Sample records for virtual space physics

  1. Adaptive space warping to enhance passive haptics in an arthroscopy surgical simulator.

    PubMed

    Spillmann, Jonas; Tuchschmid, Stefan; Harders, Matthias

    2013-04-01

    Passive haptics, also known as tactile augmentation, denotes the use of a physical counterpart to a virtual environment to provide tactile feedback. Employing passive haptics can result in more realistic touch sensations than those from active force feedback, especially for rigid contacts. However, changes in the virtual environment would necessitate modifications of the physical counterparts. In recent work space warping has been proposed as one solution to overcome this limitation. In this technique virtual space is distorted such that a variety of virtual models can be mapped onto one single physical object. In this paper, we propose as an extension adaptive space warping; we show how this technique can be employed in a mixed-reality surgical training simulator in order to map different virtual patients onto one physical anatomical model. We developed methods to warp different organ geometries onto one physical mock-up, to handle different mechanical behaviors of the virtual patients, and to allow interactive modifications of the virtual structures, while the physical counterparts remain unchanged. Various practical examples underline the wide applicability of our approach. To the best of our knowledge this is the first practical usage of such a technique in the specific context of interactive medical training.

  2. Solo Life to Second Life: The Design of Physical and Virtual Learning Spaces Inspired by the Drama Classroom

    ERIC Educational Resources Information Center

    Nicholls, Jennifer; Philip, Robyn

    2012-01-01

    This paper explores the design of virtual and physical learning spaces developed for students of drama and theatre studies. What can we learn from the traditional drama workshop that will inform the design of drama and theatre spaces created in technology-mediated learning environments? The authors examine four examples of spaces created for…

  3. Impossible spaces: maximizing natural walking in virtual environments with self-overlapping architecture.

    PubMed

    Suma, Evan A; Lipps, Zachary; Finkelstein, Samantha; Krum, David M; Bolas, Mark

    2012-04-01

    Walking is only possible within immersive virtual environments that fit inside the boundaries of the user's physical workspace. To reduce the severity of the restrictions imposed by limited physical area, we introduce "impossible spaces," a new design mechanic for virtual environments that wish to maximize the size of the virtual environment that can be explored with natural locomotion. Such environments make use of self-overlapping architectural layouts, effectively compressing comparatively large interior environments into smaller physical areas. We conducted two formal user studies to explore the perception and experience of impossible spaces. In the first experiment, we showed that reasonably small virtual rooms may overlap by as much as 56% before users begin to detect that they are in an impossible space, and that the larger virtual rooms that expanded to maximally fill our available 9.14 m x 9.14 m workspace may overlap by up to 31%. Our results also demonstrate that users perceive distances to objects in adjacent overlapping rooms as if the overall space was uncompressed, even at overlap levels that were overtly noticeable. In our second experiment, we combined several well-known redirection techniques to string together a chain of impossible spaces in an expansive outdoor scene. We then conducted an exploratory analysis of users' verbal feedback during exploration, which indicated that impossible spaces provide an even more powerful illusion when users are naive to the manipulation.

  4. Navigating Mythic Space in the Digital Age

    ERIC Educational Resources Information Center

    Foley, Drew Thomas

    2012-01-01

    In prior ages, alternate worlds are associated with symbolic expressions of storied space, here termed "mythic space." The digital age brings new forms of virtual space that are co-existent with physical space. These virtual spaces may be understood as a contemporary representation of mythic space. This dissertation explores the paths by…

  5. Level of Abstraction and Feelings of Presence in Virtual Space: Business English Negotiation in Open Wonderland

    ERIC Educational Resources Information Center

    Chen, Judy F.; Warden, Clyde A.; Tai, David Wen-Shung; Chen, Farn-Shing; Chao, Chich-Yang

    2011-01-01

    Virtual spaces allow abstract representations of reality that not only encourage student self-directed learning but also reinforce core content of the learning objective through visual metaphors not reproducible in the physical world. One of the advantages of such a space is the ability to escape the restrictions of the physical classroom, yet…

  6. Coming down to Earth: Helping Teachers Use 3D Virtual Worlds in Across-Spaces Learning Situations

    ERIC Educational Resources Information Center

    Muñoz-Cristóbal, Juan A.; Prieto, Luis P.; Asensio-Pérez, Juan I.; Martínez-Monés, Alejandra; Jorrín-Abellán, Iván M.; Dimitriadis, Yannis

    2015-01-01

    Different approaches have explored how to provide seamless learning across multiple ICT-enabled physical and virtual spaces, including three-dimensional virtual worlds (3DVW). However, these approaches present limitations that may reduce their acceptance in authentic educational practice: The difficulties of authoring and sharing teacher-created…

  7. Direct access inter-process shared memory

    DOEpatents

    Brightwell, Ronald B; Pedretti, Kevin; Hudson, Trammell B

    2013-10-22

    A technique for directly sharing physical memory between processes executing on processor cores is described. The technique includes loading a plurality of processes into the physical memory for execution on a corresponding plurality of processor cores sharing the physical memory. An address space is mapped to each of the processes by populating a first entry in a top level virtual address table for each of the processes. The address space of each of the processes is cross-mapped into each of the processes by populating one or more subsequent entries of the top level virtual address table with the first entry in the top level virtual address table from other processes.

  8. Evaluating Remapped Physical Reach for Hand Interactions with Passive Haptics in Virtual Reality.

    PubMed

    Han, Dustin T; Suhail, Mohamed; Ragan, Eric D

    2018-04-01

    Virtual reality often uses motion tracking to incorporate physical hand movements into interaction techniques for selection and manipulation of virtual objects. To increase realism and allow direct hand interaction, real-world physical objects can be aligned with virtual objects to provide tactile feedback and physical grasping. However, unless a physical space is custom configured to match a specific virtual reality experience, the ability to perfectly match the physical and virtual objects is limited. Our research addresses this challenge by studying methods that allow one physical object to be mapped to multiple virtual objects that can exist at different virtual locations in an egocentric reference frame. We study two such techniques: one that introduces a static translational offset between the virtual and physical hand before a reaching action, and one that dynamically interpolates the position of the virtual hand during a reaching motion. We conducted two experiments to assess how the two methods affect reaching effectiveness, comfort, and ability to adapt to the remapping techniques when reaching for objects with different types of mismatches between physical and virtual locations. We also present a case study to demonstrate how the hand remapping techniques could be used in an immersive game application to support realistic hand interaction while optimizing usability. Overall, the translational technique performed better than the interpolated reach technique and was more robust for situations with larger mismatches between virtual and physical objects.

  9. Ontological implications of being in immersive virtual environments

    NASA Astrophysics Data System (ADS)

    Morie, Jacquelyn F.

    2008-02-01

    The idea of Virtual Reality once conjured up visions of new territories to explore, and expectations of awaiting worlds of wonder. VR has matured to become a practical tool for therapy, medicine and commercial interests, yet artists, in particular, continue to expand the possibilities for the medium. Artistic virtual environments created over the past two decades probe the phenomenological nature of these virtual environments. When we inhabit a fully immersive virtual environment, we have entered into a new form of Being. Not only does our body continue to exist in the real, physical world, we are also embodied within the virtual by means of technology that translates our bodied actions into interactions with the virtual environment. Very few states in human existence allow this bifurcation of our Being, where we can exist simultaneously in two spaces at once, with the possible exception of meta-physical states such as shamanistic trance and out-of-body experiences. This paper discusses the nature of this simultaneous Being, how we enter the virtual space, what forms of persona we can don there, what forms of spaces we can inhabit, and what type of wondrous experiences we can both hope for and expect.

  10. Peripersonal space as the space of the bodily self.

    PubMed

    Noel, Jean-Paul; Pfeiffer, Christian; Blanke, Olaf; Serino, Andrea

    2015-11-01

    Bodily self-consciousness (BSC) refers to experience of one's self as located within an owned body (self-identification) and as occupying a specific location in space (self-location). BSC can be altered through multisensory stimulation, as in the Full Body Illusion (FBI). If participants view a virtual body from a distance being stroked, while receiving synchronous tactile stroking on their physical body, they feel as if the virtual body were their own and they experience, subjectively, to drift toward the virtual body. Here we hypothesized that--while normally the experience of the body in space depends on the integration of multisensory body-related signals within a limited space surrounding the body (i.e. peripersonal space, PPS)--during the FBI the boundaries of PPS would shift toward the virtual body, that is, toward the position of experienced self-location. To test this hypothesis, we used synchronous visuo-tactile stroking to induce the FBI, as contrasted with a control condition of asynchronous stroking. Concurrently, we applied an audio-tactile interaction paradigm to estimate the boundaries of PPS. PPS was measured in front of and behind the participants' body as the distance where tactile information interacted with auditory stimuli looming in space toward the participant's physical body. We found that during synchronous stroking, i.e. when participants experienced the FBI, PPS boundaries extended in the front-space, toward the avatar, and concurrently shrunk in the back-space, as compared to the asynchronous stroking control condition, when FBI was induced. These findings support the view that during the FBI, PPS boundaries translate toward the virtual body, such that the PPS representation shifts from being centered at the location of the physical body to being now centered at the subjectively experienced location of the self. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Peripersonal Space as the space of the Bodily Self

    PubMed Central

    Noel, Jean-Paul; Pfeiffer, Christian; Blanke, Olaf; Serino, Andrea

    2016-01-01

    Bodily self-consciousness (BSC) refers to experience of our self as located within an owned body (self-identification) and as occupying a specific location in space (self-location). BSC can be altered through multisensory stimulation, as in the Full Body Illusion (FBI). If participants view a virtual body from a distance being stroked, while receiving synchronous tactile stroking on their physical body, they feel such as the virtual body were their own and they experience, subjectively, to drift toward the virtual body. Here we hypothesized that - while normally the experience of the body in space depends on the integration of multisensory body-related signals within a limited space surrounding the body (i.e. peripersonal space, PPS) - during the FBI the boundaries of PPS would shift toward the virtual body, that is toward the position of self-location. To test this hypothesis, we used synchronous visuo-tactile stroking to induce the FBI, as contrasted with a control condition of asynchronous stroking. Concurrently, we applied an audio-tactile interaction paradigm to estimate the boundaries of PPS. PPS was measured in front of and behind the participants' body as the distance where tactile information interacted with auditory stimuli looming in space toward the participant's physical body. We found that during synchronous stroking, i.e. when participants experienced the FBI, PPS boundaries extended in the front-space, toward the avatar, and concurrently shrunk in the back-space, as compared to the asynchronous stroking control condition, where no FBI was induced. These findings support the view that during the FBI, PPS boundaries translate toward the virtual body, such that the PPS representation shifts from being centered at the location of the physical body to being now centered at the subjectively experienced location of the self. PMID:26231086

  12. [The Museu da Saúde in Portugal: a physical space, a virtual space].

    PubMed

    Oliveira, Inês Cavadas de; Andrade, Helena Rebelo de; Miguel, José Pereira

    2015-12-01

    Museu da Saúde (Museum of Health) in Portugal, based on the dual concept of a multifaceted physical space and a virtual space, is preparing an inventory of its archive. So far, it has studied five of its collections in greater depth: tuberculosis, urology, psychology, medicine, and malaria. In this article, these collections are presented, and the specificities of developing museological activities within a national laboratory, Instituto Nacional de Saúde Doutor Ricardo Jorge, are also discussed, highlighting the issues of the store rooms and exhibition spaces, the inventory process, and the communication activities, with a view to overcoming the challenges inherent to operating in a non-museological space.

  13. A virtual work space for both hands manipulation with coherency between kinesthetic and visual sensation

    NASA Technical Reports Server (NTRS)

    Ishii, Masahiro; Sukanya, P.; Sato, Makoto

    1994-01-01

    This paper describes the construction of a virtual work space for tasks performed by two handed manipulation. We intend to provide a virtual environment that encourages users to accomplish tasks as they usually act in a real environment. Our approach uses a three dimensional spatial interface device that allows the user to handle virtual objects by hand and be able to feel some physical properties such as contact, weight, etc. We investigated suitable conditions for constructing our virtual work space by simulating some basic assembly work, a face and fit task. We then selected the conditions under which the subjects felt most comfortable in performing this task and set up our virtual work space. Finally, we verified the possibility of performing more complex tasks in this virtual work space by providing simple virtual models and then let the subjects create new models by assembling these components. The subjects can naturally perform assembly operations and accomplish the task. Our evaluation shows that this virtual work space has the potential to be used for performing tasks that require two-handed manipulation or cooperation between both hands in a natural manner.

  14. Shader Lamps Virtual Patients: the physical manifestation of virtual patients.

    PubMed

    Rivera-Gutierrez, Diego; Welch, Greg; Lincoln, Peter; Whitton, Mary; Cendan, Juan; Chesnutt, David A; Fuchs, Henry; Lok, Benjamin

    2012-01-01

    We introduce the notion of Shader Lamps Virtual Patients (SLVP) - the combination of projector-based Shader Lamps Avatars and interactive virtual humans. This paradigm uses Shader Lamps Avatars technology to give a 3D physical presence to conversational virtual humans, improving their social interactivity and enabling them to share the physical space with the user. The paradigm scales naturally to multiple viewers, allowing for scenarios where an instructor and multiple students are involved in the training. We have developed a physical-virtual patient for medical students to conduct ophthalmic exams, in an interactive training experience. In this experience, the trainee practices multiple skills simultaneously, including using a surrogate optical instrument in front of a physical head, conversing with the patient about his fears, observing realistic head motion, and practicing patient safety. Here we present a prototype system and results from a preliminary formative evaluation of the system.

  15. Synchronous Learning Best Practices: An Action Research Study

    ERIC Educational Resources Information Center

    Warden, Clyde A.; Stanworth, James O.; Ren, Jian Biao; Warden, Antony R.

    2013-01-01

    Low cost and significant advances in technology now allow instructors to create their own virtual learning environments. Creating social interactions within a virtual space that emulates the physical classroom remains challenging. While students are familiar with virtual worlds and video meetings, they are inexperienced as virtual learners. Over a…

  16. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices (Ascention Inc.) attached to instrumented gloves (Immersion Inc.) which co-locate the user's hands with hand/forearm representations in the virtual workspace. Force-feedback is possible in a work volume defined by a Phantom Desktop device (SensAble inc.). Graphics are written in OpenGL. The system runs on a 2.2 GHz Pentium 4 PC. The prototype VGX provides astronauts and support personnel with a real-time physically-based VE system to simulate basic research tasks both on Earth and in the microgravity of Space. The immersive virtual environment of the VGX also makes it a useful tool for virtual engineering applications including CAD development, procedure design and simulation of human-system systems in a desktop-sized work volume.

  17. Future space. A new blueprint for business architecture.

    PubMed

    Huang, J

    2001-04-01

    Although the Internet is an essential conduit for many business activities, it isn't rendering the physical world any less important, as the failures of many Web merchants demonstrate. People need social and sensual contact. The companies that succeed will be those best able to integrate the physical and the virtual. But that requires a new kind of business architecture--a new approach to designing stores, offices, factories, and other spaces where business is conducted. The author, a faculty member at Harvard Graduate School of Design, provides practical guidelines to help managers and entrepreneurs think creatively about the structures in which their businesses operate. He outlines four challenges facing designers of such "convergent" structures, so-called because they function in both physical and virtual space: matching form to function, allowing visitors to visualize the presence of others, personalizing spaces, and choreographing connectivity. Using numerous examples, from a fashion retailer that wants to sell in stores as well as through a Web site to a radically new kind of consulate, the author shows how businesses can meet each challenge. For instance, allowing customers to visualize the presence of others means that visitors to a Web site should be given a sense of other site visitors. Personalizing physical and virtual spaces involves using databases to enable those spaces to adapt quickly to user preferences. The success of companies attempting to merge on-line and traditional operations will depend on many factors. But without a well-designed convergent architecture, no company will fully reap the synergies of physical space and Internet technology.

  18. The road to virtual: the Sauls Memorial Virtual Library journey.

    PubMed

    Waddell, Stacie; Harkness, Amy; Cohen, Mark L

    2014-01-01

    The Sauls Memorial Virtual Library closed its physical space in 2012. This article outlines the reasons for this change and how the library staff and hospital leadership planned and executed the enormous undertaking. Outcomes of the change and lessons learned from the process are discussed.

  19. Simulation fidelity of a virtual environment display

    NASA Technical Reports Server (NTRS)

    Nemire, Kenneth; Jacoby, Richard H.; Ellis, Stephen R.

    1994-01-01

    We assessed the degree to which a virtual environment system produced a faithful simulation of three-dimensional space by investigating the influence of a pitched optic array on the perception of gravity-referenced eye level (GREL). We compared the results with those obtained in a physical environment. In a within-subjects factorial design, 12 subjects indicated GREL while viewing virtual three-dimensional arrays at different static orientations. A physical array biased GREL more than did a geometrically identical virtual pitched array. However, addition of two sets of orthogonal parallel lines (a grid) to the virtual pitched array resulted in as large a bias as that obtained with the physical pitched array. The increased bias was caused by longitudinal, but not the transverse, components of the grid. We discuss implications of our results for spatial orientation models and for designs of virtual displays.

  20. Data communications in a parallel active messaging interface of a parallel computer

    DOEpatents

    Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2014-09-02

    Eager send data communications in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI composed of data communications endpoints that specify a client, a context, and a task, including receiving an eager send data communications instruction with transfer data disposed in a send buffer characterized by a read/write send buffer memory address in a read/write virtual address space of the origin endpoint; determining for the send buffer a read-only send buffer memory address in a read-only virtual address space, the read-only virtual address space shared by both the origin endpoint and the target endpoint, with all frames of physical memory mapped to pages of virtual memory in the read-only virtual address space; and communicating by the origin endpoint to the target endpoint an eager send message header that includes the read-only send buffer memory address.

  1. Data communications in a parallel active messaging interface of a parallel computer

    DOEpatents

    Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2014-09-16

    Eager send data communications in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI composed of data communications endpoints that specify a client, a context, and a task, including receiving an eager send data communications instruction with transfer data disposed in a send buffer characterized by a read/write send buffer memory address in a read/write virtual address space of the origin endpoint; determining for the send buffer a read-only send buffer memory address in a read-only virtual address space, the read-only virtual address space shared by both the origin endpoint and the target endpoint, with all frames of physical memory mapped to pages of virtual memory in the read-only virtual address space; and communicating by the origin endpoint to the target endpoint an eager send message header that includes the read-only send buffer memory address.

  2. Integrating an Awareness of Selfhood and Society into Virtual Learning

    ERIC Educational Resources Information Center

    Stricker, Andrew, Ed.; Calongne, Cynthia, Ed.; Truman, Barbara, Ed.; Arenas, Fil, Ed.

    2017-01-01

    Recent technological advances have opened new platforms for learning and teaching. By utilizing virtual spaces, more educational opportunities are created for students who cannot attend a physical classroom environment. "Integrating an Awareness of Selfhood and Society into Virtual Learning" is a pivotal reference source that discusses…

  3. A Model for the Design of Puzzle-Based Games Including Virtual and Physical Objects

    ERIC Educational Resources Information Center

    Melero, Javier; Hernandez-Leo, Davinia

    2014-01-01

    Multiple evidences in the Technology-Enhanced Learning domain indicate that Game-Based Learning can lead to positive effects in students' performance and motivation. Educational games can be completely virtual or can combine the use of physical objects or spaces in the real world. However, the potential effectiveness of these approaches…

  4. The impact of physical navigation on spatial organization for sensemaking.

    PubMed

    Andrews, Christopher; North, Chris

    2013-12-01

    Spatial organization has been proposed as a compelling approach to externalizing the sensemaking process. However, there are two ways in which space can be provided to the user: by creating a physical workspace that the user can interact with directly, such as can be provided by a large, high-resolution display, or through the use of a virtual workspace that the user navigates using virtual navigation techniques such as zoom and pan. In this study we explicitly examined the use of spatial sensemaking techniques within these two environments. The results demonstrate that these two approaches to providing sensemaking space are not equivalent, and that the greater embodiment afforded by the physical workspace changes how the space is perceived and used, leading to increased externalization of the sensemaking process.

  5. An Interdisciplinary Design Project in Second Life: Creating a Virtual Marine Science Learning Environment

    ERIC Educational Resources Information Center

    Triggs, Riley; Jarmon, Leslie; Villareal, Tracy A.

    2010-01-01

    Virtual environments can resolve many practical and pedagogical challenges within higher education. Economic considerations, accessibility issues, and safety concerns can all be somewhat alleviated by creating learning activities in a virtual space. Because of the removal of real-world physical limitations like gravity, durability and scope,…

  6. Cyber physical systems role in manufacturing technologies

    NASA Astrophysics Data System (ADS)

    Al-Ali, A. R.; Gupta, Ragini; Nabulsi, Ahmad Al

    2018-04-01

    Empowered by the recent development in single System-on-Chip, Internet of Things, and cloud computing technologies, cyber physical systems are evolving as a major controller during and post the manufacturing products process. In additional to their real physical space, cyber products nowadays have a virtual space. A product virtual space is a digital twin that is attached to it to enable manufacturers and their clients to better manufacture, monitor, maintain and operate it throughout its life time cycles, i.e. from the product manufacturing date, through operation and to the end of its lifespan. Each product is equipped with a tiny microcontroller that has a unique identification number, access code and WiFi conductivity to access it anytime and anywhere during its life cycle. This paper presents the cyber physical systems architecture and its role in manufacturing. Also, it highlights the role of Internet of Things and cloud computing in industrial manufacturing and factory automation.

  7. Virtual worlds and avatars as the new frontier of telehealth care.

    PubMed

    Morie, J; Haynes, E; Chance, E; Purohit, D

    2012-01-01

    We are entering a new age where people routinely visit, inhabit, play in and learn within virtual worlds (VWs). One in eight people worldwide are VW participants, according to the latest 2011 figures from KZERO [1]. VWs are also emerging as a new and advanced form of telehealth care delivery. In addition to existing telehealth care advantages; VWs feature three powerful affordances that can benefit a wide range of physical and psychological issues. First, the highly social nature of VWs encourages social networking and the formation of essential support groups. Secondly, the type of spaces that have been proven in the physical world to promote psychological health and well-being can be virtually recreated. Finally, research suggests that embodied avatar representation within VWs can affect users psychologically and physically. These three aspects of VWs can be leveraged for enhanced patient-client interactions, spaces that promote healing and positive responses, and avatar activities that transfer real benefits from the virtual to the physical world. This paper explains the mounting evidence behind these claims and provides examples of VWs as an innovative and compelling form of telehealth care destined to become commonplace in the future.

  8. Focus, locus, and sensus: the three dimensions of virtual experience.

    PubMed

    Waterworth, E L; Waterworth, J A

    2001-04-01

    A model of virtual/physical experience is presented, which provides a three dimensional conceptual space for virtual and augmented reality (VR and AR) comprising the dimensions of focus, locus, and sensus. Focus is most closely related to what is generally termed presence in the VR literature. When in a virtual environment, presence is typically shared between the VR and the physical world. "Breaks in presence" are actually shifts of presence away from the VR and toward the external environment. But we can also have "breaks in presence" when attention moves toward absence--when an observer is not attending to stimuli present in the virtual environment, nor to stimuli present in the surrounding physical environment--when the observer is present in neither the virtual nor the physical world. We thus have two dimensions of presence: focus of attention (between presence and absence) and the locus of attention (the virtual vs. the physical world). A third dimension is the sensus of attention--the level of arousal determining whether the observer is highly conscious or relatively unconscious while interacting with the environment. After expanding on each of these three dimensions of experience in relation to VR, we present a couple of educational examples as illustrations, and also relate our model to a suggested spectrum of evaluation methods for virtual environments.

  9. Soft Where? Licensing Struggles in a Virtual World

    ERIC Educational Resources Information Center

    Ramaswami, Rama

    2011-01-01

    As virtualization becomes commonplace in higher education, it is clear that the traditional licensing options for software are woefully inadequate. The definitions of who is licensed to use what--and where--are blurring, as users move from physical to virtual spaces and can access software from a variety of devices. In discussing the need for new…

  10. School Libraries Are Essential: Meeting the Virtual Access and Collaboration Needs of the 21st-Century Learner and Teacher

    ERIC Educational Resources Information Center

    Darrow, Rob

    2009-01-01

    School librarians have excelled in providing a physical library space that is welcoming, making sure students have an inviting space to access print and digital materials, and developing collections that provide access for all ages of students. In the physical library space services such as collaborating with teachers and consulting with students…

  11. Integration of stereotactic ultrasonic data into an interactive image-guided neurosurgical system

    NASA Astrophysics Data System (ADS)

    Shima, Daniel W.; Galloway, Robert L., Jr.

    1998-06-01

    Stereotactic ultrasound can be incorporated into an interactive, image-guide neurosurgical system by using an optical position sensor to define the location of an intraoperative scanner in physical space. A C-program has been developed that communicates with the OptotrakTM system developed by Northern Digital Inc. to optically track the three-dimensional position and orientation of a fan-shaped area defined with respect to a hand-held probe. (i.e., a virtual B-mode ultrasound fan beam) Volumes of CT and MR head scans from the same patient are registered to a location in physical space using a point-based technique. The coordinates of the virtual fan beam in physical space are continuously calculated and updated on-the-fly. During each program loop, the CT and MR data volumes are reformatted along the same plane and displayed as two fan-shaped images that correspond to the current physical-space location of the virtual fan beam. When the reformatted preoperative tomographic images are eventually paired with a real-time intraoperative ultrasound image, a neurosurgeon will be able to use the unique information of each imaging modality (e.g., the high resolution and tissue contrast of CT and MR and the real-time functionality of ultrasound) in a complementary manner to identify structures in the brain more easily and to guide surgical procedures more effectively.

  12. The Virtual Space Physics Observatory: Quick Access to Data and Tools

    NASA Technical Reports Server (NTRS)

    Cornwell, Carl; Roberts, D. Aaron; McGuire, Robert E.

    2006-01-01

    The Virtual Space Physics Observatory (VSPO; see http://vspo.gsfc.nasa.gov) has grown to provide a way to find and access about 375 data products and services from over 100 spacecraft/observatories in space and solar physics. The datasets are mainly chosen to be the most requested, and include most of the publicly available data products from operating NASA Heliophysics spacecraft as well as from solar observatories measuring across the frequency spectrum. Service links include a "quick orbits" page that uses SSCWeb Web Services to provide a rapid answer to questions such as "What spacecraft were in orbit in July 1992?" and "Where were Geotail, Cluster, and Polar on 2 June 2001?" These queries are linked back to the data search page. The VSPO interface provides many ways of looking for data based on terms used in a registry of resources using the SPASE Data Model that will be the standard for Heliophysics Virtual Observatories. VSPO itself is accessible via an API that allows other applications to use it as a Web Service; this has been implemented in one instance using the ViSBARD visualization program. The VSPO will become part of the Space Physics Data Facility, and will continue to expand its access to data. A challenge for all VOs will be to provide uniform access to data at the variable level, and we will be addressing this question in a number of ways.

  13. Virtual reality and telerobotics applications of an Address Recalculation Pipeline

    NASA Technical Reports Server (NTRS)

    Regan, Matthew; Pose, Ronald

    1994-01-01

    The technology described in this paper was designed to reduce latency to user interactions in immersive virtual reality environments. It is also ideally suited to telerobotic applications such as interaction with remote robotic manipulators in space or in deep sea operations. in such circumstances the significant latency is observed response to user stimulus which is due to communications delays, and the disturbing jerkiness due to low and unpredictable frame rates on compressed video user feedback or computationally limited virtual worlds, can be masked by our techniques. The user is provided with highly responsive visual feedback independent of communication or computational delays in providing physical video feedback or in rendering virtual world images. Virtual and physical environments can be combined seamlessly using these techniques.

  14. A discrete mechanics framework for real time virtual surgical simulations with application to virtual laparoscopic nephrectomy.

    PubMed

    Zhou, Xiangmin; Zhang, Nan; Sha, Desong; Shen, Yunhe; Tamma, Kumar K; Sweet, Robert

    2009-01-01

    The inability to render realistic soft-tissue behavior in real time has remained a barrier to face and content aspects of validity for many virtual reality surgical training systems. Biophysically based models are not only suitable for training purposes but also for patient-specific clinical applications, physiological modeling and surgical planning. When considering the existing approaches for modeling soft tissue for virtual reality surgical simulation, the computer graphics-based approach lacks predictive capability; the mass-spring model (MSM) based approach lacks biophysically realistic soft-tissue dynamic behavior; and the finite element method (FEM) approaches fail to meet the real-time requirement. The present development stems from physics fundamental thermodynamic first law; for a space discrete dynamic system directly formulates the space discrete but time continuous governing equation with embedded material constitutive relation and results in a discrete mechanics framework which possesses a unique balance between the computational efforts and the physically realistic soft-tissue dynamic behavior. We describe the development of the discrete mechanics framework with focused attention towards a virtual laparoscopic nephrectomy application.

  15. Ambient clumsiness in virtual environments

    NASA Astrophysics Data System (ADS)

    Ruzanka, Silvia; Behar, Katherine

    2010-01-01

    A fundamental pursuit of Virtual Reality is the experience of a seamless connection between the user's body and actions within the simulation. Virtual worlds often mediate the relationship between the physical and virtual body through creating an idealized representation of the self in an idealized space. This paper argues that the very ubiquity of the medium of virtual environments, such as the massively popular Second Life, has now made them mundane, and that idealized representations are no longer appropriate. In our artwork we introduce the attribute of clumsiness to Second Life by creating and distributing scripts that cause users' avatars to exhibit unpredictable stumbling, tripping, and momentary poor coordination, thus subtly and unexpectedly intervening with, rather than amplifying, a user's intent. These behaviors are publicly distributed, and manifest only occasionally - rather than intentional, conscious actions, they are involuntary and ambient. We suggest that the physical human body is itself an imperfect interface, and that the continued blurring of distinctions between the physical body and virtual representations calls for the introduction of these mundane, clumsy elements.

  16. Virtual Images: Going Through the Looking Glass

    NASA Astrophysics Data System (ADS)

    Mota, Ana Rita; dos Santos, João Lopes

    2017-01-01

    Virtual images are often introduced through a "geometric" perspective, with little conceptual or qualitative illustrations, hindering a deeper understanding of this physical concept. In this paper, we present two rather simple observations that force a critical reflection on the optical nature of a virtual image. This approach is supported by the reflect-view, a useful device in geometrical optics classes because it allows a visual confrontation between virtual images and real objects that seemingly occupy the same region of space.

  17. Lessons Learned to Date in Developing the Virtual Space Physics Observatory

    NASA Astrophysics Data System (ADS)

    Cornwell, C.; Roberts, D. A.; King, J.; Smith, A.

    2005-12-01

    We now have an operational Virtual Space Physics Observatory that provides users the ability to search for and retrieve data from hundreds of space and solar physics data products based on specific terms or a Google-like interface. Lessons learned in building VSPO include: (a) A very close and highly interactive collaboration between scientists and information technologists in the definition and development of services is essential. (b) Constructing a Data Model acceptable to a broad community is very important but very difficult. Variations in usage are inevitable and must be dealt with through translations; this is especially true for the description of variables within data products. (c) Higher-order queries (searches based on events, positions, comparisons of measurements, etc.) are possible, and have been implemented in various systems; currently we see these as being separate from the basic data finding and retrieval services. (d) Building a Virtual Observatory is often more a matter of the tedious details of product descriptions than an exercise in implementing fancy middleware. Paying a knowledgeable third party to build registries can be more efficient than working directly with providers, and automated tools can help but do not solve all the problems. (e) The success of the VO effort in space and solar physics, as elsewhere, will depend on whether the scientific communities involved use and critique the services so that they will come to meet a real need for the integration of resources to solve new scientific problems of perceived importance.

  18. Virtual Vision

    NASA Astrophysics Data System (ADS)

    Terzopoulos, Demetri; Qureshi, Faisal Z.

    Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.

  19. The Virtual Library

    ERIC Educational Resources Information Center

    Valenza, Joyce Kasman

    2006-01-01

    Today's school libraries must meet student needs as both a physical and virtual space. Existing both offline and online, they must offer around-the-clock access as well as instruction and guidance that support the face-to-face interactions of students with librarians and classroom teachers. Although students are often technologically proficient,…

  20. Body Space in Social Interactions: A Comparison of Reaching and Comfort Distance in Immersive Virtual Reality

    PubMed Central

    Iachini, Tina; Coello, Yann; Frassinetti, Francesca; Ruggiero, Gennaro

    2014-01-01

    Background Do peripersonal space for acting on objects and interpersonal space for interacting with con-specifics share common mechanisms and reflect the social valence of stimuli? To answer this question, we investigated whether these spaces refer to a similar or different physical distance. Methodology Participants provided reachability-distance (for potential action) and comfort-distance (for social processing) judgments towards human and non-human virtual stimuli while standing still (passive) or walking toward stimuli (active). Principal Findings Comfort-distance was larger than other conditions when participants were passive, but reachability and comfort distances were similar when participants were active. Both spaces were modulated by the social valence of stimuli (reduction with virtual females vs males, expansion with cylinder vs robot) and the gender of participants. Conclusions These findings reveal that peripersonal reaching and interpersonal comfort spaces share a common motor nature and are sensitive, at different degrees, to social modulation. Therefore, social processing seems embodied and grounded in the body acting in space. PMID:25405344

  1. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph B.

    2007-01-01

    The Virtual Solar Observatory (VSO) is now able to search for solar data ranging from the radio to gamma rays, obtained from space and groundbased observatories, from 26 sources at 12 data providers, and from 1915 to the present. The solar physics community can use a Web interface or an Application Programming Interface (API) that allows integrating VSO searches into other software, including other Web services. Over the next few years, this integration will be especially obvious as the NASA Heliophysics division sponsors the development of a heliophysics-wide virtual observatory (VO), based on existing VO's in heliospheric, magnetospheric, and ionospheric physics as well as the VSO. We examine some of the challenges and potential of such a "meta-VO."

  2. The Architectonic Experience of Body and Space in Augmented Interiors

    PubMed Central

    Pasqualini, Isabella; Blefari, Maria Laura; Tadi, Tej; Serino, Andrea; Blanke, Olaf

    2018-01-01

    The environment shapes our experience of space in constant interaction with the body. Architectonic interiors amplify the perception of space through the bodily senses; an effect also known as embodiment. The interaction of the bodily senses with the space surrounding the body can be tested experimentally through the manipulation of multisensory stimulation and measured via a range of behaviors related to bodily self-consciousness. Many studies have used Virtual Reality to show that visuotactile conflicts mediated via a virtual body or avatar can disrupt the unified subjective experience of the body and self. In the full-body illusion paradigm, participants feel as if the avatar was their body (ownership, self-identification) and they shift their center of awareness toward the position of the avatar (self-location). However, the influence of non-bodily spatial cues around the body on embodiment remains unclear, and data about the impact of architectonic space on human perception and self-conscious states are sparse. We placed participants into a Virtual Reality arena, where large and narrow virtual interiors were displayed with and without an avatar. We then applied synchronous or asynchronous visuotactile strokes to the back of the participants and avatar, or, to the front wall of the void interiors. During conditions of illusory self-identification with the avatar, participants reported sensations of containment, drift, and touch with the architectonic environment. The absence of the avatar suppressed such feelings, yet, in the large space, we found an effect of continuity between the physical and the virtual interior depending on the full-body illusion. We discuss subjective feelings evoked by architecture and compare the full-body illusion in augmented interiors to architectonic embodiment. A relevant outcome of this study is the potential to dissociate the egocentric, first-person view from the physical point of view through augmented architectonic space. PMID:29755378

  3. The Architectonic Experience of Body and Space in Augmented Interiors.

    PubMed

    Pasqualini, Isabella; Blefari, Maria Laura; Tadi, Tej; Serino, Andrea; Blanke, Olaf

    2018-01-01

    The environment shapes our experience of space in constant interaction with the body. Architectonic interiors amplify the perception of space through the bodily senses; an effect also known as embodiment. The interaction of the bodily senses with the space surrounding the body can be tested experimentally through the manipulation of multisensory stimulation and measured via a range of behaviors related to bodily self-consciousness. Many studies have used Virtual Reality to show that visuotactile conflicts mediated via a virtual body or avatar can disrupt the unified subjective experience of the body and self. In the full-body illusion paradigm, participants feel as if the avatar was their body (ownership, self-identification) and they shift their center of awareness toward the position of the avatar (self-location). However, the influence of non-bodily spatial cues around the body on embodiment remains unclear, and data about the impact of architectonic space on human perception and self-conscious states are sparse. We placed participants into a Virtual Reality arena, where large and narrow virtual interiors were displayed with and without an avatar. We then applied synchronous or asynchronous visuotactile strokes to the back of the participants and avatar, or, to the front wall of the void interiors. During conditions of illusory self-identification with the avatar, participants reported sensations of containment, drift, and touch with the architectonic environment. The absence of the avatar suppressed such feelings, yet, in the large space, we found an effect of continuity between the physical and the virtual interior depending on the full-body illusion. We discuss subjective feelings evoked by architecture and compare the full-body illusion in augmented interiors to architectonic embodiment. A relevant outcome of this study is the potential to dissociate the egocentric, first-person view from the physical point of view through augmented architectonic space.

  4. Virtual Observatories for Space Physics Observations and Simulations: New Routes to Efficient Access and Visualization

    NASA Technical Reports Server (NTRS)

    Roberts, Aaron

    2005-01-01

    New tools for data access and visualization promise to make the analysis of space plasma data both more efficient and more powerful, especially for answering questions about the global structure and dynamics of the Sun-Earth system. We will show how new existing tools (particularly the Virtual Space Physics Observatory-VSPO-and the Visual System for Browsing, Analysis and Retrieval of Data-ViSBARD; look for the acronyms in Google) already provide rapid access to such information as spacecraft orbits, browse plots, and detailed data, as well as visualizations that can quickly unite our view of multispacecraft observations. We will show movies illustrating multispacecraft observations of the solar wind and magnetosphere during a magnetic storm, and of simulations of 3 0-spacecraft observations derived from MHD simulations of the magnetosphere sampled along likely trajectories of the spacecraft for the MagCon mission. An important issue remaining to be solved is how best to integrate simulation data and services into the Virtual Observatory environment, and this talk will hopefully stimulate further discussion along these lines.

  5. Cosmology of Universe Particles and Beyond

    NASA Astrophysics Data System (ADS)

    Xu, Wei

    2016-06-01

    For the first time in history, all properties of cosmology particles are uncovered and described concisely and systematically, known as the elementary particles in contemporary physics.Aligning with the synthesis of the virtual and physical worlds in a hierarchical taxonomy of the universe, this theory refines the topology framework of cosmology, and presents a new perspective of the Yin Yang natural laws that, through the processes of creation and reproduction, the fundamental elements generate an infinite series of circular objects and a Yin Yang duality of dynamic fields that are sequenced and transformed states of matter between the virtual and physical worlds.Once virtual objects are transformed, they embody various enclaves of energy states, known as dark energy, quarks, leptons, bosons, protons, and neutrons, characterized by their incentive oscillations of timestate variables in a duality of virtual realities: energy and time, spin and charge, mass and space, symmetry and antisymmetry.As a consequence, it derives the fully-scaled quantum properties of physical particles in accordance with numerous historical experiments, and has overcome the limitations of uncertainty principle and the Standard Model, towards concisely exploring physical nature and beyond...

  6. Extending the Body to Virtual Tools Using a Robotic Surgical Interface: Evidence from the Crossmodal Congruency Task

    PubMed Central

    Sengül, Ali; van Elk, Michiel; Rognini, Giulio; Aspell, Jane Elizabeth; Bleuler, Hannes; Blanke, Olaf

    2012-01-01

    The effects of real-world tool use on body or space representations are relatively well established in cognitive neuroscience. Several studies have shown, for example, that active tool use results in a facilitated integration of multisensory information in peripersonal space, i.e. the space directly surrounding the body. However, it remains unknown to what extent similar mechanisms apply to the use of virtual-robotic tools, such as those used in the field of surgical robotics, in which a surgeon may use bimanual haptic interfaces to control a surgery robot at a remote location. This paper presents two experiments in which participants used a haptic handle, originally designed for a commercial surgery robot, to control a virtual tool. The integration of multisensory information related to the virtual-robotic tool was assessed by means of the crossmodal congruency task, in which subjects responded to tactile vibrations applied to their fingers while ignoring visual distractors superimposed on the tip of the virtual-robotic tool. Our results show that active virtual-robotic tool use changes the spatial modulation of the crossmodal congruency effects, comparable to changes in the representation of peripersonal space observed during real-world tool use. Moreover, when the virtual-robotic tools were held in a crossed position, the visual distractors interfered strongly with tactile stimuli that was connected with the hand via the tool, reflecting a remapping of peripersonal space. Such remapping was not only observed when the virtual-robotic tools were actively used (Experiment 1), but also when passively held the tools (Experiment 2). The present study extends earlier findings on the extension of peripersonal space from physical and pointing tools to virtual-robotic tools using techniques from haptics and virtual reality. We discuss our data with respect to learning and human factors in the field of surgical robotics and discuss the use of new technologies in the field of cognitive neuroscience. PMID:23227142

  7. Extending the body to virtual tools using a robotic surgical interface: evidence from the crossmodal congruency task.

    PubMed

    Sengül, Ali; van Elk, Michiel; Rognini, Giulio; Aspell, Jane Elizabeth; Bleuler, Hannes; Blanke, Olaf

    2012-01-01

    The effects of real-world tool use on body or space representations are relatively well established in cognitive neuroscience. Several studies have shown, for example, that active tool use results in a facilitated integration of multisensory information in peripersonal space, i.e. the space directly surrounding the body. However, it remains unknown to what extent similar mechanisms apply to the use of virtual-robotic tools, such as those used in the field of surgical robotics, in which a surgeon may use bimanual haptic interfaces to control a surgery robot at a remote location. This paper presents two experiments in which participants used a haptic handle, originally designed for a commercial surgery robot, to control a virtual tool. The integration of multisensory information related to the virtual-robotic tool was assessed by means of the crossmodal congruency task, in which subjects responded to tactile vibrations applied to their fingers while ignoring visual distractors superimposed on the tip of the virtual-robotic tool. Our results show that active virtual-robotic tool use changes the spatial modulation of the crossmodal congruency effects, comparable to changes in the representation of peripersonal space observed during real-world tool use. Moreover, when the virtual-robotic tools were held in a crossed position, the visual distractors interfered strongly with tactile stimuli that was connected with the hand via the tool, reflecting a remapping of peripersonal space. Such remapping was not only observed when the virtual-robotic tools were actively used (Experiment 1), but also when passively held the tools (Experiment 2). The present study extends earlier findings on the extension of peripersonal space from physical and pointing tools to virtual-robotic tools using techniques from haptics and virtual reality. We discuss our data with respect to learning and human factors in the field of surgical robotics and discuss the use of new technologies in the field of cognitive neuroscience.

  8. Students' Experience of University Space: An Exploratory Study

    ERIC Educational Resources Information Center

    Cox, Andrew M.

    2011-01-01

    The last decade has seen a wave of new building across British universities, so that it would appear that despite the virtualization discourses around higher education, space still matters in learning. Yet studies of student experience of the physical space of the university are rather lacking. This paper explores the response of one group of…

  9. From Commons to Classroom: The Evolution of Learning Spaces in Academic Libraries

    ERIC Educational Resources Information Center

    Karasic, Victoria

    2016-01-01

    Over the past two decades, academic library spaces have evolved to meet the changing teaching and learning needs of diverse campus communities. The Information Commons combines the physical and virtual in an informal library space, whereas the recent Active Learning Classroom creates a more formal setting for collaboration. As scholarship has…

  10. The Iterative Design of a Virtual Design Studio

    ERIC Educational Resources Information Center

    Blevis, Eli; Lim, Youn-kyung; Stolterman, Erik; Makice, Kevin

    2008-01-01

    In this article, the authors explain how they implemented Design eXchange as a shared collaborative online and physical space for design for their students. Their notion for Design eXchange favors a complex mix of key elements namely: (1) a virtual online studio; (2) a forum for review of all things related to design, especially design with the…

  11. Learning at the Interstices; Locating Practical Philosophies for Understanding Physical/Virtual Inter-Spaces

    ERIC Educational Resources Information Center

    Savin-Baden, M.; Falconer, L.

    2016-01-01

    Virtual worlds are relatively recent developments, and so it is tempting to believe that they need to be understood through newly developed theories and philosophies. However, humans have long thought about the nature of reality and what it means to be "real." This paper examines the three persistent philosophical concepts of Metaxis,…

  12. Digital Library Archaeology: A Conceptual Framework for Understanding Library Use through Artifact-Based Evaluation

    ERIC Educational Resources Information Center

    Nicholson, Scott

    2005-01-01

    Archaeologists have used material artifacts found in a physical space to gain an understanding about the people who occupied that space. Likewise, as users wander through a digital library, they leave behind data-based artifacts of their activity in the virtual space. Digital library archaeologists can gather these artifacts and employ inductive…

  13. "Space and Consequences": The Influence of the Roundtable Classroom Design on Student Dialogue

    ERIC Educational Resources Information Center

    Parsons, Caroline S.

    2016-01-01

    This study sought to explore how the design of both physical and virtual learning spaces influence student dialogue in a modern university. Qualitative analysis of the learning spaces in an undergraduate liberal arts program was conducted. Interview and focus group data from students and faculty, in addition to classroom observations, resulted in…

  14. Two innovative healthcare technologies at the intersection of serious games, alternative realities, and play therapy.

    PubMed

    Brahnam, Sheryl; Brooks, Anthony L

    2014-01-01

    Using game technologies and digital media for improving physical and mental health and for the therapeutic benefit and well-being of a wide range of people is an area of study that is rapidly expanding. Much research in this emerging field is centered at the intersection of serious games, alternative realities, and play therapy. In this paper the authors describe their transdisciplinary work at this intersection: i) an integrative system of psychotherapy technologies called MyPsySpace currently being prototyped in Second Life with the aim of offering new and virtual translations of traditional expressive therapies (virtual sandplay, virtual drama therapy, digital expressive therapy, and virtual safe spaces) and ii) a mature body of research entitled SoundScapes that is exploring the use of interactive video games and abstract creative expression (making music, digital painting, and robotic device control) as a supplement to traditional physical rehabilitation intervention. Aside from introducing our work to a broader audience, our goal is to encourage peers to investigate ideas that reach across disciplines-to both risk and reap the benefits of combining technologies, theories, and methods stemming from multiple disciplines.

  15. An Absolute Phase Space for the Physicality of Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, John S.

    2010-12-22

    We define an abstract and absolute phase space (''APS'') for sub-quantum intrinsic wave states, in three axes, each mapping directly to a duality having fundamental ontological basis. Many aspects of quantum physics emerge from the interaction algebra and a model deduced from principles of 'unique solvability' and 'identifiable entity', and we reconstruct previously abstract fundamental principles and phenomena from these new foundations. The physical model defines bosons as virtual continuous waves pairs in the APS, and fermions as real self-quantizing snapshots of those waves when simple conditions are met. The abstraction and physical model define a template for the constitutionmore » of all fermions, a template for all the standard fundamental bosons and their local interactions, in a common framework and compactified phase space for all forms of real matter and virtual vacuum energy, and a distinct algebra for observables and unobservables. To illustrate our scheme's potential, we provide examples of slit experiment variations (where the model finds theoretical basis for interference only occurring between two final sources), QCD (where we may model most attributes known to QCD, and a new view on entanglement), and we suggest approaches for other varied applications. We believe this is a viable candidate for further exploration as a foundational proposition for physics.« less

  16. Space-weather assets developed by the French space-physics community

    NASA Astrophysics Data System (ADS)

    Rouillard, A. P.; Pinto, R. F.; Brun, A. S.; Briand, C.; Bourdarie, S.; Dudok De Wit, T.; Amari, T.; Blelly, P.-L.; Buchlin, E.; Chambodut, A.; Claret, A.; Corbard, T.; Génot, V.; Guennou, C.; Klein, K. L.; Koechlin, L.; Lavarra, M.; Lavraud, B.; Leblanc, F.; Lemorton, J.; Lilensten, J.; Lopez-Ariste, A.; Marchaudon, A.; Masson, S.; Pariat, E.; Reville, V.; Turc, L.; Vilmer, N.; Zucarello, F. P.

    2016-12-01

    We present a short review of space-weather tools and services developed and maintained by the French space-physics community. They include unique data from ground-based observatories, advanced numerical models, automated identification and tracking tools, a range of space instrumentation and interconnected virtual observatories. The aim of the article is to highlight some advances achieved in this field of research at the national level over the last decade and how certain assets could be combined to produce better space-weather tools exploitable by space-weather centres and customers worldwide. This review illustrates the wide range of expertise developed nationally but is not a systematic review of all assets developed in France.

