal transmission, respectively. The precise subcellular site of arachidonic acid release is therefore crucial for signalling outcome in two independent systems.

  10. A Test of Macromolecular Crystallization in Microgravity: Large, Well-Ordered Insulin Crystals

    NASA Technical Reports Server (NTRS)

    Borgstahl, Gloria E. O.; Vahedi-Faridi, Ardeschir; Lovelace, Jeff; Bellamy, Henry D.; Snell, Edward H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Crystals of insulin grown in microgravity on space shuttle mission STS-95 were extremely well-ordered and unusually large (many > 2 mm). The physical characteristics of six microgravity and six earth-grown crystals were examined by X-ray analysis employing superfine f slicing and unfocused synchrotron radiation. This experimental setup allowed hundreds of reflections to be precisely examined for each crystal in a short period of time. The microgravity crystals were on average 34 times larger, had 7 times lower mosaicity, had 54 times higher reflection peak heights and diffracted to significantly higher resolution than their earth grown counterparts. A single mosaic domain model could account for reflections in microgravity crystals whereas reflections from earth crystals required a model with multiple mosaic domains. This statistically significant and unbiased characterization indicates that the microgravity environment was useful for the improvement of crystal growth and resultant diffraction quality in insulin crystals and may be similarly useful for macromolecular crystals in general.

  11. Part I: Virtual laboratory versus traditional laboratory: Which is more effective for teaching electrochemistry? Part II: The green synthesis of aurones using a deep eutectic solvent

    NASA Astrophysics Data System (ADS)

    Hawkins, Ian C.

    The role of the teaching laboratory in science education has been debated over the last century. The goals and purposes of the laboratory are still debated and while most science educators consider laboratory a vital part of the education process, they differ widely on the purposes for laboratory and what methods should be used to teach laboratory. One method of instruction, virtual labs, has become popular among some as a possible way of capitalizing on the benefits of lab in a less costly and more time flexible format. The research regarding the use of virtual labs is limited and the few studies that have been done on General Chemistry labs do not use the virtual labs as a substitute for hands-on experiences, but rather as a supplement to a traditional laboratory program. This research seeks to determine the possible viability of a virtual simulation to replace a traditional hands-on electrochemistry lab in the General Chemistry II course sequence. The data indicate that for both content knowledge and the development of hands-on skills the virtual lab showed no significant difference in overall scores on the assessments, but that an individual item related to the physical set-up of a battery showed better scores for the hands-on labs over the virtual labs. Further research should be done to determine if these results are similar in other settings with the use of different virtual labs and how the virtual labs compare to other laboratories using different learning styles and learning goals. One often cited purpose of laboratory experiences in the context of preparing chemists is to simulate the experiences common in chemical research so graduate experience in a research laboratory was a necessary part of my education in the field of laboratory instruction. This research experience provided me the opportunity, to complete an organic synthesis of aurones using a deep eutectic solvent. These solvents show unique properties that make them a viable alternative to ionic liquids. Aurones are a unique biological product in many plants and preliminary research has shown that these chemicals could be viable drug candidates. The use of the deep eutectic solvent provides a green and inexpensive way to make large numbers of different aurones quickly. In this dissertation, we show the synthesis of 12 different aurones using this method.

  12. Import and visualization of clinical medical imagery into multiuser VR environments

    NASA Astrophysics Data System (ADS)

    Mehrle, Andreas H.; Freysinger, Wolfgang; Kikinis, Ron; Gunkel, Andreas; Kral, Florian

    2005-03-01

    The graphical representation of three-dimensional data obtained from tomographic imaging has been the central problem since this technology is available. Neither the representation as a set of two-dimensional slices nor the 2D projection of three-dimensional models yields satisfactory results. In this paper a way is outlined which permits the investigation of volumetric clinical data obtained from standard CT, MR, PET, SPECT or experimental very high resolution CT-scanners in a three dimensional environment within a few worksteps. Volumetric datasets are converted into surface data (segmentation process) using the 3D-Slicer software tool and saved as .vtk files and exported as a collection of primitives in any common file format (.iv, .pfb). Subsequently this files can be displayed and manipulated in the CAVE virtual reality center. The CAVE is a multiuser walkable virtual room consisting of several walls on which stereoscopic images are projected by rear panel beamers. Adequate tracking of the head position and separate image calculation for each eye yields a vivid impression for one or several users. With the use of a seperately tracked 6D joystick manipulations such as rotation, translation, zooming, decomposition or highlighting can be done intuitively. The usage of the CAVE technology opens new possibilities especially in surgical training ("hands-on-effect") and as an educational tool (availability of pathological data). Unlike concurring technologies the CAVE permits a walk-through into the virtual scene but preserves enough physical perception to allow interaction between multiple users, e.g. gestures and movements. By training in a virtual environment on one hand the learning process of students in complex anatomic findings may be improved considerably and on the other hand unaccustomed views such as the one through a microscope or endoscope can be trained in advance. The availability of low-cost PC based CAVE-like systems and the rapidly decreasing price of high-performance video beamers makes the CAVE an affordable alternative to conventional surgical training techniques and without limitations in handling cadavers.

  13. Efficient patient modeling for visuo-haptic VR simulation using a generic patient atlas.

    PubMed

    Mastmeyer, Andre; Fortmeier, Dirk; Handels, Heinz

    2016-08-01

    This work presents a new time-saving virtual patient modeling system by way of example for an existing visuo-haptic training and planning virtual reality (VR) system for percutaneous transhepatic cholangio-drainage (PTCD). Our modeling process is based on a generic patient atlas to start with. It is defined by organ-specific optimized models, method modules and parameters, i.e. mainly individual segmentation masks, transfer functions to fill the gaps between the masks and intensity image data. In this contribution, we show how generic patient atlases can be generalized to new patient data. The methodology consists of patient-specific, locally-adaptive transfer functions and dedicated modeling methods such as multi-atlas segmentation, vessel filtering and spline-modeling. Our full image volume segmentation algorithm yields median DICE coefficients of 0.98, 0.93, 0.82, 0.74, 0.51 and 0.48 regarding soft-tissue, liver, bone, skin, blood and bile vessels for ten test patients and three selected reference patients. Compared to standard slice-wise manual contouring time saving is remarkable. Our segmentation process shows out efficiency and robustness for upper abdominal puncture simulation systems. This marks a significant step toward establishing patient-specific training and hands-on planning systems in a clinical environment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Stepping Into Science Data: Data Visualization in Virtual Reality

    NASA Astrophysics Data System (ADS)

    Skolnik, S.

    2017-12-01

    Have you ever seen people get really excited about science data? Navteca, along with the Earth Science Technology Office (ESTO), within the Earth Science Division of NASA's Science Mission Directorate have been exploring virtual reality (VR) technology for the next generation of Earth science technology information systems. One of their first joint experiments was visualizing climate data from the Goddard Earth Observing System Model (GEOS) in VR, and the resulting visualizations greatly excited the scientific community. This presentation will share the value of VR for science, such as the capability of permitting the observer to interact with data rendered in real-time, make selections, and view volumetric data in an innovative way. Using interactive VR hardware (headset and controllers), the viewer steps into the data visualizations, physically moving through three-dimensional structures that are traditionally displayed as layers or slices, such as cloud and storm systems from NASA's Global Precipitation Measurement (GPM). Results from displaying this precipitation and cloud data show that there is interesting potential for scientific visualization, 3D/4D visualizations, and inter-disciplinary studies using VR. Additionally, VR visualizations can be leveraged as 360 content for scientific communication and outreach and VR can be used as a tool to engage policy and decision makers, as well as the public.

  15. Colorectal cancer screening with virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Ge, Yaorong; Vining, David J.; Ahn, David K.; Stelts, David R.

    1999-05-01

    Early detection and removal of colorectal polyps have been proven to reduce mortality from colorectal carcinoma (CRC), the second leading cause of cancer deaths in the United States. Unfortunately, traditional techniques for CRC examination (i.e., barium enema, sigmoidoscopy, and colonoscopy) are unsuitable for mass screening because of either low accuracy or poor public acceptance, costs, and risks. Virtual colonoscopy (VC) is a minimally invasive alternative that is based on tomographic scanning of the colon. After a patient's bowel is optimally cleansed and distended with gas, a fast tomographic scan, typically helical computed tomography (CT), of the abdomen is performed during a single breath-hold acquisition. Two-dimensional (2D) slices and three-dimensional (3D) rendered views of the colon lumen generated from the tomographic data are then examined for colorectal polyps. Recent clinical studies conducted at several institutions including ours have shown great potential for this technology to be an effective CRC screening tool. In this paper, we describe new methods to improve bowel preparation, colon lumen visualization, colon segmentation, and polyp detection. Our initial results show that VC with the new bowel preparation and imaging protocol is capable of achieving accuracy comparable to conventional colonoscopy and our new algorithms for image analysis contribute to increased accuracy and efficiency in VC examinations.

  16. Early experiences of planning stereotactic radiosurgery using 3D printed models of eyes with uveal melanomas

    PubMed Central

    Furdová, Alena; Sramka, Miron; Thurzo, Andrej; Furdová, Adriana

    2017-01-01

    Objective The objective of this study was to determine the use of 3D printed model of an eye with intraocular tumor for linear accelerator-based stereotactic radiosurgery. Methods The software for segmentation (3D Slicer) created virtual 3D model of eye globe with tumorous mass based on tissue density from computed tomography and magnetic resonance imaging data. A virtual model was then processed in the slicing software (Simplify3D®) and printed on 3D printer using fused deposition modeling technology. The material that was used for printing was polylactic acid. Results In 2015, stereotactic planning scheme was optimized with the help of 3D printed model of the patient’s eye with intraocular tumor. In the period 2001–2015, a group of 150 patients with uveal melanoma (139 choroidal melanoma and 11 ciliary body melanoma) were treated. The median tumor volume was 0.5 cm3 (0.2–1.6 cm3). The radiation dose was 35.0 Gy by 99% of dose volume histogram. Conclusion The 3D printed model of eye with tumor was helpful in planning the process to achieve the optimal scheme for irradiation which requires high accuracy of defining the targeted tumor mass and critical structures. PMID:28203052

  17. High-contrast X-ray micro-radiography and micro-CT of ex-vivo soft tissue murine organs utilizing ethanol fixation and large area photon-counting detector

    PubMed Central

    Dudak, Jan; Zemlicka, Jan; Karch, Jakub; Patzelt, Matej; Mrzilkova, Jana; Zach, Petr; Hermanova, Zuzana; Kvacek, Jiri; Krejci, Frantisek

    2016-01-01

    Using dedicated contrast agents high-quality X-ray imaging of soft tissue structures with isotropic micrometre resolution has become feasible. This technique is frequently titled as virtual histology as it allows production of slices of tissue without destroying the sample. The use of contrast agents is, however, often an irreversible time-consuming procedure and despite the non-destructive principle of X-ray imaging, the sample is usually no longer usable for other research methods. In this work we present the application of recently developed large-area photon counting detector for high resolution X-ray micro-radiography and micro-tomography of whole ex-vivo ethanol-preserved mouse organs. The photon counting detectors provide dark-current-free quantum-counting operation enabling acquisition of data with virtually unlimited contrast-to-noise ratio (CNR). Thanks to the very high CNR even ethanol-only preserved soft-tissue samples without addition of any contrast agent can be visualized in great detail. As ethanol preservation is one of the standard steps of tissue fixation for histology, the presented method can open a way for widespread use of micro-CT with all its advantages for routine 3D non-destructive soft-tissue visualisation. PMID:27461900

  18. Immersive volume rendering of blood vessels

    NASA Astrophysics Data System (ADS)

    Long, Gregory; Kim, Han Suk; Marsden, Alison; Bazilevs, Yuri; Schulze, Jürgen P.

    2012-03-01

    In this paper, we present a novel method of visualizing flow in blood vessels. Our approach reads unstructured tetrahedral data, resamples it, and uses slice based 3D texture volume rendering. Due to the sparse structure of blood vessels, we utilize an octree to efficiently store the resampled data by discarding empty regions of the volume. We use animation to convey time series data, wireframe surface to give structure, and utilize the StarCAVE, a 3D virtual reality environment, to add a fully immersive element to the visualization. Our tool has great value in interdisciplinary work, helping scientists collaborate with clinicians, by improving the understanding of blood flow simulations. Full immersion in the flow field allows for a more intuitive understanding of the flow phenomena, and can be a great help to medical experts for treatment planning.

  19. A shape-based statistical method to retrieve 2D TRUS-MR slice correspondence for prostate biopsy

    NASA Astrophysics Data System (ADS)

    Mitra, Jhimli; Srikantha, Abhilash; Sidibé, Désiré; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Ghose, Soumya; Vilanova, Joan C.; Comet, Josep; Meriaudeau, Fabrice

    2012-02-01

    This paper presents a method based on shape-context and statistical measures to match interventional 2D Trans Rectal Ultrasound (TRUS) slice during prostate biopsy to a 2D Magnetic Resonance (MR) slice of a pre-acquired prostate volume. Accurate biopsy tissue sampling requires translation of the MR slice information on the TRUS guided biopsy slice. However, this translation or fusion requires the knowledge of the spatial position of the TRUS slice and this is only possible with the use of an electro-magnetic (EM) tracker attached to the TRUS probe. Since, the use of EM tracker is not common in clinical practice and 3D TRUS is not used during biopsy, we propose to perform an analysis based on shape and information theory to reach close enough to the actual MR slice as validated by experts. The Bhattacharyya distance is used to find point correspondences between shape-context representations of the prostate contours. Thereafter, Chi-square distance is used to find out those MR slices where the prostates closely match with that of the TRUS slice. Normalized Mutual Information (NMI) values of the TRUS slice with each of the axial MR slices are computed after rigid alignment and consecutively a strategic elimination based on a set of rules between the Chi-square distances and the NMI leads to the required MR slice. We validated our method for TRUS axial slices of 15 patients, of which 11 results matched at least one experts validation and the remaining 4 are at most one slice away from the expert validations.

  20. Quantifying attention shifts in augmented reality image-guided neurosurgery

    PubMed Central

    Drouin, Simon; Collins, D. Louis; Popa, Tiberiu; Kersten-Oertel, Marta

    2017-01-01

    Image-guided surgery (IGS) has allowed for more minimally invasive procedures, leading to better patient outcomes, reduced risk of infection, less pain, shorter hospital stays and faster recoveries. One drawback that has emerged with IGS is that the surgeon must shift their attention from the patient to the monitor for guidance. Yet both cognitive and motor tasks are negatively affected with attention shifts. Augmented reality (AR), which merges the realworld surgical scene with preoperative virtual patient images and plans, has been proposed as a solution to this drawback. In this work, we studied the impact of two different types of AR IGS set-ups (mobile AR and desktop AR) and traditional navigation on attention shifts for the specific task of craniotomy planning. We found a significant difference in terms of the time taken to perform the task and attention shifts between traditional navigation, but no significant difference between the different AR set-ups. With mobile AR, however, users felt that the system was easier to use and that their performance was better. These results suggest that regardless of where the AR visualisation is shown to the surgeon, AR may reduce attention shifts, leading to more streamlined and focused procedures. PMID:29184663

  1. Simulator with integrated HW and SW for prediction of thermal comfort to provide feedback to the climate control system

    NASA Astrophysics Data System (ADS)

    Pokorný, Jan; Kopečková, Barbora; Fišer, Jan; JÍcha, Miroslav

    2018-06-01

    The aim of the paper is to assemble a simulator for evaluation of thermal comfort in car cabins in order to give a feedback to the HVAC (heating, ventilation and air conditioning) system. The HW (hardware) part of simulator is formed by thermal manikin Newton and RH (relative humidity), velocity and temperature probes. The SW (software) part consists of the Thermal Comfort Analyser (using ISO 14505-2) and Virtual Testing Stand of Car Cabin defining the heat loads of car cabin. Simulator can provide recommendation for the climate control how to improve thermal comfort in cabin by distribution and directing of air flow, and also by amount of ventilation power to keep optimal temperature inside a cabin. The methods of evaluation of thermal comfort were verified by tests with 10 test subjects for summer (summer clothing, ambient air temperature 30 °C, HVAC setup: +24 °C auto) and winter conditions (winter clothing, ambient air temperature -5 °C, HVAC setup: +18 °C auto). The tests confirmed the validity of the thermal comfort evaluation using the thermal manikin and ISO 14505-2.

  2. Quantifying attention shifts in augmented reality image-guided neurosurgery.

    PubMed

    Léger, Étienne; Drouin, Simon; Collins, D Louis; Popa, Tiberiu; Kersten-Oertel, Marta

    2017-10-01

    Image-guided surgery (IGS) has allowed for more minimally invasive procedures, leading to better patient outcomes, reduced risk of infection, less pain, shorter hospital stays and faster recoveries. One drawback that has emerged with IGS is that the surgeon must shift their attention from the patient to the monitor for guidance. Yet both cognitive and motor tasks are negatively affected with attention shifts. Augmented reality (AR), which merges the realworld surgical scene with preoperative virtual patient images and plans, has been proposed as a solution to this drawback. In this work, we studied the impact of two different types of AR IGS set-ups (mobile AR and desktop AR) and traditional navigation on attention shifts for the specific task of craniotomy planning. We found a significant difference in terms of the time taken to perform the task and attention shifts between traditional navigation, but no significant difference between the different AR set-ups. With mobile AR, however, users felt that the system was easier to use and that their performance was better. These results suggest that regardless of where the AR visualisation is shown to the surgeon, AR may reduce attention shifts, leading to more streamlined and focused procedures.

  3. Millikan's Oil-Drop Experiment: A Centennial Setup Revisited in Virtual World

    NASA Astrophysics Data System (ADS)

    Gagnon, Michel

    2012-02-01

    Early in the last century, Robert Millikan developed a precise method of determining the electric charge carried by oil droplets.1-3 Using a microscope and a small incandescent lamp, he observed the fall of charged droplets under the influence of an electric field inside a small observation chamber. In so doing, Millikan demonstrated the existence of a fundamental unit of electric charge, and established its quantization. Now renowned as one of the most famous experiments of 20th-century physics, Millikan's oil-drop experiment has been reproduced with more or less success in most, if not all, high school and university physics classes. This has encouraged many improvements of the apparatus, now making this experiment much more accurate and easier to realize for advanced students. However, the required apparatus remains rather expensive, and for introductory college or high school students the experiment is still quite difficult to conduct. As an alternative to the traditional setup, a realistic computer-based simulator to replicate the Millikan oil-drop experiment has been developed. Using this software, students are able to undertake a complete experiment, obtain an accurate set of results, and thus gain a better understanding of the original experiment and its historical importance.

  4. Slice regular functions of several Clifford variables

    NASA Astrophysics Data System (ADS)

    Ghiloni, R.; Perotti, A.

    2012-11-01

    We introduce a class of slice regular functions of several Clifford variables. Our approach to the definition of slice functions is based on the concept of stem functions of several variables and on the introduction on real Clifford algebras of a family of commuting complex structures. The class of slice regular functions include, in particular, the family of (ordered) polynomials in several Clifford variables. We prove some basic properties of slice and slice regular functions and give examples to illustrate this function theory. In particular, we give integral representation formulas for slice regular functions and a Hartogs type extension result.

  5. Modular electronics packaging system

    NASA Technical Reports Server (NTRS)

    Hunter, Don J. (Inventor)

    2001-01-01

    A modular electronics packaging system includes multiple packaging slices that are mounted horizontally to a base structure. The slices interlock to provide added structural support. Each packaging slice includes a rigid and thermally conductive housing having four side walls that together form a cavity to house an electronic circuit. The chamber is enclosed on one end by an end wall, or web, that isolates the electronic circuit from a circuit in an adjacent packaging slice. The web also provides a thermal path between the electronic circuit and the base structure. Each slice also includes a mounting bracket that connects the packaging slice to the base structure. Four guide pins protrude from the slice into four corresponding receptacles in an adjacent slice. A locking element, such as a set screw, protrudes into each receptacle and interlocks with the corresponding guide pin. A conduit is formed in the slice to allow electrical connection to the electronic circuit.

  6. Visual capture and the experience of having two bodies – Evidence from two different virtual reality techniques

    PubMed Central

    Heydrich, Lukas; Dodds, Trevor J.; Aspell, Jane E.; Herbelin, Bruno; Bülthoff, Heinrich H.; Mohler, Betty J.; Blanke, Olaf

    2013-01-01

    In neurology and psychiatry the detailed study of illusory own body perceptions has suggested close links between bodily processing and self-consciousness. One such illusory own body perception is heautoscopy where patients have the sensation of being reduplicated and to exist at two or even more locations. In previous experiments, using a video head-mounted display, self-location and self-identification were manipulated by applying conflicting visuo-tactile information. Yet the experienced singularity of the self was not affected, i.e., participants did not experience having multiple bodies or selves. In two experiments presented in this paper, we investigated self-location and self-identification while participants saw two virtual bodies (video-generated in study 1 and 3D computer generated in study 2) that were stroked either synchronously or asynchronously with their own body. In both experiments, we report that self-identification with two virtual bodies was stronger during synchronous stroking. Furthermore, in the video generated setup with synchronous stroking participants reported a greater feeling of having multiple bodies than in the control conditions. In study 1, but not in study 2, we report that self-location – measured by anterior posterior drift – was significantly shifted towards the two bodies in the synchronous condition only. Self-identification with two bodies, the sensation of having multiple bodies, and the changes in self-location show that the experienced singularity of the self can be studied experimentally. We discuss our data with respect to ownership for supernumerary hands and heautoscopy. We finally compare the effects of the video and 3D computer generated head-mounted display technology and discuss the possible benefits of using either technology to induce changes in illusory self-identification with a virtual body. PMID:24385970

  7. A Virtual Out-of-Body Experience Reduces Fear of Death

    PubMed Central

    2017-01-01

    Immersive virtual reality can be used to visually substitute a person’s real body by a life-sized virtual body (VB) that is seen from first person perspective. Using real-time motion capture the VB can be programmed to move synchronously with the real body (visuomotor synchrony), and also virtual objects seen to strike the VB can be felt through corresponding vibrotactile stimulation on the actual body (visuotactile synchrony). This setup typically gives rise to a strong perceptual illusion of ownership over the VB. When the viewpoint is lifted up and out of the VB so that it is seen below this may result in an out-of-body experience (OBE). In a two-factor between-groups experiment with 16 female participants per group we tested how fear of death might be influenced by two different methods for producing an OBE. In an initial embodiment phase where both groups experienced the same multisensory stimuli there was a strong feeling of body ownership. Then the viewpoint was lifted up and behind the VB. In the experimental group once the viewpoint was out of the VB there was no further connection with it (no visuomotor or visuotactile synchrony). In a control condition, although the viewpoint was in the identical place as in the experimental group, visuomotor and visuotactile synchrony continued. While both groups reported high scores on a question about their OBE illusion, the experimental group had a greater feeling of disownership towards the VB below compared to the control group, in line with previous findings. Fear of death in the experimental group was found to be lower than in the control group. This is in line with previous reports that naturally occurring OBEs are often associated with enhanced belief in life after death. PMID:28068368

  8. Mobile access to virtual randomization for investigator-initiated trials.

    PubMed

    Deserno, Thomas M; Keszei, András P

    2017-08-01

    Background/aims Randomization is indispensable in clinical trials in order to provide unbiased treatment allocation and a valid statistical inference. Improper handling of allocation lists can be avoided using central systems, for example, human-based services. However, central systems are unaffordable for investigator-initiated trials and might be inaccessible from some places, where study subjects need allocations. We propose mobile access to virtual randomization, where the randomization lists are non-existent and the appropriate allocation is computed on demand. Methods The core of the system architecture is an electronic data capture system or a clinical trial management system, which is extended by an R interface connecting the R server using the Java R Interface. Mobile devices communicate via the representational state transfer web services. Furthermore, a simple web-based setup allows configuring the appropriate statistics by non-statisticians. Our comprehensive R script supports simple randomization, restricted randomization using a random allocation rule, block randomization, and stratified randomization for un-blinded, single-blinded, and double-blinded trials. For each trial, the electronic data capture system or the clinical trial management system stores the randomization parameters and the subject assignments. Results Apps are provided for iOS and Android and subjects are randomized using smartphones. After logging onto the system, the user selects the trial and the subject, and the allocation number and treatment arm are displayed instantaneously and stored in the core system. So far, 156 subjects have been allocated from mobile devices serving five investigator-initiated trials. Conclusion Transforming pre-printed allocation lists into virtual ones ensures the correct conduct of trials and guarantees a strictly sequential processing in all trial sites. Covering 88% of all randomization models that are used in recent trials, virtual randomization becomes available for investigator-initiated trials and potentially for large multi-center trials.

  9. Multiple object, three-dimensional motion tracking using the Xbox Kinect sensor

    NASA Astrophysics Data System (ADS)

    Rosi, T.; Onorato, P.; Oss, S.

    2017-11-01

    In this article we discuss the capability of the Xbox Kinect sensor to acquire three-dimensional motion data of multiple objects. Two experiments regarding fundamental features of Newtonian mechanics are performed to test the tracking abilities of our setup. Particular attention is paid to check and visualise the conservation of linear momentum, angular momentum and energy. In both experiments, two objects are tracked while falling in the gravitational field. The obtained data is visualised in a 3D virtual environment to help students understand the physics behind the performed experiments. The proposed experiments were analysed with a group of university students who are aspirant physics and mathematics teachers. Their comments are presented in this paper.

  10. Monitoring Malware Activity on the LAN Network

    NASA Astrophysics Data System (ADS)

    Skrzewski, Mirosław

    Many security related organizations periodically publish current network and systems security information, with the lists of top malware programs. These lists raises the question how these threats spreads out, if the worms (the only threat with own communication abilities) are low or missing on these lists. The paper discuss the research on malware network activity, aimed to deliver the answer to the question, what is the main infection channel of modern malware, done with the usage of virtual honeypot systems on dedicated, unprotected network. Systems setup, network and systems monitoring solutions, results of over three months of network traffic and malware monitoring are presented, along with the proposed answer to our research question.

  11. Development of a Radiation Dose Reporting Software for X-ray Computed Tomography (CT)

    NASA Astrophysics Data System (ADS)

    Ding, Aiping

    X-ray computed tomography (CT) has experienced tremendous technological advances in recent years and has established itself as one of the most popular diagnostic imaging tools. While CT imaging clearly plays an invaluable role in modern medicine, its rapid adoption has resulted in a dramatic increase in the average medical radiation exposure to the worldwide and United States populations. Existing software tools for CT dose estimation and reporting are mostly based on patient phantoms that contain overly simplified anatomies insufficient in meeting the current and future needs. This dissertation describes the development of an easy-to-use software platform, “VirtualDose”, as a service to estimate and report the organ dose and effective dose values for patients undergoing the CT examinations. “VirtualDose” incorporates advanced models for the adult male and female, pregnant women, and children. To cover a large portion of the ignored obese patients that frequents the radiology clinics, a new set of obese male and female phantoms are also developed and applied to study the effects of the fat tissues on the CT radiation dose. Multi-detector CT scanners (MDCT) and clinical protocols, as well as the most recent effective dose algorithms from the International Commission on Radiological Protection (ICRP) Publication 103 are adopted in “VirtualDose” to keep pace with the MDCT development and regulatory requirements. A new MDCT scanner model with both body and head bowtie filter is developed to cover both the head and body scanning modes. This model was validated through the clinical measurements. A comprehensive slice-by-slice database is established by deriving the data from a larger number of single axial scans simulated on the patient phantoms using different CT bowtie filters, beam thicknesses, and different tube voltages in the Monte Carlo N-Particle Extended (MCNPX) code. When compared to the existing CT dose software packages, organ dose data in this software provides a better CT dose assessment by using anatomically realistic patient phantoms. All the related organ doses are incorporated into a standardized database compiled using Microsoft Structured Query Language (SQL) server 2008. Organ doses from contiguous axial or helical scans defined by a specific protocol can be rapidly obtained from the database. A next-generation software architecture and Active Server Pages (ASP) .NET framework are adopted to create a browser-hosted application to improve the user interactivity and reporting functionality including scanning parameter selection and organ dose reporting. “VirtualDose” has been developed as a web-based CT dose reporting platform to facilitate several important features including: (1) easy access via Internet; (2) no need for installation on the local computer; (3) a user-friendly, dynamic, browser-hosted graphical user interface; (4) use of advanced patient models for the adult male and female, pregnant women, children, and obese patient models; (5) adoption of modern CT scanners and protocols, as well as the most recent ICRP 103 effective dose algorithms; and (6) flexibility to manage and easily upgrade without impacting user’s usage.

  12. X-band EPR setup with THz light excitation of Novosibirsk Free Electron Laser: Goals, means, useful extras.

    PubMed

    Veber, Sergey L; Tumanov, Sergey V; Fursova, Elena Yu; Shevchenko, Oleg A; Getmanov, Yaroslav V; Scheglov, Mikhail A; Kubarev, Vitaly V; Shevchenko, Daria A; Gorbachev, Iaroslav I; Salikova, Tatiana V; Kulipanov, Gennady N; Ovcharenko, Victor I; Fedin, Matvey V

    2018-03-01

    Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Slice profile effects in 2D slice-selective MRI of hyperpolarized nuclei.

    PubMed

    Deppe, Martin H; Teh, Kevin; Parra-Robles, Juan; Lee, Kuan J; Wild, Jim M

    2010-02-01

    This work explores slice profile effects in 2D slice-selective gradient-echo MRI of hyperpolarized nuclei. Two different sequences were investigated: a Spoiled Gradient Echo sequence with variable flip angle (SPGR-VFA) and a balanced Steady-State Free Precession (SSFP) sequence. It is shown that in SPGR-VFA the distribution of flip angles across the slice present in any realistically shaped radiofrequency (RF) pulse leads to large excess signal from the slice edges in later RF views, which results in an undesired non-constant total transverse magnetization, potentially exceeding the initial value by almost 300% for the last RF pulse. A method to reduce this unwanted effect is demonstrated, based on dynamic scaling of the slice selection gradient. SSFP sequences with small to moderate flip angles (<40 degrees ) are also shown to preserve the slice profile better than the most commonly used SPGR sequence with constant flip angle (SPGR-CFA). For higher flip angles, the slice profile in SSFP evolves in a manner similar to SPGR-CFA, with depletion of polarization in the center of the slice. Copyright 2009 Elsevier Inc. All rights reserved.

  14. Generation of realistic virtual nodules based on three-dimensional spatial resolution in lung computed tomography: A pilot phantom study.

    PubMed

    Narita, Akihiro; Ohkubo, Masaki; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi

    2017-10-01

    The aim of this feasibility study using phantoms was to propose a novel method for obtaining computer-generated realistic virtual nodules in lung computed tomography (CT). In the proposed methodology, pulmonary nodule images obtained with a CT scanner are deconvolved with the point spread function (PSF) in the scan plane and slice sensitivity profile (SSP) measured for the scanner; the resultant images are referred to as nodule-like object functions. Next, by convolving the nodule-like object function with the PSF and SSP of another (target) scanner, the virtual nodule can be generated so that it has the characteristics of the spatial resolution of the target scanner. To validate the methodology, the authors applied physical nodules of 5-, 7- and 10-mm-diameter (uniform spheres) included in a commercial CT test phantom. The nodule-like object functions were calculated from the sphere images obtained with two scanners (Scanner A and Scanner B); these functions were referred to as nodule-like object functions A and B, respectively. From these, virtual nodules were generated based on the spatial resolution of another scanner (Scanner C). By investigating the agreement of the virtual nodules generated from the nodule-like object functions A and B, the equivalence of the nodule-like object functions obtained from different scanners could be assessed. In addition, these virtual nodules were compared with the real (true) sphere images obtained with Scanner C. As a practical validation, five types of laboratory-made physical nodules with various complicated shapes and heterogeneous densities, similar to real lesions, were used. The nodule-like object functions were calculated from the images of these laboratory-made nodules obtained with Scanner A. From them, virtual nodules were generated based on the spatial resolution of Scanner C and compared with the real images of laboratory-made nodules obtained with Scanner C. Good agreement of the virtual nodules generated from the nodule-like object functions A and B of the phantom spheres was found, suggesting the validity of the nodule-like object functions. The virtual nodules generated from the nodule-like object function A of the phantom spheres were similar to the real images obtained with Scanner C; the root mean square errors (RMSEs) between them were 10.8, 11.1, and 12.5 Hounsfield units (HU) for 5-, 7-, and 10-mm-diameter spheres, respectively. The equivalent results (RMSEs) using the nodule-like object function B were 15.9, 16.8, and 16.5 HU, respectively. These RMSEs were small considering the high contrast between the sphere density and background density (approximately 674 HU). The virtual nodules generated from the nodule-like object functions of the five laboratory-made nodules were similar to the real images obtained with Scanner C; the RMSEs between them ranged from 6.2 to 8.6 HU in five cases. The nodule-like object functions calculated from real nodule images would be effective to generate realistic virtual nodules. The proposed method would be feasible for generating virtual nodules that have the characteristics of the spatial resolution of the CT system used in each institution, allowing for site-specific nodule generation. © 2017 American Association of Physicists in Medicine.

