Sample records for virtual unicos process

  1. Cryogenic Control System Migration and Developments towards the UNICOS CERN Standard at INFN

    NASA Astrophysics Data System (ADS)

    Modanese, Paolo; Calore, Andrea; Contran, Tiziano; Friso, Alessandro; Pengo, Marco; Canella, Stefania; Burioli, Sergio; Gallese, Benedetto; Inglese, Vitaliano; Pezzetti, Marco; Pengo, Ruggero

    The cryogenic control systems at Laboratori Nazionali di Legnaro (LNL) are undergoing an important and radical modernization, allowing all the plants controls and supervision systems to be renewed in a homogeneous way towards the CERN-UNICOS standard. Before the UNICOS migration project started there were as many as 7 different types of PLC and 7 different types of SCADA, each one requiring its own particular programming language. In these conditions, even a simple modification and/or integration on the program or on the supervision, required the intervention of a system integrator company, specialized in its specific control system. Furthermore it implied that the operators have to be trained to learn the different types of control systems. The CERN-UNICOS invented for LHC [1] has been chosen due to its reliability and planned to run and be maintained for decades on. The complete migration is part of an agreement between CERN and INFN.

  2. Primer registro para Peru del genero Nielsonia Young, 1977 (Hemiptera: Cicadellidae: Cicadellinae: Cicadellini)

    USDA-ARS?s Scientific Manuscript database

    En este articulo se reporta por primera vez para el Peru una especies del genero Nielsonia Young, 1977, de material procedente del Departamento de Tumbes. El genero ha sido reportada anteriormente de Ecuador, como unico registro para Sudamerica, y America Central. El unico especimen hembra encontra...

  3. A progress report on UNICOS misuse detection at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.L.; Jackson, K.A.; Stallings, C.A.

    An effective method for detecting computer misuse is the automatic monitoring and analysis of on-line user activity. During the past year, Los Alamos enhanced its Network Anomaly Detection and Intrusion Reporter (NADIR) to include analysis of user activity on Los Alamos` UNICOS Crays. In near real-time, NADIR compares user activity to historical profiles and tests activity against expert rules. The expert rules express Los Alamos` security policy and define improper or suspicious behavior. NADIR reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. This paper describes the implementation to date of the UNICOS component ofmore » NADIR, along with the operational experiences and future plans for the system.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, K.A.; Neuman, M.C.; Simmonds, D.D.

    An effective method for detecting computer misuse is the automatic monitoring and analysis of on-line user activity. This activity is reflected in the system audit record, in the system vulnerability posture, and in other evidence found through active testing of the system. During the last several years we have implemented an automatic misuse detection system at Los Alamos. This is the Network Anomaly Detection and Intrusion Reporter (NADIR). We are currently expanding NADIR to include processing of the Cray UNICOS operating system. This new component is called the UNICOS Realtime NADIR, or UNICORN. UNICORN summarizes user activity and system configurationmore » in statistical profiles. It compares these profiles to expert rules that define security policy and improper or suspicious behavior. It reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. The first phase of UNICORN development is nearing completion, and will be operational in late 1994.« less

  5. Video movie making using remote procedure calls and 4BSD Unix sockets on Unix, UNICOS, and MS-DOS systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, D.W.; Johnston, W.E.; Hall, D.E.

    1990-03-01

    We describe the use of the Sun Remote Procedure Call and Unix socket interprocess communication mechanisms to provide the network transport for a distributed, client-server based, image handling system. Clients run under Unix or UNICOS and servers run under Unix or MS-DOS. The use of remote procedure calls across local or wide-area networks to make video movies is addressed.

  6. SIB health psychology in Brazil: The challenges for working in public health settings.

    PubMed

    Spink, Mary-Jane P; Brigagão, Jacqueline M; Menegon, Vera M; Vicentin, Maria-Cristina G

    2016-03-01

    Considering the diversity of theoretical approaches and settings for psychological practice, this editorial provides a background for the articles that have been included in this special issue concerning health psychology in the context of the Brazilian Unified Health System (Sistema Unico de Saude). We addressed issues concerning the national curricular outline for undergraduate training in psychology and historical data on the social movements that led to the creation of the Sistema Unico de Saude and the Psychiatric Reform which created an important area for psychological work absorbing a considerable number of psychologists. © The Author(s) 2016.

  7. Multitasking TORT under UNICOS: Parallel performance models and measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, A.; Azmy, Y.Y.

    1999-09-27

    The existing parallel algorithms in the TORT discrete ordinates code were updated to function in a UNICOS environment. A performance model for the parallel overhead was derived for the existing algorithms. The largest contributors to the parallel overhead were identified and a new algorithm was developed. A parallel overhead model was also derived for the new algorithm. The results of the comparison of parallel performance models were compared to applications of the code to two TORT standard test problems and a large production problem. The parallel performance models agree well with the measured parallel overhead.

  8. Multitasking TORT Under UNICOS: Parallel Performance Models and Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azmy, Y.Y.; Barnett, D.A.

    1999-09-27

    The existing parallel algorithms in the TORT discrete ordinates were updated to function in a UNI-COS environment. A performance model for the parallel overhead was derived for the existing algorithms. The largest contributors to the parallel overhead were identified and a new algorithm was developed. A parallel overhead model was also derived for the new algorithm. The results of the comparison of parallel performance models were compared to applications of the code to two TORT standard test problems and a large production problem. The parallel performance models agree well with the measured parallel overhead.

  9. UNICOS Kernel Internals Application Development

    NASA Technical Reports Server (NTRS)

    Caredo, Nicholas; Craw, James M. (Technical Monitor)

    1995-01-01

    Having an understanding of UNICOS Kernel Internals is valuable information. However, having the knowledge is only half the value. The second half comes with knowing how to use this information and apply it to the development of tools. The kernel contains vast amounts of useful information that can be utilized. This paper discusses the intricacies of developing utilities that utilize kernel information. In addition, algorithms, logic, and code will be discussed for accessing kernel information. Code segments will be provided that demonstrate how to locate and read kernel structures. Types of applications that can utilize kernel information will also be discussed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christoph, G.G; Jackson, K.A.; Neuman, M.C.

    An effective method for detecting computer misuse is the automatic auditing and analysis of on-line user activity. This activity is reflected in the system audit record, by changes in the vulnerability posture of the system configuration, and in other evidence found through active testing of the system. In 1989 we started developing an automatic misuse detection system for the Integrated Computing Network (ICN) at Los Alamos National Laboratory. Since 1990 this system has been operational, monitoring a variety of network systems and services. We call it the Network Anomaly Detection and Intrusion Reporter, or NADIR. During the last year andmore » a half, we expanded NADIR to include processing of audit and activity records for the Cray UNICOS operating system. This new component is called the UNICOS Real-time NADIR, or UNICORN. UNICORN summarizes user activity and system configuration information in statistical profiles. In near real-time, it can compare current activity to historical profiles and test activity against expert rules that express our security policy and define improper or suspicious behavior. It reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. UNICORN is currently operational on four Crays in Los Alamos` main computing network, the ICN.« less

  11. LAMDA programmer's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, T.P.; Clark, R.M.; Mostrom, M.A.

    This report discusses the following topics on the LAMDA program: General maintenance; CTSS FCL script; DOS batch files; Macintosh MPW scripts; UNICOS FCL script; VAX/MS command file; LINC calling tree; and LAMDA calling tree.

  12. LAMDA programmer`s manual. [Final report, Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, T.P.; Clark, R.M.; Mostrom, M.A.

    This report discusses the following topics on the LAMDA program: General maintenance; CTSS FCL script; DOS batch files; Macintosh MPW scripts; UNICOS FCL script; VAX/MS command file; LINC calling tree; and LAMDA calling tree.

  13. CRAY mini manual. Revision D

    NASA Technical Reports Server (NTRS)

    Tennille, Geoffrey M.; Howser, Lona M.

    1993-01-01

    This document briefly describes the use of the CRAY supercomputers that are an integral part of the Supercomputing Network Subsystem of the Central Scientific Computing Complex at LaRC. Features of the CRAY supercomputers are covered, including: FORTRAN, C, PASCAL, architectures of the CRAY-2 and CRAY Y-MP, the CRAY UNICOS environment, batch job submittal, debugging, performance analysis, parallel processing, utilities unique to CRAY, and documentation. The document is intended for all CRAY users as a ready reference to frequently asked questions and to more detailed information contained in the vendor manuals. It is appropriate for both the novice and the experienced user.

  14. Attaching IBM-compatible 3380 disks to Cray X-MP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engert, D.E.; Midlock, J.L.

    1989-01-01

    A method of attaching IBM-compatible 3380 disks directly to a Cray X-MP via the XIOP with a BMC is described. The IBM 3380 disks appear to the UNICOS operating system as DD-29 disks with UNICOS file systems. IBM 3380 disks provide cheap, reliable large capacity disk storage. Combined with a small number of high-speed Cray disks, the IBM disks provide for the bulk of the storage for small files and infrequently used files. Cray Research designed the BMC and its supporting software in the XIOP to allow IBM tapes and other devices to be attached to the X-MP. No hardwaremore » changes were necessary, and we added less than 2000 lines of code to the XIOP to accomplish this project. This system has been in operation for over eight months. Future enhancements such as the use of a cache controller and attachment to a Y-MP are also described. 1 tab.« less

  15. 76 FR 59128 - Ocean Transportation Intermediary License; Revocation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ...: Unico Logistics Inc. Address: 147-04 183rd Street, Suite 203, Jamaica, NY 11413. Date Revoked: August 1... Express Inc. Address: 2130 SW. 58th Way, West Park, FL 33023. Date Revoked: August 25, 2011. Reason.... Name: Titan International Logistics, LLC. Address: 16905 Cherie Place, Carson, CA 90746. Date Revoked...

  16. New tools using the hardware performance monitor to help users tune programs on the Cray X-MP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engert, D.E.; Rudsinski, L.; Doak, J.

    1991-09-25

    The performance of a Cray system is highly dependent on the tuning techniques used by individuals on their codes. Many of our users were not taking advantage of the tuning tools that allow them to monitor their own programs by using the Hardware Performance Monitor (HPM). We therefore modified UNICOS to collect HPM data for all processes and to report Mflop ratings based on users, programs, and time used. Our tuning efforts are now being focused on the users and programs that have the best potential for performance improvements. These modifications and some of the more striking performance improvements aremore » described.« less

  17. U.S. EPA, Pesticide Product Label, UNICO FRUIT SPRAY POWDER, 08/12/1969

    EPA Pesticide Factsheets

    2011-04-14

    ... hlad, I'ot, dll\\\\ 11.\\ Illlld,'\\\\ Applv .1, \\\\ hl'll tHHl ... or ... hoot ..... t\\o\\\\ 1111 tl ~, t I!, I I , , , I \\\\ht·n ··hoot .... .lIT 10 ttl l:! 1l1l·ht, .... lllng, ;{ ItI,l" \\\\"f'l'\\ .I~·': ...

  18. Using the K-25 C TD Common File System: A guide to CFSI (CFS Interface)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-12-01

    A CFS (Common File System) is a large, centralized file management and storage facility based on software developed at Los Alamos National Laboratory. This manual is a guide to use of the CFS available to users of the Cray UNICOS system at Martin Marietta Energy Systems, Inc., in Oak Ridge, Tennessee.

  19. [Social organizations and governmental institutions: perspectives on partnerships in children's health care through volunteers and the Pastoral da Criança].

    PubMed

    Andrade, Raquel Dully; de Mello, Débora Falleiros

    2006-03-01

    The aim of this research is to present perspectives on partnerships between social organizations and governmental institutions in children's health care. This study reflects on social participation and relations between governmental and non-governmental services in constructing the consolidation of the Sistema Unico de Saúde (Unified Health System), highlighting the role of volunteers and health professionals in this process. In child care, these associations are potential, due to the wide range and prominence of social organizations oriented towards children, particularly the Pastoral da Criança (the Catholic Church's Child Pastoral), which makes it important to discuss public policies aimed at establishing and strengthening these links in the local and national spheres.

  20. Performance Analysis of the NAS Y-MP Workload

    NASA Technical Reports Server (NTRS)

    Bergeron, Robert J.; Kutler, Paul (Technical Monitor)

    1997-01-01

    This paper describes the performance characteristics of the computational workloads on the NAS Cray Y-MP machines, a Y-MP 832 and later a Y-MP 8128. Hardware measurements indicated that the Y-MP workload performance matured over time, ultimately sustaining an average throughput of 0.8 GFLOPS and a vector operation fraction of 87%. The measurements also revealed an operation rate exceeding 1 per clock period, a well-balanced architecture featuring a strong utilization of vector functional units, and an efficient memory organization. Introduction of the larger memory 8128 increased throughput by allowing a more efficient utilization of CPUs. Throughput also depended on the metering of the batch queues; low-idle Saturday workloads required a buffer of small jobs to prevent memory starvation of the CPU. UNICOS required about 7% of total CPU time to service the 832 workloads; this overhead decreased to 5% for the 8128 workloads. While most of the system time went to service I/O requests, efficient scheduling prevented excessive idle due to I/O wait. System measurements disclosed no obvious bottlenecks in the response of the machine and UNICOS to the workloads. In most cases, Cray-provided software tools were- quite sufficient for measuring the performance of both the machine and operating, system.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynes, R.A.

    The Network File System (NFS) is used in UNIX-based networks to provide transparent file sharing between heterogeneous systems. Although NFS is well-known for being weak in security, it is widely used and has become a de facto standard. This paper examines the user authentication shortcomings of NFS and the approach Sandia National Laboratories has taken to strengthen it with Kerberos. The implementation on a Cray Y-MP8/864 running UNICOS is described and resource/performance issues are discussed. 4 refs., 4 figs.

  2. [Diagnosis on the unique curriculum of the medical career at the National University of Mexico].

    PubMed

    Guevara Guzmán, Rosalinda; Urrutia Aguilar, María Esther

    2011-01-01

    The analysis of the Plan Unico de Estudios of the medical career was the result of five years of collegiate work in which commissions consisting of academic staff of different departments from the faculty of medicine at the Universidad Nacional Autonoma de Mexico (UNAM) participated. The most significant conclusions derived from this analysis are: to adjust the graduate’s profile in order to face the emerging health problems of the twenty-first century in our country; to update the academic curricula of the different subjects, including new ones; to create a nuclear curricula; as well as to strengthen the basic-clinic and the clinic-basic. With regard to the teaching/learning process, we acknowledged the need to develop self-cognitive and self-motivational skills in students as well as to consider a different evaluation for students and teachers.

  3. Mechanisms of microregulation of private hospitals by health plan operators.

    PubMed

    Ugá, Maria Alicia Domínguez; Vasconcellos, Miguel Murat; Lima, Sheyla Maria Lemos; Portela, Margareth Crisóstomo; Gerschman, Silvia

    2009-10-01

    To analyze the mechanisms employed by health plan operators for microregulation of clinical management and health care qualification within care-providing hospitals. A nation-wide cross-sectional study was carried out. The universe consisted of hospitals which provided care to health plan operators in 2006. A sample of 83 units was selected, stratified by Brazilian macroregion and type of hospital. Data were obtained by means of a questionnaire administered to hospital managers. Microregulation of hospitals by health plan operators was minimal or almost absent in terms of health care qualification. Operator activity focused predominantly on intense control of the amount of services used by patients. Hospitals providing services to health plan operators did not constitute health micro-systems parallel or supplementary to the Sistema Unico de Saúde (SUS - Brazilian National Health System). The private care-providing hospitals were predominantly associated with SUS. However, these did not belong to a private care-provider network, even though their service usage was subject to strong regulation by health plan operators. Operator intervention in the form of system management was incipient or virtually absent. Roughly one-half of investigated hospitals reported adopting clinical directives, whereas only 25.4% reported managing pathology and 30.5% reported managing cases. Contractual relationships between hospitals and health plan operators are merely commercial contracts with little if any incorporation of aspects related to the quality of care, being generally limited to aspects such as establishment of prices, timeframes, and payment procedures.

  4. 2DRMP: A suite of two-dimensional R-matrix propagation codes

    NASA Astrophysics Data System (ADS)

    Scott, N. S.; Scott, M. P.; Burke, P. G.; Stitt, T.; Faro-Maza, V.; Denis, C.; Maniopoulou, A.

    2009-12-01

    The R-matrix method has proved to be a remarkably stable, robust and efficient technique for solving the close-coupling equations that arise in electron and photon collisions with atoms, ions and molecules. During the last thirty-four years a series of related R-matrix program packages have been published periodically in CPC. These packages are primarily concerned with low-energy scattering where the incident energy is insufficient to ionise the target. In this paper we describe 2DRMP, a suite of two-dimensional R-matrix propagation programs aimed at creating virtual experiments on high performance and grid architectures to enable the study of electron scattering from H-like atoms and ions at intermediate energies. Program summaryProgram title: 2DRMP Catalogue identifier: AEEA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 196 717 No. of bytes in distributed program, including test data, etc.: 3 819 727 Distribution format: tar.gz Programming language: Fortran 95, MPI Computer: Tested on CRAY XT4 [1]; IBM eServer 575 [2]; Itanium II cluster [3] Operating system: Tested on UNICOS/lc [1]; IBM AIX [2]; Red Hat Linux Enterprise AS [3] Has the code been vectorised or parallelised?: Yes. 16 cores were used for small test run Classification: 2.4 External routines: BLAS, LAPACK, PBLAS, ScaLAPACK Subprograms used: ADAZ_v1_1 Nature of problem: 2DRMP is a suite of programs aimed at creating virtual experiments on high performance architectures to enable the study of electron scattering from H-like atoms and ions at intermediate energies. Solution method: Two-dimensional R-matrix propagation theory. The (r,r) space of the internal region is subdivided into a number of subregions. Local R-matrices are constructed within each subregion and used to propagate a global R-matrix, ℜ, across the internal region. On the boundary of the internal region ℜ is transformed onto the IERM target state basis. Thus, the two-dimensional R-matrix propagation technique transforms an intractable problem into a series of tractable problems enabling the internal region to be extended far beyond that which is possible with the standard one-sector codes. A distinctive feature of the method is that both electrons are treated identically and the R-matrix basis states are constructed to allow for both electrons to be in the continuum. The subregion size is flexible and can be adjusted to accommodate the number of cores available. Restrictions: The implementation is currently restricted to electron scattering from H-like atoms and ions. Additional comments: The programs have been designed to operate on serial computers and to exploit the distributed memory parallelism found on tightly coupled high performance clusters and supercomputers. 2DRMP has been systematically and comprehensively documented using ROBODoc [4] which is an API documentation tool that works by extracting specially formatted headers from the program source code and writing them to documentation files. Running time: The wall clock running time for the small test run using 16 cores and performed on [3] is as follows: bp (7 s); rint2 (34 s); newrd (32 s); diag (21 s); amps (11 s); prop (24 s). References:HECToR, CRAY XT4 running UNICOS/lc, http://www.hector.ac.uk/, accessed 22 July, 2009. HPCx, IBM eServer 575 running IBM AIX, http://www.hpcx.ac.uk/, accessed 22 July, 2009. HP Cluster, Itanium II cluster running Red Hat Linux Enterprise AS, Queen s University Belfast, http://www.qub.ac.uk/directorates/InformationServices/Research/HighPerformanceComputing/Services/Hardware/HPResearch/, accessed 22 July, 2009. Automating Software Documentation with ROBODoc, http://www.xs4all.nl/~rfsber/Robo/, accessed 22 July, 2009.

  5. Servicio de Mapas en Internet para la Salud Ambiental en la Region Fronteriza Entre los Estados Unidos y Mexico

    USGS Publications Warehouse

    Buckler, Denny; Stefanov, Jim

    2004-01-01

    La region fronteriza de los Estados Unidos y Mexico abarca una gran diversidad de ambientes fisicos y habitaciones, entre los cuales estan los humedales, desiertos, pastos, montanas, y bosques. Estos a su vez son unicos en cuanto a su diversidad de recursos acuaticos minerales, y biologicos. La region se interconecta economica, politica, y socialmente debido a su herencia binacional. En 1995, cerca de 11 millones de habitantes vivian en la zona adyacente a la frontera. Un estudio sugiere que esa poblacion podria doblarse antes del ano 2020.

  6. Implementing TCP/IP and a socket interface as a server in a message-passing operating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hipp, E.; Wiltzius, D.

    1990-03-01

    The UNICOS 4.3BSD network code and socket transport interface are the basis of an explicit network server for NLTSS, a message passing operating system on the Cray YMP. A BSD socket user library provides access to the network server using an RPC mechanism. The advantages of this server methodology are its modularity and extensibility to migrate to future protocol suites (e.g. OSI) and transport interfaces. In addition, the network server is implemented in an explicit multi-tasking environment to take advantage of the Cray YMP multi-processor platform. 19 refs., 5 figs.

  7. [Analysis of economic viability of a mobile eye clinic of a referral Ophthalmology Service].

    PubMed

    Lima, Luiz Henrique Soares Gonçalves de; Sousa, Luciene Barbosa de

    2005-01-01

    To analyse the economic viability of a mobile eye clinic of a tertiary referral Ophthalmology Service. The amount of money spent with the purchase and construction of the unit in 2000, and the expenses with its maintenance and operation in 2001 were considered, comparing these expenses with the income obtained from appointments, supplementary tests and eye surgeries through the "Sistema Unico de Saúde" (a health care service provided by the government), in 2001. In order to make an economic analysis, an interest rate of 10% per year and a period of depreciation of 10 years were stipulated. The total amount spent to buy and set up a mobile unit of "Hospital Oftamológico de Sorocaba" was R$ 184,140,00. The amount spent with its maintenance and operation during 2001 was R$ 28,000.00. The unit was used on average during 2 days each week in 2001 and 6492 appointments were made in this period, generating an income of R$ 32,460.00. The appointments generated complementary tests and eye surgeries making up R$ 51,540.00. Therefore, the total amount received directly with the appointments, complementary tests and eye surgeries during 2001 was R$ 84,000.00 paid by the "Sistema Unico de Saúde", according to values established beforehand. Using these values it is possible to make an economic analysis of this enterprise and this was done with and without money savings for depreciation, taking into account the income and the expenses. Besides attending poor communities that are located in distant neighborhoods, a mobile eye clinic can be a source of income for ophthalmologic services.