  17. PhysicsFun4k24

    DTIC Science & Technology

    2013-01-11

    DATE 01 OCT 2013 2. REPORT TYPE 3. DATES COVERED 01-08-2012 to 31-12-2012 4 . TITLE AND SUBTITLE PhysicsFun4k24 5a. CONTRACT NUMBER 5b. GRANT...3  3.2  Curriculum Space ‐ Force and Motion ................................................................................  4   3.3  Game Space...Virtual World of “Tadpoles” ........................................................................  4   4   Measurement and Assessment

  18. Learning Spaces and Collaborative Work: Barriers or Supports?

    ERIC Educational Resources Information Center

    King, Hayley

    2016-01-01

    Drawing on 18 months of fieldwork, this article discusses the use of physical, virtual and social space to support collaborative work in translator education programs. The study adopted a contrastive ethnography approach that incorporated single- and multiple-case design rationales for site selection. Extended observation, informal chats and…

  19. How Physical Design Can Influence Copyright Compliance

    ERIC Educational Resources Information Center

    Harper, Meghan

    2007-01-01

    Most school librarians do not think of copyright compliance and facilities planning in the same breath. Yet the design of space--physical and virtual--can discourage or promote compliance, or even help police it. Placement of and access to equipment, traffic patterns, signage, and student workspace all may influence copyright-compliance behavior…

  20. Altering User Movement Behaviour in Virtual Environments.

    PubMed

    Simeone, Adalberto L; Mavridou, Ifigeneia; Powell, Wendy

    2017-04-01

    In immersive Virtual Reality systems, users tend to move in a Virtual Environment as they would in an analogous physical environment. In this work, we investigated how user behaviour is affected when the Virtual Environment differs from the physical space. We created two sets of four environments each, plus a virtual replica of the physical environment as a baseline. The first focused on aesthetic discrepancies, such as a water surface in place of solid ground. The second focused on mixing immaterial objects together with those paired to tangible objects. For example, barring an area with walls or obstacles. We designed a study where participants had to reach three waypoints laid out in such a way to prompt a decision on which path to follow based on the conflict between the mismatching visual stimuli and their awareness of the real layout of the room. We analysed their performances to determine whether their trajectories were altered significantly from the shortest route. Our results indicate that participants altered their trajectories in presence of surfaces representing higher walking difficulty (for example, water instead of grass). However, when the graphical appearance was found to be ambiguous, there was no significant trajectory alteration. The environments mixing immaterial with physical objects had the most impact on trajectories with a mean deviation from the shortest route of 60 cm against the 37 cm of environments with aesthetic alterations. The co-existance of paired and unpaired virtual objects was reported to support the idea that all objects participants saw were backed by physical props. From these results and our observations, we derive guidelines on how to alter user movement behaviour in Virtual Environments.

  1. Virtual Team Governance: Addressing the Governance Mechanisms and Virtual Team Performance

    NASA Astrophysics Data System (ADS)

    Zhan, Yihong; Bai, Yu; Liu, Ziheng

    As technology has improved and collaborative software has been developed, virtual teams with geographically dispersed members spread across diverse physical locations have become increasingly prominent. Virtual team is supported by advancing communication technologies, which makes virtual teams able to largely transcend time and space. Virtual teams have changed the corporate landscape, which are more complex and dynamic than traditional teams since the members of virtual teams are spread on diverse geographical locations and their roles in the virtual team are different. Therefore, how to realize good governance of virtual team and arrive at good virtual team performance is becoming critical and challenging. Good virtual team governance is essential for a high-performance virtual team. This paper explores the performance and the governance mechanism of virtual team. It establishes a model to explain the relationship between the performance and the governance mechanisms in virtual teams. This paper is focusing on managing virtual teams. It aims to find the strategies to help business organizations to improve the performance of their virtual teams and arrive at the objectives of good virtual team management.

  2. Live theater on a virtual stage: incorporating soft skills and teamwork in computer graphics education.

    PubMed

    Schweppe, M; Geigel, J

    2011-01-01

    Industry has increasingly emphasized the need for "soft" or interpersonal skills development and team-building experience in the college curriculum. Here, we discuss our experiences with providing such opportunities via a collaborative project called the Virtual Theater. In this joint project between the Rochester Institute of Technology's School of Design and Department of Computer Science, the goal is to enable live performance in a virtual space with participants in different physical locales. Students work in teams, collaborating with other students in and out of their disciplines.

  3. The use of virtual fiducials in image-guided kidney surgery

    NASA Astrophysics Data System (ADS)

    Glisson, Courtenay; Ong, Rowena; Simpson, Amber; Clark, Peter; Herrell, S. D.; Galloway, Robert

    2011-03-01

    The alignment of image-space to physical-space lies at the heart of all image-guided procedures. In intracranial surgery, point-based registrations can be used with either skin-affixed or bone-implanted extrinsic objects called fiducial markers. The advantages of point-based registration techniques are that they are robust, fast, and have a well developed mathematical foundation for the assessment of registration quality. In abdominal image-guided procedures such techniques have not been successful. It is difficult to accurately locate sufficient homologous intrinsic points in imagespace and physical-space, and the implantation of extrinsic fiducial markers would constitute "surgery before the surgery." Image-space to physical-space registration for abdominal organs has therefore been dominated by surfacebased registration techniques which are iterative, prone to local minima, sensitive to initial pose, and sensitive to percentage coverage of the physical surface. In our work in image-guided kidney surgery we have developed a composite approach using "virtual fiducials." In an open kidney surgery, the perirenal fat is removed and the surface of the kidney is dotted using a surgical marker. A laser range scanner (LRS) is used to obtain a surface representation and matching high definition photograph. A surface to surface registration is performed using a modified iterative closest point (ICP) algorithm. The dots are extracted from the high definition image and assigned the three dimensional values from the LRS pixels over which they lie. As the surgery proceeds, we can then use point-based registrations to re-register the spaces and track deformations due to vascular clamping and surgical tractions.

  4. Toward an Affinity Space Methodology: Considerations for Literacy Research

    ERIC Educational Resources Information Center

    Lammers, Jayne C.; Curwood, Jen Scott; Magnifico, Alecia Marie

    2012-01-01

    As researchers seek to make sense of young people's online literacy practices and participation, questions of methodology are important to consider. In our work to understand the culture of physical, virtual and blended spheres that adolescents inhabit, we find it necessary to expand Gee's (2004) notion of affinity spaces. In this article, we draw…

  5. Writing in the Wild: Writers' Motivation in Fan-Based Affinity Spaces

    ERIC Educational Resources Information Center

    Curwood, Jen Scott; Magnifico, Alecia Marie; Lammers, Jayne C.

    2013-01-01

    In order to understand the culture of the physical, virtual, and blended spheres that adolescents inhabit, we build on Gee's concept of affinity spaces. Drawing on our ethnographic research of adolescent literacies related to The Hunger Games novels, the Neopets online game, and The Sims videogames, this article explores the nature of…

  6. Solar-Heliospheric-Interstellar Cosmic Ray Tour with the NASA Virtual Energetic Particle Observatory and the Space Physics Data Facility

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Papitashvili, Natalia E.; Johnson, Rita C.; Lal, Nand; McGuire, Robert E.

    2015-04-01

    NASA now has a large collection of solar, heliospheric, and local interstellar (Voyager 1) cosmic ray particle data sets that can be accessed through the data system services of the NASA Virtual Energetic Particle Observatory (VEPO) in collaboration with the NASA Space Physics Data Facility SPDF), respectively led by the first and last authors. The VEPO services were developed to enhance the long-existing OMNIWeb solar wind and energetic particle services of SPDF for on-line browse, correlative, and statistical analysis of NASA and ESA mission fields, plasma, and energetic particle data. In this presentation we take of tour through VEPO and SPDF of SEP reservoir events, the outer heliosphere earlier surveyed by the Pioneer, Voyager, and Ulysses spacecraft and now being probed by New Horizons, and the heliosheath-heliopause-interstellar regions now being explored by the Voyagers and IBEX. Implications of the latter measurements are also considered for the flux spectra of low to high energy cosmic rays in interstellar space.

  7. Students' Experience of Synchronous Learning in Distributed Environments

    ERIC Educational Resources Information Center

    Stewart, Anissa R.; Harlow, Danielle B.; DeBacco, Kim

    2011-01-01

    This article reports on a two-year ethnographic study of learners participating in multi-site, graduate-level education classes. Classes sometimes met face-to-face in the same physical location; at other times part of the class met physically elsewhere. Yet all were linked through the virtual space. Ethnographic analysis of four data types…

  8. The Primary Student Teachers' Views about a Blended Learning Application in a Basic Physics Course

    ERIC Educational Resources Information Center

    Taskin Ekici, Fatma; Kara, Izzet; Ekici, Erhan

    2012-01-01

    In this study we present an overview of the undergraduate blended Physics course that has been supported by the Moodle platform. The course that has been applied is a basic physics course for primary student teachers. The aim of Moodle is to create an online learning environment which helps students to have a virtual space where they can share…

  9. Reduction of the virtual space for coupled-cluster excitation energies of large molecules and embedded systems.

    PubMed

    Send, Robert; Kaila, Ville R I; Sundholm, Dage

    2011-06-07

    We investigate how the reduction of the virtual space affects coupled-cluster excitation energies at the approximate singles and doubles coupled-cluster level (CC2). In this reduced-virtual-space (RVS) approach, all virtual orbitals above a certain energy threshold are omitted in the correlation calculation. The effects of the RVS approach are assessed by calculations on the two lowest excitation energies of 11 biochromophores using different sizes of the virtual space. Our set of biochromophores consists of common model systems for the chromophores of the photoactive yellow protein, the green fluorescent protein, and rhodopsin. The RVS calculations show that most of the high-lying virtual orbitals can be neglected without significantly affecting the accuracy of the obtained excitation energies. Omitting all virtual orbitals above 50 eV in the correlation calculation introduces errors in the excitation energies that are smaller than 0.1 eV. By using a RVS energy threshold of 50 eV, the CC2 calculations using triple-ζ basis sets (TZVP) on protonated Schiff base retinal are accelerated by a factor of 6. We demonstrate the applicability of the RVS approach by performing CC2/TZVP calculations on the lowest singlet excitation energy of a rhodopsin model consisting of 165 atoms using RVS thresholds between 20 eV and 120 eV. The calculations on the rhodopsin model show that the RVS errors determined in the gas-phase are a very good approximation to the RVS errors in the protein environment. The RVS approach thus renders purely quantum mechanical treatments of chromophores in protein environments feasible and offers an ab initio alternative to quantum mechanics/molecular mechanics separation schemes. © 2011 American Institute of Physics

  10. Development and comparison of projection and image space 3D nodule insertion techniques

    NASA Astrophysics Data System (ADS)

    Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Samei, Ehsan

    2016-04-01

    This study aimed to develop and compare two methods of inserting computerized virtual lesions into CT datasets. 24 physical (synthetic) nodules of three sizes and four morphologies were inserted into an anthropomorphic chest phantom (LUNGMAN, KYOTO KAGAKU). The phantom was scanned (Somatom Definition Flash, Siemens Healthcare) with and without nodules present, and images were reconstructed with filtered back projection and iterative reconstruction (SAFIRE) at 0.6 mm slice thickness using a standard thoracic CT protocol at multiple dose settings. Virtual 3D CAD models based on the physical nodules were virtually inserted (accounting for the system MTF) into the nodule-free CT data using two techniques. These techniques include projection-based and image-based insertion. Nodule volumes were estimated using a commercial segmentation tool (iNtuition, TeraRecon, Inc.). Differences were tested using paired t-tests and R2 goodness of fit between the virtually and physically inserted nodules. Both insertion techniques resulted in nodule volumes very similar to the real nodules (<3% difference) and in most cases the differences were not statistically significant. Also, R2 values were all <0.97 for both insertion techniques. These data imply that these techniques can confidently be used as a means of inserting virtual nodules in CT datasets. These techniques can be instrumental in building hybrid CT datasets composed of patient images with virtually inserted nodules.

  11. An adaptive process-based cloud infrastructure for space situational awareness applications

    NASA Astrophysics Data System (ADS)

    Liu, Bingwei; Chen, Yu; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik; Rubin, Bruce

    2014-06-01

    Space situational awareness (SSA) and defense space control capabilities are top priorities for groups that own or operate man-made spacecraft. Also, with the growing amount of space debris, there is an increase in demand for contextual understanding that necessitates the capability of collecting and processing a vast amount sensor data. Cloud computing, which features scalable and flexible storage and computing services, has been recognized as an ideal candidate that can meet the large data contextual challenges as needed by SSA. Cloud computing consists of physical service providers and middleware virtual machines together with infrastructure, platform, and software as service (IaaS, PaaS, SaaS) models. However, the typical Virtual Machine (VM) abstraction is on a per operating systems basis, which is at too low-level and limits the flexibility of a mission application architecture. In responding to this technical challenge, a novel adaptive process based cloud infrastructure for SSA applications is proposed in this paper. In addition, the details for the design rationale and a prototype is further examined. The SSA Cloud (SSAC) conceptual capability will potentially support space situation monitoring and tracking, object identification, and threat assessment. Lastly, the benefits of a more granular and flexible cloud computing resources allocation are illustrated for data processing and implementation considerations within a representative SSA system environment. We show that the container-based virtualization performs better than hypervisor-based virtualization technology in an SSA scenario.

  12. Reconsidering the Role of Recorded Audio as a Rich, Flexible and Engaging Learning Space

    ERIC Educational Resources Information Center

    Middleton, Andrew

    2016-01-01

    Audio needs to be recognised as an integral medium capable of extending education's formal and informal, virtual and physical learning spaces. This paper reconsiders the value of educational podcasting through a review of literature and a module case study. It argues that a pedagogical understanding is needed and challenges technology-centred or…

  13. Building Virtual Spaces for Children in the Digital Branch

    ERIC Educational Resources Information Center

    DuBroy, Michelle

    2010-01-01

    Purpose: A digital branch is just like a physical branch except that content is delivered digitally via the web. A digital branch has staff, a collection, a community, and a building. The purpose of this paper is to explore the concept of building individual spaces for different user groups, specifically children, within a digital branch.…

  14. An IPv6 routing lookup algorithm using weight-balanced tree based on prefix value for virtual router

    NASA Astrophysics Data System (ADS)

    Chen, Lingjiang; Zhou, Shuguang; Zhang, Qiaoduo; Li, Fenghua

    2016-10-01

    Virtual router enables the coexistence of different networks on the same physical facility and has lately attracted a great deal of attention from researchers. As the number of IPv6 addresses is rapidly increasing in virtual routers, designing an efficient IPv6 routing lookup algorithm is of great importance. In this paper, we present an IPv6 lookup algorithm called weight-balanced tree (WBT). WBT merges Forwarding Information Bases (FIBs) of virtual routers into one spanning tree, and compresses the space cost. WBT's average time complexity and the worst case time complexity of lookup and update process are both O(logN) and space complexity is O(cN) where N is the size of routing table and c is a constant. Experiments show that WBT helps reduce more than 80% Static Random Access Memory (SRAM) cost in comparison to those separation schemes. WBT also achieves the least average search depth comparing with other homogeneous algorithms.

  15. Self-replicating machines in continuous space with virtual physics.

    PubMed

    Smith, Arnold; Turney, Peter; Ewaschuk, Robert

    2003-01-01

    JohnnyVon is an implementation of self-replicating machines in continuous two-dimensional space. Two types of particles drift about in a virtual liquid. The particles are automata with discrete internal states but continuous external relationships. Their internal states are governed by finite state machines, but their external relationships are governed by a simulated physics that includes Brownian motion, viscosity, and springlike attractive and repulsive forces. The particles can be assembled into patterns that can encode arbitrary strings of bits. We demonstrate that, if an arbitrary seed pattern is put in a soup of separate individual particles, the pattern will replicate by assembling the individual particles into copies of itself. We also show that, given sufficient time, a soup of separate individual particles will eventually spontaneously form self-replicating patterns. We discuss the implications of JohnnyVon for research in nanotechnology, theoretical biology, and artificial life.

  16. Virtual Worlds for Virtual Organizing

    NASA Astrophysics Data System (ADS)

    Rhoten, Diana; Lutters, Wayne

    The members and resources of a virtual organization are dispersed across time and space, yet they function as a coherent entity through the use of technologies, networks, and alliances. As virtual organizations proliferate and become increasingly important in society, many may exploit the technical architecture s of virtual worlds, which are the confluence of computer-mediated communication, telepresence, and virtual reality originally created for gaming. A brief socio-technical history describes their early origins and the waves of progress followed by stasis that brought us to the current period of renewed enthusiasm. Examination of contemporary examples demonstrates how three genres of virtual worlds have enabled new arenas for virtual organizing: developer-defined closed worlds, user-modifiable quasi-open worlds, and user-generated open worlds. Among expected future trends are an increase in collaboration born virtually rather than imported from existing organizations, a tension between high-fidelity recreations of the physical world and hyper-stylized imaginations of fantasy worlds, and the growth of specialized worlds optimized for particular sectors, companies, or cultures.

  17. To Meet or Not To Meet Physical vs. Virtual Configuration Control Board

    NASA Technical Reports Server (NTRS)

    Rice, Shelley

    2017-01-01

    This presentation will define the CCB, discuss its functions and members. We will look into traditional processes of managing change control via the CCB meeting and advanced practices utilizing enhanced product tools and technologies. Well step through a summary of the feedback from the community of CM professionals at NASA Goddard Space Flight Center of best practices as well as pros and cons for facilitating both a physical CCB and managing stakeholder approvals in a virtual environment. Attendees will come away with current industry strategies to determine if process for managing change control and approvals can be streamlined within their local work environments.

  18. Virtual Boutique: a 3D modeling and content-based management approach to e-commerce

    NASA Astrophysics Data System (ADS)

    Paquet, Eric; El-Hakim, Sabry F.

    2000-12-01

    The Virtual Boutique is made out of three modules: the decor, the market and the search engine. The decor is the physical space occupied by the Virtual Boutique. It can reproduce any existing boutique. For this purpose, photogrammetry is used. A set of pictures of a real boutique or space is taken and a virtual 3D representation of this space is calculated from them. Calculations are performed with software developed at NRC. This representation consists of meshes and texture maps. The camera used in the acquisition process determines the resolution of the texture maps. Decorative elements are added like painting, computer generated objects and scanned objects. The objects are scanned with laser scanner developed at NRC. This scanner allows simultaneous acquisition of range and color information based on white laser beam triangulation. The second module, the market, is made out of all the merchandises and the manipulators, which are used to manipulate and compare the objects. The third module, the search engine, can search the inventory based on an object shown by the customer in order to retrieve similar objects base don shape and color. The items of interest are displayed in the boutique by reconfiguring the market space, which mean that the boutique can be continuously customized according to the customer's needs. The Virtual Boutique is entirely written in Java 3D and can run in mono and stereo mode and has been optimized in order to allow high quality rendering.

  19. Workshop Report on Virtual Worlds and Immersive Environments

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephanie R.; Cowan-Sharp, Jessy; Dodson, Karen E.; Damer, Bruce; Ketner, Bob

    2009-01-01

    The workshop revolved around three framing ideas or scenarios about the evolution of virtual environments: 1. Remote exploration: The ability to create high fidelity environments rendered from external data or models such that exploration, design and analysis that is truly interoperable with the physical world can take place within them. 2. We all get to go: The ability to engage anyone in being a part of or contributing to an experience (such as a space mission), no matter their training or location. It is the creation of a new paradigm for education, outreach, and the conduct of science in society that is truly participatory. 3. Become the data: A vision of a future where boundaries between the physical and the virtual have ceased to be meaningful. What would this future look like? Is this plausible? Is it desirable? Why and why not?

  20. Space Weather Research Presented at the 2007 AGU Fall Meeting

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2007-12-01

    AGU's 47th annual Fall Meeting, held 10-14 December 2007 in San Francisco, Calif., was the largest gathering of geoscientists in the Union's history. More than 14,600 people attended. The Space Physics and Aeronomy (SPA) sections sported excellent turnout, with more than 1300 abstracts submitted over 114 poster and oral sessions. Topics discussed that related to space weather were manifold: the nature of the Sun-Earth system revealed through newly launched satellites, observations and models of ionospheric convection, advances in the understanding of radiation belt physics, Sun-Earth coupling via energetic coupling, data management and archiving into virtual observatories, and the applications of all this research to space weather forecasting and prediction.

  1. A Parametric Model of Shoulder Articulation for Virtual Assessment of Space Suit Fit

    NASA Technical Reports Server (NTRS)

    Young, Karen; Kim, Han; Bernal, Yaritza; Vu, Linh; Boppana, Adhi; Benson, Elizabeth; Jarvis, Sarah; Rajulu, Sudhakar

    2016-01-01

    Goal of space human factors analyses: Place the highly variable human body within these restrictive physical environments to ensure that the entire anticipated population can live, work, and interact. Space suits are a very restrictive space and if not properly sized can result in pain or injury. The highly dynamic motions performed while wearing a space suit often make it difficult to model. Limited human body models do not have much allowance for customization of anthropometry and representation of the population that may wear a space suit.

  2. A Tie for Third Place: Teens Need Physical Spaces as well as Virtual Places

    ERIC Educational Resources Information Center

    Heeger, Paula Brehm

    2006-01-01

    "Third places" or public and informal gathering places have declined over the years. Third places, which are "neutral ground" where people gather to discuss, interact, and enjoy the company of those they know, are important for the health of communities. It's a known fact that teens have a strong need to socialize, and their third-space options…

  3. There, yet Not There: Human Relationships with Technology

    ERIC Educational Resources Information Center

    Lloyd, Margaret

    2010-01-01

    There is a "reality" to being online which we know to be false. We are simultaneously "there" but "not there" as we talk, work and play with others in online spaces. We move between physical and virtual spaces in ways that realise the predictions made for computers in the mid-20th Century and enact scenarios from science fiction. We are left…

  4. Mobile Assisted Language Learning of Less Commonly Taught Languages: Learning in an Incidental and Situated Way through an App

    ERIC Educational Resources Information Center

    Cervini, Cristiana; Solovova, Olga; Jakkula, Annukka; Ruta, Karolina

    2016-01-01

    Learning has been moving out of classrooms into virtual and physical spaces for over a decade now (Naismith, Lonsdale, Vavoula, & Sharples, 2004). It is becoming mobile "in space", i.e. carried across various domains (workplace, home, places of leisure), "in time", as it encompasses different moments of the day, and in…

  5. Interface for Physics Simulation Engines

    NASA Technical Reports Server (NTRS)

    Damer, Bruce

    2007-01-01

    DSS-Prototyper is an open-source, realtime 3D virtual environment software that supports design simulation for the new Vision for Space Exploration (VSE). This is a simulation of NASA's proposed Robotic Lunar Exploration Program, second mission (RLEP2). It simulates the Lunar Surface Access Module (LSAM), which is designed to carry up to four astronauts to the lunar surface for durations of a week or longer. This simulation shows the virtual vehicle making approaches and landings on a variety of lunar terrains. The physics of the descent engine thrust vector, production of dust, and the dynamics of the suspension are all modeled in this set of simulations. The RLEP2 simulations are drivable (by keyboard or joystick) virtual rovers with controls for speed and motor torque, and can be articulated into higher or lower centers of gravity (depending on driving hazards) to enable drill placement. Gravity also can be set to lunar, terrestrial, or zero-g. This software has been used to support NASA's Marshall Space Flight Center in simulations of proposed vehicles for robotically exploring the lunar surface for water ice, and could be used to model all other aspects of the VSE from the Ares launch vehicles and Crew Exploration Vehicle (CEV) to the International Space Station (ISS). This simulator may be installed and operated on any Windows PC with an installed 3D graphics card.

  6. Use of Statistical Estimators as Virtual Observatory Search ParametersEnabling Access to Solar and Planetary Resources through the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Merka, J.; Dolan, C. F.

    2015-12-01

    Finding and retrieving space physics data is often a complicated taskeven for publicly available data sets: Thousands of relativelysmall and many large data sets are stored in various formats and, inthe better case, accompanied by at least some documentation. VirtualHeliospheric and Magnetospheric Observatories (VHO and VMO) help researches by creating a single point of uniformdiscovery, access, and use of heliospheric (VHO) and magnetospheric(VMO) data.The VMO and VHO functionality relies on metadata expressed using theSPASE data model. This data model is developed by the SPASE WorkingGroup which is currently the only international group supporting globaldata management for Solar and Space Physics. The two Virtual Observatories(VxOs) have initiated and lead a development of a SPASE-related standardnamed SPASE Query Language for provided a standard way of submittingqueries and receiving results.The VMO and VHO use SPASE and SPASEQL for searches based on various criteria such as, for example, spatial location, time of observation, measurement type, parameter values, etc. The parameter values are represented by their statisticalestimators calculated typically over 10-minute intervals: mean, median, standard deviation, minimum, and maximum. The use of statistical estimatorsenables science driven data queries that simplify and shorten the effort tofind where and/or how often the sought phenomenon is observed, as we will present.

  7. Fully Three-Dimensional Virtual-Reality System

    NASA Technical Reports Server (NTRS)

    Beckman, Brian C.

    1994-01-01

    Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.

  8. Utilization of Virtual Server Technology in Mission Operations

    NASA Technical Reports Server (NTRS)

    Felton, Larry; Lankford, Kimberly; Pitts, R. Lee; Pruitt, Robert W.

    2010-01-01

    Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.

  9. Virtualization in the Operations Environments

    NASA Technical Reports Server (NTRS)

    Pitts, Lee; Lankford, Kim; Felton, Larry; Pruitt, Robert

    2010-01-01

    Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.

  10. VR Simulation Testbed: Improving Surface Telerobotics for the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Walker, M. E.; Burns, J. O.; Szafir, D. J.

    2018-02-01

    Design of a virtual reality simulation testbed for prototyping surface telerobotics. The goal is to create a framework with robust physics and kinematics to allow simulated teleoperation and supervised control of lunar rovers and rapid UI prototyping.

  11. New tools for sculpting cranial implants in a shared haptic augmented reality environment.

    PubMed

    Ai, Zhuming; Evenhouse, Ray; Leigh, Jason; Charbel, Fady; Rasmussen, Mary

    2006-01-01

    New volumetric tools were developed for the design and fabrication of high quality cranial implants from patient CT data. These virtual tools replace time consuming physical sculpting, mold making and casting steps. The implant is designed by medical professionals in tele-immersive collaboration. Virtual clay is added in the virtual defect area on the CT data using the adding tool. With force feedback the modeler can feel the edge of the defect and fill only the space where no bone is present. A carving tool and a smoothing tool are then used to sculpt and refine the implant. To make a physical evaluation, the skull with simulated defect and the implant are fabricated via stereolithography to allow neurosurgeons to evaluate the quality of the implant. Initial tests demonstrate a very high quality fit. These new haptic volumetric sculpting tools are a critical component of a comprehensive tele-immersive system.

  12. A Science Strategy for Space Physics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report by the Committee on Solar and Space Physics and the Committee on Solar-Terrestrial Research recommends the major directions for scientific research in space physics for the coming decade. As a field of science, space physics has passed through the stage of simply looking to see what is out beyond Earth's atmosphere. It has become a 'hard' science, focusing on understanding the fundamental interactions between charged particles, electromagnetic fields, and gases in the natural laboratory consisting of the galaxy, the Sun, the heliosphere, and planetary magnetospheres, ionospheres, and upper atmospheres. The motivation for space physics research goes far beyond basic physics and intellectual curiosity, however, because long-term variations in the brightness of the Sun virtually affect the habitability of the Earth, while sudden rearrangements of magnetic fields above the solar surface can have profound effects on the delicate balance of the forces that shape our environment in space and on the human technology that is sensitive to that balance. The several subfields of space physics share the following objectives: to understand the fundamental laws or processes of nature as they apply to space plasmas and rarefied gases both on the microscale and in the larger complex systems that constitute the domain of space physics; to understand the links between changes in the Sun and the resulting effects at the Earth, with the eventual goal of predicting the significant effects on the terrestrial environment; and to continue the exploration and description of the plasmas and rarefied gases in the solar system.

  13. The Third Place in Second Life: Real Life Community in a Virtual World

    NASA Astrophysics Data System (ADS)

    Peachey, Anna

    In June 2006 The Open University (OU) purchased its first land in Second LifeTM (SL). Over a two and a half year period, the OU presence evolved and grew to a point where an average of between 150 and 250 unique users in any 7-day period are active in an OU area. This chapter charts the history of the development of the OU Second Life social community and considers the nature of that activity at a point of critical change, in January 2009, shortly before a new island is developed to provide a permanent home for the community. In order for the community to continue evolving it is necessary to understand the nature of the core activities of these users, and to consider this in a context of sustainable development. Through reference to aspects of socialisation and physical community, the author proposes that a virtual world environment can be described using the physical world concept of a Third Place in the information age, and considers the value of virtual space to a learning community. From a perspective of ethnography, this chapter captures a community development within SL and proposes that physical world concepts of community and Third Place are exhibited in a virtual world, and that there are equivalent benefits in the sense of support and belonging to a virtual world community.

  14. Special issue on enabling open and interoperable access to Planetary Science and Heliophysics databases and tools

    NASA Astrophysics Data System (ADS)

    2018-01-01

    The large amount of data generated by modern space missions calls for a change of organization of data distribution and access procedures. Although long term archives exist for telescopic and space-borne observations, high-level functions need to be developed on top of these repositories to make Planetary Science and Heliophysics data more accessible and to favor interoperability. Results of simulations and reference laboratory data also need to be integrated to support and interpret the observations. Interoperable software and interfaces have recently been developed in many scientific domains. The Virtual Observatory (VO) interoperable standards developed for Astronomy by the International Virtual Observatory Alliance (IVOA) can be adapted to Planetary Sciences, as demonstrated by the VESPA (Virtual European Solar and Planetary Access) team within the Europlanet-H2020-RI project. Other communities have developed their own standards: GIS (Geographic Information System) for Earth and planetary surfaces tools, SPASE (Space Physics Archive Search and Extract) for space plasma, PDS4 (NASA Planetary Data System, version 4) and IPDA (International Planetary Data Alliance) for planetary mission archives, etc, and an effort to make them interoperable altogether is starting, including automated workflows to process related data from different sources.

  15. Low-Cost Virtual Laboratory Workbench for Electronic Engineering

    ERIC Educational Resources Information Center

    Achumba, Ifeyinwa E.; Azzi, Djamel; Stocker, James

    2010-01-01

    The laboratory component of undergraduate engineering education poses challenges in resource constrained engineering faculties. The cost, time, space and physical presence requirements of the traditional (real) laboratory approach are the contributory factors. These resource constraints may mitigate the acquisition of meaningful laboratory…

  16. The Case for Place

    ERIC Educational Resources Information Center

    Thomas, Lisa Carlucci

    2012-01-01

    Bookstores, record stores, libraries, Facebook: these places--both physical and virtual--demonstrate an established and essential purpose as centers of community, expertise, convenience, immediacy, and respect. Yet as digital, mobile, and social shifts continue to transform culture and interactions, these spaces and places transform, too.…

  17. Master-slave system with force feedback based on dynamics of virtual model

    NASA Technical Reports Server (NTRS)

    Nojima, Shuji; Hashimoto, Hideki

    1994-01-01

    A master-slave system can extend manipulating and sensing capabilities of a human operator to a remote environment. But the master-slave system has two serious problems: one is the mechanically large impedance of the system; the other is the mechanical complexity of the slave for complex remote tasks. These two problems reduce the efficiency of the system. If the slave has local intelligence, it can help the human operator by using its good points like fast calculation and large memory. The authors suggest that the slave is a dextrous hand with many degrees of freedom able to manipulate an object of known shape. It is further suggested that the dimensions of the remote work space be shared by the human operator and the slave. The effect of the large impedance of the system can be reduced in a virtual model, a physical model constructed in a computer with physical parameters as if it were in the real world. A method to determine the damping parameter dynamically for the virtual model is proposed. Experimental results show that this virtual model is better than the virtual model with fixed damping.

  18. The NASA Augmented/Virtual Reality Lab: The State of the Art at KSC

    NASA Technical Reports Server (NTRS)

    Little, William

    2017-01-01

    The NASA Augmented Virtual Reality (AVR) Lab at Kennedy Space Center is dedicated to the investigation of Augmented Reality (AR) and Virtual Reality (VR) technologies, with the goal of determining potential uses of these technologies as human-computer interaction (HCI) devices in an aerospace engineering context. Begun in 2012, the AVR Lab has concentrated on commercially available AR and VR devices that are gaining in popularity and use in a number of fields such as gaming, training, and telepresence. We are working with such devices as the Microsoft Kinect, the Oculus Rift, the Leap Motion, the HTC Vive, motion capture systems, and the Microsoft Hololens. The focus of our work has been on human interaction with the virtual environment, which in turn acts as a communications bridge to remote physical devices and environments which the operator cannot or should not control or experience directly. Particularly in reference to dealing with spacecraft and the oftentimes hazardous environments they inhabit, it is our hope that AR and VR technologies can be utilized to increase human safety and mission success by physically removing humans from those hazardous environments while virtually putting them right in the middle of those environments.

  19. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

    PubMed

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y

    2015-02-04

    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.

  20. Fat ViP MRI: Virtual Phantom Magnetic Resonance Imaging of water-fat systems.

    PubMed

    Salvati, Roberto; Hitti, Eric; Bellanger, Jean-Jacques; Saint-Jalmes, Hervé; Gambarota, Giulio

    2016-06-01

    Virtual Phantom Magnetic Resonance Imaging (ViP MRI) is a method to generate reference signals on MR images, using external radiofrequency (RF) signals. The aim of this study was to assess the feasibility of ViP MRI to generate complex-data images of phantoms mimicking water-fat systems. Various numerical phantoms with a given fat fraction, T2* and field map were designed. The k-space of numerical phantoms was converted into RF signals to generate virtual phantoms. MRI experiments were performed at 4.7T using a multi-gradient-echo sequence on virtual and physical phantoms. The data acquisition of virtual and physical phantoms was simultaneous. Decomposition of the water and fat signals was performed using a complex-based water-fat separation algorithm. Overall, a good agreement was observed between the fat fraction, T2* and phase map values of the virtual and numerical phantoms. In particular, fat fractions of 10.5±0.1 (vs 10% of the numerical phantom), 20.3±0.1 (vs 20%) and 30.4±0.1 (vs 30%) were obtained in virtual phantoms. The ViP MRI method allows for generating imaging phantoms that i) mimic water-fat systems and ii) can be analyzed with water-fat separation algorithms based on complex data. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The Virtual Tablet: Virtual Reality as a Control System

    NASA Technical Reports Server (NTRS)

    Chronister, Andrew

    2016-01-01

    In the field of human-computer interaction, Augmented Reality (AR) and Virtual Reality (VR) have been rapidly growing areas of interest and concerted development effort thanks to both private and public research. At NASA, a number of groups have explored the possibilities afforded by AR and VR technology, among which is the IT Advanced Concepts Lab (ITACL). Within ITACL, the AVR (Augmented/Virtual Reality) Lab focuses on VR technology specifically for its use in command and control. Previous work in the AVR lab includes the Natural User Interface (NUI) project and the Virtual Control Panel (VCP) project, which created virtual three-dimensional interfaces that users could interact with while wearing a VR headset thanks to body- and hand-tracking technology. The Virtual Tablet (VT) project attempts to improve on these previous efforts by incorporating a physical surrogate which is mirrored in the virtual environment, mitigating issues with difficulty of visually determining the interface location and lack of tactile feedback discovered in the development of previous efforts. The physical surrogate takes the form of a handheld sheet of acrylic glass with several infrared-range reflective markers and a sensor package attached. Using the sensor package to track orientation and a motion-capture system to track the marker positions, a model of the surrogate is placed in the virtual environment at a position which corresponds with the real-world location relative to the user's VR Head Mounted Display (HMD). A set of control mechanisms is then projected onto the surface of the surrogate such that to the user, immersed in VR, the control interface appears to be attached to the object they are holding. The VT project was taken from an early stage where the sensor package, motion-capture system, and physical surrogate had been constructed or tested individually but not yet combined or incorporated into the virtual environment. My contribution was to combine the pieces of hardware, write software to incorporate each piece of position or orientation data into a coherent description of the object's location in space, place the virtual analogue accordingly, and project the control interface onto it, resulting in a functioning object which has both a physical and a virtual presence. Additionally, the virtual environment was enhanced with two live video feeds from cameras mounted on the robotic device being used as an example target of the virtual interface. The working VT allows users to naturally interact with a control interface with little to no training and without the issues found in previous efforts.

  2. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Taylor, William W. L.

    1994-01-01

    The scientific emphasis of this contract has been on the physics of beam ionosphere interactions, in particular, what are the plasma wave levels stimulated by the Space Experiments with Particle Accelerators (SEPAC) electron beam as it is ejected from the Electron Beam Accelerator (EBA) and passes into and through the ionosphere. There were two different phenomena expected. The first was generation of plasma waves by the interaction of the DC component of the beam with the plasma of the ionosphere, by wave particle interactions. The second was the generation of waves at the pulsing frequency of the beam (AC component). This is referred to as using the beam as a virtual antenna, because the beam of electrons is a coherent electrical current confined to move along the earth's magnetic field. As in a physical antenna, a conductor at a radio or TV station, the beam virtual antenna radiates electromagnetic waves at the frequency of the current variations. These two phenomena were investigated during the period of this contract.

  3. Harmonizing Physics & Cosmology With Everything Else in the Universe(s)

    NASA Astrophysics Data System (ADS)

    Asija, Pal

    2006-03-01

    This paper postulates a theory of everything including our known finite physical universe within and as sub-set of an infinite virtual invisible universe occupying some of the same space and time. It attempts to harmonize astrophysics with everything else including life. It compares and contrasts properties, similarities, differences and relationships between the two universe(s). A particular attention is paid to the interface between the two and the challenges of building and/or traversing bridges between them. A number of inflection points between the two are identified. The paper also delineates their relationship to big bang, theory of evolution, gravity, dark matter, black holes, time travel, speed of light, theory of relativity and string theory just to name a few. Several new terms are introduced and defined to discuss proper relationship, transition and interface between the body, soul and spirit as well as their relationship to brain and mind. Physical bodies & beings are compared with virtual, meta and ultra bodies and beings and how the ``Virtual Inside'' relates to people, pets, plants and particles and their micro constituents as well as macro sets. The past, present, and potential of the concurrent universe(s) is compared and contrasted along with many myths and misconceptions of the meta physics as well as modern physics.

  4. Urban Public Space Context and Cognitive Psychology Evolution in Information Environment

    NASA Astrophysics Data System (ADS)

    Feng, Chen; Xu, Hua-wei

    2017-11-01

    The rapid development of information technology has had a great impact on the understanding of urban environment, which brings different spatially psychological experience. Information and image transmission has been full with the streets, both the physical space and virtual space have been unprecedentedly blended together through pictures, images, electronic media and other tools, which also stimulates people’s vision and psychology and gives birth to a more complex form of urban space. Under the dual role of spatial mediumlization and media spatialization, the psychological cognitive pattern of urban public space context is changing.

  5. Virtual Environments: Issues and Opportunities for Researching Inclusive Educational Practices

    NASA Astrophysics Data System (ADS)

    Sheehy, Kieron

    This chapter argues that virtual environments offer new research areas for those concerned with inclusive education. Further, it proposes that they also present opportunities for developing increasingly inclusive research processes. This chapter considers how researchers might approach researching some of these affordances. It discusses the relationship between specific features of inclusive pedagogy, derived from an international systematic literature review, and the affordances of different forms of virtual characters and environments. Examples are drawn from research in Second LifeTM (SL), virtual tutors and augmented reality. In doing this, the chapter challenges a simplistic notion of isolated physical and virtual worlds and, in the context of inclusion, between the practice of research and the research topic itself. There are a growing number of virtual worlds in which identified educational activities are taking place, or whose activities are being noted for their educational merit. These encompasses non-themed worlds such as SL and Active Worlds, game based worlds such as World of Warcraft and Runescape, and even Club Penguin, a themed virtual where younger players interact through a variety of Penguin themed environments and activities. It has been argued that these spaces, outside traditional education, are able to offer pedagogical insights (Twining 2009) i.e. that these global virtual communities have been identified as being useful as creative educational environments (Delwiche 2006; Sheehy 2009). This chapter will explore how researchers might use these spaces to investigative and create inclusive educational experiences for learners. In order to do this the chapter considers three interrelated issues: What is inclusive education?; How might inclusive education influence virtual world research? And, what might inclusive education look like in virtual worlds?

  6. Rambrain - a library for virtually extending physical memory

    NASA Astrophysics Data System (ADS)

    Imgrund, Maximilian; Arth, Alexander

    2017-08-01

    We introduce Rambrain, a user space library that manages memory consumption of your code. Using Rambrain you can overcommit memory over the size of physical memory present in the system. Rambrain takes care of temporarily swapping out data to disk and can handle multiples of the physical memory size present. Rambrain is thread-safe, OpenMP and MPI compatible and supports Asynchronous IO. The library was designed to require minimal changes to existing programs and to be easy to use.

  7. Toward a Virtual Solar Observatory: Starting Before the Petabytes Fall

    NASA Technical Reports Server (NTRS)

    Gurman, J. B.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    NASA is currently engaged in the study phase of a modest effort to establish a Virtual Solar Observatory (VSO). The VSO would serve ground- and space-based solar physics data sets from a distributed network of archives through a small number of interfaces to the scientific community. The basis of this approach, as of all planned virtual observatories, is the translation of metadata from the various sources via source-specific dictionaries so the user will not have to distinguish among keyword usages. A single Web interface should give access to all the distributed data. We present the current status of the VSO, its initial scope, and its relation to the European EGSO effort.

  8. The Effect of Furnishing on Perceived Spatial Dimensions and Spaciousness of Interior Space

    PubMed Central

    von Castell, Christoph; Oberfeld, Daniel; Hecht, Heiko

    2014-01-01

    Despite the ubiquity of interior space design, there is virtually no scientific research on the influence of furnishing on the perception of interior space. We conducted two experiments in which observers were asked to estimate the spatial dimensions (size of the room dimensions in meters and centimeters) and to judge subjective spaciousness of various rooms. Experiment 1 used true-to-scale model rooms with a square surface area. Furnishing affected both the perceived height and the spaciousness judgments. The furnished room was perceived as higher but less spacious. In Experiment 2, rooms with different square surface areas and constant physical height were presented in virtual reality. Furnishing affected neither the perceived spatial dimensions nor the perceived spaciousness. Possible reasons for this discrepancy, such as the influence of the presentation medium, are discussed. Moreover, our results suggest a compression of perceived height and depth with decreasing surface area of the room. PMID:25409456

  9. The effect of furnishing on perceived spatial dimensions and spaciousness of interior space.

    PubMed

    von Castell, Christoph; Oberfeld, Daniel; Hecht, Heiko

    2014-01-01

    Despite the ubiquity of interior space design, there is virtually no scientific research on the influence of furnishing on the perception of interior space. We conducted two experiments in which observers were asked to estimate the spatial dimensions (size of the room dimensions in meters and centimeters) and to judge subjective spaciousness of various rooms. Experiment 1 used true-to-scale model rooms with a square surface area. Furnishing affected both the perceived height and the spaciousness judgments. The furnished room was perceived as higher but less spacious. In Experiment 2, rooms with different square surface areas and constant physical height were presented in virtual reality. Furnishing affected neither the perceived spatial dimensions nor the perceived spaciousness. Possible reasons for this discrepancy, such as the influence of the presentation medium, are discussed. Moreover, our results suggest a compression of perceived height and depth with decreasing surface area of the room.

  10. Virtual auditorium concepts for exhibition halls

    NASA Astrophysics Data System (ADS)

    Evans, Jack; Himmel, Chad; Knight, Sarah

    2002-11-01

    Many communities lack good performance facilities for symphonic music, opera, dramatic and musical arts, but have basic convention, exhibition or assembly spaces. It should be possible to develop performance space environments within large multipurpose facilities that will accommodate production and presentation of dramatic arts. Concepts for moderate-cost, temporary enhancements that transform boxy spaces into more intimate, acoustically articulated venues will be presented. Acoustical criteria and design parameters will be discussed in the context of creating a virtual auditorium within the building envelope. Physical, economic, and logistical limitations affect implementation. Sound reinforcement system augmentation can supplement the room conversion. Acceptable control of reflection patterns, reverberation, and to some extent, ambient noise, may be achieved with an array of nonpermanent reflector and absorber elements. These elements can sculpture an enclosure to approach the shape and acoustic characteristics of an auditorium. Plan and section illustrations will be included.

  11. Amplified Head Rotation in Virtual Reality and the Effects on 3D Search, Training Transfer, and Spatial Orientation.

    PubMed

    Ragan, Eric D; Scerbo, Siroberto; Bacim, Felipe; Bowman, Doug A

    2017-08-01

    Many types of virtual reality (VR) systems allow users to use natural, physical head movements to view a 3D environment. In some situations, such as when using systems that lack a fully surrounding display or when opting for convenient low-effort interaction, view control can be enabled through a combination of physical and virtual turns to view the environment, but the reduced realism could potentially interfere with the ability to maintain spatial orientation. One solution to this problem is to amplify head rotations such that smaller physical turns are mapped to larger virtual turns, allowing trainees to view the entire surrounding environment with small head movements. This solution is attractive because it allows semi-natural physical view control rather than requiring complete physical rotations or a fully-surrounding display. However, the effects of amplified head rotations on spatial orientation and many practical tasks are not well understood. In this paper, we present an experiment that evaluates the influence of amplified head rotation on 3D search, spatial orientation, and cybersickness. In the study, we varied the amount of amplification and also varied the type of display used (head-mounted display or surround-screen CAVE) for the VR search task. By evaluating participants first with amplification and then without, we were also able to study training transfer effects. The findings demonstrate the feasibility of using amplified head rotation to view 360 degrees of virtual space, but noticeable problems were identified when using high amplification with a head-mounted display. In addition, participants were able to more easily maintain a sense of spatial orientation when using the CAVE version of the application, which suggests that visibility of the user's body and awareness of the CAVE's physical environment may have contributed to the ability to use the amplification technique while keeping track of orientation.

  12. VBOT: Motivating computational and complex systems fluencies with constructionist virtual/physical robotics

    NASA Astrophysics Data System (ADS)

    Berland, Matthew W.

    As scientists use the tools of computational and complex systems theory to broaden science perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school students broaden their perspectives using appropriate tools. The goals of this dissertation project are to build, study, evaluate, and compare activities designed to foster both computational and complex systems fluencies through collaborative constructionist virtual and physical robotics. In these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory simulation environment (Wilensky & Stroup, 1999a). In a participatory simulation, students collaborate by acting in a common space, teaching each other, and discussing content with one another. As a result, the students improve both their computational fluency and their complex systems fluency, where fluency is defined as the ability to both consume and produce relevant content (DiSessa, 2000). To date, several systems have been designed to foster computational and complex systems fluencies through computer programming and collaborative play (e.g., Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant fluencies through collaborative play, they become mutually reinforcing. In this work, I will present both the design of the VBOT virtual/physical constructionist robotics learning environment and a comparative study of student interaction with the virtual and physical environments across four middle-school classrooms, focusing on the contrast in systems perspectives differently afforded by the two environments. In particular, I found that while performance gains were similar overall, the physical environment supported agent perspectives on aggregate behavior, and the virtual environment supported aggregate perspectives on agent behavior. The primary research questions are: (1) What are the relative affordances of virtual and physical constructionist robotics systems towards computational and complex systems fluencies? (2) What can middle school students learn using computational/complex systems learning environments in a collaborative setting? (3) In what ways are these environments and activities effective in teaching students computational and complex systems fluencies?

  13. Redefining the High-Technology Classroom.

    ERIC Educational Resources Information Center

    Dickson, Gary W.; Segars, Albert

    1999-01-01

    Defines the physical and virtual space of high-tech classrooms in terms of one-to-many, many-to-one, one-to-one, and many-to-many communications modes. Urges an active approach to using information technology that includes administrative and technical support, rewards for innovation, training, security, and good design. (SK)

  14. Space Strategies for the New Learning Landscape

    ERIC Educational Resources Information Center

    Dugdale, Shirley

    2009-01-01

    The Learning Landscape is the total context for students' learning experiences and the diverse landscape of learning settings available today--from specialized to multipurpose, from formal to informal, and from physical to virtual. The goal of the Learning Landscape approach is to acknowledge this richness and maximize encounters among people,…

  15. Multilingualism in Cyberspace: Conceptualising the Virtual Linguistic Landscape

    ERIC Educational Resources Information Center

    Ivkovic, Dejan; Lotherington, Heather

    2009-01-01

    The linguistic landscape (LL) is a sociolinguistic concept that captures power relations and identity marking in the linguistic rendering of urban space: the city read as text. As such, LL is embedded in the physical geography of the cityscape. However, with the increasing scope of multilingual capabilities in digital communications, multilingual…

  16. The SANE Research Project: Its Implications for Higher Education.

    ERIC Educational Resources Information Center

    Harrison, Andrew; Dugdale, Shirley

    2003-01-01

    Describes a 2-year research program called Sustainable Accommodation for the New Economy (SANE), which is exploring the implications of the distributed workplace. Its focus is on the creation of sustainable, collaborative workplaces for knowledge workers across Europe, encompassing both virtual and physical spaces. Discusses its implications for…

  17. A Copyright Primer for Small Undergraduate Libraries

    ERIC Educational Resources Information Center

    Cottrell, Terry

    2010-01-01

    Campus librarians play a central role in conversations revolving around copyright compliance. The sheer volume of information provided within library physical and virtual spaces affirms the role libraries play in current copyright debates. Regardless of the function of librarians on any particular campus, it is important to confront the myriad of…

  18. Middle school students' learning of mechanics concepts through engagement in different sequences of physical and virtual experiments

    NASA Astrophysics Data System (ADS)

    Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon

    2017-08-01

    Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may impact students' learning and for which contexts and content areas they may be most effective. Using a quasi-experimental design, we examined eighth grade students' (N = 100) learning of physics concepts related to pulleys depending on the sequence of physical and virtual labs they engaged in. Five classes of students were assigned to either the: physical first condition (PF) (n = 55), where students performed a physical pulley experiment and then performed the same experiment virtually, or virtual first condition (VF) (n = 45), with the opposite sequence. Repeated measures ANOVA's were conducted to examine how physical and virtual labs impacted students' learning of specific physics concepts. While we did not find clear-cut support that one sequence was better, we did find evidence that participating in virtual experiments may be more beneficial for learning certain physics concepts, such as work and mechanical advantage. Our findings support the idea that if time or physical materials are limited, using virtual experiments may help students understand work and mechanical advantage.