  15. Applying DEKOIS 2.0 in structure-based virtual screening to probe the impact of preparation procedures and score normalization.

    PubMed

    Ibrahim, Tamer M; Bauer, Matthias R; Boeckler, Frank M

    2015-01-01

    Structure-based virtual screening techniques can help to identify new lead structures and complement other screening approaches in drug discovery. Prior to docking, the data (protein crystal structures and ligands) should be prepared with great attention to molecular and chemical details. Using a subset of 18 diverse targets from the recently introduced DEKOIS 2.0 benchmark set library, we found differences in the virtual screening performance of two popular docking tools (GOLD and Glide) when employing two different commercial packages (e.g. MOE and Maestro) for preparing input data. We systematically investigated the possible factors that can be responsible for the found differences in selected sets. For the Angiotensin-I-converting enzyme dataset, preparation of the bioactive molecules clearly exerted the highest influence on VS performance compared to preparation of the decoys or the target structure. The major contributing factors were different protonation states, molecular flexibility, and differences in the input conformation (particularly for cyclic moieties) of bioactives. In addition, score normalization strategies eliminated the biased docking scores shown by GOLD (ChemPLP) for the larger bioactives and produced a better performance. Generalizing these normalization strategies on the 18 DEKOIS 2.0 sets, improved the performances for the majority of GOLD (ChemPLP) docking, while it showed detrimental performances for the majority of Glide (SP) docking. In conclusion, we exemplify herein possible issues particularly during the preparation stage of molecular data and demonstrate to which extent these issues can cause perturbations in the virtual screening performance. We provide insights into what problems can occur and should be avoided, when generating benchmarks to characterize the virtual screening performance. Particularly, careful selection of an appropriate molecular preparation setup for the bioactive set and the use of score normalization for docking with GOLD (ChemPLP) appear to have a great importance for the screening performance. For virtual screening campaigns, we recommend to invest time and effort into including alternative preparation workflows into the generation of the master library, even at the cost of including multiple representations of each molecule. Graphical AbstractUsing DEKOIS 2.0 benchmark sets in structure-based virtual screening to probe the impact of molecular preparation and score normalization.

  16. Virtual Impactor for Sub-micron Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Bolshakov, A. A.; Strawa, A. W.; Hallar, A. G.

    2005-12-01

    The objective of a virtual impactor is to separate out the larger particles in a flow from the smaller particles in such a way that both sizes of particles are available for sampling. A jet of particle-laden air is accelerated toward a collection probe so that a small gap exists between the acceleration nozzle and the probe. A vacuum is applied to deflect a major portion of the airstream away form the collection probe. Particles larger than a certain size have sufficient momentum so that they cross the deflected streamlines and enter the collection probe, whereas smaller particles follow the deflected streamlines. The result is that the collection probe will contain a higher concentration of larger particles than is in the initial airstream. Typically, virtual impactors are high-flow devices used to separate out particles greater than several microns in diameter. We have developed a special virtual impactor to concentrate aerosol particles of diameters between 0.5 to 1 micron for the purpose of calibrating the optical cavity ring-down instrument [1]. No similar virtual impactors are commercially available. In our design, we have exploited considerations described earlier [2-4]. Performance of our virtual impactor was evaluated in an experimental set-up using TSI 3076 nebulizer and TSI 3936 scanning mobility particle size spectrometer. Under experimental conditions optimized for the best performance of the virtual impactor, we were able to concentrate the 700-nm polystyrene particles no less than 15-fold. However, under experimental conditions optimized for calibrating our cavity ring-down instrument, a concentration factor attainable was from 4 to 5. During calibration experiments, maximum realized particle number densities were 190, 300 and 1600 cm-3 for the 900-nm, 700-nm and 500-nm spheres, respectively. This paper discusses the design of the impactor and laboratory studies verifying its performance. References: 1. A.W. Strawa, R. Castaneda, T. Owano, D.S. Baer, B.A. Paldus, J. Atm. Ocean. Technol., 20, 454-465 (2003). 2. V.A. Marple, K.L. Rubow, B.A. Olson, Aerosol Sci. Technol., 22, 140-150 (1995). 3. B.T. Chen, H.C. Yeh, Y.S. Cheng, J. Aerosol Sci., 16, 343-354 (1985). 4. V.A. Marple, C.M. Chien, Environ. Sci. Technol., 14, 976-985 (1980).

  17. Myocardial segmentation based on coronary anatomy using coronary computed tomography angiography: Development and validation in a pig model.

    PubMed

    Chung, Mi Sun; Yang, Dong Hyun; Kim, Young-Hak; Kang, Soo-Jin; Jung, Joonho; Kim, Namkug; Heo, Seung-Ho; Baek, Seunghee; Seo, Joon Beom; Choi, Byoung Wook; Kang, Joon-Won; Lim, Tae-Hwan

    2017-10-01

    To validate a method for performing myocardial segmentation based on coronary anatomy using coronary CT angiography (CCTA). Coronary artery-based myocardial segmentation (CAMS) was developed for use with CCTA. To validate and compare this method with the conventional American Heart Association (AHA) classification, a single coronary occlusion model was prepared and validated using six pigs. The unstained occluded coronary territories of the specimens and corresponding arterial territories from CAMS and AHA segmentations were compared using slice-by-slice matching and 100 virtual myocardial columns. CAMS more precisely predicted ischaemic area than the AHA method, as indicated by 95% versus 76% (p < 0.001) of the percentage of matched columns (defined as percentage of matched columns of segmentation method divided by number of unstained columns in the specimen). According to the subgroup analyses, CAMS demonstrated a higher percentage of matched columns than the AHA method in the left anterior descending artery (100% vs. 77%; p < 0.001) and mid- (99% vs. 83%; p = 0.046) and apical-level territories of the left ventricle (90% vs. 52%; p = 0.011). CAMS is a feasible method for identifying the corresponding myocardial territories of the coronary arteries using CCTA. • CAMS is a feasible method for identifying corresponding coronary territory using CTA • CAMS is more accurate in predicting coronary territory than the AHA method • The AHA method may underestimate the ischaemic territory of LAD stenosis.

  18. Effect of titanium dental implants on proton therapy delivered for head tumors: experimental validation using an anthropomorphic head phantom

    NASA Astrophysics Data System (ADS)

    Oancea, C.; Shipulin, K.; Mytsin, G.; Molokanov, A.; Niculae, D.; Ambrožová, I.; Davídková, M.

    2017-03-01

    A dosimetric experiment was performed at the Medico-Technical Complex in the Joint Institute for Nuclear Research, Dubna, to investigate the effects of metallic dental implants in the treatment of head and neck tumours with proton therapy. The goal of the study was to evaluate the 2D dose distributions of different clinical treatment plans measured in an anthropomorphic phantom, and compare them to predictions from a treatment planning system. The anthropomorphic phantom was sliced into horizontal segments. Two grade 4 Titanium implants were inserted between 2 slices, corresponding to a maxillary area. GafChromic EBT2 films were placed between the segments containing the implants to measure the 2D delivered dose. Two different targets were designed: the first target includes the dental implants in the isocentre, and in the second target, the proton beam is delivered through the implants, which are located at the entrance region of the Bragg curve. The experimental results were compared to the treatment plans made using our custom 3D Treatment Planning System, named RayTreat. To quantitatively determine differences in the isodose distributions (measured and calculated), the gamma index (3 mm, 3%) was calculated for each target for the matrix value in the region of high isodose (> 90%): for the experimental setup, which includes the implants in the SOBP region, the result obtained was 84.3%. When the implants were localised in the entrance region of the Bragg curve, the result obtained was 86.4%. In conclusion, the uncertainties introduced by the clinically planned dose distribution are beyond reasonable limits. The linear energy transfer spectra in close proximity to the implants were investigated using solid state nuclear track detectors (TED). Scattered particles outside the target were detected.

  19. Charged-particle emission tomography

    PubMed Central

    Ding, Yijun; Caucci, Luca; Barrett, Harrison H.

    2018-01-01

    Purpose Conventional charged-particle imaging techniques —such as autoradiography —provide only two-dimensional (2D) black ex vivo images of thin tissue slices. In order to get volumetric information, images of multiple thin slices are stacked. This process is time consuming and prone to distortions, as registration of 2D images is required. We propose a direct three-dimensional (3D) autoradiography technique, which we call charged-particle emission tomography (CPET). This 3D imaging technique enables imaging of thick tissue sections, thus increasing laboratory throughput and eliminating distortions due to registration. CPET also has the potential to enable in vivo charged-particle imaging with a window chamber or an endoscope. Methods Our approach to charged-particle emission tomography uses particle-processing detectors (PPDs) to estimate attributes of each detected particle. The attributes we estimate include location, direction of propagation, and/or the energy deposited in the detector. Estimated attributes are then fed into a reconstruction algorithm to reconstruct the 3D distribution of charged-particle-emitting radionuclides. Several setups to realize PPDs are designed. Reconstruction algorithms for CPET are developed. Results Reconstruction results from simulated data showed that a PPD enables CPET if the PPD measures more attributes than just the position from each detected particle. Experiments showed that a two-foil charged-particle detector is able to measure the position and direction of incident alpha particles. Conclusions We proposed a new volumetric imaging technique for charged-particle-emitting radionuclides, which we have called charged-particle emission tomography (CPET). We also proposed a new class of charged-particle detectors, which we have called particle-processing detectors (PPDs). When a PPD is used to measure the direction and/or energy attributes along with the position attributes, CPET is feasible. PMID:28370094

  20. Charged-particle emission tomography.

    PubMed

    Ding, Yijun; Caucci, Luca; Barrett, Harrison H

    2017-06-01

    Conventional charged-particle imaging techniques - such as autoradiography - provide only two-dimensional (2D) black ex vivo images of thin tissue slices. In order to get volumetric information, images of multiple thin slices are stacked. This process is time consuming and prone to distortions, as registration of 2D images is required. We propose a direct three-dimensional (3D) autoradiography technique, which we call charged-particle emission tomography (CPET). This 3D imaging technique enables imaging of thick tissue sections, thus increasing laboratory throughput and eliminating distortions due to registration. CPET also has the potential to enable in vivo charged-particle imaging with a window chamber or an endoscope. Our approach to charged-particle emission tomography uses particle-processing detectors (PPDs) to estimate attributes of each detected particle. The attributes we estimate include location, direction of propagation, and/or the energy deposited in the detector. Estimated attributes are then fed into a reconstruction algorithm to reconstruct the 3D distribution of charged-particle-emitting radionuclides. Several setups to realize PPDs are designed. Reconstruction algorithms for CPET are developed. Reconstruction results from simulated data showed that a PPD enables CPET if the PPD measures more attributes than just the position from each detected particle. Experiments showed that a two-foil charged-particle detector is able to measure the position and direction of incident alpha particles. We proposed a new volumetric imaging technique for charged-particle-emitting radionuclides, which we have called charged-particle emission tomography (CPET). We also proposed a new class of charged-particle detectors, which we have called particle-processing detectors (PPDs). When a PPD is used to measure the direction and/or energy attributes along with the position attributes, CPET is feasible. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  1. A tale of two velocities: Threading versus slicing

    NASA Astrophysics Data System (ADS)

    Gharechahi, Razieh; Nouri-Zonoz, Mohammad; Tavanfar, Alireza

    One of the important quantities in cosmology and astrophysics is the 3-velocity of an object. Specifically, when the gravitational fields are strong, one should require the employment of general relativity both in its definition and measurement. Looking into the literature for GR-based definitions of 3-velocity, one usually finds different ad hoc definitions applied according to the case under consideration. Here, we introduce and analyze systematically the two principal definitions of 3-velocity assigned to a test particle following the timelike trajectories in stationary spacetimes. These definitions are based on the 1 + 3 (threading) and 3 + 1 (slicing) spacetime decomposition formalisms and defined relative to two different sets of observers. After showing that Synge’s definition of spatial distance and 3-velocity is equivalent to those defined in the 1 + 3 (threading) formalism, we exemplify the differences between these two definitions by calculating them for particles in circular orbits in axially symmetric stationary spacetimes. Illustrating its geometric nature, the relative linear velocity between the corresponding observers is obtained in terms of the spacetime metric components. Circular particle orbits in the Kerr spacetime, as the prototype and the most well known of stationary spacetimes, are examined with respect to these definitions to highlight their observer-dependent nature. We also examine the Kerr-NUT spacetime in which the NUT parameter, contributing to the off-diagonal terms in the metric, is mainly interpreted not as a rotation parameter but as a gravitomagnetic monopole charge. Finally, in a specific astrophysical setup which includes rotating black holes, it is shown how the local velocity of an orbiting star could be related to its spectral line shifts measured by distant observers.

  2. Physical aspects of total-body irradiation at the Middlesex Hospital (UCL group of hospitals), London 1988-1993: I. Phantom measurements and planning methods.

    PubMed

    Planskoy, B; Bedford, A M; Davis, F M; Tapper, P D; Loverock, L T

    1996-11-01

    This paper, which is divided into parts I and II, describes the physical aspects of work on total-body irradiation (TBI) at the Middlesex Hospital, London, from 1988 to 1993. Irradiation is fractionated and bi-lateral with horizontal accelerator photon beams of 8 MV (1988-1992) at a source-surface distance (SSD) of 3.36 m and 10 MV (1992-1993) at an SSD of 4.62 m. The main aims were maximum patient comfort, a simple, accurate set-up with overall times per fraction of 30 min or less, dose homogeneity throughout the body within +/- 10 to +/- 15%, pre-irradiation treatment planning on nine CT slices using our commercial IGE RTplan (1988-1992) and Target 2 (1992-1993) treatment planning systems and, most important, verification of the plans by in vivo dosimetry to within +/- 5%. Verification of the planned lung doses, which are distributed over five CT slices, was given special attention. In part I of this paper we describe the preliminary work, most of which was done prior to patient treatment. This consisted of standard dosimetric measurements (central axis depth doses, beam profiles at several depths, build-up and build-down curves, beam output calibrations, effect of body compensators, etc), in evaluating silicon diode dosimeters for in vivo dosimetry and of adapting and verifying the methods of treatment planning for TBI conditions. The results obtained with phantoms, including a Rando body phantom, showed that, in principle, our aims could be achieved. The final proof depended, however, on an analysis of the results of the in vivo work and this forms the subject of part II of this paper.

  3. The topology of large-scale structure. VI - Slices of the universe

    NASA Astrophysics Data System (ADS)

    Park, Changbom; Gott, J. R., III; Melott, Adrian L.; Karachentsev, I. D.

    1992-03-01

    Results of an investigation of the topology of large-scale structure in two observed slices of the universe are presented. Both slices pass through the Coma cluster and their depths are 100 and 230/h Mpc. The present topology study shows that the largest void in the CfA slice is divided into two smaller voids by a statistically significant line of galaxies. The topology of toy models like the white noise and bubble models is shown to be inconsistent with that of the observed slices. A large N-body simulation was made of the biased cloud dark matter model and the slices are simulated by matching them in selection functions and boundary conditions. The genus curves for these simulated slices are spongelike and have a small shift in the direction of a meatball topology like those of observed slices.

  4. The topology of large-scale structure. VI - Slices of the universe

    NASA Technical Reports Server (NTRS)

    Park, Changbom; Gott, J. R., III; Melott, Adrian L.; Karachentsev, I. D.

    1992-01-01

    Results of an investigation of the topology of large-scale structure in two observed slices of the universe are presented. Both slices pass through the Coma cluster and their depths are 100 and 230/h Mpc. The present topology study shows that the largest void in the CfA slice is divided into two smaller voids by a statistically significant line of galaxies. The topology of toy models like the white noise and bubble models is shown to be inconsistent with that of the observed slices. A large N-body simulation was made of the biased cloud dark matter model and the slices are simulated by matching them in selection functions and boundary conditions. The genus curves for these simulated slices are spongelike and have a small shift in the direction of a meatball topology like those of observed slices.

  5. Comparison of 640-Slice Multidetector Computed Tomography Versus 32-Slice MDCT for Imaging of the Osteo-odonto-keratoprosthesis Lamina.

    PubMed

    Norris, Joseph M; Kishikova, Lyudmila; Avadhanam, Venkata S; Koumellis, Panos; Francis, Ian S; Liu, Christopher S C

    2015-08-01

    To investigate the efficacy of 640-slice multidetector computed tomography (MDCT) for detecting osteo-odonto laminar resorption in the osteo-odonto-keratoprosthesis (OOKP) compared with the current standard 32-slice MDCT. Explanted OOKP laminae and bone-dentine fragments were scanned using 640-slice MDCT (Aquilion ONE; Toshiba) and 32-slice MDCT (LightSpeed Pro32; GE Healthcare). Pertinent comparisons including image quality, radiation dose, and scanning parameters were made. Benefits of 640-slice MDCT over 32-slice MDCT were shown. Key comparisons of 640-slice MDCT versus 32-slice MDCT included the following: percentage difference and correlation coefficient between radiological and anatomical measurements, 1.35% versus 3.67% and 0.9961 versus 0.9882, respectively; dose-length product, 63.50 versus 70.26; rotation time, 0.175 seconds versus 1.000 seconds; and detector coverage width, 16 cm versus 2 cm. Resorption of the osteo-odonto lamina after OOKP surgery can result in potentially sight-threatening complications, hence it warrants regular monitoring and timely intervention. MDCT remains the gold standard for radiological assessment of laminar resorption, which facilitates detection of subtle laminar changes earlier than the onset of clinical signs, thus indicating when preemptive measures can be taken. The 640-slice MDCT exhibits several advantages over traditional 32-slice MDCT. However, such benefits may not offset cost implications, except in rare cases, such as in young patients who might undergo years of radiation exposure.

  6. A feasibility study on laxative-free bowel preparation for virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Liang, Zhengrong; Chen, Dongqing; Wax, Mark; Lakare, Sarang; Li, Lihong; Anderson, Joseph; Kaufman, Arie; Harrington, Donald

    2005-04-01

    Objective: To investigate the feasibility of laxative-free bowel preparation to relieve the patient stress in colon cleansing for virtual colonoscopy. Materials and Methods: Three different bowel-preparation protocols were investigated by 60 study cases from 35 healthy male volunteers. All the protocols utilize low-residue diet for two days and differ in diet for the third day - the day just prior to image acquisition in the fourth day morning. Protocol Diet-1 utilizes fluid or liquid diet in the third day, Diet-2 utilizes a food kit, and Diet-3 remains the low-residue diet. Oral contrast of barium sulfate (2.1%, 250 ml) was added respectively to the dinner in the second day and the three meals in the third day. Two doses of MD-Gastroview (60 ml) were ingested each in the evening of the third day and in the morning before image acquisition. Images were acquired by a single-slice detector spiral CT (computed tomography) scanner with 5 mm collimation, 1 mm reconstruction, 1.5-2.0:1.0 pitch, 100-150 mA, and 120 kVp after the colons were inflated by CO2. The contrasted colonic residue materials were electronically removed from the CT images by specialized computer-segmentation algorithms. Results: By assumptions that the healthy young volunteers have no polyp and the image resolution is approximately 4 mm, a successful electronic cleansing is defined as "no more than five false positives and no removal of a colon fold part greater than 4 mm" for each study case. The successful rate is 100% for protocol Diet-1, 77% for Diet-2 and 57% for Diet-3. Conclusion: A laxative-free bowel preparation is feasible for virtual colonoscopy.

  7. Slicing of silicon into sheet material: Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Holden, S. C.

    1976-01-01

    Multiblade slurry sawing is used to slice 10 cm diameter silicon ingots into wafers 0.024 cm thick using 0.050 cm of silicon per slice (0.026 cm kerf loss). Total slicing time is less than twenty hours, and 143 slices are produced simultaneously. Productivity (slice area per hour per blade) is shown as a function or blade load and thickness, and abrasive size. Finer abrasive slurries cause a reduction in slice productivity, and thin blades cause a reduction of wafer accuracy. Sawing induced surface damage is found to extend 18 microns into the wafer.

  8. Thin slices of child personality: Perceptual, situational, and behavioral contributions.

    PubMed

    Tackett, Jennifer L; Herzhoff, Kathrin; Kushner, Shauna C; Rule, Nicholas

    2016-01-01

    The present study examined whether thin-slice ratings of child personality serve as a resource-efficient and theoretically valid measurement of child personality traits. We extended theoretical work on the observability, perceptual accuracy, and situational consistency of childhood personality traits by examining intersource and interjudge agreement, cross-situational consistency, and convergent, divergent, and predictive validity of thin-slice ratings. Forty-five unacquainted independent coders rated 326 children's (ages 8-12) personality in 1 of 15 thin-slice behavioral scenarios (i.e., 3 raters per slice, for over 14,000 independent thin-slice ratings). Mothers, fathers, and children rated children's personality, psychopathology, and competence. We found robust evidence for correlations between thin-slice and mother/father ratings of child personality, within- and across-task consistency of thin-slice ratings, and convergent and divergent validity with psychopathology and competence. Surprisingly, thin-slice ratings were more consistent across situations in this child sample than previously found for adults. Taken together, these results suggest that thin slices are a valid and reliable measure to assess child personality, offering a useful method of measurement beyond questionnaires, helping to address novel questions of personality perception and consistency in childhood. (c) 2016 APA, all rights reserved).

  9. High-order multiband encoding in the heart.

    PubMed

    Cunningham, Charles H; Wright, Graham A; Wood, Michael L

    2002-10-01

    Spatial encoding with multiband selective excitation (e.g., Hadamard encoding) has been restricted to a small number of slices because the RF pulse becomes unacceptably long when more than about eight slices are encoded. In this work, techniques to shorten multiband RF pulses, and thus allow larger numbers of slices, are investigated. A method for applying the techniques while retaining the capability of adaptive slice thickness is outlined. A tradeoff between slice thickness and pulse duration is shown. Simulations and experiments with the shortened pulses confirmed that motion-induced excitation profile blurring and phase accrual were reduced. The connection between gradient hardware limitations, slice thickness, and flow sensitivity is shown. Excitation profiles for encoding 32 contiguous slices of 1-mm thickness were measured experimentally, and the artifact resulting from errors in timing of RF pulse relative to gradient was investigated. A multiband technique for imaging 32 contiguous 2-mm slices, with adaptive slice thickness, was developed and demonstrated for coronary artery imaging in healthy subjects. With the ability to image high numbers of contiguous slices, using relatively short (1-2 ms) RF pulses, multiband encoding has been advanced further toward practical application. Copyright 2002 Wiley-Liss, Inc.

  10. RETROSPECTIVE DETECTION OF INTERLEAVED SLICE ACQUISITION PARAMETERS FROM FMRI DATA

    PubMed Central

    Parker, David; Rotival, Georges; Laine, Andrew; Razlighi, Qolamreza R.

    2015-01-01

    To minimize slice excitation leakage to adjacent slices, interleaved slice acquisition is nowadays performed regularly in fMRI scanners. In interleaved slice acquisition, the number of slices skipped between two consecutive slice acquisitions is often referred to as the ‘interleave parameter’; the loss of this parameter can be catastrophic for the analysis of fMRI data. In this article we present a method to retrospectively detect the interleave parameter and the axis in which it is applied. Our method relies on the smoothness of the temporal-distance correlation function, which becomes disrupted along the axis on which interleaved slice acquisition is applied. We examined this method on simulated and real data in the presence of fMRI artifacts such as physiological noise, motion, etc. We also examined the reliability of this method in detecting different types of interleave parameters and demonstrated an accuracy of about 94% in more than 1000 real fMRI scans. PMID:26161244

  11. Can multi-slice or navigator-gated R2* MRI replace single-slice breath-hold acquisition for hepatic iron quantification?

    PubMed

    Loeffler, Ralf B; McCarville, M Beth; Wagstaff, Anne W; Smeltzer, Matthew P; Krafft, Axel J; Song, Ruitian; Hankins, Jane S; Hillenbrand, Claudia M

    2017-01-01

    Liver R2* values calculated from multi-gradient echo (mGRE) magnetic resonance images (MRI) are strongly correlated with hepatic iron concentration (HIC) as shown in several independently derived biopsy calibration studies. These calibrations were established for axial single-slice breath-hold imaging at the location of the portal vein. Scanning in multi-slice mode makes the exam more efficient, since whole-liver coverage can be achieved with two breath-holds and the optimal slice can be selected afterward. Navigator echoes remove the need for breath-holds and allow use in sedated patients. To evaluate if the existing biopsy calibrations can be applied to multi-slice and navigator-controlled mGRE imaging in children with hepatic iron overload, by testing if there is a bias-free correlation between single-slice R2* and multi-slice or multi-slice navigator controlled R2*. This study included MRI data from 71 patients with transfusional iron overload, who received an MRI exam to estimate HIC using gradient echo sequences. Patient scans contained 2 or 3 of the following imaging methods used for analysis: single-slice images (n = 71), multi-slice images (n = 69) and navigator-controlled images (n = 17). Small and large blood corrected region of interests were selected on axial images of the liver to obtain R2* values for all data sets. Bland-Altman and linear regression analysis were used to compare R2* values from single-slice images to those of multi-slice images and navigator-controlled images. Bland-Altman analysis showed that all imaging method comparisons were strongly associated with each other and had high correlation coefficients (0.98 ≤ r ≤ 1.00) with P-values ≤0.0001. Linear regression yielded slopes that were close to 1. We found that navigator-gated or breath-held multi-slice R2* MRI for HIC determination measures R2* values comparable to the biopsy-validated single-slice, single breath-hold scan. We conclude that these three R2* methods can be interchangeably used in existing R2*-HIC calibrations.

  12. A Comparison of Different Slicing Planes in Preservation of Major Hippocampal Pathway Fibers in the Mouse

    PubMed Central

    Xiong, Guoxiang; Metheny, Hannah; Johnson, Brian N.; Cohen, Akiva S.

    2017-01-01

    The hippocampus plays a critical role in learning and memory and higher cognitive functions, and its dysfunction has been implicated in various neuropathological disorders. Electrophysiological recording undertaken in live brain slices is one of the most powerful tools for investigating hippocampal cellular and network activities. The plane for cutting the slices determines which afferent and/or efferent connections are best preserved, and there are three commonly used slices: hippocampal-entorhinal cortex (HEC), coronal and transverse. All three slices have been widely used for studying the major afferent hippocampal pathways including the perforant path (PP), the mossy fibers (MFs) and the Schaffer collaterals (SCs). Surprisingly, there has never been a systematic investigation of the anatomical and functional consequences of slicing at a particular angle. In the present study, we focused on how well fiber pathways are preserved from the entorhinal cortex (EC) to the hippocampus, and within the hippocampus, in slices generated by sectioning at different angles. The postmortem neural tract tracer 1,1′-dioctadecyl-3,3,3′3′-tetramethylindocarbocyanine perchlorate (DiI) was used to label afferent fibers to hippocampal principal neurons in fixed slices or whole brains. Laser scanning confocal microscopy was adopted for imaging DiI-labeled axons and terminals. We demonstrated that PP fibers were well preserved in HEC slices, MFs in both HEC and transverse slices and SCs in all three types of slices. Correspondingly, field excitatory postsynaptic potentials (fEPSPs) could be consistently evoked in HEC slices when stimulating PP fibers and recorded in stratum lacunosum-moleculare (sl-m) of area CA1, and when stimulating the dentate granule cell layer (gcl) and recording in stratum lucidum (sl) of area CA3. The MF evoked fEPSPs could not be recorded in CA3 from coronal slices. In contrast to our DiI-tracing data demonstrating severely truncated PP fibers in coronal slices, fEPSPs could still be recorded in CA1 sl-m in this plane, suggesting that an additional afferent fiber pathway other than PP might be involved. The present study increases our understanding of which hippocampal pathways are best preserved in the three most common brain slice preparations, and will help investigators determine the appropriate slices to use for physiological studies depending on the subregion of interest. PMID:29201002

  13. Multiscale 3D virtual dissections of 100-million-year-old flowers using X-ray synchrotron micro- and nanotomography.

    PubMed

    Moreau, Jean-David; Cloetens, Peter; Gomez, Bernard; Daviero-Gomez, Véronique; Néraudeau, Didier; Lafford, Tamzin A; Tafforeau, Paul

    2014-02-01

    A multiscale approach combining phase-contrast X-ray micro- and nanotomography is applied for imaging a Cretaceous fossil inflorescence in the resolution range from 0.75 μm to 50 nm. The wide range of scale views provides three-dimensional reconstructions from the external gross morphology of the inflorescence fragment to the finest exine sculptures of in situ pollen. This approach enables most of the characteristics usually observed under light microscopy, or with low magnification under scanning and transmission electron microscopy, to be obtained nondestructively. In contrast to previous tomography studies of fossil and extant flowers that used resolutions down to the micron range, we used voxels with a 50 nm side in local tomography scans. This high level of resolution enables systematic affinities of fossil flowers to be established without breaking or slicing specimens.

  14. Protective properties of anticholera antibodies in human colostrum.

    PubMed Central

    Majumdar, A S; Ghose, A C

    1982-01-01

    A comparative immunological study between two colostrum pools of Indian and Swedish mothers was carried out to evaluate their protective properties against Vibrio cholerae. Antibacterial and antitoxin titers were significantly higher in the Indian colostrum pool (ICP) than in the Swedish colostrum pool (SCP). Antilipopolysaccharide as well as antitoxin antibodies belonged to secretory immunoglobulin A (IgA) and IgM classes as determined by the enzyme-linked immunosorbent assay. ICP could significantly inhibit the adherence of V. cholerae to intestinal slices in vitro, whereas such activity was virtually absent in SCP. Moreover, ICP could induce significant protection against live vibrio challenge in rabbit ileal loops, whereas only a weak protective activity was observed with SCP. A secretory IgA fraction was obtained from ICP by using gel filtration and immunoadsorbent techniques. Human secretory IgA thus obtained exhibited antiadherence as well as protective activities against V. cholerae. PMID:7095856

  15. Observation of the effect of targeted therapy of 64-slice spiral CT combined with cryoablation for liver cancer

    PubMed Central

    Yan, Qiao-Huan; Xu, Dian-Guo; Shen, Yan-Feng; Yuan, Ding-Ling; Bao, Jun-Hui; Li, Hai-Bin; Lv, Ying-Gang

    2017-01-01

    AIM To observe the effect of targeted therapy with 64-slice spiral computed tomography (CT) combined with cryoablation for liver cancer. METHODS A total of 124 patients (142 tumors) were enrolled into this study. According to the use of dual-slice spiral CT or 64-slice spiral CT as a guide technology, patients were divided into two groups: dual-slice group (n = 56, 65 tumors) and 64-slice group (n = 8, 77 tumors). All patients were accepted and received targeted therapy by an argon-helium superconducting surgery system. The guided scan times of the two groups was recorded and compared. In the two groups, the lesion ice coverage in diameter of ≥ 3 cm and < 3 cm were recorded, and freezing effective rate was compared. Hepatic perfusion values [hepatic artery perfusion (HAP), portal vein perfusion (PVP), and the hepatic arterial perfusion index (HAPI)] of tumor tissues, adjacent tissues and normal liver tissues at preoperative and postoperative four weeks in the two groups were compared. Local tumor changes were recorded and efficiency was compared at four weeks post-operation. Adverse events were recorded and compared between the two groups, including fever, pain, frostbite, nausea, vomiting, pleural effusion and abdominal bleeding. RESULTS Guided scan times in the dual-slice group was longer than that in the 64-slice group (t = 11.445, P = 0.000). The freezing effective rate for tumors < 3 cm in diameter in the dual-slice group (81.58%) was lower than that in the 64-slice group (92.86%) (χ2 = 5.707, P = 0.017). The HAP and HAPI of tumor tissues were lower at four weeks post-treatment than at pre-treatment in both groups (all P < 0.05), and those in the 64-slice group were lower than that in the dual-slice group (all P < 0.05). HAP and PVP were lower and HAPI was higher in tumor adjacent tissues at post-treatment than at pre-treatment (all P < 0.05). Furthermore, the treatment effect and therapeutic efficacy in the dual-slice group were lower than the 64-slice group at four weeks post-treatment (all P < 0.05). Moreover, pleural effusion and intraperitoneal hemorrhage occurred in patients in the dual-slice group, while no complications occurred in the 64-slice group (all P < 0.05). CONCLUSION 64-slice spiral CT applied with cryoablation in targeted therapy for liver cancer can achieve a safe and effective freezing treatment, so it is worth being used. PMID:28652661

  16. Observation of the effect of targeted therapy of 64-slice spiral CT combined with cryoablation for liver cancer.

    PubMed

    Yan, Qiao-Huan; Xu, Dian-Guo; Shen, Yan-Feng; Yuan, Ding-Ling; Bao, Jun-Hui; Li, Hai-Bin; Lv, Ying-Gang

    2017-06-14

    To observe the effect of targeted therapy with 64-slice spiral computed tomography (CT) combined with cryoablation for liver cancer. A total of 124 patients (142 tumors) were enrolled into this study. According to the use of dual-slice spiral CT or 64-slice spiral CT as a guide technology, patients were divided into two groups: dual-slice group ( n = 56, 65 tumors) and 64-slice group ( n = 8, 77 tumors). All patients were accepted and received targeted therapy by an argon-helium superconducting surgery system. The guided scan times of the two groups was recorded and compared. In the two groups, the lesion ice coverage in diameter of ≥ 3 cm and < 3 cm were recorded, and freezing effective rate was compared. Hepatic perfusion values [hepatic artery perfusion (HAP), portal vein perfusion (PVP), and the hepatic arterial perfusion index (HAPI)] of tumor tissues, adjacent tissues and normal liver tissues at preoperative and postoperative four weeks in the two groups were compared. Local tumor changes were recorded and efficiency was compared at four weeks post-operation. Adverse events were recorded and compared between the two groups, including fever, pain, frostbite, nausea, vomiting, pleural effusion and abdominal bleeding. Guided scan times in the dual-slice group was longer than that in the 64-slice group ( t = 11.445, P = 0.000). The freezing effective rate for tumors < 3 cm in diameter in the dual-slice group (81.58%) was lower than that in the 64-slice group (92.86%) (χ 2 = 5.707, P = 0.017). The HAP and HAPI of tumor tissues were lower at four weeks post-treatment than at pre-treatment in both groups (all P < 0.05), and those in the 64-slice group were lower than that in the dual-slice group (all P < 0.05). HAP and PVP were lower and HAPI was higher in tumor adjacent tissues at post-treatment than at pre-treatment (all P < 0.05). Furthermore, the treatment effect and therapeutic efficacy in the dual-slice group were lower than the 64-slice group at four weeks post-treatment (all P < 0.05). Moreover, pleural effusion and intraperitoneal hemorrhage occurred in patients in the dual-slice group, while no complications occurred in the 64-slice group (all P < 0.05). 64-slice spiral CT applied with cryoablation in targeted therapy for liver cancer can achieve a safe and effective freezing treatment, so it is worth being used.