  8. Transient dynamics capability at Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Attaway, Steven W.; Biffle, Johnny H.; Sjaardema, G. D.; Heinstein, M. W.; Schoof, L. A.

    1993-01-01

    A brief overview of the transient dynamics capabilities at Sandia National Laboratories, with an emphasis on recent new developments and current research is presented. In addition, the Sandia National Laboratories (SNL) Engineering Analysis Code Access System (SEACAS), which is a collection of structural and thermal codes and utilities used by analysts at SNL, is described. The SEACAS system includes pre- and post-processing codes, analysis codes, database translation codes, support libraries, Unix shell scripts for execution, and an installation system. SEACAS is used at SNL on a daily basis as a production, research, and development system for the engineering analysts and code developers. Over the past year, approximately 190 days of CPU time were used by SEACAS codes on jobs running from a few seconds up to two and one-half days of CPU time. SEACAS is running on several different systems at SNL including Cray Unicos, Hewlett Packard PH-UX, Digital Equipment Ultrix, and Sun SunOS. An overview of SEACAS, including a short description of the codes in the system, are presented. Abstracts and references for the codes are listed at the end of the report.

  9. Virtual School Startups: Founder Processes in American K-12 Public Virtual Schools

    ERIC Educational Resources Information Center

    Taylor, Brett D.; McNair, Delores E.

    2018-01-01

    Traditional school districts do not have a lot of experience with virtual schools and have lost students to state and charter virtual schools. To retain students and offer alternative learning opportunities, more public districts are starting their own virtual schools. This study was an examination of foundational processes at three California…

  10. Share (And Not) Share Alike: Improving Virtual Team Climate and Decision Performance

    ERIC Educational Resources Information Center

    Cordes, Sean

    2017-01-01

    Virtual teams face unique communication and collaboration challenges that impact climate development and performance. First, virtual teams rely on technology mediated communication which can constrain communication. Second, team members lack skill for adapting process to the virtual setting. A collaboration process structure was designed to…

  11. Exploring Non-Traditional Learning Methods in Virtual and Real-World Environments

    ERIC Educational Resources Information Center

    Lukman, Rebeka; Krajnc, Majda

    2012-01-01

    This paper identifies the commonalities and differences within non-traditional learning methods regarding virtual and real-world environments. The non-traditional learning methods in real-world have been introduced within the following courses: Process Balances, Process Calculation, and Process Synthesis, and within the virtual environment through…

  12. Virtual HRD and National Culture: An Information Processing Perspective

    ERIC Educational Resources Information Center

    Chung, Chih-Hung; Angnakoon, Putthachat; Li, Jessica; Allen, Jeff

    2016-01-01

    Purpose: The purpose of this study is to provide researchers with a better understanding of the cultural impact on information processing in virtual learning environment. Design/methodology/approach: This study uses a causal loop diagram to depict the cultural impact on information processing in the virtual human resource development (VHRD)…

  13. ARC2D - EFFICIENT SOLUTION METHODS FOR THE NAVIER-STOKES EQUATIONS (DEC RISC ULTRIX VERSION)

    NASA Technical Reports Server (NTRS)

    Biyabani, S. R.

    1994-01-01

    ARC2D is a computational fluid dynamics program developed at the NASA Ames Research Center specifically for airfoil computations. The program uses implicit finite-difference techniques to solve two-dimensional Euler equations and thin layer Navier-Stokes equations. It is based on the Beam and Warming implicit approximate factorization algorithm in generalized coordinates. The methods are either time accurate or accelerated non-time accurate steady state schemes. The evolution of the solution through time is physically realistic; good solution accuracy is dependent on mesh spacing and boundary conditions. The mathematical development of ARC2D begins with the strong conservation law form of the two-dimensional Navier-Stokes equations in Cartesian coordinates, which admits shock capturing. The Navier-Stokes equations can be transformed from Cartesian coordinates to generalized curvilinear coordinates in a manner that permits one computational code to serve a wide variety of physical geometries and grid systems. ARC2D includes an algebraic mixing length model to approximate the effect of turbulence. In cases of high Reynolds number viscous flows, thin layer approximation can be applied. ARC2D allows for a variety of solutions to stability boundaries, such as those encountered in flows with shocks. The user has considerable flexibility in assigning geometry and developing grid patterns, as well as in assigning boundary conditions. However, the ARC2D model is most appropriate for attached and mildly separated boundary layers; no attempt is made to model wake regions and widely separated flows. The techniques have been successfully used for a variety of inviscid and viscous flowfield calculations. The Cray version of ARC2D is written in FORTRAN 77 for use on Cray series computers and requires approximately 5Mb memory. The program is fully vectorized. The tape includes variations for the COS and UNICOS operating systems. Also included is a sample routine for CONVEX computers to emulate Cray system time calls, which should be easy to modify for other machines as well. The standard distribution media for this version is a 9-track 1600 BPI ASCII Card Image format magnetic tape. The Cray version was developed in 1987. The IBM ES/3090 version is an IBM port of the Cray version. It is written in IBM VS FORTRAN and has the capability of executing in both vector and parallel modes on the MVS/XA operating system and in vector mode on the VM/XA operating system. Various options of the IBM VS FORTRAN compiler provide new features for the ES/3090 version, including 64-bit arithmetic and up to 2 GB of virtual addressability. The IBM ES/3090 version is available only as a 9-track, 1600 BPI IBM IEBCOPY format magnetic tape. The IBM ES/3090 version was developed in 1989. The DEC RISC ULTRIX version is a DEC port of the Cray version. It is written in FORTRAN 77 for RISC-based Digital Equipment platforms. The memory requirement is approximately 7Mb of main memory. It is available in UNIX tar format on TK50 tape cartridge. The port to DEC RISC ULTRIX was done in 1990. COS and UNICOS are trademarks and Cray is a registered trademark of Cray Research, Inc. IBM, ES/3090, VS FORTRAN, MVS/XA, and VM/XA are registered trademarks of International Business Machines. DEC and ULTRIX are registered trademarks of Digital Equipment Corporation.

  14. ARC2D - EFFICIENT SOLUTION METHODS FOR THE NAVIER-STOKES EQUATIONS (CRAY VERSION)

    NASA Technical Reports Server (NTRS)

    Pulliam, T. H.

    1994-01-01

    ARC2D is a computational fluid dynamics program developed at the NASA Ames Research Center specifically for airfoil computations. The program uses implicit finite-difference techniques to solve two-dimensional Euler equations and thin layer Navier-Stokes equations. It is based on the Beam and Warming implicit approximate factorization algorithm in generalized coordinates. The methods are either time accurate or accelerated non-time accurate steady state schemes. The evolution of the solution through time is physically realistic; good solution accuracy is dependent on mesh spacing and boundary conditions. The mathematical development of ARC2D begins with the strong conservation law form of the two-dimensional Navier-Stokes equations in Cartesian coordinates, which admits shock capturing. The Navier-Stokes equations can be transformed from Cartesian coordinates to generalized curvilinear coordinates in a manner that permits one computational code to serve a wide variety of physical geometries and grid systems. ARC2D includes an algebraic mixing length model to approximate the effect of turbulence. In cases of high Reynolds number viscous flows, thin layer approximation can be applied. ARC2D allows for a variety of solutions to stability boundaries, such as those encountered in flows with shocks. The user has considerable flexibility in assigning geometry and developing grid patterns, as well as in assigning boundary conditions. However, the ARC2D model is most appropriate for attached and mildly separated boundary layers; no attempt is made to model wake regions and widely separated flows. The techniques have been successfully used for a variety of inviscid and viscous flowfield calculations. The Cray version of ARC2D is written in FORTRAN 77 for use on Cray series computers and requires approximately 5Mb memory. The program is fully vectorized. The tape includes variations for the COS and UNICOS operating systems. Also included is a sample routine for CONVEX computers to emulate Cray system time calls, which should be easy to modify for other machines as well. The standard distribution media for this version is a 9-track 1600 BPI ASCII Card Image format magnetic tape. The Cray version was developed in 1987. The IBM ES/3090 version is an IBM port of the Cray version. It is written in IBM VS FORTRAN and has the capability of executing in both vector and parallel modes on the MVS/XA operating system and in vector mode on the VM/XA operating system. Various options of the IBM VS FORTRAN compiler provide new features for the ES/3090 version, including 64-bit arithmetic and up to 2 GB of virtual addressability. The IBM ES/3090 version is available only as a 9-track, 1600 BPI IBM IEBCOPY format magnetic tape. The IBM ES/3090 version was developed in 1989. The DEC RISC ULTRIX version is a DEC port of the Cray version. It is written in FORTRAN 77 for RISC-based Digital Equipment platforms. The memory requirement is approximately 7Mb of main memory. It is available in UNIX tar format on TK50 tape cartridge. The port to DEC RISC ULTRIX was done in 1990. COS and UNICOS are trademarks and Cray is a registered trademark of Cray Research, Inc. IBM, ES/3090, VS FORTRAN, MVS/XA, and VM/XA are registered trademarks of International Business Machines. DEC and ULTRIX are registered trademarks of Digital Equipment Corporation.

  15. [Community-based intervention to control STD/AIDS in the Amazon region, Brazil].

    PubMed

    Benzaken, Adele Schwartz; Galbán Garcia, Enrique; Sardinha, José Carlos Gomes; Pedrosa, Valderiza Lourenço; Paiva, Vera

    2007-12-01

    To describe a case study of community-based intervention, developed in a constructionist-emancipatory framework to control STD/AIDS. Descriptive study developed in the town of Manacapuru, in the state of Amazonas, from 1997 to 2004, focusing on procedures designed in collaboration with government agents, health professionals and the community. Data on the dynamics of prostitution and condom sales in this town, preventive practices and STD/AIDS care and process assessment were collected. Actions targeting STD prevention and care in the public healthcare system, a testing center, an epidemiological surveillance system and sex workers' qualification were established concomitantly. It was observed the strengthening of sex workers as peer educators and their legitimization as citizens and health agents in projects involving transvestites, homosexuals and students. There was an increase in condom sales in town, as well as in condom use among sex workers; reduction in bacterial STD; and stabilization of the incidence of HIV/AIDS infections and congenital syphilis. The sustainability of the intervention program studied, organized within the sphere of action of the Sistema Unico de Saúde (National Health System), was promoted by a political pact, which guaranteed headquarters and municipal law-regulated budget, as well as by the constant debate over the process and program results. The study strengthened the notion that effective control of STD/AIDS depends on a synergic approach that combines interventions on individual (biological-behavioral), sociocultural and programmatic levels.

  16. Prototype architecture for a VLSI level zero processing system. [Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Shi, Jianfei; Grebowsky, Gerald J.; Horner, Ward P.; Chesney, James R.

    1989-01-01

    The prototype architecture and implementation of a high-speed level zero processing (LZP) system are discussed. Due to the new processing algorithm and VLSI technology, the prototype LZP system features compact size, low cost, high processing throughput, and easy maintainability and increased reliability. Though extensive control functions have been done by hardware, the programmability of processing tasks makes it possible to adapt the system to different data formats and processing requirements. It is noted that the LZP system can handle up to 8 virtual channels and 24 sources with combined data volume of 15 Gbytes per orbit. For greater demands, multiple LZP systems can be configured in parallel, each called a processing channel and assigned a subset of virtual channels. The telemetry data stream will be steered into different processing channels in accordance with their virtual channel IDs. This super system can cope with a virtually unlimited number of virtual channels and sources. In the near future, it is expected that new disk farms with data rate exceeding 150 Mbps will be available from commercial vendors due to the advance in disk drive technology.

  17. Introduction of Virtualization Technology to Multi-Process Model Checking

    NASA Technical Reports Server (NTRS)

    Leungwattanakit, Watcharin; Artho, Cyrille; Hagiya, Masami; Tanabe, Yoshinori; Yamamoto, Mitsuharu

    2009-01-01

    Model checkers find failures in software by exploring every possible execution schedule. Java PathFinder (JPF), a Java model checker, has been extended recently to cover networked applications by caching data transferred in a communication channel. A target process is executed by JPF, whereas its peer process runs on a regular virtual machine outside. However, non-deterministic target programs may produce different output data in each schedule, causing the cache to restart the peer process to handle the different set of data. Virtualization tools could help us restore previous states of peers, eliminating peer restart. This paper proposes the application of virtualization technology to networked model checking, concentrating on JPF.

  18. An installed nacelle design code using a multiblock Euler solver. Volume 2: User guide

    NASA Technical Reports Server (NTRS)

    Chen, H. C.

    1992-01-01

    This is a user manual for the general multiblock Euler design (GMBEDS) code. The code is for the design of a nacelle installed on a geometrically complex configuration such as a complete airplane with wing/body/nacelle/pylon. It consists of two major building blocks: a design module developed by LaRC using directive iterative surface curvature (DISC); and a general multiblock Euler (GMBE) flow solver. The flow field surrounding a complex configuration is divided into a number of topologically simple blocks to facilitate surface-fitted grid generation and improve flow solution efficiency. This user guide provides input data formats along with examples of input files and a Unix script for program execution in the UNICOS environment.

  19. The Virtual Intercultural Team Tool

    ERIC Educational Resources Information Center

    Rus, Calin

    2010-01-01

    This article describes the Virtual Intercultural Team Tool (VITT) and discusses its processes and benefits. VIIT is a virtual platform designed with the aim of assisting European project teams to improve intercultural communication and build on their cultural diversity for effective implementation of their projects. It is a process-focused tool,…

  20. Proposal of Modification Strategy of NC Program in the Virtual Manufacturing Environment

    NASA Astrophysics Data System (ADS)

    Narita, Hirohisa; Chen, Lian-Yi; Fujimoto, Hideo; Shirase, Keiichi; Arai, Eiji

    Virtual manufacturing will be a key technology in process planning, because there are no evaluation tools for cutting conditions. Therefore, virtual machining simulator (VMSim), which can predict end milling processes, has been developed. The modification strategy of NC program using VMSim is proposed in this paper.

  1. An Investigation of Communication in Virtual High Schools

    ERIC Educational Resources Information Center

    Belair, Marley

    2012-01-01

    Virtual schooling is an increasing trend for secondary education. Research of the communication practices in virtual schools has provided a myriad of suggestions for virtual school policies. The purpose of this qualitative study was to investigate the activities and processes involved in the daily rituals of virtual school teachers and learners…

  2. Direct access inter-process shared memory

    DOEpatents

    Brightwell, Ronald B; Pedretti, Kevin; Hudson, Trammell B

    2013-10-22

    A technique for directly sharing physical memory between processes executing on processor cores is described. The technique includes loading a plurality of processes into the physical memory for execution on a corresponding plurality of processor cores sharing the physical memory. An address space is mapped to each of the processes by populating a first entry in a top level virtual address table for each of the processes. The address space of each of the processes is cross-mapped into each of the processes by populating one or more subsequent entries of the top level virtual address table with the first entry in the top level virtual address table from other processes.

  3. Virtual Collaborative Simulation Environment for Integrated Product and Process Development

    NASA Technical Reports Server (NTRS)

    Gulli, Michael A.

    1997-01-01

    Deneb Robotics is a leader in the development of commercially available, leading edge three- dimensional simulation software tools for virtual prototyping,, simulation-based design, manufacturing process simulation, and factory floor simulation and training applications. Deneb has developed and commercially released a preliminary Virtual Collaborative Engineering (VCE) capability for Integrated Product and Process Development (IPPD). This capability allows distributed, real-time visualization and evaluation of design concepts, manufacturing processes, and total factory and enterprises in one seamless simulation environment.

  4. Treatment of Complicated Grief Using Virtual Reality: A Case Report

    ERIC Educational Resources Information Center

    Botella, C.; Osma, J.; Palacios, A. Garcia; Guillen, V.; Banos, R.

    2008-01-01

    This is the first work exploring the application of new technologies, concretely virtual reality, to facilitate emotional processing in the treatment of Complicated Grief. Our research team has designed a virtual reality environment (EMMA's World) to foster the expression and processing of emotions. In this study the authors present a description…

  5. Modeling and simulation of five-axis virtual machine based on NX

    NASA Astrophysics Data System (ADS)

    Li, Xiaoda; Zhan, Xianghui

    2018-04-01

    Virtual technology in the machinery manufacturing industry has shown the role of growing. In this paper, the Siemens NX software is used to model the virtual CNC machine tool, and the parameters of the virtual machine are defined according to the actual parameters of the machine tool so that the virtual simulation can be carried out without loss of the accuracy of the simulation. How to use the machine builder of the CAM module to define the kinematic chain and machine components of the machine is described. The simulation of virtual machine can provide alarm information of tool collision and over cutting during the process to users, and can evaluate and forecast the rationality of the technological process.

  6. Comparative analysis of video processing and 3D rendering for cloud video games using different virtualization technologies

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Alcaraz-Calero, Jose M.; Wang, Qi; Grecos, Christos

    2014-05-01

    This paper describes a comprehensive empirical performance evaluation of 3D video processing employing the physical/virtual architecture implemented in a cloud environment. Different virtualization technologies, virtual video cards and various 3D benchmarks tools have been utilized in order to analyse the optimal performance in the context of 3D online gaming applications. This study highlights 3D video rendering performance under each type of hypervisors, and other factors including network I/O, disk I/O and memory usage. Comparisons of these factors under well-known virtual display technologies such as VNC, Spice and Virtual 3D adaptors reveal the strengths and weaknesses of the various hypervisors with respect to 3D video rendering and streaming.

  7. Getting a handle on virtual tools: An examination of the neuronal activity associated with virtual tool use.

    PubMed

    Rallis, Austin; Fercho, Kelene A; Bosch, Taylor J; Baugh, Lee A

    2018-01-31

    Tool use is associated with three visual streams-dorso-dorsal, ventro-dorsal, and ventral visual streams. These streams are involved in processing online motor planning, action semantics, and tool semantics features, respectively. Little is known about the way in which the brain represents virtual tools. To directly assess this question, a virtual tool paradigm was created that provided the ability to manipulate tool components in isolation of one another. During functional magnetic resonance imaging (fMRI), adult participants performed a series of virtual tool manipulation tasks in which vision and movement kinematics of the tool were manipulated. Reaction time and hand movement direction were monitored while the tasks were performed. Functional imaging revealed that activity within all three visual streams was present, in a similar pattern to what would be expected with physical tool use. However, a previously unreported network of right-hemisphere activity was found including right inferior parietal lobule, middle and superior temporal gyri and supramarginal gyrus - regions well known to be associated with tool processing within the left hemisphere. These results provide evidence that both virtual and physical tools are processed within the same brain regions, though virtual tools recruit bilateral tool processing regions to a greater extent than physical tools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Representative Model of the Learning Process in Virtual Spaces Supported by ICT

    ERIC Educational Resources Information Center

    Capacho, José

    2014-01-01

    This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning). The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating…

  9. Power, Influence Tactics, and Influence Processes in Virtual Teams

    ERIC Educational Resources Information Center

    Boughton, Marla

    2011-01-01

    Current studies of power, influence tactics, and influence processes in virtual teams assume that these constructs operate in a similar manner as they do in the face-to-face (FtF) environment. However, the virtual context differs from the FtF environment on a variety of dimensions, such as the availability of status cues. The differences between…

  10. Application of 3d Model of Cultural Relics in Virtual Restoration

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Hou, M.; Hu, Y.; Zhao, Q.

    2018-04-01

    In the traditional cultural relics splicing process, in order to identify the correct spatial location of the cultural relics debris, experts need to manually splice the existing debris. The repeated contact between debris can easily cause secondary damage to the cultural relics. In this paper, the application process of 3D model of cultural relic in virtual restoration is put forward, and the relevant processes and ideas are verified with the example of Terracotta Warriors data. Through the combination of traditional cultural relics restoration methods and computer virtual reality technology, virtual restoration of high-precision 3D models of cultural relics can provide a scientific reference for virtual restoration, avoiding the secondary damage to the cultural relics caused by improper restoration. The efficiency and safety of the preservation and restoration of cultural relics have been improved.

  11. How Effective Is a Virtual Consultation Process in Facilitating Multidisciplinary Decision-Making for Malignant Epidural Spinal Cord Compression?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, David; St Luke's Hospital, Dublin; Grabarz, Daniel

    Purpose: The purpose of this study was to assess the accuracy of a virtual consultation (VC) process in determining treatment strategy for patients with malignant epidural spinal cord compression (MESCC). Methods and Materials: A prospective clinical database was maintained for patients with MESCC. A virtual consultation process (involving exchange of key predetermined clinical information and diagnostic imaging) facilitated rapid decision-making between oncologists and spinal surgeons. Diagnostic imaging was reviewed retrospectively (by R.R.) for surgical opinions in all patients. The primary outcome was the accuracy of virtual consultation opinion in predicting the final treatment recommendation. Results: After excluding 20 patients whomore » were referred directly to the spinal surgeon, 125 patients were eligible for virtual consultation. Of the 46 patients who had a VC, surgery was recommended in 28 patients and actually given to 23. A retrospective review revealed that 5/79 patients who did not have a VC would have been considered surgical candidates. The overall accuracy of the virtual consultation process was estimated at 92%. Conclusion: The VC process for MESCC patients provides a reliable means of arriving at a multidisciplinary opinion while minimizing patient transfer. This can potentially shorten treatment decision time and enhance clinical outcomes.« less

  12. Virtual collaboration in the online educational setting: a concept analysis.

    PubMed

    Breen, Henny

    2013-01-01

    This study was designed to explore the concept of virtual collaboration within the context of an online learning environment in an academic setting. Rodgers' method of evolutionary concept analysis was used to provide a contextual view of the concept to identify attributes, antecedents, and consequences of virtual collaboration. Commonly used terms to describe virtual collaboration are collaborative and cooperative learning, group work, group interaction, group learning, and teamwork. A constructivist pedagogy, group-based process with a shared purpose, support, and web-based technology is required for virtual collaboration to take place. Consequences of virtual collaboration are higher order thinking and learning to work with others. A comprehensive definition of virtual collaboration is offered as an outcome of this analysis. Clarification of virtual collaboration prior to using it as a pedagogical tool in the online learning environment will enhance nursing education with the changes in nursing curriculum being implemented today. Further research is recommended to describe the developmental stages of the collaborative process among nursing students in online education and how virtual collaboration facilitates collaboration in practice. © 2013 Wiley Periodicals, Inc.