  19. Fast localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates.

    PubMed

    Subotnik, Joseph E; Dutoi, Anthony D; Head-Gordon, Martin

    2005-09-15

    We present here an algorithm for computing stable, well-defined localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates. The algorithm is very fast, limited only by diagonalization of two matrices with dimension the size of the number of virtual orbitals. Furthermore, we require no more than quadratic (in the number of electrons) storage. The basic premise behind our algorithm is that one can decompose any given atomic-orbital (AO) vector space as a minimal basis space (which includes the occupied and valence virtual spaces) and a hard-virtual (HV) space (which includes everything else). The valence virtual space localizes easily with standard methods, while the hard-virtual space is constructed to be atom centered and automatically local. The orbitals presented here may be computed almost as quickly as projecting the AO basis onto the virtual space and are almost as local (according to orbital variance), while our orbitals are orthonormal (rather than redundant and nonorthogonal). We expect this algorithm to find use in local-correlation methods.

  20. Intelligibility of speech in a virtual 3-D environment.

    PubMed

    MacDonald, Justin A; Balakrishnan, J D; Orosz, Michael D; Karplus, Walter J

    2002-01-01

    In a simulated air traffic control task, improvement in the detection of auditory warnings when using virtual 3-D audio depended on the spatial configuration of the sounds. Performance improved substantially when two of four sources were placed to the left and the remaining two were placed to the right of the participant. Surprisingly, little or no benefits were observed for configurations involving the elevation or transverse (front/back) dimensions of virtual space, suggesting that position on the interaural (left/right) axis is the crucial factor to consider in auditory display design. The relative importance of interaural spacing effects was corroborated in a second, free-field (real space) experiment. Two additional experiments showed that (a) positioning signals to the side of the listener is superior to placing them in front even when two sounds are presented in the same location, and (b) the optimal distance on the interaural axis varies with the amplitude of the sounds. These results are well predicted by the behavior of an ideal observer under the different display conditions. This suggests that guidelines for auditory display design that allow for effective perception of speech information can be developed from an analysis of the physical sound patterns.

  1. Demonstration of NICT Space Weather Cloud --Integration of Supercomputer into Analysis and Visualization Environment--

    NASA Astrophysics Data System (ADS)

    Watari, S.; Morikawa, Y.; Yamamoto, K.; Inoue, S.; Tsubouchi, K.; Fukazawa, K.; Kimura, E.; Tatebe, O.; Kato, H.; Shimojo, S.; Murata, K. T.

    2010-12-01

    In the Solar-Terrestrial Physics (STP) field, spatio-temporal resolution of computer simulations is getting higher and higher because of tremendous advancement of supercomputers. A more advanced technology is Grid Computing that integrates distributed computational resources to provide scalable computing resources. In the simulation research, it is effective that a researcher oneself designs his physical model, performs calculations with a supercomputer, and analyzes and visualizes for consideration by a familiar method. A supercomputer is far from an analysis and visualization environment. In general, a researcher analyzes and visualizes in the workstation (WS) managed at hand because the installation and the operation of software in the WS are easy. Therefore, it is necessary to copy the data from the supercomputer to WS manually. Time necessary for the data transfer through long delay network disturbs high-accuracy simulations actually. In terms of usefulness, integrating a supercomputer and an analysis and visualization environment seamlessly with a researcher's familiar method is important. NICT has been developing a cloud computing environment (NICT Space Weather Cloud). In the NICT Space Weather Cloud, disk servers are located near its supercomputer and WSs for data analysis and visualization. They are connected to JGN2plus that is high-speed network for research and development. Distributed virtual high-capacity storage is also constructed by Grid Datafarm (Gfarm v2). Huge-size data output from the supercomputer is transferred to the virtual storage through JGN2plus. A researcher can concentrate on the research by a familiar method without regard to distance between a supercomputer and an analysis and visualization environment. Now, total 16 disk servers are setup in NICT headquarters (at Koganei, Tokyo), JGN2plus NOC (at Otemachi, Tokyo), Okinawa Subtropical Environment Remote-Sensing Center, and Cybermedia Center, Osaka University. They are connected on JGN2plus, and they constitute 1PB (physical size) virtual storage by Gfarm v2. These disk servers are connected with supercomputers of NICT and Osaka University. A system that data output from the supercomputers are automatically transferred to the virtual storage had been built up. Transfer rate is about 50 GB/hrs by actual measurement. It is estimated that the performance is reasonable for a certain simulation and analysis for reconstruction of coronal magnetic field. This research is assumed an experiment of the system, and the verification of practicality is advanced at the same time. Herein we introduce an overview of the space weather cloud system so far we have developed. We also demonstrate several scientific results using the space weather cloud system. We also introduce several web applications of the cloud as a service of the space weather cloud, which is named as "e-SpaceWeather" (e-SW). The e-SW provides with a variety of space weather online services from many aspects.

  2. Augmented reality and photogrammetry: A synergy to visualize physical and virtual city environments

    NASA Astrophysics Data System (ADS)

    Portalés, Cristina; Lerma, José Luis; Navarro, Santiago

    2010-01-01

    Close-range photogrammetry is based on the acquisition of imagery to make accurate measurements and, eventually, three-dimensional (3D) photo-realistic models. These models are a photogrammetric product per se. They are usually integrated into virtual reality scenarios where additional data such as sound, text or video can be introduced, leading to multimedia virtual environments. These environments allow users both to navigate and interact on different platforms such as desktop PCs, laptops and small hand-held devices (mobile phones or PDAs). In very recent years, a new technology derived from virtual reality has emerged: Augmented Reality (AR), which is based on mixing real and virtual environments to boost human interactions and real-life navigations. The synergy of AR and photogrammetry opens up new possibilities in the field of 3D data visualization, navigation and interaction far beyond the traditional static navigation and interaction in front of a computer screen. In this paper we introduce a low-cost outdoor mobile AR application to integrate buildings of different urban spaces. High-accuracy 3D photo-models derived from close-range photogrammetry are integrated in real (physical) urban worlds. The augmented environment that is presented herein requires for visualization a see-through video head mounted display (HMD), whereas user's movement navigation is achieved in the real world with the help of an inertial navigation sensor. After introducing the basics of AR technology, the paper will deal with real-time orientation and tracking in combined physical and virtual city environments, merging close-range photogrammetry and AR. There are, however, some software and complex issues, which are discussed in the paper.

  3. A Virtual Laboratory for the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, James; O'Connor, Brian

    2016-01-01

    Ongoing work to improve water and carbon dioxide separation systems to be used on crewed space vehicles combines sub-scale systems testing and multi-physics simulations. Thus, as part of NASA's Advanced Exploration Systems (AES) program and the Life Support Systems Project (LSSP), fully predictive COMSOL Multiphysics models of the Four Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) on the International Space Station (ISS) have been developed. This Virtual Laboratory is being used to help reduce mass, power, and volume requirements for exploration missions. In this paper we describe current and planned modeling developments in the area of carbon dioxide removal to support future missions as well as the resolution of anomalies observed in the ISS CDRA.

  4. Development of an audio-based virtual gaming environment to assist with navigation skills in the blind.

    PubMed

    Connors, Erin C; Yazzolino, Lindsay A; Sánchez, Jaime; Merabet, Lotfi B

    2013-03-27

    Audio-based Environment Simulator (AbES) is virtual environment software designed to improve real world navigation skills in the blind. Using only audio based cues and set within the context of a video game metaphor, users gather relevant spatial information regarding a building's layout. This allows the user to develop an accurate spatial cognitive map of a large-scale three-dimensional space that can be manipulated for the purposes of a real indoor navigation task. After game play, participants are then assessed on their ability to navigate within the target physical building represented in the game. Preliminary results suggest that early blind users were able to acquire relevant information regarding the spatial layout of a previously unfamiliar building as indexed by their performance on a series of navigation tasks. These tasks included path finding through the virtual and physical building, as well as a series of drop off tasks. We find that the immersive and highly interactive nature of the AbES software appears to greatly engage the blind user to actively explore the virtual environment. Applications of this approach may extend to larger populations of visually impaired individuals.

  5. Perceptual effects in auralization of virtual rooms

    NASA Astrophysics Data System (ADS)

    Kleiner, Mendel; Larsson, Pontus; Vastfjall, Daniel; Torres, Rendell R.

    2002-05-01

    By using various types of binaural simulation (or ``auralization'') of physical environments, it is now possible to study basic perceptual issues relevant to room acoustics, as well to simulate the acoustic conditions found in concert halls and other auditoria. Binaural simulation of physical spaces in general is also important to virtual reality systems. This presentation will begin with an overview of the issues encountered in the auralization of room and other environments. We will then discuss the influence of various approximations in room modeling, in particular, edge- and surface scattering, on the perceived room response. Finally, we will discuss cross-modal effects, such as the influence of visual cues on the perception of auditory cues, and the influence of cross-modal effects on the judgement of ``perceived presence'' and the rating of room acoustic quality.

  6. Natural world physical, brain operational, and mind phenomenal space-time

    NASA Astrophysics Data System (ADS)

    Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Neves, Carlos F. H.

    2010-06-01

    Concepts of space and time are widely developed in physics. However, there is a considerable lack of biologically plausible theoretical frameworks that can demonstrate how space and time dimensions are implemented in the activity of the most complex life-system - the brain with a mind. Brain activity is organized both temporally and spatially, thus representing space-time in the brain. Critical analysis of recent research on the space-time organization of the brain's activity pointed to the existence of so-called operational space-time in the brain. This space-time is limited to the execution of brain operations of differing complexity. During each such brain operation a particular short-term spatio-temporal pattern of integrated activity of different brain areas emerges within related operational space-time. At the same time, to have a fully functional human brain one needs to have a subjective mental experience. Current research on the subjective mental experience offers detailed analysis of space-time organization of the mind. According to this research, subjective mental experience (subjective virtual world) has definitive spatial and temporal properties similar to many physical phenomena. Based on systematic review of the propositions and tenets of brain and mind space-time descriptions, our aim in this review essay is to explore the relations between the two. To be precise, we would like to discuss the hypothesis that via the brain operational space-time the mind subjective space-time is connected to otherwise distant physical space-time reality.

  7. Creating virtual electrodes with 2D current steering

    NASA Astrophysics Data System (ADS)

    Spencer, Thomas C.; Fallon, James B.; Shivdasani, Mohit N.

    2018-06-01

    Objective. Current steering techniques have shown promise in retinal prostheses as a way to increase the number of distinct percepts elicitable without increasing the number of implanted electrodes. Previously, it has been shown that ‘virtual’ electrodes can be created between simultaneously stimulated electrode pairs, producing unique cortical response patterns. This study investigated whether virtual electrodes could be created using 2D current steering, and whether these virtual electrodes can produce cortical responses with predictable spatial characteristics. Approach. Normally-sighted eyes of seven adult anaesthetised cats were implanted with a 42-channel electrode array in the suprachoroidal space and multi-unit neural activity was recorded from the visual cortex. Stimuli were delivered to individual physical electrodes, or electrodes grouped into triangular, rectangular, and hexagonal arrangements. Varying proportions of charge were applied to each electrode in a group to ‘steer’ current and create virtual electrodes. The centroids of cortical responses to stimulation of virtual electrodes were compared to those evoked by stimulation of single physical electrodes. Main results. Responses to stimulation of groups of up to six electrodes with equal ratios of charge on each electrode resulted in cortical activation patterns that were similar to those elicited by the central physical electrode (centroids: RM ANOVA on ranks, p  >  0.05 neural spread: one-way ANOVA on Ranks, p  >  0.05). We were also able to steer the centroid of activation towards the direction of any of the electrodes of the group by applying a greater charge to that electrode, but the movement in the centroid was not found to be significant. Significance. The results suggest that current steering is possible in two dimensions between up to at least six electrodes, indicating it may be possible to increase the number of percepts in patients without increasing the number of physical electrodes. Being able to reproduce spatial characteristics of responses to individual physical electrodes suggests that this technique could also be used to compensate for faulty electrodes.

  8. Advanced Visual and Instruction Systems for Maintenance Support (AVIS-MS)

    DTIC Science & Technology

    2006-12-01

    Hayashi , "Augmentable Reality: Situated Communication through Physical and Digital Spaces," Proc. 2nd Int’l Symp. Wearable Computers, IEEE CS Press...H. Ohno , "An Optical See-through Display for Mutual Occlusion of Real and Virtual Environments," Proc. Int’l Symp. Augmented Reality 2000 (ISARO0

  9. Reforming the Environment: The Influence of the Roundtable Classroom Design on Interactive Learning

    ERIC Educational Resources Information Center

    Parsons, Caroline S.

    2017-01-01

    This study investigated the influence of physical and virtual learning spaces on interactive learning in a college and university setting. Qualitative analysis of an undergraduate liberal arts program that employs the use of roundtable classrooms was conducted. Interview and focus group data from students and faculty, along with classroom…

  10. Creating a Collaborative Learning Community in the CIS Sandbox

    ERIC Educational Resources Information Center

    Frydenberg, Mark

    2013-01-01

    Purpose: The purpose of this paper is to investigate the impact of transforming a traditional university computer lab to create a collaborative learning community known as the CIS Sandbox, by remodeling a physical space and supporting it with a virtual presence through the use of social media tools. The discussion applies Selander's "designs for…

  11. Transitioning Design and Technology Education from Physical Classrooms to Virtual Spaces: Implications for Pre-Service Teacher Education

    ERIC Educational Resources Information Center

    Best, Marnie; MacGregor, Denise

    2017-01-01

    Technology-mediated teaching and learning enables access to educational opportunities, irrespective of locality, ruruality or remoteness. The design, development and delivery of technology enhanced learning in pre-service teacher education programs is therefore gaining momentum, both in Australia and internationally. Much research regarding…

  12. Recombinant Enaction: Manipulatives Generate New Procedures in the Imagination, by Extending and Recombining Action Spaces

    ERIC Educational Resources Information Center

    Rahaman, Jeenath; Agrawal, Harshit; Srivastava, Nisheeth; Chandrasekharan, Sanjay

    2018-01-01

    Manipulation of physical models such as tangrams and tiles is a popular approach to teaching early mathematics concepts. This pedagogical approach is extended by new computational media, where mathematical entities such as equations and vectors can be virtually manipulated. The cognitive and neural mechanisms supporting such manipulation-based…

  13. The experiment editor: supporting inquiry-based learning with virtual labs

    NASA Astrophysics Data System (ADS)

    Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.

    2017-05-01

    Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.

  14. Use of the Remote Access Virtual Environment Network (RAVEN) for coordinated IVA-EVA astronaut training and evaluation.

    PubMed

    Cater, J P; Huffman, S D

    1995-01-01

    This paper presents a unique virtual reality training and assessment tool developed under a NASA grant, "Research in Human Factors Aspects of Enhanced Virtual Environments for Extravehicular Activity (EVA) Training and Simulation." The Remote Access Virtual Environment Network (RAVEN) was created to train and evaluate the verbal, mental and physical coordination required between the intravehicular (IVA) astronaut operating the Remote Manipulator System (RMS) arm and the EVA astronaut standing in foot restraints on the end of the RMS. The RAVEN system currently allows the EVA astronaut to approach the Hubble Space Telescope (HST) under control of the IVA astronaut and grasp, remove, and replace the Wide Field Planetary Camera drawer from its location in the HST. Two viewpoints, one stereoscopic and one monoscopic, were created all linked by Ethernet, that provided the two trainees with the appropriate training environments.

  15. A study of navigation in virtual space

    NASA Technical Reports Server (NTRS)

    Darken, Rudy; Sibert, John L.; Shumaker, Randy

    1994-01-01

    In the physical world, man has developed efficient methods for navigation and orientation. These methods are dependent on the high-fidelity stimuli presented by the environment. When placed in a virtual world which cannot offer stimuli of the same quality due to computing constraints and immature technology, tasks requiring the maintenance of position and orientation knowledge become laborious. In this paper, we present a representative set of techniques based on principles of navigation derived from real world analogs including human and avian navigation behavior and cartography. A preliminary classification of virtual worlds is presented based on the size of the world, the density of objects in the world, and the level of activity taking place in the world. We also summarize an informal study we performed to determine how the tools influenced the subjects' navigation strategies and behavior. We conclude that principles extracted from real world navigation aids such as maps can be seen to apply in virtual environments.

  16. Virtual Distances Methodology as Verification Technique for AACMMs with a Capacitive Sensor Based Indexed Metrology Platform

    PubMed Central

    Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos

    2016-01-01

    This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform’s mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument’s working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform. PMID:27869722

  17. Virtual Distances Methodology as Verification Technique for AACMMs with a Capacitive Sensor Based Indexed Metrology Platform.

    PubMed

    Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos

    2016-11-18

    This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform's mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument's working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform.

  18. Using Virtual Pets to Promote Physical Activity in Children: An Application of the Youth Physical Activity Promotion Model.

    PubMed

    Ahn, Sun Joo Grace; Johnsen, Kyle; Robertson, Tom; Moore, James; Brown, Scott; Marable, Amanda; Basu, Aryabrata

    2015-01-01

    A virtual pet was developed based on the framework of the youth physical activity promotion model and tested as a vehicle for promoting physical activity in children. Children in the treatment group interacted with the virtual pet for three days, setting physical activity goals and teaching tricks to the virtual pet when their goals were met. The virtual pet became more fit and learned more sophisticated tricks as the children achieved activity goals. Children in the control group interacted with a computer system presenting equivalent features but without the virtual pet. Physical activity and goal attainment were evaluated using activity monitors. Results indicated that children in the treatment group engaged in 1.09 more hours of daily physical activity (156% more) than did those in the control group. Physical activity self-efficacy and beliefs served as mediators driving this increase in activity. Children that interacted with the virtual pet also expressed higher intentions than children in the control group to continue physical activity in the future. Theoretical and practical potentials of using a virtual pet to systematically promote physical activity in children are discussed.

  19. Topology Change and the Unity of Space

    NASA Astrophysics Data System (ADS)

    Callender, Craig; Weingard, Robert

    Must space be a unity? This question, which exercised Aristotle, Descartes and Kant, is a specific instance of a more general one; namely, can the topology of physical space change with time? In this paper we show how the discussion of the unity of space has been altered but survives in contemporary research in theoretical physics. With a pedagogical review of the role played by the Euler characteristic in the mathematics of relativistic spacetimes, we explain how classical general relativity (modulo considerations about energy conditions) allows virtually unrestrained spatial topology change in four dimensions. We also survey the situation in many other dimensions of interest. However, topology change comes with a cost: a famous theorem by Robert Geroch shows that, for many interesting types of such change, transitions of spatial topology imply the existence of closed timelike curves or temporal non-orientability. Ways of living with this theorem and of evading it are discussed.

  20. Middle School Students' Learning of Mechanics Concepts through Engagement in Different Sequences of Physical and Virtual Experiments

    ERIC Educational Resources Information Center

    Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon

    2017-01-01

    Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may…

  1. Personalised Learning in the Open Classroom: The Mutuality of Teacher and Student Agency

    ERIC Educational Resources Information Center

    Deed, Craig; Cox, Peter; Dorman, Jeffrey; Edwards, Debra; Farrelly, Cathleen; Keeffe, Mary; Lovejoy, Valerie; Mow, Lucy; Sellings, Peter; Prain, Vaughan; Waldrip, Bruce; Yager, Zali

    2014-01-01

    In this paper we examine how agency is characterised by teachers and students when personalised learning is enacted in the contemporary open classroom. A case study is outlined that identifies teacher reasoning for practice, the use of physical and virtual learning spaces, and student reaction to teacher facilitation of personalised learning.…

  2. Life Inside the Hive: Creating a Space for Literacy to Grow

    ERIC Educational Resources Information Center

    Saunders, Jane M.

    2013-01-01

    This piece describes how a 5th grade language arts teacher employed technology to create and sustain a metaphorical, virtual, and physical figured world in her class by means of a web site called "The Hive Society." This world positioned students as intellectuals and scholars, and explored how Ms. Smith integrated 21st Century…

  3. Aerospace applications of virtual environment technology.

    PubMed

    Loftin, R B

    1996-11-01

    The uses of virtual environment technology in the space program are examined with emphasis on training for the Hubble Space Telescope Repair and Maintenance Mission in 1993. Project ScienceSpace at the Virtual Environment Technology Lab is discussed.

  4. Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery.

    PubMed

    Robison, R Aaron; Liu, Charles Y; Apuzzo, Michael L J

    2011-11-01

    To review virtual reality in neurosurgery, including the history of simulation and virtual reality and some of the current implementations; to examine some of the technical challenges involved; and to propose a potential paradigm for the development of virtual reality in neurosurgery going forward. A search was made on PubMed using key words surgical simulation, virtual reality, haptics, collision detection, and volumetric modeling to assess the current status of virtual reality in neurosurgery. Based on previous results, investigators extrapolated the possible integration of existing efforts and potential future directions. Simulation has a rich history in surgical training, and there are numerous currently existing applications and systems that involve virtual reality. All existing applications are limited to specific task-oriented functions and typically sacrifice visual realism for real-time interactivity or vice versa, owing to numerous technical challenges in rendering a virtual space in real time, including graphic and tissue modeling, collision detection, and direction of the haptic interface. With ongoing technical advancements in computer hardware and graphic and physical rendering, incremental or modular development of a fully immersive, multipurpose virtual reality neurosurgical simulator is feasible. The use of virtual reality in neurosurgery is predicted to change the nature of neurosurgical education, and to play an increased role in surgical rehearsal and the continuing education and credentialing of surgical practitioners. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Virtual manufacturing work cell for engineering

    NASA Astrophysics Data System (ADS)

    Watanabe, Hideo; Ohashi, Kazushi; Takahashi, Nobuyuki; Kato, Kiyotaka; Fujita, Satoru

    1997-12-01

    The life cycles of products have been getting shorter. To meet this rapid turnover, manufacturing systems must be frequently changed as well. In engineering to develop manufacturing systems, there are several tasks such as process planning, layout design, programming, and final testing using actual machines. This development of manufacturing systems takes a long time and is expensive. To aid the above engineering process, we have developed the virtual manufacturing workcell (VMW). This paper describes a concept of VMW and design method through computer aided manufacturing engineering using VMW (CAME-VMW) related to the above engineering tasks. The VMW has all design data, and realizes a behavior of equipment and devices using a simulator. The simulator has logical and physical functionality. The one simulates a sequence control and the other simulates motion control, shape movement in 3D space. The simulator can execute the same control software made for actual machines. Therefore we can verify the behavior precisely before the manufacturing workcell will be constructed. The VMW creates engineering work space for several engineers and offers debugging tools such as virtual equipment and virtual controllers. We applied this VMW to development of a transfer workcell for vaporization machine in actual manufacturing system to produce plasma display panel (PDP) workcell and confirmed its effectiveness.

  6. Perceptual geometry of space and form: visual perception of natural scenes and their virtual representation

    NASA Astrophysics Data System (ADS)

    Assadi, Amir H.

    2001-11-01

    Perceptual geometry is an emerging field of interdisciplinary research whose objectives focus on study of geometry from the perspective of visual perception, and in turn, apply such geometric findings to the ecological study of vision. Perceptual geometry attempts to answer fundamental questions in perception of form and representation of space through synthesis of cognitive and biological theories of visual perception with geometric theories of the physical world. Perception of form and space are among fundamental problems in vision science. In recent cognitive and computational models of human perception, natural scenes are used systematically as preferred visual stimuli. Among key problems in perception of form and space, we have examined perception of geometry of natural surfaces and curves, e.g. as in the observer's environment. Besides a systematic mathematical foundation for a remarkably general framework, the advantages of the Gestalt theory of natural surfaces include a concrete computational approach to simulate or recreate images whose geometric invariants and quantities might be perceived and estimated by an observer. The latter is at the very foundation of understanding the nature of perception of space and form, and the (computer graphics) problem of rendering scenes to visually invoke virtual presence.

  7. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping

    PubMed Central

    Pu, Mingbo; Zhao, Zeyu; Wang, Yanqin; Li, Xiong; Ma, Xiaoliang; Hu, Chenggang; Wang, Changtao; Huang, Cheng; Luo, Xiangang

    2015-01-01

    The geometries of objects are deterministic in electromagnetic phenomena in all aspects of our world, ranging from imaging with spherical eyes to stealth aircraft with bizarre shapes. Nevertheless, shaping the physical geometry is often undesired owing to other physical constraints such as aero- and hydro-dynamics in the stealth technology. Here we demonstrate that it is possible to change the traditional law of reflection as well as the electromagnetic characters without altering the physical shape, by utilizing the achromatic phase shift stemming from spin-orbit interaction in ultrathin space-variant and spectrally engineered metasurfaces. The proposal is validated by full-wave simulations and experimental characterization in optical wavelengths ranging from 600 nm to 2800 nm and microwave frequencies in 8-16 GHz, with echo reflectance less than 10% in the whole range. The virtual shaping as well as the revised law of reflection may serve as a versatile tool in many realms, including broadband and conformal camouflage and Kinoform holography, to name just a few. PMID:25959663

  8. The perception of spatial layout in real and virtual worlds.

    PubMed

    Arthur, E J; Hancock, P A; Chrysler, S T

    1997-01-01

    As human-machine interfaces grow more immersive and graphically-oriented, virtual environment systems become more prominent as the medium for human-machine communication. Often, virtual environments (VE) are built to provide exact metrical representations of existing or proposed physical spaces. However, it is not known how individuals develop representational models of these spaces in which they are immersed and how those models may be distorted with respect to both the virtual and real-world equivalents. To evaluate the process of model development, the present experiment examined participant's ability to reproduce a complex spatial layout of objects having experienced them previously under different viewing conditions. The layout consisted of nine common objects arranged on a flat plane. These objects could be viewed in a free binocular virtual condition, a free binocular real-world condition, and in a static monocular view of the real world. The first two allowed active exploration of the environment while the latter condition allowed the participant only a passive opportunity to observe from a single viewpoint. Viewing conditions were a between-subject variable with 10 participants randomly assigned to each condition. Performance was assessed using mapping accuracy and triadic comparisons of relative inter-object distances. Mapping results showed a significant effect of viewing condition where, interestingly, the static monocular condition was superior to both the active virtual and real binocular conditions. Results for the triadic comparisons showed a significant interaction for gender by viewing condition in which males were more accurate than females. These results suggest that the situation model resulting from interaction with a virtual environment was indistinguishable from interaction with real objects at least within the constraints of the present procedure.

  9. Virtual performer: single camera 3D measuring system for interaction in virtual space

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Taneji, Shoto

    2006-10-01

    The authors developed interaction media systems in the 3D virtual space. In these systems, the musician virtually plays an instrument like the theremin in the virtual space or the performer plays a show using the virtual character such as a puppet. This interactive virtual media system consists of the image capture, measuring performer's position, detecting and recognizing motions and synthesizing video image using the personal computer. In this paper, we propose some applications of interaction media systems; a virtual musical instrument and superimposing CG character. Moreover, this paper describes the measuring method of the positions of the performer, his/her head and both eyes using a single camera.

  10. Vroom: designing an augmented environment for remote collaboration in digital cinema production

    NASA Astrophysics Data System (ADS)

    Margolis, Todd; Cornish, Tracy

    2013-03-01

    As media technologies become increasingly affordable, compact and inherently networked, new generations of telecollaborative platforms continue to arise which integrate these new affordances. Virtual reality has been primarily concerned with creating simulations of environments that can transport participants to real or imagined spaces that replace the "real world". Meanwhile Augmented Reality systems have evolved to interleave objects from Virtual Reality environments into the physical landscape. Perhaps now there is a new class of systems that reverse this precept to enhance dynamic media landscapes and immersive physical display environments to enable intuitive data exploration through collaboration. Vroom (Virtual Room) is a next-generation reconfigurable tiled display environment in development at the California Institute for Telecommunications and Information Technology (Calit2) at the University of California, San Diego. Vroom enables freely scalable digital collaboratories, connecting distributed, high-resolution visualization resources for collaborative work in the sciences, engineering and the arts. Vroom transforms a physical space into an immersive media environment with large format interactive display surfaces, video teleconferencing and spatialized audio built on a highspeed optical network backbone. Vroom enables group collaboration for local and remote participants to share knowledge and experiences. Possible applications include: remote learning, command and control, storyboarding, post-production editorial review, high resolution video playback, 3D visualization, screencasting and image, video and multimedia file sharing. To support these various scenarios, Vroom features support for multiple user interfaces (optical tracking, touch UI, gesture interface, etc.), support for directional and spatialized audio, giga-pixel image interactivity, 4K video streaming, 3D visualization and telematic production. This paper explains the design process that has been utilized to make Vroom an accessible and intuitive immersive environment for remote collaboration specifically for digital cinema production.

  11. The Comparative Effectiveness of Physical, Virtual, and Virtual-Physical Manipulatives on Third-Grade Students' Science Achievement and Conceptual Understanding of Evaporation and Condensation

    ERIC Educational Resources Information Center

    Wang, Tzu-Ling; Tseng, Yi-Kuan

    2018-01-01

    The purpose of this study was to investigate the relative effectiveness of experimenting with physical manipulatives alone, virtual manipulatives alone, and virtual preceding physical manipulatives (combination environment) on third-grade students' science achievement and conceptual understanding in the domain of state changes of water, focusing…

  12. Physical versus Virtual Manipulative Experimentation in Physics Learning

    ERIC Educational Resources Information Center

    Zacharia, Zacharias C.; Olympiou, Georgios

    2011-01-01

    The aim of this study was to investigate whether physical or virtual manipulative experimentation can differentiate physics learning. There were four experimental conditions, namely Physical Manipulative Experimentation (PME), Virtual Manipulative Experimentation (VME), and two sequential combinations of PME and VME, as well as a control condition…

  13. jsc2017e011279

    NASA Image and Video Library

    2017-01-27

    jsc2017e011279 (01/27/2017) --- Crowds of visitors line up for the NASA Orion Journey to Mars ride at the Houston Texas NFL Live Super Bowl LI event on Discovery Green Jan. 27, 2017. With people safely seated and virtual googles in place the ride pulls the Orion capsule up 90 feet then drops them suddenly to the bottom providing a physical experience as well as a visual one while experiencing the trip to Mars and back. The virtual reality trip is a popular no cost feature as part of NASA’s Future Flight area which also houses many other NASA space exploration and science exhibits. NASA PHOTOGRAPHER: Robert Markowitz

  14. Manually locating physical and virtual reality objects.

    PubMed

    Chen, Karen B; Kimmel, Ryan A; Bartholomew, Aaron; Ponto, Kevin; Gleicher, Michael L; Radwin, Robert G

    2014-09-01

    In this study, we compared how users locate physical and equivalent three-dimensional images of virtual objects in a cave automatic virtual environment (CAVE) using the hand to examine how human performance (accuracy, time, and approach) is affected by object size, location, and distance. Virtual reality (VR) offers the promise to flexibly simulate arbitrary environments for studying human performance. Previously, VR researchers primarily considered differences between virtual and physical distance estimation rather than reaching for close-up objects. Fourteen participants completed manual targeting tasks that involved reaching for corners on equivalent physical and virtual boxes of three different sizes. Predicted errors were calculated from a geometric model based on user interpupillary distance, eye location, distance from the eyes to the projector screen, and object. Users were 1.64 times less accurate (p < .001) and spent 1.49 times more time (p = .01) targeting virtual versus physical box corners using the hands. Predicted virtual targeting errors were on average 1.53 times (p < .05) greater than the observed errors for farther virtual targets but not significantly different for close-up virtual targets. Target size, location, and distance, in addition to binocular disparity, affected virtual object targeting inaccuracy. Observed virtual box inaccuracy was less than predicted for farther locations, suggesting possible influence of cues other than binocular vision. Human physical interaction with objects in VR for simulation, training, and prototyping involving reaching and manually handling virtual objects in a CAVE are more accurate than predicted when locating farther objects.

  15. An imperialist competitive algorithm for virtual machine placement in cloud computing

    NASA Astrophysics Data System (ADS)

    Jamali, Shahram; Malektaji, Sepideh; Analoui, Morteza

    2017-05-01

    Cloud computing, the recently emerged revolution in IT industry, is empowered by virtualisation technology. In this paradigm, the user's applications run over some virtual machines (VMs). The process of selecting proper physical machines to host these virtual machines is called virtual machine placement. It plays an important role on resource utilisation and power efficiency of cloud computing environment. In this paper, we propose an imperialist competitive-based algorithm for the virtual machine placement problem called ICA-VMPLC. The base optimisation algorithm is chosen to be ICA because of its ease in neighbourhood movement, good convergence rate and suitable terminology. The proposed algorithm investigates search space in a unique manner to efficiently obtain optimal placement solution that simultaneously minimises power consumption and total resource wastage. Its final solution performance is compared with several existing methods such as grouping genetic and ant colony-based algorithms as well as bin packing heuristic. The simulation results show that the proposed method is superior to other tested algorithms in terms of power consumption, resource wastage, CPU usage efficiency and memory usage efficiency.

  16. Services, Perspective and Directions of the Space Physics Data Facility

    NASA Technical Reports Server (NTRS)

    McGuire, Robert E.; Bilitza, Dieter; Candey, Reine A.; Chimiak, Reine A.; Cooper, John F.; Fung, Shing F.; Harris, Bernard T.; Johnson, Rita C.; King, Joseph H.; Kovalick, Tamara; hide

    2008-01-01

    The multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer unique capabilities supporting science of the Heliophysics Great Observatory and that are highly complementary to other services now evolving in the international heliophysics data environment. The VSPO (Virtual Space Physics Observatory) service is an active portal to a wide rage of distributed data sources. CDAWeb (Coordinated Data Analysis Web) offers plots, listings and file downloads for current data from many missions across the boundaries of missions and instrument types. CDAWeb now includes extensive new data from STEREO and THEMIS, plus new ROCSAT IPEI data, the latest data from all four TIMED instruments and high-resolution data from all DE-2 experiments. SSCWeb, Helioweb and out 3D Animated Orbit Viewer (TIPSOD) provide position data and identification of spacecraft and ground conjunctions. OMNI Web, with its new extension to 1- and 5-minute resolution, provides interplanetary parameters at the Earth's bow shock. SPDF maintains NASA's CDF (Common Data Format) standard and a range of associated tools including format translation services. These capabilities are all now available through web services based APIs, one element in SPDF's ongoing work to enable heliophysics community development of Virtual discipline Observatories (e.g. VITMO). We will demonstrate out latest data and capabilities, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.

  17. Navigation system for robot-assisted intra-articular lower-limb fracture surgery.

    PubMed

    Dagnino, Giulio; Georgilas, Ioannis; Köhler, Paul; Morad, Samir; Atkins, Roger; Dogramadzi, Sanja

    2016-10-01

    In the surgical treatment for lower-leg intra-articular fractures, the fragments have to be positioned and aligned to reconstruct the fractured bone as precisely as possible, to allow the joint to function correctly again. Standard procedures use 2D radiographs to estimate the desired reduction position of bone fragments. However, optimal correction in a 3D space requires 3D imaging. This paper introduces a new navigation system that uses pre-operative planning based on 3D CT data and intra-operative 3D guidance to virtually reduce lower-limb intra-articular fractures. Physical reduction in the fractures is then performed by our robotic system based on the virtual reduction. 3D models of bone fragments are segmented from CT scan. Fragments are pre-operatively visualized on the screen and virtually manipulated by the surgeon through a dedicated GUI to achieve the virtual reduction in the fracture. Intra-operatively, the actual position of the bone fragments is provided by an optical tracker enabling real-time 3D guidance. The motion commands for the robot connected to the bone fragment are generated, and the fracture physically reduced based on the surgeon's virtual reduction. To test the system, four femur models were fractured to obtain four different distal femur fracture types. Each one of them was subsequently reduced 20 times by a surgeon using our system. The navigation system allowed an orthopaedic surgeon to virtually reduce the fracture with a maximum residual positioning error of [Formula: see text] (translational) and [Formula: see text] (rotational). Correspondent physical reductions resulted in an accuracy of 1.03 ± 0.2 mm and [Formula: see text], when the robot reduced the fracture. Experimental outcome demonstrates the accuracy and effectiveness of the proposed navigation system, presenting a fracture reduction accuracy of about 1 mm and [Formula: see text], and meeting the clinical requirements for distal femur fracture reduction procedures.

  18. Ethnographies across Virtual and Physical Spaces: A Reflexive Commentary on a Live Canadian/UK Ethnography of Distributed Medical Education

    ERIC Educational Resources Information Center

    Tummons, Jonathan; Macleod, Anna; Kits, Olga

    2015-01-01

    This article draws on an ongoing ethnography of distributed medical education (DME) provision in Canada in order to explore the methodological choices of the researchers as well as the wider pluralisation of ethnographic frameworks that is reflected within current research literature. The article begins with a consideration of the technologically…

  19. Using Internet Primary Sources to Teach Critical Thinking Skills in the Sciences. Libraries Unlimited Professional Guides in School Librarianship

    ERIC Educational Resources Information Center

    Johnson, Carolyn

    2003-01-01

    Take a cyber journey through the world of science! Presenting more than 150 websites with primary source documents and authoritative data, this versatile book helps educators guide students on virtual scientific fieldtrips in all areas of science, from astronomy, biology, and chemistry to genetics, physics, and space science. Students can meet…

  20. Designing Digital Game-Based Learning Environments

    ERIC Educational Resources Information Center

    An, Yun-Jo; Bonk, Curtis J.

    2009-01-01

    With the emergence of the Web 2.0 and other technologies for learning, there are a variety of special places that did not exist previously in which to pursue learning. Not just a few dozen more but millions more. Many of these are not the physical learning spaces one might envision but entirely virtual or digital ones. As an example, the area of…

  1. The Library of Birmingham Project: Lifelong Learning for the Digital Age

    ERIC Educational Resources Information Center

    Blewitt, John; Gambles, Brian

    2010-01-01

    The Library of Birmingham (LoB) is a 193 million British pounds project designed to provide a new space for lifelong learning and knowledge growth, a physical and virtual portal for Birmingham's citizens to the wider world. In cooperation with a range of private, public, and third-sector bodies, as well as individual citizens, the library, due to…

  2. Education, Social Interaction, and Material Co-Presence: Against Virtual Pedagogical Reality

    ERIC Educational Resources Information Center

    Noonan, Jeff; Coral, Mireille

    2013-01-01

    A crucial role of the educator, we contend, is to motivate students to want to feel the pain that all cognitive growth requires. This challenge, we will suggest, makes a certain form of conflict essential to the pedagogical relationship, a conflict which requires copresence in shared physical space. If we are correct, then on-line contexts are not…

  3. Virtual Classroom versus Physical Classroom: An Exploratory Study of Class Discussion Patterns and Student Learning in an Asynchronous Internet-Based MBA Course.

    ERIC Educational Resources Information Center

    Arbaugh, J. B.

    2000-01-01

    Class discussions and student interaction were compared in a conventional class (n=33) and an Internet-based class using LearningSpace(R) software (n=29). No significant differences in learning or interaction quality were found. There was significantly more participation in the Internet course, particularly by women. (SK)

  4. NeuroPhysics: Studying how neurons create the perception of space-time using Physics' tools and techniques

    NASA Astrophysics Data System (ADS)

    Dhingra, Shonali; Sandler, Roman; Rios, Rodrigo; Vuong, Cliff; Mehta, Mayank

    All animals naturally perceive the abstract concept of space-time. A brain region called the Hippocampus is known to be important in creating these perceptions, but the underlying mechanisms are unknown. In our lab we employ several experimental and computational techniques from Physics to tackle this fundamental puzzle. Experimentally, we use ideas from Nanoscience and Materials Science to develop techniques to measure the activity of hippocampal neurons, in freely-behaving animals. Computationally, we develop models to study neuronal activity patterns, which are point processes that are highly stochastic and multidimensional. We then apply these techniques to collect and analyze neuronal signals from rodents while they're exploring space in Real World or Virtual Reality with various stimuli. Our findings show that under these conditions neuronal activity depends on various parameters, such as sensory cues including visual and auditory, and behavioral cues including, linear and angular, position and velocity. Further, neuronal networks create internally-generated rhythms, which influence perception of space and time. In totality, these results further our understanding of how the brain develops a cognitive map of our surrounding space, and keep track of time.

  5. Things That Work: Roles and Services of SPDF

    NASA Technical Reports Server (NTRS)

    McGuire, R. E.; Bilitza, D.; Candey, R. M.; Chimiak, R. A.; Cooper, J. F.; Garcia, L. N.; Han, D. B.; Harris, B. T.; Johnson, R. C.; King, J. H.; hide

    2010-01-01

    The current Heliophysics Science Data Management Policy (HpSDMP) defines the roles of the Space Physics Data Facility (SPDF) project as a heliophysics active Final Archive (aFA), a focus for critical data infrastructure services and a center of excellence for data and ancillary information services. This presentation will highlight (1) select current SPDF activities, (2) the lessons we are continuing to learn in how to usefully serve the the heliophysics science community and (3)SPDF's programmatic emphasis in the coming year. In cooperation with the Heliophysics Virtual discipline Observatories (VxOs), we are working closely with current, and with upcoming missions such as RBSP and MMS, to define effective approaches to ensure the long-term availability and archiving of mission data, as well as how SPDF services can complement active mission capabilities. We are working to make the Virtual Space Physics Observatory (VSPO) service comprehensive in all significant and NASA relevant heliophysics data. We will highlight a new CDAWeb interface, a faster SSCWeb, availability of our data through VxO services such as Autoplot, a new capability to easily access our data from within IDL and continuing improvements to CDF including better handling of leap seconds.

  6. Virtual working systems to support R&D groups

    NASA Astrophysics Data System (ADS)

    Dew, Peter M.; Leigh, Christine; Drew, Richard S.; Morris, David; Curson, Jayne

    1995-03-01

    The paper reports on the progress at Leeds University to build a Virtual Science Park (VSP) to enhance the University's ability to interact with industry, grow its applied research and workplace learning activities. The VSP exploits the advances in real time collaborative computing and networking to provide an environment that meets the objectives of physically based science parks without the need for the organizations to relocate. It provides an integrated set of services (e.g. virtual consultancy, workbased learning) built around a structured person- centered information model. This model supports the integration of tools for: (a) navigating around the information space; (b) browsing information stored within the VSP database; (c) communicating through a variety of Person-to-Person collaborative tools; and (d) the ability to the information stored in the VSP including the relationships to other information that support the underlying model. The paper gives an overview of a generic virtual working system based on X.500 directory services and the World-Wide Web that can be used to support the Virtual Science Park. Finally the paper discusses some of the research issues that need to be addressed to fully realize a Virtual Science Park.

  7. The Potential of Using Virtual Reality Technology in Physical Activity Settings

    ERIC Educational Resources Information Center

    Pasco, Denis

    2013-01-01

    In recent years, virtual reality technology has been successfully used for learning purposes. The purposes of the article are to examine current research on the role of virtual reality in physical activity settings and discuss potential application of using virtual reality technology to enhance learning in physical education. The article starts…

  8. A class Hierarchical, object-oriented approach to virtual memory management

    NASA Technical Reports Server (NTRS)

    Russo, Vincent F.; Campbell, Roy H.; Johnston, Gary M.

    1989-01-01

    The Choices family of operating systems exploits class hierarchies and object-oriented programming to facilitate the construction of customized operating systems for shared memory and networked multiprocessors. The software is being used in the Tapestry laboratory to study the performance of algorithms, mechanisms, and policies for parallel systems. Described here are the architectural design and class hierarchy of the Choices virtual memory management system. The software and hardware mechanisms and policies of a virtual memory system implement a memory hierarchy that exploits the trade-off between response times and storage capacities. In Choices, the notion of a memory hierarchy is captured by abstract classes. Concrete subclasses of those abstractions implement a virtual address space, segmentation, paging, physical memory management, secondary storage, and remote (that is, networked) storage. Captured in the notion of a memory hierarchy are classes that represent memory objects. These classes provide a storage mechanism that contains encapsulated data and have methods to read or write the memory object. Each of these classes provides specializations to represent the memory hierarchy.

  9. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network.

    PubMed

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-12-12

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy.

  10. Virtual plane-wave imaging via Marchenko redatuming

    NASA Astrophysics Data System (ADS)

    Meles, Giovanni Angelo; Wapenaar, Kees; Thorbecke, Jan

    2018-04-01

    Marchenko redatuming is a novel scheme used to retrieve up- and down-going Green's functions in an unknown medium. Marchenko equations are based on reciprocity theorems and are derived on the assumption of the existence of functions exhibiting space-time focusing properties once injected in the subsurface. In contrast to interferometry but similarly to standard migration methods, Marchenko redatuming only requires an estimate of the direct wave from the virtual source (or to the virtual receiver), illumination from only one side of the medium, and no physical sources (or receivers) inside the medium. In this contribution we consider a different time-focusing condition within the frame of Marchenko redatuming that leads to the retrieval of virtual plane-wave responses. As a result, it allows multiple-free imaging using only a one-dimensional sampling of the targeted model at a fraction of the computational cost of standard Marchenko schemes. The potential of the new method is demonstrated on 2D synthetic models.

  11. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network

    PubMed Central

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-01-01

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy. PMID:29231868

  12. Investigation on Consumers’ Behaviour towards Energy Saving through Utilisation of Virtual SED (Smart Energy Displays) in Residential Building

    NASA Astrophysics Data System (ADS)

    Adlisia Puspa Harani, Sandhika

    2018-05-01

    The study is conducted by gathering data from interviews an in-home experiment, to examine the impacts of both virtual and physical SED toward user engagement. Business opportunity and benefits of virtual SED for stake holders are also discussed in this study. The research was conducted by interviewing method to respondens in Nottingham, UK. By comparing consumers’ energy saving behaviour from physical and virtual SED users, virtual SED shows similar level of effectiveness as physical SED, but there is no evidence that the virtual versions are better than the physical ones in terms of reducing energy consumption. Nevertheless, virtual SED can be more beneficial for consumers who can get easier access. They also help educating users to be more concern about energy issue. Energy suppliers get benefits by having virtual versions of SED, in which they can reduce production and distribution costs, as well as diminishing waste from physical SED.

  13. Equations of motion of a space station with emphasis on the effects of the gravity gradient

    NASA Technical Reports Server (NTRS)

    Tuell, L. P.

    1987-01-01

    The derivation of the equations of motion is based upon the principle of virtual work. As developed, these equations apply only to a space vehicle whose physical model consists of a rigid central carrier supporting several flexible appendages (not interconnected), smaller rigid bodies, and point masses. Clearly evident in the equations is the respect paid to the influence of the Earth's gravity field, considerably more than has been the custom in simulating vehicle motion. The effect of unpredictable crew motion is ignored.

  14. NLO cross sections in 4 dimensions without DREG

    NASA Astrophysics Data System (ADS)

    Hernández-Pinto, R. J.; Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, G. F. R.

    2016-10-01

    In this review, we present a new method for computing physical cross sections at NLO accuracy in QCD without using the standard Dimensional Regularisation. The algorithm is based on the Loop-Tree Duality theorem, which allow us to obtain loop integrals as a sum of phase-space integrals; in this way, transforming loop integrals into phase-space integrals, we propose a method to merge virtual and real contributions in order to find observables at NLO in d = 4 space-time dimensions. In addition, the strategy described is used for computing the γ* → qq̅(g) process. A more detailed discussion related on this topic can be found in Ref [1].

  15. World Reaction to Virtual Space

    NASA Technical Reports Server (NTRS)

    1999-01-01

    DRaW Computing developed virtual reality software for the International Space Station. Open Worlds, as the software has been named, can be made to support Java scripting and virtual reality hardware devices. Open Worlds permits the use of VRML script nodes to add virtual reality capabilities to the user's applications.

  16. STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training

    NASA Image and Video Library

    2010-08-27

    JSC2010-E-121049 (27 Aug. 2010) --- NASA astronaut Andrew Feustel (foreground), STS-134 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  17. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170878 (1 Oct. 2010) --- NASA astronaut Michael Barratt, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  18. STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training

    NASA Image and Video Library

    2010-08-27

    JSC2010-E-121056 (27 Aug. 2010) --- NASA astronaut Gregory H. Johnson, STS-134 pilot, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  19. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170888 (1 Oct. 2010) --- NASA astronaut Nicole Stott, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  20. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170882 (1 Oct. 2010) --- NASA astronaut Nicole Stott, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  1. Visual selective attention with virtual barriers.

    PubMed

    Schneider, Darryl W

    2017-07-01

    Previous studies have shown that interference effects in the flanker task are reduced when physical barriers (e.g., hands) are placed around rather than below a target flanked by distractors. One explanation of this finding is the referential coding hypothesis, whereby the barriers serve as reference objects for allocating attention. In five experiments, the generality of the referential coding hypothesis was tested by investigating whether interference effects are modulated by the placement of virtual barriers (e.g., parentheses). Modulation of flanker interference was found only when target and distractors differed in size and the virtual barriers were beveled wood-grain objects. Under these conditions and those of previous studies, the author conjectures that an impression of depth was produced when the barriers were around the target, such that the target was perceived to be on a different depth plane than the distractors. Perception of depth in the stimulus display might have led to referential coding of the stimuli in three-dimensional (3-D) space, influencing the allocation of attention beyond the horizontal and vertical dimensions. This 3-D referential coding hypothesis is consistent with research on selective attention in 3-D space that shows flanker interference is reduced when target and distractors are separated in depth.

  2. Systems and Technologies for Space Exploration: the regional project STEPS

    NASA Astrophysics Data System (ADS)

    Boggiatto, D.; Moncalvo, D.

    The Aerospace technology network of Piemonte represents ˜25% of the italian capacity and handles a comprehensive spectrum of products (aircraft, propulsion, satellites, space station modules, avionics. components, services...). The cooperation between the Comitato Distretto Aerospaziale Piemonte and the European Regional Development Fund 2007-2013 has enabled Regione Piemonte to launch three regional Projects capable to enhance the synergy and competitiveness of the network, among which: STEPS - Sistemi e Tecnologie per l'EsPlorazione Spaziale, a joint development of technologies for robotic and human Space Exploration by 3 large Industries, 27 SMEs, 3 Universities and one public Research Centre. STEPS develops virtual and hardware demonstrators for a range of technologies to do with a Lander's descent and soft landing, and a Rover's surface mobility, of both robotic and manned equipment on Moon and Mars. It also foresees the development of Teleoperations labs and Virtual Reality environments and physical simulations of Moon and Mars surface conditions and ground. Mid-way along STEPS planned development, initial results in several technology domains are available and are presented in this paper.