  17. Portable Device Slices Thermoplastic Prepregs

    NASA Technical Reports Server (NTRS)

    Taylor, Beverly A.; Boston, Morton W.; Wilson, Maywood L.

    1993-01-01

    Prepreg slitter designed to slit various widths rapidly by use of slicing bar holding several blades, each capable of slicing strip of preset width in single pass. Produces material evenly sliced and does not contain jagged edges. Used for various applications in such batch processes involving composite materials as press molding and autoclaving, and in such continuous processes as pultrusion. Useful to all manufacturers of thermoplastic composites, and in slicing B-staged thermoset composites.

  18. A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.

    PubMed

    Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin

    2018-07-01

    Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Physical aspects of total-body irradiation at the Middlesex Hospital (UCL group of hospitals), London 1988-1993: II. In vivo planning and dosimetry.

    PubMed

    Planskoy, B; Tapper, P D; Bedford, A M; Davis, F M

    1996-11-01

    Part II of this paper gives the results of applying the TBI methods described in part I, to in vivo patient planning and dosimetry. Patients are planned on nine CT based body slices, five of which pass through the lungs. Planned doses are verified with ten silicon diodes applied bi-laterally to five body sites, at each treatment. LiF TLDs are applied to seven other body sites at the first treatment only. For 84 patients and at least 1016 measurements per body site with the diodes, the mean measured total doses agreed with planned doses within at most 2% except at lung levels, where the mean measured dose was 3% too low. Standard deviations of the measurements about the mean were between 2.4 and 3.1%. For the LiF TLDs, the mean measured doses for all seven body sites were with in +/- 5% of planned doses. A separate assessment of measured entrance and transmitted doses showed that the former agreed well with planned doses, but that the latter tended to be low, especially over the lungs, and that they had a wider dispersion. Possible reasons for this are discussed. These results show measurement uncertainties similar to those for non-TBI treatments of Nilsson et al, Leunens et al and Essers et al. An analysis of the treatment plans showed a mean dose inhomogeneity in the body (75 patients, nine slices) of 19 +/- 6.0% (1 s.d.) and in the lungs (40 patients, five slices) of 9.2 +/- 2.85% (1 s.d.). The conclusions are that, overall, the methods are reasonably satisfactory but that, with an extra effort, even closer agreement between measured and planned doses and a further limited reduction in the body dose inhomogeneity could be obtained. However, if it were thought desirable to make a substantial reduction in the dose inhomogeneity in the body and lungs, this could only be achieved with the available equipment by changing from lateral to anterior-posterior irradiation and any potential advantages of this change would have to be balanced against a likely deterioration in patient comfort and an increase in treatment set-up times.

  20. Deterministic quantum nonlinear optics with single atoms and virtual photons

    NASA Astrophysics Data System (ADS)

    Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco

    2017-06-01

    We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.

  1. Introduction into the Virtual Olympic Games Framework for online communities.

    PubMed

    Stoilescu, Dorian

    2009-06-01

    This paper presents the design of the Virtual Olympic Games Framework (VOGF), a computer application designated for athletics, health care, general well-being, nutrition and fitness, which offers multiple benefits for its participants. A special interest in starting the design of the framework was in exploring how people can connect and participate together using existing computer technologies (i.e. gaming consoles, exercise equipment with computer interfaces, devices of measuring health, speed, force and distance and Web 2.0 applications). A stationary bike set-up offering information to users about their individual health and athletic performances has been considered as a starting model. While this model is in the design stage, some preliminary findings are encouraging, suggesting the potential for various fields: sports, medicine, theories of learning, technologies and cybercultural studies. First, this framework would allow participants to perform a variety of sports and improve their health. Second, this would involve creating an online environment able to store health information and sport performances correlated with accessing multi-media data and research about performing sports. Third, participants could share experiences with other athletes, coaches and researchers. Fourth, this framework also provides support for the research community in their future investigations.

  2. Auralization of vibroacoustic models in engineering using Wave Field Synthesis: Application to plates and transmission loss

    NASA Astrophysics Data System (ADS)

    Bolduc, A.; Gauthier, P.-A.; Berry, A.

    2017-12-01

    While perceptual evaluation and sound quality testing with jury are now recognized as essential parts of acoustical product development, they are rarely implemented with spatial sound field reproduction. Instead, monophonic, stereophonic or binaural presentations are used. This paper investigates the workability and interest of a method to use complete vibroacoustic engineering models for auralization based on 2.5D Wave Field Synthesis (WFS). This method is proposed in order that spatial characteristics such as directivity patterns and direction-of-arrival are part of the reproduced sound field while preserving the model complete formulation that coherently combines frequency and spatial responses. Modifications to the standard 2.5D WFS operators are proposed for extended primary sources, affecting the reference line definition and compensating for out-of-plane elementary primary sources. Reported simulations and experiments of reproductions of two physically-accurate vibroacoustic models of thin plates show that the proposed method allows for an effective reproduction in the horizontal plane: Spatial and frequency domains features are recreated. Application of the method to the sound rendering of a virtual transmission loss measurement setup shows the potential of the method for use in virtual acoustical prototyping for jury testing.

  3. Metronome LKM: An open source virtual keyboard driver to measure experiment software latencies.

    PubMed

    Garaizar, Pablo; Vadillo, Miguel A

    2017-10-01

    Experiment software is often used to measure reaction times gathered with keyboards or other input devices. In previous studies, the accuracy and precision of time stamps has been assessed through several means: (a) generating accurate square wave signals from an external device connected to the parallel port of the computer running the experiment software, (b) triggering the typematic repeat feature of some keyboards to get an evenly separated series of keypress events, or (c) using a solenoid handled by a microcontroller to press the input device (keyboard, mouse button, touch screen) that will be used in the experimental setup. Despite the advantages of these approaches in some contexts, none of them can isolate the measurement error caused by the experiment software itself. Metronome LKM provides a virtual keyboard to assess an experiment's software. Using this open source driver, researchers can generate keypress events using high-resolution timers and compare the time stamps collected by the experiment software with those gathered by Metronome LKM (with nanosecond resolution). Our software is highly configurable (in terms of keys pressed, intervals, SysRq activation) and runs on 2.6-4.8 Linux kernels.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, H; UT Southwestern Medical Center, Dallas, TX; Hilts, M

    Purpose: To commission a multislice computed tomography (CT) scanner for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD). Methods: Commissioning was performed for a 16-slice CT scanner using images acquired through a 1L cylinder filled with water. Additional images were collected using a single slice machine for comparison purposes. The variability in CT number associated with the anode heel effect was evaluated and used to define a new slice-by-slice background image subtraction technique. Image quality was assessed for the multislice system by comparing image noise and uniformity to that of the singlemore » slice machine. The consistency in CT number across slices acquired simultaneously using the multislice detector array was also evaluated. Finally, the variability in CT number due to increasing x-ray tube load was measured for the multislice scanner and compared to the tube load effects observed on the single slice machine. Results: Slice-by-slice background subtraction effectively removes the variability in CT number across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image quality for the multislice machine was found to be comparable to that of the single slice scanner. Further study showed CT number was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thickness examined. In addition, the multislice system was found to eliminate variations in CT number due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to imaging a large volume using a single slice scanner. Conclusion: A multislice CT scanner has been commissioning for CT PGD, allowing images of an entire dose distribution to be acquired in a matter of minutes. Funding support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC)« less

  5. Evaluation of calibration efficacy under different levels of uncertainty

    DOE PAGES

    Heo, Yeonsook; Graziano, Diane J.; Guzowski, Leah; ...

    2014-06-10

    This study examines how calibration performs under different levels of uncertainty in model input data. It specifically assesses the efficacy of Bayesian calibration to enhance the reliability of EnergyPlus model predictions. A Bayesian approach can be used to update uncertain values of parameters, given measured energy-use data, and to quantify the associated uncertainty.We assess the efficacy of Bayesian calibration under a controlled virtual-reality setup, which enables rigorous validation of the accuracy of calibration results in terms of both calibrated parameter values and model predictions. Case studies demonstrate the performance of Bayesian calibration of base models developed from audit data withmore » differing levels of detail in building design, usage, and operation.« less

  6. Grasping isoluminant stimuli.

    PubMed

    Kleinholdermann, Urs; Franz, Volker H; Gegenfurtner, Karl R; Stockmeier, Kerstin

    2009-07-01

    We used a virtual reality setup to let participants grasp discs, which differed in luminance, chromaticity and size. Current theories on perception and action propose a division of labor in the brain into a color proficient perception pathway and a less color-capable action pathway. In this study, we addressed the question whether isoluminant stimuli, which provide only a chromatic but no luminance contrast for action planning, are harder to grasp than stimuli providing luminance contrast or both kinds of contrast. Although we found that grasps of isoluminant stimuli had a slightly steeper slope relating the maximum grip aperture to disc size, all other measures of grip quality were unaffected. Overall, our results do not support the view that isoluminance of stimulus and background impedes the planning of a grasping movement.

  7. A fourth gradient to overcome slice dependent phase effects of voxel-sized coils in planar arrays.

    PubMed

    Bosshard, John C; Eigenbrodt, Edwin P; McDougall, Mary P; Wright, Steven M

    2010-01-01

    The signals from an array of densely spaced long and narrow receive coils for MRI are complicated when the voxel size is of comparable dimension to the coil size. The RF coil causes a phase gradient across each voxel, which is dependent on the distance from the coil, resulting in a slice dependent shift of k-space. A fourth gradient coil has been implemented and used with the system's gradient set to create a gradient field which varies with slice. The gradients are pulsed together to impart a slice dependent phase gradient to compensate for the slice dependent phase due to the RF coils. However the non-linearity in the fourth gradient which creates the desired slice dependency also results in a through-slice phase ramp, which disturbs normal slice refocusing and leads to additional signal cancelation and reduced field of view. This paper discusses the benefits and limitations of using a fourth gradient coil to compensate for the phase due to RF coils.

  8. Target recognition for ladar range image using slice image

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Wang, Liang

    2015-12-01

    A shape descriptor and a complete shape-based recognition system using slice images as geometric feature descriptor for ladar range images are introduced. A slice image is a two-dimensional image generated by three-dimensional Hough transform and the corresponding mathematical transformation. The system consists of two processes, the model library construction and recognition. In the model library construction process, a series of range images are obtained after the model object is sampled at preset attitude angles. Then, all the range images are converted into slice images. The number of slice images is reduced by clustering analysis and finding a representation to reduce the size of the model library. In the recognition process, the slice image of the scene is compared with the slice image in the model library. The recognition results depend on the comparison. Simulated ladar range images are used to analyze the recognition and misjudgment rates, and comparison between the slice image representation method and moment invariants representation method is performed. The experimental results show that whether in conditions without noise or with ladar noise, the system has a high recognition rate and low misjudgment rate. The comparison experiment demonstrates that the slice image has better representation ability than moment invariants.

  9. Bias Field Inconsistency Correction of Motion-Scattered Multislice MRI for Improved 3D Image Reconstruction

    PubMed Central

    Kim, Kio; Habas, Piotr A.; Rajagopalan, Vidya; Scott, Julia A.; Corbett-Detig, James M.; Rousseau, Francois; Barkovich, A. James; Glenn, Orit A.; Studholme, Colin

    2012-01-01

    A common solution to clinical MR imaging in the presence of large anatomical motion is to use fast multi-slice 2D studies to reduce slice acquisition time and provide clinically usable slice data. Recently, techniques have been developed which retrospectively correct large scale 3D motion between individual slices allowing the formation of a geometrically correct 3D volume from the multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to imaging coils. As a result, slices which cover the same region of anatomy at different times may exhibit different sensitivity. This bias field inconsistency can induce artifacts in the final 3D reconstruction that can impact both clinical interpretation of key tissue boundaries and the automated analysis of the data. Here we describe a framework to estimate and correct the bias field inconsistency in each slice collectively across all motion corrupted image slices. Experiments using synthetic and clinical data show that the proposed method reduces intensity variability in tissues and improves the distinction between key tissue types. PMID:21511561

  10. Gonadal Steroids: Effects on Excitability of Hippocampal Pyramidal Cells

    NASA Astrophysics Data System (ADS)

    Teyler, Timothy J.; Vardaris, Richard M.; Lewis, Deborah; Rawitch, Allen B.

    1980-08-01

    Electrophysiological field potentials from hippocampal slices of rat brain show sex-linked differences in response to 1 × 10-10M concentrations of estradiol and testosterone added to the incubation medium. Slices from male rats show increased excitability to estradiol and not to testosterone. Slices from female rats are not affected by estradiol, but slices from female rats in diestrus show increased excitability in response to testosterone whereas slices from females in proestrus show decreased excitability.

  11. Physiological temperature during brain slicing enhances the quality of acute slice preparations

    PubMed Central

    Huang, Shiwei; Uusisaari, Marylka Y.

    2013-01-01

    We demonstrate that brain dissection and slicing using solutions warmed to near-physiological temperature (~ +34°C), greatly enhance slice quality without affecting intrinsic electrophysiological properties of the neurons. Improved slice quality is seen not only when using young (<1 month), but also mature (>2.5 month) mice. This allows easy in vitro patch-clamp experimentation using adult deep cerebellar nuclear slices, which until now have been considered very difficult. As proof of the concept, we compare intrinsic properties of cerebellar nuclear neurons in juvenile (<1 month) and adult (up to 7 months) mice, and confirm that no significant developmental changes occur after the fourth postnatal week. The enhanced quality of brain slices from old animals facilitates experimentation on age-related disorders as well as optogenetic studies requiring long transfection periods. PMID:23630465

  12. Free-floating adult human brain-derived slice cultures as a model to study the neuronal impact of Alzheimer's disease-associated Aβ oligomers.

    PubMed

    Mendes, Niele D; Fernandes, Artur; Almeida, Glaucia M; Santos, Luis E; Selles, Maria Clara; Lyra-Silva, Natalia; Machado, Carla M; Horta-Júnior, José A C; Louzada, Paulo R; De Felice, Fernanda G; Alvez-Leon, Soniza; Marcondes, Jorge; Assirati, João Alberto; Matias, Caio M; Klein, William L; Garcia-Cairasco, Norberto; Ferreira, Sergio T; Neder, Luciano; Sebollela, Adriano

    2018-05-31

    Slice cultures have been prepared from several organs. With respect to the brain, advantages of slice cultures over dissociated cell cultures include maintenance of the cytoarchitecture and neuronal connectivity. Slice cultures from adult human brain have been reported and constitute a promising method to study neurological diseases. Despite this potential, few studies have characterized in detail cell survival and function along time in short-term, free-floating cultures. We used tissue from adult human brain cortex from patients undergoing temporal lobectomy to prepare 200 μm-thick slices. Along the period in culture, we evaluated neuronal survival, histological modifications, and neurotransmitter release. The toxicity of Alzheimer's-associated Aβ oligomers (AβOs) to cultured slices was also analyzed. Neurons in human brain slices remain viable and neurochemically active for at least four days in vitro, which allowed detection of binding of AβOs. We further found that slices exposed to AβOs presented elevated levels of hyperphosphorylated Tau, a hallmark of Alzheimer's disease. Although slice cultures from adult human brain have been previously prepared, this is the first report to analyze cell viability and neuronal activity in short-term free-floating cultures as a function of days in vitro. Once surgical tissue is available, the current protocol is easy to perform and produces functional slices from adult human brain. These slice cultures may represent a preferred model for translational studies of neurodegenerative disorders when long term culturing in not required, as in investigations on AβO neurotoxicity. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Experimental identification of the behaviour of and lateral forces from freely-walking pedestrians on laterally oscillating structures in a virtual reality environment.

    PubMed

    Bocian, Mateusz; Macdonald, John H G; Burn, Jeremy F; Redmill, David

    2015-12-15

    Modelling pedestrian loading on lively structures such as bridges remains a challenge. This is because pedestrians have the capacity to interact with vibrating structures which can lead to amplification of the structural response. Current design guidelines are often inaccurate and limiting as they do not sufficiently acknowledge this effect. This originates in scarcity of data on pedestrian behaviour on vibrating ground and uncertainty as to the accuracy of results from previous experimental campaigns aiming to quantify pedestrian behaviour in this case. To this end, this paper presents a novel experimental setup developed to evaluate pedestrian actions on laterally oscillating ground in the laboratory environment while avoiding the implications of artificiality and allowing for unconstrained gait. A biologically-inspired approach was adopted in its development, relying on appreciation of operational complexities of biological systems, in particular their adaptability and control requirements. In determination of pedestrian forces to the structure consideration was given to signal processing issues which have been neglected in past studies. The results from tests conducted on the setup are related to results from previous experimental investigations and outputs of the inverted pendulum pedestrian model for walking on laterally oscillating ground, which is capable of generating self-excited forces.

  14. Effects of Different Types of Virtual Reality Display on Presence and Learning in a Safety Training Scenario.

    PubMed

    Buttussi, Fabio; Chittaro, Luca

    2018-02-01

    The increasing availability of head-mounted displays (HMDs) for home use motivates the study of the possible effects that adopting this new hardware might have on users. Moreover, while the impact of display type has been studied for different kinds of tasks, it has been scarcely explored in procedural training. Our study considered three different types of displays used by participants for training in aviation safety procedures with a serious game. The three displays were respectively representative of: (i) desktop VR (a standard desktop monitor), (ii) many setups for immersive VR used in the literature (an HMD with narrow field of view and a 3-DOF tracker), and (iii) new setups for immersive home VR (an HMD with wide field of view and 6-DOF tracker). We assessed effects on knowledge gain, and different self-reported measures (self-efficacy, engagement, presence). Unlike previous studies of display type that measured effects only immediately after the VR experience, we considered also a longer time span (2 weeks). Results indicated that the display type played a significant role in engagement and presence. The training benefits (increased knowledge and self-efficacy) were instead obtained, and maintained at two weeks, regardless of the display used. The paper discusses the implications of these results.

  15. A Family of ACO Routing Protocols for Mobile Ad Hoc Networks.

    PubMed

    Rupérez Cañas, Delfín; Sandoval Orozco, Ana Lucila; García Villalba, Luis Javier; Kim, Tai-Hoon

    2017-05-22

    In this work, an ACO routing protocol for mobile ad hoc networks based on AntHocNet is specified. As its predecessor, this new protocol, called AntOR, is hybrid in the sense that it contains elements from both reactive and proactive routing. Specifically, it combines a reactive route setup process with a proactive route maintenance and improvement process. Key aspects of the AntOR protocol are the disjoint-link and disjoint-node routes, separation between the regular pheromone and the virtual pheromone in the diffusion process and the exploration of routes, taking into consideration the number of hops in the best routes. In this work, a family of ACO routing protocols based on AntOR is also specified. These protocols are based on protocol successive refinements. In this work, we also present a parallelized version of AntOR that we call PAntOR. Using programming multiprocessor architectures based on the shared memory protocol, PAntOR allows running tasks in parallel using threads. This parallelization is applicable in the route setup phase, route local repair process and link failure notification. In addition, a variant of PAntOR that consists of having more than one interface, which we call PAntOR-MI (PAntOR-Multiple Interface), is specified. This approach parallelizes the sending of broadcast messages by interface through threads.

  16. xPIPE--Reception of DICOM Data from any Sender via the Internet.

    PubMed

    Czwoydzinski, J; Eßeling, R; Meier, N; Heindel, W; Lenzen, H

    2015-05-01

    Various technologies have been established for DICOM data exchange in radiology. In addition to the patient CD, online transfers via VPN (virtual private network) or DICOM email are common practice. However, dedicated network solutions are generally not appropriate for data exchange with occasional and spontaneous partners due to missing infrastructure at the partner institutions and/or complex setup procedures. The purpose was to develop a practical solution to complement the established technologies to allow users worldwide to transfer images without registration. The development of the xPIPE system is based on Java and various software libraries. A client hosted on a website enables sending DICOM data to a receiving system of the hospital. The new xPIPE system creates a gateway to a receiving hospital which is accessible from any point worldwide, giving other hospitals, clinics and patients a simple and secure method to transmit DICOM data without intermediate storage on external servers. The system was deployed at the University Hospital Münster and subsequently widely used even without information events and training. Data protection during transfer is ensured by the use of signatures and encryption. From the user's perspective the system has only minor technical requirements and can be used with minimal setup effort. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Explosive component acceptance tester using laser interferometer technology

    NASA Technical Reports Server (NTRS)

    Wickstrom, Richard D.; Tarbell, William W.

    1993-01-01

    Acceptance testing of explosive components requires a reliable and simple to use testing method that can discern less than optimal performance. For hot-wire detonators, traditional techniques use dent blocks or photographic diagnostic methods. More complicated approaches are avoided because of their inherent problems with setup and maintenance. A recently developed tester is based on using a laser interferometer to measure the velocity of flying plates accelerated by explosively actuated detonators. Unlike ordinary interferometers that monitor displacement of the test article, this device measures velocity directly and is commonly used with non-spectral surfaces. Most often referred to as the VISAR technique (Velocity Interferometer System for Any Reflecting Surface), it has become the most widely-accepted choice for accurate measurement of velocity in the range greater than 1 mm/micro-s. Traditional VISAR devices require extensive setup and adjustment and therefore are unacceptable in a production-testing environment. This paper describes a new VISAR approach which requires virtually no adjustments, yet provides data with accuracy comparable to the more complicated systems. The device, termed the Fixed-Cavity VISAR, is currently being developed to serve as a product verification tool for hot-wire detonators and slappers. An extensive data acquisition and analysis computer code was also created to automate the manipulation of raw data into final results.

  18. Towards a Property-Based Testing Environment With Applications to Security-Critical Software

    DTIC Science & Technology

    1994-01-01

    4 is a slice of the MINIX [Tan87] login program with respect to the setuid system call. The original program contains 337 lines, the slice only 20...demonstrat- ing the e ectiveness of slicing in this case5. The mapping of the abstract concept of au- thentication to source code in the MINIX login...Slice of MINIX login with respect to setuid(). occurs. If no incorrect execution occurs, slices of the program are examined for their data ow coverage

  19. Constant mean curvature slicings of Kantowski-Sachs spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinzle, J. Mark

    2011-04-15

    We investigate existence, uniqueness, and the asymptotic properties of constant mean curvature (CMC) slicings in vacuum Kantowski-Sachs spacetimes with positive cosmological constant. Since these spacetimes violate the strong energy condition, most of the general theorems on CMC slicings do not apply. Although there are in fact Kantowski-Sachs spacetimes with a unique CMC foliation or CMC time function, we prove that there also exist Kantowski-Sachs spacetimes with an arbitrary number of (families of) CMC slicings. The properties of these slicings are analyzed in some detail.

  20. Parametric Trace Slicing

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore (Inventor); Chen, Feng (Inventor); Chen, Guo-fang; Wu, Yamei; Meredith, Patrick O. (Inventor)

    2014-01-01

    A program trace is obtained and events of the program trace are traversed. For each event identified in traversing the program trace, a trace slice of which the identified event is a part is identified based on the parameter instance of the identified event. For each trace slice of which the identified event is a part, the identified event is added to an end of a record of the trace slice. These parametric trace slices can be used in a variety of different manners, such as for monitoring, mining, and predicting.

  1. Organotypic Slice Cultures for Studies of Postnatal Neurogenesis

    PubMed Central

    Mosa, Adam J.; Wang, Sabrina; Tan, Yao Fang; Wojtowicz, J. Martin

    2015-01-01

    Here we describe a technique for studying hippocampal postnatal neurogenesis in the rodent brain using the organotypic slice culture technique. This method maintains the characteristic topographical morphology of the hippocampus while allowing direct application of pharmacological agents to the developing hippocampal dentate gyrus. Additionally, slice cultures can be maintained for up to 4 weeks and thus, allow one to study the maturation process of newborn granule neurons. Slice cultures allow for efficient pharmacological manipulation of hippocampal slices while excluding complex variables such as uncertainties related to the deep anatomic location of the hippocampus as well as the blood brain barrier. For these reasons, we sought to optimize organotypic slice cultures specifically for postnatal neurogenesis research. PMID:25867138

  2. Acute Hippocampal Slice Preparation and Hippocampal Slice Cultures

    PubMed Central

    Lein, Pamela J.; Barnhart, Christopher D.; Pessah, Isaac N.

    2012-01-01

    A major advantage of hippocampal slice preparations is that the cytoarchitecture and synaptic circuits of the hippocampus are largely retained. In neurotoxicology research, organotypic hippocampal slices have mostly been used as acute ex vivo preparations for investigating the effects of neurotoxic chemicals on synaptic function. More recently, hippocampal slice cultures, which can be maintained for several weeks to several months in vitro, have been employed to study how neurotoxic chemicals influence the structural and functional plasticity in hippocampal neurons. This chapter provides protocols for preparing hippocampal slices to be used acutely for electrophysiological measurements using glass microelectrodes or microelectrode arrays or to be cultured for morphometric assessments of individual neurons labeled using biolistics. PMID:21815062

  3. KK parity in warped extra dimension

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Falkowski, Adam; Low, Ian; Servant, Géraldine

    2008-04-01

    We construct models with a Kaluza-Klein (KK) parity in a five-dimensional warped geometry, in an attempt to address the little hierarchy problem present in setups with bulk Standard Model fields. The lightest KK particle (LKP) is stable and can play the role of dark matter. We consider the possibilities of gluing two identical slices of AdS5 in either the UV (IR-UV-IR model) or the IR region (UV-IR-UV model) and discuss the model-building issues as well as phenomenological properties in both cases. In particular, we find that the UV-IR-UV model is not gravitationally stable and that additional mechanisms might be required in the IR-UV-IR model to address flavor issues. Collider signals of the warped KK parity are different from either the conventional warped extra dimension without KK parity, in which the new particles are not necessarily pair-produced, or the KK parity in flat universal extra dimensions, where each KK level is nearly degenerate in mass. Dark matter and collider properties of a TeV mass KK Z gauge boson as the LKP are discussed.

  4. EPICS Controlled Collimator for Controlling Beam Sizes in HIPPO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napolitano, Arthur Soriano; Vogel, Sven C.

    2017-08-03

    Controlling the beam spot size and shape in a diffraction experiment determines the probed sample volume. The HIPPO - High-Pressure-Preferred Orientation– neutron time-offlight diffractometer is located at the Lujan Neutron Scattering Center in Los Alamos National Laboratories. HIPPO characterizes microstructural parameters, such as phase composition, strains, grain size, or texture, of bulk (cm-sized) samples. In the current setup, the beam spot has a 10 mm diameter. Using a collimator, consisting of two pairs of neutron absorbing boron-nitride slabs, horizontal and vertical dimensions of a rectangular beam spot can be defined. Using the HIPPO robotic sample changer for sample motion, themore » collimator would enable scanning of e.g. cylindrical samples along the cylinder axis by probing slices of such samples. The project presented here describes implementation of such a collimator, in particular the motion control software. We utilized the EPICS (Experimental Physics Interface and Control System) software interface to integrate the collimator control into the HIPPO instrument control system. Using EPICS, commands are sent to commercial stepper motors that move the beam windows.« less

  5. Detection of MRI artifacts produced by intrinsic heart motion using a saliency model

    NASA Astrophysics Data System (ADS)

    Salguero, Jennifer; Velasco, Nelson; Romero, Eduardo

    2017-11-01

    Cardiac Magnetic Resonance (CMR) requires synchronization with the ECG to correct many types of noise. However, the complex heart motion frequently produces displaced slices that have to be either ignored or manually corrected since the ECG correction is useless in this case. This work presents a novel methodology that detects the motion artifacts in CMR using a saliency method that highlights the region where the heart chambers are located. Once the Region of Interest (RoI) is set, its center of gravity is determined for the set of slices composing the volume. The deviation of the gravity center is an estimation of the coherence between the slices and is used to find out slices with certain displacement. Validation was performed with distorted real images where a slice is artificially misaligned with respect to set of slices. The displaced slice is found with a Recall of 84% and F Score of 68%.

  6. Photodissociation of Small Molecules and Photoionization of Free Radicals Using the VUV Velocity-Map Imaging Photoion and Photoelectron Method

    NASA Astrophysics Data System (ADS)

    Gao, Hong

    The tunable vacuum ultraviolet (VUV) laser generated through the two-photon resonance-enhanced four-wave mixing scheme is combined with the newly developed time-slice velocity map imaging photoion method to study the photodissociation of small molecules in the VUV region, and with the velocity map imaging photoelectron method to study the photoionization of free radicals. The photodissociation dynamics of NO in the energy region around 13.5 eV has been investigated. Branching ratios of the three lowest dissociation channels of 12C 16O that produce C(3P) + O(3P), C( 1D) + O(3P) and C(3P) + O(1D) are measured for the first time in the VUV region from 102,500 cm-1 to 110,500 cm-1, valuable information of the dissociation dynamics for this prototype system has been deduced. We demonstrated an experiment that has two independently tunable VUV lasers and a time-slice velocity map imaging setup, this provides us a global way to perform systematic state-selected photodissociation of small molecules via state-selected detection of the atomic products in the VUV region. The velocity map imaging photoelectron method was successfully used to obtain the photoelectron spectrum of the propargyl radical (C3H3) via a single VUV photoionization process. The propargyl radical is generated by the 193 nm laser photodissociation of the precursor C3H3Cl. This is the first time that the velocity map imaging photoelectron method is used to get the photoelectron spectra of free radicals, indicating that it is a powerful technique for studying the photoionization of free radicals which are always hard to be produced with high enough number densities for spectroscopic studies. This dissertation is mainly based on the following peer-reviewed journal articles: 1. Hong Gao, Yang Pan, Lei Yang, Jingang Zhou, C. Y. Ng and William M. Jackson. "Time-slice velocity-map ion imaging studies of the Photodissociation of NO in the vacuum ultraviolet region", the Journal of Chemical Physics, 136, 134302 (2012). (Chapter 2) 2. Hong Gao, Yu Song, Lei Yang, Xiaoyu Shi, Qing-Zhu Yin, C. Y. Ng and William M. Jackson. "Branching ratio measurements of the predissociation of 12C16O by time-slice velocity-map ion imaging in the energy region from 108,000 to 110,500 cm-1", the Journal of Chemical Physics, 137, 034305 (2012). (Chapter 3) 3. Hong Gao, Yu Song, Yih-Chung Chang, Xiaoyu Shi, Qing-Zhu Yin, Roger C. Wiens, William M. Jackson, C. Y. Ng, "Branching Ratio Measurements for Vacuum Ultraviolet Photodissociation of 12C16O", the Journal of Physical Chemistry A. (article online ASAP). (Chapter 4) 4. Hong Gao, Yu Song, C. Y. Ng, William M. Jackson, " Communication: State-to-state photodissociation study by the two-color VUV-VUV laser pump-probe time-slice velocity-map-imaging-photoion method", the Journal of Chemical Physics, 138, 191102(2013). (Chapter 5) 5. Hong Gao, Zhou Lu, Lei Yang, Jingang Zhou, C. Y. Ng, "Communication: A vibrational study of propargyl cation using the vacuum ultraviolet laser velocity-map imaging photoelectron method", the Journal of Chemical Physics, 137, 161101(2012). (Chapter 6)

  7. Thin silicon-solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1979-01-01

    Flexible silicon slices of uniform thicknesses are fabricated by etching in sodium hydroxide solution. Maintaining uniform thickness across slices during process(fabrication) is important for cell strength and resistance to damage in handling. Slices formed by procedure have reproducible surface with fine orange peel texture, and are far superior to slices prepared by other methods.