  13. A VM-shared desktop virtualization system based on OpenStack

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Zhu, Mingfa; Xiao, Limin; Jiang, Yuanjie

    2018-04-01

    With the increasing popularity of cloud computing, desktop virtualization is rising in recent years as a branch of virtualization technology. However, existing desktop virtualization systems are mostly designed as a one-to-one mode, which one VM can only be accessed by one user. Meanwhile, previous desktop virtualization systems perform weakly in terms of response time and cost saving. This paper proposes a novel VM-Shared desktop virtualization system based on OpenStack platform. The paper modified the connecting process and the display data transmission process of the remote display protocol SPICE to support VM-Shared function. On the other hand, we propose a server-push display mode to improve user interactive experience. The experimental results show that our system performs well in response time and achieves a low CPU consumption.

  14. Multitasking the three-dimensional transport code TORT on CRAY platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azmy, Y.Y.; Barnett, D.A.; Burre, C.A.

    1996-04-01

    The multitasking options in the three-dimensional neutral particle transport code TORT originally implemented for Cray`s CTSS operating system are revived and extended to run on Cray Y/MP and C90 computers using the UNICOS operating system. These include two coarse-grained domain decompositions; across octants, and across directions within an octant, termed Octant Parallel (OP), and Direction Parallel (DP), respectively. Parallel performance of the DP is significantly enhanced by increasing the task grain size and reducing load imbalance via dynamic scheduling of the discrete angles among the participating tasks. Substantial Wall Clock speedup factors, approaching 4.5 using 8 tasks, have been measuredmore » in a time-sharing environment, and generally depend on the test problem specifications, number of tasks, and machine loading during execution.« less

  15. Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an aft-mounted turboprop transport. Volume 2: User guide

    NASA Technical Reports Server (NTRS)

    Chen, H. C.; Neback, H. E.; Kao, T. J.; Yu, N. Y.; Kusunose, K.

    1991-01-01

    This manual explains how to use an Euler based computational method for predicting the airframe/propulsion integration effects for an aft-mounted turboprop transport. The propeller power effects are simulated by the actuator disk concept. This method consists of global flow field analysis and the embedded flow solution for predicting the detailed flow characteristics in the local vicinity of an aft-mounted propfan engine. The computational procedure includes the use of several computer programs performing four main functions: grid generation, Euler solution, grid embedding, and streamline tracing. This user's guide provides information for these programs, including input data preparations with sample input decks, output descriptions, and sample Unix scripts for program execution in the UNICOS environment.

  16. Prism adaptation in virtual and natural contexts: Evidence for a flexible adaptive process.

    PubMed

    Veilleux, Louis-Nicolas; Proteau, Luc

    2015-01-01

    Prism exposure when aiming at a visual target in a virtual condition (e.g., when the hand is represented by a video representation) produces no or only small adaptations (after-effects), whereas prism exposure in a natural condition produces large after-effects. Some researchers suggested that this difference may arise from distinct adaptive processes, but other studies suggested a unique process. The present study reconciled these conflicting interpretations. Forty participants were divided into two groups: One group used visual feedback of their hand (natural context), and the other group used computer-generated representational feedback (virtual context). Visual feedback during adaptation was concurrent or terminal. All participants underwent laterally displacing prism perturbation. The results showed that the after-effects were twice as large in the "natural context" than in the "virtual context". No significant differences were observed between the concurrent and terminal feedback conditions. The after-effects generalized to untested targets and workspace. These results suggest that prism adaptation in virtual and natural contexts involves the same process. The smaller after-effects in the virtual context suggest that the depth of adaptation is a function of the degree of convergence between the proprioceptive and visual information that arises from the hand.

  17. Virtual Learning Effectiveness: An Examination of the Process

    ERIC Educational Resources Information Center

    Stonebraker, Peter W.; Hazeltine, James E.

    2004-01-01

    This study defines, examines, and measures the effectiveness of a corporate virtual learning program. Initially, distinctions between traditional and virtual learning and university and corporate programs are defined. Then, based on the literature, an integrative model of the perceived effectiveness of a virtual learning environment is developed…

  18. Virtual Reality in Schools: The Ultimate Educational Technology.

    ERIC Educational Resources Information Center

    Reid, Robert D.; Sykes, Wylmarie

    1999-01-01

    Discusses the use of virtual reality as an educational tool. Highlights include examples of virtual reality in public schools that lead to a more active learning process, simulated environments, integrating virtual reality into any curriculum, benefits to teachers and students, and overcoming barriers to implementation. (LRW)

  19. Usalpharma: A Cloud-Based Architecture to Support Quality Assurance Training Processes in Health Area Using Virtual Worlds

    PubMed Central

    García-Peñalvo, Francisco J.; Pérez-Blanco, Jonás Samuel; Martín-Suárez, Ana

    2014-01-01

    This paper discusses how cloud-based architectures can extend and enhance the functionality of the training environments based on virtual worlds and how, from this cloud perspective, we can provide support to analysis of training processes in the area of health, specifically in the field of training processes in quality assurance for pharmaceutical laboratories, presenting a tool for data retrieval and analysis that allows facing the knowledge discovery in the happenings inside the virtual worlds. PMID:24778593

  20. Seismic interferometry of the Bighorn Mountains: Using virtual source gathers to increase fold in sparse-source, dense-receiver data

    NASA Astrophysics Data System (ADS)

    Plescia, S. M.; Sheehan, A. F.; Haines, S. S.; Cook, S. W.; Worthington, L. L.

    2016-12-01

    The Bighorn Arch Seismic Experiment (BASE) was a combined active- and passive-source seismic experiment designed to image deep structures including the Moho beneath a basement-involved foreland arch. In summer 2010, over 1800 Texan receivers, with 4.5 Hz vertical component geophones, were deployed at 100-m to 1-km spacing in a region spanning the Bighorn Arch and the adjacent Bighorn and Powder River Basins. Twenty explosive sources were used to create seismic energy during a two-week acquisition period. Teleseismic earthquakes and mine blasts were also recorded during this time period. We utilize both virtual source interferometry and traditional reflection processing to better understand the deep crustal features of the region and the Moho. The large number of receivers, compared to the limited, widely spaced (10 - 30 km) active-source shots, makes the data an ideal candidate for virtual source seismic interferometry to increase fold. Virtual source interferometry results in data representing a geometry where receiver locations act as if they were seismic source positions. A virtual source gather, the product of virtual source interferometry, is produced by the cross correlation of one receiver's recording, the reference trace, with the recordings of all other receivers in a given shot gather. The cross correlation is repeated for all shot gathers and the resulting traces are stacked. This process is repeated until a virtual source gather has been determined for every real receiver location. Virtual source gathers can be processed with a standard reflection seismic processing flow to yield a reflection section. Improper static corrections can be detrimental to effective stacking, and determination of proper statics is often difficult in areas of significant contrast such as between basin and mountain areas. As such, a natural synergy exists between virtual source interferometry and modern industry reflection seismic processing, with its emphasis on detailed static correction and dense acquisition geometries.

  1. Brain Activity on Navigation in Virtual Environments.

    ERIC Educational Resources Information Center

    Mikropoulos, Tassos A.

    2001-01-01

    Assessed the cognitive processing that takes place in virtual environments by measuring electrical brain activity using Fast Fourier Transform analysis. University students performed the same task in a real and a virtual environment, and eye movement measurements showed that all subjects were more attentive when navigating in the virtual world.…

  2. The Investigation of Teacher Communication Practices in Virtual High School

    ERIC Educational Resources Information Center

    Belair, Marley

    2011-01-01

    Virtual schooling is an increasing trend for secondary education. Research of the communication practices in virtual schools has provided a myriad of suggestions for virtual school policies. Although transactional distance has been investigated in relation to certain aspects of the communication process, a small-scale qualitative study has not…

  3. Design and implementation of a virtual world training simulation of ICU first hour handover processes.

    PubMed

    Brown, Ross; Rasmussen, Rune; Baldwin, Ian; Wyeth, Peta

    2012-08-01

    Nursing training for an Intensive Care Unit (ICU) is a resource intensive process. High demands are made on staff, students and physical resources. Interactive, 3D computer simulations, known as virtual worlds, are increasingly being used to supplement training regimes in the health sciences; especially in areas such as complex hospital ward processes. Such worlds have been found to be very useful in maximising the utilisation of training resources. Our aim is to design and develop a novel virtual world application for teaching and training Intensive Care nurses in the approach and method for shift handover, to provide an independent, but rigorous approach to teaching these important skills. In this paper we present a virtual world simulator for students to practice key steps in handing over the 24/7 care requirements of intensive care patients during the commencing first hour of a shift. We describe the modelling process to provide a convincing interactive simulation of the handover steps involved. The virtual world provides a practice tool for students to test their analytical skills with scenarios previously provided by simple physical simulations, and live on the job training. Additional educational benefits include facilitation of remote learning, high flexibility in study hours and the automatic recording of a reviewable log from the session. To the best of our knowledge, we believe this is a novel and original application of virtual worlds to an ICU handover process. The major outcome of the work was a virtual world environment for training nurses in the shift handover process, designed and developed for use by postgraduate nurses in training. Copyright © 2012 Australian College of Critical Care Nurses Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Relationships between Sensory Stimuli and Autonomic Regulation During Real and Virtual Exercises.

    PubMed

    Kiryu, Tohru; Iijima, Atsuhiko; Bando, Takehiko

    2005-01-01

    For expanding application of virtual reality, such as rehabilitation engineering, concerns of cybersicknes should be cleared. We have investigated changes in autonomic regulations under real cycling and virtual mountain biking video with the first-person viewpoint. The results showed that the dominant sensory stimuli affected autonomic regulation with different process. The different process will lead to the hints for preventing cybersickness.

  5. An Optimized Trajectory Planning for Welding Robot

    NASA Astrophysics Data System (ADS)

    Chen, Zhilong; Wang, Jun; Li, Shuting; Ren, Jun; Wang, Quan; Cheng, Qunchao; Li, Wentao

    2018-03-01

    In order to improve the welding efficiency and quality, this paper studies the combined planning between welding parameters and space trajectory for welding robot and proposes a trajectory planning method with high real-time performance, strong controllability and small welding error. By adding the virtual joint at the end-effector, the appropriate virtual joint model is established and the welding process parameters are represented by the virtual joint variables. The trajectory planning is carried out in the robot joint space, which makes the control of the welding process parameters more intuitive and convenient. By using the virtual joint model combined with the B-spline curve affine invariant, the welding process parameters are indirectly controlled by controlling the motion curve of the real joint. To solve the optimal time solution as the goal, the welding process parameters and joint space trajectory joint planning are optimized.

  6. Virtual tryout planning in automotive industry based on simulation metamodels

    NASA Astrophysics Data System (ADS)

    Harsch, D.; Heingärtner, J.; Hortig, D.; Hora, P.

    2016-11-01

    Deep drawn sheet metal parts are increasingly designed to the feasibility limit, thus achieving a robust manufacturing is often challenging. The fluctuation of process and material properties often lead to robustness problems. Therefore, numerical simulations are used to detect the critical regions. To enhance the agreement with the real process conditions, the material data are acquired through a variety of experiments. Furthermore, the force distribution is taken into account. The simulation metamodel contains the virtual knowledge of a particular forming process, which is determined based on a series of finite element simulations with variable input parameters. Based on the metamodels, virtual process windows can be displayed for different configurations. This helps to improve the operating point as well as to adjust process settings in case the process becomes unstable. Furthermore, the time of tool tryout can be shortened due to transfer of the virtual knowledge contained in the metamodels on the optimisation of the drawbeads. This allows the tool manufacturer to focus on the essential, to save time and to recognize complex relationships.

  7. Federated Process Framework in a Virtual Enterprise Using an Object-Oriented Database and Extensible Markup Language.

    ERIC Educational Resources Information Center

    Bae, Kyoung-Il; Kim, Jung-Hyun; Huh, Soon-Young

    2003-01-01

    Discusses process information sharing among participating organizations in a virtual enterprise and proposes a federated process framework and system architecture that provide a conceptual design for effective implementation of process information sharing supporting the autonomy and agility of the organizations. Develops the framework using an…

  8. HEAT.PRO - THERMAL IMBALANCE FORCE SIMULATION AND ANALYSIS USING PDE2D

    NASA Technical Reports Server (NTRS)

    Vigue, Y.

    1994-01-01

    HEAT.PRO calculates the thermal imbalance force resulting from satellite surface heating. The heated body of a satellite re-radiates energy at a rate that is proportional to its temperature, losing the energy in the form of photons. By conservation of momentum, this momentum flux out of the body creates a reaction force against the radiation surface, and the net thermal force can be observed as a small perturbation that affects long term orbital behavior of the satellite. HEAT.PRO calculates this thermal imbalance force and then determines its effects on satellite orbits, especially where the Earth's shadowing of an orbiting satellite causes periodic changes in the spacecraft's thermal environment. HEAT.PRO implements a finite element method routine called PDE2D which incorporates material properties to determine the solar panel surface temperatures. The nodal temperatures are computed at specified time steps and are used to determine the magnitude and direction of the thermal force on the spacecraft. These calculations are based on the solar panel orientation and satellite's position with respect to the earth and sun. It is necessary to have accurate, current knowledge of surface emissivity, thermal conductivity, heat capacity, and material density. These parameters, which may change due to degradation of materials in the environment of space, influence the nodal temperatures that are computed and thus the thermal force calculations. HEAT.PRO was written in FORTRAN 77 for Cray series computers running UNICOS. The source code contains directives for and is used as input to the required partial differential equation solver, PDE2D. HEAT.PRO is available on a 9-track 1600 BPI magnetic tape in UNIX tar format (standard distribution medium) or a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in Macintosh Microsoft Word format is included on the distribution tape. HEAT.PRO was developed in 1991. Cray and UNICOS are registered trademarks of Cray Research, Inc. UNIX is a trademark of AT&T Bell Laboratories. PDE2D is available from Granville Sewell, Mathematics Dept., University of Texas at El Paso, El Paso, Texas 79968.

  9. The Study on Virtual Medical Instrument based on LabVIEW.

    PubMed

    Chengwei, Li; Limei, Zhang; Xiaoming, Hu

    2005-01-01

    With the increasing performance of computer, the virtual instrument technology has greatly advanced over the years, and then virtual medical instrument technology becomes available. This paper presents the virtual medical instrument, and then as an example, an application of a signal acquisition, processing and analysis system using LabVIEW is also given.

  10. Virtual reality measures in neuropsychological assessment: a meta-analytic review.

    PubMed

    Neguț, Alexandra; Matu, Silviu-Andrei; Sava, Florin Alin; David, Daniel

    2016-02-01

    Virtual reality-based assessment is a new paradigm for neuropsychological evaluation, that might provide an ecological assessment, compared to paper-and-pencil or computerized neuropsychological assessment. Previous research has focused on the use of virtual reality in neuropsychological assessment, but no meta-analysis focused on the sensitivity of virtual reality-based measures of cognitive processes in measuring cognitive processes in various populations. We found eighteen studies that compared the cognitive performance between clinical and healthy controls on virtual reality measures. Based on a random effects model, the results indicated a large effect size in favor of healthy controls (g = .95). For executive functions, memory and visuospatial analysis, subgroup analysis revealed moderate to large effect sizes, with superior performance in the case of healthy controls. Participants' mean age, type of clinical condition, type of exploration within virtual reality environments, and the presence of distractors were significant moderators. Our findings support the sensitivity of virtual reality-based measures in detecting cognitive impairment. They highlight the possibility of using virtual reality measures for neuropsychological assessment in research applications, as well as in clinical practice.

  11. Team learning and effectiveness in virtual project teams: the role of beliefs about interpersonal context.

    PubMed

    Ortega, Aída; Sánchez-Manzanares, Miriam; Gil, Francisco; Rico, Ramón

    2010-05-01

    There has been increasing interest in team learning processes in recent years. Researchers have investigated the impact of team learning on team effectiveness and analyzed the enabling conditions for the process, but team learning in virtual teams has been largely ignored. This study examined the relationship between team learning and effectiveness in virtual teams, as well as the role of team beliefs about interpersonal context. Data from 48 teams performing a virtual consulting project over 4 weeks indicate a mediating effect of team learning on the relationship between beliefs about the interpersonal context (psychological safety, task interdependence) and team effectiveness (satisfaction, viability). These findings suggest the importance of team learning for developing effective virtual teams.

  12. Augmented Virtuality: A Real-time Process for Presenting Real-world Visual Sensory Information in an Immersive Virtual Environment for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    McFadden, D.; Tavakkoli, A.; Regenbrecht, J.; Wilson, B.

    2017-12-01

    Virtual Reality (VR) and Augmented Reality (AR) applications have recently seen an impressive growth, thanks to the advent of commercial Head Mounted Displays (HMDs). This new visualization era has opened the possibility of presenting researchers from multiple disciplines with data visualization techniques not possible via traditional 2D screens. In a purely VR environment researchers are presented with the visual data in a virtual environment, whereas in a purely AR application, a piece of virtual object is projected into the real world with which researchers could interact. There are several limitations to the purely VR or AR application when taken within the context of remote planetary exploration. For example, in a purely VR environment, contents of the planet surface (e.g. rocks, terrain, or other features) should be created off-line from a multitude of images using image processing techniques to generate 3D mesh data that will populate the virtual surface of the planet. This process usually takes a tremendous amount of computational resources and cannot be delivered in real-time. As an alternative, video frames may be superimposed on the virtual environment to save processing time. However, such rendered video frames will lack 3D visual information -i.e. depth information. In this paper, we present a technique to utilize a remotely situated robot's stereoscopic cameras to provide a live visual feed from the real world into the virtual environment in which planetary scientists are immersed. Moreover, the proposed technique will blend the virtual environment with the real world in such a way as to preserve both the depth and visual information from the real world while allowing for the sensation of immersion when the entire sequence is viewed via an HMD such as Oculus Rift. The figure shows the virtual environment with an overlay of the real-world stereoscopic video being presented in real-time into the virtual environment. Notice the preservation of the object's shape, shadows, and depth information. The distortions shown in the image are due to the rendering of the stereoscopic data into a 2D image for the purposes of taking screenshots.

  13. Instrumentation to Aid in Steel Bridge Fabrication : Bridge Virtual Assembly System

    DOT National Transportation Integrated Search

    2018-05-01

    This pool funded project developed a BRIDGE VIRTUAL ASSEMBLY SYSTEM (BRIDGE VAS) that improves manufacturing processes and enhances quality control for steel bridge fabrication. The system replaces conventional match-drilling with virtual assembly me...

  14. A virtual maintenance-based approach for satellite assembling and troubleshooting assessment

    NASA Astrophysics Data System (ADS)

    Geng, Jie; Li, Ying; Wang, Ranran; Wang, Zili; Lv, Chuan; Zhou, Dong

    2017-09-01

    In this study, a Virtual Maintenance (VM)-based approach for satellite troubleshooting assessment is proposed. By focusing on various elements in satellite assemble troubleshooting, such as accessibility, ergonomics, wiring, and extent of damage, a systematic, quantitative, and objective assessment model is established to decrease subjectivity in satellite assembling and troubleshooting assessment. Afterwards, based on the established assessment model and satellite virtual prototype, an application process of this model suitable for a virtual environment is presented. Finally, according to the application process, all the elements in satellite troubleshooting are analyzed and assessed. The corresponding improvements, which realize the transformation from a conventional way to a virtual simulation and assessment, are suggested, and the flaws in assembling and troubleshooting are revealed. Assembling or troubleshooting schemes can be improved in the early stage of satellite design with the help of a virtual prototype. Repetition in the practical operation is beneficial to companies as risk and cost are effectively reduced.

  15. A virtual team group process.

    PubMed

    Bell, Marnie; Robertson, Della; Weeks, Marlene; Yu, Deborah

    2002-01-01

    Virtual teams are a phenomenon of the Information Era and their existence in health care is anticipated to increase with technology enhancements such as telehealth and groupware. The mobilization and support of high performing virtual teams are important for leading knowledge-based health professionals in the 21st century. Using an adapted McGrath group development model, the four staged maturation process of a virtual team consisting of four masters students is explored in this paper. The team's development is analyzed addressing the interaction of technology with social and task dynamics. Throughout the project, leadership competencies of value to the group that emerged were demonstrated and incorporated into the development of a leadership competency assessment instrument. The demonstration of these competencies illustrated how they were valued and internalized by the group. In learning about the work of this virtual team, the reader will gain understanding of how leadership impacts virtual team performance.

  16. Cooperation, Coordination, and Trust in Virtual Teams: Insights from Virtual Games

    NASA Astrophysics Data System (ADS)

    Korsgaard, M. Audrey; Picot, Arnold; Wigand, Rolf T.; Welpe, Isabelle M.; Assmann, Jakob J.

    This chapter considers fundamental concepts of effective virtual teams, illustrated by research on Travian, a massively multiplayer online strategy game wherein players seek to build empires. Team inputs are the resources that enable individuals to work interdependently toward a common goal, including individual and collective capabilities, shared knowledge structures, and leadership style. Team processes, notably coordination and cooperation, transform team inputs to desired collective outcomes. Because the members of virtual teams are geographically dispersed, relying on information and communication technology, three theories are especially relevant for understanding how they can function effectively: social presence theory, media richness theory, and media synchronicity theory. Research in settings like Travian can inform our understanding of structures, processes, and performance of virtual teams. Such research could provide valuable insight into the emergence and persistence of trust and cooperation, as well as the impact of different communication media for coordination and information management in virtual organizations.

  17. Intelligent Virtual Assistant's Impact on Technical Proficiency within Virtual Teams

    ERIC Educational Resources Information Center

    Graham, Christian; Jones, Nory B.