  3. The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research

    PubMed Central

    Niehorster, Diederick C.; Li, Li; Lappe, Markus

    2017-01-01

    The advent of inexpensive consumer virtual reality equipment enables many more researchers to study perception with naturally moving observers. One such system, the HTC Vive, offers a large field-of-view, high-resolution head mounted display together with a room-scale tracking system for less than a thousand U.S. dollars. If the position and orientation tracking of this system is of sufficient accuracy and precision, it could be suitable for much research that is currently done with far more expensive systems. Here we present a quantitative test of the HTC Vive’s position and orientation tracking as well as its end-to-end system latency. We report that while the precision of the Vive’s tracking measurements is high and its system latency (22 ms) is low, its position and orientation measurements are provided in a coordinate system that is tilted with respect to the physical ground plane. Because large changes in offset were found whenever tracking was briefly lost, it cannot be corrected for with a one-time calibration procedure. We conclude that the varying offset between the virtual and the physical tracking space makes the HTC Vive at present unsuitable for scientific experiments that require accurate visual stimulation of self-motion through a virtual world. It may however be suited for other experiments that do not have this requirement. PMID:28567271

  4. The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research.

    PubMed

    Niehorster, Diederick C; Li, Li; Lappe, Markus

    2017-01-01

    The advent of inexpensive consumer virtual reality equipment enables many more researchers to study perception with naturally moving observers. One such system, the HTC Vive, offers a large field-of-view, high-resolution head mounted display together with a room-scale tracking system for less than a thousand U.S. dollars. If the position and orientation tracking of this system is of sufficient accuracy and precision, it could be suitable for much research that is currently done with far more expensive systems. Here we present a quantitative test of the HTC Vive's position and orientation tracking as well as its end-to-end system latency. We report that while the precision of the Vive's tracking measurements is high and its system latency (22 ms) is low, its position and orientation measurements are provided in a coordinate system that is tilted with respect to the physical ground plane. Because large changes in offset were found whenever tracking was briefly lost, it cannot be corrected for with a one-time calibration procedure. We conclude that the varying offset between the virtual and the physical tracking space makes the HTC Vive at present unsuitable for scientific experiments that require accurate visual stimulation of self-motion through a virtual world. It may however be suited for other experiments that do not have this requirement.

  5. Deviant bodies, stigmatized identities, and racist acts: examining the experiences of African-American gamers in Xbox Live

    NASA Astrophysics Data System (ADS)

    Gray, K. L.

    2012-12-01

    The purpose of this article is to illustrate how minority gamers, particularly African-American males, are subject to the label of deviant within the virtual gaming community of Xbox Live. They are labeled deviant based on the stigma of their physical identity - blackness, through a process of linguistic profiling. By employing virtual ethnography, the author identifies a process that leads to racism based on how the black gamer sounds within the space. The act of racism emerges through a process involving questioning, provoking, instigating, and ultimately racism. Many black gamers have normalized these racist experiences and have accepted the label of deviant placed upon their bodies.

  6. NASA's Hybrid Reality Lab: One Giant Leap for Full Dive

    NASA Technical Reports Server (NTRS)

    Delgado, Francisco J.; Noyes, Matthew

    2017-01-01

    This presentation demonstrates how NASA is using consumer VR headsets, game engine technology and NVIDIA's GPUs to create highly immersive future training systems augmented with extremely realistic haptic feedback, sound, additional sensory information, and how these can be used to improve the engineering workflow. Include in this presentation is an environment simulation of the ISS, where users can interact with virtual objects, handrails, and tracked physical objects while inside VR, integration of consumer VR headsets with the Active Response Gravity Offload System, and a space habitat architectural evaluation tool. Attendees will learn how the best elements of real and virtual worlds can be combined into a hybrid reality environment with tangible engineering and scientific applications.

  7. STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training

    NASA Image and Video Library

    2010-08-27

    JSC2010-E-121045 (27 Aug. 2010) --- NASA astronaut Andrew Feustel (right), STS-134 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. David Homan assisted Feustel. Photo credit: NASA or National Aeronautics and Space Administration

  8. Evaluation of historical museum interior lighting system using fully immersive virtual luminous environment

    NASA Astrophysics Data System (ADS)

    Navvab, Mojtaba; Bisegna, Fabio; Gugliermetti, Franco

    2013-05-01

    Saint Rocco Museum, a historical building in Venice, Italy is used as a case study to explore the performance of its' lighting system and visible light impact on viewing the large size art works. The transition from threedimensional architectural rendering to the three-dimensional virtual luminance mapping and visualization within a virtual environment is described as an integrated optical method for its application toward preservation of the cultural heritage of the space. Lighting simulation programs represent color as RGB triplets in a devicedependent color space such as ITU-R BT709. Prerequisite for this is a 3D-model which can be created within this computer aided virtual environment. The onsite measured surface luminance, chromaticity and spectral data were used as input to an established real-time indirect illumination and a physically based algorithms to produce the best approximation for RGB to be used as an input to generate the image of the objects. Conversion of RGB to and from spectra has been a major undertaking in order to match the infinite number of spectra to create the same colors that were defined by RGB in the program. The ability to simulate light intensity, candle power and spectral power distributions provide opportunity to examine the impact of color inter-reflections on historical paintings. VR offers an effective technique to quantify the visible light impact on human visual performance under precisely controlled representation of light spectrum that could be experienced in 3D format in a virtual environment as well as historical visual archives. The system can easily be expanded to include other measurements and stimuli.

  9. Representative Model of the Learning Process in Virtual Spaces Supported by ICT

    ERIC Educational Resources Information Center

    Capacho, José

    2014-01-01

    This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning). The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating…

  10. Virtual Glovebox (VGX) Aids Astronauts in Pre-Flight Training

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  11. Localization of Virtual Objects in the Near Visual Field (Operator Interaction with Simple Virtual Objects)

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Menges, Brian M.

    1998-01-01

    Errors in the localization of nearby virtual objects presented via see-through, helmet mounted displays are examined as a function of viewing conditions and scene content in four experiments using a total of 38 subjects. Monocular, biocular or stereoscopic presentation of the virtual objects, accommodation (required focus), subjects' age, and the position of physical surfaces are examined. Nearby physical surfaces are found to introduce localization errors that differ depending upon the other experimental factors. These errors apparently arise from the occlusion of the physical background by the optically superimposed virtual objects. But they are modified by subjects' accommodative competence and specific viewing conditions. The apparent physical size and transparency of the virtual objects and physical surfaces respectively are influenced by their relative position when superimposed. The design implications of the findings are discussed in a concluding section.

  12. Sensor-Augmented Virtual Labs: Using Physical Interactions with Science Simulations to Promote Understanding of Gas Behavior

    NASA Astrophysics Data System (ADS)

    Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.

    2016-02-01

    Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected physical and virtual experiences has the potential to promote connections among ideas. This paper explores the effect of augmenting a virtual lab with physical controls on high school chemistry students' understanding of gas laws. We compared students using the augmented virtual lab to students using a similar sensor-based physical lab with teacher-led discussions. Results demonstrate that students in the augmented virtual lab condition made significant gains from pretest and posttest and outperformed traditional students on some but not all concepts. Results provide insight into incorporating mixed-reality technologies into authentic classroom settings.

  13. Distance Perception of Stereoscopically Presented Virtual Objects Optically Superimposed on Physical Objects by a Head-Mounted See-Through Display

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Bucher, Urs J.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    The influence of physically presented background stimuli on the perceived depth of optically overlaid, stereoscopic virtual images has been studied using headmounted stereoscopic, virtual image displays. These displays allow presentation of physically unrealizable stimulus combinations. Positioning of an opaque physical object either at the initial perceived depth of the virtual image or at a position substantially in front of the virtual image, causes the virtual image to perceptually move closer to the observer. In the case of objects positioned substantially in front of the virtual image, subjects often perceive the opaque object to become transparent. Evidence is presented that the apparent change of position caused by interposition of the physical object is not due to occlusion cues. According, it may have an alternative cause such as variation in the binocular vengeance position of the eyes caused by introduction of the physical object. This effect may complicate design of overlaid virtual image displays for near objects and appears to be related to the relative conspicuousness of the overlaid virtual image and the background. Consequently, it may be related to earlier analyses of John Foley which modeled open-loop pointing errors to stereoscopically presented points of light in terms of errors in determination of a reference point for interpretation of observed retinal disparities. Implications for the design of see-through displays for manufacturing will be discussed.

  14. Using Virtual Worlds to Identify Multidimensional Student Engagement in High School Foreign Language Learning Classrooms

    ERIC Educational Resources Information Center

    Jacob, Laura Beth

    2012-01-01

    Virtual world environments have evolved from object-oriented, text-based online games to complex three-dimensional immersive social spaces where the lines between reality and computer-generated begin to blur. Educators use virtual worlds to create engaging three-dimensional learning spaces for students, but the impact of virtual worlds in…

  15. Orientation and metacognition in virtual space.

    PubMed

    Tenbrink, Thora; Salwiczek, Lucie H

    2016-05-01

    Cognitive scientists increasingly use virtual reality scenarios to address spatial perception, orientation, and navigation. If based on desktops rather than mobile immersive environments, this involves a discrepancy between the physically experienced static position and the visually perceived dynamic scene, leading to cognitive challenges that users of virtual worlds may or may not be aware of. The frequently reported loss of orientation and worse performance in point-to-origin tasks relate to the difficulty of establishing a consistent reference system on an allocentric or egocentric basis. We address the verbalizability of spatial concepts relevant in this regard, along with the conscious strategies reported by participants. Behavioral and verbal data were collected using a perceptually sparse virtual tunnel scenario that has frequently been used to differentiate between humans' preferred reference systems. Surprisingly, the linguistic data we collected relate to reference system verbalizations known from the earlier literature only to a limited extent, but instead reveal complex cognitive mechanisms and strategies. Orientation in desktop virtual reality appears to pose considerable challenges, which participants react to by conceptualizing the task in individual ways that do not systematically relate to the generic concepts of egocentric and allocentric reference frames. (c) 2016 APA, all rights reserved).

  16. The Effects of "Live Virtual Classroom" on Students' Achievement and Students' Opinions about "Live Virtual Classroom" at Distance Education

    ERIC Educational Resources Information Center

    Yilmaz, Ozgur

    2015-01-01

    This study was performed to investigate the effects of live virtual classroom on students' achievement and to determine students' opinions about the live virtual physics classroom at distance learning. 63 second-year Distance Computer Education & Instructional Technology students enrolled in this study. At the live virtual physics classroom,…

  17. Active Gaming: Is "Virtual" Reality Right for Your Physical Education Program?

    ERIC Educational Resources Information Center

    Hansen, Lisa; Sanders, Stephen W.

    2012-01-01

    Active gaming is growing in popularity and the idea of increasing children's physical activity by using technology is largely accepted by physical educators. Teachers nationwide have been providing active gaming equipment such as virtual bikes, rhythmic dance machines, virtual sporting games, martial arts simulators, balance boards, and other…

  18. Operator Localization of Virtual Objects

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Menges, Brian M.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    Errors in the localization of nearby virtual objects presented via see-through, helmet mounted displays are examined as a function of viewing conditions and scene content. Monocular, biocular or stereoscopic presentation of the virtual objects, accommodation (required focus), subjects'age, and the position of physical surfaces are examined. Nearby physical surfaces are found to introduce localization errors that differ depending upon the other experimental factors. The apparent physical size and transparency of the virtual objects and physical surfaces respectively are also influenced by their relative position when superimposed. Design implications are discussed.

  19. Tools Automate Spacecraft Testing, Operation

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "NASA began the Small Explorer (SMEX) program to develop spacecraft to advance astrophysics and space physics. As one of the entities supporting software development at Goddard Space Flight Center, the Hammers Company Inc. (tHC Inc.), of Greenbelt, Maryland, developed the Integrated Test and Operations System to support SMEX. Later, the company received additional Small Business Innovation Research (SBIR) funding from Goddard for a tool to facilitate the development of flight software called VirtualSat. NASA uses the tools to support 15 satellites, and the aerospace industry is using them to develop science instruments, spacecraft computer systems, and navigation and control software."

  20. The Ultimate Monte Carlo: Studying Cross-Sections With Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    2007-01-01

    The high-energy physics community has been discussing for years the need to bring together the three principal disciplines that study hadron cross-section physics - ground-based accelerators, cosmic-ray experiments in space, and air shower research. Only recently have NASA investigators begun discussing the use of space-borne cosmic-ray payloads to bridge the gap between accelerator physics and air shower work using cosmic-ray measurements. The common tool used in these three realms of high-energy hadron physics is the Monte Carlo (MC). Yet the obvious has not been considered - using a single MC for simulating the entire relativistic energy range (GeV to EeV). The task is daunting due to large uncertainties in accelerator, space, and atmospheric cascade measurements. These include inclusive versus exclusive cross-section measurements, primary composition, interaction dynamics, and possible new physics beyond the standard model. However, the discussion of a common tool or ultimate MC might be the very thing that could begin to unify these independent groups into a common purpose. The Offline ALICE concept of a Virtual MC at CERN s Large Hadron Collider (LHC) will be discussed as a rudimentary beginning of this idea, and as a possible forum for carrying it forward in the future as LHC data emerges.

  1. Using virtual robot-mediated play activities to assess cognitive skills.

    PubMed

    Encarnação, Pedro; Alvarez, Liliana; Rios, Adriana; Maya, Catarina; Adams, Kim; Cook, Al

    2014-05-01

    To evaluate the feasibility of using virtual robot-mediated play activities to assess cognitive skills. Children with and without disabilities utilized both a physical robot and a matching virtual robot to perform the same play activities. The activities were designed such that successfully performing them is an indication of understanding of the underlying cognitive skills. Participants' performance with both robots was similar when evaluated by the success rates in each of the activities. Session video analysis encompassing participants' behavioral, interaction and communication aspects revealed differences in sustained attention, visuospatial and temporal perception, and self-regulation, favoring the virtual robot. The study shows that virtual robots are a viable alternative to the use of physical robots for assessing children's cognitive skills, with the potential of overcoming limitations of physical robots such as cost, reliability and the need for on-site technical support. Virtual robots can provide a vehicle for children to demonstrate cognitive understanding. Virtual and physical robots can be used as augmentative manipulation tools allowing children with disabilities to actively participate in play, educational and therapeutic activities. Virtual robots have the potential of overcoming limitations of physical robots such as cost, reliability and the need for on-site technical support.

  2. Transforming the Twenty-First-Century Campus to Enhance the Net-Generation Student Learning Experience: Using Evidence-Based Design to Determine What Works and Why in Virtual/Physical Teaching Spaces

    ERIC Educational Resources Information Center

    Fisher, Kenn; Newton, Clare

    2014-01-01

    The twenty-first century has seen the rapid emergence of wireless broadband and mobile communications devices which are inexorably changing the way people communicate, collaborate, create and transfer knowledge. Yet many higher education campus learning environments were designed and built in the nineteenth and twentieth centuries prior to…

  3. TREPS, a tool for coordinate and time transformations in space physics

    NASA Astrophysics Data System (ADS)

    Génot, V.; Renard, B.; Dufourg, N.; Bouchemit, M.; Lormant, N.; Beigbeder, L.; Popescu, D.; Toniutti, J.-P.; André, N.; Pitout, F.; Jacquey, C.; Cecconi, B.; Gangloff, M.

    2018-01-01

    We present TREPS (Transformation de REpères en Physique Spatiale) an online tool to perform coordinate transformations commonly used in planetology and heliophysics. It is based on SPICE kernels developed by NASA/NAIF. Its usage is straightforward, with a 4-step process, including various import/export options. Interoperability with external services is available through Virtual Observatory technology which is illustrated in a use case.

  4. III Potsdam-V Kiev International Workshop on Nonlinear Processes in Physics. Held in Potsdam, New York on August 1-11, 1991

    DTIC Science & Technology

    1991-08-01

    Bona, Burke, Grundbaum, Hasagawa, Horton, Krichever, Kruskal, Kuznetsov , Lax, McLaughlin, Mikhailov., Rubenchik, Sabatier, Tabor, Zabusky) for their...British Telecom Lab., GB Fibers Oleg Bogoyavlenskij Breaking Solitons Steklov Mathematical Institute USSR Marco Boiti Real and Virtual Multidimensional...Beyond Rutgers University, USA Boris Kupershmidt Relativistic Analogs of Lax Equations Tennessee Space Institute, USA E.A. Kuznetsov Weak MHD Turbulence

  5. Crosswalking near-Earth and space physics ontologies in SPASE and ESPAS

    NASA Astrophysics Data System (ADS)

    Galkin, I. A.; Fung, S. F.; Benson, R. F.; Heynderickx, D.; Ritschel, B.; King, T. A.; Roberts, D. A.; Hapgood, M. A.; Belehaki, A.

    2015-12-01

    In order to support scientific discoveries in Heliophysics (HP), with modern data systems, the HP Data Centers actively pursue harmonization of available metadata that allows crossing boundaries between existing data models, conventions, and resource interfaces. The discoverability of HP observations is improved when associated metadata describes their physical content in agreed terms as a part of the resource registration. One of the great challenges of enabling such content-targeted data search capability is the harmonization of domain ontology across data providers. Ontologies are the cornerstones of the content-aware data systems: they define an agreed vocabulary of keywords that capture the essence of domain-specific concepts and their relationships. With the introduction of the Virtual Wave Observatory (VWO), as part of NASA's Virtual System Observatory in 2008, the task of formulating the HP ontology became yet more complicated. Definitions of the wave domain concepts required several layers of specifications that described the generation, propagation, and interaction of the waves with the underlying medium in addition to the observation itself. Simple keyword lists could not provide a sufficiently information-rich description, given the complexity of the wave domain, and the development of a more powerful schema was required. The ontology research at the VWO eventually resulted in a suitable multi-hierarchical design that found its first implementation in 2015 at one of the European space physics data repositories, the near-Earth Space Data Infrastructure for e-Science (ESPAS). Similar to many other European geoscience projects, ESPAS is based on the ISO 19156 Observation and Measurements standard. In cooperation with the NASA VWO, the ESPAS project has deployed a space physics ontology design for all data registration purposes. The VWO science team is now uniquely positioned to establish a crosswalk between the ESPAS ontology based on ISO 19156 and the VWO ontology based on the SPASE data model. The crosswalk both maps the individual vocabulary terms and accommodates the underlying differences in the structural model elements that are part of both standards. We will review practical questions of harmonizing SPASE and ISO solutions specific to the HP domain ontology.

  6. Interactive Virtual and Physical Manipulatives for Improving Students' Spatial Skills

    ERIC Educational Resources Information Center

    Ha, Oai; Fang, Ning

    2018-01-01

    An innovative educational technology called interactive virtual and physical manipulatives (VPM) is developed to improve students' spatial skills. With VPM technology, not only can students touch and play with real-world physical manipulatives in their hands but also they can see how the corresponding virtual manipulatives (i.e., computer…

  7. Space Science

    NASA Image and Video Library

    2003-06-01

    NASA’s Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  8. Beamforming applied to surface EEG improves ripple visibility.

    PubMed

    van Klink, Nicole; Mol, Arjen; Ferrier, Cyrille; Hillebrand, Arjan; Huiskamp, Geertjan; Zijlmans, Maeike

    2018-01-01

    Surface EEG can show epileptiform ripples in people with focal epilepsy, but identification is impeded by the low signal-to-noise ratio of the electrode recordings. We used beamformer-based virtual electrodes to improve ripple identification. We analyzed ten minutes of interictal EEG of nine patients with refractory focal epilepsy. EEGs with more than 60 channels and 20 spikes were included. We computed ∼79 virtual electrodes using a scalar beamformer and marked ripples (80-250 Hz) co-occurring with spikes in physical and virtual electrodes. Ripple numbers in physical and virtual electrodes were compared, and sensitivity and specificity of ripples for the region of interest (ROI; based on clinical information) were determined. Five patients had ripples in the physical electrodes and eight in the virtual electrodes, with more ripples in virtual than in physical electrodes (101 vs. 57, p = .007). Ripples in virtual electrodes predicted the ROI better than physical electrodes (AUC 0.65 vs. 0.56, p = .03). Beamforming increased ripple visibility in surface EEG. Virtual ripples predicted the ROI better than physical ripples, although sensitivity was still poor. Beamforming can facilitate ripple identification in EEG. Ripple localization needs to be improved to enable its use for presurgical evaluation in people with epilepsy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  9. Making Information Overload Work: The Dragon Software System on a Virtual Reality Responsive Workbench

    DTIC Science & Technology

    1998-03-01

    Research Laboratory’s Virtual Reality Responsive Workbench (VRRWB) and Dragon software system which together address the problem of battle space...and describe the lessons which have been learned. Interactive graphics, workbench, battle space visualization, virtual reality , user interface.

  10. Interaction Design and Usability of Learning Spaces in 3D Multi-user Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Minocha, Shailey; Reeves, Ahmad John

    Three-dimensional virtual worlds are multimedia, simulated environments, often managed over the Web, which users can 'inhabit' and interact via their own graphical, self-representations known as 'avatars'. 3D virtual worlds are being used in many applications: education/training, gaming, social networking, marketing and commerce. Second Life is the most widely used 3D virtual world in education. However, problems associated with usability, navigation and way finding in 3D virtual worlds may impact on student learning and engagement. Based on empirical investigations of learning spaces in Second Life, this paper presents design guidelines to improve the usability and ease of navigation in 3D spaces. Methods of data collection include semi-structured interviews with Second Life students, educators and designers. The findings have revealed that design principles from the fields of urban planning, Human- Computer Interaction, Web usability, geography and psychology can influence the design of spaces in 3D multi-user virtual environments.

  11. The effect of real and virtual photons in the di-lepton channel at the LHC

    NASA Astrophysics Data System (ADS)

    Accomando, Elena; Fiaschi, Juri; Hautmann, Francesco; Moretti, Stefano; Shepherd-Themistocleous, Claire H.

    2017-07-01

    We present a study of di-lepton production at the CERN Large Hadron Collider with a particular focus on the contribution resulting from both real and virtual photons in the initial state. We discuss the region of phase space in which the invariant mass of the lepton pair is of the order of several TeV, where searches for new physics phenomena yielding a di-lepton signature are presently carried out. We study both the yield and associated uncertainties for all possible topologies in photon-induced di-lepton production and compare these with what is expected in the standard Drell-Yan channel, where quark-antiquark pairs are responsible for the production of lepton pairs. We analyse the impact of these QED contributions on the expected Standard Model background and on searches for new physics. In this latter case, we use the production of an extra heavy Z‧-boson predicted by the Sequential Standard Model (SSM) as a benchmark process.

  12. RAID Unbound: Storage Fault Tolerance in a Distributed Environment

    NASA Technical Reports Server (NTRS)

    Ritchie, Brian

    1996-01-01

    Mirroring, data replication, backup, and more recently, redundant arrays of independent disks (RAID) are all technologies used to protect and ensure access to critical company data. A new set of problems has arisen as data becomes more and more geographically distributed. Each of the technologies listed above provides important benefits; but each has failed to adapt fully to the realities of distributed computing. The key to data high availability and protection is to take the technologies' strengths and 'virtualize' them across a distributed network. RAID and mirroring offer high data availability, which data replication and backup provide strong data protection. If we take these concepts at a very granular level (defining user, record, block, file, or directory types) and them liberate them from the physical subsystems with which they have traditionally been associated, we have the opportunity to create a highly scalable network wide storage fault tolerance. The network becomes the virtual storage space in which the traditional concepts of data high availability and protection are implemented without their corresponding physical constraints.

  13. Effects of decades of physical driving on body movement and motion sickness during virtual driving

    PubMed Central

    Chang, Chih-Hui; Chen, Fu-Chen; Zeng, Wei-Jhong

    2017-01-01

    We investigated relations between experience driving physical automobiles and motion sickness during the driving of virtual automobiles. Middle-aged individuals drove a virtual automobile in a driving video game. Drivers were individuals who had possessed a driver’s license for approximately 30 years, and who drove regularly, while non-drivers were individuals who had never held a driver’s license, or who had not driven for more than 15 years. During virtual driving, we monitored movement of the head and torso. During virtual driving, drivers became motion sick more rapidly than non-drivers, but the incidence and severity of motion sickness did not differ as a function of driving experience. Patterns of movement during virtual driving differed as a function of driving experience. Separately, movement differed between participants who later became motion sick and those who did not. Most importantly, physical driving experience influenced patterns of postural activity that preceded motion sickness during virtual driving. The results are consistent with the postural instability theory of motion sickness, and help to illuminate relations between the control of physical and virtual vehicles. PMID:29121059

  14. Similarities and differences between eating disorders and obese patients in a virtual environment for normalizing eating patterns.

    PubMed

    Perpiñá, Conxa; Roncero, María

    2016-05-01

    Virtual reality has demonstrated promising results in the treatment of eating disorders (ED); however, few studies have examined its usefulness in treating obesity. The aim of this study was to compare ED and obese patients on their reality judgment of a virtual environment (VE) designed to normalize their eating pattern. A second objective was to study which variables predicted the reality of the experience of eating a virtual forbidden-fattening food. ED patients, obese patients, and a non-clinical group (N=62) experienced a non-immersive VE, and then completed reality judgment and presence measures. All participants rated the VE with similar scores for quality, interaction, engagement, and ecological validity; however, ED patients obtained the highest scores on emotional involvement, attention, reality judgment/presence, and negative effects. The obese group gave the lowest scores to reality judgment/presence, satisfaction and sense of physical space, and they held an intermediate position in the attribution of reality to virtually eating a "fattening" food. The palatability of a virtual food was predicted by attention capturing and belonging to the obese group, while the attribution of reality to the virtual eating was predicted by engagement and belonging to the ED group. This study offers preliminary results about the differential impact on ED and obese patients of the exposure to virtual food, and about the need to implement a VE that can be useful as a virtual lab for studying eating behavior and treating obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The Virtual Solar-Terrestrial Observatory; access to and use of diverse solar and solar- terrestrial data.

    NASA Astrophysics Data System (ADS)

    Fox, P.; McGuinness, D.; Cinquini, L.; West, P.; Garcia, J.; Zednik, S.; Benedict, J.

    2008-05-01

    This presentation will demonstrate how users and other data providers can utilize the Virtual Solar-Terrestrial Observatory (VSTO) to find, access and use diverse data holdings from the disciplines of solar, solar-terrestrial and space physics. VSTO provides a web portal, web services and a native applications programming interface for various levels of users. Since these access methods are based on semantic web technologies and refer to the VSTO ontology, users also have the option of taking advantage of value added services when accessing and using the data. We present example of both conventional use of VSTO as well as the advanced semantics use. Finally, we present our future directions for VSTO and semantic data frameworks in general.

  16. The Virtual Solar-Terrestrial Observatory; access to and use of diverse solar and solar-terrestrial data

    NASA Astrophysics Data System (ADS)

    Fox, P.

    2007-05-01

    This presentation will demonstrate how users and other data providers can utilize the Virtual Solar-Terrestrial Observatory (VSTO) to find, access and use diverse data holdings from the disciplines of solar, solar-terrestrial and space physics. VSTO provides a web portal, web services and a native applications programming interface for various levels of users. Since these access methods are based on semantic web technologies and refer to the VSTO ontology, users also have the option of taking advantage of value added services when accessing and using the data. We present example of both conventional use of VSTO as well as the advanced semantics use. Finally, we present our future directions for VSTO and semantic data frameworks in general.

  17. Estimation of detection thresholds for redirected walking techniques.

    PubMed

    Steinicke, Frank; Bruder, Gerd; Jerald, Jason; Frenz, Harald; Lappe, Markus

    2010-01-01

    In immersive virtual environments (IVEs), users can control their virtual viewpoint by moving their tracked head and walking through the real world. Usually, movements in the real world are mapped one-to-one to virtual camera motions. With redirection techniques, the virtual camera is manipulated by applying gains to user motion so that the virtual world moves differently than the real world. Thus, users can walk through large-scale IVEs while physically remaining in a reasonably small workspace. In psychophysical experiments with a two-alternative forced-choice task, we have quantified how much humans can unknowingly be redirected on physical paths that are different from the visually perceived paths. We tested 12 subjects in three different experiments: (E1) discrimination between virtual and physical rotations, (E2) discrimination between virtual and physical straightforward movements, and (E3) discrimination of path curvature. In experiment E1, subjects performed rotations with different gains, and then had to choose whether the visually perceived rotation was smaller or greater than the physical rotation. In experiment E2, subjects chose whether the physical walk was shorter or longer than the visually perceived scaled travel distance. In experiment E3, subjects estimate the path curvature when walking a curved path in the real world while the visual display shows a straight path in the virtual world. Our results show that users can be turned physically about 49 percent more or 20 percent less than the perceived virtual rotation, distances can be downscaled by 14 percent and upscaled by 26 percent, and users can be redirected on a circular arc with a radius greater than 22 m while they believe that they are walking straight.

  18. Very large virtual compound spaces: construction, storage and utility in drug discovery.

    PubMed

    Peng, Zhengwei

    2013-09-01

    Recent activities in the construction, storage and exploration of very large virtual compound spaces are reviewed by this report. As expected, the systematic exploration of compound spaces at the highest resolution (individual atoms and bonds) is intrinsically intractable. By contrast, by staying within a finite number of reactions and a finite number of reactants or fragments, several virtual compound spaces have been constructed in a combinatorial fashion with sizes ranging from 10(11)11 to 10(20)20 compounds. Multiple search methods have been developed to perform searches (e.g. similarity, exact and substructure) into those compound spaces without the need for full enumeration. The up-front investment spent on synthetic feasibility during the construction of some of those virtual compound spaces enables a wider adoption by medicinal chemists to design and synthesize important compounds for drug discovery. Recent activities in the area of exploring virtual compound spaces via the evolutionary approach based on Genetic Algorithm also suggests a positive shift of focus from method development to workflow, integration and ease of use, all of which are required for this approach to be widely adopted by medicinal chemists.

  19. Intra-operative 3D imaging system for robot-assisted fracture manipulation.

    PubMed

    Dagnino, G; Georgilas, I; Tarassoli, P; Atkins, R; Dogramadzi, S

    2015-01-01

    Reduction is a crucial step in the treatment of broken bones. Achieving precise anatomical alignment of bone fragments is essential for a good fast healing process. Percutaneous techniques are associated with faster recovery time and lower infection risk. However, deducing intra-operatively the desired reduction position is quite challenging due to the currently available technology. The 2D nature of this technology (i.e. the image intensifier) doesn't provide enough information to the surgeon regarding the fracture alignment and rotation, which is actually a three-dimensional problem. This paper describes the design and development of a 3D imaging system for the intra-operative virtual reduction of joint fractures. The proposed imaging system is able to receive and segment CT scan data of the fracture, to generate the 3D models of the bone fragments, and display them on a GUI. A commercial optical tracker was included into the system to track the actual pose of the bone fragments in the physical space, and generate the corresponding pose relations in the virtual environment of the imaging system. The surgeon virtually reduces the fracture in the 3D virtual environment, and a robotic manipulator connected to the fracture through an orthopedic pin executes the physical reductions accordingly. The system is here evaluated through fracture reduction experiments, demonstrating a reduction accuracy of 1.04 ± 0.69 mm (translational RMSE) and 0.89 ± 0.71 ° (rotational RMSE).

  20. Statistical scaling of geometric characteristics in stochastically generated pore microstructures

    DOE PAGES

    Hyman, Jeffrey D.; Guadagnini, Alberto; Winter, C. Larrabee

    2015-05-21

    In this study, we analyze the statistical scaling of structural attributes of virtual porous microstructures that are stochastically generated by thresholding Gaussian random fields. Characterization of the extent at which randomly generated pore spaces can be considered as representative of a particular rock sample depends on the metrics employed to compare the virtual sample against its physical counterpart. Typically, comparisons against features and/patterns of geometric observables, e.g., porosity and specific surface area, flow-related macroscopic parameters, e.g., permeability, or autocorrelation functions are used to assess the representativeness of a virtual sample, and thereby the quality of the generation method. Here, wemore » rely on manifestations of statistical scaling of geometric observables which were recently observed in real millimeter scale rock samples [13] as additional relevant metrics by which to characterize a virtual sample. We explore the statistical scaling of two geometric observables, namely porosity (Φ) and specific surface area (SSA), of porous microstructures generated using the method of Smolarkiewicz and Winter [42] and Hyman and Winter [22]. Our results suggest that the method can produce virtual pore space samples displaying the symptoms of statistical scaling observed in real rock samples. Order q sample structure functions (statistical moments of absolute increments) of Φ and SSA scale as a power of the separation distance (lag) over a range of lags, and extended self-similarity (linear relationship between log structure functions of successive orders) appears to be an intrinsic property of the generated media. The width of the range of lags where power-law scaling is observed and the Hurst coefficient associated with the variables we consider can be controlled by the generation parameters of the method.« less

  1. Creating a Virtual Physics Department.

    ERIC Educational Resources Information Center

    Suson, Daniel J.; Hewett, Lionel D.; McCoy, Jim; Nelson, Vaughn

    1999-01-01

    Describes a solution to alleviate the low numbers of students graduating from the majority of physics programs throughout the nation. Discusses the outcome of a virtual physics department. (Author/CCM)

  2. Virtual exertions: evoking the sense of exerting forces in virtual reality using gestures and muscle activity.

    PubMed

    Chen, Karen B; Ponto, Kevin; Tredinnick, Ross D; Radwin, Robert G

    2015-06-01

    This study was a proof of concept for virtual exertions, a novel method that involves the use of body tracking and electromyography for grasping and moving projections of objects in virtual reality (VR). The user views objects in his or her hands during rehearsed co-contractions of the same agonist-antagonist muscles normally used for the desired activities to suggest exerting forces. Unlike physical objects, virtual objects are images and lack mass. There is currently no practical physically demanding way to interact with virtual objects to simulate strenuous activities. Eleven participants grasped and lifted similar physical and virtual objects of various weights in an immersive 3-D Cave Automatic Virtual Environment. Muscle activity, localized muscle fatigue, ratings of perceived exertions, and NASA Task Load Index were measured. Additionally, the relationship between levels of immersion (2-D vs. 3-D) was studied. Although the overall magnitude of biceps activity and workload were greater in VR, muscle activity trends and fatigue patterns for varying weights within VR and physical conditions were the same. Perceived exertions for varying weights were not significantly different between VR and physical conditions. Perceived exertion levels and muscle activity patterns corresponded to the assigned virtual loads, which supported the hypothesis that the method evoked the perception of physical exertions and showed that the method was promising. Ultimately this approach may offer opportunities for research and training individuals to perform strenuous activities under potentially safer conditions that mimic situations while seeing their own body and hands relative to the scene. © 2014, Human Factors and Ergonomics Society.

  3. Can a virtual supermarket bring realism into the lab? Comparing shopping behavior using virtual and pictorial store representations to behavior in a physical store.

    PubMed

    van Herpen, Erica; van den Broek, Eva; van Trijp, Hans C M; Yu, Tian

    2016-12-01

    Immersive virtual reality techniques present new opportunities for research into consumer behavior. The current study examines whether the increased realism of a virtual store compared to pictorial (2D) stimuli elicits consumer behavior that is more in line with behavior in a physical store. We examine the number, variety, and type of products selected, amount of money spent, and responses to price promotions and shelf display, in three product categories (fruit & vegetables, milk, and biscuits). We find that virtual reality elicits behavior that is more similar to behavior in the physical store compared to the picture condition for the number of products selected (Milk: M store  = 1.19, M virtual  = 1.53, M pictures  = 2.58) and amount of money spent (Milk: M store  = 1.27, M virtual  = 1.53, M pictures  = 2.60 Euro), and for the selection of products from different areas of the shelf, both vertically (purchases from top shelves, milk and biscuits: P store  = 21.6%, P virtual  = 33.4%, P pictures  = 50.0%) and horizontally (purchase from left shelf, biscuits: P store  = 35.5%, P virtual  = 53.3%, P pictures  = 66.7%). This indicates that virtual reality can improve realism in responses to shelf allocation. Virtual reality was not able to diminish other differences between lab and physical store: participants bought more products and spent more money (for biscuits and fruit & vegetables), bought more national brands, and responded more strongly to price promotions in both virtual reality and pictorial representations than in the physical store. Implications for the use of virtual reality in studies of consumer food choice behavior as well as for future improvement of virtual reality techniques are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Virtual Reality in Psychology

    ERIC Educational Resources Information Center

    Foreman, Nigel

    2009-01-01

    The benefits of using virtual environments (VEs) in psychology arise from the fact that movements in virtual space, and accompanying perceptual changes, are treated by the brain in much the same way as those in equivalent real space. The research benefits of using VEs, in areas of psychology such as spatial learning and cognition, include…

  5. “You Can’t Just Walk Down the Street and Meet Someone”: The Intersection of Social–Sexual Networking Technology, Stigma, and Health Among Gay and Bisexual Men in the Small City

    PubMed Central

    White Hughto, Jaclyn M.; Pachankis, John E.; Eldahan, Adam I.; Keene, Danya E.

    2016-01-01

    Social–sexual networking technologies have been reported to yield both psychosocial benefits and sexual risks for gay and bisexual men, yet little research has explored how technology interacts with the social–geographical environment to shape the health of gay and bisexual men in the relatively understudied environment of small cities. This article draws on 29 semistructured interviews examining the use of social–sexual networking technologies among racially diverse gay and bisexual men in two small cities. Questions probed participants’ use of technology to meet sexual partners, engagement in the gay community, and the role of virtual and nonvirtual spaces in relation to health. Findings suggest that social networking technologies can help men navigate the challenges of small cities, including small and insular gay communities, lack of dedicated gay spaces, and sexual minority stigma. However, participants also describe declines in gay community visibility and cohesion, which they attribute to technology use. The article concludes by discussing the intersections of virtual and physical space in small cities as sites for the production of health and illness. PMID:27885147

  6. "You Can't Just Walk Down the Street and Meet Someone": The Intersection of Social-Sexual Networking Technology, Stigma, and Health Among Gay and Bisexual Men in the Small City.

    PubMed

    White Hughto, Jaclyn M; Pachankis, John E; Eldahan, Adam I; Keene, Danya E

    2017-05-01

    Social-sexual networking technologies have been reported to yield both psychosocial benefits and sexual risks for gay and bisexual men, yet little research has explored how technology interacts with the social-geographical environment to shape the health of gay and bisexual men in the relatively understudied environment of small cities. This article draws on 29 semistructured interviews examining the use of social-sexual networking technologies among racially diverse gay and bisexual men in two small cities. Questions probed participants' use of technology to meet sexual partners, engagement in the gay community, and the role of virtual and nonvirtual spaces in relation to health. Findings suggest that social networking technologies can help men navigate the challenges of small cities, including small and insular gay communities, lack of dedicated gay spaces, and sexual minority stigma. However, participants also describe declines in gay community visibility and cohesion, which they attribute to technology use. The article concludes by discussing the intersections of virtual and physical space in small cities as sites for the production of health and illness.

  7. Portable Virtual Training Units

    NASA Technical Reports Server (NTRS)

    Malone, Reagan; Johnston, Alan

    2015-01-01

    The Mission Operations Lab initiated a project to design, develop, deliver, test, and validate a unique training system for astronaut and ground support personnel. In an effort to keep training costs low, virtual training units (VTUs) have been designed based on images of actual hardware and manipulated by a touch screen style interface for ground support personnel training. This project helped modernized the training system and materials by integrating them with mobile devices for training when operators or crew are unavailable to physically train in the facility. This project also tested the concept of a handheld remote device to control integrated trainers using International Space Station (ISS) training simulators as a platform. The portable VTU can interface with the full-sized VTU, allowing a trainer co-located with a trainee to remotely manipulate a VTU and evaluate a trainee's response. This project helped determine if it is useful, cost effective, and beneficial for the instructor to have a portable handheld device to control the behavior of the models during training. This project has advanced NASA Marshall Space Flight Center's (MSFC's) VTU capabilities with modern and relevant technology to support space flight training needs of today and tomorrow.

  8. Virtual community centre for power wheelchair training: Experience of children and clinicians.

    PubMed

    Torkia, Caryne; Ryan, Stephen E; Reid, Denise; Boissy, Patrick; Lemay, Martin; Routhier, François; Contardo, Resi; Woodhouse, Janet; Archambault, Phillipe S

    2017-11-02

    To: 1) characterize the overall experience in using the McGill immersive wheelchair - community centre (miWe-CC) simulator; and 2) investigate the experience of presence (i.e., sense of being in the virtual rather than in the real, physical environment) while driving a PW in the miWe-CC. A qualitative research design with structured interviews was used. Fifteen clinicians and 11 children were interviewed after driving a power wheelchair (PW) in the miWe-CC simulator. Data were analyzed using the conventional and directed content analysis approaches. Overall, participants enjoyed using the simulator and experienced a sense of presence in the virtual space. They felt a sense of being in the virtual environment, involved and focused on driving the virtual PW rather than on the surroundings of the actual room where they were. Participants reported several similarities between the virtual community centre layout and activities of the miWe-CC and the day-to-day reality of paediatric PW users. The simulator replicated participants' expectations of real-life PW use and promises to have an effect on improving the driving skills of new PW users. Implications for rehabilitation Among young users, the McGill immersive wheelchair (miWe) simulator provides an experience of presence within the virtual environment. This experience of presence is generated by a sense of being in the virtual scene, a sense of being involved, engaged, and focused on interacting within the virtual environment, and by the perception that the virtual environment is consistent with the real world. The miWe is a relevant and accessible approach, complementary to real world power wheelchair training for young users.

  9. The Development of a Virtual Company to Support the Reengineering of the NASA/Goddard Hubble Space Telescope Control Center System

    NASA Technical Reports Server (NTRS)

    Lehtonen, Ken

    1999-01-01

    This is a report to the Third Annual International Virtual Company Conference, on The Development of a Virtual Company to Support the Reengineering of the NASA/Goddard Hubble Space Telescope (HST) Control Center System. It begins with a HST Science "Commercial": Brief Tour of Our Universe showing various pictures taken from the Hubble Space Telescope. The presentation then reviews the project background and goals. Evolution of the Control Center System ("CCS Inc.") is then reviewed. Topics of Interest to "virtual companies" are reviewed: (1) "How To Choose A Team" (2) "Organizational Model" (3) "The Human Component" (4) "'Virtual Trust' Among Teaming Companies" (5) "Unique Challenges to Working Horizontally" (6) "The Cultural Impact" (7) "Lessons Learned".

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragan, Eric D; Bowman, Doug A; Scerbo, Siroberto

    Virtual reality (VR) systems have been proposed for use in numerous training scenarios, such as room clearing, which require the trainee to maintain spatial awareness. But many VR training systems lack a fully surrounding display, requiring trainees to use a combination of physical and virtual turns to view the environment, thus decreasing spatial awareness. One solution to this problem is to amplify head rotations, such that smaller physical turns are mapped to larger virtual turns, allowing trainees to view the surrounding environment with head movements alone. For example, in a multi-monitor system covering only a 90-degree field of regard, headmore » rotations could be amplified four times to allow the user to see the entire 360-degree surrounding environment. This solution is attractive because it can be used with lower-cost VR systems and does not require virtual turning. However, the effects of amplified head rotations on spatial awareness and training transfer are not well understood. We hypothesized that small amounts of amplification might be tolerable, but that larger amplifications might cause trainees to become disoriented and to have decreased task performance and training transfer. In this paper, we will present our findings from an experiment designed to investigate these hypotheses. The experiment placed users in a virtual warehouse and asked them to move from room to room, counting objects placed around them in space. We varied the amount of amplification applied during these trials, and also varied the type of display used (head-mounted display or CAVE). We measured task performance and spatial awareness. We then assessed training transfer in an assessment environment with a fully surrounding display and no amplification. The results of this study will inform VR training system developers about the potential negative effects of using head rotation amplification and contribute to more effective VR training system design.« less

  11. Architectural Methodology Report

    NASA Technical Reports Server (NTRS)

    Dhas, Chris

    2000-01-01

    The establishment of conventions between two communicating entities in the end systems is essential for communications. Examples of the kind of decisions that need to be made in establishing a protocol convention include the nature of the data representation, the for-mat and the speed of the date representation over the communications path, and the sequence of control messages (if any) which are sent. One of the main functions of a protocol is to establish a standard path between the communicating entities. This is necessary to create a virtual communications medium with certain desirable characteristics. In essence, it is the function of the protocol to transform the characteristics of the physical communications environment into a more useful virtual communications model. The final function of a protocol is to establish standard data elements for communications over the path; that is, the protocol serves to create a virtual data element for exchange. Other systems may be constructed in which the transferred element is a program or a job. Finally, there are special purpose applications in which the element to be transferred may be a complex structure such as all or part of a graphic display. NASA's Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to describe the methodologies used in developing a protocol architecture for an in-space Internet node. The node would support NASA:s four mission areas: Earth Science; Space Science; Human Exploration and Development of Space (HEDS); Aerospace Technology. This report presents the methodology for developing the protocol architecture. The methodology addresses the architecture for a computer communications environment. It does not address an analog voice architecture.

  12. Virtual Physics Laboratory Application Based on the Android Smartphone to Improve Learning Independence and Conceptual Understanding

    ERIC Educational Resources Information Center

    Arista, Fitra Suci; Kuswanto, Heru

    2018-01-01

    The research study concerned here was to: (1) produce a virtual physics laboratory application to be called ViPhyLab by using the Android smartphone as basis; (2) determine the appropriateness and quality of the virtual physics laboratory application that had been developed; and (3) describe the improvement in learning independence and conceptual…

  13. Effects of the Physical Laboratory versus the Virtual Laboratory in Teaching Simple Electric Circuits on Conceptual Achievement and Attitudes Towards the Subject

    ERIC Educational Resources Information Center

    Tekbiyik, Ahmet; Ercan, Orhan

    2015-01-01

    Current study examined the effects of virtual and physical laboratory practices on students' conceptual achievement in the subject of electricity and their attitudes towards simple electric circuits. Two groups (virtual and physical) selected through simple random sampling was taught with web-aided material called "Electricity in Our…

  14. KSC Tech Transfer News, Volume 2, No. 2

    NASA Technical Reports Server (NTRS)

    Makufka, David (Editor); Dunn, Carol (Editor)

    2009-01-01

    This issue contains articles about: (1) the Innovative Partnerships Program (IPP) and the manager of the program, Alexis Hongamen, (2) New Technology Report (NTR) on a Monte Carlo Simulation to Estimate the Likelihood of Direct Lightning Strikes, (3) Kennedy Space Center's Applied Physics Lab, (4) a virtual ruler that is used for many applications, (5) a portable device that finds low-level leaks, (6) a sun-shield, that supports in-space cryogenic propellant storage, (7) lunar dust modeling software, (8) space based monitoring of radiation damage to DNA, (9) the use of light-emitting diode (LED) arrays vegetable production system, (10) Dust Tolerant Intelligent Electrical Connection Systems, (11) Ice Detection Camera System Upgrade, (12) Repair Techniques for Composite Structures, (13) Cryogenic Orbital Testbed, and (14) copyright protection.

  15. Physical Models and Virtual Reality Simulators in Otolaryngology.

    PubMed

    Javia, Luv; Sardesai, Maya G

    2017-10-01

    The increasing role of simulation in the medical education of future otolaryngologists has followed suit with other surgical disciplines. Simulators make it possible for the resident to explore and learn in a safe and less stressful environment. The various subspecialties in otolaryngology use physical simulators and virtual-reality simulators. Although physical simulators allow the operator to make direct contact with its components, virtual-reality simulators allow the operator to interact with an environment that is computer generated. This article gives an overview of the various types of physical simulators and virtual-reality simulators used in otolaryngology that have been reported in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. WeaVR: a self-contained and wearable immersive virtual environment simulation system.

    PubMed

    Hodgson, Eric; Bachmann, Eric R; Vincent, David; Zmuda, Michael; Waller, David; Calusdian, James

    2015-03-01

    We describe WeaVR, a computer simulation system that takes virtual reality technology beyond specialized laboratories and research sites and makes it available in any open space, such as a gymnasium or a public park. Novel hardware and software systems enable HMD-based immersive virtual reality simulations to be conducted in any arbitrary location, with no external infrastructure and little-to-no setup or site preparation. The ability of the WeaVR system to provide realistic motion-tracked navigation for users, to improve the study of large-scale navigation, and to generate usable behavioral data is shown in three demonstrations. First, participants navigated through a full-scale virtual grocery store while physically situated in an open grass field. Trajectory data are presented for both normal tracking and for tracking during the use of redirected walking that constrained users to a predefined area. Second, users followed a straight path within a virtual world for distances of up to 2 km while walking naturally and being redirected to stay within the field, demonstrating the ability of the system to study large-scale navigation by simulating virtual worlds that are potentially unlimited in extent. Finally, the portability and pedagogical implications of this system were demonstrated by taking it to a regional high school for live use by a computer science class on their own school campus.

  17. Simulation of Physical Experiments in Immersive Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Wasfy, Tamer M.

    2001-01-01

    An object-oriented event-driven immersive Virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screed(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A container object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiments procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk-free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.