  8. Thick Slice and Thin Slice Teaching Evaluations

    ERIC Educational Resources Information Center

    Tom, Gail; Tong, Stephanie Tom; Hesse, Charles

    2010-01-01

    Student-based teaching evaluations are an integral component to institutions of higher education. Previous work on student-based teaching evaluations suggest that evaluations of instructors based upon "thin slice" 30-s video clips of them in the classroom correlate strongly with their end of the term "thick slice" student evaluations. This study's…

  9. Development of local complexity metrics to quantify the effect of anatomical noise on detectability of lung nodules in chest CT imaging

    NASA Astrophysics Data System (ADS)

    Solomon, Justin; Rubin, Geoffrey; Smith, Taylor; Harrawood, Brian; Choudhury, Kingshuk Roy; Samei, Ehsan

    2017-03-01

    The purpose of this study was to develop metrics of local anatomical complexity and compare them with detectability of lung nodules in CT. Data were drawn retrospectively from a published perception experiment in which detectability was assessed in cases enriched with virtual nodules (13 radiologists x 157 total nodules = 2041 responses). A local anatomical complexity metric called the distractor index was developed, defined as the Gaussian weighted proportion (i.e., average) of distracting local voxels (50 voxels in-plane, 5 slices). A distracting voxel was classified by thresholding image data that had been selectively filtered to enhance nodule-like features. The distractor index was measured for each nodule location in the nodule-free images. The local pixel standard deviation (STD) was also measured for each nodule. Other confounding factors of search fraction (proportion of lung voxels to total voxels in the given slice) and peripheral distance (defined as the 3D distance of the nodule from the trachea bifurcation) were measured. A generalized linear mixed-effects statistical model (no interaction terms, probit link function, random reader term) was fit to the data to determine the influence of each metric on detectability. In order of decreasing effect size: distractor index, STD, and search fraction all significantly affected detectability (P < 0.001). Distance to the trachea did not have a significant effect (P < 0.05). These data demonstrate that local lung complexity degrades detection of lung nodules and the distractor index could serve as a good surrogate metric to quantify anatomical complexity.

  10. Validation of contour-driven thin-plate splines for tracking fraction-to-fraction changes in anatomy and radiation therapy dose mapping.

    PubMed

    Schaly, B; Bauman, G S; Battista, J J; Van Dyk, J

    2005-02-07

    The goal of this study is to validate a deformable model using contour-driven thin-plate splines for application to radiation therapy dose mapping. Our testing includes a virtual spherical phantom as well as real computed tomography (CT) data from ten prostate cancer patients with radio-opaque markers surgically implanted into the prostate and seminal vesicles. In the spherical mathematical phantom, homologous control points generated automatically given input contour data in CT slice geometry were compared to homologous control point placement using analytical geometry as the ground truth. The dose delivered to specific voxels driven by both sets of homologous control points were compared to determine the accuracy of dose tracking via the deformable model. A 3D analytical spherically symmetric dose distribution with a dose gradient of approximately 10% per mm was used for this phantom. This test showed that the uncertainty in calculating the delivered dose to a tissue element depends on slice thickness and the variation in defining homologous landmarks, where dose agreement of 3-4% in high dose gradient regions was achieved. In the patient data, radio-opaque marker positions driven by the thin-plate spline algorithm were compared to the actual marker positions as identified in the CT scans. It is demonstrated that the deformable model is accurate (approximately 2.5 mm) to within the intra-observer contouring variability. This work shows that the algorithm is appropriate for describing changes in pelvic anatomy and for the dose mapping application with dose gradients characteristic of conformal and intensity modulated radiation therapy.

  11. Digital forensic osteology--possibilities in cooperation with the Virtopsy project.

    PubMed

    Verhoff, Marcel A; Ramsthaler, Frank; Krähahn, Jonathan; Deml, Ulf; Gille, Ralf J; Grabherr, Silke; Thali, Michael J; Kreutz, Kerstin

    2008-01-30

    The present study was carried out to check whether classic osteometric parameters can be determined from the 3D reconstructions of MSCT (multislice computed tomography) scans acquired in the context of the Virtopsy project. To this end, four isolated and macerated skulls were examined by six examiners. First the skulls were conventionally (manually) measured using 32 internationally accepted linear measurements. Then the skulls were scanned by the use of MSCT with slice thicknesses of 1.25 mm and 0.63 mm, and the 33 measurements were virtually determined on the digital 3D reconstructions of the skulls. The results of the traditional and the digital measurements were compared for each examiner to figure out variations. Furthermore, several parameters were measured on the cranium and postcranium during an autopsy and compared to the values that had been measured on a 3D reconstruction from a previously acquired postmortem MSCT scan. The results indicate that equivalent osteometric values can be obtained from digital 3D reconstructions from MSCT scans using a slice thickness of 1.25 mm, and from conventional manual examinations. The measurements taken from a corpse during an autopsy could also be validated with the methods used for the digital 3D reconstructions in the context of the Virtopsy project. Future aims are the assessment and biostatistical evaluation in respect to sex, age and stature of all data sets stored in the Virtopsy project so far, as well as of future data sets. Furthermore, a definition of new parameters, only measurable with the aid of MSCT data would be conceivable.

  12. A comparison of N-methyl-D-aspartate-evoked release of adenosine and ( sup 3 H)norepinephrine from rat cortical slices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoehn, K.; Craig, C.G.; White, T.D.

    1990-10-01

    Tetrodotoxin reduced N-methyl-D-aspartate (NMDA)-evoked release of adenosine by 35% but virtually abolished (3H)norepinephrine release. Although (3H)norepinephrine release from rat cortical slices evoked by 500 microM NMDA was abolished by 1.2 mM Mg++, which produces a voltage-sensitive, uncompetitive block of NMDA-channels, adenosine release was increased in the presence of Mg++. Partial depolarization with 12 mM K+ relieved the Mg++ block of 500 microM NMDA-evoked (3H)norepinephrine release but did not affect adenosine release, indicating that a Mg++ requirement for the adenosine release process per se cannot account for this discrepancy. NMDA was 33 times more potent in releasing adenosine than (3H)norepinephrine. Atmore » submaximal concentrations of NMDA (10 and 20 microM), adenosine release was augmented in Mg+(+)-free medium. Although a high concentration of the uncompetitive NMDA antagonist MK-801 ((+)-5-methyl-10,11,dihydro-5H-dibenzo(a,d)cyclohepten-5-10-imine maleate) (3 microM) blocked NMDA-evoked release of (3H)norepinephrine and adenosine, a lower concentration (300 nM) decreased NMDA-evoked (3H)norepinephrine release by 66% without affecting adenosine release. These findings suggest that maximal adenosine release occurs when relatively few NMDA receptors are activated, raising the possibility that spare receptors exist for NMDA-evoked adenosine release. Rather than acting as a protectant against excessive NMDA excitation, released adenosine might provide an inhibitory threshold which must be overcome for NMDA-mediated neurotransmission to proceed.« less

  13. Comparing thin slices of verbal communication behavior of varying number and duration.

    PubMed

    Carcone, April Idalski; Naar, Sylvie; Eggly, Susan; Foster, Tanina; Albrecht, Terrance L; Brogan, Kathryn E

    2015-02-01

    The aim of this study was to assess the accuracy of thin slices to characterize the verbal communication behavior of counselors and patients engaged in Motivational Interviewing sessions relative to fully coded sessions. Four thin slice samples that varied in number (four versus six slices) and duration (one- versus two-minutes) were extracted from a previously coded dataset. In the parent study, an observational code scheme was used to characterize specific counselor and patient verbal communication behaviors. For the current study, we compared the frequency of communication codes and the correlations among the full dataset and each thin slice sample. Both the proportion of communication codes and strength of the correlation demonstrated the highest degree of accuracy when a greater number (i.e., six versus four) and duration (i.e., two- versus one-minute) of slices were extracted. These results suggest that thin slice sampling may be a useful and accurate strategy to reduce coding burden when coding specific verbal communication behaviors within clinical encounters. We suggest researchers interested in using thin slice sampling in their own work conduct preliminary research to determine the number and duration of thin slices required to accurately characterize the behaviors of interest. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Non-enzymatic browning and flavour kinetics of vacuum dried onion slices

    NASA Astrophysics Data System (ADS)

    Mitra, Jayeeta; Shrivastava, Shanker L.; Rao, Pavuluri S.

    2015-01-01

    Onion slices were dehydrated under vacuum to produce good quality dried ready-to-use onion slices. Colour development due to non-enzymatic browning and flavour loss in terms of thiosulphinate concentration was determined, along with moisture content and rehydration ratio. Kinetics of non-enzymatic browning and thiosulphinate loss during drying was analysed. Colour change due to non-enzymatic browning was found to be much lower in the case of vacuum dried onion, and improved flavour retention was observed as compared to hot air dried onion slices. The optical index values for non-enzymatic browning varied from 18.41 to 38.68 for untreated onion slices and from 16.73 to 36.51 for treated slices, whereas thiosulphinate concentration in the case of untreated onion slices was within the range of 2.96-3.92 μmol g-1 for dried sample and 3.71-4.43 μmol g-1 for the treated onion slices. Rehydration ratio was also increased, which may be attributed to a better porous structure attained due to vacuum drying. The treatment applied was found very suitable in controlling non-enzymatic browning and flavour loss during drying, besides increasing rehydration ratio. Hence, high quality dried ready- to-use onion slices were prepared.

  15. Ripple artifact reduction using slice overlap in slice encoding for metal artifact correction.

    PubMed

    den Harder, J Chiel; van Yperen, Gert H; Blume, Ulrike A; Bos, Clemens

    2015-01-01

    Multispectral imaging (MSI) significantly reduces metal artifacts. Yet, especially in techniques that use gradient selection, such as slice encoding for metal artifact correction (SEMAC), a residual ripple artifact may be prominent. Here, an analysis is presented of the ripple artifact and of slice overlap as an approach to reduce the artifact. The ripple artifact was analyzed theoretically to clarify its cause. Slice overlap, conceptually similar to spectral bin overlap in multi-acquisition with variable resonances image combination (MAVRIC), was achieved by reducing the selection gradient and, thus, increasing the slice profile width. Time domain simulations and phantom experiments were performed to validate the analyses and proposed solution. Discontinuities between slices are aggravated by signal displacement in the frequency encoding direction in areas with deviating B0. Specifically, it was demonstrated that ripple artifacts appear only where B0 varies both in-plane and through-plane. Simulations and phantom studies of metal implants confirmed the efficacy of slice overlap to reduce the artifact. The ripple artifact is an important limitation of gradient selection based MSI techniques, and can be understood using the presented simulations. At a scan-time penalty, slice overlap effectively addressed the artifact, thereby improving image quality near metal implants. © 2014 Wiley Periodicals, Inc.

  16. Half radiofrequency pulse excitation with a dedicated prescan to correct eddy current effect and gradient delay.

    PubMed

    Abe, Takayuki

    2013-03-01

    To improve the slice profile of the half radiofrequency (RF) pulse excitation and image quality of ultrashort echo time (UTE) imaging by compensating for an eddy current effect. The dedicated prescan has been developed to measure the phase accumulation due to eddy currents induced by the slice-selective gradient. The prescan measures two one-dimensional excitation k-space profiles, which can be acquired with a readout gradient in the slice-selection direction by changing the polarity of the slice-selective gradient. The time shifts due to the phase accumulation in the excitation k-space were calculated. The time shift compensated for the start time of the slice-selective gradient. The total prescan time was 6-15 s. The slice profile and the UTE image with the half RF pulse excitation were acquired to evaluate the slice selectivity and the image quality. Improved slice selectivity was obtained. The simple method proposed in this paper can eliminate eddy current effect. Good UTE images were obtained. The slice profile of the half RF pulse excitation and the image quality of UTE images have been improved by using a dedicated prescan. This method has a possibility that can improve the image quality of a clinical UTE imaging.

  17. Effects of the calcium channel blocker verapamil and sulphydryl reducing agent dithiothreitol on atractyloside toxicity in precision-cut rat renal cortical and liver slices.

    PubMed

    Obatomi, D K; Blackburn, R O; Bach, P H

    2001-10-01

    The effects of dithiothreitol (DTT), a sulfhydryl-containing agent and verapamil (VRP), a calcium channel blocker as possible cytoprotectants against the atractyloside-induced toxicity were characterized in rat kidney and liver slices in vitro using multiple markers of toxicity. Precision-cut slices (200 microM thick) were either incubated with atractyloside (2 mM) or initially preincubated with either DTT (5 mM) or VRP (100 microM) for 30 min followed by exposure to atractyloside (2 mM) for 3 h at 37 degrees C on a rocker platform rotated at approximately 3 rpm. All of the toxicity parameters were sensitive to exposure to atractyloside, but treatment with DTT or VRP alone did not provide any indication of damage to the tissues. Preincubation of slices containing either DTT or VRP for 30 min provided total protection against atractyloside-induced increase in LDH leakage in both kidney and liver slices. Increased induction of lipid peroxidation by atractyloside in liver slices was completely abolished by DTT and VRP. Both DTT and VRP provided partial protection against atractyloside-induced inhibition of gluconeogenesis in both kidney and liver slices. Atractyloside-induced ATP depletion in both kidney and liver slices was partially abolished by VRP but not DTT. The significant depletion of GSH in the kidney slices by atractyloside was completely reversed by DTT only, while VRP alone reversed the same process in liver slices. Decreased MTT reductive capacity and significant increase in ALT leakage caused by atractyloside in liver slices was partially reversed. Complete protection was achieved with both DTT and VRP against atractyloside-induced inhibition of PAH uptake in kidney slices. These findings suggest that both DTT and VRP exert cytoprotective effects in atractyloside-induced biochemical perturbation, effects that differ in liver and kidney. The effect of these agents on atractyloside has provided us with a further understanding of the molecular mechanism of its action.

  18. TU-EF-204-11: Impact of Using Multi-Slice Training Sets On the Performance of a Channelized Hotelling Observer in a Low-Contrast Detection Task in CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favazza, C; Yu, L; Leng, S

    2015-06-15

    Purpose: To investigate using multiple CT image slices from a single acquisition as independent training images for a channelized Hotelling observer (CHO) model to reduce the number of repeated scans for CHO-based CT image quality assessment. Methods: We applied a previously validated CHO model to detect low contrast disk objects formed from cross-sectional images of three epoxy-resin-based rods (diameters: 3, 5, and 9 mm; length: ∼5cm). The rods were submerged in a 35x 25 cm2 iodine-doped water filled phantom, yielding-15 HU object contrast. The phantom was scanned 100 times with and without the rods present. Scan and reconstruction parameters include:more » 5 mm slice thickness at 0.5 mm intervals, 120 kV, 480 Quality Reference mAs, and a 128-slice scanner. The CHO’s detectability index was evaluated as a function of factors related to incorporating multi-slice image data: object misalignment along the z-axis, inter-slice pixel correlation, and number of unique slice locations. In each case, the CHO training set was fixed to 100 images. Results: Artificially shifting the object’s center position by as much as 3 pixels in any direction relative to the Gabor channel filters had insignificant impact on object detectability. An inter-slice pixel correlation of >∼0.2 yielded positive bias in the model’s performance. Incorporating multi-slice image data yielded slight negative bias in detectability with increasing number of slices, likely due to physical variations in the objects. However, inclusion of image data from up to 5 slice locations yielded detectability indices within measurement error of the single slice value. Conclusion: For the investigated model and task, incorporating image data from 5 different slice locations of at least 5 mm intervals into the CHO model yielded detectability indices within measurement error of the single slice value. Consequently, this methodology would Result in a 5-fold reduction in number of image acquisitions. This project was supported by National Institutes of Health grants R01 EB017095 and U01 EB017185 from the National Institute of Biomedical Imaging and Bioengineering.« less

  19. Simulation as a set-up for technical proficiency: can a virtual warm-up improve live fibre-optic intubation?

    PubMed

    Samuelson, S T; Burnett, G; Sim, A J; Hofer, I; Weinberg, A D; Goldberg, A; Chang, T S; DeMaria, S

    2016-03-01

    Fibre-optic intubation (FOI) is an advanced technical skill, which anaesthesia residents must frequently perform under pressure. In surgical subspecialties, a virtual 'warm-up' has been used to prime a practitioner's skill set immediately before performance of challenging procedures. This study examined whether a virtual warm-up improved the performance of elective live patient FOI by anaesthesia residents. Clinical anaesthesia yr 1 and 2 (CA1 and CA2) residents were recruited to perform elective asleep oral FOI. Residents either underwent a 5 min, guided warm-up (using a bronchoscopy simulator) immediately before live FOI on patients with predicted normal airways or performed live FOI on similar patients without the warm-up. Subjects were timed performing FOI (from scope passing teeth to viewing the carina) and were graded on a 45-point skill scale by attending anaesthetists. After a washout period, all subjects were resampled as members of the opposite cohort. Multivariate analysis was performed to control for variations in previous FOI experience of the residents. Thirty-three anaesthesia residents were recruited, of whom 22 were CA1 and 11 were CA2. Virtual warm-up conferred a 37% reduction in time for CA1s (mean 35.8 (SD 3.2) s vs. 57 (SD 3.2) s, P<0.0002) and a 26% decrease for CA2s (mean 23 (SD 1.7) s vs. 31 (SD 1.7) s, P=0.0118). Global skill score increased with warm-up by 4.8 points for CA1s (mean 32.8 (SD 1.2) vs. 37.6 (SD 1.2), P=0.0079) and 5.1 points for CA2s (37.7 (SD 1.1) vs. 42.8 (SD 1.1), P=0.0125). Crossover period and sequence did not show a statistically significant association with performance. Virtual warm-up significantly improved performance by residents of FOI in live patients with normal airway anatomy, as measured both by speed and by a scaled evaluation of skills. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. [Design and accuracy analysis of upper slicing system of MSCT].

    PubMed

    Jiang, Rongjian

    2013-05-01

    The upper slicing system is the main components of the optical system in MSCT. This paper focuses on the design of upper slicing system and its accuracy analysis to improve the accuracy of imaging. The error of slice thickness and ray center by bearings, screw and control system were analyzed and tested. In fact, the accumulated error measured is less than 1 microm, absolute error measured is less than 10 microm. Improving the accuracy of the upper slicing system contributes to the appropriate treatment methods and success rate of treatment.

  1. A survey of program slicing for software engineering

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    This research concerns program slicing which is used as a tool for program maintainence of software systems. Program slicing decreases the level of effort required to understand and maintain complex software systems. It was first designed as a debugging aid, but it has since been generalized into various tools and extended to include program comprehension, module cohesion estimation, requirements verification, dead code elimination, and maintainence of several software systems, including reverse engineering, parallelization, portability, and reuse component generation. This paper seeks to address and define terminology, theoretical concepts, program representation, different program graphs, developments in static slicing, dynamic slicing, and semantics and mathematical models. Applications for conventional slicing are presented, along with a prognosis of future work in this field.

  2. The mouse cerebellar cortex in organotypic slice cultures: an in vitro model to analyze the consequences of mutations and pathologies on neuronal survival, development, and function.

    PubMed

    Lonchamp, Etienne; Dupont, Jean-Luc; Beekenkamp, Huguette; Poulain, Bernard; Bossu, Jean-Louis

    2006-01-01

    Thin acute slices and dissociated cell cultures taken from different parts of the brain have been widely used to examine the function of the nervous system, neuron-specific interactions, and neuronal development (specifically, neurobiology, neuropharmacology, and neurotoxicology studies). Here, we focus on an alternative in vitro model: brain-slice cultures in roller tubes, initially introduced by Beat Gähwiler for studies with rats, that we have recently adapted for studies of mouse cerebellum. Cultured cerebellar slices afford many of the advantages of dissociated cultures of neurons and thin acute slices. Organotypic slice cultures were established from newborn or 10-15-day-old mice. After 3-4 weeks in culture, the slices flattened to form a cell monolayer. The main types of cerebellar neurons could be identified with immunostaining techniques, while their electrophysiological properties could be easily characterized with the patch-clamp recording technique. When slices were taken from newborn mice and cultured for 3 weeks, aspects of the cerebellar development were displayed. A functional neuronal network was established despite the absence of mossy and climbing fibers, which are the two excitatory afferent projections to the cerebellum. When slices were made from 10-15-day-old mice, which are at a developmental stage when cerebellum organization is almost established, the structure and neuronal pathways were intact after 3-4 weeks in culture. These unique characteristics make organotypic slice cultures of mouse cerebellar cortex a valuable model for analyzing the consequences of gene mutations that profoundly alter neuronal function and compromise postnatal survival.

  3. Inter-slice Leakage Artifact Reduction Technique for Simultaneous Multi-Slice Acquisitions

    PubMed Central

    Cauley, Stephen F.; Polimeni, Jonathan R.; Bhat, Himanshu; Wang, Dingxin; Wald, Lawrence L.; Setsompop, Kawin

    2015-01-01

    Purpose Controlled aliasing techniques for simultaneously acquired EPI slices have been shown to significantly increase the temporal efficiency for both diffusion-weighted imaging (DWI) and fMRI studies. The “slice-GRAPPA” (SG) method has been widely used to reconstruct such data. We investigate robust optimization techniques for SG to ensure image reconstruction accuracy through a reduction of leakage artifacts. Methods Split slice-GRAPPA (SP-SG) is proposed as an alternative kernel optimization method. The performance of SP-SG is compared to standard SG using data collected on a spherical phantom and in-vivo on two subjects at 3T. Slice accelerated and non-accelerated data were collected for a spin-echo diffusion weighted acquisition. Signal leakage metrics and time-series SNR were used to quantify the performance of the kernel fitting approaches. Results The SP-SG optimization strategy significantly reduces leakage artifacts for both phantom and in-vivo acquisitions. In addition, a significant boost in time-series SNR for in-vivo diffusion weighted acquisitions with in-plane 2× and slice 3× accelerations was observed with the SP-SG approach. Conclusion By minimizing the influence of leakage artifacts during the training of slice-GRAPPA kernels, we have significantly improved reconstruction accuracy. Our robust kernel fitting strategy should enable better reconstruction accuracy and higher slice-acceleration across many applications. PMID:23963964

  4. Comparison of sliced lungs with whole lung sets for a torso phantom measured with Ge detectors using Monte Carlo simulations (MCNP).

    PubMed

    Kramer, Gary H; Guerriere, Steven

    2003-02-01

    Lung counters are generally used to measure low energy photons (<100 keV). They are usually calibrated with lung sets that are manufactured from a lung tissue substitute material that contains homogeneously distributed activity; however, it is difficult to verify either the activity in the phantom or the homogeneity of the activity distribution without destructive testing. Lung sets can have activities that are as much as 25% different from the expected value. An alternative method to using whole lungs to calibrate a lung counter is to use a sliced lung with planar inserts. Experimental work has already indicated that this alternative method of calibration can be a satisfactory substitute. This work has extended the experimental study by the use of Monte Carlo simulation to validate that sliced and whole lungs are equivalent. It also has determined the optimum slice thicknesses that separate the planar sources in the sliced lung. Slice thicknesses have been investigated in the range of 0.5 cm to 9.0 cm and at photon energies from 17 keV to 1,000 keV. Results have shown that there is little difference between sliced and whole lungs at low energies providing that the slice thickness is 2.0 cm or less. As the photon energy rises the slice thickness can increase substantially with no degradation on equivalence.

  5. Impacts of simultaneous multislice acquisition on sensitivity and specificity in fMRI.

    PubMed

    Risk, Benjamin B; Kociuba, Mary C; Rowe, Daniel B

    2018-05-15

    Simultaneous multislice (SMS) imaging can be used to decrease the time between acquisition of fMRI volumes, which can increase sensitivity by facilitating the removal of higher-frequency artifacts and boosting effective sample size. The technique requires an additional processing step in which the slices are separated, or unaliased, to recover the whole brain volume. However, this may result in signal "leakage" between aliased locations, i.e., slice "leakage," and lead to spurious activation (decreased specificity). SMS can also lead to noise amplification, which can reduce the benefits of decreased repetition time. In this study, we evaluate the original slice-GRAPPA (no leak block) reconstruction algorithm and acceleration factor (AF = 8) used in the fMRI data in the young adult Human Connectome Project (HCP). We also evaluate split slice-GRAPPA (leak block), which can reduce slice leakage. We use simulations to disentangle higher test statistics into true positives (sensitivity) and false positives (decreased specificity). Slice leakage was greatly decreased by split slice-GRAPPA. Noise amplification was decreased by using moderate acceleration factors (AF = 4). We examined slice leakage in unprocessed fMRI motor task data from the HCP. When data were smoothed, we found evidence of slice leakage in some, but not all, subjects. We also found evidence of SMS noise amplification in unprocessed task and processed resting-state HCP data. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Bias field inconsistency correction of motion-scattered multislice MRI for improved 3D image reconstruction.

    PubMed

    Kim, Kio; Habas, Piotr A; Rajagopalan, Vidya; Scott, Julia A; Corbett-Detig, James M; Rousseau, Francois; Barkovich, A James; Glenn, Orit A; Studholme, Colin

    2011-09-01

    A common solution to clinical MR imaging in the presence of large anatomical motion is to use fast multislice 2D studies to reduce slice acquisition time and provide clinically usable slice data. Recently, techniques have been developed which retrospectively correct large scale 3D motion between individual slices allowing the formation of a geometrically correct 3D volume from the multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to imaging coils. As a result, slices which cover the same region of anatomy at different times may exhibit different sensitivity. This bias field inconsistency can induce artifacts in the final 3D reconstruction that can impact both clinical interpretation of key tissue boundaries and the automated analysis of the data. Here we describe a framework to estimate and correct the bias field inconsistency in each slice collectively across all motion corrupted image slices. Experiments using synthetic and clinical data show that the proposed method reduces intensity variability in tissues and improves the distinction between key tissue types.

  7. Target recognition of ladar range images using slice image: comparison of four improved algorithms

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Cao, Jingya; Wang, Liang; Zhai, Yu; Cheng, Yang

    2017-07-01

    Compared with traditional 3-D shape data, ladar range images possess properties of strong noise, shape degeneracy, and sparsity, which make feature extraction and representation difficult. The slice image is an effective feature descriptor to resolve this problem. We propose four improved algorithms on target recognition of ladar range images using slice image. In order to improve resolution invariance of the slice image, mean value detection instead of maximum value detection is applied in these four improved algorithms. In order to improve rotation invariance of the slice image, three new improved feature descriptors-which are feature slice image, slice-Zernike moments, and slice-Fourier moments-are applied to the last three improved algorithms, respectively. Backpropagation neural networks are used as feature classifiers in the last two improved algorithms. The performance of these four improved recognition systems is analyzed comprehensively in the aspects of the three invariances, recognition rate, and execution time. The final experiment results show that the improvements for these four algorithms reach the desired effect, the three invariances of feature descriptors are not directly related to the final recognition performance of recognition systems, and these four improved recognition systems have different performances under different conditions.

  8. Local T1-T2 distribution measurements in porous media

    NASA Astrophysics Data System (ADS)

    Vashaee, S.; Li, M.; Newling, B.; MacMillan, B.; Marica, F.; Kwak, H. T.; Gao, J.; Al-harbi, A. M.; Balcom, B. J.

    2018-02-01

    A novel slice-selective T1-T2 measurement is proposed to measure spatially resolved T1-T2 distributions. An adiabatic inversion pulse is employed for slice-selection. The slice-selective pulse is able to select a quasi-rectangular slice, on the order of 1 mm, at an arbitrary position within the sample. The method does not employ conventional selective excitation in which selective excitation is often accomplished by rotation of the longitudinal magnetization in the slice of interest into the transverse plane, but rather a subtraction based on CPMG data acquired with and without adiabatic inversion slice selection. T1 weighting is introduced during recovery from the inversion associated with slice selection. The local T1-T2 distributions measured are of similar quality to bulk T1-T2 measurements. The new method can be employed to characterize oil-water mixtures and other fluids in porous media. The method is beneficial when a coarse spatial distribution of the components is of interest.

  9. The StratusLab cloud distribution: Use-cases and support for scientific applications

    NASA Astrophysics Data System (ADS)

    Floros, E.

    2012-04-01

    The StratusLab project is integrating an open cloud software distribution that enables organizations to setup and provide their own private or public IaaS (Infrastructure as a Service) computing clouds. StratusLab distribution capitalizes on popular infrastructure virtualization solutions like KVM, the OpenNebula virtual machine manager, Claudia service manager and SlipStream deployment platform, which are further enhanced and expanded with additional components developed within the project. The StratusLab distribution covers the core aspects of a cloud IaaS architecture, namely Computing (life-cycle management of virtual machines), Storage, Appliance management and Networking. The resulting software stack provides a packaged turn-key solution for deploying cloud computing services. The cloud computing infrastructures deployed using StratusLab can support a wide range of scientific and business use cases. Grid computing has been the primary use case pursued by the project and for this reason the initial priority has been the support for the deployment and operation of fully virtualized production-level grid sites; a goal that has already been achieved by operating such a site as part of EGI's (European Grid Initiative) pan-european grid infrastructure. In this area the project is currently working to provide non-trivial capabilities like elastic and autonomic management of grid site resources. Although grid computing has been the motivating paradigm, StratusLab's cloud distribution can support a wider range of use cases. Towards this direction, we have developed and currently provide support for setting up general purpose computing solutions like Hadoop, MPI and Torque clusters. For what concerns scientific applications the project is collaborating closely with the Bioinformatics community in order to prepare VM appliances and deploy optimized services for bioinformatics applications. In a similar manner additional scientific disciplines like Earth Science can take advantage of StratusLab cloud solutions. Interested users are welcomed to join StratusLab's user community by getting access to the reference cloud services deployed by the project and offered to the public.

  10. Multi-slice ultrasound image calibration of an intelligent skin-marker for soft tissue artefact compensation.

    PubMed

    Masum, M A; Pickering, M R; Lambert, A J; Scarvell, J M; Smith, P N

    2017-09-06

    In this paper, a novel multi-slice ultrasound (US) image calibration of an intelligent skin-marker used for soft tissue artefact compensation is proposed to align and orient image slices in an exact H-shaped pattern. Multi-slice calibration is complex, however, in the proposed method, a phantom based visual alignment followed by transform parameters estimation greatly reduces the complexity and provides sufficient accuracy. In this approach, the Hough Transform (HT) is used to further enhance the image features which originate from the image feature enhancing elements integrated into the physical phantom model, thus reducing feature detection uncertainty. In this framework, slice by slice image alignment and calibration are carried out and this provides manual ease and convenience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. RF slice profile effects in magnetic resonance fingerprinting.

    PubMed

    Hong, Taehwa; Han, Dongyeob; Kim, Min-Oh; Kim, Dong-Hyun

    2017-09-01

    The radio frequency (RF) slice profile effects on T1 and T2 estimation in magnetic resonance fingerprinting (MRF) are investigated with respect to time-bandwidth product (TBW), flip angle (FA) level and field inhomogeneities. Signal evolutions are generated incorporating the non-ideal slice selective excitation process using Bloch simulation and matched to the original dictionary with and without the non-ideal slice profile taken into account. For validation, phantom and in vivo experiments are performed at 3T. Both simulations and experiments results show that T1 and T2 error from non-ideal slice profile increases with increasing FA level, off-resonance, and low TBW values. Therefore, RF slice profile effects should be compensated for accurate determination of the MR parameters. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Simulation and performance analysis of a novel high-accuracy sheathless microfluidic impedance cytometer with coplanar electrode layout.

    PubMed

    Caselli, Federica; Bisegna, Paolo

    2017-10-01

    The performance of a novel microfluidic impedance cytometer (MIC) with coplanar configuration is investigated in silico. The main feature of the device is the ability to provide accurate particle-sizing despite the well-known measurement sensitivity to particle trajectory. The working principle of the device is presented and validated by means of an original virtual laboratory providing close-to-experimental synthetic data streams. It is shown that a metric correlating with particle trajectory can be extracted from the signal traces and used to compensate the trajectory-induced error in the estimated particle size, thus reaching high-accuracy. An analysis of relevant parameters of the experimental setup is also presented. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. A low cost indoor localization system for mobile robot experimental setup

    NASA Astrophysics Data System (ADS)

    Adinandra, S.; Syarif, A.

    2018-04-01

    Indoor localization becomes one of the most important part in mobile robot system One fundamental requirement is to provide an easy-to-use and practical localization system for real-time experiments. In this paper we propose a combination of a recent open source virtual reality (VR) tools, a simple MATLAB code and a low cost USB webcam as an indoor mobile robot localization system Using the VR tools as a server and MATLAB as a client, the proposed solution can cover up to 1.6 [m] × 3.2 [m] with the measurement position accuracy up to 1.2 [cm]. The system is insensitive to light, easy to move and can be quickly set up. A series of successful real-time experiments with three different mobile robot types has been conducted.

  14. Reviews

    NASA Astrophysics Data System (ADS)

    2005-07-01

    WE RECOMMEND When Physics Became King This book delves into the history of science since the 18th century. The History of the Laser An interesting read that will teach you far more than its title suggests. History of Physics Selected Reprints A fascinating collection of physics papers spanning four decades. Datalogging set-ups Five great products from Leybold Didactic’s CASSY range. Videocom Measure motion and convert it to graphs with this great device. Basic Raybox This simple piece of equipment offers great performance. WORTH A LOOK Virtual Physics Lab John Nunn’s software demystifies science using clear illustrations. HANDLE WITH CARE Microchem Electricity Kit This box of equipment for introducing electricity lacks quality. Raymond the Raybox A disappointing raybox. The basic version reviewed on p389 is better. WEB WATCH A rough guide to e-learning.