    2016-01-01

    Information-systems development continues to be a difficult process, particularly for virtual teams that do not have the luxury of meeting face-to-face. The research literature on this topic reinforces this point: the greater part of database systems development projects ends in failure. The use of virtual teams to complete projects further…

  18. Design of virtual simulation experiment based on key events

    NASA Astrophysics Data System (ADS)

    Zhong, Zheng; Zhou, Dongbo; Song, Lingxiu

    2018-06-01

    Considering complex content and lacking of guidance in virtual simulation experiments, the key event technology in VR narrative theory was introduced for virtual simulation experiment to enhance fidelity and vividness process. Based on the VR narrative technology, an event transition structure was designed to meet the need of experimental operation process, and an interactive event processing model was used to generate key events in interactive scene. The experiment of" margin value of bees foraging" based on Biologic morphology was taken as an example, many objects, behaviors and other contents were reorganized. The result shows that this method can enhance the user's experience and ensure experimental process complete and effectively.

  19. Spatial organization and drivers of the virtual water trade: a community-structure analysis

    NASA Astrophysics Data System (ADS)

    D'Odorico, Paolo; Carr, Joel; Laio, Francesco; Ridolfi, Luca

    2012-09-01

    The trade of agricultural commodities can be associated with a virtual transfer of the local freshwater resources used for the production of these goods. Thus, trade of food products virtually transfers large amounts of water from areas of food production to far consumption regions, a process termed the ‘globalization of water’. We consider the (time-varying) community structure of the virtual water network for the years 1986-2008. The communities are groups of countries with dense internal connections, while the connections are sparser among different communities. Between 1986 and 2008, the ratio between virtual water flows within communities and the total global trade of virtual water has continuously increased, indicating the existence of well defined clusters of virtual water transfers. In some cases (e.g. Central and North America and Europe in recent years) the virtual water communities correspond to geographically coherent regions, suggesting the occurrence of an ongoing process of regionalization of water resources. However, most communities also include countries located on different ‘sides’ of the world. As such, geographic proximity only partly explains the community structure of virtual water trade. Similarly, the global distribution of people and wealth, whose effect on the virtual water trade is expressed through simple ‘gravity models’, is unable to explain the strength of virtual water communities observed in the past few decades. A gravity model based on the availability of and demand for virtual water in different countries has higher explanatory power, but the drivers of the virtual water fluxes are yet to be adequately identified.

  20. Proceedings of the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology

    NASA Technical Reports Server (NTRS)

    Hyde, Patricia R.; Loftin, R. Bowen

    1993-01-01

    The volume 2 proceedings from the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology are presented. Topics discussed include intelligent computer assisted training (ICAT) systems architectures, ICAT educational and medical applications, virtual environment (VE) training and assessment, human factors engineering and VE, ICAT theory and natural language processing, ICAT military applications, VE engineering applications, ICAT knowledge acquisition processes and applications, and ICAT aerospace applications.

  1. Simulation Of Assembly Processes With Technical Of Virtual Reality

    NASA Astrophysics Data System (ADS)

    García García, Manuel; Arenas Reina, José Manuel; Lite, Alberto Sánchez; Sebastián Pérez, Miguel Ángel

    2009-11-01

    Virtual reality techniques use at industrial processes provides a real approach to product life cycle. For components manual assembly, the use of virtual surroundings facilitates a simultaneous engineering in which variables such as human factors and productivity take a real act. On the other hand, in the actual phase of industrial competition it is required a rapid adjustment to client needs and to market situation. In this work it is analyzed the assembly of the front components of a vehicle using virtual reality tools and following up a product-process design methodology which includes every life service stage. This study is based on workstations design, taking into account productive and human factors from the ergonomic point of view implementing a postural study of every assembly operation, leaving the rest of stages for a later study. Design is optimized applying this methodology together with the use of virtual reality tools. It is also achieved a 15% reduction on time assembly and of 90% reduction in muscle—skeletal diseases at every assembly operation.

  2. DHM simulation in virtual environments: a case-study on control room design.

    PubMed

    Zamberlan, M; Santos, V; Streit, P; Oliveira, J; Cury, R; Negri, T; Pastura, F; Guimarães, C; Cid, G

    2012-01-01

    This paper will present the workflow developed for the application of serious games in the design of complex cooperative work settings. The project was based on ergonomic studies and development of a control room among participative design process. Our main concerns were the 3D human virtual representation acquired from 3D scanning, human interaction, workspace layout and equipment designed considering ergonomics standards. Using Unity3D platform to design the virtual environment, the virtual human model can be controlled by users on dynamic scenario in order to evaluate the new work settings and simulate work activities. The results obtained showed that this virtual technology can drastically change the design process by improving the level of interaction between final users and, managers and human factors team.

  3. Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis.

    PubMed

    Bergeron, Mathieu; Lortie, Catherine L; Guitton, Matthieu J

    2015-01-01

    Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies.

  4. Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis

    PubMed Central

    Bergeron, Mathieu; Lortie, Catherine L.; Guitton, Matthieu J.

    2015-01-01

    Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies. PMID:26556560

  5. Study on virtual instrument developing system based on intelligent virtual control

    NASA Astrophysics Data System (ADS)

    Tang, Baoping; Cheng, Fabin; Qin, Shuren

    2005-01-01

    The paper introduces a non-programming developing system of a virtual instument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described.

  6. Butterfly valve in a virtual environment

    NASA Astrophysics Data System (ADS)

    Talekar, Aniruddha; Patil, Saurabh; Thakre, Prashant; Rajkumar, E.

    2017-11-01

    Assembly of components is one of the processes involved in product design and development. The present paper deals with the assembly of a simple butterfly valve components in a virtual environment. The assembly has been carried out using virtual reality software by trial and error methods. The parts are modelled using parametric software (SolidWorks), meshed accordingly, and then called into virtual environment for assembly.

  7. The Use of Virtual Ethnography in Distance Education Research

    ERIC Educational Resources Information Center

    Uzun, Kadriye; Aydin, Cengiz Hakan

    2012-01-01

    3D virtual worlds can and have been used as a meeting place for distance education courses. Virtual worlds allow for group learning of the kind enjoyed by students gathered in a virtual classroom, where they know they are in a communal space, they are aware of the social process of learning and are affected by the presence and behaviour of their…

  8. Developing interprofessional health competencies in a virtual world

    PubMed Central

    King, Sharla; Chodos, David; Stroulia, Eleni; Carbonaro, Mike; MacKenzie, Mark; Reid, Andrew; Torres, Lisa; Greidanus, Elaine

    2012-01-01

    Background Virtual worlds provide a promising means of delivering simulations for developing interprofessional health skills. However, developing and implementing a virtual world simulation is a challenging process, in part because of the novelty of virtual worlds as a simulation platform and also because of the degree of collaboration required among technical and subject experts. Thus, it can be difficult to ensure that the simulation is both technically satisfactory and educationally appropriate. Methods To address this challenge, we propose the use of de Freitas and Oliver's four-dimensional framework as a means of guiding the development process. We give an overview of the framework and describe how its principles can be applied to the development of virtual world simulations. Results We present two virtual world simulation pilot projects that adopted this approach, and describe our development experience in these projects. We directly connect this experience to the four-dimensional framework, thus validating the framework's applicability to the projects and to the context of virtual world simulations in general. Conclusions We present a series of recommendations for developing virtual world simulations for interprofessional health education. These recommendations are based on the four-dimensional framework and are also informed by our experience with the pilot projects. PMID:23195649

  9. The Application of Leap Motion in Astronaut Virtual Training

    NASA Astrophysics Data System (ADS)

    Qingchao, Xie; Jiangang, Chao

    2017-03-01

    With the development of computer vision, virtual reality has been applied in astronaut virtual training. As an advanced optic equipment to track hand, Leap Motion can provide precise and fluid tracking of hands. Leap Motion is suitable to be used as gesture input device in astronaut virtual training. This paper built an astronaut virtual training based Leap Motion, and established the mathematics model of hands occlusion. At last the ability of Leap Motion to handle occlusion was analysed. A virtual assembly simulation platform was developed for astronaut training, and occlusion gesture would influence the recognition process. The experimental result can guide astronaut virtual training.

  10. Virtual healthcare delivery: defined, modeled, and predictive barriers to implementation identified.

    PubMed

    Harrop, V M

    2001-01-01

    Provider organizations lack: 1. a definition of "virtual" healthcare delivery relative to the products, services, and processes offered by dot.coms, web-compact disk healthcare content providers, telemedicine, and telecommunications companies, and 2. a model for integrating real and virtual healthcare delivery. This paper defines virtual healthcare delivery as asynchronous, outsourced, and anonymous, then proposes a 2x2 Real-Virtual Healthcare Delivery model focused on real and virtual patients and real and virtual provider organizations. Using this model, provider organizations can systematically deconstruct healthcare delivery in the real world and reconstruct appropriate pieces in the virtual world. Observed barriers to virtual healthcare delivery are: resistance to telecommunication integrated delivery networks and outsourcing; confusion over virtual infrastructure requirements for telemedicine and full-service web portals, and the impact of integrated delivery networks and outsourcing on extant cultural norms and revenue generating practices. To remain competitive provider organizations must integrate real and virtual healthcare delivery.

  11. Virtual healthcare delivery: defined, modeled, and predictive barriers to implementation identified.

    PubMed Central

    Harrop, V. M.

    2001-01-01

    Provider organizations lack: 1. a definition of "virtual" healthcare delivery relative to the products, services, and processes offered by dot.coms, web-compact disk healthcare content providers, telemedicine, and telecommunications companies, and 2. a model for integrating real and virtual healthcare delivery. This paper defines virtual healthcare delivery as asynchronous, outsourced, and anonymous, then proposes a 2x2 Real-Virtual Healthcare Delivery model focused on real and virtual patients and real and virtual provider organizations. Using this model, provider organizations can systematically deconstruct healthcare delivery in the real world and reconstruct appropriate pieces in the virtual world. Observed barriers to virtual healthcare delivery are: resistance to telecommunication integrated delivery networks and outsourcing; confusion over virtual infrastructure requirements for telemedicine and full-service web portals, and the impact of integrated delivery networks and outsourcing on extant cultural norms and revenue generating practices. To remain competitive provider organizations must integrate real and virtual healthcare delivery. PMID:11825189

  12. Improved decision making in construction using virtual site visits.

    DOT National Transportation Integrated Search

    2003-01-01

    This study explored the dynamics of information exchange involving field issues relating to construction and the assistance that a virtual site visit can provide to the field decision-making process. Such a process can be used for inspection and surv...

  13. Virtual fixtures as tools to enhance operator performance in telepresence environments

    NASA Astrophysics Data System (ADS)

    Rosenberg, Louis B.

    1993-12-01

    This paper introduces the notion of virtual fixtures for use in telepresence systems and presents an empirical study which demonstrates that such virtual fixtures can greatly enhance operator performance within remote environments. Just as tools and fixtures in the real world can enhance human performance by guiding manual operations, providing localizing references, and reducing the mental processing required to perform a task, virtual fixtures are computer generated percepts overlaid on top of the reflection of a remote workspace which can provide similar benefits. Like a ruler guiding a pencil in a real manipulation task, a virtual fixture overlaid on top of a remote workspace can act to reduce the mental processing required to perform a task, limit the workload of certain sensory modalities, and most of all allow precision and performance to exceed natural human abilities. Because such perceptual overlays are virtual constructions they can be diverse in modality, abstract in form, and custom tailored to individual task or user needs. This study investigates the potential of virtual fixtures by implementing simple combinations of haptic and auditory sensations as perceptual overlays during a standardized telemanipulation task.

  14. Using a virtual world for robot planning

    NASA Astrophysics Data System (ADS)

    Benjamin, D. Paul; Monaco, John V.; Lin, Yixia; Funk, Christopher; Lyons, Damian

    2012-06-01

    We are building a robot cognitive architecture that constructs a real-time virtual copy of itself and its environment, including people, and uses the model to process perceptual information and to plan its movements. This paper describes the structure of this architecture. The software components of this architecture include PhysX for the virtual world, OpenCV and the Point Cloud Library for visual processing, and the Soar cognitive architecture that controls the perceptual processing and task planning. The RS (Robot Schemas) language is implemented in Soar, providing the ability to reason about concurrency and time. This Soar/RS component controls visual processing, deciding which objects and dynamics to render into PhysX, and the degree of detail required for the task. As the robot runs, its virtual model diverges from physical reality, and errors grow. The Match-Mediated Difference component monitors these errors by comparing the visual data with corresponding data from virtual cameras, and notifies Soar/RS of significant differences, e.g. a new object that appears, or an object that changes direction unexpectedly. Soar/RS can then run PhysX much faster than real-time and search among possible future world paths to plan the robot's actions. We report experimental results in indoor environments.

  15. Recent developments in virtual experience design and production

    NASA Astrophysics Data System (ADS)

    Fisher, Scott S.

    1995-03-01

    Today, the media of VR and Telepresence are in their infancy and the emphasis is still on technology and engineering. But, it is not the hardware people might use that will determine whether VR becomes a powerful medium--instead, it will be the experiences that they are able to have that will drive its acceptance and impact. A critical challenge in the elaboration of these telepresence capabilities will be the development of environments that are as unpredictable and rich in interconnected processes as an actual location or experience. This paper will describe the recent development of several Virtual Experiences including: `Menagerie', an immersive Virtual Environment inhabited by virtual characters designed to respond to and interact with its users; and `The Virtual Brewery', an immersive public VR installation that provides multiple levels of interaction in an artistic interpretation of the brewing process.

  16. The oscillatory entrainment of virtual pitch perception

    PubMed Central

    Aksentijevic, Aleksandar; Northeast, Anthony; Canty, Daniel; Elliott, Mark A.

    2013-01-01

    Evidence suggests that synchronized brain oscillations in the low gamma range (around 33 Hz) are involved in the perceptual integration of harmonic complex tones. This process involves the binding of harmonic components into “harmonic templates” – neural structures responsible for pitch coding in the brain. We investigated the hypothesis that oscillatory harmonic binding promotes a change in pitch perception style from spectral (frequency) to virtual (relational). Using oscillatory priming we asked 24 participants to judge as rapidly as possible, the direction of an ambiguous target with ascending spectral and descending virtual contour. They made significantly more virtual responses when primed at 29, 31, and 33 Hz and when the first target tone was harmonically related to the prime, suggesting that neural synchronization in the low gamma range could facilitate a shift toward virtual pitch processing. PMID:23630515

  17. a Methodology to Adapt Photogrammetric Models to Virtual Reality for Oculus Gear VR

    NASA Astrophysics Data System (ADS)

    Colmenero Fdez, A.

    2017-11-01

    In this paper, we will expose the process of adapting a high resolution model (laser and photogrammetry) into a virtual reality application for mobile phones. It is a virtual archeology project carried out on the site of Lugo's Mitreo, Spain.

  18. Virtual Reality: A New Learning Environment.

    ERIC Educational Resources Information Center

    Ferrington, Gary; Loge, Kenneth

    1992-01-01

    Discusses virtual reality (VR) technology and its possible uses in military training, medical education, industrial design and development, the media industry, and education. Three primary applications of VR in the learning process--visualization, simulation, and construction of virtual worlds--are described, and pedagogical and moral issues are…

  19. Virtual Retail Simulations in Second Life

    ERIC Educational Resources Information Center

    Drake-Bridges, Erin; Strelzoff, Andrew; Sulbaran, Tulio

    2011-01-01

    This paper explores the use of simulations in virtual reality to teach students the fundamental processes behind retailing and product development. The project described involved one class of students who developed their own clothing lines of "virtual merchandise." A second class of students then "purchased" the wholesale…

  20. Suitability of virtual prototypes to support human factors/ergonomics evaluation during the design.

    PubMed

    Aromaa, Susanna; Väänänen, Kaisa

    2016-09-01

    In recent years, the use of virtual prototyping has increased in product development processes, especially in the assessment of complex systems targeted at end-users. The purpose of this study was to evaluate the suitability of virtual prototyping to support human factors/ergonomics evaluation (HFE) during the design phase. Two different virtual prototypes were used: augmented reality (AR) and virtual environment (VE) prototypes of a maintenance platform of a rock crushing machine. Nineteen designers and other stakeholders were asked to assess the suitability of the prototype for HFE evaluation. Results indicate that the system model characteristics and user interface affect the experienced suitability. The VE system was valued as being more suitable to support the assessment of visibility, reach, and the use of tools than the AR system. The findings of this study can be used as a guidance for the implementing virtual prototypes in the product development process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Turning Virtual Reality into Reality: A Checklist to Ensure Virtual Reality Studies of Eating Behavior and Physical Activity Parallel the Real World

    PubMed Central

    Tal, Aner; Wansink, Brian

    2011-01-01

    Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. PMID:21527088

  2. Turning virtual reality into reality: a checklist to ensure virtual reality studies of eating behavior and physical activity parallel the real world.

    PubMed

    Tal, Aner; Wansink, Brian

    2011-03-01

    Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. © 2011 Diabetes Technology Society.

  3. The role of cognitive apprenticeship in learning science in a virtual world

    NASA Astrophysics Data System (ADS)

    Ramdass, Darshanand

    2012-12-01

    This article extends the discussion started by Margaret Beier, Leslie Miller, and Shu Wang's (2012) paper, Science games and the development of possible selves. In this paper, I suggest that a theoretical framework based on a sociocultural theory of learning is critical in learning in a virtual environment. I will discuss relevant research on the application of various components of the sociocultural perspective of learning in classroom environments and the potential for applying them in virtual worlds. I propose that research in science education should explore the processes underlying cognitive apprenticeship and determine how these processes can be used in virtual environments to help students learn science successfully.

  4. Virtual sensors for robust on-line monitoring (OLM) and Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tipireddy, Ramakrishna; Lerchen, Megan E.; Ramuhalli, Pradeep

    Unscheduled shutdown of nuclear power facilities for recalibration and replacement of faulty sensors can be expensive and disruptive to grid management. In this work, we present virtual (software) sensors that can replace a faulty physical sensor for a short duration thus allowing recalibration to be safely deferred to a later time. The virtual sensor model uses a Gaussian process model to process input data from redundant and other nearby sensors. Predicted data includes uncertainty bounds including spatial association uncertainty and measurement noise and error. Using data from an instrumented cooling water flow loop testbed, the virtual sensor model has predictedmore » correct sensor measurements and the associated error corresponding to a faulty sensor.« less

  5. Production of the next-generation library virtual tour.

    PubMed

    Duncan, J M; Roth, L K

    2001-10-01

    While many libraries offer overviews of their services through their Websites, only a small number of health sciences libraries provide Web-based virtual tours. These tours typically feature photographs of major service areas along with textual descriptions. This article describes the process for planning, producing, and implementing a next-generation virtual tour in which a variety of media elements are integrated: photographic images, 360-degree "virtual reality" views, textual descriptions, and contextual floor plans. Hardware and software tools used in the project are detailed, along with a production timeline and budget, tips for streamlining the process, and techniques for improving production. This paper is intended as a starting guide for other libraries considering an investment in such a project.

  6. The concept and science process skills analysis in bomb calorimeter experiment as a foundation for the development of virtual laboratory of bomb calorimeter

    NASA Astrophysics Data System (ADS)

    Kurniati, D. R.; Rohman, I.

    2018-05-01

    This study aims to analyze the concepts and science process skills in bomb calorimeter experiment as a basis for developing the virtual laboratory of bomb calorimeter. This study employed research and development method (R&D) to gain the answer to the proposed problems. This paper discussed the concepts and process skills analysis. The essential concepts and process skills associated with bomb calorimeter are analyze by optimizing the bomb calorimeter experiment. The concepts analysis found seven fundamental concepts to be concerned in developing the virtual laboratory that are internal energy, burning heat, perfect combustion, incomplete combustion, calorimeter constant, bomb calorimeter, and Black principle. Since the concept of bomb calorimeter, perfect and incomplete combustion created to figure out the real situation and contain controllable variables, in virtual the concepts displayed in the form of simulation. Meanwhile, the last four concepts presented in the form of animation because no variable found to be controlled. The process skills analysis detect four notable skills to be developed that are ability to observe, design experiment, interpretation, and communication skills.

  7. Information Seeking in a Virtual Learning Environment.

    ERIC Educational Resources Information Center

    Byron, Suzanne M.; Young, Jon I.

    2000-01-01

    Examines the applicability of Kuhlthau's Information Search Process Model in the context of a virtual learning environment at the University of North Texas that used virtual collaborative software. Highlights include cognitive and affective aspects of information seeking; computer experience and confidence; and implications for future research.…

  8. The road to virtual: the Sauls Memorial Virtual Library journey.

    PubMed

    Waddell, Stacie; Harkness, Amy; Cohen, Mark L

    2014-01-01

    The Sauls Memorial Virtual Library closed its physical space in 2012. This article outlines the reasons for this change and how the library staff and hospital leadership planned and executed the enormous undertaking. Outcomes of the change and lessons learned from the process are discussed.

  9. Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; McDonnell, Jeff

    2004-01-01

    We present an approach for process conceptualization in hillslope hydrology. We develop and implement a series of virtual experiments, whereby the interaction between water flow pathways, source and mixing at the hillslope scale is examined within a virtual experiment framework. We define these virtual experiments as 'numerical experiments with a model driven by collective field intelligence'. The virtual experiments explore the first-order controls in hillslope hydrology, where the experimentalist and modeler work together to cooperatively develop and analyze the results. Our hillslope model for the virtual experiments (HillVi) in this paper is based on conceptualizing the water balance within the saturated and unsaturated zone in relation to soil physical properties in a spatially explicit manner at the hillslope scale. We argue that a virtual experiment model needs to be able to capture all major controls on subsurface flow processes that the experimentalist might deem important, while at the same time being simple with few 'tunable parameters'. This combination makes the approach, and the dialog between experimentalist and modeler, a useful hypothesis testing tool. HillVi simulates mass flux for different initial conditions under the same flow conditions. We analyze our results in terms of an artificial line source and isotopic hydrograph separation of water and subsurface flow. Our results for this first set of virtual experiments showed how drainable porosity and soil depth variability exert a first order control on flow and transport at the hillslope scale. We found that high drainable porosity soils resulted in a restricted water table rise, resulting in more pronounced channeling of lateral subsurface flow along the soil-bedrock interface. This in turn resulted in a more anastomosing network of tracer movement across the slope. The virtual isotope hydrograph separation showed higher proportions of event water with increasing drainable porosity. When combined with previous experimental findings and conceptualizations, virtual experiments can be an effective way to isolate certain controls and examine their influence over a range of rainfall and antecedent wetness conditions.