  18. Virtual reality and physical rehabilitation: a new toy or a new research and rehabilitation tool?

    PubMed Central

    Keshner, Emily A

    2004-01-01

    Virtual reality (VR) technology is rapidly becoming a popular application for physical rehabilitation and motor control research. But questions remain about whether this technology really extends our ability to influence the nervous system or whether moving within a virtual environment just motivates the individual to perform. I served as guest editor of this month's issue of the Journal of NeuroEngineering and Rehabilitation (JNER) for a group of papers on augmented and virtual reality in rehabilitation. These papers demonstrate a variety of approaches taken for applying VR technology to physical rehabilitation. The papers by Kenyon et al. and Sparto et al. address critical questions about how this technology can be applied to physical rehabilitation and research. The papers by Sveistrup and Viau et al. explore whether action within a virtual environment is equivalent to motor performance within the physical environment. Finally, papers by Riva et al. and Weiss et al. discuss the important characteristics of a virtual environment that will be most effective for obtaining changes in the motor system. PMID:15679943

  19. Computer Applications and Virtual Environments (CAVE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall SPace Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  20. ComputerApplications and Virtual Environments (CAVE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Center (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability providedgeneral visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  1. ComputerApplications and Virtual Environments (CAVE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Centerr (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provided general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  2. Feynman-diagrams approach to the quantum Rabi model for ultrastrong cavity QED: stimulated emission and reabsorption of virtual particles dressing a physical excitation

    NASA Astrophysics Data System (ADS)

    Di Stefano, Omar; Stassi, Roberto; Garziano, Luigi; Frisk Kockum, Anton; Savasta, Salvatore; Nori, Franco

    2017-05-01

    In quantum field theory, bare particles are dressed by a cloud of virtual particles to form physical particles. The virtual particles affect properties such as the mass and charge of the physical particles, and it is only these modified properties that can be measured in experiments, not the properties of the bare particles. The influence of virtual particles is prominent in the ultrastrong-coupling regime of cavity quantum electrodynamics (QED), which has recently been realised in several condensed-matter systems. In some of these systems, the effective interaction between atom-like transitions and the cavity photons can be switched on or off by external control pulses. This offers unprecedented possibilities for exploring quantum vacuum fluctuations and the relation between physical and bare particles. We consider a single three-level quantum system coupled to an optical resonator. Here we show that, by applying external electromagnetic pulses of suitable amplitude and frequency, each virtual photon dressing a physical excitation in cavity-QED systems can be converted into a physical observable photon, and back again. In this way, the hidden relationship between the bare and the physical excitations can be unravelled and becomes experimentally testable. The conversion between virtual and physical photons can be clearly pictured using Feynman diagrams with cut loops.

  3. Sliding perspectives: dissociating ownership from self-location during full body illusions in virtual reality

    PubMed Central

    Maselli, Antonella; Slater, Mel

    2014-01-01

    Bodily illusions have been used to study bodily self-consciousness and disentangle its various components, among other the sense of ownership and self-location. Congruent multimodal correlations between the real body and a fake humanoid body can in fact trigger the illusion that the fake body is one's own and/or disrupt the unity between the perceived self-location and the position of the physical body. However, the extent to which changes in self-location entail changes in ownership is still matter of debate. Here we address this problem with the support of immersive virtual reality. Congruent visuotactile stimulation was delivered on healthy participants to trigger full body illusions from different visual perspectives, each resulting in a different degree of overlap between real and virtual body. Changes in ownership and self-location were measured with novel self-posture assessment tasks and with an adapted version of the cross-modal congruency task. We found that, despite their strong coupling, self-location and ownership can be selectively altered: self-location was affected when having a third person perspective over the virtual body, while ownership toward the virtual body was experienced only in the conditions with total or partial overlap. Thus, when the virtual body is seen in the far extra-personal space, changes in self-location were not coupled with changes in ownership. If a partial spatial overlap is present, ownership was instead typically experienced with a boosted change in the perceived self-location. We discussed results in the context of the current knowledge of the multisensory integration mechanisms contributing to self-body perception. We argue that changes in the perceived self-location are associated to the dynamical representation of peripersonal space encoded by visuotactile neurons. On the other hand, our results speak in favor of visuo-proprioceptive neuronal populations being a driving trigger in full body ownership illusions. PMID:25309383

  4. Avatars Talking: The Use of Virtual Worlds within Communication Courses

    ERIC Educational Resources Information Center

    Sarachan, Jeremy; Burk, Nanci; Day, Kenneth; Trevett-Smith, Matthew

    2013-01-01

    Virtual worlds have become an invaluable space for online learning and the exploration of digital cultures. Communication departments can benefit from using these spaces to educate their students in the logistics of virtual worlds and as a way to better understand how the process of interpersonal and global communication functions in both online…

  5. Virtual Learning Spaces in the Web: An Agent-Based Architecture of Personalized Collaborative Learning Environment.

    ERIC Educational Resources Information Center

    Nunez Esquer, Gustavo; Sheremetov, Leonid

    This paper reports on the results and future research work within the paradigm of Configurable Collaborative Distance Learning, called Espacios Virtuales de Apredizaje (EVA). The paper focuses on: (1) description of the main concepts, including virtual learning spaces for knowledge, collaboration, consulting, and experimentation, a…

  6. The NonConforming Virtual Element Method for the Stokes Equations

    DOE PAGES

    Cangiani, Andrea; Gyrya, Vitaliy; Manzini, Gianmarco

    2016-01-01

    In this paper, we present the nonconforming virtual element method (VEM) for the numerical approximation of velocity and pressure in the steady Stokes problem. The pressure is approximated using discontinuous piecewise polynomials, while each component of the velocity is approximated using the nonconforming virtual element space. On each mesh element the local virtual space contains the space of polynomials of up to a given degree, plus suitable nonpolynomial functions. The virtual element functions are implicitly defined as the solution of local Poisson problems with polynomial Neumann boundary conditions. As typical in VEM approaches, the explicit evaluation of the non-polynomial functionsmore » is not required. This approach makes it possible to construct nonconforming (virtual) spaces for any polynomial degree regardless of the parity, for two- and three-dimensional problems, and for meshes with very general polygonal and polyhedral elements. We show that the nonconforming VEM is inf-sup stable and establish optimal a priori error estimates for the velocity and pressure approximations. Finally, numerical examples confirm the convergence analysis and the effectiveness of the method in providing high-order accurate approximations.« less

  7. The Application of the SPASE Metadata Standard in the U.S. and Worldwide

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; King, T. A.; Roberts, D.

    2012-12-01

    The Space Physics Archive Search and Extract (SPASE) Metadata standard for Heliophysics and related data is now an established standard within the NASA-funded space and solar physics community and is spreading to the international groups within that community. Development of SPASE had involved a number of international partners and the current version of the SPASE Metadata Model (version 2.2.2) has not needed any structural modifications since January 2011 . The SPASE standard has been adopted by groups such as NASA's Heliophysics division, the Canadian Space Science Data Portal (CSSDP), Canada's AUTUMN network, Japan's Inter-university Upper atmosphere Global Observation NETwork (IUGONET), Centre de Données de la Physique des Plasmas (CDPP), and the near-Earth space data infrastructure for e-Science (ESPAS). In addition, portions of the SPASE dictionary have been modeled in semantic web ontologies for use with reasoners and semantic searches. While we anticipate additional modifications to the model in the future to accommodate simulation and model data, these changes will not affect the data descriptions already generated for instrument-related datasets. Examples of SPASE descriptions can be viewed at http://www.spase-group.org/registry/explorer and data can be located using SPASE concepts by searching the Virtual Space Physics Observatory (http://vspo.gsfc.nasa.gov/websearch/dispatcher) for data of interest.

  8. Integrating a Data Center and Resident Archive into the Emerging Virtual Observatiry System: Practical experience and perspectives

    NASA Astrophysics Data System (ADS)

    Davis, A. J.; Kanekal, S. G.; Looper, M. D.; Mason, G. M.; Mewaldt, R. A.

    2006-12-01

    The SAMPEX Resident Archive is currently under construction, and will be co-hosted at Caltech with the ACE Science Center. With SAMPEX in low earth orbit, and ACE at L1, and a suite of instruments on each spacecraft, the combined data cover a very broad range in species, energy, location, and time. The data include solar wind, solar energetic particle, and galactic cosmic ray intensity and composition data, as well as solar wind and magnetic field parameters on a variety of time scales. We describe our recent efforts to provide enhanced access to these data via the emerging virtual observatory system, including work with the Space Physics Archive Search and Extract (SPASE) Consortium to ensure that the ACE and SAMPEX data can be adequately described using the SPASE data model, development of a SOAP web services interface between the ACE Science Center and the virtual observatories, and ideas for combining the ACE and SAMPEx data in useful ways.

  9. Evaluation of Sensor Configurations for Robotic Surgical Instruments

    PubMed Central

    Gómez-de-Gabriel, Jesús M.; Harwin, William

    2015-01-01

    Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included. PMID:26516863

  10. Evaluation of Sensor Configurations for Robotic Surgical Instruments.

    PubMed

    Gómez-de-Gabriel, Jesús M; Harwin, William

    2015-10-27

    Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included.

  11. Mixed method evaluation of the Virtual Traveller physically active lesson intervention: An analysis using the RE-AIM framework.

    PubMed

    Norris, E; Dunsmuir, S; Duke-Williams, O; Stamatakis, E; Shelton, N

    2018-02-02

    Physically active lessons integrating movement into academic content are a way to increase children's physical activity levels. Virtual Traveller was a physically active lesson intervention set in Year 4 (aged 8-9) primary school classes in Greater London, UK. Implemented by classroom teachers, it was a six-week intervention providing 10-min physically active Virtual Field Trips three times a week. The aim of this paper is to report the process evaluation of the Virtual Traveller randomized controlled trial according to RE-AIM framework criteria (Reach, Effectiveness, Adoption, Implementation and Maintenance). A mixed methods approach to evaluation was conducted with five intervention group classes. Six sources of data were collected via informed consent logs, teacher session logs, teacher and pupil questionnaires, teacher interviews and pupil focus groups. High participation and low attrition rates were identified (Reach) alongside positive evaluations of Virtual Traveller sessions from pupil and teachers (Effectiveness). Participants were from more deprived and ethnic backgrounds than local and national averages, with Virtual Traveller having the potential to be a free intervention (Adoption). 70% of sessions were delivered overall (Implementation) but no maintenance of the programme was evident at three month follow-up (Maintenance). Mixed method evaluation of Virtual Traveller showed potential for it to be implemented as a low-cost physically active lesson intervention in UK primary schools. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Searching Fragment Spaces with feature trees.

    PubMed

    Lessel, Uta; Wellenzohn, Bernd; Lilienthal, Markus; Claussen, Holger

    2009-02-01

    Virtual combinatorial chemistry easily produces billions of compounds, for which conventional virtual screening cannot be performed even with the fastest methods available. An efficient solution for such a scenario is the generation of Fragment Spaces, which encode huge numbers of virtual compounds by their fragments/reagents and rules of how to combine them. Similarity-based searches can be performed in such spaces without ever fully enumerating all virtual products. Here we describe the generation of a huge Fragment Space encoding about 5 * 10(11) compounds based on established in-house synthesis protocols for combinatorial libraries, i.e., we encode practically evaluated combinatorial chemistry protocols in a machine readable form, rendering them accessible to in silico search methods. We show how such searches in this Fragment Space can be integrated as a first step in an overall workflow. It reduces the extremely huge number of virtual products by several orders of magnitude so that the resulting list of molecules becomes more manageable for further more elaborated and time-consuming analysis steps. Results of a case study are presented and discussed, which lead to some general conclusions for an efficient expansion of the chemical space to be screened in pharmaceutical companies.

  13. VirtualSpace: A vision of a machine-learned virtual space environment

    NASA Astrophysics Data System (ADS)

    Bortnik, J.; Sarno-Smith, L. K.; Chu, X.; Li, W.; Ma, Q.; Angelopoulos, V.; Thorne, R. M.

    2017-12-01

    Space borne instrumentation tends to come and go. A typical instrument will go through a phase of design and construction, be deployed on a spacecraft for several years while it collects data, and then be decommissioned and fade into obscurity. The data collected from that instrument will typically receive much attention while it is being collected, perhaps in the form of event studies, conjunctions with other instruments, or a few statistical surveys, but once the instrument or spacecraft is decommissioned, the data will be archived and receive progressively less attention with every passing year. This is the fate of all historical data, and will be the fate of data being collected by instruments even at the present time. But what if those instruments could come alive, and all be simultaneously present at any and every point in time and space? Imagine the scientific insights, and societal gains that could be achieved with a grand (virtual) heliophysical observatory that consists of every current and historical mission ever deployed? We propose that this is not just fantasy but is imminently doable with the data currently available, with the present computational resources, and with currently available algorithms. This project revitalizes existing data resources and lays the groundwork for incorporating data from every future mission to expand the scope and refine the resolution of the virtual observatory. We call this project VirtualSpace: a machine-learned virtual space environment.

  14. An intelligent control and virtual display system for evolutionary space station workstation design

    NASA Technical Reports Server (NTRS)

    Feng, Xin; Niederjohn, Russell J.; Mcgreevy, Michael W.

    1992-01-01

    Research and development of the Advanced Display and Computer Augmented Control System (ADCACS) for the space station Body-Ported Cupola Virtual Workstation (BP/VCWS) were pursued. The potential applications were explored of body ported virtual display and intelligent control technology for the human-system interfacing applications is space station environment. The new system is designed to enable crew members to control and monitor a variety of space operations with greater flexibility and efficiency than existing fixed consoles. The technologies being studied include helmet mounted virtual displays, voice and special command input devices, and microprocessor based intelligent controllers. Several research topics, such as human factors, decision support expert systems, and wide field of view, color displays are being addressed. The study showed the significant advantages of this uniquely integrated display and control system, and its feasibility for human-system interfacing applications in the space station command and control environment.

  15. No place, new places: death and its rituals in urban Asia.

    PubMed

    Kong, Lily

    2012-01-01

    In many land-scarce Asian cities, planning agencies have sought to reduce space for the dead to release land for the living, encouraging conversion from burial to cremation over several decades. This has caused secular principles privileging efficient land use to conflict with symbolic values invested in burial spaces. Over time, not only has cremation become more accepted, even columbaria have become overcrowded, and new forms of burials (sea and woodland burials) have emerged. As burial methods change, so too do commemorative rituals, including new on-line and mobile phone rituals. This paper traces the ways in which physical spaces for the dead in several east Asian cities have diminished and changed over time, the growth of virtual space for them, the accompanying discourses that influence these dynamics and the new rituals that emerge concomitantly with the contraction of land space.

  16. Centrally managed unified shared virtual address space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkes, John

    Systems, apparatuses, and methods for managing a unified shared virtual address space. A host may execute system software and manage a plurality of nodes coupled to the host. The host may send work tasks to the nodes, and for each node, the host may externally manage the node's view of the system's virtual address space. Each node may have a central processing unit (CPU) style memory management unit (MMU) with an internal translation lookaside buffer (TLB). In one embodiment, the host may be coupled to a given node via an input/output memory management unit (IOMMU) interface, where the IOMMU frontendmore » interface shares the TLB with the given node's MMU. In another embodiment, the host may control the given node's view of virtual address space via memory-mapped control registers.« less

  17. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report include the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  18. Expedition 15 Crew Members training in the Virtual Reality (VR) Laboratory

    NASA Image and Video Library

    2006-09-25

    JSC2006-E-41640 (25 Sept. 2006) --- Cosmonaut Fyodor N. Yurchikhin, Expedition 15 commander representing Russia's Federal Space Agency, participates in a camera review training session in the virtual reality lab in the Space Vehicle Mockup Facility at Johnson Space Center.

  19. Expedition 15 Crew Members training in the Virtual Reality (VR) Laboratory

    NASA Image and Video Library

    2006-09-25

    JSC2006-E-41641 (25 Sept. 2006) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, participates in a camera review training session in the virtual reality lab in the Space Vehicle Mockup Facility at Johnson Space Center.

  20. Vision-based overlay of a virtual object into real scene for designing room interior

    NASA Astrophysics Data System (ADS)

    Harasaki, Shunsuke; Saito, Hideo

    2001-10-01

    In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system, interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is developed as an example of an AR application of the proposed method. Using interior simulator, users can visually simulate the location of virtual furniture and articles in the living room so that they can easily design the living room interior without placing real furniture and articles, by viewing from many different locations and orientations in real-time. In our system, two base images of a real world space are captured from two different views for defining a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are registered interactively. After such coordinate determination, an image sequence of a real world space is captured by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects. Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a living room nearly at video rate (20 frames per second).

  1. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170885 (1 Oct. 2010) --- NASA astronauts Alvin Drew (left) and Tim Kopra, both STS-133 mission specialists, use virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of their duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration

  2. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170892 (1 Oct. 2010) --- NASA astronaut Alvin Drew, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration

  3. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170871 (1 Oct. 2010) --- NASA astronaut Tim Kopra, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Crew trainer David Homan assisted Kopra. Photo credit: NASA or National Aeronautics and Space Administration

  4. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170897 (1 Oct. 2010) --- NASA astronaut Tim Kopra, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration

  5. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170873 (1 Oct. 2010) --- NASA astronaut Tim Kopra, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Crew trainer David Homan assisted Kopra. Photo credit: NASA or National Aeronautics and Space Administration

  6. STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training

    NASA Image and Video Library

    2010-08-27

    JSC2010-E-121053 (27 Aug. 2010) --- NASA astronaut Greg Chamitoff, STS-134 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration

  7. Future Directions: Advances and Implications of Virtual Environments Designed for Pain Management

    PubMed Central

    Soomro, Ahmad; Riva, Giuseppe; Wiederhold, Mark D.

    2014-01-01

    Abstract Pain symptoms have been addressed with a variety of therapeutic measures in the past, but as we look to the future, we begin encountering new options for patient care and individual health and well-being. Recent studies indicate that computer-generated graphic environments—virtual reality (VR)—can offer effective cognitive distractions for individuals suffering from pain arising from a variety of physical and psychological illnesses. Studies also indicate the effectiveness of VR for both chronic and acute pain conditions. Future possibilities for VR to address pain-related concerns include such diverse groups as military personnel, space exploration teams, the general labor force, and our ever increasing elderly population. VR also shows promise to help in such areas as drug abuse, at-home treatments, and athletic injuries. PMID:24892206

  8. Future directions: advances and implications of virtual environments designed for pain management.

    PubMed

    Wiederhold, Brenda K; Soomro, Ahmad; Riva, Giuseppe; Wiederhold, Mark D

    2014-06-01

    Pain symptoms have been addressed with a variety of therapeutic measures in the past, but as we look to the future, we begin encountering new options for patient care and individual health and well-being. Recent studies indicate that computer-generated graphic environments--virtual reality (VR)--can offer effective cognitive distractions for individuals suffering from pain arising from a variety of physical and psychological illnesses. Studies also indicate the effectiveness of VR for both chronic and acute pain conditions. Future possibilities for VR to address pain-related concerns include such diverse groups as military personnel, space exploration teams, the general labor force, and our ever increasing elderly population. VR also shows promise to help in such areas as drug abuse, at-home treatments, and athletic injuries.

  9. STS-118 Astronaut Dave Williams Trains Using Virtual Reality Hardware

    NASA Technical Reports Server (NTRS)

    2007-01-01

    STS-118 astronaut and mission specialist Dafydd R. 'Dave' Williams, representing the Canadian Space Agency, uses Virtual Reality Hardware in the Space Vehicle Mock Up Facility at the Johnson Space Center to rehearse some of his duties for the upcoming mission. This type of virtual reality training allows the astronauts to wear special gloves and other gear while looking at a computer that displays simulating actual movements around the various locations on the station hardware which with they will be working.

  10. Investigation of the Influence of Microgravity on Transport Mechanisms in a Virtual Spaceflight Chamber: A Ground-Based Program

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Lal, Ravindra B.; Rangel, Roger; Witherow, William; Rogers, Jan

    2001-01-01

    The IML-1 Spaceflight produced over 1000 holograms of a well-defined particle field in the low g Spacelab environment; each containing as much as 1000 megabytes of information. This project took advantage of these data and the concept of holographic "virtual" spaceflight to advance the understanding of convection in the space shuttle environment, g-jitter effects on crystal growth, and complex transport phenomena in low Reynolds number flows. The first objective of the proposed work was to advance the understanding of microgravity effects on crystal growth. This objective was achieved through the use of existing holographic data recorded during the IML-1 Spaceflight. The second objective was to design a spaceflight experiment that exploits the "virtual space chamber concept" in which holograms of space chambers can provide a virtual access to space. This led to a flight definition project, which is now underway under a separate contract known as SHIVA, Spaceflight Holography Investigation in a Virtual Apparatus.

  11. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-08-01

    Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Approach. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Main results. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s-1. Significance. Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.

  12. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface.

    PubMed

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-08-01

    At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s(-1). Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.

  13. Quadcopter control in three-dimensional space using a noninvasive motor imagery based brain-computer interface

    PubMed Central

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-01-01

    Objective At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional physical space using noninvasive scalp EEG in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that operation of a real world device has on subjects’ control with comparison to a two-dimensional virtual cursor task. Approach Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a three-dimensional physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m/s. Significance Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user’s ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in the three-dimensional physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG based BCI systems to accomplish complex control in three-dimensional physical space. The present study may serve as a framework for the investigation of multidimensional non-invasive brain-computer interface control in a physical environment using telepresence robotics. PMID:23735712

  14. A new experimental capability for the study of regolith surface physical properties to support science, space exploration, and in situ resource utilization (ISRU)

    NASA Astrophysics Data System (ADS)

    Dreyer, Christopher B.; Abbud-Madrid, Angel; Atkinson, Jared; Lampe, Alexander; Markley, Tasha; Williams, Hunter; McDonough, Kara; Canney, Travis; Haines, Joseph

    2018-06-01

    Many surfaces found on the Moon, asteroids, Mars, moons, and other planetary bodies are covered in a fine granular material known as regolith. Increased knowledge of the physical properties of extraterrestrial regolith surfaces will help advance the scientific knowledge of these bodies as well as the development of exploration (e.g., instrument and robotic) and in situ resource utilization (ISRU) systems. The Center for Space Resources at the Colorado School of Mines as part of the Institute for Modeling Plasma, Atmospheres, and Cosmic Dust of NASA's Solar System Exploration Research Virtual Institute has developed a novel system, called the ISRU Experimental Probe (IEP) that can support studies of dry and icy regolith from -196 to 150 °C and pressure from laboratory ambient pressure to 10-7 Torr. The IEP system and proof-of-concept results are presented in this paper.

  15. Toward a Virtual Solar Observatory: Starting Before the Petabytes Fall

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Although a few, large, space- and groundbased solar physics databases exist at selected locations, there is as yet only limited standardization or interoperability. I describe the outline of a plan to facilitate access to a distributed network of online solar data archives, both large and small. The underlying principle is that the user need not know where- the data are, only how to specify which data are desired. At the least, such an approach could considerably simplify the scientific user's access to the enormous amount of solar physics data to be obtained in the next decade. At best, it might mean the withering away of traditional data centers, and all the bureaucracy they entail. This work is supported by the Sun-Earth Connections Division of NASA Office of Space Science, thanks to an anomalous act of largess on the part of the 2001 SEC Senior Review.

  16. Toward a Virtual Solar Observatory: Starting Before the Petabytes Fall

    NASA Astrophysics Data System (ADS)

    Gurman, J. B.

    2001-12-01

    Although a few, large, space- and groundbased solar physics databases exist at selected locations, there is as yet only limited standardization or interoperability. I describe the outline of a plan to facilitate access to a distributed network of online solar data archives, both large and small. The underlying principle is that the user need not know where the data are, only how to specify which data are desired. At the least, such an approach could considerably simplify the scientific user's access to the enormous amount of solar physics data to be obtained in the next decade. At best, it might mean the withering away of traditional data centers, and all the bureaucracy they entail. This work is supported by the Sun-Earth Connections Division of NASA Office of Space Science, thanks to an anomalous act of largess on the part of the 2001 SEC Senior Review.

  17. 100 years of the physics of diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Valfells, Ágúst; Ang, L. K.; Luginsland, J. W.; Lau, Y. Y.

    2017-03-01

    The Child-Langmuir Law (CL), discovered a century ago, gives the maximum current that can be transported across a planar diode in the steady state. As a quintessential example of the impact of space charge shielding near a charged surface, it is central to the studies of high current diodes, such as high power microwave sources, vacuum microelectronics, electron and ion sources, and high current drivers used in high energy density physics experiments. CL remains a touchstone of fundamental sheath physics, including contemporary studies of nanoscale quantum diodes and nano gap based plasmonic devices. Its solid state analog is the Mott-Gurney law, governing the maximum charge injection in solids, such as organic materials and other dielectrics, which is important to energy devices, such as solar cells and light emitting diodes. This paper reviews the important advances in the physics of diodes since the discovery of CL, including virtual cathode formation and extension of CL to multiple dimensions, to the quantum regime, and to ultrafast processes. We review the influence of magnetic fields, multiple species in bipolar flow, electromagnetic and time dependent effects in both short pulse and high frequency THz limits, and single electron regimes. Transitions from various emission mechanisms (thermionic-, field-, and photoemission) to the space charge limited state (CL) will be addressed, especially highlighting the important simulation and experimental developments in selected contemporary areas of study. We stress the fundamental physical links between the physics of beams to limiting currents in other areas, such as low temperature plasmas, laser plasmas, and space propulsion.

  18. Fast and Forceful: Modulation of Response Activation Induced by Shifts of Perceived Depth in Virtual 3D Space

    PubMed Central

    Plewan, Thorsten; Rinkenauer, Gerhard

    2016-01-01

    Reaction time (RT) can strongly be influenced by a number of stimulus properties. For instance, there was converging evidence that perceived size rather than physical (i.e., retinal) size constitutes a major determinant of RT. However, this view has recently been challenged since within a virtual three-dimensional (3D) environment retinal size modulation failed to influence RT. In order to further investigate this issue in the present experiments response force (RF) was recorded as a supplemental measure of response activation in simple reaction tasks. In two separate experiments participants’ task was to react as fast as possible to the occurrence of a target located close to the observer or farther away while the offset between target locations was increased from Experiment 1 to Experiment 2. At the same time perceived target size (by varying the retinal size across depth planes) and target type (sphere vs. soccer ball) were modulated. Both experiments revealed faster and more forceful reactions when targets were presented closer to the observers. Perceived size and target type barely affected RT and RF in Experiment 1 but differentially affected both variables in Experiment 2. Thus, the present findings emphasize the usefulness of RF as a supplement to conventional RT measurement. On a behavioral level the results confirm that (at least) within virtual 3D space perceived object size neither strongly influences RT nor RF. Rather the relative position within egocentric (body-centered) space presumably indicates an object’s behavioral relevance and consequently constitutes an important modulator of visual processing. PMID:28018273

  19. Low cost heads-up virtual reality (HUVR) with optical tracking and haptic feedback

    NASA Astrophysics Data System (ADS)

    Margolis, Todd; DeFanti, Thomas A.; Dawe, Greg; Prudhomme, Andrew; Schulze, Jurgen P.; Cutchin, Steve

    2011-03-01

    Researchers at the University of California, San Diego, have created a new, relatively low-cost augmented reality system that enables users to touch the virtual environment they are immersed in. The Heads-Up Virtual Reality device (HUVR) couples a consumer 3D HD flat screen TV with a half-silvered mirror to project any graphic image onto the user's hands and into the space surrounding them. With his or her head position optically tracked to generate the correct perspective view, the user maneuvers a force-feedback (haptic) device to interact with the 3D image, literally 'touching' the object's angles and contours as if it was a tangible physical object. HUVR can be used for training and education in structural and mechanical engineering, archaeology and medicine as well as other tasks that require hand-eye coordination. One of the most unique characteristics of HUVR is that a user can place their hands inside of the virtual environment without occluding the 3D image. Built using open-source software and consumer level hardware, HUVR offers users a tactile experience in an immersive environment that is functional, affordable and scalable.

  20. Cognitive factors associated with immersion in virtual environments

    NASA Technical Reports Server (NTRS)

    Psotka, Joseph; Davison, Sharon

    1993-01-01

    Immersion into the dataspace provided by a computer, and the feeling of really being there or 'presence', are commonly acknowledged as the uniquely important features of virtual reality environments. How immersed one feels appears to be determined by a complex set of physical components and affordances of the environment, and as yet poorly understood psychological processes. Pimentel and Teixeira say that the experience of being immersed in a computer-generated world involves the same mental shift of 'suspending your disbelief for a period of time' as 'when you get wrapped up in a good novel or become absorbed in playing a computer game'. That sounds as if it could be right, but it would be good to get some evidence for these important conclusions. It might be even better to try to connect these statements with theoretical positions that try to do justice to complex cognitive processes. The basic precondition for understanding Virtual Reality (VR) is understanding the spatial representation systems that localize our bodies or egocenters in space. The effort to understand these cognitive processes is being driven with new energy by the pragmatic demands of successful virtual reality environments, but the literature is largely sparse and anecdotal.

  1. VESPA: Developing the Planetary Science Virtual Observatory in H2020

    NASA Astrophysics Data System (ADS)

    Erard, S.; Cecconi, B.; Le Sidaner, P.; Capria, T.; Rossi, A. P.; Schmitt, B.; André, N.; Vandaele, A.-C.; Scherf, M.; Hueso, R.; Maattanen, A.; Thuillot, W.; Achilleos, N.; Marmo, C.; Santolik, O.; Benson, K.; Bollard, Ph.

    2015-10-01

    The Europlanet H2020 programme will develop a research infrastructure in Horizon 2020. The programme includes a follow-on to the FP7 activity aimed at developing the Planetary Science Virtual Observatory (VO). This activity is called VESPA, which stands for Virtual European Solar and Planetary Access. Building on the IDIS activity of Europlanet FP7, VESPA will distribute more data, will improve the connected tools and infrastructure, and will help developing a community of both users and data providers. One goal of the Europlanet FP7 programme was to set the basis for a European Virtual Observatory in Planetary Science. A prototype has been set up during FP7, most of the activity being dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), plasma physics (SPASE), and space archive services (IPDA). It remains consistent with extensions of IVOA standards.

  2. VESPA: developing the planetary science Virtual Observatory in H2020

    NASA Astrophysics Data System (ADS)

    Erard, Stéphane; Cecconi, Baptiste; Le Sidaner, Pierre; Capria, Teresa; Rossi, Angelo Pio

    2016-04-01

    The Europlanet H2020 programme will develop a research infrastructure in Horizon 2020. The programme includes a follow-on to the FP7 activity aimed at developing the Planetary Science Virtual Observatory (VO). This activity is called VESPA, which stands for Virtual European Solar and Planetary Access. Building on the IDIS activity of Europlanet FP7, VESPA will distribute more data, will improve the connected tools and infrastructure, and will help developing a community of both users and data providers. One goal of the Europlanet FP7 programme was to set the basis for a European Virtual Observatory in Planetary Science. A prototype has been set up during FP7, most of the activity being dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), plasma physics (SPASE), and space archive services (IPDA). It remains consistent with extensions of IVOA standards.

  3. Quantum probability ranking principle for ligand-based virtual screening.

    PubMed

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  4. Quantum probability ranking principle for ligand-based virtual screening

    NASA Astrophysics Data System (ADS)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  5. Virtualization - A Key Cost Saver in NASA Multi-Mission Ground System Architecture

    NASA Technical Reports Server (NTRS)

    Swenson, Paul; Kreisler, Stephen; Sager, Jennifer A.; Smith, Dan

    2014-01-01

    With science team budgets being slashed, and a lack of adequate facilities for science payload teams to operate their instruments, there is a strong need for innovative new ground systems that are able to provide necessary levels of capability processing power, system availability and redundancy while maintaining a small footprint in terms of physical space, power utilization and cooling.The ground system architecture being presented is based off of heritage from several other projects currently in development or operations at Goddard, but was designed and built specifically to meet the needs of the Science and Planetary Operations Control Center (SPOCC) as a low-cost payload command, control, planning and analysis operations center. However, this SPOCC architecture was designed to be generic enough to be re-used partially or in whole by other labs and missions (since its inception that has already happened in several cases!)The SPOCC architecture leverages a highly available VMware-based virtualization cluster with shared SAS Direct-Attached Storage (DAS) to provide an extremely high-performing, low-power-utilization and small-footprint compute environment that provides Virtual Machine resources shared among the various tenant missions in the SPOCC. The storage is also expandable, allowing future missions to chain up to 7 additional 2U chassis of storage at an extremely competitive cost if they require additional archive or virtual machine storage space.The software architecture provides a fully-redundant GMSEC-based message bus architecture based on the ActiveMQ middleware to track all health and safety status within the SPOCC ground system. All virtual machines utilize the GMSEC system agents to report system host health over the GMSEC bus, and spacecraft payload health is monitored using the Hammers Integrated Test and Operations System (ITOS) Galaxy Telemetry and Command (TC) system, which performs near-real-time limit checking and data processing on the downlinked data stream and injects messages into the GMSEC bus that are monitored to automatically page the on-call operator or Systems Administrator (SA) when an off-nominal condition is detected. This architecture, like the LTSP thin clients, are shared across all tenant missions.Other required IT security controls are implemented at the ground system level, including physical access controls, logical system-level authentication authorization management, auditing and reporting, network management and a NIST 800-53 FISMA-Moderate IT Security plan Risk Assessment Contingency Plan, helping multiple missions share the cost of compliance with agency-mandated directives.The SPOCC architecture provides science payload control centers and backup mission operations centers with a cost-effective, standardized approach to virtualizing and monitoring resources that were traditionally multiple racks full of physical machines. The increased agility in deploying new virtual systems and thin client workstations can provide significant savings in personnel costs for maintaining the ground system. The cost savings in procurement, power, rack footprint and cooling as well as the shared multi-mission design greatly reduces upfront cost for missions moving into the facility. Overall, the authors hope that this architecture will become a model for how future NASA operations centers are constructed!

  6. Virtual tour: INL's space battery facility

    ScienceCinema

    Johnson, Steve

    2018-05-07

    This virtual tour shows how INL fuels and tests nuclear power systems for deep space missions. To learn more about INL's contribution to the Mars Science Laboratory, visit http://www.inl.gov/marsrover.

  7. Engineering Laboratory Instruction in Virtual Environment--"eLIVE"

    ERIC Educational Resources Information Center

    Chaturvedi, Sushil; Prabhakaran, Ramamurthy; Yoon, Jaewan; Abdel-Salam, Tarek

    2011-01-01

    A novel application of web-based virtual laboratories to prepare students for physical experiments is explored in some detail. The pedagogy of supplementing physical laboratory with web-based virtual laboratories is implemented by developing a web-based tool, designated in this work as "eLIVE", an acronym for Engineering Laboratory…

  8. Around Marshall

    NASA Image and Video Library

    1993-09-15

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall SPace Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  9. Networked Experiments and Scientific Resource Sharing in Cooperative Knowledge Spaces

    ERIC Educational Resources Information Center

    Cikic, Sabine; Jeschke, Sabina; Ludwig, Nadine; Sinha, Uwe; Thomsen, Christian

    2007-01-01

    Cooperative knowledge spaces create new potentials for the experimental fields in natural sciences and engineering because they enhance the accessibility of experimental setups through virtual laboratories and remote technology, opening them for collaborative and distributed usage. A concept for extending existing virtual knowledge spaces for the…

  10. On reducing terrorism power: a hint from physics

    NASA Astrophysics Data System (ADS)

    Galam, Serge; Mauger, Alain

    2003-05-01

    The September 11 attack on the US has revealed an unprecedented terrorism worldwide range of destruction. Recently, it has been related to the percolation of worldwide spread passive supporters. This scheme puts the suppression of the percolation effect as the major strategic issue in the fight against terrorism. Accordingly the world density of passive supporters should be reduced below the percolation threshold. In terms of solid policy, it means to neutralize millions of random passive supporters, which is contrary to ethics and out of any sound practical scheme. Given this impossibility we suggest instead a new strategic scheme to act directly on the value of the terrorism percolation threshold itself without harming the passive supporters. Accordingly we identify the space hosting the percolation phenomenon to be a multi-dimensional virtual social space which extends the ground earth surface to include the various independent terrorist-fighting goals. The associated percolating cluster is then found to create long-range ground connections to terrorism activity. We are thus able to modify the percolation threshold pc in the virtual space to reach p

  11. Incorporating Virtual Reactions into a Logic-based Ligand-based Virtual Screening Method to Discover New Leads

    PubMed Central

    Reynolds, Christopher R; Muggleton, Stephen H; Sternberg, Michael J E

    2015-01-01

    The use of virtual screening has become increasingly central to the drug development pipeline, with ligand-based virtual screening used to screen databases of compounds to predict their bioactivity against a target. These databases can only represent a small fraction of chemical space, and this paper describes a method of exploring synthetic space by applying virtual reactions to promising compounds within a database, and generating focussed libraries of predicted derivatives. A ligand-based virtual screening tool Investigational Novel Drug Discovery by Example (INDDEx) is used as the basis for a system of virtual reactions. The use of virtual reactions is estimated to open up a potential space of 1.21×1012 potential molecules. A de novo design algorithm known as Partial Logical-Rule Reactant Selection (PLoRRS) is introduced and incorporated into the INDDEx methodology. PLoRRS uses logical rules from the INDDEx model to select reactants for the de novo generation of potentially active products. The PLoRRS method is found to increase significantly the likelihood of retrieving molecules similar to known actives with a p-value of 0.016. Case studies demonstrate that the virtual reactions produce molecules highly similar to known actives, including known blockbuster drugs. PMID:26583052

  12. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report contain supporting documentation, including the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  13. STS-115 Vitual Lab Training

    NASA Image and Video Library

    2005-06-07

    JSC2005-E-21191 (7 June 2005) --- Astronaut Steven G. MacLean, STS-115 mission specialist representing the Canadian Space Agency, uses the virtual reality lab at the Johnson Space Center to train for his duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  14. Using anthropomorphic avatars resembling sedentary older individuals as models to enhance self-efficacy and adherence to physical activity: psychophysiological correlates.

    PubMed

    Ruiz, Jorge G; Andrade, Allen D; Anam, Ramankumar; Aguiar, Rudxandra; Sun, Huaping; Roos, Bernard A

    2012-01-01

    The prevalence of obesity and associated health complications are currently at unprecedented levels. Physical activity in this population can improve patient outcomes. Virtual reality (VR) self-modeling may improve self-efficacy and adherence to physical activity. We conducted a comparative study of 30 participants randomized to 3 versions of a 3D avatar-based VR intervention about exercise: virtual representation of the self exercising condition; virtual representation of other person exercising and control condition. Participants in the virtual representation of the self group significantly increased their levels of physical activity. The improvement in physical activity for participants in the visual representation of other person exercising was marginal. The improvement for the control group was not significant. However, the effect sizes for comparing the pre and post intervention physical activity levels were quite large for all three groups. We did not find any group difference in the improvements of physical activity levels and self-efficacy among sedentary, overweight or obese individuals.

  15. SPASE, Metadata, and the Heliophysics Virtual Observatories

    NASA Technical Reports Server (NTRS)

    Thieman, James; King, Todd; Roberts, Aaron

    2010-01-01

    To provide data search and access capability in the field of Heliophysics (the study of the Sun and its effects on the Solar System, especially the Earth) a number of Virtual Observatories (VO) have been established both via direct funding from the U.S. National Aeronautics and Space Administration (NASA) and through other funding agencies in the U.S. and worldwide. At least 15 systems can be labeled as Virtual Observatories in the Heliophysics community, 9 of them funded by NASA. The problem is that different metadata and data search approaches are used by these VO's and a search for data relevant to a particular research question can involve consulting with multiple VO's - needing to learn a different approach for finding and acquiring data for each. The Space Physics Archive Search and Extract (SPASE) project is intended to provide a common data model for Heliophysics data and therefore a common set of metadata for searches of the VO's. The SPASE Data Model has been developed through the common efforts of the Heliophysics Data and Model Consortium (HDMC) representatives over a number of years. We currently have released Version 2.1 of the Data Model. The advantages and disadvantages of the Data Model will be discussed along with the plans for the future. Recent changes requested by new members of the SPASE community indicate some of the directions for further development.

  16. Integrated Access to Heliospheric and Magnetospheric Data

    NASA Astrophysics Data System (ADS)

    Merka, J.; Szabo, A.; Narock, T. W.

    2007-05-01

    Heliospheric and magnetospheric data are provided by a variety of diverse sources. For space physics scientists, knowing that such data sources exist and where they are located are only the first hurdles to overcome before they can utilize the data for research. As a solution, the NASA Heliophysics Division has established a group of virtual observatories (VOs) to provide the scientific community with integrated access to well documented data and related services. The VOs are organized by scientific discipline and yet their essential characteristic is cross-discipline data discovery and exchange. In this talk, we will demonstrate the architecture and features of two distributed data systems, the Virtual Heliospheric Observatory (VHO) and the Virtual Magnetospheric Observatory at NASA Goddard Space Flight Center (VMO/G). The VHO and VMO/G are designed to share most of the components to facilitate faster development and to ease communication between the two VxOs. Since different communities are served by the two observatories, slightly, and sometimes even significantly, different terms and expectations must be accommodated and correctly processed. In our approach the interfaces are tuned for a particular community while the standard SPASE data model is employed internally. Together with other VxOs, we are also developing a standard query language for metadata exchange among the VxOs, data providers, and VxO-related services. Specific examples will be given. http:vho.nasa.gov

  17. Virtual Platform for See Robustness Verification of Bootloader Embedded Software on Board Solar Orbiter's Energetic Particle Detector

    NASA Astrophysics Data System (ADS)

    Da Silva, A.; Sánchez Prieto, S.; Polo, O.; Parra Espada, P.

    2013-05-01

    Because of the tough robustness requirements in space software development, it is imperative to carry out verification tasks at a very early development stage to ensure that the implemented exception mechanisms work properly. All this should be done long time before the real hardware is available. But even if real hardware is available the verification of software fault tolerance mechanisms can be difficult since real faulty situations must be systematically and artificially brought about which can be imposible on real hardware. To solve this problem the Alcala Space Research Group (SRG) has developed a LEON2 virtual platform (Leon2ViP) with fault injection capabilities. This way it is posible to run the exact same target binary software as runs on the physical system in a more controlled and deterministic environment, allowing a more strict requirements verification. Leon2ViP enables unmanned and tightly focused fault injection campaigns, not possible otherwise, in order to expose and diagnose flaws in the software implementation early. Furthermore, the use of a virtual hardware-in-the-loop approach makes it possible to carry out preliminary integration tests with the spacecraft emulator or the sensors. The use of Leon2ViP has meant a signicant improvement, in both time and cost, in the development and verification processes of the Instrument Control Unit boot software on board Solar Orbiter's Energetic Particle Detector.

  18. Detection Thresholds for Rotation and Translation Gains in 360° Video-Based Telepresence Systems.

    PubMed

    Zhang, Jingxin; Langbehn, Eike; Krupke, Dennis; Katzakis, Nicholas; Steinicke, Frank

    2018-04-01

    Telepresence systems have the potential to overcome limits and distance constraints of the real-world by enabling people to remotely visit and interact with each other. However, current telepresence systems usually lack natural ways of supporting interaction and exploration of remote environments (REs). In particular, single webcams for capturing the RE provide only a limited illusion of spatial presence, and movement control of mobile platforms in today's telepresence systems are often restricted to simple interaction devices. One of the main challenges of telepresence systems is to allow users to explore a RE in an immersive, intuitive and natural way, e.g., by real walking in the user's local environment (LE), and thus controlling motions of the robot platform in the RE. However, the LE in which the user's motions are tracked usually provides a much smaller interaction space than the RE. In this context, redirected walking (RDW) is a very suitable approach to solve this problem. However, so far there is no previous work, which explored if and how RDW can be used in video-based 360° telepresence systems. In this article, we conducted two psychophysical experiments in which we have quantified how much humans can be unknowingly redirected on virtual paths in the RE, which are different from the physical paths that they actually walk in the LE. Experiment 1 introduces a discrimination task between local and remote translations, and in Experiment 2 we analyzed the discrimination between local and remote rotations. In Experiment 1 participants performed straightforward translations in the LE that were mapped to straightforward translations in the RE shown as 360° videos, which were manipulated by different gains. Then, participants had to estimate if the remotely perceived translation was faster or slower than the actual physically performed translation. Similarly, in Experiment 2 participants performed rotations in the LE that were mapped to the virtual rotations in a 360° video-based RE to which we applied different gains. Again, participants had to estimate whether the remotely perceived rotation was smaller or larger than the actual physically performed rotation. Our results show that participants are not able to reliably discriminate the difference between physical motion in the LE and the virtual motion from the 360° video RE when virtual translations are down-scaled by 5.8% and up-scaled by 9.7%, and virtual rotations are about 12.3% less or 9.2% more than the corresponding physical rotations in the LE.

  19. Using Virtual Simulations in the Design of 21st Century Space Science Environments

    NASA Technical Reports Server (NTRS)

    Hutchinson, Sonya L.; Alves, Jeffery R.

    1996-01-01

    Space Technology has been rapidly increasing in the past decade. This can be attributed to the future construction of the International Space Station (ISS). New innovations must constantly be engineered to make ISS the safest, quality, research facility in space. Since space science must often be gathered by crew members, more attention must be geared to the human's safety and comfort. Virtual simulations are now being used to design environments that crew members can live in for long periods of time without harmful effects to their bodies. This paper gives a few examples of the ergonomic design problems that arise on manned space flights, and design solutions that follow NASA's strategic commitment to customer satisfaction. The conclusions show that virtual simulations are a great asset to 21st century design.

  20. STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training

    NASA Image and Video Library

    2010-08-27

    JSC2010-E-121058 (27 Aug. 2010) --- NASA astronauts Michael Fincke (foreground) and Greg Chamitoff, both STS-134 mission specialists, use virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of their duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration

  1. STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training

    NASA Image and Video Library

    2010-08-27

    JSC2010-E-121052 (27 Aug. 2010) --- NASA astronauts Michael Fincke (foreground) and Greg Chamitoff, both STS-134 mission specialists, use virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of their duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration

  2. STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training

    NASA Image and Video Library

    2010-08-27

    JSC2010-E-121055 (27 Aug. 2010) --- NASA astronauts Michael Fincke (right) and Greg Chamitoff, both STS-134 mission specialists, use virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of their duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration

  3. A spatially augmented reality sketching interface for architectural daylighting design.

    PubMed

    Sheng, Yu; Yapo, Theodore C; Young, Christopher; Cutler, Barbara

    2011-01-01

    We present an application of interactive global illumination and spatially augmented reality to architectural daylight modeling that allows designers to explore alternative designs and new technologies for improving the sustainability of their buildings. Images of a model in the real world, captured by a camera above the scene, are processed to construct a virtual 3D model. To achieve interactive rendering rates, we use a hybrid rendering technique, leveraging radiosity to simulate the interreflectance between diffuse patches and shadow volumes to generate per-pixel direct illumination. The rendered images are then projected on the real model by four calibrated projectors to help users study the daylighting illumination. The virtual heliodon is a physical design environment in which multiple designers, a designer and a client, or a teacher and students can gather to experience animated visualizations of the natural illumination within a proposed design by controlling the time of day, season, and climate. Furthermore, participants may interactively redesign the geometry and materials of the space by manipulating physical design elements and see the updated lighting simulation. © 2011 IEEE Published by the IEEE Computer Society

  4. A Comparison Study of Polyominoes Explorations in a Physical and Virtual Manipulative Environment

    ERIC Educational Resources Information Center

    Yuan, Y.; Lee, C. -Y.; Wang, C. -H.

    2010-01-01

    This study develops virtual manipulative, polyominoes kits for junior high school students to explore polyominoes. The current work conducts a non-equivalent group pretest-post-test quasi-experimental design to compare the performance difference between using physical manipulatives and virtual manipulatives in finding the number of polyominoes.…

  5. Configurable memory system and method for providing atomic counting operations in a memory device

    DOEpatents

    Bellofatto, Ralph E.; Gara, Alan G.; Giampapa, Mark E.; Ohmacht, Martin

    2010-09-14

    A memory system and method for providing atomic memory-based counter operations to operating systems and applications that make most efficient use of counter-backing memory and virtual and physical address space, while simplifying operating system memory management, and enabling the counter-backing memory to be used for purposes other than counter-backing storage when desired. The encoding and address decoding enabled by the invention provides all this functionality through a combination of software and hardware.

  6. Study of the acceleration, focussing and bunching of ions by electronic space charge for pellet fusion. Technical progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdeyen, J.T.; Cherrington, B.E.

    1977-01-01

    Three areas of work during this contract period are discussed: (1) a low energy (1 to 10 keV) experiment to demonstrate focusing and to clarify the physics of bunching, (2) an experiment at high energy (100 to 500 keV) to scale prior results, and (3) a theoretical effort to formulate a self-consistent transient analysis of the virtual cathode--plasma interaction. Some results of this work are discussed. (MOW)

  7. Slope and curvature of the hadronic vacuum polarization at vanishing virtuality from lattice QCD

    NASA Astrophysics Data System (ADS)

    Borsanyi, Sz.; Fodor, Z.; Kawanai, T.; Krieg, S.; Lellouch, L.; Malak, R.; Miura, K.; Szabo, K. K.; Torrero, C.; Toth, B. C.

    2017-10-01

    We compute the slope and curvature, at vanishing four-momentum transfer squared, of the leading order hadronic vacuum polarization function, using lattice quantum chromodynamics. Calculations are performed with 2 +1 +1 flavors of staggered fermions directly at the physical values of the quark masses and in volumes of linear extent larger than 6 fm. The continuum limit is carried out using six different lattice spacings. All connected and disconnected contributions are calculated, up to and including those of the charm.

  8. The use of physical and virtual manipulatives in an undergraduate mechanical engineering (Dynamics) course

    NASA Astrophysics Data System (ADS)

    Pan, Edward A.