  15. SLICE/MARC-O: Description of Services. Second Revised Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Libraries, Oklahoma City.

    Following the discussions of: what is SLICE, what is MARC, what is MARC-O, and what is SLICE/MARC-O are descriptions of the five services offered by SLICE/MARC-O. These services are: (1) cataloging data search and print, (2) MARC record and search and copy, (3) standard S.D.I. current awareness, (4) custom S.D.I. current awareness and (5) SLICE…

  16. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-13C]Glucose and [1,2-13C]Acetate as Substrates.

    PubMed

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B; Andersen, Jens V; Aldana, Blanca I; Nissen, Jakob D; Schousboe, Arne; Waagepetersen, Helle S

    2017-03-01

    Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few comparative characterization studies exist for acute hippocampal and cerebral cortical slices, hence, the aim of the current study was to characterize and compare glucose and acetate metabolism in these slice preparations in a newly established incubation design. Cerebral cortical and hippocampal slices prepared from 16 to 18-week-old mice were incubated for 15-90 min with unlabeled glucose in combination with [U- 13 C]glucose or [1,2- 13 C]acetate. Our newly developed incubation apparatus allows accurate control of temperature and is designed to avoid evaporation of the incubation medium. Subsequent to incubation, slices were extracted and extracts analyzed for 13 C-labeling (%) and total amino acid contents (µmol/mg protein) using gas chromatography-mass spectrometry and high performance liquid chromatography, respectively. Release of lactate from the slices was quantified by analysis of the incubation media. Based on the measured 13 C-labeling (%), total amino acid contents and relative activity of metabolic enzymes/pathways, we conclude that the slice preparations in the current incubation apparatus exhibited a high degree of metabolic integrity. Comparison of 13 C-labeling observed with [U- 13 C]glucose in slices from cerebral cortex and hippocampus revealed no significant regional differences regarding glycolytic or total TCA cycle activities. On the contrary, results from the incubations with [1,2- 13 C]acetate suggest a higher capacity of the astrocytic TCA cycle in hippocampus compared to cerebral cortex. Finally, we propose a new approach for assessing compartmentation of metabolite pools between astrocytes and neurons using 13 C-labeling (%) data obtained from mass spectrometry. Based on this approach we suggest that cellular metabolic compartmentation in hippocampus and cerebral cortex is very similar.

  17. Baclofen and phaclofen modulate GABA release from slices of rat cerebral cortex and spinal cord but not from retina.

    PubMed Central

    Neal, M. J.; Shah, M. A.

    1989-01-01

    1. The effects of (-)-baclofen, muscimol and phaclofen on endogenous gamma-aminobutyric acid (GABA) release from rat cortical slices, spinal cord slices and entire retinas were studied. 2. The spontaneous resting release of GABA from the three tissues was 3 to 6 pmol mg-1 wet wt 10 min-1. Depolarization of cortical slices with KCl (50 mM) (high-K) produced an 8 fold increase in GABA release but high-K did not evoke an increased release of GABA from spinal slices or retinas. 3. When rats were injected with gamma-vinyl-GABA (250 mg kg-1 i.p.) (GVG) 18 h before death, the tissue GABA stores were increased 3 to 6 fold and high-K then evoked striking Ca-dependent releases of GABA from all three tissues. Thus, in subsequent experiments, unless otherwise stated, the nervous tissues were taken from GVG-treated rats. 4. (-)-Baclofen (10 microM) significantly reduced the K-evoked release of GABA from cortical and spinal slices but retinal release was not affected, even at a concentration of (+/-)-baclofen of 1 mM. For cortical slices, the IC50 for baclofen was approximately 5.2 microM. The inhibitory effect of baclofen on GABA release from cortical slices also occurred in slices prepared from saline-injected rats, indicating that GVG treatment did not qualitatively affect the results. 5. The inhibitory effect of (-)-baclofen on the K-evoked release of GABA from cortical and spinal slices was antagonised by phaclofen (500 microM), confirming that baclofen was producing its effects by acting at the GABAB-receptor.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2804540

  18. [Diagnostic values of bronchoscopy and multi-slice spiral CT for congenital dysplasia of the respiratory system in infants: a comparative study].

    PubMed

    Wang, Xing-Lu; Huang, Ying; Li, Qu-Bei; Dai, Ji-Hong

    2013-09-01

    To investigate and compare the diagnostic values of bronchoscopy and multi-slice spiral computed tomography (CT) for congenital dysplasia of the respiratory system in infants. Analysis was performed on the clinical data, bronchoscopic findings and multi-slice spiral CT findings of 319 infants (≤1 years old) who underwent bronchoscopy and/or multi-slice spiral CT and were diagnosed with congenital dysplasia of the respiratory system. A total of 476 cases of congenital dysplasia of the respiratory system were found in the 319 infants, including primary dysplasia of the respiratory system (392 cases) and compressive dysplasia of the respiratory system (84 cases). Of the 392 cases of primary dysplasia of the respiratory system, 225 (57.4%) were diagnosed by bronchoscopy versus 167 (42.6%) by multi-slice spiral CT. There were significant differences in etiological diagnosis between bronchoscopy and multi-slice spiral CT in infants with congenital dysplasia of the respiratory system (P<0.05). All 76 cases of primary dysplasia of the respiratory system caused by tracheobronchomalacia were diagnosed by bronchoscopy and all 17 cases of primary dysplasia of the respiratory system caused by lung tissue dysplasia were diagnosed by multi-slice spiral CT. Of the 84 cases of compressive dysplasia of the respiratory system, 74 cases were diagnosed by multi-slice spiral CT and only 10 cases were diagnosed by bronchoscopy. Compared with multi-slice spiral CT, bronchoscopy can detect primary dysplasia of the respiratory system more directly. Bronchoscopy is valuable in the confirmed diagnosis of tracheobronchomalacia. Multi-slice spiral CT has a higher diagnostic value for lung tissue dysplasia than bronchoscopy.

  19. Modelling rapid subsurface flow at the hillslope scale with explicit representation of preferential flow paths

    NASA Astrophysics Data System (ADS)

    Wienhöfer, J.; Zehe, E.

    2012-04-01

    Rapid lateral flow processes via preferential flow paths are widely accepted to play a key role for rainfall-runoff response in temperate humid headwater catchments. A quantitative description of these processes, however, is still a major challenge in hydrological research, not least because detailed information about the architecture of subsurface flow paths are often impossible to obtain at a natural site without disturbing the system. Our study combines physically based modelling and field observations with the objective to better understand how flow network configurations influence the hydrological response of hillslopes. The system under investigation is a forested hillslope with a small perennial spring at the study area Heumöser, a headwater catchment of the Dornbirnerach in Vorarlberg, Austria. In-situ points measurements of field-saturated hydraulic conductivity and dye staining experiments at the plot scale revealed that shrinkage cracks and biogenic macropores function as preferential flow paths in the fine-textured soils of the study area, and these preferential flow structures were active in fast subsurface transport of artificial tracers at the hillslope scale. For modelling of water and solute transport, we followed the approach of implementing preferential flow paths as spatially explicit structures of high hydraulic conductivity and low retention within the 2D process-based model CATFLOW. Many potential configurations of the flow path network were generated as realisations of a stochastic process informed by macropore characteristics derived from the plot scale observations. Together with different realisations of soil hydraulic parameters, this approach results in a Monte Carlo study. The model setups were used for short-term simulation of a sprinkling and tracer experiment, and the results were evaluated against measured discharges and tracer breakthrough curves. Although both criteria were taken for model evaluation, still several model setups produced acceptable matches to the observed behaviour. These setups were selected for long-term simulation, the results of which were compared against water level measurements at two piezometers along the hillslope and the integral discharge response of the spring to reject some non-behavioural model setups and further reduce equifinality. The results of this study indicate that process-based modelling can provide a means to distinguish preferential flow networks on the hillslope scale when complementary measurements to constrain the range of behavioural model setups are available. These models can further be employed as a virtual reality to investigate the characteristics of flow path architectures and explore effective parameterisations for larger scale applications.

  20. Rat brain sagittal organotypic slice cultures as an ex vivo dopamine cell loss system.

    PubMed

    McCaughey-Chapman, Amy; Connor, Bronwen

    2017-02-01

    Organotypic brain slice cultures are a useful tool to study neurological function as they provide a more complex, 3-dimensional system than standard 2-dimensional in vitro cell cultures. Building on a previously developed mouse brain slice culture protocol, we have developed a rat sagittal brain slice culture system as an ex vivo model of dopamine cell loss. We show that rat brain organotypic slice cultures remain viable for up to 6 weeks in culture. Using Fluoro-Gold axonal tracing, we demonstrate that the slice 3-dimensional cytoarchitecture is maintained over a 4 week culturing period, with particular focus on the nigrostriatal pathway. Treatment of the cultures with 6-hydroxydopamine and desipramine induces a progressive loss of Fluoro-Gold-positive nigral cells with a sustained loss of tyrosine hydroxylase-positive nigral cells. This recapitulates the pattern of dopaminergic degeneration observed in the rat partial 6-hydroxydopamine lesion model and, most importantly, the progressive pathology of Parkinson's disease. Our slice culture platform provides an advance over other systems, as we demonstrate for the first time 3-dimensional cytoarchitecture maintenance of rat nigrostriatal sagittal slices for up to 6 weeks. Our ex vivo organotypic slice culture system provides a long term cellular platform to model Parkinson's disease, allowing for the elucidation of mechanisms involved in dopaminergic neuron degeneration and the capability to study cellular integration and plasticity ex vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Time efficient whole-brain coverage with MR Fingerprinting using slice-interleaved echo-planar-imaging.

    PubMed

    Rieger, Benedikt; Akçakaya, Mehmet; Pariente, José C; Llufriu, Sara; Martinez-Heras, Eloy; Weingärtner, Sebastian; Schad, Lothar R

    2018-04-27

    Magnetic resonance fingerprinting (MRF) is a promising method for fast simultaneous quantification of multiple tissue parameters. The objective of this study is to improve the coverage of MRF based on echo-planar imaging (MRF-EPI) by using a slice-interleaved acquisition scheme. For this, the MRF-EPI is modified to acquire several slices in a randomized interleaved manner, increasing the effective repetition time of the spoiled gradient echo readout acquisition in each slice. Per-slice matching of the signal-trace to a precomputed dictionary allows the generation of T 1 and T 2 * maps with integrated B 1 + correction. Subsequent compensation for the coil sensitivity profile and normalization to the cerebrospinal fluid additionally allows for quantitative proton density (PD) mapping. Numerical simulations are performed to optimize the number of interleaved slices. Quantification accuracy is validated in phantom scans and feasibility is demonstrated in-vivo. Numerical simulations suggest the acquisition of four slices as a trade-off between quantification precision and scan-time. Phantom results indicate good agreement with reference measurements (Difference T 1 : -2.4 ± 1.1%, T 2 *: -0.5 ± 2.5%, PD: -0.5 ± 7.2%). In-vivo whole-brain coverage of T 1 , T 2 * and PD with 32 slices was acquired within 3:36 minutes, resulting in parameter maps of high visual quality and comparable performance with single-slice MRF-EPI at 4-fold scan-time reduction.

  2. Using a high-speed movie camera to evaluate slice dropping in clinical image interpretation with stack mode viewers.

    PubMed

    Yakami, Masahiro; Yamamoto, Akira; Yanagisawa, Morio; Sekiguchi, Hiroyuki; Kubo, Takeshi; Togashi, Kaori

    2013-06-01

    The purpose of this study is to verify objectively the rate of slice omission during paging on picture archiving and communication system (PACS) viewers by recording the images shown on the computer displays of these viewers with a high-speed movie camera. This study was approved by the institutional review board. A sequential number from 1 to 250 was superimposed on each slice of a series of clinical Digital Imaging and Communication in Medicine (DICOM) data. The slices were displayed using several DICOM viewers, including in-house developed freeware and clinical PACS viewers. The freeware viewer and one of the clinical PACS viewers included functions to prevent slice dropping. The series was displayed in stack mode and paged in both automatic and manual paging modes. The display was recorded with a high-speed movie camera and played back at a slow speed to check whether slices were dropped. The paging speeds were also measured. With a paging speed faster than half the refresh rate of the display, some viewers dropped up to 52.4 % of the slices, while other well-designed viewers did not, if used with the correct settings. Slice dropping during paging was objectively confirmed using a high-speed movie camera. To prevent slice dropping, the viewer must be specially designed for the purpose and must be used with the correct settings, or the paging speed must be slower than half of the display refresh rate.

  3. Twistor interpretation of slice regular functions

    NASA Astrophysics Data System (ADS)

    Altavilla, Amedeo

    2018-01-01

    Given a slice regular function f : Ω ⊂ H → H, with Ω ∩ R ≠ ∅, it is possible to lift it to surfaces in the twistor space CP3 of S4 ≃ H ∪ { ∞ } (see Gentili et al., 2014). In this paper we show that the same result is true if one removes the hypothesis Ω ∩ R ≠ ∅ on the domain of the function f. Moreover we find that if a surface S ⊂CP3 contains the image of the twistor lift of a slice regular function, then S has to be ruled by lines. Starting from these results we find all the projective classes of algebraic surfaces up to degree 3 in CP3 that contain the lift of a slice regular function. In addition we extend and further explore the so-called twistor transform, that is a curve in Gr2(C4) which, given a slice regular function, returns the arrangement of lines whose lift carries on. With the explicit expression of the twistor lift and of the twistor transform of a slice regular function we exhibit the set of slice regular functions whose twistor transform describes a rational line inside Gr2(C4) , showing the role of slice regular functions not defined on R. At the end we study the twistor lift of a particular slice regular function not defined over the reals. This example shows the effectiveness of our approach and opens some questions.

  4. Lesion detection performance of cone beam CT images with anatomical background noise: single-slice vs. multi-slice human and model observer study

    NASA Astrophysics Data System (ADS)

    Han, Minah; Jang, Hanjoo; Baek, Jongduk

    2018-03-01

    We investigate lesion detectability and its trends for different noise structures in single-slice and multislice CBCT images with anatomical background noise. Anatomical background noise is modeled using a power law spectrum of breast anatomy. Spherical signal with a 2 mm diameter is used for modeling a lesion. CT projection data are acquired by the forward projection and reconstructed by the Feldkamp-Davis-Kress algorithm. To generate different noise structures, two types of reconstruction filters (Hanning and Ram-Lak weighted ramp filters) are used in the reconstruction, and the transverse and longitudinal planes of reconstructed volume are used for detectability evaluation. To evaluate single-slice images, the central slice, which contains the maximum signal energy, is used. To evaluate multislice images, central nine slices are used. Detectability is evaluated using human and model observer studies. For model observer, channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels are used. For all noise structures, detectability by a human observer is higher for multislice images than single-slice images, and the degree of detectability increase in multislice images depends on the noise structure. Variation in detectability for different noise structures is reduced in multislice images, but detectability trends are not much different between single-slice and multislice images. The CHO with D-DOG channels predicts detectability by a human observer well for both single-slice and multislice images.

  5. The theory of interface slicing

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    Interface slicing is a new tool which was developed to facilitate reuse-based software engineering, by addressing the following problems, needs, and issues: (1) size of systems incorporating reused modules; (2) knowledge requirements for program modification; (3) program understanding for reverse engineering; (4) module granularity and domain management; and (5) time and space complexity of conventional slicing. The definition of a form of static program analysis called interface slicing is addressed.

  6. The Characteristics of LTP Induced in Hippocampal Slices Are Dependent on Slice-Recovery Conditions

    ERIC Educational Resources Information Center

    Godaux, Emile; Ris, Laurence; Capron, Brigitte; Sindic, Christian

    2006-01-01

    In area CA1 of hippocampal slices which are allowed to recover from slicing "in interface" and where recordings are carried out in interface, a single 1-sec train of 100-Hz stimulation triggers a short-lasting long-term potentiation (S-LTP), which lasts 1-2 h, whereas multiple 1-sec trains induce a long-lasting LTP (L-LTP), which lasts several…

  7. Effects of 1-methylcyclopropene and post-controlled atmosphere air storage treatments on fresh-cut Ambrosia apple slices.

    PubMed

    Tardelli, Francesca; Guidi, Lucia; Massai, Rossano; Toivonen, Peter M A

    2013-01-01

    The effect of 1-methylcyclopropene (1-MCP) treatment and two different post-controlled atmosphere air storage (PCAAS) durations on the quality and chemistry of fresh-cut Ambrosia apple slices was studied. PCAAS for 1 or 2 weeks prior to slicing had an overall positive effect on the resultant quality of fresh-cut apple slices. The most significant responses to PCAAS were the suppression of both phenolic and o-quinone accumulation in slices, and this was related to the significantly lower browning potential values obtained for slices from PCAAS-treated apples. Polyphenol oxidase (PPO), peroxidase (POX) and ascorbate peroxidase (APOX) activities were not affected by 1-MCP or PCAAS treatments. PPO and POX activities were almost completely inhibited by a 50 g L⁻¹ calcium ascorbate anti-browning dip of apple slices from all treatments. The most dramatic effect of the PCAAS treatments was to reduce the accumulation of soluble phenolics, which is likely the reason that o-quinone accumulation was also inhibited in treated fruits. The consequent reduction in browning potential may be the explanation as to why PCAAS treatment has been shown to reduce fresh apple slice browning in previous work. Copyright © 2012 Society of Chemical Industry.

  8. A microfluidic brain slice perfusion chamber for multisite recording using penetrating electrodes.

    PubMed

    Blake, Alexander J; Rodgers, Frank C; Bassuener, Anna; Hippensteel, Joseph A; Pearce, Thomas M; Pearce, Timothy R; Zarnowska, Ewa D; Pearce, Robert A; Williams, Justin C

    2010-05-30

    To analyze the spatiotemporal dynamics of network activity in a brain tissue slice, it is useful to record simultaneously from multiple locations. When obtained from laminar structures such as the hippocampus or neocortex, multisite recordings also yield information about subcellular current distributions via current source density analysis. Multisite probes developed for in vivo recordings could serve these purposes in vitro, allowing recordings to be obtained from brain slices at sites deeper within the tissue than currently available surface recording methods permit. However, existing recording chambers do not allow for the insertion of lamina-spanning probes that enter through the edges of brain slices. Here, we present a novel brain slice recording chamber design that accomplishes this goal. The device provides a stable microfluidic perfusion environment in which tissue health is optimized by superfusing both surfaces of the slice. Multichannel electrodes can be inserted parallel to the surface of the slice, at any depth relative to the surface. Access is also provided from above for the insertion of additional recording or stimulating electrodes. We illustrate the utility of this recording configuration by measuring current sources and sinks during theta burst stimuli that lead to the induction of long-term potentiation in hippocampal slices. (c) 2010 Elsevier B.V. All rights reserved.

  9. Effect of slice thickness on brain magnetic resonance image texture analysis

    PubMed Central

    2010-01-01

    Background The accuracy of texture analysis in clinical evaluation of magnetic resonance images depends considerably on imaging arrangements and various image quality parameters. In this paper, we study the effect of slice thickness on brain tissue texture analysis using a statistical approach and classification of T1-weighted images of clinically confirmed multiple sclerosis patients. Methods We averaged the intensities of three consecutive 1-mm slices to simulate 3-mm slices. Two hundred sixty-four texture parameters were calculated for both the original and the averaged slices. Wilcoxon's signed ranks test was used to find differences between the regions of interest representing white matter and multiple sclerosis plaques. Linear and nonlinear discriminant analyses were applied with several separate training and test sets to determine the actual classification accuracy. Results Only moderate differences in distributions of the texture parameter value for 1-mm and simulated 3-mm-thick slices were found. Our study also showed that white matter areas are well separable from multiple sclerosis plaques even if the slice thickness differs between training and test sets. Conclusions Three-millimeter-thick magnetic resonance image slices acquired with a 1.5 T clinical magnetic resonance scanner seem to be sufficient for texture analysis of multiple sclerosis plaques and white matter tissue. PMID:20955567

  10. Real-time slicing algorithm for Stereolithography (STL) CAD model applied in additive manufacturing industry

    NASA Astrophysics Data System (ADS)

    Adnan, F. A.; Romlay, F. R. M.; Shafiq, M.

    2018-04-01

    Owing to the advent of the industrial revolution 4.0, the need for further evaluating processes applied in the additive manufacturing application particularly the computational process for slicing is non-trivial. This paper evaluates a real-time slicing algorithm for slicing an STL formatted computer-aided design (CAD). A line-plane intersection equation was applied to perform the slicing procedure at any given height. The application of this algorithm has found to provide a better computational time regardless the number of facet in the STL model. The performance of this algorithm is evaluated by comparing the results of the computational time for different geometry.

  11. Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology.

    PubMed

    Marciniak, Anja; Cohrs, Christian M; Tsata, Vasiliki; Chouinard, Julie A; Selck, Claudia; Stertmann, Julia; Reichelt, Saskia; Rose, Tobias; Ehehalt, Florian; Weitz, Jürgen; Solimena, Michele; Slak Rupnik, Marjan; Speier, Stephan

    2014-12-01

    Studies on the cellular function of the pancreas are typically performed in vitro on its isolated functional units, the endocrine islets of Langerhans and the exocrine acini. However, these approaches are hampered by preparation-induced changes of cell physiology and the lack of an intact surrounding. We present here a detailed protocol for the preparation of pancreas tissue slices. This procedure is less damaging to the tissue and faster than alternative approaches, and it enables the in situ study of pancreatic endocrine and exocrine cell physiology in a conserved environment. Pancreas tissue slices facilitate the investigation of cellular mechanisms underlying the function, pathology and interaction of the endocrine and exocrine components of the pancreas. We provide examples for several experimental applications of pancreas tissue slices to study various aspects of pancreas cell biology. Furthermore, we describe the preparation of human and porcine pancreas tissue slices for the validation and translation of research findings obtained in the mouse model. Preparation of pancreas tissue slices according to the protocol described here takes less than 45 min from tissue preparation to receipt of the first slices.

  12. Effect of Carboxylmethyl Cellulose Coating and Osmotic Dehydration on Freeze Drying Kinetics of Apple Slices

    PubMed Central

    Rahimi, Jamshid; Singh, Ashutosh; Adewale, Peter Olusola; Adedeji, Akinbode A.; Ngadi, Michael O.; Raghavan, Vijaya

    2013-01-01

    The effect of different concentrations of sugar solution (hypertonic) (30%, 45% and 60% w/v) and carboxyl methyl cellulose (CMC) (0%, 1% and 2% w/v) coating on freeze drying of apple slices was studied. In total, nine treatments with respect to concentrations of hypertonic solution and coating layer were prepared to analyze their influence on the physical and chemical properties of freeze dried apple slices. It was observed that increase in the sugar solution concentration, decreased the moisture content of the apple slices significantly impacting its water activity, texture and sugar gain. Application of different concentrations of CMC coating had no significant effect on the properties of dried apple slices. A significant change was observed for color of CMC coated freeze dried apple slices pretreated with 60% sugar solution. Drying kinetics of pretreated apple slices were fitted by using two drying models, Newton’s and Page’s. Page’s model showed higher R-square and lower root mean square error (RSME) compared to Newton’s model. PMID:28239107

  13. Three-dimensional surgical simulation.

    PubMed

    Cevidanes, Lucia H C; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2010-09-01

    In this article, we discuss the development of methods for computer-aided jaw surgery, which allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3-dimensional surface models from cone-beam computed tomography, dynamic cephalometry, semiautomatic mirroring, interactive cutting of bone, and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with a computer display showing jaw positions and 3-dimensional positioning guides updated in real time during the surgical procedure. The computer-aided surgery system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training, and assessing the difficulties of the surgical procedures before the surgery. Computer-aided surgery can make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  14. Immersive virtual reality used as a platform for perioperative training for surgical residents.

    PubMed

    Witzke, D B; Hoskins, J D; Mastrangelo, M J; Witzke, W O; Chu, U B; Pande, S; Park, A E

    2001-01-01

    Perioperative preparations such as operating room setup, patient and equipment positioning, and operating port placement are essential to operative success in minimally invasive surgery. We developed an immersive virtual reality-based training system (REMIS) to provide residents (and other health professionals) with training and evaluation in these perioperative skills. Our program uses the qualities of immersive VR that are available today for inclusion in an ongoing training curriculum for surgical residents. The current application consists of a primary platform for patient positioning for a laparoscopic cholecystectomy. Having completed this module we can create many different simulated problems for other procedures. As a part of the simulation, we have devised a computer-driven real-time data collection system to help us in evaluating trainees and providing feedback during the simulation. The REMIS program trains and evaluates surgical residents and obviates the need to use expensive operating room and surgeon time. It also allows residents to train based on their schedule and does not put patients at increased risk. The method is standardized, allows for repetition if needed, evaluates individual performance, provides the possible complications of incorrect choices, provides training in 3-D environment, and has the capability of being used for various scenarios and professions.

  15. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  16. Viral nanomechanics with a virtual atomic force microscope

    NASA Astrophysics Data System (ADS)

    Aznar, María; Roca-Bonet, Sergi; Reguera, David

    2018-07-01

    One of the most important components of a virus is the protein shell or capsid that encloses its genetic material. The main role of the capsid is to protect the viral genome against external aggressions, facilitating its safe and efficient encapsulation and delivery. As a consequence, viral capsids have developed astonishing mechanical properties that are crucial for viral function. These remarkable properties have started to be unveiled in single-virus nanoindentation experiments, and are opening the door to the use of viral-derived artificial nanocages for promising bio- and nano-technological applications. However, the interpretation of nanoindentation experiments is often difficult, requiring the support of theoretical and simulation analysis. Here we present a ‘Virtual AFM’ (VAFM), a Brownian Dynamics simulation of a coarse-grained model of virus aimed to mimic the standard setup of atomic force microscopy (AFM) nanoindentation experiments. Despite the heavy level of coarse-graining, these simulations provide valuable information which is not accessible in experiments. Rather than focusing on a specific virus, the VAFM will be used to analyze how the mechanical response and breaking of viruses depend on different parameters controlling the effective interactions between capsid’s structural units. In particular, we will discuss the influence of adsorption, the tip radius, and the rigidity and shape of the shell on its mechanical response.

  17. Maria's Veggie Wrap

    MedlinePlus

    ... source of fiber. Ingredients 1 medium red bell pepper, seeded and sliced 1 medium yellow pepper, seeded and sliced 1 onion, sliced 1 tsp ... Salsa Directions In a nonstick pan, sauté the peppers and onion in the canola oil for 5 ...

  18. Stabilization of a finite slice in miscible displacement in homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Pramanik, Satyajit; Mishra, Manoranjan

    2016-11-01

    We numerically studied the miscible displacement of a finite slice of variable viscosity and density. The stability of the finite slice depends on different flow parameters, such as displacement velocity U, mobility ratio R , and the density contrast. Series of numerical simulations corresponding to different ordered pair (R, U) in the parameter space, and a given density contrast reveal six different instability regions. We have shown that independent of the width of the slice, there always exists a region of stable displacement, and below a critical value of the slice width, this stable region increases with decreasing slice width. Further we observe that the viscous fingering (buoyancy-induced instability) at the upper interface induces buoyancy-induced instability (viscous fingering) at the lower interface. Besides the fundamental fluid dynamics understanding, our results can be helpful to model CO2 sequestration and chromatographic separation.

  19. Integrating interface slicing into software engineering processes

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    Interface slicing is a tool which was developed to facilitate software engineering. As previously presented, it was described in terms of its techniques and mechanisms. The integration of interface slicing into specific software engineering activities is considered by discussing a number of potential applications of interface slicing. The applications discussed specifically address the problems, issues, or concerns raised in a previous project. Because a complete interface slicer is still under development, these applications must be phrased in future tenses. Nonetheless, the interface slicing techniques which were presented can be implemented using current compiler and static analysis technology. Whether implemented as a standalone tool or as a module in an integrated development or reverse engineering environment, they require analysis no more complex than that required for current system development environments. By contrast, conventional slicing is a methodology which, while showing much promise and intuitive appeal, has yet to be fully implemented in a production language environment despite 12 years of development.

  20. The Effect of Temperature on Photoluminescence Enhancement of Quantum Dots in Brain Slices.

    PubMed

    Zhao, Fei; Kim, Jongsung

    2017-04-01

    In this paper, we investigated the effect of temperature on photoluminescence of quantum dots immobilized on the surface of an optical fiber in a rat brain slice. The optical fiber was silanized with 3-aminopropyl trimethoxysilane (APTMS), following which quantum dots with carboxyl functional group were immobilized on the optical fiber via amide bond formation. The effect of temperature on the fluorescence intensity of the quantum dots in rat brain slices was studied. This report shows that the fluorescence intensity of quantum dots increases with the increase of temperature of the brain slice. The fluorescence enhancement phenomenon appears to take place via electron transfer related to pH increase. With the gradual increase of temperature, the fluorescence intensity of quantum dots in solution decreased, while that in the brain slice increased. This enhanced thermal performance of QDs in brain slice makes suggestion for the study of QDs-based brain temperature sensors.

  1. Preparation of positional renal slices for study of cell-specific toxicity.

    PubMed

    Ruegg, C E; Gandolfi, A J; Nagle, R B; Krumdieck, C L; Brendel, K

    1987-04-01

    To reduce structural complexity, rabbit kidneys were sliced perpendicular to their cortical-papillary axis to isolate four distinct cell groupings. This positional orientation allows identification of each renal cell type based on its location within the slice. A mechanical slicer was used to make several precision-cut slices rapidly from an oriented cylindrical core of renal tissue, with minimal tissue trauma. Slices were then submerged under a gently circulating oxygenated media in a fritted glass support system that maintains viability (intracellular K+/DNA ratio) and structural integrity (histology) for at least 30 h. A high dose of mercuric chloride (10(-3) M) was used to demonstrate the structural and biochemical changes of intoxicated slices. This method provides a controlled subchronic in vitro system for the study of the individual cell types involved in cell-specific renal toxicities and may also be a useful tool for addressing other pharmacological and physiological research questions.

  2. MO-FG-CAMPUS-TeP1-01: An Efficient Method of 3D Patient Dose Reconstruction Based On EPID Measurements for Pre-Treatment Patient Specific QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, R; Lee, C; Calvary Mater Newcastle, Newcastle

    Purpose: To demonstrate an efficient and clinically relevant patient specific QA method by reconstructing 3D patient dose from 2D EPID images for IMRT plans. Also to determine the usefulness of 2D QA metrics when assessing 3D patient dose deviations. Methods: Using the method developed by King et al (Med Phys 39(5),2839–2847), EPID images of IMRT fields were acquired in air and converted to dose at 10 cm depth (SAD setup) in a flat virtual water phantom. Each EPID measured dose map was then divided by the corresponding treatment planning system (TPS) dose map calculated with an identical setup, to derivemore » a 2D “error matrix”. For each field, the error matrix was used to adjust the doses along the respective ray lines in the original patient 3D dose. All field doses were combined to derive a reconstructed 3D patient dose for quantitative analysis. A software tool was developed to efficiently implement the entire process and was tested with a variety of IMRT plans for 2D (virtual flat phantom) and 3D (in-patient) QA analysis. Results: The method was tested on 60 IMRT plans. The mean (± standard deviation) 2D gamma (2%,2mm) pass rate (2D-GPR) was 97.4±3.0% and the mean 2D gamma index (2D-GI) was 0.35±0.06. The 3D PTV mean dose deviation was 1.8±0.8%. The analysis showed very weak correlations between both the 2D-GPR and 2D-GI when compared with PTV mean dose deviations (R2=0.3561 and 0.3632 respectively). Conclusion: Our method efficiently calculates 3D patient dose from 2D EPID images, utilising all of the advantages of an EPID-based dosimetry system. In this study, the 2D QA metrics did not predict the 3D patient dose deviation. This tool allows reporting of the 3D volumetric dose parameters thus providing more clinically relevant patient specific QA.« less

  3. Optimization of abdominal fat quantification on CT imaging through use of standardized anatomic space: A novel approach

    PubMed Central

    Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.

    2014-01-01

    Purpose: The quantification of body fat plays an important role in the study of numerous diseases. It is common current practice to use the fat area at a single abdominal computed tomography (CT) slice as a marker of the body fat content in studying various disease processes. This paper sets out to answer three questions related to this issue which have not been addressed in the literature. At what single anatomic slice location do the areas of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) estimated from the slice correlate maximally with the corresponding fat volume measures? How does one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? Are there combinations of multiple slices (not necessarily contiguous) whose area sum correlates better with volume than does single slice area with volume? Methods: The authors propose a novel strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. The authors then study the volume-to-area correlations and determine where they become maximal. To address the third issue, the authors carry out similar correlation studies by utilizing two and three slices for calculating area sum. Results: Based on 50 abdominal CT data sets, the proposed mapping achieves significantly improved consistency of anatomic localization compared to current practice. Maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized currently for single slice area estimation as a marker. Conclusions: The maximum area-to-volume correlation achieved is quite high, suggesting that it may be reasonable to estimate body fat by measuring the area of fat from a single anatomic slice at the site of maximum correlation and use this as a marker. The site of maximum correlation is not at L4-L5 as commonly assumed, but is more superiorly located at T12-L1 for SAT and at L3-L4 for VAT. Furthermore, the optimal anatomic locations for SAT and VAT estimation are not the same, contrary to common assumption. The proposed standardized space mapping achieves high consistency of anatomic localization by accurately managing nonlinearities in the relationships among landmarks. Multiple slices achieve greater improvement in correlation for VAT than for SAT. The optimal locations in the case of multiple slices are not contiguous. PMID:24877839

  4. Optimization of abdominal fat quantification on CT imaging through use of standardized anatomic space: A novel approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Yubing; Udupa, Jayaram K., E-mail: jay@mail.med.upenn.edu; Torigian, Drew A.