  10. Neuro-parity pattern recognition system and method

    DOEpatents

    Gross, Kenneth C.; Singer, Ralph M.; Van Alstine, Rollin G.; Wegerich, Stephan W.; Yue, Yong

    2000-01-01

    A method and system for monitoring a process and determining its condition. Initial data is sensed, a first set of virtual data is produced by applying a system state analyzation to the initial data, a second set of virtual data is produced by applying a neural network analyzation to the initial data and a parity space analyzation is applied to the first and second set of virtual data and also to the initial data to provide a parity space decision about the condition of the process. A logic test can further be applied to produce a further system decision about the state of the process.

  11. Efficient operating system level virtualization techniques for cloud resources

    NASA Astrophysics Data System (ADS)

    Ansu, R.; Samiksha; Anju, S.; Singh, K. John

    2017-11-01

    Cloud computing is an advancing technology which provides the servcies of Infrastructure, Platform and Software. Virtualization and Computer utility are the keys of Cloud computing. The numbers of cloud users are increasing day by day. So it is the need of the hour to make resources available on demand to satisfy user requirements. The technique in which resources namely storage, processing power, memory and network or I/O are abstracted is known as Virtualization. For executing the operating systems various virtualization techniques are available. They are: Full System Virtualization and Para Virtualization. In Full Virtualization, the whole architecture of hardware is duplicated virtually. No modifications are required in Guest OS as the OS deals with the VM hypervisor directly. In Para Virtualization, modifications of OS is required to run in parallel with other OS. For the Guest OS to access the hardware, the host OS must provide a Virtual Machine Interface. OS virtualization has many advantages such as migrating applications transparently, consolidation of server, online maintenance of OS and providing security. This paper briefs both the virtualization techniques and discusses the issues in OS level virtualization.

  12. Relevance Judging, Evaluation, and Decision Making in Virtual Libraries: A Descriptive Study.

    ERIC Educational Resources Information Center

    Fitzgerald, Mary Ann; Galloway, Chad

    2001-01-01

    Describes a study that investigated the cognitive processes undergraduates used to select information while using a virtual library, GALILEO (Georgia Library Learning Online). Discusses higher order thinking processes, relevance judging, evaluation (critical thinking), decision making, reasoning involving documents, relevance-related reasoning,…

  13. Digital Signal Processing by Virtual Instrumentation of a MEMS Magnetic Field Sensor for Biomedical Applications

    PubMed Central

    Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M.; Manjarrez, Elías; Tapia, Jesús A.; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A.; Herrera-May, Agustín L.

    2013-01-01

    We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG). PMID:24196434

  14. Security model for VM in cloud

    NASA Astrophysics Data System (ADS)

    Kanaparti, Venkataramana; Naveen K., R.; Rajani, S.; Padmvathamma, M.; Anitha, C.

    2013-03-01

    Cloud computing is a new approach emerged to meet ever-increasing demand for computing resources and to reduce operational costs and Capital Expenditure for IT services. As this new way of computation allows data and applications to be stored away from own corporate server, it brings more issues in security such as virtualization security, distributed computing, application security, identity management, access control and authentication. Even though Virtualization forms the basis for cloud computing it poses many threats in securing cloud. As most of Security threats lies at Virtualization layer in cloud we proposed this new Security Model for Virtual Machine in Cloud (SMVC) in which every process is authenticated by Trusted-Agent (TA) in Hypervisor as well as in VM. Our proposed model is designed to with-stand attacks by unauthorized process that pose threat to applications related to Data Mining, OLAP systems, Image processing which requires huge resources in cloud deployed on one or more VM's.

  15. Digital signal processing by virtual instrumentation of a MEMS magnetic field sensor for biomedical applications.

    PubMed

    Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M; Manjarrez, Elías; Tapia, Jesús A; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A; Herrera-May, Agustín L

    2013-11-05

    We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG).

  16. Supporting virtual enterprise design by a web-based information model

    NASA Astrophysics Data System (ADS)

    Li, Dong; Barn, Balbir; McKay, Alison; de Pennington, Alan

    2001-10-01

    Development of IT and its applications have led to significant changes in business processes. To pursue agility, flexibility and best service to customers, enterprises focus on their core competence and dynamically build relationships with partners to form virtual enterprises as customer driven temporary demand chains/networks. Building the networked enterprise needs responsively interactive decisions instead of a single-direction partner selection process. Benefits and risks in the combination should be systematically analysed, and aggregated information about value-adding abilities and risks of networks needs to be derived from interactions of all partners. In this research, a hierarchical information model to assess partnerships for designing virtual enterprises was developed. Internet technique has been applied to the evaluation process so that interactive decisions can be visualised and made responsively during the design process. The assessment is based on the process which allows each partner responds to requirements of the virtual enterprise by planning its operational process as a bidder. The assessment is then produced by making an aggregated value to represent prospect of the combination of partners given current bidding. Final design is a combination of partners with the greatest total value-adding capability and lowest risk.

  17. Documenting the efficacy of virtual reality exposure with psychophysiological and information processing measures.

    PubMed

    Côté, Sophie; Bouchard, Stéphane

    2005-09-01

    Many outcome studies have been conducted to assess the efficacy of virtual reality in the treatment of specific phobias. However, most studies used self-report data. The addition of objective measures of arousal and information processing mechanisms would be a valuable contribution in order to validate the usefulness of virtual reality in the treatment of anxiety disorders. The goal of this study was to document the impact of virtual reality exposure (VRE) on cardiac response and automatic processing of threatening stimuli. Twenty-eight adults suffering from arachnophobia were assessed and received an exposure-based treatment using virtual reality. General outcome and specific processes measures included a battery of standardized questionnaires, a pictorial emotional Stroop task, a behavioral avoidance test and a measure of participants' inter-beat intervals (IBI) while they were looking at a live tarantula. Assessment was conducted before and after treatment. Repeated measures ANOVAs revealed that therapy had a positive impact on questionnaire data, as well as on the behavioral avoidance test. Analyses made on the pictorial Stroop task showed that information processing of spider-related stimuli changed after treatment, which also indicates therapeutic success. Psychophysiological data also showed a positive change after treatment, suggesting a decrease in anxiety. In sum, VRE led to significant therapeutic improvements on objective measures as well as on self-report instruments.

  18. The neural processing of voluntary completed, real and virtual violent and nonviolent computer game scenarios displaying predefined actions in gamers and nongamers.

    PubMed

    Regenbogen, Christina; Herrmann, Manfred; Fehr, Thorsten

    2010-01-01

    Studies investigating the effects of violent computer and video game playing have resulted in heterogeneous outcomes. It has been assumed that there is a decreased ability to differentiate between virtuality and reality in people that play these games intensively. FMRI data of a group of young males with (gamers) and without (controls) a history of long-term violent computer game playing experience were obtained during the presentation of computer game and realistic video sequences. In gamers the processing of real violence in contrast to nonviolence produced activation clusters in right inferior frontal, left lingual and superior temporal brain regions. Virtual violence activated a network comprising bilateral inferior frontal, occipital, postcentral, right middle temporal, and left fusiform regions. Control participants showed extended left frontal, insula and superior frontal activations during the processing of real, and posterior activations during the processing of virtual violent scenarios. The data suggest that the ability to differentiate automatically between real and virtual violence has not been diminished by a long-term history of violent video game play, nor have gamers' neural responses to real violence in particular been subject to desensitization processes. However, analyses of individual data indicated that group-related analyses reflect only a small part of actual individual different neural network involvement, suggesting that the consideration of individual learning history is sufficient for the present discussion.

  19. Virtual Learning: Possibilities and Realization

    ERIC Educational Resources Information Center

    Kerimbayev, Nurassyl

    2016-01-01

    In the article it was important to consider two basic moments i.e., impact mode of using virtual environment at training process within one faculty of the University, directly at training quality and what outcomes can be reached therewith. The work significance consists of studying the virtual environment effect instead of traditional educational…

  20. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    ERIC Educational Resources Information Center

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-01-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment "StudentResearcher," which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum…

  1. Learning in Virtual Worlds: Results from Two Studies

    ERIC Educational Resources Information Center

    Jestice, Rebecca J.

    2010-01-01

    Virtual worlds are garnering a lot of attention from educators and trainers as a new tool to enhance the effectiveness and efficiency of online learning. Virtual worlds are considered beneficial to the learning process because their unique combination of features and capabilities and their richness allows the employment of new instructional…

  2. Integration Head Mounted Display Device and Hand Motion Gesture Device for Virtual Reality Laboratory

    NASA Astrophysics Data System (ADS)

    Rengganis, Y. A.; Safrodin, M.; Sukaridhoto, S.

    2018-01-01

    Virtual Reality Laboratory (VR Lab) is an innovation for conventional learning media which show us whole learning process in laboratory. There are many tools and materials are needed by user for doing practical in it, so user could feel new learning atmosphere by using this innovation. Nowadays, technologies more sophisticated than before. So it would carry in education and it will be more effective, efficient. The Supported technologies are needed us for making VR Lab such as head mounted display device and hand motion gesture device. The integration among them will be used us for making this research. Head mounted display device for viewing 3D environment of virtual reality laboratory. Hand motion gesture device for catching user real hand and it will be visualized in virtual reality laboratory. Virtual Reality will show us, if using the newest technologies in learning process it could make more interesting and easy to understand.

  3. Virtually Out of This World!

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Ames Research Center granted Reality Capture Technologies (RCT), Inc., a license to further develop NASA's Mars Map software platform. The company incorporated NASA#s innovation into software that uses the Virtual Plant Model (VPM)(TM) to structure, modify, and implement the construction sites of industrial facilities, as well as develop, validate, and train operators on procedures. The VPM orchestrates the exchange of information between engineering, production, and business transaction systems. This enables users to simulate, control, and optimize work processes while increasing the reliability of critical business decisions. Engineers can complete the construction process and test various aspects of it in virtual reality before building the actual structure. With virtual access to and simulation of the construction site, project personnel can manage, access control, and respond to changes on complex constructions more effectively. Engineers can also create operating procedures, training, and documentation. Virtual Plant Model(TM) is a trademark of Reality Capture Technologies, Inc.

  4. 3D multiplayer virtual pets game using Google Card Board

    NASA Astrophysics Data System (ADS)

    Herumurti, Darlis; Riskahadi, Dimas; Kuswardayan, Imam

    2017-08-01

    Virtual Reality (VR) is a technology which allows user to interact with the virtual environment. This virtual environment is generated and simulated by computer. This technology can make user feel the sensation when they are in the virtual environment. The VR technology provides real virtual environment view for user and it is not viewed from screen. But it needs another additional device to show the view of virtual environment. This device is known as Head Mounted Device (HMD). Oculust Rift and Microsoft Hololens are the most famous HMD devices used in VR. And in 2014, Google Card Board was introduced at Google I/O developers conference. Google Card Board is VR platform which allows user to enjoy the VR with simple and cheap way. In this research, we explore Google Card Board to develop simulation game of raising pet. The Google Card Board is used to create view for the VR environment. The view and control in VR environment is built using Unity game engine. And the simulation process is designed using Finite State Machine (FSM). This FSM can help to design the process clearly. So the simulation process can describe the simulation of raising pet well. Raising pet is fun activity. But sometimes, there are many conditions which cause raising pet become difficult to do, i.e. environment condition, disease, high cost, etc. this research aims to explore and implement Google Card Board in simulation of raising pet.

  5. Real-time interactive virtual tour on the World Wide Web (WWW)

    NASA Astrophysics Data System (ADS)

    Yoon, Sanghyuk; Chen, Hai-jung; Hsu, Tom; Yoon, Ilmi

    2003-12-01

    Web-based Virtual Tour has become a desirable and demanded application, yet challenging due to the nature of web application's running environment such as limited bandwidth and no guarantee of high computation power on the client side. Image-based rendering approach has attractive advantages over traditional 3D rendering approach in such Web Applications. Traditional approach, such as VRML, requires labor-intensive 3D modeling process, high bandwidth and computation power especially for photo-realistic virtual scenes. QuickTime VR and IPIX as examples of image-based approach, use panoramic photos and the virtual scenes that can be generated from photos directly skipping the modeling process. But, these image-based approaches may require special cameras or effort to take panoramic views and provide only one fixed-point look-around and zooming in-out rather than 'walk around', that is a very important feature to provide immersive experience to virtual tourists. The Web-based Virtual Tour using Tour into the Picture employs pseudo 3D geometry with image-based rendering approach to provide viewers with immersive experience of walking around the virtual space with several snap shots of conventional photos.

  6. An optimization method of VON mapping for energy efficiency and routing in elastic optical networks

    NASA Astrophysics Data System (ADS)

    Liu, Huanlin; Xiong, Cuilian; Chen, Yong; Li, Changping; Chen, Derun

    2018-03-01

    To improve resources utilization efficiency, network virtualization in elastic optical networks has been developed by sharing the same physical network for difference users and applications. In the process of virtual nodes mapping, longer paths between physical nodes will consume more spectrum resources and energy. To address the problem, we propose a virtual optical network mapping algorithm called genetic multi-objective optimize virtual optical network mapping algorithm (GM-OVONM-AL), which jointly optimizes the energy consumption and spectrum resources consumption in the process of virtual optical network mapping. Firstly, a vector function is proposed to balance the energy consumption and spectrum resources by optimizing population classification and crowding distance sorting. Then, an adaptive crossover operator based on hierarchical comparison is proposed to improve search ability and convergence speed. In addition, the principle of the survival of the fittest is introduced to select better individual according to the relationship of domination rank. Compared with the spectrum consecutiveness-opaque virtual optical network mapping-algorithm and baseline-opaque virtual optical network mapping algorithm, simulation results show the proposed GM-OVONM-AL can achieve the lowest bandwidth blocking probability and save the energy consumption.

  7. Virtual Vocabulary: Research and Learning in Lexical Processing

    ERIC Educational Resources Information Center

    Schuetze, Ulf; Weimer-Stuckmann, Gerlinde

    2010-01-01

    This article presents the concept development, research programming, and learning design of a lexical processing web application, Virtual Vocabulary, which was developed using theories in both cognitive psychology and second language acquisition (SLA). It is being tested with first-year students of German at the University of Victoria in Canada,…

  8. A Virtual Laboratory for Digital Signal Processing

    ERIC Educational Resources Information Center

    Dow, Chyi-Ren; Li, Yi-Hsung; Bai, Jin-Yu

    2006-01-01

    This work designs and implements a virtual digital signal processing laboratory, VDSPL. VDSPL consists of four parts: mobile agent execution environments, mobile agents, DSP development software, and DSP experimental platforms. The network capability of VDSPL is created by using mobile agent and wrapper techniques without modifying the source code…

  9. Residential Cold Climate Heat Pump (CCHP) w/Variable Speed Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messmer, Craig S.

    2016-09-30

    This report summarizes the results of a three year program awarded to Unico, Inc. to commercialize a residential cold climate heat pump. Several designs were investigated. Compressors were selected using analysis from Oakridge National Laboratories followed by prototype construction and lab testing in a specially built environmental chamber capable of reaching -30°F. The initial design utilized two variable speed compressors in series with very good capacity results and acceptable efficiency at very cold temperatures. The design was then modified to reduce cost and complexity by redesigning the system using three dual-stage compressors: two in parallel followed by one in series.more » Extensive testing found significant challenge with oil management, reliability, weight and cost which prevented the system from being fully commercialized. Further analysis of other conceptual designs indicated that these challenges could be overcome in the future.« less

  10. A secure file manager for UNIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVries, R.G.

    1990-12-31

    The development of a secure file management system for a UNIX-based computer facility with supercomputers and workstations is described. Specifically, UNIX in its usual form does not address: (1) Operation which would satisfy rigorous security requirements. (2) Online space management in an environment where total data demands would be many times the actual online capacity. (3) Making the file management system part of a computer network in which users of any computer in the local network could retrieve data generated on any other computer in the network. The characteristics of UNIX can be exploited to develop a portable, secure filemore » manager which would operate on computer systems ranging from workstations to supercomputers. Implementation considerations making unusual use of UNIX features, rather than requiring extensive internal system changes, are described, and implementation using the Cray Research Inc. UNICOS operating system is outlined.« less

  11. Investigation of the surface free energy of the ITO thin films deposited under different working pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özen, Soner, E-mail: osoner@ogu.edu.tr; Pat, Suat; Korkmaz, Şadan

    This study discusses the influence of working pressure on the surface energy of the ITO thin films produced by radio frequency magnetron sputtering method. Optical tensiometer (Attension Theta Lite) is used for evaluating wetting behavior of the water droplet on the film surface and Equation of State method was selected to determine surface free energy for this study. Equation of state method does not divide the surface tension into different components such as polar, dispersive, acid-base. It is calculated the surfaces’ free energy measuring the contact angle with a single liquid. The surface free energy value was in the rangemore » of 15-31 mN/m. Also, the transmittances were determined in the wavelength range between 200 and 1000 nm using the UNICO 4802 UV-Vis double beam spectrophotometer. Transmittances of the produced ITO thin films are greater than %70 in the visible range.« less

  12. A general multiblock Euler code for propulsion integration. Volume 3: User guide for the Euler code

    NASA Technical Reports Server (NTRS)

    Chen, H. C.; Su, T. Y.; Kao, T. J.

    1991-01-01

    This manual explains the procedures for using the general multiblock Euler (GMBE) code developed under NASA contract NAS1-18703. The code was developed for the aerodynamic analysis of geometrically complex configurations in either free air or wind tunnel environments (vol. 1). The complete flow field is divided into a number of topologically simple blocks within each of which surface fitted grids and efficient flow solution algorithms can easily be constructed. The multiblock field grid is generated with the BCON procedure described in volume 2. The GMBE utilizes a finite volume formulation with an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. This user guide provides information on the GMBE code, including input data preparations with sample input files and a sample Unix script for program execution in the UNICOS environment.

  13. Securing the User's Work Environment

    NASA Technical Reports Server (NTRS)

    Cardo, Nicholas P.

    2004-01-01

    High performance computing at the Numerical Aerospace Simulation Facility at NASA Ames Research Center includes C90's, J90's and Origin 2000's. Not only is it necessary to protect these systems from outside attacks, but also to provide a safe working environment on the systems. With the right tools, security anomalies in the user s work environment can be deleted and corrected. Validating proper ownership of files against user s permissions, will reduce the risk of inadvertent data compromise. The detection of extraneous directories and files hidden amongst user home directories is important for identifying potential compromises. The first runs of these utilities detected over 350,000 files with problems. With periodic scans, automated correction of problems takes only minutes. Tools for detecting these types of problems as well as their development techniques will be discussed with emphasis on consistency, portability and efficiency for both UNICOS and IRIX.

  14. Virtual volatility

    NASA Astrophysics Data System (ADS)

    Silva, A. Christian; Prange, Richard E.

    2007-03-01

    We introduce the concept of virtual volatility. This simple but new measure shows how to quantify the uncertainty in the forecast of the drift component of a random walk. The virtual volatility also is a useful tool in understanding the stochastic process for a given portfolio. In particular, and as an example, we were able to identify mean reversion effect in our portfolio. Finally, we briefly discuss the potential practical effect of the virtual volatility on an investor asset allocation strategy.

  15. A Low-cost System for Generating Near-realistic Virtual Actors

    NASA Astrophysics Data System (ADS)

    Afifi, Mahmoud; Hussain, Khaled F.; Ibrahim, Hosny M.; Omar, Nagwa M.

    2015-06-01

    Generating virtual actors is one of the most challenging fields in computer graphics. The reconstruction of a realistic virtual actor has been paid attention by the academic research and the film industry to generate human-like virtual actors. Many movies were acted by human-like virtual actors, where the audience cannot distinguish between real and virtual actors. The synthesis of realistic virtual actors is considered a complex process. Many techniques are used to generate a realistic virtual actor; however they usually require expensive hardware equipment. In this paper, a low-cost system that generates near-realistic virtual actors is presented. The facial features of the real actor are blended with a virtual head that is attached to the actor's body. Comparing with other techniques that generate virtual actors, the proposed system is considered a low-cost system that requires only one camera that records the scene without using any expensive hardware equipment. The results of our system show that the system generates good near-realistic virtual actors that can be used on many applications.

  16. Production of the next-generation library virtual tour

    PubMed Central

    Duncan, James M.; Roth, Linda K.

    2001-01-01

    While many libraries offer overviews of their services through their Websites, only a small number of health sciences libraries provide Web-based virtual tours. These tours typically feature photographs of major service areas along with textual descriptions. This article describes the process for planning, producing, and implementing a next-generation virtual tour in which a variety of media elements are integrated: photographic images, 360-degree “virtual reality” views, textual descriptions, and contextual floor plans. Hardware and software tools used in the project are detailed, along with a production timeline and budget, tips for streamlining the process, and techniques for improving production. This paper is intended as a starting guide for other libraries considering an investment in such a project. PMID:11837254

  17. Virtual patients in a real clinical context using augmented reality: impact on antibiotics prescription behaviors.

    PubMed

    Nifakos, Sokratis; Zary, Nabil

    2014-01-01

    The research community has called for the development of effective educational interventions for addressing prescription behaviour since antimicrobial resistance remains a global health issue. Examining the potential to displace the educational process from Personal Computers to Mobile devices, in this paper we investigated a new method of integration of Virtual Patients into Mobile devices with augmented reality technology, enriching the practitioner's education in prescription behavior. Moreover, we also explored which information are critical during the prescription behavior education and we visualized these information on real context with augmented reality technology, simultaneously with a running Virtual Patient's scenario. Following this process, we set the educational frame of experiential knowledge to a mixed (virtual and real) environment.