    Science, technology, engineering, and mathematics (STEM) education is a national focus. Engineering education, as part of STEM education, needs to adapt to meet the needs of the nation in a rapidly changing world. Using computer-based visualization tools and corresponding 3D printed physical objects may help nontraditional students succeed in engineering classes. This dissertation investigated how adding physical or virtual learning objects (called manipulatives) to courses that require mental visualization of mechanical systems can aid student performance. Dynamics is one such course, and tends to be taught using lecture and textbooks with static diagrams of moving systems. Students often fail to solve the problems correctly and an inability to mentally visualize the system can contribute to student difficulties. This study found no differences between treatment groups on quantitative measures of spatial ability and conceptual knowledge. There were differences between treatments on measures of mechanical reasoning ability, in favor of the use of physical and virtual manipulatives over static diagrams alone. There were no major differences in student performance between the use of physical and virtual manipulatives. Students used the physical and virtual manipulatives to test their theories about how the machines worked, however their actual time handling the manipulatives was extremely limited relative to the amount of time they spent working on the problems. Students used the physical and virtual manipulatives as visual aids when communicating about the problem with their partners, and this behavior was also seen with Traditional group students who had to use the static diagrams and gesture instead. The explanations students gave for how the machines worked provided evidence of mental simulation; however, their causal chain analyses were often flawed, probably due to attempts to decrease cognitive load. Student opinions about the static diagrams and dynamic models varied by type of model (static, physical, virtual), but were generally favorable. The Traditional group students, however, indicated that the lack of adequate representation of motion in the static diagrams was a problem, and wished they had access to the physical and virtual models.

  9. Human Activity Behavior and Gesture Generation in Virtual Worlds for Long- Duration Space Missions. Chapter 8

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; Damer, Bruce; Brodsky, Boris; vanHoff, Ron

    2007-01-01

    A virtual worlds presentation technique with embodied, intelligent agents is being developed as an instructional medium suitable to present in situ training on long term space flight. The system combines a behavioral element based on finite state automata, a behavior based reactive architecture also described as subsumption architecture, and a belief-desire-intention agent structure. These three features are being integrated to describe a Brahms virtual environment model of extravehicular crew activity which could become a basis for procedure training during extended space flight.

  10. Get immersed in the Soil Sciences: the first community of avatars in the EGU Assembly 2015!

    NASA Astrophysics Data System (ADS)

    Castillo, Sebastian; Alarcón, Purificación; Beato, Mamen; Emilio Guerrero, José; José Martínez, Juan; Pérez, Cristina; Ortiz, Leovigilda; Taguas, Encarnación V.

    2015-04-01

    Virtual reality and immersive worlds refer to artificial computer-generated environments, with which users act and interact as in a known environment by the use of figurative virtual individuals (avatars). Virtual environments will be the technology of the early twenty-first century that will most dramatically change the way we live, particularly in the areas of training and education, product development and entertainment (Schmorrow, 2009). The usefulness of immersive worlds has been proved in different fields. They reduce geographic and social barriers between different stakeholders and create virtual social spaces which can positively impact learning and discussion outcomes (Lorenzo et al. 2012). In this work we present a series of interactive meetings in a virtual building to celebrate the International Year of Soil to promote the importance of soil functions and its conservation. In a virtual room, the avatars of different senior researchers will meet young scientist avatars to talk about: 1) what remains to be done in Soil Sciences; 2) which are their main current limitations and difficulties and 3) which are the future hot research lines. The interactive participation does not require physically attend to the EGU Assembly 2015. In addition, this virtual building inspired in Soil Sciences can be completed with different teaching resources from different locations around the world and it will be used to improve the learning of Soil Sciences in a multicultural context. REFERENCES: Lorenzo C.M., Sicilia, M.A., Sánchez S. 2012. Studying the effectiveness of multi-user immersive environments for collaborative evaluation tasks. Computers & Education 59 (2012) 1361-1376 Schmorrow D.D. 2009. "Why virtual?" Theoretical Issues in Ergonomics Science 10(3): 279-282.

  11. Learning Kinematic Constraints in Laparoscopic Surgery

    PubMed Central

    Huang, Felix C.; Mussa-Ivaldi, Ferdinando A.; Pugh, Carla M.; Patton, James L.

    2012-01-01

    To better understand how kinematic variables impact learning in surgical training, we devised an interactive environment for simulated laparoscopic maneuvers, using either 1) mechanical constraints typical of a surgical “box-trainer” or 2) virtual constraints in which free hand movements control virtual tool motion. During training, the virtual tool responded to the absolute position in space (Position-Based) or the orientation (Orientation-Based) of a hand-held sensor. Volunteers were further assigned to different sequences of target distances (Near-Far-Near or Far-Near-Far). Training with the Orientation-Based constraint enabled much lower path error and shorter movement times during training, which suggests that tool motion that simply mirrors joint motion is easier to learn. When evaluated in physically constrained (physical box-trainer) conditions, each group exhibited improved performance from training. However, Position-Based training enabled greater reductions in movement error relative to Orientation-Based (mean difference: 14.0 percent; CI: 0.7, 28.6). Furthermore, the Near-Far-Near schedule allowed a greater decrease in task time relative to the Far-Near-Far sequence (mean −13:5 percent, CI: −19:5, −7:5). Training that focused on shallow tool insertion (near targets) might promote more efficient movement strategies by emphasizing the curvature of tool motion. In addition, our findings suggest that an understanding of absolute tool position is critical to coping with mechanical interactions between the tool and trocar. PMID:23293709

  12. Virtualization and cloud computing in dentistry.

    PubMed

    Chow, Frank; Muftu, Ali; Shorter, Richard

    2014-01-01

    The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.

  13. STS-134 crew and Expedition 24/25 crew member Shannon Walker

    NASA Image and Video Library

    2010-03-25

    JSC2010-E-043667 (25 March 2010) --- NASA astronaut Mark Kelly, STS-134 commander, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  14. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41540 (9 Aug. 2007) --- Astronauts Pamela A. Melroy, STS-120 commander, and European Space Agency's (ESA) Paolo Nespoli, mission specialist, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  15. STS-126 crew during preflight VR LAB MSS EVA2 training

    NASA Image and Video Library

    2008-04-14

    JSC2008-E-033771 (14 April 2008) --- Astronaut Eric A. Boe, STS-126 pilot, uses the virtual reality lab in the Space Vehicle Mockup Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  16. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170877 (1 Oct. 2010) --- A large monitor is featured in this image during STS-133 crew members? training activities in the virtual reality laboratory in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  17. Around Marshall

    NASA Image and Video Library

    1993-09-15

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Centerr (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provided general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  18. Around Marshall

    NASA Image and Video Library

    1993-09-15

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Center (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability providedgeneral visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  19. Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm.

    PubMed

    Chen, Xueli; Gao, Xinbo; Qu, Xiaochao; Chen, Duofang; Ma, Xiaopeng; Liang, Jimin; Tian, Jie

    2010-10-10

    The camera lens diaphragm is an important component in a noncontact optical imaging system and has a crucial influence on the images registered on the CCD camera. However, this influence has not been taken into account in the existing free-space photon transport models. To model the photon transport process more accurately, a generalized free-space photon transport model is proposed. It combines Lambertian source theory with analysis of the influence of the camera lens diaphragm to simulate photon transport process in free space. In addition, the radiance theorem is also adopted to establish the energy relationship between the virtual detector and the CCD camera. The accuracy and feasibility of the proposed model is validated with a Monte-Carlo-based free-space photon transport model and physical phantom experiment. A comparison study with our previous hybrid radiosity-radiance theorem based model demonstrates the improvement performance and potential of the proposed model for simulating photon transport process in free space.

  20. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41539 (9 Aug. 2007) --- Astronaut Pamela A. Melroy, STS-120 commander, uses the virtual reality lab at Johnson Space Center to train for her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  1. STS-EVA Mass Ops training of the STS-117 EVA crewmembers

    NASA Image and Video Library

    2006-11-01

    JSC2006-E-47612 (1 Nov. 2006) --- Astronaut Steven R. Swanson, STS-117 mission specialist, uses the virtual reality lab at Johnson Space Center to train for his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  2. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41532 (9 Aug. 2007) --- Astronaut Stephanie D. Wilson, STS-120 mission specialist, uses the virtual reality lab at Johnson Space Center to train for her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  3. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41531 (9 Aug. 2007) --- Astronaut Pamela A. Melroy, STS-120 commander, uses the virtual reality lab at Johnson Space Center to train for her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  4. Physics Education in Virtual Reality: An Example

    ERIC Educational Resources Information Center

    Kaufmann, Hannes; Meyer, Bernd

    2009-01-01

    We present an immersive virtual reality (VR) application for physics education. It utilizes a recent physics engine developed for the PC gaming market to simulate physical experiments correctly and accurately. Students are enabled to actively build their own experiments and study them. A variety of tools are provided to analyze forces, mass, paths…

  5. STS-133 crew training in VR Lab with replacement crew member Steve Bowen

    NASA Image and Video Library

    2011-01-24

    JSC2011-E-006293 (24 Jan. 2011) --- NASA astronaut Michael Barratt, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  6. Using virtual machine monitors to overcome the challenges of monitoring and managing virtualized cloud infrastructures

    NASA Astrophysics Data System (ADS)

    Bamiah, Mervat Adib; Brohi, Sarfraz Nawaz; Chuprat, Suriayati

    2012-01-01

    Virtualization is one of the hottest research topics nowadays. Several academic researchers and developers from IT industry are designing approaches for solving security and manageability issues of Virtual Machines (VMs) residing on virtualized cloud infrastructures. Moving the application from a physical to a virtual platform increases the efficiency, flexibility and reduces management cost as well as effort. Cloud computing is adopting the paradigm of virtualization, using this technique, memory, CPU and computational power is provided to clients' VMs by utilizing the underlying physical hardware. Beside these advantages there are few challenges faced by adopting virtualization such as management of VMs and network traffic, unexpected additional cost and resource allocation. Virtual Machine Monitor (VMM) or hypervisor is the tool used by cloud providers to manage the VMs on cloud. There are several heterogeneous hypervisors provided by various vendors that include VMware, Hyper-V, Xen and Kernel Virtual Machine (KVM). Considering the challenge of VM management, this paper describes several techniques to monitor and manage virtualized cloud infrastructures.

  7. Mexican Space Weather Service (SCIESMEX)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, A.; De la Luz, V.; Mejia-Ambriz, J. C.; Aguilar-Rodriguez, E.; Corona-Romero, P.; Gonzalez, L. X.

    2015-12-01

    Recent modifications of the Civil Protection Law in Mexico include now specific mentions to space hazards and space weather phenomena. During the last few years, the UN has promoted international cooperation on Space Weather awareness, studies and monitoring. Internal and external conditions motivated the creation of a Space Weather Service in Mexico (SCIESMEX). The SCIESMEX (www.sciesmex.unam.mx) is operated by the Geophysics Institute at the National Autonomous University of Mexico (UNAM). The UNAM has the experience of operating several critical national services, including the National Seismological Service (SSN); besides that has a well established scientific group with expertise in space physics and solar- terrestrial phenomena. The SCIESMEX is also related with the recent creation of the Mexican Space Agency (AEM). The project combines a network of different ground instruments covering solar, interplanetary, geomagnetic, and ionospheric observations. The SCIESMEX has already in operation computing infrastructure running the web application, a virtual observatory and a high performance computing server to run numerical models. SCIESMEX participates in the International Space Environment Services (ISES) and in the Inter-progamme Coordination Team on Space Weather (ICTSW) of the Word Meteorological Organization (WMO).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cangiani, Andrea; Gyrya, Vitaliy; Manzini, Gianmarco

    In this paper, we present the nonconforming virtual element method (VEM) for the numerical approximation of velocity and pressure in the steady Stokes problem. The pressure is approximated using discontinuous piecewise polynomials, while each component of the velocity is approximated using the nonconforming virtual element space. On each mesh element the local virtual space contains the space of polynomials of up to a given degree, plus suitable nonpolynomial functions. The virtual element functions are implicitly defined as the solution of local Poisson problems with polynomial Neumann boundary conditions. As typical in VEM approaches, the explicit evaluation of the non-polynomial functionsmore » is not required. This approach makes it possible to construct nonconforming (virtual) spaces for any polynomial degree regardless of the parity, for two- and three-dimensional problems, and for meshes with very general polygonal and polyhedral elements. We show that the nonconforming VEM is inf-sup stable and establish optimal a priori error estimates for the velocity and pressure approximations. Finally, numerical examples confirm the convergence analysis and the effectiveness of the method in providing high-order accurate approximations.« less

  9. 47 CFR 51.321 - Methods of obtaining interconnection and access to unbundled elements under section 251 of the Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... elements include, but are not limited to: (1) Physical collocation and virtual collocation at the premises... seeking a particular collocation arrangement, either physical or virtual, is entitled to a presumption... incumbent LEC shall be required to provide virtual collocation, except at points where the incumbent LEC...

  10. A Model for the Development of Virtual Communities for People with Long-Term, Severe Physical Disabilities

    ERIC Educational Resources Information Center

    Tilley, C. M.; Bruce, C. S.; Hallam, G.; Hills, A. P.

    2006-01-01

    Introduction: This paper reports results of an investigation into the needs of persons with disabilities wanting to participate in the use of virtual communities. The aim was to investigate "how virtual communities for persons with long-term, severe physical disabilities can best be facilitated"? Method: A Grounded Theory approach was…

  11. Using the Virtual Gym for Practice and Drills

    ERIC Educational Resources Information Center

    Fiorentino, Leah Holland; Gibbone, Anne

    2005-01-01

    Enthusiastic elementary physical educators continually investigate effective ways to encourage students to engage in more physical activity. The most effective teachers look for interesting strategies and innovations that engage learners of all ability levels. A new innovation, the "Virtual Gym," addresses physical educators' concerns about…

  12. The Virtual Glovebox (VGX): An Immersive Simulation System for Training Astronauts to Perform Glovebox Experiments in Space

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey D.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    The era of the International Space Station (ISS) has finally arrived, providing researchers on Earth a unique opportunity to study long-term effects of weightlessness and the space environment on structures, materials and living systems. Many of the physical, biological and material science experiments planned for ISS will require significant input and expertise from astronauts who must conduct the research, follow complicated assay procedures and collect data and samples in space. Containment is essential for Much of this work, both to protect astronauts from potentially harmful biological, chemical or material elements in the experiments as well as to protect the experiments from contamination by air-born particles In the Space Station environment. When astronauts must open the hardware containing such experiments, glovebox facilities provide the necessary barrier between astronaut and experiment. On Earth, astronauts are laced with the demanding task of preparing for the many glovebox experiments they will perform in space. Only a short time can be devoted to training for each experimental task and gl ovebox research only accounts for a small portion of overall training and mission objectives on any particular ISS mission. The quality of the research also must remain very high, requiring very detailed experience and knowledge of instrumentation, anatomy and specific scientific objectives for those who will conduct the research. This unique set of needs faced by NASA has stemmed the development of a new computer simulation tool, the Virtual Glovebox (VGB), which is designed to provide astronaut crews and support personnel with a means to quickly and accurately prepare and train for glovebox experiments in space.

  13. Comparing the influence of physical and virtual manipulatives in the context of the Physics by Inquiry curriculum: The case of undergraduate students' conceptual understanding of heat and temperature

    NASA Astrophysics Data System (ADS)

    Zacharia, Zacharias C.; Constantinou, Constantinos P.

    2008-04-01

    We compare the effect of experimenting with physical or virtual manipulatives on undergraduate students' conceptual understanding of heat and temperature. A pre-post comparison study design was used to replicate all aspects of a guided inquiry classroom except the mode in which students performed their experiments. This study is the first on physical and virtual manipulative experimentation in physics in which the curriculum, method of instruction, and resource capabilities were explicitly controlled. The participants were 68 undergraduates in an introductory course and were randomly assigned to an experimental or a control group. Conceptual tests were administered to both groups to assess students' understanding before, during, and after instruction. The result indicates that both modes of experimentation are equally effective in enhancing students' conceptual understanding. This result is discussed in the context of an ongoing debate on the relative importance of virtual and real laboratory work in physics education.

  14. Heliophysics Data and Modeling Research Using VSPO

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron; Hesse, Michael; Cornwell, Carl

    2007-01-01

    The primary advantage of Virtual Observatories in scientific research is efficiency: rapid searches for and access to data in convenient forms makes it possible to explore scientific questions without spending days or weeks on ancilary tasks. The Virtual Space Physics Observatory provides a general portal to Heliophysics data for this task. Here we will illustrate the advantages of the VO approach by examining specific geomagnetically active times and tracing the activity through the Sun-Earth system. In addition to previous and additional data sources, we will demonstrate an extension of the capabilities to allow searching for model run results from the range of CCMC models. This approach allows the user to quickly compare models and observations at a qualitative level; considerably more work will be needed to develop more seamless connections to data streams and the equivalent numerical output from simulations.

  15. Transduction between worlds: using virtual and mixed reality for earth and planetary science

    NASA Astrophysics Data System (ADS)

    Hedley, N.; Lochhead, I.; Aagesen, S.; Lonergan, C. D.; Benoy, N.

    2017-12-01

    Virtual reality (VR) and augmented reality (AR) have the potential to transform the way we visualize multidimensional geospatial datasets in support of geoscience research, exploration and analysis. The beauty of virtual environments is that they can be built at any scale, users can view them at many levels of abstraction, move through them in unconventional ways, and experience spatial phenomena as if they had superpowers. Similarly, augmented reality allows you to bring the power of virtual 3D data visualizations into everyday spaces. Spliced together, these interface technologies hold incredible potential to support 21st-century geoscience. In my ongoing research, my team and I have made significant advances to connect data and virtual simulations with real geographic spaces, using virtual environments, geospatial augmented reality and mixed reality. These research efforts have yielded new capabilities to connect users with spatial data and phenomena. These innovations include: geospatial x-ray vision; flexible mixed reality; augmented 3D GIS; situated augmented reality 3D simulations of tsunamis and other phenomena interacting with real geomorphology; augmented visual analytics; and immersive GIS. These new modalities redefine the ways in which we can connect digital spaces of spatial analysis, simulation and geovisualization, with geographic spaces of data collection, fieldwork, interpretation and communication. In a way, we are talking about transduction between real and virtual worlds. Taking a mixed reality approach to this, we can link real and virtual worlds. This paper presents a selection of our 3D geovisual interface projects in terrestrial, coastal, underwater and other environments. Using rigorous applied geoscience data, analyses and simulations, our research aims to transform the novelty of virtual and augmented reality interface technologies into game-changing mixed reality geoscience.

  16. Girls InSpace project: A new space physics outreach initiative.

    NASA Astrophysics Data System (ADS)

    Abe Pacini, A.; Tegbaru, D.; Max, A., Sr.

    2017-12-01

    We present here the concept and state-of-art of the new space physics youth education and outreach initiative called "Girls InSpace project". The project goal is to spread quality scientific information to underrepresented groups, motivate girls in STEM and promote gender equality in the Space Physics area. Initially, the "Girls InSpace project" will be available in two languages (Portuguese and English) aiming to reach out to the youth of Brazil, United States, Nigeria, South Africa, Ethiopia and Angola. Eventually, the material will be translated to French and Spanish, focusing on French-speaking countries in Africa and Latin America. The project spans a collection of four books about a group of young girls and their adventures (always related to the sky and simultaneously introducing earth and space science concepts). Ancillary content such as a webpage, mobile applications and lesson plans are also in development. The books were written by a Space Physicist PhD woman, illustrated by a Brazilian young artist and commented by senior female scientists, creating positive role models for the next generation of girls in STEM. The story lines were drawn around the selected topics of astronomy and space physics, introducing scientific information to the target readers (girls from 8-13 years old) and enhancing their curiosity and critical thinking. The books instill the readers to explore the available extra web-content (with images, videos, interviews with scientists, real space data, coding and deeper scientific information) and game apps (with Virtual Reality components and real space images). Moreover, for teachers K-12, a collection of lesson plans will be made available, aiming to facilitate scientific content discussed in the books and inside classroom environments. Gender bias in STEM reported earlier this year in Nature and based on a study of the American Geophysical Union's member database showed a competitive disadvantage for women in the Earth and Space Sciences. The AGU has since challenged the scientific community to act and support gender balance initiatives as crucial path to progress. This project aligns well with AGU's mission and similar-thinking organizations, and aims to educate and promote development of young girls in underrepresented communities.

  17. Energy gain calculations in spherical IEC fusion systems using the BAFP code

    NASA Astrophysics Data System (ADS)

    Chacón, L.; Miley, G. H.; Barnes, D. C.; Knoll, D. A.

    1999-11-01

    The spherical IEC fusion concept takes advantage of the potential well generated by an inner spherical cathode (physical or virtual), biased negatively to several kV with respect to a concentric outer grounded boundary, to focus ions inwards and form a dense central core where fusion may occur. However, defocusing of the ion beams due to ion-ion collisions may prevent a satisfactory energy balance in the system. This research concentrates of spherically symmetric virtual cathode IEC devices, in which a spherical cloud of electrons, confined á la Penning trap, creates the ion-confining electrostatic well. A bounce-averaged Fokker-Planck model has been constructed to analyze the ion physics in ideal conditions (i.e., spherically uniform electrostatic well, no collisional interaction between ions and electrons, single ion species).(L. Chacon, D. C. Barnes, D. A. Knoll, 40^th) Annual Meeting of the APS Division of Plasma Physics, New Orleans, LA, Nov. 1998 Results will reproduce the phenomenology of previously published( W. Nevins, Phys. Plasmas), 2(10), 3804-3819 (1995) theoretical limits, and will show that, under some conditions, steady-state solutions with relatively high gains and small ion recirculation powers exist for the bounce-averaged Fokker-Planck transport equation. Variations in gain with parameter space will be presented.

  18. STS-132 crew during their MSS/SIMP EVA3 OPS 4 training

    NASA Image and Video Library

    2010-01-28

    JSC2010-E-014952 (28 Jan. 2010) --- NASA astronauts Michael Good (seated) and Garrett Reisman, both STS-132 mission specialists, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  19. STS-134 crew and Expedition 24/25 crew member Shannon Walker

    NASA Image and Video Library

    2010-03-25

    JSC2010-E-043666 (25 March 2010) --- NASA astronauts Mark Kelly (background), STS-134 commander; and Andrew Feustel, mission specialist, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  20. STS-134 crew and Expedition 24/25 crew member Shannon Walker

    NASA Image and Video Library

    2010-03-25

    JSC2010-E-043668 (25 March 2010) --- NASA astronauts Mark Kelly (background), STS-134 commander; and Andrew Feustel, mission specialist, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  1. The Virtual Space Telescope: A New Class of Science Missions

    NASA Technical Reports Server (NTRS)

    Shah, Neerav; Calhoun, Philip

    2016-01-01

    Many science investigations proposed by GSFC require two spacecraft alignment across a long distance to form a virtual space telescope. Forming a Virtual Space telescope requires advances in Guidance, Navigation, and Control (GNC) enabling the distribution of monolithic telescopes across multiple space platforms. The capability to align multiple spacecraft to an intertial target is at a low maturity state and we present a roadmap to advance the system-level capability to be flight ready in preparation of various science applications. An engineering proof of concept, called the CANYVAL-X CubeSat MIssion is presented. CANYVAL-X's advancement will decrease risk for a potential starshade mission that would fly with WFIRST.

  2. Embodied collaboration support system for 3D shape evaluation in virtual space

    NASA Astrophysics Data System (ADS)

    Okubo, Masashi; Watanabe, Tomio

    2005-12-01

    Collaboration mainly consists of two tasks; one is each partner's task that is performed by the individual, the other is communication with each other. Both of them are very important objectives for all the collaboration support system. In this paper, a collaboration support system for 3D shape evaluation in virtual space is proposed on the basis of both studies in 3D shape evaluation and communication support in virtual space. The proposed system provides the two viewpoints for each task. One is the viewpoint of back side of user's own avatar for the smooth communication. The other is that of avatar's eye for 3D shape evaluation. Switching the viewpoints satisfies the task conditions for 3D shape evaluation and communication. The system basically consists of PC, HMD and magnetic sensors, and users can share the embodied interaction by observing interaction between their avatars in virtual space. However, the HMD and magnetic sensors, which are put on the users, would restrict the nonverbal communication. Then, we have tried to compensate the loss of nodding of partner's avatar by introducing the speech-driven embodied interactive actor InterActor. Sensory evaluation by paired comparison of 3D shapes in the collaborative situation in virtual space and in real space and the questionnaire are performed. The result demonstrates the effectiveness of InterActor's nodding in the collaborative situation.

  3. 75 FR 71075 - Action Affecting Export Privileges; Anvik Technologies Sdn. Bhd., a/k/a Anvik Technologies; Babak...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... office space'' leased by Respondents from a company called Servcorp. See note 4. infra. It is BIS's understanding that other persons also rent ``virtual office space'' at this address. The only current users at... ship those items to Iran through third countries. Respondents use the leased virtual office space in...

  4. CCSDS Advanced Orbiting Systems Virtual Channel Access Service for QoS MACHETE Model

    NASA Technical Reports Server (NTRS)

    Jennings, Esther H.; Segui, John S.

    2011-01-01

    To support various communications requirements imposed by different missions, interplanetary communication protocols need to be designed, validated, and evaluated carefully. Multimission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in "Simulator of Space Communication Networks" (NPO-41373), NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. By building abstract behavioral models of network protocols, one can validate performance after identifying the appropriate metrics of interest. The innovators have extended the MACHETE model library to include a generic link-layer Virtual Channel (VC) model supporting quality-of-service (QoS) controls based on IP streams. The main purpose of this generic Virtual Channel model addition was to interface fine-grain flow-based QoS (quality of service) between the network and MAC layers of the QualNet simulator, a commercial component of MACHETE. This software model adds the capability of mapping IP streams, based on header fields, to virtual channel numbers, allowing extended QoS handling at link layer. This feature further refines the QoS v existing at the network layer. QoS at the network layer (e.g. diffserv) supports few QoS classes, so data from one class will be aggregated together; differentiating between flows internal to a class/priority is not supported. By adding QoS classification capability between network and MAC layers through VC, one maps multiple VCs onto the same physical link. Users then specify different VC weights, and different queuing and scheduling policies at the link layer. This VC model supports system performance analysis of various virtual channel link-layer QoS queuing schemes independent of the network-layer QoS systems.

  5. The Heliophysics Data Environment, Virtual Observatories, NSSDC, and SPASE

    NASA Technical Reports Server (NTRS)

    Thieman, James; Grayzeck, Edwin; Roberts, Aaron; King, Todd

    2010-01-01

    Heliophysics (the study of the Sun and its effects on the Solar System, especially the Earth) has an interesting data environment in that the data are often to be found in relatively small data sets widely scattered in archives around the world. Within the last decade there have been more concentrated efforts to organize the data access methods and create a Heliophysics Data and Model Consortium (HDMC). To provide data search and access capability a number of Virtual Observatories (VO's) have been established both via funding from the U.S. National Aeronautics and Space Administration (NASA) and through other funding agencies in the U.S. and worldwide. At least 15 systems can be labeled as Heliophysics Virtual Observatories, 9 of them funded by NASA. Other parts of this data environment include Resident Archives, and the final, or "deep" archive at the National Space Science Data Center (NSSDC). The problem is that different data search and access approaches are used by all of these elements of the HDMC and a search for data relevant to a particular research question can involve consulting with multiple VO's - needing to learn a different approach for finding and acquiring data for each. The Space Physics Archive Search and Extract (SPASE) project is intended to provide a common data model for Heliophysics data and therefore a common set of metadata for searches of the VO's and other data environment elements. The SPASE Data Model has been developed through the common efforts of the HDMC representatives over a number of years. We currently have released Version 2.1. of the Data Model. The advantages and disadvantages of the Data Model will be discussed along with the plans for the future. Recent changes requested by new members of the SPASE community indicate some of the directions for further development.

  6. Rapid prototyping, astronaut training, and experiment control and supervision: distributed virtual worlds for COLUMBUS, the European Space Laboratory module

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen

    2002-02-01

    In 2004, the European COLUMBUS Module is to be attached to the International Space Station. On the way to the successful planning, deployment and operation of the module, computer generated and animated models are being used to optimize performance. Under contract of the German Space Agency DLR, it has become IRF's task to provide a Projective Virtual Reality System to provide a virtual world built after the planned layout of the COLUMBUS module let astronauts and experimentators practice operational procedures and the handling of experiments. The key features of the system currently being realized comprise the possibility for distributed multi-user access to the virtual lab and the visualization of real-world experiment data. Through the capabilities to share the virtual world, cooperative operations can be practiced easily, but also trainers and trainees can work together more effectively sharing the virtual environment. The capability to visualize real-world data will be used to introduce measured data of experiments into the virtual world online in order to realistically interact with the science-reference model hardware: The user's actions in the virtual world are translated into corresponding changes of the inputs of the science reference model hardware; the measured data is than in turn fed back into the virtual world. During the operation of COLUMBUS, the capabilities for distributed access and the capabilities to visualize measured data through the use of metaphors and augmentations of the virtual world may be used to provide virtual access to the COLUMBUS module, e.g. via Internet. Currently, finishing touches are being put to the system. In November 2001 the virtual world shall be operational, so that besides the design and the key ideas, first experimental results can be presented.

  7. Dark Energy and Dark Matter as w = -1 Virtual Particles and the World Hologram Model

    NASA Astrophysics Data System (ADS)

    Sarfatti, Jack

    2011-04-01

    The elementary physics battle-tested principles of Lorentz invariance, Einstein equivalence principle and the boson commutation and fermion anti-commutation rules of quantum field theory explain gravitationally repulsive dark energy as virtual bosons and gravitationally attractive dark matter as virtual fermion-antifermion pairs. The small dark energy density in our past light cone is the reciprocal entropy-area of our future light cone's 2D future event horizon in a Novikov consistent loop in time in our accelerating universe. Yakir Aharonov's "back-from-the-future" post-selected final boundary condition is set at our observer-dependent future horizon that also explains why the irreversible thermodynamic arrow of time of is aligned with the accelerating dark energy expansion of the bulk 3D space interior to our future 2D horizon surrounding it as the hologram screen. Seth Lloyd has argued that all 2D horizon surrounding surfaces are pixelated quantum computers projecting interior bulk 3D quanta of volume (Planck area)Sqrt(area of future horizon) as their hologram images in 1-1 correspondence.

  8. What Children Should Know about Technology and the Virtual World

    ERIC Educational Resources Information Center

    Zhao, Yong

    2010-01-01

    The dominant view of technology so far has been that it is a tool to help improve the teaching of traditional subjects--knowledge mostly about the local and physical world. But technology has created a new realm: the virtual world. It may not be physical or tangible, but the virtual world is indisputable and has a significant economy. If one…

  9. Using Virtual Field Trips to Connect Students with University Scientists: Core Elements and Evaluation of zipTrips[TM

    ERIC Educational Resources Information Center

    Adedokun, Omolola A.; Hetzel, Kristin; Parker, Loran Carleton; Loizzo, Jamie; Burgess, Wilella D.; Robinson, J. Paul

    2012-01-01

    Physical field trips to scientists' work places have been shown to enhance student perceptions of science, scientists and science careers. Although virtual field trips (VFTs) have emerged as viable alternatives (or supplements) to traditional physical fieldtrips, little is known about the potential of virtual field trips to provide the same or…

  10. Turning Virtual Reality into Reality: A Checklist to Ensure Virtual Reality Studies of Eating Behavior and Physical Activity Parallel the Real World

    PubMed Central

    Tal, Aner; Wansink, Brian

    2011-01-01

    Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. PMID:21527088

  11. Turning virtual reality into reality: a checklist to ensure virtual reality studies of eating behavior and physical activity parallel the real world.

    PubMed

    Tal, Aner; Wansink, Brian

    2011-03-01

    Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. © 2011 Diabetes Technology Society.

  12. STS-134 crew and Expedition 24/25 crew member Shannon Walker

    NASA Image and Video Library

    2010-03-25

    JSC2010-E-043673 (25 March 2010) --- NASA astronauts Gregory H. Johnson, STS-134 pilot; and Shannon Walker, Expedition 24/25 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  13. STS-134 crew and Expedition 24/25 crew member Shannon Walker

    NASA Image and Video Library

    2010-03-25

    JSC2010-E-043661 (25 March 2010) --- NASA astronauts Gregory H. Johnson, STS-134 pilot; and Shannon Walker, Expedition 24/25 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  14. STS-132 crew during their MSS/SIMP EVA3 OPS 4 training

    NASA Image and Video Library

    2010-01-28

    JSC2010-E-014953 (28 Jan. 2010) --- NASA astronauts Piers Sellers, STS-132 mission specialist; and Tracy Caldwell Dyson, Expedition 23/24 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  15. STS-132 crew during their MSS/SIMP EVA3 OPS 4 training

    NASA Image and Video Library

    2010-01-28

    JSC2010-E-014949 (28 Jan. 2010) --- NASA astronauts Piers Sellers, STS-132 mission specialist; and Tracy Caldwell Dyson, Expedition 23/24 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  16. STS-132 crew during their MSS/SIMP EVA3 OPS 4 training

    NASA Image and Video Library

    2010-01-28

    JSC2010-E-014956 (28 Jan. 2010) --- NASA astronauts Ken Ham (left foreground), STS-132 commander; Michael Good, mission specialist; and Tony Antonelli (right), pilot, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  17. STS-131 crew during VR Lab MSS/EVAB SUPT3 Team 91016 training

    NASA Image and Video Library

    2009-09-25

    JSC2009-E-214346 (25 Sept. 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  18. STS-131 crew during VR Lab MSS/EVAB SUPT3 Team 91016 training

    NASA Image and Video Library

    2009-09-25

    JSC2009-E-214328 (25 Sept. 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  19. STS-132 crew during their MSS/SIMP EVA3 OPS 4 training

    NASA Image and Video Library

    2010-01-28

    JSC2010-E-014951 (28 Jan. 2010) --- NASA astronauts Michael Good (seated), Garrett Reisman (right foreground), both STS-132 mission specialists; and Tony Antonelli, pilot, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  20. STS-134 crew and Expedition 24/25 crew member Shannon Walker

    NASA Image and Video Library

    2010-03-25

    JSC2010-E-043662 (25 March 2010) --- NASA astronauts Gregory H. Johnson, STS-134 pilot; and Shannon Walker, Expedition 24/25 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  1. STS-131 crew during VR Lab MSS/EVAB SUPT3 Team 91016 training

    NASA Image and Video Library

    2009-09-25

    JSC2009-E-214321 (25 Sept. 2009) --- NASA astronauts James P. Dutton Jr., STS-131 pilot; and Stephanie Wilson, mission specialist, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  2. Virtual environments simulation in research reactor

    NASA Astrophysics Data System (ADS)

    Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin

    2017-01-01

    Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.

  3. Human Factors Virtual Analysis Techniques for NASA's Space Launch System Ground Support using MSFC's Virtual Environments Lab (VEL)

    NASA Technical Reports Server (NTRS)

    Searcy, Brittani

    2017-01-01

    Using virtual environments to assess complex large scale human tasks provides timely and cost effective results to evaluate designs and to reduce operational risks during assembly and integration of the Space Launch System (SLS). NASA's Marshall Space Flight Center (MSFC) uses a suite of tools to conduct integrated virtual analysis during the design phase of the SLS Program. Siemens Jack is a simulation tool that allows engineers to analyze human interaction with CAD designs by placing a digital human model into the environment to test different scenarios and assess the design's compliance to human factors requirements. Engineers at MSFC are using Jack in conjunction with motion capture and virtual reality systems in MSFC's Virtual Environments Lab (VEL). The VEL provides additional capability beyond standalone Jack to record and analyze a person performing a planned task to assemble the SLS at Kennedy Space Center (KSC). The VEL integrates Vicon Blade motion capture system, Siemens Jack, Oculus Rift, and other virtual tools to perform human factors assessments. By using motion capture and virtual reality, a more accurate breakdown and understanding of how an operator will perform a task can be gained. By virtual analysis, engineers are able to determine if a specific task is capable of being safely performed by both a 5% (approx. 5ft) female and a 95% (approx. 6'1) male. In addition, the analysis will help identify any tools or other accommodations that may to help complete the task. These assessments are critical for the safety of ground support engineers and keeping launch operations on schedule. Motion capture allows engineers to save and examine human movements on a frame by frame basis, while virtual reality gives the actor (person performing a task in the VEL) an immersive view of the task environment. This presentation will discuss the need of human factors for SLS and the benefits of analyzing tasks in NASA MSFC's VEL.

  4. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41541 (9 Aug. 2007) --- Astronauts Stephanie Wilson, STS-120 mission specialist, and Dan Tani, Expedition 16 flight engineer, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  5. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    ERIC Educational Resources Information Center

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-01-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…

  6. STS-105 Crew Training in VR Lab

    NASA Image and Video Library

    2001-03-15

    JSC2001-00751 (15 March 2001) --- Astronaut Scott J. Horowitz, STS-105 mission commander, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with International Space Station (ISS) elements.

  7. STS-105 Crew Training in VR Lab

    NASA Image and Video Library

    2001-03-15

    JSC2001-00758 (15 March 2001) --- Astronaut Frederick W. Sturckow, STS-105 pilot, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with International Space Station (ISS) elements.

  8. STS-115 Vitual Lab Training

    NASA Image and Video Library

    2005-06-07

    JSC2005-E-21192 (7 June 2005) --- Astronauts Christopher J. Ferguson (left), STS-115 pilot, and Daniel C. Burbank, mission specialist, use the virtual reality lab at the Johnson Space Center to train for their duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  9. Intelligent Virtual Station (IVS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.

  10. The Virtual Dollhouse: Body Image and Weight Stigma in Second Life

    NASA Astrophysics Data System (ADS)

    Linares, R.; Bailenson, J.; Bailey, J.; Stevenson Won, A.

    2012-12-01

    Second Life is a virtual world where fantasy and reality collide as users can customize their digital representation or avatar. The act of wanting to ignore or avoid the real world's physical limitations can be called "avatar escapism" (Ducheneaut, Wen, Yee, Wadley, 2009). In the media the increasingly thin standard of beauty (Berel, Irving, 1998) has augmented negative stereotypes of overweight people to the point of making it acceptable for people to ridicule others' bodies image (Wang, Brownell, Wadden, 2004). In the real world, these concepts hurt people who are unable or unwilling to achieve an "acceptable" body size often leading them to be ridiculed. In the virtual world, a person may portray their desired body potentially escaping judgment from others. Can this more liberated form of bodily expression lead people to expect and need that perfection to a point where they abandon the real world in order to live in that perfection? With this knowledge we looked at the implications of the real world idolization of the perfect body and how this is transferred into the virtual space. In addition, we investigated how the reactions and behaviors that people have when others rebel against the "Barbie doll" appearance (Ducheneaut, Wen, Yee, Wadley, 2009) affect us in the real world.

  11. iVirtualWorld: A Domain-Oriented End-User Development Environment for Building 3D Virtual Chemistry Experiments

    ERIC Educational Resources Information Center

    Zhong, Ying

    2013-01-01

    Virtual worlds are well-suited for building virtual laboratories for educational purposes to complement hands-on physical laboratories. However, educators may face technical challenges because developing virtual worlds requires skills in programming and 3D design. Current virtual world building tools are developed for users who have programming…

  12. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.

    PubMed

    Ye, Quanliang; Li, Yi; Zhuo, La; Zhang, Wenlong; Xiong, Wei; Wang, Chao; Wang, Peifang

    2018-02-01

    This study provides an innovative application of virtual water trade in the traditional allocation of physical water resources in water scarce regions. A multi-objective optimization model was developed to optimize the allocation of physical water and virtual water resources to different water users in Beijing, China, considering the trade-offs between economic benefit and environmental impacts of water consumption. Surface water, groundwater, transferred water and reclaimed water constituted the physical resource of water supply side, while virtual water flow associated with the trade of five major crops (barley, corn, rice, soy and wheat) and three livestock products (beef, pork and poultry) in agricultural sector (calculated by the trade quantities of products and their virtual water contents). Urban (daily activities and public facilities), industry, environment and agriculture (products growing) were considered in water demand side. As for the traditional allocation of physical water resources, the results showed that agriculture and urban were the two predominant water users (accounting 54% and 28%, respectively), while groundwater and surface water satisfied around 70% water demands of different users (accounting 36% and 34%, respectively). When considered the virtual water trade of eight agricultural products in water allocation procedure, the proportion of agricultural consumption decreased to 45% in total water demand, while the groundwater consumption decreased to 24% in total water supply. Virtual water trade overturned the traditional components of water supplied from different sources for agricultural consumption, and became the largest water source in Beijing. Additionally, it was also found that environmental demand took a similar percentage of water consumption in each water source. Reclaimed water was the main water source for industrial and environmental users. The results suggest that physical water resources would mainly satisfy the consumption of urban and environment, and the unbalance between water supply and demand could be filled by virtual water import in water scarce regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. NASA Virtual Glovebox (VBX): Emerging Simulation Technology for Space Station Experiment Design, Development, Training and Troubleshooting

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey D.; Twombly, I. Alexander; Maese, A. Christopher; Cagle, Yvonne; Boyle, Richard

    2003-01-01

    The International Space Station demonstrates the greatest capabilities of human ingenuity, international cooperation and technology development. The complexity of this space structure is unprecedented; and training astronaut crews to maintain all its systems, as well as perform a multitude of research experiments, requires the most advanced training tools and techniques. Computer simulation and virtual environments are currently used by astronauts to train for robotic arm manipulations and extravehicular activities; but now, with the latest computer technologies and recent successes in areas of medical simulation, the capability exists to train astronauts for more hands-on research tasks using immersive virtual environments. We have developed a new technology, the Virtual Glovebox (VGX), for simulation of experimental tasks that astronauts will perform aboard the Space Station. The VGX may also be used by crew support teams for design of experiments, testing equipment integration capability and optimizing the procedures astronauts will use. This is done through the 3D, desk-top sized, reach-in virtual environment that can simulate the microgravity environment in space. Additional features of the VGX allow for networking multiple users over the internet and operation of tele-robotic devices through an intuitive user interface. Although the system was developed for astronaut training and assisting support crews, Earth-bound applications, many emphasizing homeland security, have also been identified. Examples include training experts to handle hazardous biological and/or chemical agents in a safe simulation, operation of tele-robotic systems for assessing and diffusing threats such as bombs, and providing remote medical assistance to field personnel through a collaborative virtual environment. Thus, the emerging VGX simulation technology, while developed for space- based applications, can serve a dual use facilitating homeland security here on Earth.

  14. Virtual Reality and Active Videogame-Based Practice, Learning Needs, and Preferences: A Cross-Canada Survey of Physical Therapists and Occupational Therapists.

    PubMed

    Levac, Danielle; Glegg, Stephanie; Colquhoun, Heather; Miller, Patricia; Noubary, Farzad

    2017-08-01

    Describe the clinical use of virtual reality (VR)/active videogaming (AVG) by physical therapists (PTs) and occupational therapists (OTs) in Canada, identify usage barriers and facilitators, evaluate factors that predict intention to use VR/AVGs, and determine therapists' learning needs. Cross-sectional survey. Online survey of therapists in Canada who were members of 1 of 26 professional PT or OT colleges or associations using the Assessing Determinants Of Prospective Take-up of Virtual Reality (ADOPT-VR2) Instrument. We received 1071 (506 PTs, 562 OTs, 3 dual-trained) responses. Forty-six percent had clinical VR/AVG experience; only 12% reported current use, with the Wii being the most clinically accessible (41%) system. Therapists used VR/AVGs primarily in rehabilitation (32%) and hospital (29%) settings, preferentially targeting balance (39.3%) and physical activity (19.8%) outcomes. Stroke (25.8%), brain injury (15.3%), musculoskeletal (14.9%), and cerebral palsy (10.5%) populations were most frequently treated. Therapists with VR/AVG experience rated all ADOPT-VR2 constructs more highly than did those without experience (P < 0.001). Factors predictive of intention to use VR included the technology's perceived usefulness and therapist self-efficacy in VR/AVG use (P < 0.001). Highest-rated barriers to VR/AVG use were lack of funds, space, time, support staff, and appropriate clients, whereas facilitators included client motivation, therapist knowledge, and management support. Most (76%) respondents were interested in learning more. Understanding use, predictors of use, and learning needs is essential for developing knowledge translation initiatives to support clinical integration of VR/AVGs. Results of this first national survey will inform the creation of resources to support therapists in this field.

  15. Formalizing and Promoting Collaboration in 3D Virtual Environments - A Blueprint for the Creation of Group Interaction Patterns

    NASA Astrophysics Data System (ADS)

    Schmeil, Andreas; Eppler, Martin J.

    Despite the fact that virtual worlds and other types of multi-user 3D collaboration spaces have long been subjects of research and of application experiences, it still remains unclear how to best benefit from meeting with colleagues and peers in a virtual environment with the aim of working together. Making use of the potential of virtual embodiment, i.e. being immersed in a space as a personal avatar, allows for innovative new forms of collaboration. In this paper, we present a framework that serves as a systematic formalization of collaboration elements in virtual environments. The framework is based on the semiotic distinctions among pragmatic, semantic and syntactic perspectives. It serves as a blueprint to guide users in designing, implementing, and executing virtual collaboration patterns tailored to their needs. We present two team and two community collaboration pattern examples as a result of the application of the framework: Virtual Meeting, Virtual Design Studio, Spatial Group Configuration, and Virtual Knowledge Fair. In conclusion, we also point out future research directions for this emerging domain.

  16. Virtual Reality: An Emerging Tool to Treat Pain

    DTIC Science & Technology

    2010-04-01

    burn patients, physical therapy stretching of the newly healing skin helps to counteract the healing skin’s natural contraction as it scars...room, and substitute more calming music and sound effects. The patient interacts with the virtual world, throwing snowballs at objects in the virtual...care (Hoffman, Patterson et al, 2008) and physical therapy (Hoffman, Patterson, Carrougher, 2000; Hoffman, Patterson, Carrougher, Sharar, 2001; Sharar

  17. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In addition, some web based data collection tools are available to collect student feedback and opinions on their learning experience. The virtual laboratory is designed to be an online education tool that facilitates interactive learning.; Virtual Deformation Laboratory

  18. The Effects on Students' Conceptual Understanding of Electric Circuits of Introducing Virtual Manipulatives within a Physical Manipulatives-Oriented Curriculum

    ERIC Educational Resources Information Center

    Zacharia, Zacharias C.; de Jong, Ton

    2014-01-01

    This study investigates whether Virtual Manipulatives (VM) within a Physical Manipulatives (PM)-oriented curriculum affect conceptual understanding of electric circuits and related experimentation processes. A pre-post comparison study randomly assigned 194 undergraduates in an introductory physics course to one of five conditions: three…

  19. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    NASA Astrophysics Data System (ADS)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2007-05-21

    STS-118 astronaut and mission specialist Dafydd R. “Dave” Williams, representing the Canadian Space Agency, uses Virtual Reality Hardware in the Space Vehicle Mock Up Facility at the Johnson Space Center to rehearse some of his duties for the upcoming mission. This type of virtual reality training allows the astronauts to wear special gloves and other gear while looking at a computer that displays simulating actual movements around the various locations on the station hardware which with they will be working.

  1. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41533 (9 Aug. 2007) --- Astronauts Stephanie Wilson (left), STS-120 mission specialist; Sandra Magnus, Expedition 17 flight engineer; and Dan Tani, Expedition 16 flight engineer, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.

  2. Comprehension and Memory of Spatial and Temporal Event Components

    DTIC Science & Technology

    2008-01-01

    sitting in the leather chair listening to some music . [PROBE LAMP (filler)] He had headphones on, but Mary Agnes could still make out the lyrics. She...representation and processing of virtual spaces results in performance that is essentially identical to real spaces (e.g., Sun, Chan, & Campos , 2004) or with...that people treat virtual spaces in a manner very similar to real spaces (e.g., Sun, Chan, & Campos , 2004; Waller, Loomis, & Haun, 2004). The aim of

  3. Human Robotic Swarm Interaction Using an Artificial Physics Approach

    DTIC Science & Technology

    2014-12-01

    calculates virtual forces that are summed and translated into velocity commands. The virtual forces are modeled after real physical forces such as...results from the physical experiments show that an artificial physics-based framework is an effective way to allow multiple agents to follow a human... modeled after real physical forces such as gravitational and Coulomb, forces but are not restricted to them, for example, the force magnitude may not be

  4. Virtual Environment User Interfaces to Support RLV and Space Station Simulations in the ANVIL Virtual Reality Lab

    NASA Technical Reports Server (NTRS)

    Dumas, Joseph D., II

    1998-01-01

    Several virtual reality I/O peripherals were successfully configured and integrated as part of the author's 1997 Summer Faculty Fellowship work. These devices, which were not supported by the developers of VR software packages, use new software drivers and configuration files developed by the author to allow them to be used with simulations developed using those software packages. The successful integration of these devices has added significant capability to the ANVIL lab at MSFC. In addition, the author was able to complete the integration of a networked virtual reality simulation of the Space Shuttle Remote Manipulator System docking Space Station modules which was begun as part of his 1996 Fellowship. The successful integration of this simulation demonstrates the feasibility of using VR technology for ground-based training as well as on-orbit operations.

  5. An Optimized Trajectory Planning for Welding Robot

    NASA Astrophysics Data System (ADS)

    Chen, Zhilong; Wang, Jun; Li, Shuting; Ren, Jun; Wang, Quan; Cheng, Qunchao; Li, Wentao

    2018-03-01

    In order to improve the welding efficiency and quality, this paper studies the combined planning between welding parameters and space trajectory for welding robot and proposes a trajectory planning method with high real-time performance, strong controllability and small welding error. By adding the virtual joint at the end-effector, the appropriate virtual joint model is established and the welding process parameters are represented by the virtual joint variables. The trajectory planning is carried out in the robot joint space, which makes the control of the welding process parameters more intuitive and convenient. By using the virtual joint model combined with the B-spline curve affine invariant, the welding process parameters are indirectly controlled by controlling the motion curve of the real joint. To solve the optimal time solution as the goal, the welding process parameters and joint space trajectory joint planning are optimized.