    Purpose: The quantification of body fat plays an important role in the study of numerous diseases. It is common current practice to use the fat area at a single abdominal computed tomography (CT) slice as a marker of the body fat content in studying various disease processes. This paper sets out to answer three questions related to this issue which have not been addressed in the literature. At what single anatomic slice location do the areas of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) estimated from the slice correlate maximally with the corresponding fat volume measures? How doesmore » one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? Are there combinations of multiple slices (not necessarily contiguous) whose area sum correlates better with volume than does single slice area with volume? Methods: The authors propose a novel strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. The authors then study the volume-to-area correlations and determine where they become maximal. To address the third issue, the authors carry out similar correlation studies by utilizing two and three slices for calculating area sum. Results: Based on 50 abdominal CT data sets, the proposed mapping achieves significantly improved consistency of anatomic localization compared to current practice. Maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized currently for single slice area estimation as a marker. Conclusions: The maximum area-to-volume correlation achieved is quite high, suggesting that it may be reasonable to estimate body fat by measuring the area of fat from a single anatomic slice at the site of maximum correlation and use this as a marker. The site of maximum correlation is not at L4-L5 as commonly assumed, but is more superiorly located at T12-L1 for SAT and at L3-L4 for VAT. Furthermore, the optimal anatomic locations for SAT and VAT estimation are not the same, contrary to common assumption. The proposed standardized space mapping achieves high consistency of anatomic localization by accurately managing nonlinearities in the relationships among landmarks. Multiple slices achieve greater improvement in correlation for VAT than for SAT. The optimal locations in the case of multiple slices are not contiguous.« less

  5. Organotypic slice cultures containing the preBötzinger complex generate respiratory-like rhythms

    PubMed Central

    Phillips, Wiktor S.; Herly, Mikkel; Del Negro, Christopher A.

    2015-01-01

    Study of acute brain stem slice preparations in vitro has advanced our understanding of the cellular and synaptic mechanisms of respiratory rhythm generation, but their inherent limitations preclude long-term manipulation and recording experiments. In the current study, we have developed an organotypic slice culture preparation containing the preBötzinger complex (preBötC), the core inspiratory rhythm generator of the ventrolateral brain stem. We measured bilateral synchronous network oscillations, using calcium-sensitive fluorescent dyes, in both ventrolateral (presumably the preBötC) and dorsomedial regions of slice cultures at 7–43 days in vitro. These calcium oscillations appear to be driven by periodic bursts of inspiratory neuronal activity, because whole cell recordings from ventrolateral neurons in culture revealed inspiratory-like drive potentials, and no oscillatory activity was detected from glial fibrillary associated protein-expressing astrocytes in cultures. Acute slices showed a burst frequency of 10.9 ± 4.2 bursts/min, which was not different from that of brain stem slice cultures (13.7 ± 10.6 bursts/min). However, slice cocultures that include two cerebellar explants placed along the dorsolateral border of the brainstem displayed up to 193% faster burst frequency (22.4 ± 8.3 bursts/min) and higher signal amplitude (340%) compared with acute slices. We conclude that preBötC-containing slice cultures retain inspiratory-like rhythmic function and therefore may facilitate lines of experimentation that involve extended incubation (e.g., genetic transfection or chronic drug exposure) while simultaneously being amenable to imaging and electrophysiology at cellular, synaptic, and network levels. PMID:26655824

  6. Accuracy of limited four-slice CT-scan in diagnosis of chronic rhinosinusitis.

    PubMed

    Zojaji, R; Nekooei, S; Naghibi, S; Mazloum Farsi Baf, M; Jalilian, R; Masoomi, M

    2015-12-01

    Chronic rhinosinusitis (CRS) is a common chronic health condition worldwide. Standard CT-scan is the method of choice for diagnosis of CRS but its high price and considerable radiation exposure have limited its application. The main goal of this study was to evaluate the accuracy of limited four-slice coronal CT-scan in the diagnosis of CRS. This cross-sectional study was conducted on 46 patients with CRS, for one year, based on American Society of Head and Neck Surgery criteria. All patients received the preoperative standard and four-slice CT-scans, after which endoscopic sinus surgery was performed. Findings of four-slice CT-scans were compared with those of conventional CT-scan and the sensitivity and specificity of four-slice CT-scan and its agreement with conventional CT-scan was calculated. In this study, 46 patients including 32 males (69.6%) and 14 females (30.46%) with a mean age of 33 and standard deviation of 9 years, were evaluated. Sensitivity and specificity of four-slice CT-scan were 97.5% and 100%, respectively. Also, positive predictive value (PPV) and negative predictive value (NPV) of four-slice CT was 100% and 85.71%, respectively. There was a strong agreement between four-slice CT and conventional CT findings. Considering the high sensitivity and specificity of four-slice CT-scan and strong agreement with conventional CT-scan in the diagnosis of CRS and the lower radiation exposure and cost, application of this method is suggested for both diagnosis and treatment follow-up in CRS. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Cardiac tissue slices: preparation, handling, and successful optical mapping.

    PubMed

    Wang, Ken; Lee, Peter; Mirams, Gary R; Sarathchandra, Padmini; Borg, Thomas K; Gavaghan, David J; Kohl, Peter; Bollensdorff, Christian

    2015-05-01

    Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands ("fibers") in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics. Copyright © 2015 the American Physiological Society.

  8. Correlation between model observers in uniform background and human observers in patient liver background for a low-contrast detection task in CT

    NASA Astrophysics Data System (ADS)

    Gong, Hao; Yu, Lifeng; Leng, Shuai; Dilger, Samantha; Zhou, Wei; Ren, Liqiang; McCollough, Cynthia H.

    2018-03-01

    Channelized Hotelling observer (CHO) has demonstrated strong correlation with human observer (HO) in both single-slice viewing mode and multi-slice viewing mode in low-contrast detection tasks with uniform background. However, it remains unknown if the simplest single-slice CHO in uniform background can be used to predict human observer performance in more realistic tasks that involve patient anatomical background and multi-slice viewing mode. In this study, we aim to investigate the correlation between CHO in a uniform water background and human observer performance at a multi-slice viewing mode on patient liver background for a low-contrast lesion detection task. The human observer study was performed on CT images from 7 abdominal CT exams. A noise insertion tool was employed to synthesize CT scans at two additional dose levels. A validated lesion insertion tool was used to numerically insert metastatic liver lesions of various sizes and contrasts into both phantom and patient images. We selected 12 conditions out of 72 possible experimental conditions to evaluate the correlation at various radiation doses, lesion sizes, lesion contrasts and reconstruction algorithms. CHO with both single and multi-slice viewing modes were strongly correlated with HO. The corresponding Pearson's correlation coefficient was 0.982 (with 95% confidence interval (CI) [0.936, 0.995]) and 0.989 (with 95% CI of [0.960, 0.997]) in multi-slice and single-slice viewing modes, respectively. Therefore, this study demonstrated the potential to use the simplest single-slice CHO to assess image quality for more realistic clinically relevant CT detection tasks.

  9. Cardiac tissue slices: preparation, handling, and successful optical mapping

    PubMed Central

    Wang, Ken; Lee, Peter; Mirams, Gary R.; Sarathchandra, Padmini; Borg, Thomas K.; Gavaghan, David J.; Kohl, Peter

    2015-01-01

    Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands (“fibers”) in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics. PMID:25595366

  10. Improved biochemical preservation of lung slices during cold storage.

    PubMed

    Bull, D A; Connors, R C; Reid, B B; Albanil, A; Stringham, J C; Karwande, S V

    2000-05-15

    Development of lung preservation solutions typically requires whole-organ models which are animal and labor intensive. These models rely on physiologic rather than biochemical endpoints, making accurate comparison of the relative efficacy of individual solution components difficult. We hypothesized that lung slices could be used to assess preservation of biochemical function during cold storage. Whole rat lungs were precision cut into slices with a thickness of 500 microm and preserved at 4 degrees C in the following solutions: University of Wisconsin (UW), Euro-Collins (EC), low-potassium-dextran (LPD), Kyoto (K), normal saline (NS), or a novel lung preservation solution (NPS) developed using this model. Lung biochemical function was assessed by ATP content (etamol ATP/mg wet wt) and capacity for protein synthesis (cpm/mg protein) immediately following slicing (0 h) and at 6, 12, 18, and 24 h of cold storage. Six slices were assayed at each time point for each solution. The data were analyzed using analysis of variance and are presented as means +/- SD. ATP content was significantly higher in the lung slices stored in NPS compared with all other solutions at each time point (P < 0.0001). Protein synthesis was significantly higher in the lung slices stored in NPS compared with all other solutions at 6, 12, and 18 h of preservation (P < 0.05). This lung slice model allows the rapid and efficient screening of lung preservation solutions and their components using quantifiable biochemical endpoints. Using this model, we have developed a novel solution that improves the biochemical preservation of lung slices during cold storage. Copyright 2000 Academic Press.

  11. Report of improved performance in Talbot–Lau phase-contrast computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thomas, E-mail: thomas.weber@fau.de; Pelzer, Georg; Rieger, Jens

    Purpose: Many expectations have been raised since the use of conventional x-ray tubes on grating-based x-ray phase-contrast imaging. Despite a reported increase in contrast-to-noise ratio (CNR) in many publications, there is doubt on whether phase-contrast computed tomography (CT) is advantageous in clinical CT scanners in vivo. The aim of this paper is to contribute to this discussion by analyzing the performance of a phase-contrast CT laboratory setup. Methods: A phase-contrast CT performance analysis was done. Projection images of a phantom were recorded, and image slices were reconstructed using standard filtered back projection methods. The resulting image slices were analyzed bymore » determining the CNRs in the attenuation and phase image. These results were compared to analytically calculated expectations according to the already published phase-contrast CT performance analysis by Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)]. There, a severe mistake was found leading to wrong predictions of the performance of phase-contrast CT. The error was corrected and with the new formulae, the experimentally obtained results matched the analytical calculations. Results: The squared ratios of the phase-contrast CNR and the attenuation CNR obtained in the authors’ experiment are five- to ten-fold higher than predicted by Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)]. The effective lateral spatial coherence length deduced outnumbers the already optimistic assumption of Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)] by a factor of 3. Conclusions: The authors’ results indicate that the assumptions made in former performance analyses are pessimistic. The break-even point, when phase-contrast CT outperforms attenuation CT, is within reach even with realistic, nonperfect gratings. Further improvements to state-of-the-art clinical CT scanners, like increasing the spatial resolution, could change the balance in favor of phase-contrast computed tomography even more. This could be done by, e.g., quantum-counting pixel detectors with four-fold smaller pixel pitches.« less

  12. Dentin moisture conditions affect the adhesion of root canal sealers.

    PubMed

    Nagas, Emre; Uyanik, M Ozgur; Eymirli, Ayhan; Cehreli, Zafer C; Vallittu, Pekka K; Lassila, Lippo V J; Durmaz, Veli

    2012-02-01

    The purpose of this study was to evaluate the effects of intraradicular moisture conditions on the push-out bond strength of root canal sealers. Eighty root canals were prepared using rotary instruments and, thereafter, were assigned to 4 groups with respect to the moisture condition tested: (1) ethanol (dry): excess distilled water was removed with paper points followed by dehydration with 95% ethanol, (2) paper points: the canals were blot dried with paper points with the last one appearing dry, (3) moist: the canals were dried with low vacuum by using a Luer adapter for 5 seconds followed by 1 paper point for 1 second, and (4) wet: the canals remained totally flooded. The roots were further divided into 4 subgroups according to the sealer used: (1) AH Plus (Dentsply-Tulsa Dental, Tulsa, OK), (2) iRoot SP (Innovative BioCeramix Inc, Vancouver, Canada), (3) MTA Fillapex (Angelus Indústria de Produtos Odontológicos S/A, Londrina, Brasil), and (4) Epiphany (Pentron Clinical Technologies, Wallingford, CT). Five 1-mm-thick slices were obtained from each root sample (n = 25 slices/group). Bond strengths of the test materials to root canal dentin were measured using a push-out test setup at a cross-head speed of 1 mm/min. The data were analyzed statistically by two-way analysis of variance and Tukey tests at P = .05. Irrespective of the moisture conditions, iRoot SP displayed the highest bond strength to root dentin. Statistical ranking of bond strength values was as follows: iRoot SP > AH Plus > Epiphany ≥ MTA Fillapex. The sealers displayed their highest and lowest bond strengths under moist (3) and wet (4) conditions, respectively. The degree of residual moisture significantly affects the adhesion of root canal sealers to radicular dentin. For the tested sealers, it may be advantageous to leave canals slightly moist before filling. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. 7 CFR 58.738 - Pasteurized process cheese spread and related products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... homogeneous plastic mass, and be free from pin holes or openings except those caused by trapped steam. Product made for slicing shall slice freely when cut into approximately 1/8 inch slices with only a slight...

  14. 7 CFR 58.738 - Pasteurized process cheese spread and related products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... homogeneous plastic mass, and be free from pin holes or openings except those caused by trapped steam. Product made for slicing shall slice freely when cut into approximately 1/8 inch slices with only a slight...

  15. 7 CFR 58.738 - Pasteurized process cheese spread and related products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... homogeneous plastic mass, and be free from pin holes or openings except those caused by trapped steam. Product made for slicing shall slice freely when cut into approximately 1/8 inch slices with only a slight...

  16. A Family of ACO Routing Protocols for Mobile Ad Hoc Networks

    PubMed Central

    Rupérez Cañas, Delfín; Sandoval Orozco, Ana Lucila; García Villalba, Luis Javier; Kim, Tai-hoon

    2017-01-01

    In this work, an ACO routing protocol for mobile ad hoc networks based on AntHocNet is specified. As its predecessor, this new protocol, called AntOR, is hybrid in the sense that it contains elements from both reactive and proactive routing. Specifically, it combines a reactive route setup process with a proactive route maintenance and improvement process. Key aspects of the AntOR protocol are the disjoint-link and disjoint-node routes, separation between the regular pheromone and the virtual pheromone in the diffusion process and the exploration of routes, taking into consideration the number of hops in the best routes. In this work, a family of ACO routing protocols based on AntOR is also specified. These protocols are based on protocol successive refinements. In this work, we also present a parallelized version of AntOR that we call PAntOR. Using programming multiprocessor architectures based on the shared memory protocol, PAntOR allows running tasks in parallel using threads. This parallelization is applicable in the route setup phase, route local repair process and link failure notification. In addition, a variant of PAntOR that consists of having more than one interface, which we call PAntOR-MI (PAntOR-Multiple Interface), is specified. This approach parallelizes the sending of broadcast messages by interface through threads. PMID:28531159

  17. High performance interconnection between high data rate networks

    NASA Technical Reports Server (NTRS)

    Foudriat, E. C.; Maly, K.; Overstreet, C. M.; Zhang, L.; Sun, W.

    1992-01-01

    The bridge/gateway system needed to interconnect a wide range of computer networks to support a wide range of user quality-of-service requirements is discussed. The bridge/gateway must handle a wide range of message types including synchronous and asynchronous traffic, large, bursty messages, short, self-contained messages, time critical messages, etc. It is shown that messages can be classified into three basic classes, synchronous and large and small asynchronous messages. The first two require call setup so that packet identification, buffer handling, etc. can be supported in the bridge/gateway. Identification enables resequences in packet size. The third class is for messages which do not require call setup. Resequencing hardware based to handle two types of resequencing problems is presented. The first is for a virtual parallel circuit which can scramble channel bytes. The second system is effective in handling both synchronous and asynchronous traffic between networks with highly differing packet sizes and data rates. The two other major needs for the bridge/gateway are congestion and error control. A dynamic, lossless congestion control scheme which can easily support effective error correction is presented. Results indicate that the congestion control scheme provides close to optimal capacity under congested conditions. Under conditions where error may develop due to intervening networks which are not lossless, intermediate error recovery and correction takes 1/3 less time than equivalent end-to-end error correction under similar conditions.

  18. Augmented reality-assisted bypass surgery: embracing minimal invasiveness.

    PubMed

    Cabrilo, Ivan; Schaller, Karl; Bijlenga, Philippe

    2015-04-01

    The overlay of virtual images on the surgical field, defined as augmented reality, has been used for image guidance during various neurosurgical procedures. Although this technology could conceivably address certain inherent problems of extracranial-to-intracranial bypass procedures, this potential has not been explored to date. We evaluate the usefulness of an augmented reality-based setup, which could help in harvesting donor vessels through their precise localization in real-time, in performing tailored craniotomies, and in identifying preoperatively selected recipient vessels for the purpose of anastomosis. Our method was applied to 3 patients with Moya-Moya disease who underwent superficial temporal artery-to-middle cerebral artery anastomoses and 1 patient who underwent an occipital artery-to-posteroinferior cerebellar artery bypass because of a dissecting aneurysm of the vertebral artery. Patients' heads, skulls, and extracranial and intracranial vessels were segmented preoperatively from 3-dimensional image data sets (3-dimensional digital subtraction angiography, angio-magnetic resonance imaging, angio-computed tomography), and injected intraoperatively into the operating microscope's eyepiece for image guidance. In each case, the described setup helped in precisely localizing donor and recipient vessels and in tailoring craniotomies to the injected images. The presented system based on augmented reality can optimize the workflow of extracranial-to-intracranial bypass procedures by providing essential anatomical information, entirely integrated to the surgical field, and help to perform minimally invasive procedures. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Long term real-time GB_InSAR monitoring of a large rock slide

    NASA Astrophysics Data System (ADS)

    Crosta, G. B.; Agliardi, F.; Sosio, R.; Rivolta, C.; Mannucci, G.

    2011-12-01

    We analyze a long term monitoring dataset collected for a deep-seated rockslide (Ruinon, Lombardy, Italy). The rockslide has been actively monitored since 1997 by means of an in situ monitoring network (topographic benchmarks, GPS, wire extensometers) and since 2006 by a ground based radar. Monitoring data have been used to set-up and update the geological model, to identify rockslide extent and geometry, to analyse the sensitivity to seasonal changes and their impact on the reliability and early warning potential of monitoring data. GB-InSAR data allowed us to identify sectors characterized by different behaviours and associated to outcropping bedrock, thick debris cover, major structures. GB-Insar data have been used to set-up a "virtual monitoring network" by a posteriori selection of critical locations. Displacement time series extracted from GB-InSAR data provide a large amount of information even in debris-covered areas, when ground-based instrumentation fails. Such spatially-distributed, improved information, validated by selected ground-based measurements, allowed to establish new velocity and displacement thresholds for early warning purposes. The data are analysed to verify the dependency of the observed displacements on the line of sight orientation as well as on that of the framed resolution cell. Relationships with rainfall and morphological slope characteristics have been analysed to verify the sensitivity to rain intensity and amount and to distinguish among the different possible mechanisms.

  20. Analysis of micro computed tomography images; a look inside historic enamelled metal objects

    NASA Astrophysics Data System (ADS)

    van der Linden, Veerle; van de Casteele, Elke; Thomas, Mienke Simon; de Vos, Annemie; Janssen, Elsje; Janssens, Koen

    2010-02-01

    In this study the usefulness of micro-Computed Tomography (µ-CT) for the in-depth analysis of enamelled metal objects was tested. Usually investigations of enamelled metal artefacts are restricted to non-destructive surface analysis or analysis of cross sections after destructive sampling. Radiography, a commonly used technique in the field of cultural heritage studies, is limited to providing two-dimensional information about a three-dimensional object (Lang and Middleton, Radiography of Cultural Material, pp. 60-61, Elsevier-Butterworth-Heinemann, Amsterdam-Stoneham-London, 2005). Obtaining virtual slices and information about the internal structure of these objects was made possible by CT analysis. With this technique the underlying metal work was studied without removing the decorative enamel layer. Moreover visible defects such as cracks were measured in both width and depth and as of yet invisible defects and weaker areas are visualised. All these features are of great interest to restorers and conservators as they allow a view inside these objects without so much as touching them.

  1. Magnetic resonance imaging of granular materials

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf

    2017-05-01

    Magnetic Resonance Imaging (MRI) has become one of the most important tools to screen humans in medicine; virtually every modern hospital is equipped with a Nuclear Magnetic Resonance (NMR) tomograph. The potential of NMR in 3D imaging tasks is by far greater, but there is only "a handful" of MRI studies of particulate matter. The method is expensive, time-consuming, and requires a deep understanding of pulse sequences, signal acquisition, and processing. We give a short introduction into the physical principles of this imaging technique, describe its advantages and limitations for the screening of granular matter, and present a number of examples of different application purposes, from the exploration of granular packing, via the detection of flow and particle diffusion, to real dynamic measurements. Probably, X-ray computed tomography is preferable in most applications, but fast imaging of single slices with modern MRI techniques is unmatched, and the additional opportunity to retrieve spatially resolved flow and diffusion profiles without particle tracking is a unique feature.

  2. Quantifying metal artefact reduction using virtual monochromatic dual-layer detector spectral CT imaging in unilateral and bilateral total hip prostheses.

    PubMed

    Wellenberg, R H H; Boomsma, M F; van Osch, J A C; Vlassenbroek, A; Milles, J; Edens, M A; Streekstra, G J; Slump, C H; Maas, M

    2017-03-01

    To quantify the impact of prosthesis material and design on the reduction of metal artefacts in total hip arthroplasties using virtual monochromatic dual-layer detector Spectral CT imaging. The water-filled total hip arthroplasty phantom was scanned on a novel 128-slice Philips IQon dual-layer detector Spectral CT scanner at 120-kVp and 140-kVp at a standard computed tomography dose index of 20.0mGy. Several unilateral and bilateral hip prostheses consisting of different metal alloys were inserted and combined which were surrounded by 18 hydroxyapatite calcium carbonate pellets representing bone. Images were reconstructed with iterative reconstruction and analysed at monochromatic energies ranging from 40 to 200keV. CT numbers in Hounsfield Units (HU), noise measured as the standard deviation in HU, signal-to-noise-ratios (SNRs) and contrast-to-noise-ratios (CNRs) were analysed within fixed regions-of-interests placed in and around the pellets. In 70 and 74keV virtual monochromatic images the CT numbers of the pellets were similar to 120-kVp and 140-kVp polychromatic results, therefore serving as reference. A separation into three categories of metal artefacts was made (no, mild/moderate and severe) where pellets were categorized based on HU deviations. At high keV values overall image contrast was reduced. For mild/moderate artefacts, the highest average CNRs were attained with virtual monochromatic 130keV images, acquired at 140-kVp. Severe metal artefacts were not reduced. In 130keV images, only mild/moderate metal artefacts were significantly reduced compared to 70 and 74keV images. Deviations in CT numbers, noise, SNRs and CNRs due to metal artefacts were decreased with respectively 64%, 57%, 62% and 63% (p<0.001) compared to unaffected pellets. Optimal keVs, based on CNRs, for different unilateral and bilateral metal hip prostheses consisting of different metal alloys varied from 74 to 150keV. The Titanium alloy resulted in less severe artefacts and were reduced more effectively compared to the Cobalt alloy. Virtual monochromatic dual-layer Spectral CT imaging results in a significant reduction of streak artefacts produced by beam-hardening in mild and moderate artefacts by improving CT number accuracy, SNRs and CNRs, while decreasing noise values in a total hip arthroplasty phantom. An optimal monochromatic energy of 130keV was found ranging from 74keV to 150keV for different unilateral and bilateral hip prostheses consisting of different metal alloys. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  3. Modeling Musical Context With Word2Vec

    NASA Astrophysics Data System (ADS)

    Herremans, Dorien; Chuan, Ching-Hua

    2017-05-01

    We present a semantic vector space model for capturing complex polyphonic musical context. A word2vec model based on a skip-gram representation with negative sampling was used to model slices of music from a dataset of Beethoven's piano sonatas. A visualization of the reduced vector space using t-distributed stochastic neighbor embedding shows that the resulting embedded vector space captures tonal relationships, even without any explicit information about the musical contents of the slices. Secondly, an excerpt of the Moonlight Sonata from Beethoven was altered by replacing slices based on context similarity. The resulting music shows that the selected slice based on similar word2vec context also has a relatively short tonal distance from the original slice.

  4. Fresh Slice Self-Seeding and Fresh Slice Harmonic Lasing at LCLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amann, J.W.

    We present results from the successful demonstration of fresh slice self-seeding at the Linac Coherent Light Source (LCLS).* The performance is compared with SASE and regular self-seeding at photon energy of 5.5 keV, resulting in a relative average brightness increase of a factor of 12 and a factor of 2 respectively. Following this proof-of-principle we discuss the forthcoming plans to use the same technique** for fresh slice harmonic lasing in an upcoming experiment. The demonstration of fresh slice harmonic lasing provides an attractive solution for future XFELs aiming to achieve high efficiency, high brightness X-ray pulses at high photon energiesmore » (>12 keV).***« less

  5. High Velocity Jet Noise Source Location and Reduction. Task 6. Supplement. Computer Programs: Engineering Correlation (M*S) Jet Noise Prediction Method and Unified Aeroacoustic Prediction Model (M*G*B) for Nozzles of Arbitary Shape.

    DTIC Science & Technology

    1979-03-01

    LSPFIT 112 4.3.5 SLICE 112 4.3.6 CRD 113 4.3.7 OUTPUT 113 4.3.8 SHOCK 115 4.3.9 ATMOS 115 4.3.10 PNLC 115 4.4 Program Usage and Logic 116 4.5 Description...number MAIN, SLICE, OUTPUT F Intermediate variable LSPFIT FAC Intermediate variable PNLC FC Center frequency SLICE FIRSTU Flight velocity Ua MAIN, SLICE...Index CRD J211 Index CRD K Index, also wave number MAIN, SLICE, PNLC KN Surrounding boundary index MAIN KNCAS Case counter MAIN KNK Surrounding

  6. Recent developments in multi-wire fixed abrasive slicing technique (FAST). [for low cost silicon wafer production from ingots

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.; Smith, M. B.; Lynch, L. D.

    1982-01-01

    Slicing is an important processing step for all technologies based on the use of ingots. A comparison of the economics of three slicing techniques shows that the fixed abrasive slicing technique (FAST) is superior to the internal diameter (ID) and the multiblade slurry (MBS) techniques. Factors affecting contact length are discussed, taking into account kerf width, rocking angle, ingot size, and surface speed. Aspects of blade development are also considered. A high concentration of diamonds on wire has been obtained in wire packs usd for FAST slicing. The material removal rate was found to be directly proportional to the pressure at the diamond tips.

  7. Visible Human 2.0--the next generation.

    PubMed

    Ratiu, Peter; Hillen, Berend; Glaser, Jack; Jenkins, Donald P

    2003-01-01

    The National Library of Medicine has initiated the development of new anatomical methods and techniques for the acquisition of higher resolution data sets, aiming to address the anatomical artifacts encountered in the development of the Visible Human Male and Female and to insure enhanced detection of structures, providing data in greater depth and breadth. Given this framework, we acquired a complete data set of the head and neck. CT and MR scans were also obtained with registration hardware inserted prior to imaging. The arterial and venous systems were injected with colorized araldite-F. After freezing, axial cryosectioning and digital photography at 147 microns/voxel resolution was performed. Two slabs of the specimen were acquired with a special tissue harvesting technique. The resulting tissue slices of the whole specimen were stained for different tissue types. The resulting histological material was then scanned at a 60x magnification using the Virtual Slice technology at 2 microns/pixel resolution (each slide approximately 75,000 x 100,000 pixels). In this data set, for the first time anatomy is presented as a continuum from a radiologic granularity of 1 mm/voxel, to a macroscopic resolution of .147 mm/voxel, to microscopic resolution of 2 microns/pixel. The hiatus between gross anatomy and histology has been assumed insurmountable, and until the present time this gap was bridged by extrapolating findings on minute samples. The availability of anatomical data with the fidelity presented will render it possible to perform a seamless study of whole organs at a cellular level and provide a testbed for the validation of histological estimation techniques. A future complete Visible Human created from data acquired at a cellular resolution, aside from its daunting size, will open new possibilities in multiple directions in medical research and simulation.

  8. Deep multi-spectral ensemble learning for electronic cleansing in dual-energy CT colonography

    NASA Astrophysics Data System (ADS)

    Tachibana, Rie; Näppi, Janne J.; Hironaka, Toru; Kim, Se Hyung; Yoshida, Hiroyuki

    2017-03-01

    We developed a novel electronic cleansing (EC) method for dual-energy CT colonography (DE-CTC) based on an ensemble deep convolution neural network (DCNN) and multi-spectral multi-slice image patches. In the method, an ensemble DCNN is used to classify each voxel of a DE-CTC image volume into five classes: luminal air, soft tissue, tagged fecal materials, and partial-volume boundaries between air and tagging and those between soft tissue and tagging. Each DCNN acts as a voxel classifier, where an input image patch centered at the voxel is generated as input to the DCNNs. An image patch has three channels that are mapped from a region-of-interest containing the image plane of the voxel and the two adjacent image planes. Six different types of spectral input image datasets were derived using two dual-energy CT images, two virtual monochromatic images, and two material images. An ensemble DCNN was constructed by use of a meta-classifier that combines the output of multiple DCNNs, each of which was trained with a different type of multi-spectral image patches. The electronically cleansed CTC images were calculated by removal of regions classified as other than soft tissue, followed by a colon surface reconstruction. For pilot evaluation, 359 volumes of interest (VOIs) representing sources of subtraction artifacts observed in current EC schemes were sampled from 30 clinical CTC cases. Preliminary results showed that the ensemble DCNN can yield high accuracy in labeling of the VOIs, indicating that deep learning of multi-spectral EC with multi-slice imaging could accurately remove residual fecal materials from CTC images without generating major EC artifacts.

  9. Three-dimensional rendering of segmented object using matlab - biomed 2010.

    PubMed

    Anderson, Jeffrey R; Barrett, Steven F

    2010-01-01

    The three-dimensional rendering of microscopic objects is a difficult and challenging task that often requires specialized image processing techniques. Previous work has been described of a semi-automatic segmentation process of fluorescently stained neurons collected as a sequence of slice images with a confocal laser scanning microscope. Once properly segmented, each individual object can be rendered and studied as a three-dimensional virtual object. This paper describes the work associated with the design and development of Matlab files to create three-dimensional images from the segmented object data previously mentioned. Part of the motivation for this work is to integrate both the segmentation and rendering processes into one software application, providing a seamless transition from the segmentation tasks to the rendering and visualization tasks. Previously these tasks were accomplished on two different computer systems, windows and Linux. This transition basically limits the usefulness of the segmentation and rendering applications to those who have both computer systems readily available. The focus of this work is to create custom Matlab image processing algorithms for object rendering and visualization, and merge these capabilities to the Matlab files that were developed especially for the image segmentation task. The completed Matlab application will contain both the segmentation and rendering processes in a single graphical user interface, or GUI. This process for rendering three-dimensional images in Matlab requires that a sequence of two-dimensional binary images, representing a cross-sectional slice of the object, be reassembled in a 3D space, and covered with a surface. Additional segmented objects can be rendered in the same 3D space. The surface properties of each object can be varied by the user to aid in the study and analysis of the objects. This inter-active process becomes a powerful visual tool to study and understand microscopic objects.

  10. Physical aspects of total-body irradiation at the Middlesex Hospital (UCL group of hospitals), London 1988 - 1993: II. In vivo planning and dosimetry

    NASA Astrophysics Data System (ADS)

    Planskoy, B.; Tapper, P. D.; Bedford, A. M.; Davis, F. M.

    1996-11-01

    Part II of this paper gives the results of applying the TBI methods described in part I, to in vivo patient planning and dosimetry. Patients are planned on nine CT based body slices, five of which pass through the lungs. Planned doses are verified with ten silicon diodes applied bi-laterally to five body sites, at each treatment. LiF TLDs are applied to seven other body sites at the first treatment only. For 84 patients and at least 1016 measurements per body site with the diodes, the mean measured total doses agreed with planned doses within at most 2% except at lung levels, where the mean measured dose was 3% too low. Standard deviations of the measurements about the mean were between 2.4 and 3.1%. For the LiF TLDs, the mean measured doses for all seven body sites were within of planned doses. A separate assessment of measured entrance and transmitted doses showed that the former agreed well with planned doses, but that the latter tended to be low, especially over the lungs, and that they had a wider dispersion. Possible reasons for this are discussed. These results show measurement uncertainties similar to those for non-TBI treatments of Nilsson et al, Leunens et al and Essers et al. An analysis of the treatment plans showed a mean dose inhomogeneity in the body (75 patients, nine slices) of (1 s.d.) and in the lungs (40 patients, five slices) of (1 s.d.). The conclusions are that, overall, the methods are reasonably satisfactory but that, with an extra effort, even closer agreement between measured and planned doses and a further limited reduction in the body dose inhomogeneity could be obtained. However, if it were thought desirable to make a substantial reduction in the dose inhomogeneity in the body and lungs, this could only be achieved with the available equipment by changing from lateral to anterior - posterior irradiation and any potential advantages of this change would have to be balanced against a likely deterioration in patient comfort and an increase in treatment set-up times.