  18. Virtual Network Configuration Management System for Data Center Operations and Management

    NASA Astrophysics Data System (ADS)

    Okita, Hideki; Yoshizawa, Masahiro; Uehara, Keitaro; Mizuno, Kazuhiko; Tarui, Toshiaki; Naono, Ken

    Virtualization technologies are widely deployed in data centers to improve system utilization. However, they increase the workload for operators, who have to manage the structure of virtual networks in data centers. A virtual-network management system which automates the integration of the configurations of the virtual networks is provided. The proposed system collects the configurations from server virtualization platforms and VLAN-supported switches, and integrates these configurations according to a newly developed XML-based management information model for virtual-network configurations. Preliminary evaluations show that the proposed system helps operators by reducing the time to acquire the configurations from devices and correct the inconsistency of operators' configuration management database by about 40 percent. Further, they also show that the proposed system has excellent scalability; the system takes less than 20 minutes to acquire the virtual-network configurations from a large scale network that includes 300 virtual machines. These results imply that the proposed system is effective for improving the configuration management process for virtual networks in data centers.

  19. The Commercial Side of Virtual Play Worlds

    ERIC Educational Resources Information Center

    Kargin, Tolga

    2018-01-01

    In recent years, virtual play spaces have become enormously popular among young children around the world. As yet, though, there has been relatively little research into the ways in which children interact on such sites and what they learn in the process. This article describes a study of kids' experiences with one such virtual world, Club…

  20. On Scaffolding Adaptive Teaching Prompts within Virtual Labs

    ERIC Educational Resources Information Center

    Najjar, Mehdi

    2008-01-01

    Despite a growing development of virtual laboratories which use the advantages of multimedia and Internet for distance education, learning by means of such tutorial tools would be more effective if they were specifically tailored to each student needs. The virtual teaching process would be well adapted if an artificial tutor can identify the…

  1. A Study of Power and Individualism in Virtual Teams: Trends, Challenges, and Solutions

    ERIC Educational Resources Information Center

    Jablonski, Deirdre

    2013-01-01

    This study investigated the relationship between cultural values and effectiveness of virtual team processes. In order to render an acceptable degree of comparison, four specific team outcomes of virtual team effectiveness were aligned on Hofstede's cultural dimensions of power distance and individualism. The lack of awareness of how power and…

  2. Avatars Talking: The Use of Virtual Worlds within Communication Courses

    ERIC Educational Resources Information Center

    Sarachan, Jeremy; Burk, Nanci; Day, Kenneth; Trevett-Smith, Matthew

    2013-01-01

    Virtual worlds have become an invaluable space for online learning and the exploration of digital cultures. Communication departments can benefit from using these spaces to educate their students in the logistics of virtual worlds and as a way to better understand how the process of interpersonal and global communication functions in both online…

  3. National Culture in Practice: Its Impact on Knowledge Sharing in Global Virtual Collaboration

    ERIC Educational Resources Information Center

    Wei, Kangning

    2009-01-01

    Issues concerning global virtual collaboration have received considerable attention in both the academic and practical world; however, little research has been conducted on knowledge-sharing activities in global virtual collaboration, which is a key process to achieve collaboration effectiveness. Due to national culture having been seen as one of…

  4. Quality Improvement in Virtual Higher Education: A Grounded Theory Approach

    ERIC Educational Resources Information Center

    Mahdiuon, Rouhollah; Masoumi, Davoud; Farasatkhah, Maghsoud

    2017-01-01

    The article aims to explore the attributes of quality and quality improvement including the process and specific actions associated with these attributes--that contribute enhancing quality in Iranian Virtual Higher Education (VHE) institutions. A total of 16 interviews were conducted with experts and key actors in Iranian virtual higher education.…

  5. Knowledge Sharing and Creation in a Teachers' Professional Virtual Community

    ERIC Educational Resources Information Center

    Lin, Fu-ren; Lin, Sheng-cheng; Huang, Tzu-ping

    2008-01-01

    By virtue of the non-profit nature of school education, a professional virtual community composed of teachers provides precious data to understand the processes of knowledge sharing and creation. Guided by grounded theory, the authors conducted a three-phased study on a teachers' virtual community in order to understand the knowledge flows among…

  6. GPURFSCREEN: a GPU based virtual screening tool using random forest classifier.

    PubMed

    Jayaraj, P B; Ajay, Mathias K; Nufail, M; Gopakumar, G; Jaleel, U C A

    2016-01-01

    In-silico methods are an integral part of modern drug discovery paradigm. Virtual screening, an in-silico method, is used to refine data models and reduce the chemical space on which wet lab experiments need to be performed. Virtual screening of a ligand data model requires large scale computations, making it a highly time consuming task. This process can be speeded up by implementing parallelized algorithms on a Graphical Processing Unit (GPU). Random Forest is a robust classification algorithm that can be employed in the virtual screening. A ligand based virtual screening tool (GPURFSCREEN) that uses random forests on GPU systems has been proposed and evaluated in this paper. This tool produces optimized results at a lower execution time for large bioassay data sets. The quality of results produced by our tool on GPU is same as that on a regular serial environment. Considering the magnitude of data to be screened, the parallelized virtual screening has a significantly lower running time at high throughput. The proposed parallel tool outperforms its serial counterpart by successfully screening billions of molecules in training and prediction phases.

  7. Research on 3D virtual campus scene modeling based on 3ds Max and VRML

    NASA Astrophysics Data System (ADS)

    Kang, Chuanli; Zhou, Yanliu; Liang, Xianyue

    2015-12-01

    With the rapid development of modem technology, the digital information management and the virtual reality simulation technology has become a research hotspot. Virtual campus 3D model can not only express the real world objects of natural, real and vivid, and can expand the campus of the reality of time and space dimension, the combination of school environment and information. This paper mainly uses 3ds Max technology to create three-dimensional model of building and on campus buildings, special land etc. And then, the dynamic interactive function is realized by programming the object model in 3ds Max by VRML .This research focus on virtual campus scene modeling technology and VRML Scene Design, and the scene design process in a variety of real-time processing technology optimization strategy. This paper guarantees texture map image quality and improve the running speed of image texture mapping. According to the features and architecture of Guilin University of Technology, 3ds Max, AutoCAD and VRML were used to model the different objects of the virtual campus. Finally, the result of virtual campus scene is summarized.

  8. Application of two segmentation protocols during the processing of virtual images in rapid prototyping: ex vivo study with human dry mandibles.

    PubMed

    Ferraz, Eduardo Gomes; Andrade, Lucio Costa Safira; dos Santos, Aline Rode; Torregrossa, Vinicius Rabelo; Rubira-Bullen, Izabel Regina Fischer; Sarmento, Viviane Almeida

    2013-12-01

    The aim of this study was to evaluate the accuracy of virtual three-dimensional (3D) reconstructions of human dry mandibles, produced from two segmentation protocols ("outline only" and "all-boundary lines"). Twenty virtual three-dimensional (3D) images were built from computed tomography exam (CT) of 10 dry mandibles, in which linear measurements between anatomical landmarks were obtained and compared to an error probability of 5 %. The results showed no statistically significant difference among the dry mandibles and the virtual 3D reconstructions produced from segmentation protocols tested (p = 0,24). During the designing of a virtual 3D reconstruction, both "outline only" and "all-boundary lines" segmentation protocols can be used. Virtual processing of CT images is the most complex stage during the manufacture of the biomodel. Establishing a better protocol during this phase allows the construction of a biomodel with characteristics that are closer to the original anatomical structures. This is essential to ensure a correct preoperative planning and a suitable treatment.

  9. Multi-modal cockpit interface for improved airport surface operations

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J. (Inventor); Bailey, Randall E. (Inventor); Prinzel, III, Lawrence J. (Inventor); Kramer, Lynda J. (Inventor); Williams, Steven P. (Inventor)

    2010-01-01

    A system for multi-modal cockpit interface during surface operation of an aircraft comprises a head tracking device, a processing element, and a full-color head worn display. The processing element is configured to receive head position information from the head tracking device, to receive current location information of the aircraft, and to render a virtual airport scene corresponding to the head position information and the current aircraft location. The full-color head worn display is configured to receive the virtual airport scene from the processing element and to display the virtual airport scene. The current location information may be received from one of a global positioning system or an inertial navigation system.

  10. The Multimission Image Processing Laboratory's virtual frame buffer interface

    NASA Technical Reports Server (NTRS)

    Wolfe, T.

    1984-01-01

    Large image processing systems use multiple frame buffers with differing architectures and vendor supplied interfaces. This variety of architectures and interfaces creates software development, maintenance and portability problems for application programs. Several machine-dependent graphics standards such as ANSI Core and GKS are available, but none of them are adequate for image processing. Therefore, the Multimission Image Processing laboratory project has implemented a programmer level virtual frame buffer interface. This interface makes all frame buffers appear as a generic frame buffer with a specified set of characteristics. This document defines the virtual frame uffer interface and provides information such as FORTRAN subroutine definitions, frame buffer characteristics, sample programs, etc. It is intended to be used by application programmers and system programmers who are adding new frame buffers to a system.

  11. Updates in Head and Neck Reconstruction.

    PubMed

    Largo, Rene D; Garvey, Patrick B

    2018-02-01

    After reading this article, the participant should be able to: 1. Have a basic understanding of virtual planning, rapid prototype modeling, three-dimensional printing, and computer-assisted design and manufacture. 2. Understand the principles of combining virtual planning and vascular mapping. 3. Understand principles of flap choice and design in preoperative planning of free osteocutaneous flaps in mandible and midface reconstruction. 4. Discuss advantages and disadvantages of computer-assisted design and manufacture in reconstruction of advanced oncologic mandible and midface defects. Virtual planning and rapid prototype modeling are increasingly used in head and neck reconstruction with the aim of achieving superior surgical outcomes in functionally and aesthetically critical areas of the head and neck compared with conventional reconstruction. The reconstructive surgeon must be able to understand this rapidly-advancing technology, along with its advantages and disadvantages. There is no limit to the degree to which patient-specific data may be integrated into the virtual planning process. For example, vascular mapping can be incorporated into virtual planning of mandible or midface reconstruction. Representative mandible and midface cases are presented to illustrate the process of virtual planning. Although virtual planning has become helpful in head and neck reconstruction, its routine use may be limited by logistic challenges, increased acquisition costs, and limited flexibility for intraoperative modifications. Nevertheless, the authors believe that the superior functional and aesthetic results realized with virtual planning outweigh the limitations.

  12. Reaction time for processing visual stimulus in a computer-assisted rehabilitation environment.

    PubMed

    Sanchez, Yerly; Pinzon, David; Zheng, Bin

    2017-10-01

    To examine the reaction time when human subjects process information presented in the visual channel under both a direct vision and a virtual rehabilitation environment when walking was performed. Visual stimulus included eight math problems displayed on the peripheral vision to seven healthy human subjects in a virtual rehabilitation training (computer-assisted rehabilitation environment (CAREN)) and a direct vision environment. Subjects were required to verbally report the results of these math calculations in a short period of time. Reaction time measured by Tobii Eye tracker and calculation accuracy were recorded and compared between the direct vision and virtual rehabilitation environment. Performance outcomes measured for both groups included reaction time, reading time, answering time and the verbal answer score. A significant difference between the groups was only found for the reaction time (p = .004). Participants had more difficulty recognizing the first equation of the virtual environment. Participants reaction time was faster in the direct vision environment. This reaction time delay should be kept in mind when designing skill training scenarios in virtual environments. This was a pilot project to a series of studies assessing cognition ability of stroke patients who are undertaking a rehabilitation program with a virtual training environment. Implications for rehabilitation Eye tracking is a reliable tool that can be employed in rehabilitation virtual environments. Reaction time changes between direct vision and virtual environment.

  13. Students' Expectations of the Learning Process in Virtual Reality and Simulation-Based Learning Environments

    ERIC Educational Resources Information Center

    Keskitalo, Tuulikki

    2012-01-01

    Expectations for simulations in healthcare education are high; however, little is known about healthcare students' expectations of the learning process in virtual reality (VR) and simulation-based learning environments (SBLEs). This research aims to describe first-year healthcare students' (N=97) expectations regarding teaching, studying, and…

  14. An Exploration of Desktop Virtual Reality and Visual Processing Skills in a Technical Training Environment

    ERIC Educational Resources Information Center

    Ausburn, Lynna J.; Ausburn, Floyd B.; Kroutter, Paul

    2010-01-01

    Virtual reality (VR) technology has demonstrated effectiveness in a variety of technical learning situations, yet little is known about its differential effects on learners with different levels of visual processing skill. This small-scale exploratory study tested VR through quasi-experimental methodology and a theoretical/conceptual framework…

  15. Virtual Processes and Quantum Tunnelling as Fictions

    ERIC Educational Resources Information Center

    Arthur, Richard T. W.

    2012-01-01

    In this paper it is argued that virtual processes are dispensable fictions. The argument proceeds by a comparison with the phenomenon of quantum tunnelling. Building on an analysis of Levy-Leblond and Balibar, it is argued that, although the phenomenon known as quantum tunnelling certainly occurs and is at the basis of many paradigmatic quantum…

  16. "The Evolution of e-Learning in the Context of 3D Virtual Worlds"

    ERIC Educational Resources Information Center

    Kotsilieris, Theodore; Dimopoulou, Nikoletta

    2013-01-01

    Information and Communication Technologies (ICT) offer new approaches towards knowledge acquisition and collaboration through distance learning processes. Web-based Learning Management Systems (LMS) have transformed the way that education is conducted nowadays. At the same time, the adoption of Virtual Worlds in the educational process is of great…

  17. Application of Semantic Approaches and Interactive Virtual Technology to Improve Teaching Effectiveness

    ERIC Educational Resources Information Center

    Jou, Min; Liu, Chi-Chia

    2012-01-01

    This article describes an implementation of interactive virtual environments that have been designed for supporting the education of technical skills in material processing technology. The developed web-based systems provide the capability to train students in the technical skills of material processing technology without the need to work on…

  18. A Virtual Environment for Process Management. A Step by Step Implementation

    ERIC Educational Resources Information Center

    Mayer, Sergio Valenzuela

    2003-01-01

    In this paper it is presented a virtual organizational environment, conceived with the integration of three computer programs: a manufacturing simulation package, an automation of businesses processes (workflows), and business intelligence (Balanced Scorecard) software. It was created as a supporting tool for teaching IE, its purpose is to give…

  19. Open web system of Virtual labs for nuclear and applied physics

    NASA Astrophysics Data System (ADS)

    Saldikov, I. S.; Afanasyev, V. V.; Petrov, V. I.; Ternovykh, M. Yu

    2017-01-01

    An example of virtual lab work on unique experimental equipment is presented. The virtual lab work is software based on a model of real equipment. Virtual labs can be used for educational process in nuclear safety and analysis field. As an example it includes the virtual lab called “Experimental determination of the material parameter depending on the pitch of a uranium-water lattice”. This paper included general description of this lab. A description of a database on the support of laboratory work on unique experimental equipment which is included this work, its concept development are also presented.

  20. Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD strategy within virtual globes

    NASA Astrophysics Data System (ADS)

    Li, Jing; Wu, Huayi; Yang, Chaowei; Wong, David W.; Xie, Jibo

    2011-09-01

    Geoscientists build dynamic models to simulate various natural phenomena for a better understanding of our planet. Interactive visualizations of these geoscience models and their outputs through virtual globes on the Internet can help the public understand the dynamic phenomena related to the Earth more intuitively. However, challenges arise when the volume of four-dimensional data (4D), 3D in space plus time, is huge for rendering. Datasets loaded from geographically distributed data servers require synchronization between ingesting and rendering data. Also the visualization capability of display clients varies significantly in such an online visualization environment; some may not have high-end graphic cards. To enhance the efficiency of visualizing dynamic volumetric data in virtual globes, this paper proposes a systematic framework, in which an octree-based multiresolution data structure is implemented to organize time series 3D geospatial data to be used in virtual globe environments. This framework includes a view-dependent continuous level of detail (LOD) strategy formulated as a synchronized part of the virtual globe rendering process. Through the octree-based data retrieval process, the LOD strategy enables the rendering of the 4D simulation at a consistent and acceptable frame rate. To demonstrate the capabilities of this framework, data of a simulated dust storm event are rendered in World Wind, an open source virtual globe. The rendering performances with and without the octree-based LOD strategy are compared. The experimental results show that using the proposed data structure and processing strategy significantly enhances the visualization performance when rendering dynamic geospatial phenomena in virtual globes.

  1. Repeatability and Reproducibility of Virtual Subjective Refraction.

    PubMed

    Perches, Sara; Collados, M Victoria; Ares, Jorge

    2016-10-01

    To establish the repeatability and reproducibility of a virtual refraction process using simulated retinal images. With simulation software, aberrated images corresponding with each step of the refraction process were calculated following the typical protocol of conventional subjective refraction. Fifty external examiners judged simulated retinal images until the best sphero-cylindrical refraction and the best visual acuity were achieved starting from the aberrometry data of three patients. Data analyses were performed to assess repeatability and reproducibility of the virtual refraction as a function of pupil size and aberrometric profile of different patients. SD values achieved in three components of refraction (M, J0, and J45) are lower than 0.25D in repeatability analysis. Regarding reproducibility, we found SD values lower than 0.25D in the most cases. When the results of virtual refraction with different pupil diameters (4 and 6 mm) were compared, the mean of differences (MoD) obtained were not clinically significant (less than 0.25D). Only one of the aberrometry profiles with high uncorrected astigmatism shows poor results for the M component in reproducibility and pupil size dependence analysis. In all cases, vision achieved was better than 0 logMAR. A comparison between the compensation obtained with virtual and conventional subjective refraction was made as an example of this application, showing good quality retinal images in both processes. The present study shows that virtual refraction has similar levels of precision as conventional subjective refraction. Moreover, virtual refraction has also shown that when high low order astigmatism is present, the refraction result is less precise and highly dependent on pupil size.

  2. Evaluation of a 'virtual' approach to commissioning health research.

    PubMed

    McCourt, Christine A; Morgan, Philip A; Youll, Penny

    2006-10-18

    The objective of this study was to evaluate the implementation of a 'virtual' (computer-mediated) approach to health research commissioning. This had been introduced experimentally in a DOH programme--the 'Health of Londoners Programme'--in order to assess whether is could enhance the accessibility, transparency and effectiveness of commissioning health research. The study described here was commissioned to evaluate this novel approach, addressing these key questions. A naturalistic-experimental approach was combined with principles of action research. The different commissioning groups within the programme were randomly allocated to either the traditional face-to-face mode or the novel 'virtual' mode. Mainly qualitative data were gathered including observation of all (virtual and face-to-face) commissioning meetings; semi-structured interviews with a purposive sample of participants (n = 32/66); structured questionnaires and interviews with lead researchers of early commissioned projects. All members of the commissioning groups were invited to participate in collaborative enquiry groups which participated actively in the analysis process. The virtual process functioned as intended, reaching timely and relatively transparent decisions that participants had confidence in. Despite the potential for greater access using a virtual approach, few differences were found in practice. Key advantages included physical access, a more flexible and extended time period for discussion, reflection and information gathering and a more transparent decision-making process. Key challenges were the reduction of social cues available in a computer-mediated medium that require novel ways of ensuring appropriate dialogue, feedback and interaction. However, in both modes, the process was influenced by a range of factors and was not technology driven. There is potential for using computer-mediated communication within the research commissioning process. This may enhance access, effectiveness and transparency of decision-making but further development is needed for this to be fully realised, including attention to process as well as the computer-mediated medium.

  3. Evaluation of a 'virtual' approach to commissioning health research

    PubMed Central

    McCourt, Christine A; Morgan, Philip A; Youll, Penny

    2006-01-01

    Background The objective of this study was to evaluate the implementation of a 'virtual' (computer-mediated) approach to health research commissioning. This had been introduced experimentally in a DOH programme – the 'Health of Londoners Programme' – in order to assess whether is could enhance the accessibility, transparency and effectiveness of commissioning health research. The study described here was commissioned to evaluate this novel approach, addressing these key questions. Methods A naturalistic-experimental approach was combined with principles of action research. The different commissioning groups within the programme were randomly allocated to either the traditional face-to-face mode or the novel 'virtual' mode. Mainly qualitative data were gathered including observation of all (virtual and face-to-face) commissioning meetings; semi-structured interviews with a purposive sample of participants (n = 32/66); structured questionnaires and interviews with lead researchers of early commissioned projects. All members of the commissioning groups were invited to participate in collaborative enquiry groups which participated actively in the analysis process. Results The virtual process functioned as intended, reaching timely and relatively transparent decisions that participants had confidence in. Despite the potential for greater access using a virtual approach, few differences were found in practice. Key advantages included physical access, a more flexible and extended time period for discussion, reflection and information gathering and a more transparent decision-making process. Key challenges were the reduction of social cues available in a computer-mediated medium that require novel ways of ensuring appropriate dialogue, feedback and interaction. However, in both modes, the process was influenced by a range of factors and was not technology driven. Conclusion There is potential for using computer-mediated communication within the research commissioning process. This may enhance access, effectiveness and transparency of decision-making but further development is needed for this to be fully realised, including attention to process as well as the computer-mediated medium. PMID:17049079

  4. A web-based platform for virtual screening.

    PubMed

    Watson, Paul; Verdonk, Marcel; Hartshorn, Michael J

    2003-09-01

    A fully integrated, web-based, virtual screening platform has been developed to allow rapid virtual screening of large numbers of compounds. ORACLE is used to store information at all stages of the process. The system includes a large database of historical compounds from high throughput screenings (HTS) chemical suppliers, ATLAS, containing over 3.1 million unique compounds with their associated physiochemical properties (ClogP, MW, etc.). The database can be screened using a web-based interface to produce compound subsets for virtual screening or virtual library (VL) enumeration. In order to carry out the latter task within ORACLE a reaction data cartridge has been developed. Virtual libraries can be enumerated rapidly using the web-based interface to the cartridge. The compound subsets can be seamlessly submitted for virtual screening experiments, and the results can be viewed via another web-based interface allowing ad hoc querying of the virtual screening data stored in ORACLE.