  6. Network testbed creation and validation

    DOEpatents

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.; Watts, Kristopher K.; Sweeney, Andrew John

    2017-03-21

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices, embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.

  7. Toward a comprehensive hybrid physical-virtual reality simulator of peripheral anesthesia with ultrasound and neurostimulator guidance.

    PubMed

    Samosky, Joseph T; Allen, Pete; Boronyak, Steve; Branstetter, Barton; Hein, Steven; Juhas, Mark; Nelson, Douglas A; Orebaugh, Steven; Pinto, Rohan; Smelko, Adam; Thompson, Mitch; Weaver, Robert A

    2011-01-01

    We are developing a simulator of peripheral nerve block utilizing a mixed-reality approach: the combination of a physical model, an MRI-derived virtual model, mechatronics and spatial tracking. Our design uses tangible (physical) interfaces to simulate surface anatomy, haptic feedback during needle insertion, mechatronic display of muscle twitch corresponding to the specific nerve stimulated, and visual and haptic feedback for the injection syringe. The twitch response is calculated incorporating the sensed output of a real neurostimulator. The virtual model is isomorphic with the physical model and is derived from segmented MRI data. This model provides the subsurface anatomy and, combined with electromagnetic tracking of a sham ultrasound probe and a standard nerve block needle, supports simulated ultrasound display and measurement of needle location and proximity to nerves and vessels. The needle tracking and virtual model also support objective performance metrics of needle targeting technique.

  8. Network testbed creation and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices,more » embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.« less

  9. Course Crash in Hybrid Space: An Exploration and Recommendations for Virtual Course Space

    ERIC Educational Resources Information Center

    Gerard, Joseph G.; Gerard, Reena Lederman; Casile, Maureen

    2010-01-01

    Understanding what hybrid space is, much less understanding what happens in that virtual realm, can raise difficult questions. For example, our campus's question "How do we define hybrid?" has kept us busy and guessing for over a year now. In this article, we offer a few suggestions on how to proceed with hybrid issues, including how to deal with…

  10. Overview of Human-Centric Space Situational Awareness (SSA) Science and Technology (S&T)

    NASA Astrophysics Data System (ADS)

    Ianni, J.; Aleva, D.; Ellis, S.

    2012-09-01

    A number of organizations, within the government, industry, and academia, are researching ways to help humans understand and react to events in space. The problem is both helped and complicated by the fact that there are numerous data sources that need to be planned (i.e., tasked), collected, processed, analyzed, and disseminated. A large part of the research is in support of the Joint Space Operational Center (JSpOC), National Air and Space Intelligence Center (NASIC), and similar organizations. Much recent research has been specifically targeting the JSpOC Mission System (JMS) which has provided a unifying software architecture. This paper will first outline areas of science and technology (S&T) related to human-centric space situational awareness (SSA) and space command and control (C2) including: 1. Object visualization - especially data fused from disparate sources. Also satellite catalog visualizations that convey the physical relationships between space objects. 2. Data visualization - improve data trend analysis as in visual analytics and interactive visualization; e.g., satellite anomaly trends over time, space weather visualization, dynamic visualizations 3. Workflow support - human-computer interfaces that encapsulate multiple computer services (i.e., algorithms, programs, applications) into a 4. Command and control - e.g., tools that support course of action (COA) development and selection, tasking for satellites and sensors, etc. 5. Collaboration - improve individuals or teams ability to work with others; e.g., video teleconferencing, shared virtual spaces, file sharing, virtual white-boards, chat, and knowledge search. 6. Hardware/facilities - e.g., optimal layouts for operations centers, ergonomic workstations, immersive displays, interaction technologies, and mobile computing. Secondly we will provide a survey of organizations working these areas and suggest where more attention may be needed. Although no detailed master plan exists for human-centric SSA and C2, we see little redundancy among the groups supporting SSA human factors at this point.

  11. Students' Experience of Problem-Based Learning in Virtual Space

    ERIC Educational Resources Information Center

    Gibbings, Peter; Lidstone, John; Bruce, Christine

    2015-01-01

    This paper reports outcomes of a study focused on discovering qualitatively different ways students experience problem-based learning in virtual space. A well-accepted and documented qualitative research method was adopted for this study. Five qualitatively different conceptions are described, each revealing characteristics of increasingly complex…

  12. EXPLORING ENVIRONMENTAL DATA IN A HIGHLY IMMERSIVE VIRTUAL REALITY ENVIRONMENT

    EPA Science Inventory

    Geography inherently fills a 3D space and yet we struggle with displaying geography using, primaarily, 2D display devices. Virtual environments offer a more realistically-dimensioned display space and this is being realized in the expanding area of research on 3D Geographic Infor...

  13. Embodiment, Virtual Space, Temporality and Interpersonal Relations in Online Writing

    ERIC Educational Resources Information Center

    Adams, Catherine; van Manen, Max

    2006-01-01

    In this paper we discuss how online seminar participants experience dimensions of embodiment, virtual space, interpersonal relations, and temporality; and how interacting through reading-writing, by means of online technologies, creates conditions, situations, and actions of pedagogical influence and relational affectivities. We investigate what…

  14. Fifty years of Cosmic Era: Real and Virtual Studies of the Sky

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Malkov, O. Yu.; Samus, N. N.

    2012-05-01

    The book presents the Proceedings of the Conference of Young Scientists of CIS countries held on 21-25 November 2011 at the Armenian National Academy of Sciences in Yerevan and dedicated to the 50th anniversary of Yuri Gagarin's flight into Space. The main goal of the Conference was to gather young scientists from CIS countries to familiarize them with the latest developments of Astrophysics and Space Physics, including the use of the latest technology and techniques. Among the participants of the conference there were 47 young scientists and researchers from Armenia, Latvia, Lithuania, Russia, Tajikistan and Ukraine, as well as 5 invited lecturers from Armenia, France and Russia, who gave 5 lectures and 2 different practical exercises (tutorials). The young scientists presented 38 talks on various topics of astrophysics related to their research work or PhD/MSc studies. The book is divided into 5 parts, Invited Lectures and 4 sections by subjects: Solar System and Exoplanets, Stars and Nebulae, Galaxies and Cosmology, Real and Virtual Observatories. It also includes a preface by the editors, the list of participants of the conference, and author index at the end.

  15. Taming the data wilderness with the VHO: Integrating heliospheric data sets

    NASA Astrophysics Data System (ADS)

    Schroeder, P.; Szabo, A.; Narock, T.

    Currently space physicists are faced with a bewildering array of heliospheric missions experiments and data sets available at archives distributed around the world Daunting even for those most familiar with the field physicists in other concentrations solar physics magnetospheric physics etc find locating the heliospheric data that they need extremely challenging if not impossible The Virtual Heliospheric Observatory VHO will help to solve this problem by creating an Application Programming Interface API and web portal that integrates these data sets to find the highest quality data for a given task The VHO will locate the best available data often found only at PI institutions rather than at national archives like the NSSDC The VHO will therefore facilitate a dynamic data environment where improved data products are made available immediately In order to accomplish this the VHO will enforce a metadata standard on participating data providers with sufficient depth to allow for meaningful scientific evaluation of similar data products The VHO will provide an automated way for secondary sites to keep mirrors of data archives up to date and encouraging the generation of secondary or added-value data products The VHO will interact seamlessly with the Virtual Solar Observatory VSO and other Virtual Observatories VxO s to allow for inter-disciplinary data searching Software tools for these data sets will also be available through the VHO Finally the VHO will provide linkages to the modeling community and will develop metadata standards for the

  16. Comment

    NASA Astrophysics Data System (ADS)

    2001-03-01

    Virtual reality - whose reality? There is an old joke about a farmer who wanted to improve his milk yields and employed an engineer, a psychologist and a physicist to make suggestions. They all went away for a month and came back with their proposals. The engineer had measured the size of the milking stalls, the ambient temperature and the milking process. She suggested a modest rise in ambient temperature and an alteration in the pumping equipment. The psychologist decided to paint the stalls green and play a tape-recording of birdsong to the cows to make them feel more content and release their milk more easily. The physicist explained that he had decided to look at things more fundamentally: 'Let us assume that the cow is a sphere' ... he began. And that's the joke. Some people think that this is the funniest thing out - a physicist can't recognize a cow when they see one. What troubles me is that I didn't get the joke straight away. I am so used to the language and the often-ludicrous assumptions in physics that it did not seem particularly strange or funny. What did you think? The joke, for me, illustrates the essence of our problem in physics teaching. In a very real way, physics is about another world. It isn't about the real world in which ordinary people live, and they know it. Physics has its own language, its own laws and its own values. Depleted uranium has been in the news of late. It is interesting to compare the casual way in which physics teachers have discussed the possibilitiy that one atom of uranium can kill someone with the shock-horror reporting of this fact in the press. We are caricatured, sometimes for good reason, being callous, calculating, cold people - out of touch with the things that really matter. And then there's that other 'real world' - of really tough people who make serious money. Our friends who work out in the worlds of commerce and industry like to mutter, with some superiority, that teachers would never survive in the real world. So here we are, buffered from the 'reality' of commerce by kind managers, left to teach equations at the expense of moral standards ... Excuse me! Physics is the only subject that confronts real reality head on. Physics is all about how this world, this Universe, this reality works. Moral laws, government legislation and theories of economics are all well, and sometimes good, but they take place within this space we call Our Universe. Physics is real This issue of Physics Education contains lots of excellent suggestions for practical work - demonstrations of what happens, and suggestions for investigations. I hope that readers will find them useful and maybe share some good ideas of their own. We are dealing with stuff that actually happens, and that is what makes physics both significant and attractive. The joke I really hate runs 'If it moves it's biology, if it smells it's chemistry and if it doesn't work it's physics'. This is rubbish: gravity always works, in my experience, physics never gets it wrong. In the classroom, maybe a piece of equipment is broken, or the technician forgot the batteries, but we can never say truthfully that 'the experiment didn't work'. Virtual physics Last week a school governor challenged me to justify the cost of so much laboratory space and equipment when, nowadays, so much can be done using computers. Probably the best 'virtual physics' currently available is on CD-ROM. In this issue of Physics Education we have concentrated on CDs for our review section. There is lots of good material out there which can enhance our teaching with wonderful images, immediate feedback for students, and the possibility of continuously monitored differentiated work but, as I explained to the governor, I don't want to teach virtual physics - physics is very firmly, fairly and squarely in this real world (which may, of course, approximate to a sphere ... .). EditorDr Kerry Parker

  17. Human Pacman: A Mobile Augmented Reality Entertainment System Based on Physical, Social, and Ubiquitous Computing

    NASA Astrophysics Data System (ADS)

    Cheok, Adrian David

    This chapter details the Human Pacman system to illuminate entertainment computing which ventures to embed the natural physical world seamlessly with a fantasy virtual playground by capitalizing on infrastructure provided by mobile computing, wireless LAN, and ubiquitous computing. With Human Pacman, we have a physical role-playing computer fantasy together with real human-social and mobile-gaming that emphasizes on collaboration and competition between players in a wide outdoor physical area that allows natural wide-area human-physical movements. Pacmen and Ghosts are now real human players in the real world experiencing mixed computer graphics fantasy-reality provided by using the wearable computers on them. Virtual cookies and actual tangible physical objects are incorporated into the game play to provide novel experiences of seamless transitions between the real and virtual worlds. This is an example of a new form of gaming that anchors on physicality, mobility, social interaction, and ubiquitous computing.

  18. CANYVAL-X: Enabling a new class of scientific instruments

    NASA Astrophysics Data System (ADS)

    Shah, Neerav; Calhoun, Philip C.; Park, Sang-young; Keidar, Michael

    2016-05-01

    Significant new discoveries in space science can be realized by replacing the traditional large monolithic space telescopes with precision formation flying spacecraft to form a “virtual telescope.” Such virtual telescopes will revolutionize occulting imaging systems, provide images of the Sun, accretion disks, and other astronomical objects with unprecedented milli-arcsecond resolution (several orders of magnitude beyond current capability).Since the days of Apollo, NASA and other organizations have been conducting formation flying in space, but not with the precision required for virtual telescopes. These efforts have focused on rendezvous and docking (e.g., crew docking, satellite servicing, etc.) and/or ground-controlled coordinated flight (e.g., EO-1, GRAIL, MMS, etc.). While the TRL of the component level technology for formation flying is high, the capability for the system-level guidance, navigation, and control (GN&C) technology required to align a virtual telescope to an inertial astronomical target with sub-arcsecond precision is not fully developed.The CANYVAL-X (CubeSat Astronomy by NASA and Yonsei using Virtual Telescope Alignment eXperiment) mission is an engineering proof of concept featuring a pair of CubeSats flying as a tandem telescope with a goal of demonstrating the system-level GN&C needed to form a virtual telescope. NASA partnered with the George Washington University and the Yonsei University to design and develop CANYVAL-X. CANYVAL-X will demonstrate key technologies for using virtual telescopes in space, including micro-propulsion using millinewton thrusters, relative position sensing, and communications control between the two spacecraft. CANYVAL-X is scheduled to launch on a Flacon-9 in summer of 2016.

  19. If You Can Make It There, You Can Make It Anywhere: Providing Reference and Instructional Library Services in the Virtual Environment

    ERIC Educational Resources Information Center

    Leonard, Elizabeth; Morasch, Maureen J.

    2012-01-01

    Despite the old-fashioned view of the academic library as a static institution, libraries can and do change in response to the needs of users and stakeholders. Perhaps the most dramatic shift in services has been the transition from a purely physical to a combination physical/virtual or even virtual-only environment. This article examines how…

  20. AstroGrid: the UK's Virtual Observatory Initiative

    NASA Astrophysics Data System (ADS)

    Mann, Robert G.; Astrogrid Consortium; Lawrence, Andy; Davenhall, Clive; Mann, Bob; McMahon, Richard; Irwin, Mike; Walton, Nic; Rixon, Guy; Watson, Mike; Osborne, Julian; Page, Clive; Allan, Peter; Giaretta, David; Perry, Chris; Pike, Dave; Sherman, John; Murtagh, Fionn; Harra, Louise; Bentley, Bob; Mason, Keith; Garrington, Simon

    AstroGrid is the UK's Virtual Observatory (VO) initiative. It brings together the principal astronomical data centres in the UK, and has been funded to the tune of ˜pounds 5M over the next three years, via PPARC, as part of the UK e--science programme. Its twin goals are the provision of the infrastructure and tools for the federation and exploitation of large astronomical (X-ray to radio), solar and space plasma physics datasets, and the delivery of federations of current datasets for its user communities to exploit using those tools. Whilst AstroGrid's work will be centred on existing and future (e.g. VISTA) UK datasets, it will seek solutions to generic VO problems and will contribute to the developing international virtual observatory framework: AstroGrid is a member of the EU-funded Astrophysical Virtual Observatory project, has close links to a second EU Grid initiative, the European Grid of Solar Observations (EGSO), and will seek an active role in the development of the common standards on which the international virtual observatory will rely. In this paper we shall primarily describe the concrete plans for AstroGrid's one-year Phase A study, which will centre on: (i) the definition of detailed science requirements through community consultation; (ii) the undertaking of a ``functionality market survey" to test the utility of existing technologies for the VO; and (iii) a pilot programme of database federations, each addressing different aspects of the general database federation problem. Further information on AstroGrid can be found at AstroGrid .

  1. In-vehicle group activity modeling and simulation in sensor-based virtual environment

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Telagamsetti, Durga; Poshtyar, Azin; Chan, Alex; Hu, Shuowen

    2016-05-01

    Human group activity recognition is a very complex and challenging task, especially for Partially Observable Group Activities (POGA) that occur in confined spaces with limited visual observability and often under severe occultation. In this paper, we present IRIS Virtual Environment Simulation Model (VESM) for the modeling and simulation of dynamic POGA. More specifically, we address sensor-based modeling and simulation of a specific category of POGA, called In-Vehicle Group Activities (IVGA). In VESM, human-alike animated characters, called humanoids, are employed to simulate complex in-vehicle group activities within the confined space of a modeled vehicle. Each articulated humanoid is kinematically modeled with comparable physical attributes and appearances that are linkable to its human counterpart. Each humanoid exhibits harmonious full-body motion - simulating human-like gestures and postures, facial impressions, and hands motions for coordinated dexterity. VESM facilitates the creation of interactive scenarios consisting of multiple humanoids with different personalities and intentions, which are capable of performing complicated human activities within the confined space inside a typical vehicle. In this paper, we demonstrate the efficiency and effectiveness of VESM in terms of its capabilities to seamlessly generate time-synchronized, multi-source, and correlated imagery datasets of IVGA, which are useful for the training and testing of multi-source full-motion video processing and annotation. Furthermore, we demonstrate full-motion video processing of such simulated scenarios under different operational contextual constraints.

  2. Virtual optical network mapping and core allocation in elastic optical networks using multi-core fibers

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-11-01

    Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.

  3. Marshall Engineers Use Virtual Reality

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  4. Interactions with Virtual People: Do Avatars Dream of Digital Sheep?. Chapter 6

    NASA Technical Reports Server (NTRS)

    Slater, Mel; Sanchez-Vives, Maria V.

    2007-01-01

    This paper explores another form of artificial entity, ones without physical embodiment. We refer to virtual characters as the name for a type of interactive object that have become familiar in computer games and within virtual reality applications. We refer to these as avatars: three-dimensional graphical objects that are in more-or-less human form which can interact with humans. Sometimes such avatars will be representations of real-humans who are interacting together within a shared networked virtual environment, other times the representations will be of entirely computer generated characters. Unlike other authors, who reserve the term agent for entirely computer generated characters and avatars for virtual embodiments of real people; the same term here is used for both. This is because avatars and agents are on a continuum. The question is where does their behaviour originate? At the extremes the behaviour is either completely computer generated or comes only from tracking of a real person. However, not every aspect of a real person can be tracked every eyebrow move, every blink, every breath rather real tracking data would be supplemented by inferred behaviours which are programmed based on the available information as to what the real human is doing and her/his underlying emotional and psychological state. Hence there is always some programmed behaviour it is only a matter of how much. In any case the same underlying problem remains how can the human character be portrayed in such a manner that its actions are believable and have an impact on the real people with whom it interacts? This paper has three main parts. In the first part we will review some evidence that suggests that humans react with appropriate affect in their interactions with virtual human characters, or with other humans who are represented as avatars. This is so in spite of the fact that the representational fidelity is relatively low. Our evidence will be from the realm of psychotherapy, where virtual social situations are created that do test whether people react appropriately within these situations. We will also consider some experiments on face-to-face virtual communications between people in the same shared virtual environments. The second part will try to give some clues about why this might happen, taking into account modern theories of perception from neuroscience. The third part will include some speculations about the future developments of the relationship between people and virtual people. We will suggest that a more likely scenario than the world becoming populated by physically embodied virtual people (robots, androids) is that in the relatively near future we will interact more and more in our everyday lives with virtual people- bank managers, shop assistants, instructors, and so on. What is happening in the movies with computer graphic generated individuals and entire crowds may move into the space of everyday life.

  5. Three dimensional tracking with misalignment between display and control axes

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Tyler, Mitchell; Kim, Won S.; Stark, Lawrence

    1992-01-01

    Human operators confronted with misaligned display and control frames of reference performed three dimensional, pursuit tracking in virtual environment and virtual space simulations. Analysis of the components of the tracking errors in the perspective displays presenting virtual space showed that components of the error due to visual motor misalignment may be linearly separated from those associated with the mismatch between display and control coordinate systems. Tracking performance improved with several hours practice despite previous reports that such improvement did not take place.

  6. Virtual Reality Training Environments: Contexts and Concerns.

    ERIC Educational Resources Information Center

    Harmon, Stephen W.; Kenney, Patrick J.

    1994-01-01

    Discusses the contexts where virtual reality (VR) training environments might be appropriate; examines the advantages and disadvantages of VR as a training technology; and presents a case study of a VR training environment used at the NASA Johnson Space Center in preparation for the repair of the Hubble Space Telescope. (AEF)

  7. Claiming Unclaimed Spaces: Virtual Spaces for Learning

    ERIC Educational Resources Information Center

    Miller, Nicole C.

    2016-01-01

    The purpose of this study was to describe and examine the environments used by teacher candidates in multi-user virtual environments. Secondary data analysis of a case study methodology was employed. Multiple data sources including interviews, surveys, observations, snapshots, course artifacts, and the researcher's journal were used in the initial…

  8. jsc2005e04513

    NASA Image and Video Library

    2005-02-03

    JSC2005-E-04513 (3 Feb. 2005) --- European Space Agency (ESA) astronaut Christer Fuglesang, STS-116 mission specialist, uses virtual reality hardware in the Space Vehicle Mockup Facility at the Johnson Space Center to rehearse some of his duties on the upcoming mission to the international space station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working.

  9. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41538 (9 Aug. 2007) --- Astronauts Stephanie Wilson, STS-120 mission specialist; Sandra Magnus, Expedition 17 flight engineer; and Dan Tani, Expedition 16 flight engineer, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements. A computer display is visible in the foreground.

  10. Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children

    NASA Astrophysics Data System (ADS)

    Klahr, David; Triona, Lara M.; Williams, Cameron

    2007-01-01

    Hands-on activities play an important, but controversial, role in early science education. In this study we attempt to clarify some of the issues surrounding the controversy by calling attention to distinctions between: (a) type of instruction (direct or discovery); (b) type of knowledge to be acquired (domain-general or domain-specific); and (c) type of materials that are used (physical or virtual). We then describe an empirical study that investigates the relative effectiveness of the physical-virtual dimension. In the present study, seventh and eighth grade students assembled and tested mousetrap cars with the goal of designing a car that would go the farthest. Children were assigned to four different conditions, depending on whether they manipulated physical or virtual materials, and whether they had a fixed number of cars they could construct or a fixed amount of time in which to construct them. All four conditions were equally effective in producing significant gains in learners' knowledge about causal factors, in their ability to design optimal cars, and in their confidence in their knowledge. Girls' performance, knowledge, and effort were equal to boys' in all conditions, but girls' confidence remained below boys' throughout. Given the fact that, on several different measures, children were able to learn as well with virtual as with physical materials, the inherent pragmatic advantages of virtual materials in science may make them the preferred instructional medium in many hands-on contexts.

  11. Effects of physical randomness training on virtual and laboratory golf putting performance in novices.

    PubMed

    Pataky, T C; Lamb, P F

    2018-06-01

    External randomness exists in all sports but is perhaps most obvious in golf putting where robotic putters sink only 80% of 5 m putts due to unpredictable ball-green dynamics. The purpose of this study was to test whether physical randomness training can improve putting performance in novices. A virtual random-physics golf-putting game was developed based on controlled ball-roll data. Thirty-two subjects were assigned a unique randomness gain (RG) ranging from 0.1 to 2.0-times real-world randomness. Putter face kinematics were measured in 5 m laboratory putts before and after five days of virtual training. Performance was quantified using putt success rate and "miss-adjustment correlation" (MAC), the correlation between left-right miss magnitude and subsequent right-left kinematic adjustments. Results showed no RG-success correlation (r = -0.066, p = 0.719) but mildly stronger correlations with MAC for face angle (r = -0.168, p = 0.358) and clubhead path (r = -0.302, p = 0.093). The strongest RG-MAC correlation was observed during virtual training (r = -0.692, p < 0.001). These results suggest that subjects quickly adapt to physical randomness in virtual training, and also that this learning may weakly transfer to real golf putting kinematics. Adaptation to external physical randomness during virtual training may therefore help golfers adapt to external randomness in real-world environments.

  12. 100 Years of the Physics of Diodes

    NASA Astrophysics Data System (ADS)

    Luginsland, John

    2013-10-01

    The Child-Langmuir Law (CL), discovered 100 years ago, gives the maximum current that can be transported across a planar diode in the steady state. As a quintessential example of the impact of space-charge shielding near a charged surface, it is central to the studies of high current diodes, such as high power microwave sources, vacuum microelectronics, electron and ion sources, and high current drivers used in high-energy density physics experiments. CL remains a touchstone of fundamental sheath physics, including contemporary studies of nano-scale quantum diodes and plasmonic devices. Its solid state analog is the Mott-Gurney law, governing the maximum charge injection in solids, such as organic materials and other dielectrics, which is important to energy devices, such as solar cells and light-emitting diodes. This paper reviews the important advances in the physics of diodes since the discovery of CL, including virtual cathode formation and extension of CL to multiple dimensions, to the quantum regime, and to ultrafast processes. We will review the influence of magnetic fields, multiple species in bipolar flow, electromagnetic and time dependent effects in both short pulse and high frequency THz limits, and single electron regimes. Transitions from various emission mechanisms (thermionic, field, and photo-emission) to the space charge limited state (CL) will be addressed, especially highlighting important simulation and experimental developments in selected contemporary areas of study. This talk will stress the fundamental physical links between the physics of beams to limiting currents in other areas, such as low temperature plasmas, laser plasmas, and space propulsion. Also emphasized is the role of non-equilibrium phenomena associated with materials and plasmas in close contact. Work supported by the Air Force Office of Scientific Research.

  13. Designing for Virtual Windows in a Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Howard, Robert L.; Moore, Nathan; Amoroso, Michael

    2013-01-01

    This paper discusses configurations and test analogs toward the design of a virtual window capability in a Deep Space Habitat. Long-duration space missions will require crews to remain in the confines of a spacecraft for extended periods of time, with possible harmful effects if a crewmember cannot cope with the small habitable volume. Virtual windows expand perceived volume using a minimal amount of image projection equipment and computing resources, and allow a limited immersion in remote environments. Uses for the virtual window include: live or augmented reality views of the external environment; flight deck, piloting, observation, or other participation in remote missions through live transmission of cameras mounted to remote vehicles; pre-recorded background views of nature areas, seasonal occurrences, or cultural events; and pre-recorded events such as birthdays, anniversaries, and other meaningful events prepared by ground support and families of the crewmembers.

  14. Mars Radiation Surface Model

    NASA Astrophysics Data System (ADS)

    Alzate, N.; Grande, M.; Matthiae, D.

    2017-09-01

    Planetary Space Weather Services (PSWS) within the Europlanet H2020 Research Infrastructure have been developed following protocols and standards available in Astrophysical, Solar Physics and Planetary Science Virtual Observatories. Several VO-compliant functionalities have been implemented in various tools. The PSWS extends the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. One of the five toolkits developed as part of these services is a model dedicated to the Mars environment. This model has been developed at Aberystwyth University and the Institut fur Luft- und Raumfahrtmedizin (DLR Cologne) using modeled average conditions available from Planetocosmics. It is available for tracing propagation of solar events through the Solar System and modeling the response of the Mars environment. The results have been synthesized into look-up tables parameterized to variable solar wind conditions at Mars.

  15. Left Limb of North Pole of the Sun, March 20, 2007 (Anaglyph)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Left eye view of a stereo pair Click on the image for full resolution TIFF Figure 2: Right eye view of a stereo pair Click on the image for full resolution TIFF Figure 1: This image was taken by the SECCHI Extreme UltraViolet Imager (EUVI) mounted on the STEREO-B spacecraft. STEREO-B is located behind the Earth, and follows the Earth in orbit around the Sun. This location enables us to view the Sun from the position of a virtual left eye in space. Figure 2: This image was taken by the SECCHI Extreme UltraViolet Imager (EUVI) mounted on the STEREO-A spacecraft. STEREO-A is located ahead of the Earth, and leads the Earth in orbit around the Sun, This location enables us to view the Sun from the position of a virtual right eye in space.

    NASA's Solar TErrestrial RElations Observatory (STEREO) satellites have provided the first three-dimensional images of the Sun. For the first time, scientists will be able to see structures in the Sun's atmosphere in three dimensions. The new view will greatly aid scientists' ability to understand solar physics and thereby improve space weather forecasting.

    This image is a composite of left and right eye color image pairs taken by the SECCHI Extreme UltraViolet Imager (EUVI) mounted on the STEREO-B and STEREO-A spacecraft. STEREO-B is located behind the Earth, and follows the Earth in orbit around the Sun, This location enables us to view the Sun from the position of a virtual left eye in space. STEREO-A is located ahead of the Earth, and leads the Earth in orbit around the Sun, This location enables us to view the Sun from the position of a virtual right eye in space.

    The EUVI imager is sensitive to wavelengths of light in the extreme ultraviolet portion of the spectrum. EUVI bands at wavelengths of 304, 171 and 195 Angstroms have been mapped to the red blue and green visible portion of the spectrum; and processed to emphasize the three-dimensional structure of the solar material.

    STEREO, a two-year mission, launched October 2006, will provide a unique and revolutionary view of the Sun-Earth System. The two nearly identical observatories -- one ahead of Earth in its orbit, the other trailing behind -- will trace the flow of energy and matter from the Sun to Earth. They will reveal the 3D structure of coronal mass ejections; violent eruptions of matter from the sun that can disrupt satellites and power grids, and help us understand why they happen. STEREO will become a key addition to the fleet of space weather detection satellites by providing more accurate alerts for the arrival time of Earth-directed solar ejections with its unique side-viewing perspective.

    STEREO is the third mission in NASA's Solar Terrestrial Probes program within NASA's Science Mission Directorate, Washington. The Goddard Science and Exploration Directorate manages the mission, instruments, and science center. The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., designed and built the spacecraft and is responsible for mission operations. The imaging and particle detecting instruments were designed and built by scientific institutions in the U.S., UK, France, Germany, Belgium, Netherlands, and Switzerland. JPL is a division of the California Institute of Technology in Pasadena.

  16. Interreality: A New Paradigm for E-health.

    PubMed

    Riva, Giuseppe

    2009-01-01

    "Interreality" is a personalized immersive e-therapy whose main novelty is a hybrid, closed-loop empowering experience bridging physical and virtual worlds. The main feature of interreality is a twofold link between the virtual and the real world: (a) behavior in the physical world influences the experience in the virtual one; (b) behavior in the virtual world influences the experience in the real one. This is achieved through: (1) 3D Shared Virtual Worlds: role-playing experiences in which one or more users interact with one another within a 3D world; (2) Bio and Activity Sensors (From the Real to the Virtual World): They are used to track the emotional/health/activity status of the user and to influence his/her experience in the virtual world (aspect, activity and access); (3) Mobile Internet Appliances (From the Virtual to the Real One): In interreality, the social and individual user activity in the virtual world has a direct link with the users' life through a mobile phone/digital assistant. The different technologies that are involved in the interreality vision and its clinical rationale are addressed and discussed.

  17. Virtual Reference Services.

    ERIC Educational Resources Information Center

    Brewer, Sally

    2003-01-01

    As the need to access information increases, school librarians must create virtual libraries. Linked to reliable reference resources, the virtual library extends the physical collection and library hours and lets students learn to use Web-based resources in a protected learning environment. The growing number of virtual schools increases the need…

  18. Experimental Study on the Perception Characteristics of Haptic Texture by Multidimensional Scaling.

    PubMed

    Wu, Juan; Li, Na; Liu, Wei; Song, Guangming; Zhang, Jun

    2015-01-01

    Recent works regarding real texture perception demonstrate that physical factors such as stiffness and spatial period play a fundamental role in texture perception. This research used a multidimensional scaling (MDS) analysis to further characterize and quantify the effects of the simulation parameters on haptic texture rendering and perception. In a pilot experiment, 12 haptic texture samples were generated by using a 3-degrees-of-freedom (3-DOF) force-feedback device with varying spatial period, height, and stiffness coefficient parameter values. The subjects' perceptions of the virtual textures indicate that roughness, denseness, flatness and hardness are distinguishing characteristics of texture. In the main experiment, 19 participants rated the dissimilarities of the textures and estimated the magnitudes of their characteristics. The MDS method was used to recover the underlying perceptual space and reveal the significance of the space from the recorded data. The physical parameters and their combinations have significant effects on the perceptual characteristics. A regression model was used to quantitatively analyze the parameters and their effects on the perceptual characteristics. This paper is to illustrate that haptic texture perception based on force feedback can be modeled in two- or three-dimensional space and provide suggestions on improving perception-based haptic texture rendering.

  19. Virtual environment navigation with look-around mode to explore new real spaces by people who are blind.

    PubMed

    Lahav, Orly; Gedalevitz, Hadas; Battersby, Steven; Brown, David; Evett, Lindsay; Merritt, Patrick

    2018-05-01

    This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared with only 30% of the control group participants. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model. Implications for rehabilitation The virtual cane system for the first time enables people who are blind to explore and collect spatial information via the look-around mode in addition to the walk-around mode. People who are blind prefer to use look-around mode to explore new spaces, as opposed to the walking mode. Although the look-around mode requires users to establish a complex collecting and processing procedure for the spatial data, people who are blind using this mode are able to construct a mental map as a map model. For people who are blind (as for the sighted) construction of a mental map based on map model offers more flexibility in choosing a walking path in a real space, accounting for changes that occur in the space.

  20. The effects of viewpoint on the virtual space of pictures

    NASA Technical Reports Server (NTRS)

    Sedgwick, H. A.

    1989-01-01

    Pictorial displays whose primary purpose is to convey accurate information about the 3-D spatial layout of an environment are discussed. How and how well, pictures can convey such information is discussed. It is suggested that picture perception is not best approached as a unitary, indivisible process. Rather, it is a complex process depending on multiple, partially redundant, interacting sources of visual information for both the real surface of the picture and the virtual space beyond. Each picture must be assessed for the particular information that it makes available. This will determine how accurately the virtual space represented by the picture is seen, as well as how it is distorted when seen from the wrong viewpoint.

  1. Visualization of N-body Simulations in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Knop, Robert A.; Ames, J.; Djorgovski, G.; Farr, W.; Hut, P.; Johnson, A.; McMillan, S.; Nakasone, A.; Vesperini, E.

    2010-01-01

    We report on work to use virtual worlds for visualizing the results of N-body calculations, on three levels. First, we have written a demonstration 3-body solver entirely in the scripting language of the popularly used virtual world Second Life. Second, we have written a physics module for the open source virtual world OpenSim that performs N-body calculations as the physics engine for the server, allowing natural 3-d visualization of the solution as the solution is being performed. Finally, we give an initial report on the potential use of virtual worlds to visualize calculations which have previously been performed, or which are being performed in other processes and reported to the virtual world server. This work has been performed as part of the Meta-Institute of Computational Astrophysics (MICA). http://www.mica-vw.org

  2. Virtual Reality: Developing a VR space for Academic activities

    NASA Astrophysics Data System (ADS)

    Kaimaris, D.; Stylianidis, E.; Karanikolas, N.

    2014-05-01

    Virtual reality (VR) is extensively used in various applications; in industry, in academia, in business, and is becoming more and more affordable for end users from the financial point of view. At the same time, in academia and higher education more and more applications are developed, like in medicine, engineering, etc. and students are inquiring to be well-prepared for their professional life after their educational life cycle. Moreover, VR is providing the benefits having the possibility to improve skills but also to understand space as well. This paper presents the methodology used during a course, namely "Geoinformatics applications" at the School of Spatial Planning and Development (Eng.), Aristotle University of Thessaloniki, to create a virtual School space. The course design focuses on the methods and techniques to be used in order to develop the virtual environment. In addition the project aspires to become more and more effective for the students and provide a real virtual environment with useful information not only for the students but also for any citizen interested in the academic life at the School.

  3. Field trips and their effect on student achievement in and attitudes toward science: A comparison of a physical versus a virtual field trip to the Indian River Lagoon

    NASA Astrophysics Data System (ADS)

    Garner, Lesley Cochran

    The purpose of this study was to determine the effect of physical and virtual field trips on students' achievement in estuarine ecology and their attitudes toward science. The study also assessed the effect of students' learning styles, the interaction between group membership and learning styles, and the effect of group membership on students' ability to answer questions at different levels of Bloom's (1956) taxonomy. Working with a convenient sample of 67 freshmen and sophomore non-science majors, students were randomly assigned to one of two treatment groups (physical, n = 32 and virtual, n = 35). Prior to treatment, students' learning styles were determined, students were pre-assessed on the two targeted measures, and all students attended four consecutive, in-class, 75-minute lectures on estuarine ecology and the Indian River Lagoon (IRL). Pre-assessed data indicated no significant differences between the groups on the two dependent measures. On the weekend following the lecture series, the physical field trip group engaged in a set of predetermined activities at the IRL for 2 hours in the morning. Later that afternoon, the virtual field trip group participated in a 2-hour virtual trip to the IRL that exactly matched the physical field trip activities. This virtual trip incorporated the CD-ROM The Living Lagoon: An Electronic Field Trip. Following each trip, students were post-assessed using the same pre-assessment instruments. MANCOVA results indicated no significant differences on all research factors (i.e., group membership, learning style, and group-learning style interaction). Data analysis also revealed that there was no significant effect of group membership on students' ability to answer questions at different levels of Bloom's taxonomy. These findings imply that educators can integrate virtual field trips that are structured in the same manner as their corresponding physical field trips without significantly impacting student achievement or attitudes.

  4. Presence in Video-Mediated Interactions: Case Studies at CSIRO

    NASA Astrophysics Data System (ADS)

    Alem, Leila

    Although telepresence and a sense of connectedness with others are frequently mentioned in media space studies, as far as we know, none of these studies report attempts at assessing this critical aspect of user experience. While some attempts have been made to measure presence in virtual reality or augmented reality, (a comprehensive review of existing measures is available in Baren and Ijsselsteijn [2004]), very little work has been reported in measuring presence in video-mediated collaboration systems. Traditional studies of video-mediated collaboration have mostly focused their evaluation on measures of task performance and user satisfaction. Videoconferencing systems can be seen as a type of media space; they rely on technologies of audio, video, and computing put together to create an environment extending the embodied mind. This chapter reports on a set of video-mediated collaboration studies conducted at CSIRO in which different aspects of presence are being investigated. The first study reports the sense of physical presence a specialist doctor experiences when engaged in a remote consultation of a patient using the virtual critical care unit (Alem et al., 2006). The Viccu system is an “always-on” system connecting two hospitals (Li et al., 2006). The presence measure focuses on the extent to which users of videoconferencing systems feel physically present in the remote location. The second study reports the sense of social presence users experience when playing a game of charades with remote partners using a video conference link (Kougianous et al., 2006). In this study the presence measure focuses on the extent to which users feel connected with their remote partners. The third study reports the sense of copresence users experience when building collaboratively a piece of Lego toy (Melo and Alem, 2007). The sense of copresence is the extent to which users feel present with their remote partner. In this final study the sense of copresence is investigated by looking at the word used by users when referring to the physical objects they are manipulating during their interaction as well as when referring to locations in the collaborative workspace. We believe that such efforts provide a solid stepping stone for evaluating and analyzing future media spaces.

  5. Simple force feedback for small virtual environments

    NASA Astrophysics Data System (ADS)

    Schiefele, Jens; Albert, Oliver; van Lier, Volker; Huschka, Carsten

    1998-08-01

    In today's civil flight training simulators only the cockpit and all its interaction devices exist as physical mockups. All other elements such as flight behavior, motion, sound, and the visual system are virtual. As an extension to this approach `Virtual Flight Simulation' tries to subsidize the cockpit mockup by a 3D computer generated image. The complete cockpit including the exterior view is displayed on a Head Mounted Display (HMD), a BOOM, or a Cave Animated Virtual Environment. In most applications a dataglove or virtual pointers are used as input devices. A basic problem of such a Virtual Cockpit simulation is missing force feedback. A pilot cannot touch and feel buttons, knobs, dials, etc. he tries to manipulate. As a result, it is very difficult to generate realistic inputs into VC systems. `Seating Bucks' are used in automotive industry to overcome the problem of missing force feedback. Only a seat, steering wheel, pedal, stick shift, and radio panel are physically available. All other geometry is virtual and therefore untouchable but visible in the output device. In extension to this concept a `Seating Buck' for commercial transport aircraft cockpits was developed. Pilot seat, side stick, pedals, thrust-levers, and flaps lever are physically available. All other panels are simulated by simple flat plastic panels. They are located at the same location as their real counterparts only lacking the real input devices. A pilot sees the entire photorealistic cockpit in a HMD as 3D geometry but can only touch the physical parts and plastic panels. In order to determine task performance with the developed Seating Buck, a test series was conducted. Users press buttons, adapt dials, and turn knobs. In a first test, a complete virtual environment was used. The second setting had a plastic panel replacing all input devices. Finally, as cross reference the participants had to repeat the test with a complete physical mockup of the input devices. All panels and physical devices can be easily relocated to simulate a different type of cockpit. Maximal 30 minutes are needed for a complete adaptation. So far, an Airbus A340 and a generic cockpit are supported.

  6. The Heliosphere in Space

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.; Hanson, A. J.; Fu, P. C.

    2008-12-01

    A scientifically accurate visualization of the Journey of the Sun through deep space has been created in order to share the excitement of heliospheric physics and scientific discovery with the non-expert. The MHD heliosphere model of Linde (1998) displays the interaction of the solar wind with the interstellar medium for a supersonic heliosphere traveling through a low density magnetized interstellar medium. The camera viewpoint follows the solar motion through a virtual space of the Milky Way Galaxy. This space is constructed from real data placed in the three-dimensional solar neighborhood, and populated with Hipparcos stars in front of a precisely aligned image of the Milky Way itself. The celestial audio track of this three minute movie includes the music of the heliosphere, heard by the two Voyager satellites as 3 kHz emissions from the edge of the heliosphere. This short heliosphere visualization can be downloaded from http://www.cs.indiana.edu/~soljourn/pub/AstroBioScene7Sound.mov, and the full scientific data visualization of the Solar Journey is available commercially.

  7. Virtual Games and Real-World Communities: Environments That Constrain and Enable Physical Activity in Games for Health

    ERIC Educational Resources Information Center

    Stewart, Mary K.; Hagood, Danielle; Ching, Cynthia Carter

    2017-01-01

    This article examines two communities of youth who play an online game that integrates physical activity into virtual game play. Participating youth from two research sites--an urban middle school and a suburban junior high school--wore FitBits that tracked their physical activity and then integrated their real-world energy into game-world…

  8. Integrating Video-Capture Virtual Reality Technology into a Physically Interactive Learning Environment for English Learning

    ERIC Educational Resources Information Center

    Yang, Jie Chi; Chen, Chih Hung; Jeng, Ming Chang

    2010-01-01

    The aim of this study is to design and develop a Physically Interactive Learning Environment, the PILE system, by integrating video-capture virtual reality technology into a classroom. The system is designed for elementary school level English classes where students can interact with the system through physical movements. The system is designed to…

  9. Dynamic Learning in Virtual Spaces: Producers and Consumers of Meaning

    ERIC Educational Resources Information Center

    Abrams, Sandra Schamroth; Rowsell, Jennifer

    2011-01-01

    Twenty-first century education includes dynamic learning that is complicated by interactions in both fixed and protean virtual spaces, and it is important to consider the degree of power, agency, and awareness students have as producers and consumers of interactive technology. Outside of school, students engage in meaning making practices, and…

  10. Prospects for Digital Campus with Extensive Applications of Virtual Collaborative Space

    ERIC Educational Resources Information Center

    Nishide, Ryo

    2011-01-01

    This paper proposes extensive applications of virtual collaborative space in order to enhance the efficiency and capability of Digital Campus. The usability of Digital Campus has been experimented in different learning environments and evaluated by questionnaire as that the presence technology and a sense of solidarity influence the participants'…

  11. Enhancement of Spatial Thinking with Virtual Spaces 1.0

    ERIC Educational Resources Information Center

    Hauptman, Hanoch

    2010-01-01

    Developing a software environment to enhance 3D geometric proficiency demands the consideration of theoretical views of the learning process. Simultaneously, this effort requires taking into account the range of tools that technology offers, as well as their limitations. In this paper, we report on the design of Virtual Spaces 1.0 software, a…

  12. Educational Community: Among the Real and Virtual Civic Initiative

    ERIC Educational Resources Information Center

    Arsenijevic, Jasmina; Andevski, Milica

    2016-01-01

    The new media enable numerous advantages in the strengthening of civic engagement, through removing barriers in space and time and through networking of individuals of the same social, civic or political interests at the global level. Different forms of civic engagement and civic responsibility in the virtual space are ever more present, and…

  13. Reduction of the virtual space for coupled-cluster excitation energies of large molecules and embedded systems

    PubMed Central

    Send, Robert; Kaila, Ville R. I.; Sundholm, Dage

    2011-01-01

    We investigate how the reduction of the virtual space affects coupled-cluster excitation energies at the approximate singles and doubles coupled-cluster level (CC2). In this reduced-virtual-space (RVS) approach, all virtual orbitals above a certain energy threshold are omitted in the correlation calculation. The effects of the RVS approach are assessed by calculations on the two lowest excitation energies of 11 biochromophores using different sizes of the virtual space. Our set of biochromophores consists of common model systems for the chromophores of the photoactive yellow protein, the green fluorescent protein, and rhodopsin. The RVS calculations show that most of the high-lying virtual orbitals can be neglected without significantly affecting the accuracy of the obtained excitation energies. Omitting all virtual orbitals above 50 eV in the correlation calculation introduces errors in the excitation energies that are smaller than 0.1 eV . By using a RVS energy threshold of 50 eV , the CC2 calculations using triple-ζ basis sets (TZVP) on protonated Schiff base retinal are accelerated by a factor of 6. We demonstrate the applicability of the RVS approach by performing CC2∕TZVP calculations on the lowest singlet excitation energy of a rhodopsin model consisting of 165 atoms using RVS thresholds between 20 eV and 120 eV. The calculations on the rhodopsin model show that the RVS errors determined in the gas-phase are a very good approximation to the RVS errors in the protein environment. The RVS approach thus renders purely quantum mechanical treatments of chromophores in protein environments feasible and offers an ab initio alternative to quantum mechanics∕molecular mechanics separation schemes. PMID:21663351

  14. Getting a handle on virtual tools: An examination of the neuronal activity associated with virtual tool use.

    PubMed

    Rallis, Austin; Fercho, Kelene A; Bosch, Taylor J; Baugh, Lee A

    2018-01-31

    Tool use is associated with three visual streams-dorso-dorsal, ventro-dorsal, and ventral visual streams. These streams are involved in processing online motor planning, action semantics, and tool semantics features, respectively. Little is known about the way in which the brain represents virtual tools. To directly assess this question, a virtual tool paradigm was created that provided the ability to manipulate tool components in isolation of one another. During functional magnetic resonance imaging (fMRI), adult participants performed a series of virtual tool manipulation tasks in which vision and movement kinematics of the tool were manipulated. Reaction time and hand movement direction were monitored while the tasks were performed. Functional imaging revealed that activity within all three visual streams was present, in a similar pattern to what would be expected with physical tool use. However, a previously unreported network of right-hemisphere activity was found including right inferior parietal lobule, middle and superior temporal gyri and supramarginal gyrus - regions well known to be associated with tool processing within the left hemisphere. These results provide evidence that both virtual and physical tools are processed within the same brain regions, though virtual tools recruit bilateral tool processing regions to a greater extent than physical tools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Chemogenomics: a discipline at the crossroad of high throughput technologies, biomarker research, combinatorial chemistry, genomics, cheminformatics, bioinformatics and artificial intelligence.

    PubMed

    Maréchal, Eric

    2008-09-01

    Chemogenomics is the study of the interaction of functional biological systems with exogenous small molecules, or in broader sense the study of the intersection of biological and chemical spaces. Chemogenomics requires expertises in biology, chemistry and computational sciences (bioinformatics, cheminformatics, large scale statistics and machine learning methods) but it is more than the simple apposition of each of these disciplines. Biological entities interacting with small molecules can be isolated proteins or more elaborate systems, from single cells to complete organisms. The biological space is therefore analyzed at various postgenomic levels (genomic, transcriptomic, proteomic or any phenotypic level). The space of small molecules is partially real, corresponding to commercial and academic collections of compounds, and partially virtual, corresponding to the chemical space possibly synthesizable. Synthetic chemistry has developed novel strategies allowing a physical exploration of this universe of possibilities. A major challenge of cheminformatics is to charter the virtual space of small molecules using realistic biological constraints (bioavailability, druggability, structural biological information). Chemogenomics is a descendent of conventional pharmaceutical approaches, since it involves the screening of chemolibraries for their effect on biological targets, and benefits from the advances in the corresponding enabling technologies and the introduction of new biological markers. Screening was originally motivated by the rigorous discovery of new drugs, neglecting and throwing away any molecule that would fail to meet the standards required for a therapeutic treatment. It is now the basis for the discovery of small molecules that might or might not be directly used as drugs, but which have an immense potential for basic research, as probes to explore an increasing number of biological phenomena. Concerns about the environmental impact of chemical industry open new fields of research for chemogenomics.

  16. Around Marshall

    NASA Image and Video Library

    1993-12-15

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  17. Shared protection based virtual network mapping in space division multiplexing optical networks

    NASA Astrophysics Data System (ADS)

    Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie

    2018-05-01

    Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.

  18. Mastoid Cavity Dimensions and Shape: Method of Measurement and Virtual Fitting of Implantable Devices

    PubMed Central

    Handzel, Ophir; Wang, Haobing; Fiering, Jason; Borenstein, Jeffrey T.; Mescher, Mark J.; Leary Swan, Erin E.; Murphy, Brian A.; Chen, Zhiqiang; Peppi, Marcello; Sewell, William F.; Kujawa, Sharon G.; McKenna, Michael J.