  11. Nuclear medicine image registration by spatially noncoherent interferometry.

    PubMed

    Scheiber, C; Malet, Y; Sirat, G; Grucker, D

    2000-02-01

    This article introduces a technique for obtaining high-resolution body contour data in the same coordinate frame as that of a rotating gamma camera, using a miniature range finder, the conoscope, mounted on the camera gantry. One potential application of the technique is accurate coregistration in longitudinal brain SPECT studies, using the face of the patient (or "mask"), instead of SPECT slices, to coregister subsequent acquisitions involving the brain. Conoscopic holography is an interferometry technique that relies on spatially incoherent light interference in birefringent crystals. In this study, the conoscope was used to measure the absolute distance (Z) between a light source reflected from the skin and its observation plane. This light was emitted by a 0.2-mW laser diode. A scanning system was used to image the face during SPECT acquisition. The system consisted of a motor-driven mirror (Y axis) and the gamma-camera gantry (1 profile was obtained for each rotation step, X axis). The system was calibrated to place the conoscopic measurements and SPECT slices in the same coordinate frame. Through a simple and robust calibration of the system, the SE for measurements performed on geometric shapes was less than 2 mm, i.e., less than the actual pixel size of the SPECT data. Biometric measurements of an anthropomorphic brain phantom were within 3%-5% of actual values. The mask data were used to register images of a brain phantom and of a volunteer's brain, respectively. The rigid transformation that allowed the merging of masks by visual inspection was applied to the 2 sets of SPECT slices to perform the fusion of the data. At the cost of an additional low-cost setup integrated into the gamma-camera gantry, real-time data about the surface of the head were obtained. As in all other surface-based techniques (as opposed to volume-based techniques), this method allows the match of data independently from the dataset of interest and facilitates further registration of data from any other source. The main advantage of this technique compared with other optically based methods is the robustness of the calibration procedure and the compactness of the sensor as a result of the colinearity of the projected beam and the reflected (diffused) beams of the conoscope. Taking into account the experimental nature of this preliminary work, significant improvements in the accuracy and speed of measurements (up to 1000 points/s) are expected.

  12. Slice sampling technique in Bayesian extreme of gold price modelling

    NASA Astrophysics Data System (ADS)

    Rostami, Mohammad; Adam, Mohd Bakri; Ibrahim, Noor Akma; Yahya, Mohamed Hisham

    2013-09-01

    In this paper, a simulation study of Bayesian extreme values by using Markov Chain Monte Carlo via slice sampling algorithm is implemented. We compared the accuracy of slice sampling with other methods for a Gumbel model. This study revealed that slice sampling algorithm offers more accurate and closer estimates with less RMSE than other methods . Finally we successfully employed this procedure to estimate the parameters of Malaysia extreme gold price from 2000 to 2011.

  13. Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method.

    PubMed

    Ting, Jonathan T; Lee, Brian R; Chong, Peter; Soler-Llavina, Gilberto; Cobbs, Charles; Koch, Christof; Zeng, Hongkui; Lein, Ed

    2018-02-26

    This protocol is a practical guide to the N-methyl-D-glucamine (NMDG) protective recovery method of brain slice preparation. Numerous recent studies have validated the utility of this method for enhancing neuronal preservation and overall brain slice viability. The implementation of this technique by early adopters has facilitated detailed investigations into brain function using diverse experimental applications and spanning a wide range of animal ages, brain regions, and cell types. Steps are outlined for carrying out the protective recovery brain slice technique using an optimized NMDG artificial cerebrospinal fluid (aCSF) media formulation and enhanced procedure to reliably obtain healthy brain slices for patch clamp electrophysiology. With this updated approach, a substantial improvement is observed in the speed and reliability of gigaohm seal formation during targeted patch clamp recording experiments while maintaining excellent neuronal preservation, thereby facilitating challenging experimental applications. Representative results are provided from multi-neuron patch clamp recording experiments to assay synaptic connectivity in neocortical brain slices prepared from young adult transgenic mice and mature adult human neurosurgical specimens. Furthermore, the optimized NMDG protective recovery method of brain slicing is compatible with both juvenile and adult animals, thus resolving a limitation of the original methodology. In summary, a single media formulation and brain slicing procedure can be implemented across various species and ages to achieve excellent viability and tissue preservation.

  14. Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method

    PubMed Central

    Chong, Peter; Soler-Llavina, Gilberto; Cobbs, Charles; Koch, Christof; Zeng, Hongkui; Lein, Ed

    2018-01-01

    This protocol is a practical guide to the N-methyl-D-glucamine (NMDG) protective recovery method of brain slice preparation. Numerous recent studies have validated the utility of this method for enhancing neuronal preservation and overall brain slice viability. The implementation of this technique by early adopters has facilitated detailed investigations into brain function using diverse experimental applications and spanning a wide range of animal ages, brain regions, and cell types. Steps are outlined for carrying out the protective recovery brain slice technique using an optimized NMDG artificial cerebrospinal fluid (aCSF) media formulation and enhanced procedure to reliably obtain healthy brain slices for patch clamp electrophysiology. With this updated approach, a substantial improvement is observed in the speed and reliability of gigaohm seal formation during targeted patch clamp recording experiments while maintaining excellent neuronal preservation, thereby facilitating challenging experimental applications. Representative results are provided from multi-neuron patch clamp recording experiments to assay synaptic connectivity in neocortical brain slices prepared from young adult transgenic mice and mature adult human neurosurgical specimens. Furthermore, the optimized NMDG protective recovery method of brain slicing is compatible with both juvenile and adult animals, thus resolving a limitation of the original methodology. In summary, a single media formulation and brain slicing procedure can be implemented across various species and ages to achieve excellent viability and tissue preservation. PMID:29553547

  15. Magnetohydrodynamics of unsteady viscous fluid on boundary layer past a sliced sphere

    NASA Astrophysics Data System (ADS)

    Nursalim, Rahmat; Widodo, Basuki; Imron, Chairul

    2017-10-01

    Magnetohydrodynamics (MHD) is important study in engineering and industrial fields. By study on MHD, we can reach the fluid flow characteristics that can be used to minimize its negative effect to an object. In decades, MHD has been widely studied in various geometry forms and fluid types. The sliced sphere is a geometry form that has not been investigated. In this paper we study magnetohydrodynamics of unsteady viscous fluid on boundary layer past a sliced sphere. Assumed that the fluid is incompressible, there is no magnetic field, there is no electrical voltage, the sliced sphere is fix and there is no barrier around the object. In this paper we focus on velocity profile at stagnation point (x = 0°). Mathematical model is governed by continuity and momentum equation. It is converted to non-dimensional, stream function, and similarity equation. Solution of the mathematical model is obtained by using Keller-Box numerical method. By giving various of slicing angle and various of magnetic parameter we get the simulation results. The simulation results show that increasing the slicing angle causes the velocity profile be steeper. Also, increasing the value of magnetic parameter causes the velocity profile be steeper. On the large slicing angle there is no significant effect of magnetic parameter to velocity profile, and on the high the value of magnetic parameter there is no significant effect of slicing angle to velocity profile.

  16. SU-G-206-01: A Fully Automated CT Tool to Facilitate Phantom Image QA for Quantitative Imaging in Clinical Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahi-Anwar, M; Lo, P; Kim, H

    Purpose: The use of Quantitative Imaging (QI) methods in Clinical Trials requires both verification of adherence to a specified protocol and an assessment of scanner performance under that protocol, which are currently accomplished manually. This work introduces automated phantom identification and image QA measure extraction towards a fully-automated CT phantom QA system to perform these functions and facilitate the use of Quantitative Imaging methods in clinical trials. Methods: This study used a retrospective cohort of CT phantom scans from existing clinical trial protocols - totaling 84 phantoms, across 3 phantom types using various scanners and protocols. The QA system identifiesmore » the input phantom scan through an ensemble of threshold-based classifiers. Each classifier - corresponding to a phantom type - contains a template slice, which is compared to the input scan on a slice-by-slice basis, resulting in slice-wise similarity metric values for each slice compared. Pre-trained thresholds (established from a training set of phantom images matching the template type) are used to filter the similarity distribution, and the slice with the most optimal local mean similarity, with local neighboring slices meeting the threshold requirement, is chosen as the classifier’s matched slice (if it existed). The classifier with the matched slice possessing the most optimal local mean similarity is then chosen as the ensemble’s best matching slice. If the best matching slice exists, image QA algorithm and ROIs corresponding to the matching classifier extracted the image QA measures. Results: Automated phantom identification performed with 84.5% accuracy and 88.8% sensitivity on 84 phantoms. Automated image quality measurements (following standard protocol) on identified water phantoms (n=35) matched user QA decisions with 100% accuracy. Conclusion: We provide a fullyautomated CT phantom QA system consistent with manual QA performance. Further work will include parallel component to automatically verify image acquisition parameters and automated adherence to specifications. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics; NIH Grant support from: U01 CA181156.« less

  17. Influence of image slice thickness on rectal dose-response relationships following radiotherapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Olsson, C.; Thor, M.; Liu, M.; Moissenko, V.; Petersen, S. E.; Høyer, M.; Apte, A.; Deasy, J. O.

    2014-07-01

    When pooling retrospective data from different cohorts, slice thicknesses of acquired computed tomography (CT) images used for treatment planning may vary between cohorts. It is, however, not known if varying slice thickness influences derived dose-response relationships. We investigated this for rectal bleeding using dose-volume histograms (DVHs) of the rectum and rectal wall for dose distributions superimposed on images with varying CT slice thicknesses. We used dose and endpoint data from two prostate cancer cohorts treated with three-dimensional conformal radiotherapy to either 74 Gy (N = 159) or 78 Gy (N = 159) at 2 Gy per fraction. The rectum was defined as the whole organ with content, and the morbidity cut-off was Grade ≥2 late rectal bleeding. Rectal walls were defined as 3 mm inner margins added to the rectum. DVHs for simulated slice thicknesses from 3 to 13 mm were compared to DVHs for the originally acquired slice thicknesses at 3 and 5 mm. Volumes, mean, and maximum doses were assessed from the DVHs, and generalized equivalent uniform dose (gEUD) values were calculated. For each organ and each of the simulated slice thicknesses, we performed predictive modeling of late rectal bleeding using the Lyman-Kutcher-Burman (LKB) model. For the most coarse slice thickness, rectal volumes increased (≤18%), whereas maximum and mean doses decreased (≤0.8 and ≤4.2 Gy, respectively). For all a values, the gEUD for the simulated DVHs were ≤1.9 Gy different than the gEUD for the original DVHs. The best-fitting LKB model parameter values with 95% CIs were consistent between all DVHs. In conclusion, we found that the investigated slice thickness variations had minimal impact on rectal dose-response estimations. From the perspective of predictive modeling, our results suggest that variations within 10 mm in slice thickness between cohorts are unlikely to be a limiting factor when pooling multi-institutional rectal dose data that include slice thickness variations within this range. Presented in part at the European Society for Therapeutic Radiotherapy and Oncology Annual Meeting, April 5-8, 2014, Vienna, Austria.

  18. Silhouette-Slice Theorems.

    DTIC Science & Technology

    1986-09-01

    necessary to define "canonical" * parameterizations. Examples of proposed parameterizations are Munge N...of a slice of the surface oriented along the vector CT on the surface is given by STr -(A4.24) 11 is clear from the above expression, that when a slice

  19. SU-C-207B-03: A Geometrical Constrained Chan-Vese Based Tumor Segmentation Scheme for PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L; Zhou, Z; Wang, J

    Purpose: Accurate segmentation of tumor in PET is challenging when part of tumor is connected with normal organs/tissues with no difference in intensity. Conventional segmentation methods, such as thresholding or region growing, cannot generate satisfactory results in this case. We proposed a geometrical constrained Chan-Vese based scheme to segment tumor in PET for this special case by considering the similarity between two adjacent slices. Methods: The proposed scheme performs segmentation in a slice-by-slice fashion where an accurate segmentation of one slice is used as the guidance for segmentation of rest slices. For a slice that the tumor is not directlymore » connected to organs/tissues with similar intensity values, a conventional clustering-based segmentation method under user’s guidance is used to obtain an exact tumor contour. This is set as the initial contour and the Chan-Vese algorithm is applied for segmenting the tumor in the next adjacent slice by adding constraints of tumor size, position and shape information. This procedure is repeated until the last slice of PET containing tumor. The proposed geometrical constrained Chan-Vese based algorithm was implemented in Matlab and its performance was tested on several cervical cancer patients where cervix and bladder are connected with similar activity values. The positive predictive values (PPV) are calculated to characterize the segmentation accuracy of the proposed scheme. Results: Tumors were accurately segmented by the proposed method even when they are connected with bladder in the image with no difference in intensity. The average PPVs were 0.9571±0.0355 and 0.9894±0.0271 for 17 slices and 11 slices of PET from two patients, respectively. Conclusion: We have developed a new scheme to segment tumor in PET images for the special case that the tumor is quite similar to or connected to normal organs/tissues in the image. The proposed scheme can provide a reliable way for segmenting tumors.« less

  20. Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, Julia E.; Heale, Jason; Bieraugel, Mike

    Human response to isoproterenol induced cardiac injury was evaluated by gene and protein pathway changes in human heart slices, and compared to rat heart slices and rat heart in vivo. Isoproterenol (10 and 100 μM) altered human and rat heart slice markers of oxidative stress (ATP and GSH) at 24 h. In this in vivo rat study (0.5 mg/kg), serum troponin concentrations increased with lesion severity, minimal to mild necrosis at 24 and 48 h. In the rat and the human heart, isoproterenol altered pathways for apoptosis/necrosis, stress/energy, inflammation, and remodeling/fibrosis. The rat and human heart slices were in anmore » apoptotic phase, while the in vivo rat heart exhibited necrosis histologically and further progression of tissue remodeling. In human heart slices genes for several heat shock 70 kD members were altered, indicative of stress to mitigate apoptosis. The stress response included alterations in energy utilization, fatty acid processing, and the up-regulation of inducible nitric oxide synthase, a marker of increased oxidative stress in both species. Inflammation markers linked with remodeling included IL-1α, Il-1β, IL-6 and TNFα in both species. Tissue remodeling changes in both species included increases in the TIMP proteins, inhibitors of matrix degradation, the gene/protein of IL-4 linked with cardiac fibrosis, and the gene Ccl7 a chemokine that induces collagen synthesis, and Reg3b a growth factor for cardiac repair. This study demonstrates that the initial human heart slice response to isoproterenol cardiac injury results in apoptosis, stress/energy status, inflammation and tissue remodeling at concentrations similar to that in rat heart slices. - Highlights: • Human response to isoproterenol induced cardiac injury evaluated in heart slices. • Isoproterenol altered apoptosis, energy, inflammation and remodeling pathways. • Human model verified by comparison to rat heart slices and rat heart in vivo. • Human and rat respond to isoproterenol at similar concentrations in vitro.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoming; Nan, Zhaodong, E-mail: zdnan@yzu.edu.cn

    Graphical abstract: Glass-slices were used as a template to induce formation and assembly of aragonite. Different morphologies, such as hemisphere, twinborn hemisphere and flower-shaped particles, were produced by direction of the glass-slices. Highlights: {yields} Glass-slices were used as a template to induce formation and assembly of aragonite. {yields} Hemisphere, twinborn hemisphere and flower-shaped particles were produced by direction of the glass-slices. {yields} Planes were always appeared in these as-synthesized samples. {yields} Thermodynamic theory was applied to explain the production of the aragonite. -- Abstract: A glass-slice was used as a template to induce formation and assembly of aragonite. Thermodynamic theorymore » was applied to explain the production of the aragonite. Transformation of three-dimensional nucleation to template-based two-dimensional surface nucleation caused the production of aragonite. Hemisphere, twinborn hemisphere and flower-shaped particles were produced by direction of the glass-slices. Planes were always appeared in these as-synthesized samples because the nucleation and the growth of these samples were adsorbed at the surfaces of the glass-slices. The formation mechanism of the as-formed sample was proposed. Compared with organic template, the present study provides a facile method to apply inorganic template to prepare functional materials.« less

  2. Evaluation of slice accelerations using multiband echo planar imaging at 3 Tesla

    PubMed Central

    Xu, Junqian; Moeller, Steen; Auerbach, Edward J.; Strupp, John; Smith, Stephen M.; Feinberg, David A.; Yacoub, Essa; Uğurbil, Kâmil

    2013-01-01

    We evaluate residual aliasing among simultaneously excited and acquired slices in slice accelerated multiband (MB) echo planar imaging (EPI). No in-plane accelerations were used in order to maximize and evaluate achievable slice acceleration factors at 3 Tesla. We propose a novel leakage (L-) factor to quantify the effects of signal leakage between simultaneously acquired slices. With a standard 32-channel receiver coil at 3 Tesla, we demonstrate that slice acceleration factors of up to eight (MB = 8) with blipped controlled aliasing in parallel imaging (CAIPI), in the absence of in-plane accelerations, can be used routinely with acceptable image quality and integrity for whole brain imaging. Spectral analyses of single-shot fMRI time series demonstrate that temporal fluctuations due to both neuronal and physiological sources were distinguishable and comparable up to slice-acceleration factors of nine (MB = 9). The increased temporal efficiency could be employed to achieve, within a given acquisition period, higher spatial resolution, increased fMRI statistical power, multiple TEs, faster sampling of temporal events in a resting state fMRI time series, increased sampling of q-space in diffusion imaging, or more quiet time during a scan. PMID:23899722

  3. Neural network classification technique and machine vision for bread crumb grain evaluation

    NASA Astrophysics Data System (ADS)

    Zayas, Inna Y.; Chung, O. K.; Caley, M.

    1995-10-01

    Bread crumb grain was studied to develop a model for pattern recognition of bread baked at Hard Winter Wheat Quality Laboratory (HWWQL), Grain Marketing and Production Research Center (GMPRC). Images of bread slices were acquired with a scanner in a 512 multiplied by 512 format. Subimages in the central part of the slices were evaluated by several features such as mean, determinant, eigen values, shape of a slice and other crumb features. Derived features were used to describe slices and loaves. Neural network programs of MATLAB package were used for data analysis. Learning vector quantization method and multivariate discriminant analysis were applied to bread slices from what of different sources. A training and test sets of different bread crumb texture classes were obtained. The ranking of subimages was well correlated with visual judgement. The performance of different models on slice recognition rate was studied to choose the best model. The recognition of classes created according to human judgement with image features was low. Recognition of arbitrarily created classes, according to porosity patterns, with several feature patterns was approximately 90%. Correlation coefficient was approximately 0.7 between slice shape features and loaf volume.

  4. Tectonic slicing of subducting oceanic crust along plate interfaces: Numerical modeling

    NASA Astrophysics Data System (ADS)

    Ruh, J. B.; Le Pourhiet, L.; Agard, Ph.; Burov, E.; Gerya, T.

    2015-10-01

    Multikilometer-sized slivers of high-pressure low-temperature metamorphic oceanic crust and mantle are observed in many mountain belts. These blueschist and eclogite units were detached from the descending plate during subduction. Large-scale thermo-mechanical numerical models based on finite difference marker-in-cell staggered grid technique are implemented to investigate slicing processes that lead to the detachment of oceanic slivers and their exhumation before the onset of the continental collision phase. In particular, we investigate the role of the serpentinized subcrustal slab mantle in the mechanisms of shallow and deep crustal slicing. Results show that spatially homogeneous serpentinization of the sub-Moho slab mantle leads to complete accretion of oceanic crust within the accretionary wedge. Spatially discontinuous serpentinization of the slab mantle in form of unconnected patches can lead to shallow slicing of the oceanic crust below the accretionary wedge and to its deep slicing at mantle depths depending on the patch length, slab angle, convergence velocity and continental geothermal gradient. P-T paths obtained in this study are compared to natural examples of shallow slicing of the Crescent Terrane below Vancouver Island and deeply sliced crust of the Lago Superiore and Saas-Zermatt units in the Western Alps.

  5. Motion parallax in immersive cylindrical display systems

    NASA Astrophysics Data System (ADS)

    Filliard, N.; Reymond, G.; Kemeny, A.; Berthoz, A.

    2012-03-01

    Motion parallax is a crucial visual cue produced by translations of the observer for the perception of depth and selfmotion. Therefore, tracking the observer viewpoint has become inevitable in immersive virtual (VR) reality systems (cylindrical screens, CAVE, head mounted displays) used e.g. in automotive industry (style reviews, architecture design, ergonomics studies) or in scientific studies of visual perception. The perception of a stable and rigid world requires that this visual cue be coherent with other extra-retinal (e.g. vestibular, kinesthetic) cues signaling ego-motion. Although world stability is never questioned in real world, rendering head coupled viewpoint in VR can lead to the perception of an illusory perception of unstable environments, unless a non-unity scale factor is applied on recorded head movements. Besides, cylindrical screens are usually used with static observers due to image distortions when rendering image for viewpoints different from a sweet spot. We developed a technique to compensate in real-time these non-linear visual distortions, in an industrial VR setup, based on a cylindrical screen projection system. Additionally, to evaluate the amount of discrepancies tolerated without perceptual distortions between visual and extraretinal cues, a "motion parallax gain" between the velocity of the observer's head and that of the virtual camera was introduced in this system. The influence of this artificial gain was measured on the gait stability of free-standing participants. Results indicate that, below unity, gains significantly alter postural control. Conversely, the influence of higher gains remains limited, suggesting a certain tolerance of observers to these conditions. Parallax gain amplification is therefore proposed as a possible solution to provide a wider exploration of space to users of immersive virtual reality systems.

  6. A virtual size-variable pinhole for single photon confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Guangjun; Khoobehi, Bahram

    2013-03-01

    Pinhole is a critical device in single photon confocal microscopy (SPCM) owning to its ability to block the background noise scattered from back and forth of the focal plane. Without pinhole, the sectioning ability of SPCM will be degraded and many background noise signals will occurred together with useful signals, and sometimes these bad noises can submerge the details that we are interested in. However a pinhole with too small diameter will block both background noises and part of signals and decrease the intensity of the image. Therefore in many cases pinhole size should be selected carefully. Unfortunately because of constrains in mechanics, a pinhole that can change its size continuously, for example from 10 μm to 100 μm, is unavailable. For most commercial confocal microscopies, only several discrete pinhole sizes are provided, such as 10 μm, 30 μm, 60 μm etc. Things will be even harder for some imaging systems which use the input interface of a single mode fiber as the pinhole of SPCM, and then the pinhole size of these systems will be fixed, which far limit the optimization of systems' performance. In this paper, we design a size-variable pinhole setup that can offer a virtual pinhole with its diameter adjustable, which includes a physical pinhole (or single mode fiber) and a fine designed zoom relay (ZR) optical system. The magnification ratio of this ZR can vary smoothly while keeping the conjugation distance unchanged. The aberrations of the ZR are well balanced and diffraction-limited image performance are obtained so that the virtual pinhole can block background scattering noise and pass the in-focus signal effectively and accurately. Simulation results are also provided and discussed.

  7. You Spin my Head Right Round: Threshold of Limited Immersion for Rotation Gains in Redirected Walking.

    PubMed

    Schmitz, Patric; Hildebrandt, Julian; Valdez, Andre Calero; Kobbelt, Leif; Ziefle, Martina

    2018-04-01

    In virtual environments, the space that can be explored by real walking is limited by the size of the tracked area. To enable unimpeded walking through large virtual spaces in small real-world surroundings, redirection techniques are used. These unnoticeably manipulate the user's virtual walking trajectory. It is important to know how strongly such techniques can be applied without the user noticing the manipulation-or getting cybersick. Previously, this was estimated by measuring a detection threshold (DT) in highly-controlled psychophysical studies, which experimentally isolate the effect but do not aim for perceived immersion in the context of VR applications. While these studies suggest that only relatively low degrees of manipulation are tolerable, we claim that, besides establishing detection thresholds, it is important to know when the user's immersion breaks. We hypothesize that the degree of unnoticed manipulation is significantly different from the detection threshold when the user is immersed in a task. We conducted three studies: a) to devise an experimental paradigm to measure the threshold of limited immersion (TLI), b) to measure the TLI for slowly decreasing and increasing rotation gains, and c) to establish a baseline of cybersickness for our experimental setup. For rotation gains greater than 1.0, we found that immersion breaks quite late after the gain is detectable. However, for gains lesser than 1.0, some users reported a break of immersion even before established detection thresholds were reached. Apparently, the developed metric measures an additional quality of user experience. This article contributes to the development of effective spatial compression methods by utilizing the break of immersion as a benchmark for redirection techniques.

  8. The Sense of Agency Is More Sensitive to Manipulations of Outcome than Movement-Related Feedback Irrespective of Sensory Modality

    PubMed Central

    David, Nicole; Skoruppa, Stefan; Gulberti, Alessandro

    2016-01-01

    The sense of agency describes the ability to experience oneself as the agent of one's own actions. Previous studies of the sense of agency manipulated the predicted sensory feedback related either to movement execution or to the movement’s outcome, for example by delaying the movement of a virtual hand or the onset of a tone that resulted from a button press. Such temporal sensorimotor discrepancies reduce the sense of agency. It remains unclear whether movement-related feedback is processed differently than outcome-related feedback in terms of agency experience, especially if these types of feedback differ with respect to sensory modality. We employed a mixed-reality setup, in which participants tracked their finger movements by means of a virtual hand. They performed a single tap, which elicited a sound. The temporal contingency between the participants’ finger movements and (i) the movement of the virtual hand or (ii) the expected auditory outcome was systematically varied. In a visual control experiment, the tap elicited a visual outcome. For each feedback type and participant, changes in the sense of agency were quantified using a forced-choice paradigm and the Method of Constant Stimuli. Participants were more sensitive to delays of outcome than to delays of movement execution. This effect was very similar for visual or auditory outcome delays. Our results indicate different contributions of movement- versus outcome-related sensory feedback to the sense of agency, irrespective of the modality of the outcome. We propose that this differential sensitivity reflects the behavioral importance of assessing authorship of the outcome of an action. PMID:27536948

  9. Absence of modulatory action on haptic height perception with musical pitch

    PubMed Central

    Geronazzo, Michele; Avanzini, Federico; Grassi, Massimo

    2015-01-01

    Although acoustic frequency is not a spatial property of physical objects, in common language, pitch, i.e., the psychological correlated of frequency, is often labeled spatially (i.e., “high in pitch” or “low in pitch”). Pitch-height is known to modulate (and interact with) the response of participants when they are asked to judge spatial properties of non-auditory stimuli (e.g., visual) in a variety of behavioral tasks. In the current study we investigated whether the modulatory action of pitch-height extended to the haptic estimation of height of a virtual step. We implemented a HW/SW setup which is able to render virtual 3D objects (stair-steps) haptically through a PHANTOM device, and to provide real-time continuous auditory feedback depending on the user interaction with the object. The haptic exploration was associated with a sinusoidal tone whose pitch varied as a function of the interaction point's height within (i) a narrower and (ii) a wider pitch range, or (iii) a random pitch variation acting as a control audio condition. Explorations were also performed with no sound (haptic only). Participants were instructed to explore the virtual step freely, and to communicate height estimation by opening their thumb and index finger to mimic the step riser height, or verbally by reporting the height in centimeters of the step riser. We analyzed the role of musical expertise by dividing participants into non-musicians and musicians. Results showed no effects of musical pitch on high-realistic haptic feedback. Overall there is no difference between the two groups in the proposed multimodal conditions. Additionally, we observed a different haptic response distribution between musicians and non-musicians when estimations of the auditory conditions are matched with estimations in the no sound condition. PMID:26441745

  10. Correlation between a 2D Channelized Hotelling Observer and Human Observers in a Low-contrast Detection Task with Multi-slice Reading in CT

    PubMed Central

    Yu, Lifeng; Chen, Baiyu; Kofler, James M.; Favazza, Christopher P.; Leng, Shuai; Kupinski, Matthew A.; McCollough, Cynthia H.

    2017-01-01

    Purpose Model observers have been successfully developed and used to assess the quality of static 2D CT images. However, radiologists typically read images by paging through multiple 2D slices (i.e. multi-slice reading). The purpose of this study was to correlate human and model observer performance in a low-contrast detection task performed using both 2D and multi-slice reading, and to determine if the 2D model observer still correlate well with human observer performance in multi-slice reading. Methods A phantom containing 18 low-contrast spheres (6 sizes × 3 contrast levels) was scanned on a 192-slice CT scanner at 5 dose levels (CTDIvol = 27, 13.5, 6.8, 3.4, and 1.7 mGy), each repeated 100 times. Images were reconstructed using both filtered-backprojection (FBP) and an iterative reconstruction (IR) method (ADMIRE, Siemens). A 3D volume of interest (VOI) around each sphere was extracted and placed side-by-side with a signal-absent VOI to create a 2-alternative forced choice (2AFC) trial. Sixteen 2AFC studies were generated, each with 100 trials, to evaluate the impact of radiation dose, lesion size and contrast, and reconstruction methods on object detection. In total, 1600 trials were presented to both model and human observers. Three medical physicists acted as human observers and were allowed to page through the 3D volumes to make a decision for each 2AFC trial. The human observer performance was compared with the performance of a multi-slice channelized Hotelling observer (CHO_MS), which integrates multi-slice image data, and with the performance of previously validated CHO, which operates on static 2D images (CHO_2D). For comparison, the same 16 2AFC studies were also performed in a 2D viewing mode by the human observers and compared with the multi-slice viewing performance and the two CHO models. Results Human observer performance was well correlated with the CHO_2D performance in the 2D viewing mode (Pearson product-moment correlation coefficient R=0.972, 95% confidence interval (CI): 0.919 to 0.990) and with the CHO_MS performance in the multi-slice viewing mode (R=0.952, 95% CI: 0.865 to 0.984). The CHO_2D performance, calculated from the 2D viewing mode, also had a strong correlation with human observer performance in the multi-slice viewing mode (R=0.957, 95% CI: 879 to 0.985). Human observer performance varied between the multi-slice and 2D modes. One reader performed better in the multi-slice mode (p=0.013); whereas the other two readers showed no significant difference between the two viewing modes (p=0.057 and p=0.38). Conclusions A 2D CHO model is highly correlated with human observer performance in detecting spherical low contrast objects in multi-slice viewing of CT images. This finding provides some evidence for the use of a simpler, 2D CHO to assess image quality in clinically relevant CT tasks where multi-slice viewing is used. PMID:28555878

  11. Dispersion-based Fresh-slice Scheme for Free-Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guetg, Marc

    The Fresh-slice technique improved the performance of several Self-Amplified Spontaneous Emission Free-Electron laser schemes by granting selective control on the temporal lasing slice without spoiling the other electron bunch slices. So far, the implementation required a special insertion device to create the beam yaw, called dechirper. We demonstrate a novel scheme to enable Freshslice operation based on electron energy chirp and orbit dispersion that can be implemented at any free-electron laser facility without additional hardware.

  12. Strain analysis in CRT candidates using the novel segment length in cine (SLICE) post-processing technique on standard CMR cine images.

    PubMed

    Zweerink, Alwin; Allaart, Cornelis P; Kuijer, Joost P A; Wu, LiNa; Beek, Aernout M; van de Ven, Peter M; Meine, Mathias; Croisille, Pierre; Clarysse, Patrick; van Rossum, Albert C; Nijveldt, Robin

    2017-12-01

    Although myocardial strain analysis is a potential tool to improve patient selection for cardiac resynchronization therapy (CRT), there is currently no validated clinical approach to derive segmental strains. We evaluated the novel segment length in cine (SLICE) technique to derive segmental strains from standard cardiovascular MR (CMR) cine images in CRT candidates. Twenty-seven patients with left bundle branch block underwent CMR examination including cine imaging and myocardial tagging (CMR-TAG). SLICE was performed by measuring segment length between anatomical landmarks throughout all phases on short-axis cines. This measure of frame-to-frame segment length change was compared to CMR-TAG circumferential strain measurements. Subsequently, conventional markers of CRT response were calculated. Segmental strains showed good to excellent agreement between SLICE and CMR-TAG (septum strain, intraclass correlation coefficient (ICC) 0.76; lateral wall strain, ICC 0.66). Conventional markers of CRT response also showed close agreement between both methods (ICC 0.61-0.78). Reproducibility of SLICE was excellent for intra-observer testing (all ICC ≥0.76) and good for interobserver testing (all ICC ≥0.61). The novel SLICE post-processing technique on standard CMR cine images offers both accurate and robust segmental strain measures compared to the 'gold standard' CMR-TAG technique, and has the advantage of being widely available. • Myocardial strain analysis could potentially improve patient selection for CRT. • Currently a well validated clinical approach to derive segmental strains is lacking. • The novel SLICE technique derives segmental strains from standard CMR cine images. • SLICE-derived strain markers of CRT response showed close agreement with CMR-TAG. • Future studies will focus on the prognostic value of SLICE in CRT candidates.