  5. Towards Automatic Processing of Virtual City Models for Simulations

    NASA Astrophysics Data System (ADS)

    Piepereit, R.; Schilling, A.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2016-10-01

    Especially in the field of numerical simulations, such as flow and acoustic simulations, the interest in using virtual 3D models to optimize urban systems is increasing. The few instances in which simulations were already carried out in practice have been associated with an extremely high manual and therefore uneconomical effort for the processing of models. Using different ways of capturing models in Geographic Information System (GIS) and Computer Aided Engineering (CAE), increases the already very high complexity of the processing. To obtain virtual 3D models suitable for simulation, we developed a tool for automatic processing with the goal to establish ties between the world of GIS and CAE. In this paper we introduce a way to use Coons surfaces for the automatic processing of building models in LoD2, and investigate ways to simplify LoD3 models in order to reduce unnecessary information for a numerical simulation.

  6. Virtual drug discovery: beyond computational chemistry?

    PubMed

    Gilardoni, Francois; Arvanites, Anthony C

    2010-02-01

    This editorial looks at how a fully integrated structure that performs all aspects in the drug discovery process, under one company, is slowly disappearing. The steps in the drug discovery paradigm have been slowly increasing toward virtuality or outsourcing at various phases of product development in a company's candidate pipeline. Each step in the process, such as target identification and validation and medicinal chemistry, can be managed by scientific teams within a 'virtual' company. Pharmaceutical companies to biotechnology start-ups have been quick in adopting this new research and development business strategy in order to gain flexibility, access the best technologies and technical expertise, and decrease product developmental costs. In today's financial climate, the term virtual drug discovery has an organizational meaning. It represents the next evolutionary step in outsourcing drug development.

  7. Design of virtual SCADA simulation system for pressurized water reactor

    NASA Astrophysics Data System (ADS)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-02-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  8. Incidental Learning in 3D Virtual Environments: Relationships to Learning Style, Digital Literacy and Information Display

    ERIC Educational Resources Information Center

    Thomas, Wayne W.; Boechler, Patricia M.

    2014-01-01

    With teachers taking more interest in utilizing 3D virtual environments for educational purposes, research is needed to understand how learners perceive and process information within virtual environments (Eschenbrenner, Nah, & Siau, 2008). In this study, the authors sought to determine if learning style or digital literacy predict incidental…

  9. The USF Libraries Virtual Library Project: A Blueprint for Development.

    ERIC Educational Resources Information Center

    Metz-Wiseman, Monica; Silver, Susan; Hanson, Ardis; Johnston, Judy; Grohs, Kim; Neville, Tina; Sanchez, Ed; Gray, Carolyn

    This report of the Virtual Library Planning Committee (VLPC) is intending to serve as a blueprint for the University of South Florida (USF) Libraries as it shifts from print to digital formats in its evolution into a "Virtual Library". A comprehensive planning process is essential for the USF Libraries to make optimum use of technology,…

  10. Running GUI Applications on Peregrine from OSX | High-Performance Computing

    Science.gov Websites

    Learn how to use Virtual Network Computing to access a Linux graphical desktop environment on Peregrine local port (on, e.g., your laptop), starts a VNC server process that manages a virtual desktop on your virtual desktop. This is persistent, so remember it-you will use this password whenever accessing

  11. A Study of Faculty's Role in a Virtual Environment in Iran

    ERIC Educational Resources Information Center

    Kian, Maryam

    2014-01-01

    "Faculty" is one element of virtual education curricula that facilitates the learning process. However, the lack of physical presence has led to a need to redefine the faculty role. This qualitative study considered the changing roles of faculty in virtual environments in universities in Iran. The main question was What role(s) do…

  12. An Analysis of Learners' Intentions toward Virtual Reality Learning Based on Constructivist and Technology Acceptance Approaches

    ERIC Educational Resources Information Center

    Huang, Hsiu-Mei; Liaw, Shu-Sheng

    2018-01-01

    Within a constructivist paradigm, the virtual reality technology focuses on the learner's actively interactive learning processes and attempts to reduce the gap between the learner's knowledge and a real-life experience. Recently, virtual reality technologies have been developed for a wide range of applications in education, but further research…

  13. Designing Teaching--Teaching Designing: Teacher's Guidance in a Virtual Design Studio

    ERIC Educational Resources Information Center

    Lahti, Henna; Seitamaa-Hakkarainen, Pirita

    2014-01-01

    This study examined pedagogical aspects of virtual designing. It focused on how an industrial design teacher organised a university course in plastic product design and how the teacher guided student teams' design processes in a virtual design studio. The model of Learning by Collaborative Design was used as a pedagogical and analytical framework.…

  14. iSee: Teaching Visual Learning in an Organic Virtual Learning Environment

    ERIC Educational Resources Information Center

    Han, Hsiao-Cheng

    2017-01-01

    This paper presents a three-year participatory action research project focusing on the graduate level course entitled Visual Learning in 3D Animated Virtual Worlds. The purpose of this research was to understand "How the virtual world processes of observing and creating can best help students learn visual theories". The first cycle of…

  15. Experience in Education Environment Virtualization within the Automated Information System "Platonus" (Kazakhstan)

    ERIC Educational Resources Information Center

    Abeldina, Zhaidary; Moldumarova, Zhibek; Abeldina, Rauza; Makysh, Gulmira; Moldumarova, Zhuldyz Ilibaevna

    2016-01-01

    This work reports on the use of virtual tools as means of learning process activation. A good result can be achieved by combining the classical learning with modern computer technology. By creating a virtual learning environment and using multimedia learning tools one can obtain a significant result while facilitating the development of students'…

  16. Elevating Virtual Machine Introspection for Fine-Grained Process Monitoring: Techniques and Applications

    ERIC Educational Resources Information Center

    Srinivasan, Deepa

    2013-01-01

    Recent rapid malware growth has exposed the limitations of traditional in-host malware-defense systems and motivated the development of secure virtualization-based solutions. By running vulnerable systems as virtual machines (VMs) and moving security software from inside VMs to the outside, the out-of-VM solutions securely isolate the anti-malware…

  17. An applications-oriented approach to the development of virtual environments

    NASA Technical Reports Server (NTRS)

    Crowe, Michael X.

    1994-01-01

    The field of Virtual Reality (VR) is diverse, ranging in scope from research into fundamental enabling technologies to the building of full-scale entertainment facilities. However, the concept of virtual reality means many things to many people. Ideally, a definition of VR should derive from how it can provide solutions to existing challenges in building advanced human computer interfaces. The measure of success for VR lies in its ability to enhance the assimilation of complex information, whether to aid in difficult decision making processes, or to recreate real experiences in a compelling way. This philosophy is described using an example from a VR-based advertising project. The common and unique elements of this example are explained, though the fundamental development process is the same for all virtual environments that support information transfer. In short, this development approach is an applications oriented approach that begins by establishing and prioritizing user requirements and seeks to add value to the information transfer process through the appropriate use of VR technology.

  18. Performance evaluation of structure based and ligand based virtual screening methods on ten selected anti-cancer targets.

    PubMed

    Ramasamy, Thilagavathi; Selvam, Chelliah

    2015-10-15

    Virtual screening has become an important tool in drug discovery process. Structure based and ligand based approaches are generally used in virtual screening process. To date, several benchmark sets for evaluating the performance of the virtual screening tool are available. In this study, our aim is to compare the performance of both structure based and ligand based virtual screening methods. Ten anti-cancer targets and their corresponding benchmark sets from 'Demanding Evaluation Kits for Objective In silico Screening' (DEKOIS) library were selected. X-ray crystal structures of protein-ligand complexes were selected based on their resolution. Openeye tools such as FRED, vROCS were used and the results were carefully analyzed. At EF1%, vROCS produced better results but at EF5% and EF10%, both FRED and ROCS produced almost similar results. It was noticed that the enrichment factor values were decreased while going from EF1% to EF5% and EF10% in many cases. Published by Elsevier Ltd.

  19. Integrating care for high-risk patients in England using the virtual ward model: lessons in the process of care integration from three case sites

    PubMed Central

    Lewis, Geraint; Vaithianathan, Rhema; Wright, Lorraine; Brice, Mary R; Lovell, Paul; Rankin, Seth; Bardsley, Martin

    2013-01-01

    Background Patients at high risk of emergency hospitalisation are particularly likely to experience fragmentation in care. The virtual ward model attempts to integrate health and social care by offering multidisciplinary case management to people at high predicted risk of unplanned hospitalisation. Objective To describe the care practice in three virtual ward sites in England and to explore how well each site had achieved meaningful integration. Method Case studies conducted in Croydon, Devon and Wandsworth during 2011–2012, consisting of semi-structured interviews, workshops, and site visits. Results Different versions of the virtual wards intervention had been implemented in each site. In Croydon, multidisciplinary care had reverted back to one-to-one case management. Conclusions To integrate successfully, virtual ward projects should safeguard the multidisciplinary nature of the intervention, ensure the active involvement of General Practitioners, and establish feedback processes to monitor performance such as the number of professions represented at each team meeting. PMID:24250284

  20. Virtual and super - virtual refraction method: Application to synthetic data and 2012 of Karangsambung survey data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugraha, Andri Dian; Adisatrio, Philipus Ronnie

    2013-09-09

    Seismic refraction survey is one of geophysical method useful for imaging earth interior, definitely for imaging near surface. One of the common problems in seismic refraction survey is weak amplitude due to attenuations at far offset. This phenomenon will make it difficult to pick first refraction arrival, hence make it challenging to produce the near surface image. Seismic interferometry is a new technique to manipulate seismic trace for obtaining Green's function from a pair of receiver. One of its uses is for improving first refraction arrival quality at far offset. This research shows that we could estimate physical properties suchmore » as seismic velocity and thickness from virtual refraction processing. Also, virtual refraction could enhance the far offset signal amplitude since there is stacking procedure involved in it. Our results show super - virtual refraction processing produces seismic image which has higher signal-to-noise ratio than its raw seismic image. In the end, the numbers of reliable first arrival picks are also increased.« less

  1. BIM based virtual environment for fire emergency evacuation.

    PubMed

    Wang, Bin; Li, Haijiang; Rezgui, Yacine; Bradley, Alex; Ong, Hoang N

    2014-01-01

    Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management.

  2. Stroking the Net Whale: A Constructivist Grounded Theory of Self-Regulated Learning in Virtual Social Spaces

    ERIC Educational Resources Information Center

    Kasperiuniene, Judita; Zydziunaite, Vilma; Eriksson, Malin

    2017-01-01

    This qualitative study explored the self-regulated learning (SRL) of teachers and their students in virtual social spaces. The processes of SRL were analyzed from 24 semi-structured individual interviews with professors, instructors and their students from five Lithuanian universities. A core category stroking the net whale showed the process of…

  3. Virtual Environment Interpersonal Trust Scale: Validity and Reliability Study

    ERIC Educational Resources Information Center

    Usta, Ertugrul

    2012-01-01

    The purpose of this study is in the process of interpersonal communication in virtual environments is available from the trust problem is to develop a measurement tool. Trust in the process of distance education today, and has been a factor to be investigated. People, who take distance education course, they could may remain within the process…

  4. Improving Virtual Team Collaboration Outcomes through Collaboration Process Structuring

    ERIC Educational Resources Information Center

    Dittman, Dawn R.; Hawkes, Mark; Deokar, Amit V.; Sarnikar, Surendra

    2010-01-01

    The ability to collaborate in a virtual team is a necessary skill set for today's knowledge workers and students to be effective in their work. Past research indicates that knowledge workers and students need to establish a formal process to perform work, develop clear goals and objectives, and facilitate better communication among team members.…

  5. Analysing the Suitability of Virtual Worlds for Direct Instruction and Individual Learning Activities

    ERIC Educational Resources Information Center

    Zarraonandia, Telmo; Francese, Rita; Passero, Ignazio; Diaz, Paloma; Tortora, Genoveffa

    2014-01-01

    Despite several researchers reporting evidence that 3D Virtual Worlds can be used to effectively support educational processes in recent years, the integration of this technology in real learning processes is not as commonplace as in other educational technologies. Instructional designers have to balance the cost associated with the development of…

  6. Making Sense of Students' Actions in an Open-Ended Virtual Laboratory Environment

    ERIC Educational Resources Information Center

    Gal, Ya'akov; Uzan, Oriel; Belford, Robert; Karabinos, Michael; Yaron, David

    2015-01-01

    A process for analyzing log files collected from open-ended learning environments is developed and tested on a virtual lab problem involving reaction stoichiometry. The process utilizes a set of visualization tools that, by grouping student actions in a hierarchical manner, helps experts make sense of the linear list of student actions recorded in…

  7. Toward a virtual platform for materials processing

    NASA Astrophysics Data System (ADS)

    Schmitz, G. J.; Prahl, U.

    2009-05-01

    Any production is based on materials eventually becoming components of a final product. Material properties being determined by the microstructure of the material thus are of utmost importance both for productivity and reliability of processing during production and for application and reliability of the product components. A sound prediction of materials properties therefore is highly important. Such a prediction requires tracking of microstructure and properties evolution along the entire component life cycle starting from a homogeneous, isotropic and stress-free melt and eventually ending in failure under operational load. This article will outline ongoing activities at the RWTH Aachen University aiming at establishing a virtual platform for materials processing comprising a virtual, integrative numerical description of processes and of the microstructure evolution along the entire production chain and even extending further toward microstructure and properties evolution under operational conditions.

  8. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2009-09-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  9. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2010-11-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  10. Virtual reality in the treatment of persecutory delusions: randomised controlled experimental study testing how to reduce delusional conviction.

    PubMed

    Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M

    2016-07-01

    Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Cognitive therapy using virtual reality could prove highly effective in treating delusions. © The Royal College of Psychiatrists 2016.

  11. Virtual reality in the treatment of persecutory delusions: randomised controlled experimental study testing how to reduce delusional conviction

    PubMed Central

    Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M.

    2016-01-01

    Background Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. Aims To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Method Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. Results In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Conclusion Cognitive therapy using virtual reality could prove highly effective in treating delusions. PMID:27151071

  12. Australian DefenceScience. Volume 16, Number 2, Winter

    DTIC Science & Technology

    2008-01-01

    Making Virtual Advisers speedily interactive To provide an authentically interactive experience for humans working with Virtual Advisers, the Virtual...peer trusted and strong authentication for checking of security credentials without recourse to third parties or infrastructure, thus eliminating...multiple passwords, or carry around multiple security tokens.” Each CodeStick device is readied for use with a biometric authentication process. Since

  13. Exploring Learning Performance toward Cognitive Approaches of a Virtual Companion System in LINE App for m-Learning

    ERIC Educational Resources Information Center

    Hsieh, Sheng-Wen; Wu, Min-Ping

    2013-01-01

    This paper used a Virtual Companion System (VCS) to examine how specific design variables within virtual learning companion affect the learning process of learners as defined by the cognitive continuum of field-dependent, field-independent and field-mixed learners in LINE app for m-learning. The data were collected from 198 participants in a…

  14. Social Presence and Transactional Distance as an Antecedent to Knowledge Sharing in Virtual Learning Communities

    ERIC Educational Resources Information Center

    Karaoglan Yilmaz, Fatma Gizem

    2017-01-01

    Today, the use of social network-based virtual learning communities is increasing rapidly in terms of knowledge management. An important dynamic of knowledge management processes is the knowledge sharing behaviors (KSB) in community. The purpose of this study is to examine the KSB of the students in a Facebook-based virtual community created…

  15. Virtual IED sensor at an rf-biased electrode in low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Bogdanova, Maria; Lopaev, Dmitry; Zyryanov, Sergey; Rakhimov, Alexander

    2016-09-01

    The majority of present-day technologies resort to ion-assisted processes in rf low-pressure plasma. In order to control the process precisely, the energy distribution of ions (IED) bombarding the sample placed on the rf-biased electrode should be tracked. In this work the ``Virtual IED sensor'' concept is considered. The idea is to obtain the IED ``virtually'' from the plasma sheath model including a set of externally measurable discharge parameters. The applicability of the ``Virtual IED sensor'' concept was studied for dual-frequency asymmetric ICP and CCP discharges. The IED measurements were carried out in Ar and H2 plasmas in a wide range of conditions. The calculated IEDs were compared to those measured by the Retarded Field Energy Analyzer. To calibrate the ``Virtual IED sensor'', the ion flux was measured by the pulsed self-bias method and then compared to plasma density measurements by Langmuir and hairpin probes. It is shown that if there is a reliable calibration procedure, the ``Virtual IED sensor'' can be successfully realized on the basis of analytical and semianalytical plasma sheath models including measurable discharge parameters. This research is supported by Russian Science Foundation (RSF) Grant 14-12-01012.

  16. The communication in industrialised building system (IBS) construction project: Virtual environment

    NASA Astrophysics Data System (ADS)

    Pozin, Mohd Affendi Ahmad; Nawi, Mohd Nasrun Mohd

    2017-10-01

    Large portion of numbers team organization in the IBS construction sector is known are being fragmented. That is contributed from a segregation of construction activity thus create team working in virtually. Virtual team are the nature when teams are working in distributed area, across culture and time. Therefore, teams can be respond to the task without relocating to the site project and settle down a problem through information and communication technology (ICT). The emergence of virtual team are carry out by advancements in communication technologies as a medium to improve project team communication in project delivery process on IBS construction. Based on literature review from previous study and data collected from interviewing, this paper aim to identified communication challenges among project team members according to current project development practices in IBS construction project. Hence, in attempt to develop effective communication through the advantages of virtual team approach for IBS construction project. In order to ensure the data is gathered comprehensively and accurately, the data was collected from project managers by using semi structured interview method. It was found that virtual team approach could be enable competitive challenges on complexity in the construction project management process.

  17. Traditional microscopy instruction versus process-oriented virtual microscopy instruction: a naturalistic experiment with control group.

    PubMed

    Helle, Laura; Nivala, Markus; Kronqvist, Pauliina; Gegenfurtner, Andreas; Björk, Pasi; Säljö, Roger

    2011-03-30

    Virtual microscopy is being introduced in medical education as an approach for learning how to interpret information in microscopic specimens. It is, however, far from evident how to incorporate its use into existing teaching practice. The aim of the study was to explore the consequences of introducing virtual microscopy tasks into an undergraduate pathology course in an attempt to render the instruction more process-oriented. The research questions were: 1) How is virtual microscopy perceived by students? 2) Does work on virtual microscopy tasks contribute to improvement in performance in microscopic pathology in comparison with attending assistant-led demonstrations only? During a one-week period, an experimental group completed three sets of virtual microscopy homework assignments in addition to attending demonstrations. A control group attended the demonstrations only. Performance in microscopic pathology was measured by a pre-test and a post-test. Student perceptions of regular instruction and virtual microscopy were collected one month later by administering the Inventory of Intrinsic Motivation and open-ended questions. The students voiced an appreciation for virtual microscopy for the purposes of the course and for self-study. As for learning gains, the results indicated that learning was speeded up in a subgroup of students consisting of conscientious high achievers. The enriched instruction model may be suited as such for elective courses following the basic course. However, the instructional model needs further development to be suited for basic courses.

  18. Design of virtual SCADA simulation system for pressurized water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wijaksono, Umar, E-mail: umar.wijaksono@student.upi.edu; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles ofmore » energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.« less

  19. Demonstration of three gorges archaeological relics based on 3D-visualization technology

    NASA Astrophysics Data System (ADS)

    Xu, Wenli

    2015-12-01

    This paper mainly focuses on the digital demonstration of three gorges archeological relics to exhibit the achievements of the protective measures. A novel and effective method based on 3D-visualization technology, which includes large-scaled landscape reconstruction, virtual studio, and virtual panoramic roaming, etc, is proposed to create a digitized interactive demonstration system. The method contains three stages: pre-processing, 3D modeling and integration. Firstly, abundant archaeological information is classified according to its history and geographical information. Secondly, build up a 3D-model library with the technology of digital images processing and 3D modeling. Thirdly, use virtual reality technology to display the archaeological scenes and cultural relics vividly and realistically. The present work promotes the application of virtual reality to digital projects and enriches the content of digital archaeology.

  20. A morphologically preserved multi-resolution TIN surface modeling and visualization method for virtual globes

    NASA Astrophysics Data System (ADS)

    Zheng, Xianwei; Xiong, Hanjiang; Gong, Jianya; Yue, Linwei

    2017-07-01

    Virtual globes play an important role in representing three-dimensional models of the Earth. To extend the functioning of a virtual globe beyond that of a "geobrowser", the accuracy of the geospatial data in the processing and representation should be of special concern for the scientific analysis and evaluation. In this study, we propose a method for the processing of large-scale terrain data for virtual globe visualization and analysis. The proposed method aims to construct a morphologically preserved multi-resolution triangulated irregular network (TIN) pyramid for virtual globes to accurately represent the landscape surface and simultaneously satisfy the demands of applications at different scales. By introducing cartographic principles, the TIN model in each layer is controlled with a data quality standard to formulize its level of detail generation. A point-additive algorithm is used to iteratively construct the multi-resolution TIN pyramid. The extracted landscape features are also incorporated to constrain the TIN structure, thus preserving the basic morphological shapes of the terrain surface at different levels. During the iterative construction process, the TIN in each layer is seamlessly partitioned based on a virtual node structure, and tiled with a global quadtree structure. Finally, an adaptive tessellation approach is adopted to eliminate terrain cracks in the real-time out-of-core spherical terrain rendering. The experiments undertaken in this study confirmed that the proposed method performs well in multi-resolution terrain representation, and produces high-quality underlying data that satisfy the demands of scientific analysis and evaluation.