    2009-01-01

    Temporal bone implants can be used to electrically stimulate the auditory nerve, to amplify sound, to deliver drugs to the inner ear and potentially for other future applications. The implants require storage space and access to the middle or inner ears. The most acceptable space is the cavity created by a canal wall up mastoidectomy. Detailed knowledge of the available space for implantation and pathways to access the middle and inner ears is necessary for the design of implants and successful implantation. Based on temporal bone CT scans a method for three-dimensional reconstruction of a virtual canal wall up mastoidectomy space is described. Using Amira® software the area to be removed during such surgery is marked on axial CT slices, and a three-dimensional model of that space is created. The average volume of 31 reconstructed models is 12.6 cm3 with standard deviation of 3.69 cm3, ranging from 7.97 to 23.25 cm3. Critical distances were measured directly from the model and their averages were calculated: height 3.69 cm, depth 2.43 cm, length above the external auditory canal (EAC) 4.45 cm and length posterior to EAC 3.16 cm. These linear measurements did not correlate well with volume measurements. The shape of the models was variable to a significant extent making the prediction of successful implantation for a given design based on linear and volumetric measurement unreliable. Hence, to assure successful implantation, preoperative assessment should include a virtual fitting of an implant into the intended storage space. The above-mentioned three-dimensional models were exported from Amira to a Solidworks application where virtual fitting was performed. Our results are compared to other temporal bone implant virtual fitting studies. Virtual fitting has been suggested for other human applications. PMID:19372649

  19. Postural and Spatial Orientation Driven by Virtual Reality

    PubMed Central

    Keshner, Emily A.; Kenyon, Robert V.

    2009-01-01

    Orientation in space is a perceptual variable intimately related to postural orientation that relies on visual and vestibular signals to correctly identify our position relative to vertical. We have combined a virtual environment with motion of a posture platform to produce visual-vestibular conditions that allow us to explore how motion of the visual environment may affect perception of vertical and, consequently, affect postural stabilizing responses. In order to involve a higher level perceptual process, we needed to create a visual environment that was immersive. We did this by developing visual scenes that possess contextual information using color, texture, and 3-dimensional structures. Update latency of the visual scene was close to physiological latencies of the vestibulo-ocular reflex. Using this system we found that even when healthy young adults stand and walk on a stable support surface, they are unable to ignore wide field of view visual motion and they adapt their postural orientation to the parameters of the visual motion. Balance training within our environment elicited measurable rehabilitation outcomes. Thus we believe that virtual environments can serve as a clinical tool for evaluation and training of movement in situations that closely reflect conditions found in the physical world. PMID:19592796

  20. STS-116 and Expedition 12 Preflight Training, VR Lab Bldg. 9.

    NASA Image and Video Library

    2005-05-06

    JSC2005-E-18147 (6 May 2005) --- Astronauts Sunita L. Williams (left), Expedition 14 flight engineer, and Joan E. Higginbotham, STS-116 mission specialist, use the virtual reality lab at the Johnson Space Center to train for their duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements. Williams will join Expedition 14 in progress and serve as a flight engineer after traveling to the station on space shuttle mission STS-116.

  1. STS-116 Preflight Training, VR Lab

    NASA Image and Video Library

    2006-08-07

    JSC2006-E-33308 (7 Aug. 2006) --- European Space Agency (ESA) astronaut Christer Fuglesang, STS-116 mission specialist, uses virtual reality hardware in the Space Vehicle Mockup Facility at the Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. David J. Homan assisted Fuglesang.

  2. Photographic coverage of STS-112 during EVA 3 in VR Lab.

    NASA Image and Video Library

    2002-08-21

    JSC2002-E-34618 (21 August 2002) --- Astronaut Piers J. Sellers, STS-112 mission specialist, uses virtual reality hardware in the Space Vehicle Mockup Facility at the Johnson Space Center (JSC) to rehearse some of his duties on the upcoming mission to the International Space Station (ISS). This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the International Space Station (ISS) hardware with which they will be working.

  3. Physical and virtual laboratories in science and engineering education.

    PubMed

    de Jong, Ton; Linn, Marcia C; Zacharia, Zacharias C

    2013-04-19

    The world needs young people who are skillful in and enthusiastic about science and who view science as their future career field. Ensuring that we will have such young people requires initiatives that engage students in interesting and motivating science experiences. Today, students can investigate scientific phenomena using the tools, data collection techniques, models, and theories of science in physical laboratories that support interactions with the material world or in virtual laboratories that take advantage of simulations. Here, we review a selection of the literature to contrast the value of physical and virtual investigations and to offer recommendations for combining the two to strengthen science learning.

  4. Exploration of factors that affect the comparative effectiveness of physical and virtual manipulatives in an undergraduate laboratory

    NASA Astrophysics Data System (ADS)

    Chini, Jacquelyn J.; Madsen, Adrian; Gire, Elizabeth; Rebello, N. Sanjay; Puntambekar, Sadhana

    2012-06-01

    Recent research results have failed to support the conventionally held belief that students learn physics best from hands-on experiences with physical equipment. Rather, studies have found that students who perform similar experiments with computer simulations perform as well or better on measures of conceptual understanding than their peers who used physical equipment. In this study, we explored how university-level nonscience majors’ understanding of the physics concepts related to pulleys was supported by experimentation with real pulleys and a computer simulation of pulleys. We report that when students use one type of manipulative (physical or virtual), the comparison is influenced both by the concept studied and the timing of the post-test. Students performed similarly on questions related to force and mechanical advantage regardless of the type of equipment used. On the other hand, students who used the computer simulation performed better on questions related to work immediately after completing the activities; however, the two groups performed similarly on the work questions on a test given one week later. Additionally, both sequences of experimentation (physical-virtual and virtual-physical) equally supported students’ understanding of all of the concepts. These results suggest that both the concept learned and the stability of learning gains should continue to be explored to improve educators’ ability to select the best learning experience for a given topic.

  5. Developing a Virtual Physics World

    ERIC Educational Resources Information Center

    Wegener, Margaret; McIntyre, Timothy J.; McGrath, Dominic; Savage, Craig M.; Williamson, Michael

    2012-01-01

    In this article, the successful implementation of a development cycle for a physics teaching package based on game-like virtual reality software is reported. The cycle involved several iterations of evaluating students' use of the package followed by instructional and software development. The evaluation used a variety of techniques, including…

  6. Use of virtual reality technique for the training of motor control in the elderly. Some theoretical considerations.

    PubMed

    de Bruin, E D; Schoene, D; Pichierri, G; Smith, S T

    2010-08-01

    Virtual augmented exercise, an emerging technology that can help to promote physical activity and combine the strengths of indoor and outdoor exercise, has recently been proposed as having the potential to increase exercise behavior in older adults. By creating a strong presence in a virtual, interactive environment, distraction can be taken to greater levels while maintaining the benefits of indoor exercises which may result in a shift from negative to positive thoughts about exercise. Recent findings on young participants show that virtual reality training enhances mood, thus, increasing enjoyment and energy. For older adults virtual, interactive environments can influence postural control and fall events by stimulating the sensory cues that are responsible in maintaining balance and orientation. However, the potential of virtual reality training has yet to be explored for older adults. This manuscript describes the potential of dance pad training protocols in the elderly and reports on the theoretical rationale of combining physical game-like exercises with sensory and cognitive challenges in a virtual environment.

  7. Improving Physical Fitness of Individuals with Intellectual and Developmental Disability through a Virtual Reality Intervention Program

    ERIC Educational Resources Information Center

    Lotan, Meir; Yalon-Chamovitz, Shira; Weiss, Patrice L.

    2009-01-01

    Individuals with intellectual and developmental disabilities (IDD) are in need of effective physical fitness training programs. The aim was to test the effectiveness of a Virtual Reality (VR)-based exercise program in improving the physical fitness of adults with IDD. A research group (N = 30; mean age = 52.3 plus or minus 5.8 years; moderate IDD…

  8. Virtual Reality as Means to Improve Physical Fitness of Individuals at a Severe Level of Intellectual and Developmental Disability

    ERIC Educational Resources Information Center

    Lotan, Meir; Yalon-Chamovitz, Shira; Weiss, Patrice L.

    2010-01-01

    Individuals with intellectual and developmental disabilities (IDD) are in need of effective and motivating physical fitness training programs. The aim was to test the effectiveness of a virtual reality (VR)-based exercise program in improving the physical fitness of adults with severe IDD when implemented by on-site caregivers. A research group (N…

  9. Robust controller designs for second-order dynamic system: A virtual passive approach

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1990-01-01

    A robust controller design is presented for second-order dynamic systems. The controller is model-independent and itself is a virtual second-order dynamic system. Conditions on actuator and sensor placements are identified for controller designs that guarantee overall closed-loop stability. The dynamic controller can be viewed as a virtual passive damping system that serves to stabilize the actual dynamic system. The control gains are interpreted as virtual mass, spring, and dashpot elements that play the same roles as actual physical elements in stability analysis. Position, velocity, and acceleration feedback are considered. Simple examples are provided to illustrate the physical meaning of this controller design.

  10. Optimizing TLB entries for mixed page size storage in contiguous memory

    DOEpatents

    Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Kriegel, Jon K.; Ohmacht, Martin; Steinmacher-Burow, Burkhard

    2013-04-30

    A system and method for accessing memory are provided. The system comprises a lookup buffer for storing one or more page table entries, wherein each of the one or more page table entries comprises at least a virtual page number and a physical page number; a logic circuit for receiving a virtual address from said processor, said logic circuit for matching the virtual address to the virtual page number in one of the page table entries to select the physical page number in the same page table entry, said page table entry having one or more bits set to exclude a memory range from a page.

  11. The effect of viewing a virtual environment through a head-mounted display on balance.

    PubMed

    Robert, Maxime T; Ballaz, Laurent; Lemay, Martin

    2016-07-01

    In the next few years, several head-mounted displays (HMD) will be publicly released making virtual reality more accessible. HMD are expected to be widely popular at home for gaming but also in clinical settings, notably for training and rehabilitation. HMD can be used in both seated and standing positions; however, presently, the impact of HMD on balance remains largely unknown. It is therefore crucial to examine the impact of viewing a virtual environment through a HMD on standing balance. To compare static and dynamic balance in a virtual environment perceived through a HMD and the physical environment. The visual representation of the virtual environment was based on filmed image of the physical environment and was therefore highly similar. This is an observational study in healthy adults. No significant difference was observed between the two environments for static balance. However, dynamic balance was more perturbed in the virtual environment when compared to that of the physical environment. HMD should be used with caution because of its detrimental impact on dynamic balance. Sensorimotor conflict possibly explains the impact of HMD on balance. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Spiritual and Affective Responses to a Physical Church and Corresponding Virtual Model.

    PubMed

    Murdoch, Matt; Davies, Jim

    2017-11-01

    Architectural and psychological theories posit that built environments have the potential to elicit complex psychological responses. However, few researchers have seriously explored this potential. Given the increasing importance and fidelity of virtual worlds, such research should explore whether virtual models of built environments are also capable of eliciting complex psychological responses. The goal of this study was to test these hypotheses, using a church, a corresponding virtual model, and an inclusive measure of state spirituality ("spiritual feelings"). Participants (n = 33) explored a physical church and corresponding virtual model, completing a measure of spiritual feelings after exploring the outside and inside of each version of the church. Using spiritual feelings after exploring the outside of the church as a baseline measure, change in state spirituality was assessed by taking the difference between spiritual feelings after exploring the inside and outside of the church (inside-outside) for both models. Although this change was greater in response to the physical church, there was no significant difference between the two models in eliciting such change in spiritual feelings. Despite the limitations of this exploratory study, these findings indicate that both built environments and corresponding virtual models are capable of evoking complex psychological responses.

  13. Use of virtual reality gaming systems for children who are critically ill.

    PubMed

    Salem, Yasser; Elokda, Ahmed

    2014-01-01

    Children who are critically ill are frequently viewed as "too sick" to tolerate physical activity. As a result, these children often fail to develop strength or cardiovascular endurance as compared to typically developing children. Previous reports have shown that early participation in physical activity in is safe and feasible for patients who are critically ill and may result in a shorter length of stay and improved functional outcomes. The use of the virtual reality gaming systems has become a popular form of therapy for children with disabilities and has been supported by a growing body of evidence substantiating its effectiveness with this population. The use of the virtual reality gaming systems in pediatric rehabilitation provides the children with opportunity to participate in an exercise program that is fun, enjoyable, playful, and at the same time beneficial. The integration of those systems in rehabilitation of children who are critically ill is appealing and has the potential to offer the possibility of enhancing physical activities. The lack of training studies involving children who are critically ill makes it difficult to set guidelines on the recommended physical activities and virtual reality gaming systems that is needed to confer health benefits. Several considerations should be taken into account before recommended virtual reality gaming systems as a training program for children who are critically ill. This article highlighted guidelines, limitations and challenges that need to be considered when designing exercise program using virtual reality gaming systems for critically ill children. This information is helpful given the popular use of virtual reality gaming systems in rehabilitation, particularly in children who are critically ill.

  14. Strategies Used by Professors through Virtual Educational Platforms in Face-to-Face Classes: A View from the Chamilo Platform

    ERIC Educational Resources Information Center

    Valencia, Heriberto Gonzalez; Villota Enriquez, Jackeline Amparo; Agredo, Patricia Medina

    2017-01-01

    This study consisted in characterizing the strategies used by professors; implemented through virtual educational platforms. The context of this research were the classrooms of the Santiago de Cali University and the virtual space of the Chamilo virtual platform, where two professors from the Faculty of Education of the same university…

  15. A Study of Multi-Representation of Geometry Problem Solving with Virtual Manipulatives and Whiteboard System

    ERIC Educational Resources Information Center

    Hwang, Wu-Yuin; Su, Jia-Han; Huang, Yueh-Min; Dong, Jian-Jie

    2009-01-01

    In this paper, the development of an innovative Virtual Manipulatives and Whiteboard (VMW) system is described. The VMW system allowed users to manipulate virtual objects in 3D space and find clues to solve geometry problems. To assist with multi-representation transformation, translucent multimedia whiteboards were used to provide a virtual 3D…

  16. The Use of Virtual Ethnography in Distance Education Research

    ERIC Educational Resources Information Center

    Uzun, Kadriye; Aydin, Cengiz Hakan

    2012-01-01

    3D virtual worlds can and have been used as a meeting place for distance education courses. Virtual worlds allow for group learning of the kind enjoyed by students gathered in a virtual classroom, where they know they are in a communal space, they are aware of the social process of learning and are affected by the presence and behaviour of their…

  17. Virtual Black Spaces: An Anthropological Exploration of African American Online Communities' Racial and Political Agency amid Virtual Universalism

    ERIC Educational Resources Information Center

    Heyward, Kamela S.

    2012-01-01

    This dissertation examines the strategic practice of virtual racial embodiment, as a case study of African Americans attempting to complicate current constructions of race and social justice in new media. I suggest that dominant racial constructions online teeter between racial stereotypes and the absence of race. Virtual racial classification and…

  18. Grasping trajectories in a virtual environment adhere to Weber's law.

    PubMed

    Ozana, Aviad; Berman, Sigal; Ganel, Tzvi

    2018-06-01

    Virtual-reality and telerobotic devices simulate local motor control of virtual objects within computerized environments. Here, we explored grasping kinematics within a virtual environment and tested whether, as in normal 3D grasping, trajectories in the virtual environment are performed analytically, violating Weber's law with respect to object's size. Participants were asked to grasp a series of 2D objects using a haptic system, which projected their movements to a virtual space presented on a computer screen. The apparatus also provided object-specific haptic information upon "touching" the edges of the virtual targets. The results showed that grasping movements performed within the virtual environment did not produce the typical analytical trajectory pattern obtained during 3D grasping. Unlike as in 3D grasping, grasping trajectories in the virtual environment adhered to Weber's law, which indicates relative resolution in size processing. In addition, the trajectory patterns differed from typical trajectories obtained during 3D grasping, with longer times to complete the movement, and with maximum grip apertures appearing relatively early in the movement. The results suggest that grasping movements within a virtual environment could differ from those performed in real space, and are subjected to irrelevant effects of perceptual information. Such atypical pattern of visuomotor control may be mediated by the lack of complete transparency between the interface and the virtual environment in terms of the provided visual and haptic feedback. Possible implications of the findings to movement control within robotic and virtual environments are further discussed.

  19. STS-105 Crew Training in VR Lab

    NASA Image and Video Library

    2001-03-15

    JSC2001-00754 (15 March 2001) --- Astronaut Patrick G. Forrester, STS-105 mission specialist, uses specialized gear in the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the International Space Station (ISS) hardware with which they will be working.

  20. STS-109 Crew Training in VR Lab, Building 9

    NASA Image and Video Library

    2001-08-08

    JSC2001-E-24452 (8 August 2001) --- Astronauts John M. Grunsfeld (left), STS-109 payload commander, and Nancy J. Currie, mission specialist, use the virtual reality lab at the Johnson Space Center (JSC) to train for some of their duties aboard the Space Shuttle Columbia. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team to perform its duties during the fourth Hubble Space Telescope (HST) servicing mission.

  1. Designing a Virtual Social Space for Language Acquisition

    ERIC Educational Resources Information Center

    Woolson, Maria Alessandra

    2012-01-01

    Middleverse de Español (MdE) is an evolving platform for foreign language (FL) study, aligned to the goals of ACTFL's National Standards and 2007 MLA report. The project simulates an immersive environment in a virtual 3-D space for the acquisition of translingual and transcultural competence in Spanish meant to support content-based and…

  2. Stroking the Net Whale: A Constructivist Grounded Theory of Self-Regulated Learning in Virtual Social Spaces

    ERIC Educational Resources Information Center

    Kasperiuniene, Judita; Zydziunaite, Vilma; Eriksson, Malin

    2017-01-01

    This qualitative study explored the self-regulated learning (SRL) of teachers and their students in virtual social spaces. The processes of SRL were analyzed from 24 semi-structured individual interviews with professors, instructors and their students from five Lithuanian universities. A core category stroking the net whale showed the process of…

  3. Hiding and Searching Strategies of Adult Humans in a Virtual and a Real-Space Room

    ERIC Educational Resources Information Center

    Talbot, Katherine J.; Legge, Eric L. G.; Bulitko, Vadim; Spetch, Marcia L.

    2009-01-01

    Adults searched for or cached three objects in nine hiding locations in a virtual room or a real-space room. In both rooms, the locations selected by participants differed systematically between searching and hiding. Specifically, participants moved farther from origin and dispersed their choices more when hiding objects than when searching for…

  4. Beyond seismic interferometry: imaging the earth's interior with virtual sources and receivers inside the earth

    NASA Astrophysics Data System (ADS)

    Wapenaar, C. P. A.; Van der Neut, J.; Thorbecke, J.; Broggini, F.; Slob, E. C.; Snieder, R.

    2015-12-01

    Imagine one could place seismic sources and receivers at any desired position inside the earth. Since the receivers would record the full wave field (direct waves, up- and downward reflections, multiples, etc.), this would give a wealth of information about the local structures, material properties and processes in the earth's interior. Although in reality one cannot place sources and receivers anywhere inside the earth, it appears to be possible to create virtual sources and receivers at any desired position, which accurately mimics the desired situation. The underlying method involves some major steps beyond standard seismic interferometry. With seismic interferometry, virtual sources can be created at the positions of physical receivers, assuming these receivers are illuminated isotropically. Our proposed method does not need physical receivers at the positions of the virtual sources; moreover, it does not require isotropic illumination. To create virtual sources and receivers anywhere inside the earth, it suffices to record the reflection response with physical sources and receivers at the earth's surface. We do not need detailed information about the medium parameters; it suffices to have an estimate of the direct waves between the virtual-source positions and the acquisition surface. With these prerequisites, our method can create virtual sources and receivers, anywhere inside the earth, which record the full wave field. The up- and downward reflections, multiples, etc. in the virtual responses are extracted directly from the reflection response at the surface. The retrieved virtual responses form an ideal starting point for accurate seismic imaging, characterization and monitoring.

  5. Evaluation of Virtual Laboratory Package on Nigerian Secondary School Physics Concepts

    ERIC Educational Resources Information Center

    Falode, Oluwole Caleb; Gambari, Amosa Isiaka

    2017-01-01

    The study evaluated accessibility, flexibility, cost and learning effectiveness of researchers-developed virtual laboratory package for Nigerian secondary school physics. Based on these issues, four research questions were raised and answered. The study was a quantitative-based evaluation research. Sample for the study included 24 physics…

  6. Users and Union Catalogues

    ERIC Educational Resources Information Center

    Hartley, R. J.; Booth, Helen

    2006-01-01

    Union catalogues have had an important place in libraries for many years. Their use has been little investigated. Recent interest in the relative merits of physical and virtual union catalogues and a recent collaborative project between a physical and several virtual union catalogues in the United Kingdom led to the opportunity to study how users…

  7. Along the Virtuality Continuum - Two Showcases on how xR Technologies Transform Geoscience Research and Education

    NASA Astrophysics Data System (ADS)

    Klippel, A.; Zhao, J.; Masrur, A.; Wallgruen, J. O.; La Femina, P. C.

    2017-12-01

    We present work along the virtuality continuum showcasing both AR and VR environments for geoscience applications and research. The AR/VR project focusses on one of the most prominent landmarks on the Penn State campus which, at the same time, is a representation of the geology of Pennsylvania. The Penn State Obelisk is a 32" high, 51 ton monument composed of 281 rocks collected from across Pennsylvania. While information about its origins and composition are scattered in articles and some web databases, we compiled all the available data from the web and archives and curated them as a basis for an immersive xR experience. Tabular data was amended by xR data such as 360° photos, videos, and 3D models (e.g., the Obelisk). Our xR (both AR and VR) prototype provides an immersive analytical environment that supports interactive data visualization and virtual navigation in a natural environment (a campus model of today and of 1896, the year of the Obelisk's installation). This work-in-progress project can provide an interactive immersive learning platform (specifically, for K-12 and introductory level geosciences students) where learning process is enhanced through seamless navigation between 3D data space and physical space. The, second, VR focused application is creating and empirically evaluating virtual reality (VR) experiences for geosciences research, specifically, an interactive volcano experience based on LiDAR and image data of Iceland's Thrihnukar volcano. The prototype addresses the lack of content and tools for immersive virtual reality (iVR) in geoscientific education and research and how to make it easier to integrate iVR into research and classroom experiences. It makes use of environmentally sensed data such that interaction and linked content can be integrated into a single experience. We discuss our workflows as well as methods and authoring tools for iVR analysis and creation of virtual experiences. These methods and tools aim to enhance the utility of geospatial data from repositories such as OpenTopography.org through unlocking treasure-troves of geospatial data for VR applications. Their enhanced accessibility in education and research for the geosciences and beyond will benefit geoscientists and educators who cannot be expected to be VR and 3D application experts.

  8. Aural localization of silent objects by active human biosonar: neural representations of virtual echo-acoustic space.

    PubMed

    Wallmeier, Ludwig; Kish, Daniel; Wiegrebe, Lutz; Flanagin, Virginia L

    2015-03-01

    Some blind humans have developed the remarkable ability to detect and localize objects through the auditory analysis of self-generated tongue clicks. These echolocation experts show a corresponding increase in 'visual' cortex activity when listening to echo-acoustic sounds. Echolocation in real-life settings involves multiple reflections as well as active sound production, neither of which has been systematically addressed. We developed a virtualization technique that allows participants to actively perform such biosonar tasks in virtual echo-acoustic space during magnetic resonance imaging (MRI). Tongue clicks, emitted in the MRI scanner, are picked up by a microphone, convolved in real time with the binaural impulse responses of a virtual space, and presented via headphones as virtual echoes. In this manner, we investigated the brain activity during active echo-acoustic localization tasks. Our data show that, in blind echolocation experts, activations in the calcarine cortex are dramatically enhanced when a single reflector is introduced into otherwise anechoic virtual space. A pattern-classification analysis revealed that, in the blind, calcarine cortex activation patterns could discriminate left-side from right-side reflectors. This was found in both blind experts, but the effect was significant for only one of them. In sighted controls, 'visual' cortex activations were insignificant, but activation patterns in the planum temporale were sufficient to discriminate left-side from right-side reflectors. Our data suggest that blind and echolocation-trained, sighted subjects may recruit different neural substrates for the same active-echolocation task. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Owning an overweight or underweight body: distinguishing the physical, experienced and virtual body.

    PubMed

    Piryankova, Ivelina V; Wong, Hong Yu; Linkenauger, Sally A; Stinson, Catherine; Longo, Matthew R; Bülthoff, Heinrich H; Mohler, Betty J

    2014-01-01

    Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant's experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups.

  10. Owning an Overweight or Underweight Body: Distinguishing the Physical, Experienced and Virtual Body

    PubMed Central

    Piryankova, Ivelina V.; Wong, Hong Yu; Linkenauger, Sally A.; Stinson, Catherine; Longo, Matthew R.; Bülthoff, Heinrich H.; Mohler, Betty J.

    2014-01-01

    Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant's experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups. PMID:25083784

  11. Content Sharing Based on Personal Information in Virtually Secured Space

    NASA Astrophysics Data System (ADS)

    Sohn, Hosik; Ro, Yong Man; Plataniotis, Kostantinos N.

    User generated contents (UGC) are shared in an open space like social media where users can upload and consume contents freely. Since the access of contents is not restricted, the contents could be delivered to unwanted users or misused sometimes. In this paper, we propose a method for sharing UGCs securely based on the personal information of users. With the proposed method, virtual secure space is created for contents delivery. The virtual secure space allows UGC creator to deliver contents to users who have similar personal information and they can consume the contents without any leakage of personal information. In order to verify the usefulness of the proposed method, the experiment was performed where the content was encrypted with personal information of creator, and users with similar personal information have decrypted and consumed the contents. The results showed that UGCs were securely shared among users who have similar personal information.

  12. Robot Teleoperation and Perception Assistance with a Virtual Holographic Display

    NASA Technical Reports Server (NTRS)

    Goddard, Charles O.

    2012-01-01

    Teleoperation of robots in space from Earth has historically been dfficult. Speed of light delays make direct joystick-type control infeasible, so it is desirable to command a robot in a very high-level fashion. However, in order to provide such an interface, knowledge of what objects are in the robot's environment and how they can be interacted with is required. In addition, many tasks that would be desirable to perform are highly spatial, requiring some form of six degree of freedom input. These two issues can be combined, allowing the user to assist the robot's perception by identifying the locations of objects in the scene. The zSpace system, a virtual holographic environment, provides a virtual three-dimensional space superimposed over real space and a stylus tracking position and rotation inside of it. Using this system, a possible interface for this sort of robot control is proposed.

  13. Experimental validation of a transformation optics based lens for beam steering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Jianjia; Burokur, Shah Nawaz, E-mail: shah-nawaz.burokur@u-psud.fr; Lustrac, André de

    2015-10-12

    A transformation optics based lens for beam control is experimentally realized and measured at microwave frequencies. Laplace's equation is adopted to construct the mapping between the virtual and physical spaces. The metamaterial-based lens prototype is designed using electric LC resonators. A planar microstrip antenna source is used as transverse electric polarized wave launcher for the lens. Both the far field radiation patterns and the near-field distributions have been measured to experimentally demonstrate the beam steering properties. Measurements agree quantitatively and qualitatively with numerical simulations, and a non-narrow frequency bandwidth operation is observed.

  14. Causes and remedies for porosity in composite manufacturing

    NASA Astrophysics Data System (ADS)

    Fernlund, G.; Wells, J.; Fahrang, L.; Kay, J.; Poursartip, A.

    2016-07-01

    Porosity is a challenge in virtually all composite processes but in particular in low pressure processes such as out of autoclave processing of prepregs, where the maximum pressure is one atmosphere. This paper discusses the physics behind important transport phenomena that control porosity and how we can use our understanding of the underlying science to develop strategies to achieve low porosity for these materials and processes in an industrial setting. A three step approach is outlined that addresses and discusses: gas evacuation of trapped air, volatiles and off-gassing, and resin infiltration of evacuated void space.

  15. The role of physicality in rich programming environments

    NASA Astrophysics Data System (ADS)

    Liu, Allison S.; Schunn, Christian D.; Flot, Jesse; Shoop, Robin

    2013-12-01

    Computer science proficiency continues to grow in importance, while the number of students entering computer science-related fields declines. Many rich programming environments have been created to motivate student interest and expertise in computer science. In the current study, we investigated whether a recently created environment, Robot Virtual Worlds (RVWs), can be used to teach computer science principles within a robotics context by examining its use in high-school classrooms. We also investigated whether the lack of physicality in these environments impacts student learning by comparing classrooms that used either virtual or physical robots for the RVW curriculum. Results suggest that the RVW environment leads to significant gains in computer science knowledge, that virtual robots lead to faster learning, and that physical robots may have some influence on algorithmic thinking. We discuss the implications of physicality in these programming environments for learning computer science.

  16. Microscopic Virtual Media (MVM) in Physics Learning: Case Study on Students Understanding of Heat Transfer

    NASA Astrophysics Data System (ADS)

    Wibowo, F. C.; Suhandi, A.; Rusdiana, D.; Darman, D. R.; Ruhiat, Y.; Denny, Y. R.; Suherman; Fatah, A.

    2016-08-01

    A Study area in physics learning is purposeful on the effects of various types of learning interventions to help students construct the basic of scientific conception about physics. Microscopic Virtual Media (MVM) are applications for physics learning to support powerful modelling microscopic involving physics concepts and processes. In this study groups (experimental) of 18±20 years old, students were studied to determine the role of MVM in the development of functional understanding of the concepts of thermal expansion in heat transfer. The experimental group used MVM in learning process. The results show that students who learned with virtual media exhibited significantly higher scores in the research tasks. Our findings proved that the MVM may be used as an alternative instructional tool, in order to help students to confront and constructed their basic of scientific conception and developed their understanding.

  17. EVA training for Exp. 27 crew member Ron Garan, Exp. 28 Mike Fossum and STS-135 Doug Hurley, Rex Walheim and Sandra Magnus

    NASA Image and Video Library

    2011-01-18

    JSC2011-E-003204 (18 Jan. 2011) --- NASA astronauts Rex Walheim, STS-135 mission specialist; and Mike Fossum (foreground), Expedition 28 flight engineer and Expedition 29 commander; use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  18. Virtual Balancing for Studying and Training Postural Control.

    PubMed

    Buettner, Daniela; Dalin, Daniela; Wiesmeier, Isabella K; Maurer, Christoph

    2017-01-01

    Postural control during free stance has been frequently interpreted in terms of balancing an inverted pendulum. This even holds, if subjects do not balance their own, but an external body weight. We introduce here a virtual balancing apparatus, which produces torque in the ankle joint as a function of ankle angle resembling the gravity and inertial effects of free standing. As a first aim of this study, we systematically modified gravity, damping, and inertia to examine its effect on postural control beyond the physical constraints given in the real world. As a second aim, we compared virtual balancing to free stance to test its suitability for balance training in patients who are not able to balance their full body weight due to certain medical conditions. In a feasibility study, we analyzed postural control during free stance and virtual balancing in 15 healthy subjects. Postural control was characterized by spontaneous sway measures and measures of perturbed stance. During free stance, perturbations were induced by pseudorandom anterior-posterior tilts of the body support surface. In the virtual balancing task, we systematically varied the anterior-posterior position of the foot plate where the balancing forces are zero following a similar pseudorandom stimulus profile. We found that subjects' behavior during virtual balancing resembles free stance on a tilting platform. This specifically holds for the profile of body excursions as a function of stimulus frequencies. Moreover, non-linearity between stimulus and response amplitude is similar in free and virtual balancing. The overall larger stimulus induced body excursions together with an altered phase behavior between stimulus and response could be in part explained by the limited use of vestibular and visual feedback in our experimental setting. Varying gravity or damping significantly affected postural behavior. Inertia as an isolated factor had a mild effect on the response functions. We conclude that virtual balancing may be well suited to simulate conditions which could otherwise only be realized in space experiments or during parabolic flights. Further studies are needed to examine patients' potential benefit of virtual balance training.

  19. Virtual Balancing for Studying and Training Postural Control

    PubMed Central

    Buettner, Daniela; Dalin, Daniela; Wiesmeier, Isabella K.; Maurer, Christoph

    2017-01-01

    Postural control during free stance has been frequently interpreted in terms of balancing an inverted pendulum. This even holds, if subjects do not balance their own, but an external body weight. We introduce here a virtual balancing apparatus, which produces torque in the ankle joint as a function of ankle angle resembling the gravity and inertial effects of free standing. As a first aim of this study, we systematically modified gravity, damping, and inertia to examine its effect on postural control beyond the physical constraints given in the real world. As a second aim, we compared virtual balancing to free stance to test its suitability for balance training in patients who are not able to balance their full body weight due to certain medical conditions. In a feasibility study, we analyzed postural control during free stance and virtual balancing in 15 healthy subjects. Postural control was characterized by spontaneous sway measures and measures of perturbed stance. During free stance, perturbations were induced by pseudorandom anterior-posterior tilts of the body support surface. In the virtual balancing task, we systematically varied the anterior-posterior position of the foot plate where the balancing forces are zero following a similar pseudorandom stimulus profile. We found that subjects' behavior during virtual balancing resembles free stance on a tilting platform. This specifically holds for the profile of body excursions as a function of stimulus frequencies. Moreover, non-linearity between stimulus and response amplitude is similar in free and virtual balancing. The overall larger stimulus induced body excursions together with an altered phase behavior between stimulus and response could be in part explained by the limited use of vestibular and visual feedback in our experimental setting. Varying gravity or damping significantly affected postural behavior. Inertia as an isolated factor had a mild effect on the response functions. We conclude that virtual balancing may be well suited to simulate conditions which could otherwise only be realized in space experiments or during parabolic flights. Further studies are needed to examine patients' potential benefit of virtual balance training. PMID:29018320

  20. Application of physics engines in virtual worlds

    NASA Astrophysics Data System (ADS)

    Norman, Mark; Taylor, Tim

    2002-03-01

    Dynamic virtual worlds potentially can provide a much richer and more enjoyable experience than static ones. To realize such worlds, three approaches are commonly used. The first of these, and still widely applied, involves importing traditional animations from a modeling system such as 3D Studio Max. This approach is therefore limited to predefined animation scripts or combinations/blends thereof. The second approach involves the integration of some specific-purpose simulation code, such as car dynamics, and is thus generally limited to one (class of) application(s). The third approach involves the use of general-purpose physics engines, which promise to enable a range of compelling dynamic virtual worlds and to considerably speed up development. By far the largest market today for real-time simulation is computer games, revenues exceeding those of the movie industry. Traditionally, the simulation is produced by game developers in-house for specific titles. However, off-the-shelf middleware physics engines are now available for use in games and related domains. In this paper, we report on our experiences of using middleware physics engines to create a virtual world as an interactive experience, and an advanced scenario where artificial life techniques generate controllers for physically modeled characters.

  1. Modeling and Design of an Electro-Rheological Fluid Based Haptic System for Tele-Operation of Space Robots

    NASA Technical Reports Server (NTRS)

    Mavroidis, Constantinos; Pfeiffer, Charles; Paljic, Alex; Celestino, James; Lennon, Jamie; Bar-Cohen, Yoseph

    2000-01-01

    For many years, the robotic community sought to develop robots that can eventually operate autonomously and eliminate the need for human operators. However, there is an increasing realization that there are some tasks that human can perform significantly better but, due to associated hazards, distance, physical limitations and other causes, only robot can be employed to perform these tasks. Remotely performing these types of tasks requires operating robots as human surrogates. While current "hand master" haptic systems are able to reproduce the feeling of rigid objects, they present great difficulties in emulating the feeling of remote/virtual stiffness. In addition, they tend to be heavy, cumbersome and usually they only allow limited operator workspace. In this paper a novel haptic interface is presented to enable human-operators to "feel" and intuitively mirror the stiffness/forces at remote/virtual sites enabling control of robots as human-surrogates. This haptic interface is intended to provide human operators intuitive feeling of the stiffness and forces at remote or virtual sites in support of space robots performing dexterous manipulation tasks (such as operating a wrench or a drill). Remote applications are referred to the control of actual robots whereas virtual applications are referred to simulated operations. The developed haptic interface will be applicable to IVA operated robotic EVA tasks to enhance human performance, extend crew capability and assure crew safety. The electrically controlled stiffness is obtained using constrained ElectroRheological Fluids (ERF), which changes its viscosity under electrical stimulation. Forces applied at the robot end-effector due to a compliant environment will be reflected to the user using this ERF device where a change in the system viscosity will occur proportionally to the force to be transmitted. In this paper, we will present the results of our modeling, simulation, and initial testing of such an electrorheological fluid (ERF) based haptic device.

  2. Overcoming the Critical Shortage of STEM - Prepared Secondary Students Through Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Spencer, Thomas; Berry, Brandon

    2012-01-01

    In developing understanding of technological systems - modeling and simulation tools aid significantly in the learning and visualization processes. In design courses we sketch , extrude, shape, refine and animate with virtual tools in 3D. Final designs are built using a 3D printer. Aspiring architects create spaces with realistic materials and lighting schemes rendered on model surfaces to create breathtaking walk-throughs of virtual spaces. Digital Electronics students design systems that address real-world needs. Designs are simulated in virtual circuits to provide proof of concept before physical construction. This vastly increases students' ability to design and build complex systems. We find students using modeling and simulation in the learning process, assimilate information at a much faster pace and engage more deeply in learning. As Pre-Engineering educators within the Career and Technical Education program at our school division's Technology Academy our task is to help learners in their quest to develop deep understanding of complex technological systems in a variety of engineering disciplines. Today's young learners have vast opportunities to learn with tools that many of us only dreamed about a decade or so ago when we were engaged in engineering and other technical studies. Today's learner paints with a virtual brush - scenes that can aid significantly in the learning and visualization processes. Modeling and simulation systems have become the new standard tool set in the technical classroom [1-5]. Modeling and simulation systems are now applied as feedback loops in the learning environment. Much of the study of behavior change through the use of feedback loops can be attributed to Stanford Psychologist Alfred Bandura. "Drawing on several education experiments involving children, Bandura observed that giving individuals a clear goal and a means to evaluate their progress toward that goal greatly increased the likelihood that they would achieve it."

  3. STS-105 Crew Training in VR Lab

    NASA Image and Video Library

    2001-03-15

    JSC2001-00748 (15 March 2001) --- Astronaut Patrick G. Forrester, STS-105 mission specialist, prepares to use specialized gear in the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the International Space Station (ISS) hardware with which they will be working.

  4. STS-111 Training in VR lab with Expedition IV and V Crewmembers

    NASA Image and Video Library

    2001-10-18

    JSC2001-E-39083 (18 October 2001) --- Astronaut Franklin R. Chang-Diaz, STS-111 mission specialist, uses specialized gear in the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Endeavour. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the International Space Station (ISS) hardware with which they will be working.

  5. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41535 (9 Aug. 2007) --- Astronaut Douglas H. Wheelock, STS-120 mission specialist, uses virtual reality hardware in the Space Vehicle Mockup Facility at Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear special gloves and other gear while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working.

  6. STS-134 crew and Expedition 24/25 crew member Shannon Walker

    NASA Image and Video Library

    2010-03-25

    JSC2010-E-043660 (25 March 2010) --- NASA astronaut Greg Chamitoff, STS-134 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working.

  7. STS-134 crew and Expedition 24/25 crew member Shannon Walker

    NASA Image and Video Library

    2010-03-25

    JSC2010-E-043685 (25 March 2010) --- NASA astronaut Michael Fincke, STS-134 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working.

  8. STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus

    NASA Image and Video Library

    2007-08-09

    JSC2007-E-41537 (9 Aug. 2007) --- Astronaut Douglas H. Wheelock, STS-120 mission specialist, uses virtual reality hardware in the Space Vehicle Mockup Facility at Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear special gloves and other gear while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working.

  9. Virtual reality visualization algorithms for the ALICE high energy physics experiment on the LHC at CERN

    NASA Astrophysics Data System (ADS)

    Myrcha, Julian; Trzciński, Tomasz; Rokita, Przemysław

    2017-08-01

    Analyzing massive amounts of data gathered during many high energy physics experiments, including but not limited to the LHC ALICE detector experiment, requires efficient and intuitive methods of visualisation. One of the possible approaches to that problem is stereoscopic 3D data visualisation. In this paper, we propose several methods that provide high quality data visualisation and we explain how those methods can be applied in virtual reality headsets. The outcome of this work is easily applicable to many real-life applications needed in high energy physics and can be seen as a first step towards using fully immersive virtual reality technologies within the frames of the ALICE experiment.

  10. Intrapersonal, interpersonal, and physical space in anorexia nervosa: a virtual reality and repertory grid investigation.

    PubMed

    Cipolletta, Sabrina; Malighetti, Clelia; Serino, Silvia; Riva, Giuseppe; Winter, David

    2017-06-01

    Anorexia nervosa (AN) is an eating disorder characterized by severe body image disturbances. Recent studies from spatial cognition showed a connection between the experience of body and of space. The objectives of this study were to explore the meanings that characterize AN experience and to deepen the examination of spatiality in relational terms, through the study of how the patient construes herself and her interpersonal world. More specifically this study aimed (1) to verify whether spatial variables and aspects of construing differentiate patients with AN and healthy controls (HCs) and are related to severity of anorexic symptomatology; (2) to explore correlations between impairments in spatial abilities and interpersonal construing. A sample of 12 AN patients and 12 HCs participated in the study. The Eating Disorder Inventory, a virtual reality-based procedure, traditional measures of spatial abilities, and repertory grids were administered. The AN group compared to HCs showed significant impairments in spatial abilities, more unidimensional construing, and more extreme construing of the present self and of the self as seen by others. All these dimensions correlated with the severity of symptomatology. Extreme ways of construing characterized individuals with AN and might represent the interpersonal aspect of impairment in spatial reference frames. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Navigation based on a sensorimotor representation: a virtual reality study

    NASA Astrophysics Data System (ADS)

    Zetzsche, Christoph; Galbraith, Christopher; Wolter, Johannes; Schill, Kerstin

    2007-02-01

    We investigate the hypothesis that the basic representation of space which underlies human navigation does not resemble an image-like map and is not restricted by the laws of Euclidean geometry. For this we developed a new experimental technique in which we use the properties of a virtual environment (VE) to directly influence the development of the representation. We compared the navigation performance of human observers under two conditions. Either the VE is consistent with the geometrical properties of physical space and could hence be represented in a map-like fashion, or it contains severe violations of Euclidean metric and planar topology, and would thus pose difficulties for the correct development of such a representation. Performance is not influenced by this difference, suggesting that a map-like representation is not the major basis of human navigation. Rather, the results are consistent with a representation which is similar to a non-planar graph augmented with path length information, or with a sensorimotor representation which combines sensory properties and motor actions. The latter may be seen as part of a revised view of perceptual processes due to recent results in psychology and neurobiology, which indicate that the traditional strict separation of sensory and motor systems is no longer tenable.

  12. Virtual Instruction: Issues and Insights from an International Perspective.

    ERIC Educational Resources Information Center

    Feyten, Carine M., Ed.; Nutta, Joyce W., Ed.

    The essays in this book, by contributors from around the world, clarify predominant theoretical issues that pertain to virtual instruction, and offer practical suggestions for implementing these programs in any setting. Chapters include: "Mapping Space and Time: Virtual Instruction as Global Ritual" (Joyce W. Nutta and Carine M. Feyten);…

  13. A Virtual Map to Support People Who Are Blind in Navigation through Real Spaces

    ERIC Educational Resources Information Center

    Lahav, Orly; Schloerb, David W.; Kumar, Siddarth; Srinivasan, Mandayam A.

    2011-01-01

    Most of the spatial information needed by sighted people to construct cognitive maps of spaces is gathered through the visual channel. Unfortunately, people who are blind lack the ability to collect the required spatial information in advance. The use of virtual reality as a learning and rehabilitation tool for people with disabilities has been on…

  14. Photographic coverage of STS-112 during EVA 3 in VR Lab.

    NASA Image and Video Library

    2002-08-21

    JSC2002-E-34622 (21 August 2002) --- Astronaut David A. Wolf, STS-112 mission specialist, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Atlantis. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with ISS elements.

  15. Assessment of Student Learning in Virtual Spaces, Using Orders of Complexity in Levels of Thinking

    ERIC Educational Resources Information Center

    Capacho, Jose

    2017-01-01

    This paper aims at showing a new methodology to assess student learning in virtual spaces supported by Information and Communications Technology-ICT. The methodology is based on the Conceptual Pedagogy Theory, and is supported both on knowledge instruments (KI) and intelectual operations (IO). KI are made up of teaching materials embedded in the…

  16. Design of Learning Spaces in 3D Virtual Worlds: An Empirical Investigation of "Second Life"

    ERIC Educational Resources Information Center

    Minocha, Shailey; Reeves, Ahmad John

    2010-01-01

    "Second Life" (SL) is a three-dimensional (3D) virtual world, and educational institutions are adopting SL to support their teaching and learning. Although the question of how 3D learning spaces should be designed to support student learning and engagement has been raised among SL educators and designers, there is hardly any guidance or…

  17. Eco-Dialogical Learning and Translanguaging in Open-Ended 3D Virtual Learning Environments: Where Place, Time, and Objects Matter

    ERIC Educational Resources Information Center

    Zheng, Dongping; Schmidt, Matthew; Hu, Ying; Liu, Min; Hsu, Jesse

    2017-01-01

    The purpose of this research was to explore the relationships between design, learning, and translanguaging in a 3D collaborative virtual learning environment for adolescent learners of Chinese and English. We designed an open-ended space congruent with ecological and dialogical perspectives on second language acquisition. In such a space,…

  18. Advances in edge-diffraction modeling for virtual-acoustic simulations

    NASA Astrophysics Data System (ADS)

    Calamia, Paul Thomas

    In recent years there has been growing interest in modeling sound propagation in complex, three-dimensional (3D) virtual environments. With diverse applications for the military, the gaming industry, psychoacoustics researchers, architectural acousticians, and others, advances in computing power and 3D audio-rendering techniques have driven research and development aimed at closing the gap between the auralization and visualization of virtual spaces. To this end, this thesis focuses on improving the physical and perceptual realism of sound-field simulations in virtual environments through advances in edge-diffraction modeling. To model sound propagation in virtual environments, acoustical simulation tools commonly rely on geometrical-acoustics (GA) techniques that assume asymptotically high frequencies, large flat surfaces, and infinitely thin ray-like propagation paths. Such techniques can be augmented with diffraction modeling to compensate for the effect of surface size on the strength and directivity of a reflection, to allow for propagation around obstacles and into shadow zones, and to maintain soundfield continuity across reflection and shadow boundaries. Using a time-domain, line-integral formulation of the Biot-Tolstoy-Medwin (BTM) diffraction expression, this thesis explores various aspects of diffraction calculations for virtual-acoustic simulations. Specifically, we first analyze the periodic singularity of the BTM integrand and describe the relationship between the singularities and higher-order reflections within wedges with open angle less than 180°. Coupled with analytical approximations for the BTM expression, this analysis allows for accurate numerical computations and a continuous sound field in the vicinity of an arbitrary wedge geometry insonified by a point source. Second, we describe an edge-subdivision strategy that allows for fast diffraction calculations with low error relative to a numerically more accurate solution. Third, to address the considerable increase in propagation paths due to diffraction, we describe a simple procedure for identifying and culling insignificant diffraction components during a virtual-acoustic simulation. Finally, we present a novel method to find GA components using diffraction parameters that ensures continuity at reflection and shadow boundaries.

  19. SU-F-T-436: A Method to Evaluate Dosimetric Properties of SFGRT in Eclipse TPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, M; Tobias, R; Pankuch, M

    Purpose: The objective was to develop a method for dose distribution calculation of spatially-fractionated-GRID-radiotherapy (SFGRT) in Eclipse treatment-planning-system (TPS). Methods: Patient treatment-plans with SFGRT for bulky tumors were generated in Varian Eclipse version11. A virtual structure based on the GRID pattern was created and registered to a patient CT image dataset. The virtual GRID structure was positioned on the iso-center level together with matching beam geometries to simulate a commercially available GRID block made of brass. This method overcame the difficulty in treatment-planning and dose-calculation due to the lack o-the option to insert a GRID block add-on in Eclipse TPS.more » The patient treatment-planning displayed GRID effects on the target, critical structures, and dose distribution. The dose calculations were compared to the measurement results in phantom. Results: The GRID block structure was created to follow the beam divergence to the patient CT images. The inserted virtual GRID block made it possible to calculate the dose distributions and profiles at various depths in Eclipse. The virtual GRID block was added as an option to TPS. The 3D representation of the isodose distribution of the spatially-fractionated beam was generated in axial, coronal, and sagittal planes. Physics of GRID can be different from that for fields shaped by regular blocks because the charge-particle-equilibrium cannot be guaranteed for small field openings. Output factor (OF) measurement was required to calculate the MU to deliver the prescribed dose. The calculated OF based on the virtual GRID agreed well with the measured OF in phantom. Conclusion: The method to create the virtual GRID block has been proposed for the first time in Eclipse TPS. The dosedistributions, in-plane and cross-plane profiles in PTV can be displayed in 3D-space. The calculated OF’s based on the virtual GRID model compare well to the measured OF’s for SFGRT clinical use.« less

  20. Space Shuttle Projects

    NASA Image and Video Library

    2001-08-08

    Astronauts John M. Grunsfeld (left), STS-109 payload commander, and Nancy J. Currie, mission specialist, use the virtual reality lab at Johnson Space Center to train for upcoming duties aboard the Space Shuttle Columbia. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team to perform its duties for the fourth Hubble Space Telescope Servicing mission. The most familiar form of virtual reality technology is some form of headpiece, which fits over your eyes and displays a three dimensional computerized image of another place. Turn your head left and right, and you see what would be to your sides; turn around, and you see what might be sneaking up on you. An important part of the technology is some type of data glove that you use to propel yourself through the virtual world. Currently, the medical community is using the new technologies in four major ways: To see parts of the body more accurately, for study, to make better diagnosis of disease and to plan surgery in more detail; to obtain a more accurate picture of a procedure during surgery; to perform more types of surgery with the most noninvasive, accurate methods possible; and to model interactions among molecules at a molecular level.

Top