  13. The synthesis and release of acetylcholine by depolarized hippocampal slices is increased by increased choline available in vitro prior to stimulation.

    PubMed

    Wecker, L

    1991-10-01

    The objective of these experiments was to determine whether preincubating hippocampal slices with choline provides precursor that can be used during a subsequent incubation to support or enhance the synthesis of acetylcholine (ACh). Slices were preincubated for 60 min with 0, 10, 25, or 50 microM choline, washed, resuspended, and then incubated for 10 min in choline-free buffer containing 4.74 (Krebs-Ringer bicarbonate, KRB) or 25 mM KCl. The tissue contents of ACh and choline were determined prior to and after the preincubation, as well as after the incubation; the amounts of ACh and choline released were measured, and ACh synthesis was calculated. Preincubation in the absence of choline increased the tissue content of ACh to 242% of original levels; preincubation with 10 microM choline did not lead to a further increase, but preincubation with 25 or 50 microM choline increased the ACh content to 272% of original levels, significantly greater than that of slices preincubated with either 0 or 10 microM choline. When tissues were subsequently incubated for 10 min with either KRB or 25 mM KCl, ACh release from slices preincubated with 50 microM choline was greater than from slices preincubated with 0, 10, or 25 microM choline. Incubation of slices with KRB did not alter the tissue content of ACh, but when tissues were incubated with 25 mM KCl, the ACh content of slices preincubated with 0 or 10 microM choline decreased significantly, whereas that of slices preincubated with 25 or 50 microM choline did not.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Assessment of global and regional left ventricular function using 64-slice multislice computed tomography and 2D echocardiography: a comparison with cardiac magnetic resonance.

    PubMed

    Annuar, Bin Rapaee; Liew, Chee Khoon; Chin, Sze Piaw; Ong, Tiong Kiam; Seyfarth, M Tobias; Chan, Wei Ling; Fong, Yean Yip; Ang, Choon Kiat; Lin, Naing; Liew, Houng Bang; Sim, Kui Hian

    2008-01-01

    To compare the assessment of global and regional left ventricular (LV) function using 64-slice multislice computed tomography (MSCT), 2D echocardiography (2DE) and cardiac magnetic resonance (CMR). Thirty-two consecutive patients (mean age, 56.5+/-9.7 years) referred for evaluation of coronary artery using 64-slice MSCT also underwent 2DE and CMR within 48h. The global left ventricular function which include left ventricular ejection fraction (LVEF), left ventricular end diastolic volume (LVdV) and left ventricular end systolic volume (LVsV) were determine using the three modalities. Regional wall motion (RWM) was assessed visually in all three modalities. The CMR served as the gold standard for the comparison between 64-slice MSCT with CMR and 2DE with CMR. Statistical analysis included Pearson correlation coefficient, Bland-Altman plots and kappa-statistics. The 64-slice MSCT agreed well with CMR for assessment of LVEF (r=0.92; p<0.0001), LVdV (r=0.98; p<0.0001) and LVsV (r=0.98; p<0.0001). In comparison with 64-slice MSCT, 2DE showed moderate correlation with CMR for the assessment of LVEF (r=0.84; p<0.0001), LVdV (r=0.83; p<0.0001) and LVsV (r=0.80; p<0.0001). However in RWM analysis, 2DE showed better accuracy than 64-slice MSCT (94.3% versus 82.4%) and closer agreement (kappa=0.89 versus 0.63) with CMR. 64-Slice MSCT correlates strongly with CMR in global LV function however in regional LV function 2DE showed better agreement with CMR than 64-slice MSCT.

  15. Improved biochemical preservation of heart slices during cold storage.

    PubMed

    Bull, D A; Reid, B B; Connors, R C; Albanil, A; Stringham, J C; Karwande, S V

    2000-01-01

    Development of myocardial preservation solutions requires the use of whole organ models which are animal and labor intensive. These models rely on physiologic rather than biochemical endpoints, making accurate comparison of the relative efficacy of individual solution components difficult. We hypothesized that myocardial slices could be used to assess preservation of biochemical function during cold storage. Whole rat hearts were precision cut into slices with a thickness of 200 microm and preserved at 4 degrees C in one of the following solutions: Columbia University (CU), University of Wisconsin (UW), D5 0.2% normal saline with 20 meq/l KCL (QNS), normal saline (NS), or a novel cardiac preservation solution (NPS) developed using this model. Myocardial biochemical function was assessed by ATP content (etamoles ATP/mg wet weight) and capacity for protein synthesis (counts per minute (cpm)/mg protein) immediately following slicing (0 hours), and at 6, 12, 18, and 24 hours of cold storage. Six slices were assayed at each time point for each solution. The data were analyzed using analysis of variance and are presented as the mean +/- standard deviation. ATP content was higher in the heart slices stored in the NPS compared to all other solutions at 6, 12, 18 and 24 hours of cold storage (p < 0.05). Capacity for protein synthesis was higher in the heart slices stored in the NPS compared to all other solutions at 6, 12, and 18 hours of cold storage (p < 0.05). CONCLUSIONS This myocardial slice model allows the rapid and efficient screening of cardiac preservation solutions and their components using quantifiable biochemical endpoints. Using this model, we have developed a novel preservation solution which improves the biochemical function of myocardial slices during cold storage.

  16. EFFECT OF ABDOMINAL SHIELDING ON THE METABOLISM OF HYDROCORTISONE BY LIVER TISSUE OF X-IRRADIATED RATS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lott, J.R.

    Liver slices removed from adult rats at various times following whole body x-irradiations of 850, 1500, and 2000 r were tested for their ability to metabolize hydrocortisone ( free alcohol). The animals were divided into a non- irradiated control group, an irradiated unshielded group, and an abdominal- shielded irradiated group. It was found that the irradiated unshielded liver slices metabo lized the hydrocortisone at a lower rate than control slices. Liver slices removed from animals whose abdominal regions were shielded during irradiation were found to metabolize hydrocortisone at a higher rate than control slices. The effects observed appeared to bemore » dependent on total dosage and time of removal of the liver post-irradiation. (auth)« less

  17. Substance P-induced release of Met5-enkephalin from striatal and periaqueductal gray slices.

    PubMed

    Del Río, J; Naranjo, J R; Yang, H Y; Costa, E

    1983-11-21

    Substance P(SP), the heptapeptide SP and the stable analogue (p-Glu5-MePhe8-MeGly9) SP (DiMe-C7) induce a Ca2+-dependent release of Met5-enkephalin (MET) from slices of periaqueductal gray matter (PAG) and striatum of rats. The MET release from striatal slices is greater than that from PAG slices because of the higher MET content of striatum. Intraventricular injection of SP and of the two related peptides induce analgesia in the rat, and their analgesic potency is in line with their capacity to release MET. Other neuropeptides which possess antinociceptive activity such as bombesin, neurotensin, vasopressin and somatostatin fail to release MET from PAG slices.

  18. Monte Carlo simulations in X-ray imaging

    NASA Astrophysics Data System (ADS)

    Giersch, Jürgen; Durst, Jürgen

    2008-06-01

    Monte Carlo simulations have become crucial tools in many fields of X-ray imaging. They help to understand the influence of physical effects such as absorption, scattering and fluorescence of photons in different detector materials on image quality parameters. They allow studying new imaging concepts like photon counting, energy weighting or material reconstruction. Additionally, they can be applied to the fields of nuclear medicine to define virtual setups studying new geometries or image reconstruction algorithms. Furthermore, an implementation of the propagation physics of electrons and photons allows studying the behavior of (novel) X-ray generation concepts. This versatility of Monte Carlo simulations is illustrated with some examples done by the Monte Carlo simulation ROSI. An overview of the structure of ROSI is given as an example of a modern, well-proven, object-oriented, parallel computing Monte Carlo simulation for X-ray imaging.

  19. Roles and Responsibilities in Feature Teams

    NASA Astrophysics Data System (ADS)

    Eckstein, Jutta

    Agile development requires self-organizing teams. The set-up of a (feature) team has to enable self-organization. Special care has to be taken if the project is not only distributed, but also large and more than one feature team is involved. Every feature team needs in such a setting a product owner who ensures the continuous focus on business delivery. The product owners collaborate by working together in a virtual team. Each feature team is supported by a coach who ensures not only the agile process of the individual feature team but also across all feature teams. An architect (or if necessary a team of architects) takes care that the system is technically sound. Contrariwise to small co-located projects, large global projects require a project manager who deals with—among other things—internal and especially external politics.

  20. Proposal for GPD studies at COMPASS

    NASA Astrophysics Data System (ADS)

    Burtin, E.

    2011-10-01

    The study of nucleon structure through Generalised Parton Distributions (GPD) is one major part of the future COMPASS-II physics program [1] and can be performed using exclusive reactions like Deeply Virtual Compton Scattering (DVCS) and Meson Production. The high energy of the muon beam allows to measure the xB-dependence of the t-slope of the DVCS cross section. The use of positive and negative polarised muon beams allows to determine the Beam Charge and Spin Difference of the DVCS cross sections to access the real part of the Compton form factor related to the dominant GPD H. The sensitivity of both measurements is examined and confronted to existing models or global fits of the data. Preliminary beam test data were analyzed and demonstrated the feasibility of the identification of the DVCS reaction using the COMPASS experimental set-up.

  1. Effect of simultaneous infrared dry-blanching and dehydration on quality characteristics of carrot slices

    USDA-ARS?s Scientific Manuscript database

    This study investigated the effects of various processing parameters on carrot slices exposed to infrared (IR) radiation heating for achieving simultaneous infrared dry-blanching and dehydration (SIRDBD). The investigated parameters were product surface temperature, slice thickness and processing ti...

  2. Use of a thin-section archive and enterprise 3D software for long-term storage of thin-slice CT data sets.

    PubMed

    Meenan, Christopher; Daly, Barry; Toland, Christopher; Nagy, Paul

    2006-01-01

    Rapid advances are changing the technology and applications of multidetector computed tomography (CT) scanners. The major increase in data associated with this new technology, however, breaks most commercial picture archiving and communication system (PACS) architectures by preventing them from delivering data in real time to radiologists and outside clinicians. We proposed a phased model for 3D workflow, installed a thin-slice archive and measured thin-slice data storage over a period of 5 months. A mean of 1,869 CT studies were stored per month, with an average of 643 images per study and a mean total volume of 588 GB/month. We also surveyed 48 radiologists to determine diagnostic use, impressions of thin-slice value, and requirements for retention times. The majority of radiologists thought thin slice was helpful for diagnosis and regularly used the application. Permanent storage of thin slice CT is likely to become best practice and a mission-critical pursuit for the health care enterprise.

  3. Optimization of Brain T2 Mapping Using Standard CPMG Sequence In A Clinical Scanner

    NASA Astrophysics Data System (ADS)

    Hnilicová, P.; Bittšanský, M.; Dobrota, D.

    2014-04-01

    In magnetic resonance imaging, transverse relaxation time (T2) mapping is a useful quantitative tool enabling enhanced diagnostics of many brain pathologies. The aim of our study was to test the influence of different sequence parameters on calculated T2 values, including multi-slice measurements, slice position, interslice gap, echo spacing, and pulse duration. Measurements were performed using standard multi-slice multi-echo CPMG imaging sequence on a 1.5 Tesla routine whole body MR scanner. We used multiple phantoms with different agarose concentrations (0 % to 4 %) and verified the results on a healthy volunteer. It appeared that neither the pulse duration, the size of interslice gap nor the slice shift had any impact on the T2. The measurement accuracy was increased with shorter echo spacing. Standard multi-slice multi-echo CPMG protocol with the shortest echo spacing, also the smallest available interslice gap (100 % of slice thickness) and shorter pulse duration was found to be optimal and reliable for calculating T2 maps in the human brain.

  4. Healthy food consumption in young women. The influence of others' eating behavior and body weight appearance.

    PubMed

    Stel, Mariëlle; van Koningsbruggen, Guido M

    2015-07-01

    People's eating behaviors tend to be influenced by the behaviors of others. In the present studies, we investigated the effect of another person's eating behavior and body weight appearance on healthy food consumption of young women. In Study 1, participants watched a short film fragment together with a confederate who appeared normal weight or overweight and consumed either 3 or 10 cucumber slices. In Study 2, a confederate who appeared underweight, normal weight, or overweight consumed no or 4 cucumber slices. The number of cucumber slices eaten by participants was registered. Results showed that participants' healthy eating behavior was influenced by the confederate's eating behavior when the confederate was underweight, normal weight, and overweight. Participants ate more cucumber slices when the confederate ate a higher amount of cucumber slices compared with a lower (or no) amount of cucumber slices (Studies 1 and 2). The food intake effect was stronger for the underweight compared with the overweight model (Study 2). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effects of RF profile on precision of quantitative T2 mapping using dual-echo steady-state acquisition.

    PubMed

    Wu, Pei-Hsin; Cheng, Cheng-Chieh; Wu, Ming-Long; Chao, Tzu-Cheng; Chung, Hsiao-Wen; Huang, Teng-Yi

    2014-01-01

    The dual echo steady-state (DESS) sequence has been shown successful in achieving fast T2 mapping with good precision. Under-estimation of T2, however, becomes increasingly prominent as the flip angle decreases. In 3D DESS imaging, therefore, the derived T2 values would become a function of the slice location in the presence of non-ideal slice profile of the excitation RF pulse. Furthermore, the pattern of slice-dependent variation in T2 estimates is dependent on the RF pulse waveform. Multi-slice 2D DESS imaging provides better inter-slice consistency, but the signal intensity is subject to integrated effects of within-slice distribution of the actual flip angle. Consequently, T2 measured using 2D DESS is prone to inaccuracy even at the designated flip angle of 90°. In this study, both phantom and human experiments demonstrate the above phenomena in good agreement with model prediction. © 2013.

  6. A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods.

    PubMed

    Chen, Zhi-Gang; Guo, Xiao-Yu; Wu, Tao

    2016-05-01

    A novel drying technique using a combination of ultrasound and vacuum dehydration was developed to shorten the drying time and improve the quality of carrot slices. Carrot slices were dried with ultrasonic vacuum (USV) drying and vacuum drying at 65 °C and 75 °C. The drying rate was significantly influenced by the drying techniques and temperatures. Compared with vacuum drying, USV drying resulted in a 41-53% decrease in the drying time. The drying time for the USV and vacuum drying techniques at 75 °C was determined to be 140 and 340 min for carrot slices, respectively. The rehydration potential, nutritional value (retention of β-carotene and ascorbic acid), color, and textural properties of USV-dried carrot slices are predominately better compared to vacuum-dried carrot slices. Moreover, lower energy consumption was used in the USV technique. The drying data (time versus moisture ratio) were successfully fitted to Wang and Singh model. Copyright © 2015. Published by Elsevier B.V.

  7. Fourier crosstalk analysis of multislice and cone-beam helical CT

    NASA Astrophysics Data System (ADS)

    La Riviere, Patrick J.

    2004-05-01

    Multi-slice helical CT scanners allow for much faster scanning and better x-ray utilization than do their single-slice predecessors, but they engender considerably more complicated data sampling patterns due to the interlacing of the samples from different rows as the patient is translated. Characterizing and optimizing this sampling is challenging because the conebeam geometry of such scanners means that the projections measured by each detector row are at least slightly oblique, making it difficult to apply standard multidimensional sampling analyses. In this study, we seek to apply a more general framework for analyzing sampled imaging systems known as Fourier crosstalk analysis. Our purpose in this preliminary work is to compare the information content of the data acquired in three different scanner geometries and operating conditions with ostensibly equivalent volume coverage and average longitudinal sampling interval: a single-slice scanner operating at pitch 1, a four-slice scanner operating at pitch 3 and a 15-slice scanner operating at pitch 15. We find that moving from a single-slice to a multi-slice geometry introduces longitudinal crosstalk characteristic of the longitudinal sampling interval between periods of individual each detector row, and not of the overall interlaced sampling pattern. This is attributed to data inconsistencies caused by the obliqueness of the projections in a multi-slice/conebeam configuration. However, these preliminary results suggest that the significance of this additional crosstalk actually decreases as the number of detector rows increases.

  8. Cochlear Implant Electrode Localization Using an Ultra-High Resolution Scan Mode on Conventional 64-Slice and New Generation 192-Slice Multi-Detector Computed Tomography.

    PubMed

    Carlson, Matthew L; Leng, Shuai; Diehn, Felix E; Witte, Robert J; Krecke, Karl N; Grimes, Josh; Koeller, Kelly K; Bruesewitz, Michael R; McCollough, Cynthia H; Lane, John I

    2017-08-01

    A new generation 192-slice multi-detector computed tomography (MDCT) clinical scanner provides enhanced image quality and superior electrode localization over conventional MDCT. Currently, accurate and reliable cochlear implant electrode localization using conventional MDCT scanners remains elusive. Eight fresh-frozen cadaveric temporal bones were implanted with full-length cochlear implant electrodes. Specimens were subsequently scanned with conventional 64-slice and new generation 192-slice MDCT scanners utilizing ultra-high resolution modes. Additionally, all specimens were scanned with micro-CT to provide a reference criterion for electrode position. Images were reconstructed according to routine temporal bone clinical protocols. Three neuroradiologists, blinded to scanner type, reviewed images independently to assess resolution of individual electrodes, scalar localization, and severity of image artifact. Serving as the reference standard, micro-CT identified scalar crossover in one specimen; imaging of all remaining cochleae demonstrated complete scala tympani insertions. The 192-slice MDCT scanner exhibited improved resolution of individual electrodes (p < 0.01), superior scalar localization (p < 0.01), and reduced blooming artifact (p < 0.05), compared with conventional 64-slice MDCT. There was no significant difference between platforms when comparing streak or ring artifact. The new generation 192-slice MDCT scanner offers several notable advantages for cochlear implant imaging compared with conventional MDCT. This technology provides important feedback regarding electrode position and course, which may help in future optimization of surgical technique and electrode design.

  9. [Evaluation of the resolving power of different angles in MPR images of 16DAS-MDCT].

    PubMed

    Kimura, Mikio; Usui, Junshi; Nozawa, Takeo

    2007-03-20

    In this study, we evaluated the resolving power of three-dimensional (3D) multiplanar reformation (MPR) images with various angles by using 16 data acquisition system multi detector row computed tomography (16DAS-MDCT) . We reconstructed the MPR images using data with a 0.75 mm slice thickness of the axial image in this examination. To evaluate resolving power, we used an original new phantom (RC phantom) that can be positioned at any slice angle in MPR images. We measured the modulation transfer function (MTF) by using the methods of measuring pre-sampling MTF, and used Fourier transform of image data of the square wave chart. The scan condition and image reconstruction condition that were adopted in this study correspond to the condition that we use for three-dimensional computed tomographic angiography (3D-CTA) examination of the head in our hospital. The MTF of MPR images showed minimum values at slice angles in parallel with the axial slice, and showed maximum values at the sagittal slice and coronal slice angles that are parallel to the Z-axis. With an oblique MPR image, MTF did not change with angle changes in the oblique sagittal slice plane, but in the oblique coronal slice plane, MTF increased as the tilt angle increased from the axial plane to the Z plane. As a result, we could evaluate the resolving power of a head 3D image by measuring the MTF of the axial image and sagittal image or the coronal image.

  10. Stroboscobic near-field scanning optical microscopy for 3D mapping of mode profiles of plasmonic nanostructures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dana, Aykutlu; Ozgur, Erol; Torunoglu, Gamze

    2016-09-01

    We present a dynamic approach to scanning near field optical microscopy that extends the measurement technique to the third dimension, by strobing the illumination in sync with the cantilever oscillation. Nitrogen vacancy (NV) centers in nanodiamonds placed on cantilever tips are used as stable emitters for emission enhancement. Local field enhancement and modulation of optical density states are mapped in three dimensions based on fluorescence intensity and spectrum changes as the tip is scanned over plasmonic nanostructures. The excitation of NV centers is done using a total internal reflection setup. Using a digital phase locked loop to pulse the excitation in various tip sample separations, 2D slices of fluorescence enhancement can be recorded. Alternatively, a conventional SNOM tip can be used to selectively couple wideband excitation to the collection path, with subdiffraction resolution of 60 nm in x and y and 10 nm in z directions. The approach solves the problem of tip-sample separation stabilization over extended periods of measurement time, required to collect data resolved in emission wavelength and three spatial dimensions. The method can provide a unique way of accessing the three dimensional field and mode profiles of nanophotonics structures.

  11. WholeCellSimDB: a hybrid relational/HDF database for whole-cell model predictions

    PubMed Central

    Karr, Jonathan R.; Phillips, Nolan C.; Covert, Markus W.

    2014-01-01

    Mechanistic ‘whole-cell’ models are needed to develop a complete understanding of cell physiology. However, extracting biological insights from whole-cell models requires running and analyzing large numbers of simulations. We developed WholeCellSimDB, a database for organizing whole-cell simulations. WholeCellSimDB was designed to enable researchers to search simulation metadata to identify simulations for further analysis, and quickly slice and aggregate simulation results data. In addition, WholeCellSimDB enables users to share simulations with the broader research community. The database uses a hybrid relational/hierarchical data format architecture to efficiently store and retrieve both simulation setup metadata and results data. WholeCellSimDB provides a graphical Web-based interface to search, browse, plot and export simulations; a JavaScript Object Notation (JSON) Web service to retrieve data for Web-based visualizations; a command-line interface to deposit simulations; and a Python API to retrieve data for advanced analysis. Overall, we believe WholeCellSimDB will help researchers use whole-cell models to advance basic biological science and bioengineering. Database URL: http://www.wholecellsimdb.org Source code repository URL: http://github.com/CovertLab/WholeCellSimDB PMID:25231498

  12. Experimental analysis of an oblique turbulent flame front propagating in a stratified flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galizzi, C.; Escudie, D.

    2010-12-15

    This paper details the experimental study of a turbulent V-shaped flame expanding in a nonhomogeneous premixed flow. Its aim is to characterize the effects of stratification on turbulent flame characteristics. The setup consists of a stationary V-shaped flame stabilized on a rod and expanding freely in a lean premixed methane-air flow. One of the two oblique fronts interacts with a stratified slice, which has an equivalence ratio close to one and a thickness greater than that of the flame front. Several techniques such as PIV and CH{sup *} chemiluminescence are used to investigate the instantaneous fields, while laser Doppler anemometrymore » and thermocouples are combined with a concentration probe to provide information on the mean fields. First, in order to provide a reference, the homogeneous turbulent case is studied. Next, the stratified turbulent premixed flame is investigated. Results show significant modifications of the whole flame and of the velocity field upstream of the flame front. The analysis of the geometric properties of the stratified flame indicates an increase in flame brush thickness, closely related to the local equivalence ratio. (author)« less

  13. Design, Fabrication and Characterization of a Low-Impedance 3D Electrode Array System for Neuro-Electrophysiology

    PubMed Central

    Kusko, Mihaela; Craciunoiu, Florea; Amuzescu, Bogdan; Halitzchi, Ferdinand; Selescu, Tudor; Radoi, Antonio; Popescu, Marian; Simion, Monica; Bragaru, Adina; Ignat, Teodora

    2012-01-01

    Recent progress in patterned microelectrode manufacturing technology and microfluidics has opened the way to a large variety of cellular and molecular biosensor-based applications. In this extremely diverse and rapidly expanding landscape, silicon-based technologies occupy a special position, given their statute of mature, consolidated, and highly accessible areas of development. Within the present work we report microfabrication procedures and workflows for 3D patterned gold-plated microelectrode arrays (MEA) of different shapes (pyramidal, conical and high aspect ratio), and we provide a detailed characterization of their physical features during all the fabrication steps to have in the end a reliable technology. Moreover, the electrical performances of MEA silicon chips mounted on standardized connector boards via ultrasound wire-bonding have been tested using non-destructive electrochemical methods: linear sweep and cyclic voltammetry, impedance spectroscopy. Further, an experimental recording chamber package suitable for in vitro electrophysiology experiments has been realized using custom-design electronics for electrical stimulus delivery and local field potential recording, included in a complete electrophysiology setup, and the experimental structures have been tested on newborn rat hippocampal slices, yielding similar performance compared to commercially available MEA equipments. PMID:23208555

  14. First human Cerenkography

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello Enrico; Ferdeghini, Marco; Cavedon, Carlo; Zivelonghi, Emanuele; Calandrino, Riccardo; Fenzi, Alberto; Sbarbati, Andrea; Boschi, Federico

    2013-02-01

    Cerenkov luminescence imaging is an emerging optical preclinical modality based on the detection of Cerenkov radiation induced by beta particles when traveling though biological tissues with a velocity greater than the speed of light. We present the first human Cerenkography obtained by detecting Cerenkov radiation escaping the thyroid gland of a patient treated for hyperthyroidism. The Cerenkov light was detected using an electron multiplied charge coupled device and a conventional C-mount lens. The system set-up has been tested by using a slab of ex vivo tissue equal to a 1 cm slice of chicken breast in order to simulate optical photons attenuation. We then imaged for 2 min the head and neck region of a patient treated orally 24 h before with 550 MBq of I-131. Co-registration between photographic and Cerenkov images showed a good localization of the Cerenkov light within the thyroid region. In conclusion, we showed that it is possible to obtain a planar image of Cerenkov photons escaping from a human tissue. Cerenkography is a potential novel medical tool to image superficial organs of patients treated with beta minus radiopharmaceuticals and can be extended to the imaging of beta plus emitters.

  15. Brevetoxin Depresses Synaptic Transmission in Guinea Pig Hippocampal Slices

    DTIC Science & Technology

    1993-01-01

    Brevetoxin depresses synaptic transmission in guinea pig hippocampal slices. Brain Res Bull 31(1/2) 201-207, 1993.--Extracellular recordings were...obtained from area CA1 of guinea pig hippocampal slices. PbTx-3, a brevetoxin fraction isolated from the red tide dinoflagellate Ptychodiscus brevis, was

  16. Modulation of methylmercury uptake by methionine: Prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, Daniel Henrique; Puntel, Robson Luiz; Farina, Marcelo

    2011-04-01

    Methylmercury (MeHg) is an ubiquitous environmental pollutant which is transported into the mammalian cells when present as the methylmercury-cysteine conjugate (MeHg-Cys). With special emphasis on hepatic cells, due to their particular propensity to accumulate an appreciable amount of Hg after exposure to MeHg, this study was performed to evaluate the effects of methionine (Met) on Hg uptake, reactive species (RS) formation, oxygen consumption and mitochondrial function/cellular viability in both liver slices and mitochondria isolated from these slices, after exposure to MeHg or the MeHg-Cys complex. The liver slices were pre-treated with Met (250 {mu}M) 15 min before being exposed tomore » MeHg (25 {mu}M) or MeHg-Cys (25 {mu}M each) for 30 min at 37 {sup o}C. The treatment with MeHg caused a significant increase in the Hg concentration in both liver slices and mitochondria isolated from liver slices. Moreover, the Hg uptake was higher in the group exposed to the MeHg-Cys complex. In the DCF (dichlorofluorescein) assay, the exposure to MeHg and MeHg-Cys produced a significant increase in DFC reactive species (DFC-RS) formation only in the mitochondria isolated from liver slices. As observed with Hg uptake, DFC-RS levels were significantly higher in the mitochondria treated with the MeHg-Cys complex compared to MeHg alone. MeHg exposure also caused a marked decrease in the oxygen consumption of liver slices when compared to the control group, and this effect was more pronounced in the liver slices treated with the MeHg-Cys complex. Similarly, the loss of mitochondrial activity/cell viability was greater in liver slices exposed to the MeHg-Cys complex when compared to slices treated only with MeHg. In all studied parameters, Met pre-treatment was effective in preventing the MeHg- and/or MeHg-Cys-induced toxicity in both liver slices and mitochondria. Part of the protection afforded by Met against MeHg may be related to a direct interaction with MeHg or to the competition of Met with the complex formed between MeHg and endogenous cysteine. In summary, our results show that Met pre-treatment produces pronounced protection against the toxic effects induced by MeHg and/or the MeHg-Cys complex on mitochondrial function and cell viability. Consequently, this amino acid offers considerable promise as a potential agent for treating acute MeHg exposure.« less

  17. Towards interoperable and reproducible QSAR analyses: Exchange of datasets.

    PubMed

    Spjuth, Ola; Willighagen, Egon L; Guha, Rajarshi; Eklund, Martin; Wikberg, Jarl Es

    2010-06-30

    QSAR is a widely used method to relate chemical structures to responses or properties based on experimental observations. Much effort has been made to evaluate and validate the statistical modeling in QSAR, but these analyses treat the dataset as fixed. An overlooked but highly important issue is the validation of the setup of the dataset, which comprises addition of chemical structures as well as selection of descriptors and software implementations prior to calculations. This process is hampered by the lack of standards and exchange formats in the field, making it virtually impossible to reproduce and validate analyses and drastically constrain collaborations and re-use of data. We present a step towards standardizing QSAR analyses by defining interoperable and reproducible QSAR datasets, consisting of an open XML format (QSAR-ML) which builds on an open and extensible descriptor ontology. The ontology provides an extensible way of uniquely defining descriptors for use in QSAR experiments, and the exchange format supports multiple versioned implementations of these descriptors. Hence, a dataset described by QSAR-ML makes its setup completely reproducible. We also provide a reference implementation as a set of plugins for Bioclipse which simplifies setup of QSAR datasets, and allows for exporting in QSAR-ML as well as old-fashioned CSV formats. The implementation facilitates addition of new descriptor implementations from locally installed software and remote Web services; the latter is demonstrated with REST and XMPP Web services. Standardized QSAR datasets open up new ways to store, query, and exchange data for subsequent analyses. QSAR-ML supports completely reproducible creation of datasets, solving the problems of defining which software components were used and their versions, and the descriptor ontology eliminates confusions regarding descriptors by defining them crisply. This makes is easy to join, extend, combine datasets and hence work collectively, but also allows for analyzing the effect descriptors have on the statistical model's performance. The presented Bioclipse plugins equip scientists with graphical tools that make QSAR-ML easily accessible for the community.

  18. Towards interoperable and reproducible QSAR analyses: Exchange of datasets

    PubMed Central

    2010-01-01

    Background QSAR is a widely used method to relate chemical structures to responses or properties based on experimental observations. Much effort has been made to evaluate and validate the statistical modeling in QSAR, but these analyses treat the dataset as fixed. An overlooked but highly important issue is the validation of the setup of the dataset, which comprises addition of chemical structures as well as selection of descriptors and software implementations prior to calculations. This process is hampered by the lack of standards and exchange formats in the field, making it virtually impossible to reproduce and validate analyses and drastically constrain collaborations and re-use of data. Results We present a step towards standardizing QSAR analyses by defining interoperable and reproducible QSAR datasets, consisting of an open XML format (QSAR-ML) which builds on an open and extensible descriptor ontology. The ontology provides an extensible way of uniquely defining descriptors for use in QSAR experiments, and the exchange format supports multiple versioned implementations of these descriptors. Hence, a dataset described by QSAR-ML makes its setup completely reproducible. We also provide a reference implementation as a set of plugins for Bioclipse which simplifies setup of QSAR datasets, and allows for exporting in QSAR-ML as well as old-fashioned CSV formats. The implementation facilitates addition of new descriptor implementations from locally installed software and remote Web services; the latter is demonstrated with REST and XMPP Web services. Conclusions Standardized QSAR datasets open up new ways to store, query, and exchange data for subsequent analyses. QSAR-ML supports completely reproducible creation of datasets, solving the problems of defining which software components were used and their versions, and the descriptor ontology eliminates confusions regarding descriptors by defining them crisply. This makes is easy to join, extend, combine datasets and hence work collectively, but also allows for analyzing the effect descriptors have on the statistical model's performance. The presented Bioclipse plugins equip scientists with graphical tools that make QSAR-ML easily accessible for the community. PMID:20591161

  19. Development and characterization of an ex-vivo brain slice culture model of chronic wasting disease

    USDA-ARS?s Scientific Manuscript database

    Prion diseases have long incubation times in vivo, therefore, modeling the diseases ex-vivo will advance the development of rationale-based therapeutic strategies. An organotypic slice culture assay (POSCA) was recently developed for scrapie prions by inoculating mouse cerebellar brain slices with R...

  20. The Advanced Light Source (ALS) Slicing Undulator Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heimann, P. A.; Glover, T. E.; Plate, D.

    2007-01-19

    A beamline optimized for the bunch slicing technique has been construction at the Advanced Light Source (ALS). This beamline includes an in-vacuum undulator, soft and hard x-ray beamlines and a femtosecond laser system. The soft x-ray beamline may operate in spectrometer mode, where an entire absorption spectrum is accumulated at one time, or in monochromator mode. The femtosecond laser system has a high repetition rate of 20 kHz to improve the average slicing flux. The performance of the soft x-ray branch of the ALS slicing undulator beamline will be presented.

Top