  1. Exploiting Virtual Synchrony in Distributed Systems

    DTIC Science & Technology

    1987-02-01

    for distributed systems yield the best performance relative to the level of synchronization guaranteed by the primitive . A pro- grammer could then... synchronization facility. Semaphores Replicated binary and general semaphores . Monitors Monitor lock, condition variables and signals. Deadlock detection...We describe applications of a new software abstraction called the virtually synchronous process group. Such a group consists of a set of processes

  2. The Role of Community Trust and Altruism in Knowledge Sharing: An Investigation of a Virtual Community of Teacher Professionals

    ERIC Educational Resources Information Center

    Chen, Hsiu-Ling; Fan, Hsueh-Liang; Tsai, Chin-Chung

    2014-01-01

    The knowledge sharing process within a virtual community of teacher professionals is viewed as a social exchange process in that the knowledge sharing intention and behavior of individuals are influenced by the exchange relationship among members. However, relatively little research has focused on this approach to exploring the factors that…

  3. Designing a Virtual Item Bank Based on the Techniques of Image Processing

    ERIC Educational Resources Information Center

    Liao, Wen-Wei; Ho, Rong-Guey

    2011-01-01

    One of the major weaknesses of the item exposure rates of figural items in Intelligence Quotient (IQ) tests lies in its inaccuracies. In this study, a new approach is proposed and a useful test tool known as the Virtual Item Bank (VIB) is introduced. The VIB combine Automatic Item Generation theory and image processing theory with the concepts of…

  4. Providing Guidance in Virtual Lab Experimentation: The Case of an Experiment Design Tool

    ERIC Educational Resources Information Center

    Efstathiou, Charalampos; Hovardas, Tasos; Xenofontos, Nikoletta A.; Zacharia, Zacharias C.; deJong, Ton; Anjewierden, Anjo; van Riesen, Siswa A. N.

    2018-01-01

    The present study employed a quasi-experimental design to assess a computer-based tool, which was intended to scaffold the task of designing experiments when using a virtual lab for the process of experimentation. In particular, we assessed the impact of this tool on primary school students' cognitive processes and inquiry skills before and after…

  5. Improving Usage Statistics Processing for a Library Consortium: The Virtual Library of Virginia's Experience

    ERIC Educational Resources Information Center

    Matthews, Tansy E.

    2009-01-01

    This article describes the development of the Virtual Library of Virginia (VIVA). The VIVA statistics-processing system remains a work in progress. Member libraries will benefit from the ability to obtain the actual data from the VIVA site, rather than just the summaries, so a project to make these data available is currently being planned. The…

  6. The Synergetic Effect of Learning Styles on the Interaction between Virtual Environments and the Enhancement of Spatial Thinking

    ERIC Educational Resources Information Center

    Hauptman, Hanoch; Cohen, Arie

    2011-01-01

    Students have difficulty learning 3D geometry; spatial thinking is an important aspect of the learning processes in this academic area. In light of the unique features of virtual environments and the influence of metacognitive processes (e.g., self-regulating questions) on the teaching of mathematics, we assumed that a combination of…

  7. Leading virtual teams: hierarchical leadership, structural supports, and shared team leadership.

    PubMed

    Hoch, Julia E; Kozlowski, Steve W J

    2014-05-01

    Using a field sample of 101 virtual teams, this research empirically evaluates the impact of traditional hierarchical leadership, structural supports, and shared team leadership on team performance. Building on Bell and Kozlowski's (2002) work, we expected structural supports and shared team leadership to be more, and hierarchical leadership to be less, strongly related to team performance when teams were more virtual in nature. As predicted, results from moderation analyses indicated that the extent to which teams were more virtual attenuated relations between hierarchical leadership and team performance but strengthened relations for structural supports and team performance. However, shared team leadership was significantly related to team performance regardless of the degree of virtuality. Results are discussed in terms of needed research extensions for understanding leadership processes in virtual teams and practical implications for leading virtual teams. (c) 2014 APA, all rights reserved.

  8. [Virtual reality in neurosurgery].

    PubMed

    Tronnier, V M; Staubert, A; Bonsanto, M M; Wirtz, C R; Kunze, S

    2000-03-01

    Virtual reality enables users to immerse themselves in a virtual three-dimensional world and to interact in this world. The simulation is different from the kind in computer games, in which the viewer is active but acts in a nonrealistic world, or on the TV screen, where we are passively driven in an active world. In virtual reality elements look realistic, they change their characteristics and have almost real-world unpredictability. Virtual reality is not only implemented in gambling dens and the entertainment industry but also in manufacturing processes (cars, furniture etc.), military applications and medicine. Especially the last two areas are strongly correlated, because telemedicine or telesurgery was originated for military reasons to operate on war victims from a secure distance or to perform surgery on astronauts in an orbiting space station. In medicine and especially neurosurgery virtual-reality methods are used for education, surgical planning and simulation on a virtual patient.

  9. Architecture of web services in the enhancement of real-time 3D video virtualization in cloud environment

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Wang, Qi; Alcaraz-Calero, Jose M.; Grecos, Christos

    2016-04-01

    This paper proposes a new approach to improving the application of 3D video rendering and streaming by jointly exploring and optimizing both cloud-based virtualization and web-based delivery. The proposed web service architecture firstly establishes a software virtualization layer based on QEMU (Quick Emulator), an open-source virtualization software that has been able to virtualize system components except for 3D rendering, which is still in its infancy. The architecture then explores the cloud environment to boost the speed of the rendering at the QEMU software virtualization layer. The capabilities and inherent limitations of Virgil 3D, which is one of the most advanced 3D virtual Graphics Processing Unit (GPU) available, are analyzed through benchmarking experiments and integrated into the architecture to further speed up the rendering. Experimental results are reported and analyzed to demonstrate the benefits of the proposed approach.

  10. Openwebglobe 2: Visualization of Complex 3D-GEODATA in the (mobile) Webbrowser

    NASA Astrophysics Data System (ADS)

    Christen, M.

    2016-06-01

    Providing worldwide high resolution data for virtual globes consists of compute and storage intense tasks for processing data. Furthermore, rendering complex 3D-Geodata, such as 3D-City models with an extremely high polygon count and a vast amount of textures at interactive framerates is still a very challenging task, especially on mobile devices. This paper presents an approach for processing, caching and serving massive geospatial data in a cloud-based environment for large scale, out-of-core, highly scalable 3D scene rendering on a web based virtual globe. Cloud computing is used for processing large amounts of geospatial data and also for providing 2D and 3D map data to a large amount of (mobile) web clients. In this paper the approach for processing, rendering and caching very large datasets in the currently developed virtual globe "OpenWebGlobe 2" is shown, which displays 3D-Geodata on nearly every device.

  11. A Computational Chemistry Database for Semiconductor Processing

    NASA Technical Reports Server (NTRS)

    Jaffe, R.; Meyyappan, M.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    The concept of 'virtual reactor' or 'virtual prototyping' has received much attention recently in the semiconductor industry. Commercial codes to simulate thermal CVD and plasma processes have become available to aid in equipment and process design efforts, The virtual prototyping effort would go nowhere if codes do not come with a reliable database of chemical and physical properties of gases involved in semiconductor processing. Commercial code vendors have no capabilities to generate such a database, rather leave the task to the user of finding whatever is needed. While individual investigations of interesting chemical systems continue at Universities, there has not been any large scale effort to create a database. In this presentation, we outline our efforts in this area. Our effort focuses on the following five areas: 1. Thermal CVD reaction mechanism and rate constants. 2. Thermochemical properties. 3. Transport properties.4. Electron-molecule collision cross sections. and 5. Gas-surface interactions.

  12. Nature and origins of virtual environments - A bibliographical essay

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.

    1991-01-01

    Virtual environments presented via head-mounted, computer-driven displays provide a new media for communication. They may be analyzed by considering: (1) what may be meant by an environment; (2) what is meant by the process of virtualization; and (3) some aspects of human performance that constrain environmental design. Their origins are traced from previous work in vehicle simulation and multimedia research. Pointers are provided to key technical references, in the dispersed, archival literature, that are relevant to the development and evaluation of virtual-environment interface systems.

  13. Virtual Gaming Simulation in Nursing Education: A Focus Group Study.

    PubMed

    Verkuyl, Margaret; Hughes, Michelle; Tsui, Joyce; Betts, Lorraine; St-Amant, Oona; Lapum, Jennifer L

    2017-05-01

    The use of serious gaming in a virtual world is a novel pedagogical approach in nursing education. A virtual gaming simulation was implemented in a health assessment class that focused on mental health and interpersonal violence. The study's purpose was to explore students' experiences of the virtual gaming simulation. Three focus groups were conducted with a convenience sample of 20 first-year nursing students after they completed the virtual gaming simulation. Analysis yielded five themes: (a) Experiential Learning, (b) The Learning Process, (c) Personal Versus Professional, (d) Self-Efficacy, and (e) Knowledge. Virtual gaming simulation can provide experiential learning opportunities that promote engagement and allow learners to acquire and apply new knowledge while practicing skills in a safe and realistic environment. [J Nurs Educ. 2017;56(5):274-280.]. Copyright 2017, SLACK Incorporated.

  14. Evaluation of virtual simulation in a master's-level nurse education certificate program.

    PubMed

    Foronda, Cynthia; Lippincott, Christine; Gattamorta, Karina

    2014-11-01

    Master's-level, nurse education certificate students performed virtual clinical simulations as a portion of their clinical practicum. Virtual clinical simulation is an innovative pedagogy using avatars in Web-based platforms to provide simulated clinical experiences. The purpose of this mixed-methods study was to evaluate nurse educator students' experience with virtual simulation and the effect of virtual simulation on confidence in teaching ability. Aggregated quantitative results yielded no significant change in confidence in teaching ability. Individually, some students indicated change of either increased or decreased confidence, whereas others exhibited no change in confidence after engaging in virtual simulation. Qualitative findings revealed a process of precursors of anxiety and frustration with technical difficulties followed by outcomes of appreciation and learning. Instructor support was a mediating factor to decrease anxiety and technical difficulties. This study served as a starting point regarding the application of a virtual world to teach the art of instruction. As the movement toward online education continues, educators should further explore use of virtual simulation to prepare nurse educators.

  15. Increasing Accessibility to the Blind of Virtual Environments, Using a Virtual Mobility Aid Based On the "EyeCane": Feasibility Study

    PubMed Central

    Maidenbaum, Shachar; Levy-Tzedek, Shelly; Chebat, Daniel-Robert; Amedi, Amir

    2013-01-01

    Virtual worlds and environments are becoming an increasingly central part of our lives, yet they are still far from accessible to the blind. This is especially unfortunate as such environments hold great potential for them for uses such as social interaction, online education and especially for use with familiarizing the visually impaired user with a real environment virtually from the comfort and safety of his own home before visiting it in the real world. We have implemented a simple algorithm to improve this situation using single-point depth information, enabling the blind to use a virtual cane, modeled on the “EyeCane” electronic travel aid, within any virtual environment with minimal pre-processing. Use of the Virtual-EyeCane, enables this experience to potentially be later used in real world environments with identical stimuli to those from the virtual environment. We show the fast-learned practical use of this algorithm for navigation in simple environments. PMID:23977316

  16. Virtual test rig to improve the design and optimisation process of the vehicle steering and suspension systems

    NASA Astrophysics Data System (ADS)

    Mántaras, Daniel A.; Luque, Pablo

    2012-10-01

    A virtual test rig is presented using a three-dimensional model of the elasto-kinematic behaviour of a vehicle. A general approach is put forward to determine the three-dimensional position of the body and the main parameters which influence the handling of the vehicle. For the design process, the variable input data are the longitudinal and lateral acceleration and the curve radius, which are defined by the user as a design goal. For the optimisation process, once the vehicle has been built, the variable input data are the travel of the four struts and the steering wheel angle, which is obtained through monitoring the vehicle. The virtual test rig has been applied to a standard vehicle and the validity of the results has been proven.

  17. UkrVO astronomical WEB services

    NASA Astrophysics Data System (ADS)

    Mazhaev, A.

    2017-02-01

    Ukraine Virtual Observatory (UkrVO) has been a member of the International Virtual Observatory Alliance (IVOA) since 2011. The virtual observatory (VO) is not a magic solution to all problems of data storing and processing, but it provides certain standards for building infrastructure of astronomical data center. The astronomical databases help data mining and offer to users an easy access to observation metadata, images within celestial sphere and results of image processing. The astronomical web services (AWS) of UkrVO give to users handy tools for data selection from large astronomical catalogues for a relatively small region of interest in the sky. Examples of the AWS usage are showed.

  18. Advancing clinical reasoning in virtual patients - development and application of a conceptual framework.

    PubMed

    Hege, Inga; Kononowicz, Andrzej A; Berman, Norman B; Lenzer, Benedikt; Kiesewetter, Jan

    2018-01-01

    Background: Clinical reasoning is a complex skill students have to acquire during their education. For educators it is difficult to explain their reasoning to students, because it is partly an automatic and unconscious process. Virtual Patients (VPs) are used to support the acquisition of clinical reasoning skills in healthcare education. However, until now it remains unclear which features or settings of VPs optimally foster clinical reasoning. Therefore, our aims were to identify key concepts of the clinical reasoning process in a qualitative approach and draw conclusions on how each concept can be enhanced to advance the learning of clinical reasoning with virtual patients. Methods: We chose a grounded theory approach to identify key categories and concepts of learning clinical reasoning and develop a framework. Throughout this process, the emerging codes were discussed with a panel of interdisciplinary experts. In a second step we applied the framework to virtual patients. Results: Based on the data we identified the core category as the "multifactorial nature of learning clinical reasoning". This category is reflected in the following five main categories: Psychological Theories, Patient-centeredness, Context, Learner-centeredness, and Teaching/Assessment. Each category encompasses between four and six related concepts. Conclusions: With our approach we were able to elaborate how key categories and concepts of clinical reasoning can be applied to virtual patients. This includes aspects such as allowing learners to access a large number of VPs with adaptable levels of complexity and feedback or emphasizing dual processing, errors, and uncertainty.

  19. Advancing clinical reasoning in virtual patients – development and application of a conceptual framework

    PubMed Central

    Hege, Inga; Kononowicz, Andrzej A.; Berman, Norman B.; Lenzer, Benedikt; Kiesewetter, Jan

    2018-01-01

    Background: Clinical reasoning is a complex skill students have to acquire during their education. For educators it is difficult to explain their reasoning to students, because it is partly an automatic and unconscious process. Virtual Patients (VPs) are used to support the acquisition of clinical reasoning skills in healthcare education. However, until now it remains unclear which features or settings of VPs optimally foster clinical reasoning. Therefore, our aims were to identify key concepts of the clinical reasoning process in a qualitative approach and draw conclusions on how each concept can be enhanced to advance the learning of clinical reasoning with virtual patients. Methods: We chose a grounded theory approach to identify key categories and concepts of learning clinical reasoning and develop a framework. Throughout this process, the emerging codes were discussed with a panel of interdisciplinary experts. In a second step we applied the framework to virtual patients. Results: Based on the data we identified the core category as the "multifactorial nature of learning clinical reasoning". This category is reflected in the following five main categories: Psychological Theories, Patient-centeredness, Context, Learner-centeredness, and Teaching/Assessment. Each category encompasses between four and six related concepts. Conclusions: With our approach we were able to elaborate how key categories and concepts of clinical reasoning can be applied to virtual patients. This includes aspects such as allowing learners to access a large number of VPs with adaptable levels of complexity and feedback or emphasizing dual processing, errors, and uncertainty. PMID:29497697

  20. An intersubject variable regional anesthesia simulator with a virtual patient architecture.

    PubMed

    Ullrich, Sebastian; Grottke, Oliver; Fried, Eduard; Frommen, Thorsten; Liao, Wei; Rossaint, Rolf; Kuhlen, Torsten; Deserno, Thomas M

    2009-11-01

    The main purpose is to provide an intuitive VR-based training environment for regional anesthesia (RA). The research question is how to process subject-specific datasets, organize them in a meaningful way and how to perform the simulation for peripheral regions. We propose a flexible virtual patient architecture and methods to process datasets. Image acquisition, image processing (especially segmentation), interactive nerve modeling and permutations (nerve instantiation) are described in detail. The simulation of electric impulse stimulation and according responses are essential for the training of peripheral RA and solved by an approach based on the electric distance. We have created an XML-based virtual patient database with several subjects. Prototypes of the simulation are implemented and run on multimodal VR hardware (e.g., stereoscopic display and haptic device). A first user pilot study has confirmed our approach. The virtual patient architecture enables support for arbitrary scenarios on different subjects. This concept can also be used for other simulators. In future work, we plan to extend the simulation and conduct further evaluations in order to provide a tool for routine training for RA.

  1. Optoelectronics technologies for Virtual Reality systems

    NASA Astrophysics Data System (ADS)

    Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław

    2017-08-01

    Solutions in the field of virtual reality are very strongly associated with optoelectronic technologies. This applies to both process design and operation of VR applications. Technologies such as 360 cameras and 3D scanners significantly improve the design work. What is more, HMD displays with high field of view or optoelectronic Motion Capture systems and 3D cameras guarantee an extraordinary experience in immersive VR applications. This article reviews selected technologies from the perspective of their use in a broadly defined process of creating and implementing solutions for virtual reality. There is also the ability to create, modify and adapt new approaches that show team own work (SteamVR tracker). Most of the introduced examples are effectively used by authors to create different VR applications. The use of optoelectronic technology in virtual reality is presented in terms of design and operation of the system as well as referring to specific applications. Designers and users of VR systems should take a close look on new optoelectronics solutions, as they can significantly contribute to increased work efficiency and offer completely new opportunities for virtual world reception.

  2. BIM Based Virtual Environment for Fire Emergency Evacuation

    PubMed Central

    Rezgui, Yacine; Ong, Hoang N.

    2014-01-01

    Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management. PMID:25197704

  3. Physical environment virtualization for human activities recognition

    NASA Astrophysics Data System (ADS)

    Poshtkar, Azin; Elangovan, Vinayak; Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen

    2015-05-01

    Human activity recognition research relies heavily on extensive datasets to verify and validate performance of activity recognition algorithms. However, obtaining real datasets are expensive and highly time consuming. A physics-based virtual simulation can accelerate the development of context based human activity recognition algorithms and techniques by generating relevant training and testing videos simulating diverse operational scenarios. In this paper, we discuss in detail the requisite capabilities of a virtual environment to aid as a test bed for evaluating and enhancing activity recognition algorithms. To demonstrate the numerous advantages of virtual environment development, a newly developed virtual environment simulation modeling (VESM) environment is presented here to generate calibrated multisource imagery datasets suitable for development and testing of recognition algorithms for context-based human activities. The VESM environment serves as a versatile test bed to generate a vast amount of realistic data for training and testing of sensor processing algorithms. To demonstrate the effectiveness of VESM environment, we present various simulated scenarios and processed results to infer proper semantic annotations from the high fidelity imagery data for human-vehicle activity recognition under different operational contexts.

  4. Impact of a Virtual Clinic in a Paediatric Cardiology Network on Northeast Brazil.

    PubMed

    de Araújo, Juliana Sousa Soares; Dias Filho, Adalberto Vieira; Silva Gomes, Renata Grigório; Regis, Cláudio Teixeira; Rodrigues, Klecida Nunes; Siqueira, Nicoly Negreiros; Albuquerque, Fernanda Cruz de Lira; Mourato, Felipe Alves; Mattos, Sandra da Silva

    2015-01-01

    Introduction. Congenital heart diseases (CHD) affect approximately 1% of live births and is an important cause of neonatal morbidity and mortality. Despite that, there is a shortage of paediatric cardiologists in Brazil, mainly in the northern and northeastern regions. In this context, the implementation of virtual outpatient clinics with the aid of different telemedicine resources may help in the care of children with heart defects. Methods. Patients under 18 years of age treated in virtual outpatient clinics between January 2013 and May 2014 were selected. They were divided into 2 groups: those who had and those who had not undergone a screening process for CHD in the neonatal period. Clinical and demographic characteristics were collected for further statistical analysis. Results. A total of 653 children and teenagers were treated in the virtual outpatient clinics. From these, 229 had undergone a neonatal screening process. Fewer abnormalities were observed on the physical examination of the screened patients. Conclusion. The implementation of pediatric cardiology virtual outpatient clinics can have a positive impact in the care provided to people in areas with lack of skilled professionals.

  5. Performance analysis of cooperative virtual MIMO systems for wireless sensor networks.

    PubMed

    Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan

    2013-05-28

    Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs.

  6. Performance Analysis of Cooperative Virtual MIMO Systems for Wireless Sensor Networks

    PubMed Central

    Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan

    2013-01-01

    Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs. PMID:23760087

  7. Virtual blood bank

    PubMed Central

    Wong, Kit Fai

    2011-01-01

    Virtual blood bank is the computer-controlled, electronically linked information management system that allows online ordering and real-time, remote delivery of blood for transfusion. It connects the site of testing to the point of care at a remote site in a real-time fashion with networked computers thus maintaining the integrity of immunohematology test results. It has taken the advantages of information and communication technologies to ensure the accuracy of patient, specimen and blood component identification and to enhance personnel traceability and system security. The built-in logics and process constraints in the design of the virtual blood bank can guide the selection of appropriate blood and minimize transfusion risk. The quality of blood inventory is ascertained and monitored, and an audit trail for critical procedures in the transfusion process is provided by the paperless system. Thus, the virtual blood bank can help ensure that the right patient receives the right amount of the right blood component at the right time. PMID:21383930

  8. Network testbed creation and validation

    DOEpatents

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.; Watts, Kristopher K.; Sweeney, Andrew John

    2017-03-21

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices, embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.

  9. A Process Study of the Development of Virtual Research Environments

    NASA Astrophysics Data System (ADS)

    Ahmed, I.; Cooper, K.; McGrath, R.; Griego, G.; Poole, M. S.; Hanisch, R. J.

    2014-05-01

    In recent years, cyberinfrastructures have been deployed to create virtual research environments (VREs) - such as the Virtual Astronomical Observatory (VAO) - to enhance the quality and speed of scientific research, and to foster global scientific communities. Our study utilizes process methodology to study the evolution of VREs. This approach focuses on a series of events that bring about or lead to some outcome, and attempts to specify the generative mechanism that could produce the event series. This paper briefly outlines our approach and describes initial results of a case study of the VAO, one of the participating VREs. The case study is based on interviews with seven individuals participating in the VAO, and analysis of project documents and online resources. These sources are hand tagged to identify events related to the thematic tracks, to yield a narrative of the project. Results demonstrate the event series of an organization through traditional methods augmented by virtual sources.

  10. Network testbed creation and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices,more » embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.« less

  11. The Development of Second Language Critical Thinking in a Virtual Language Learning Environment: A Process-Oriented Mixed-Method Study

    ERIC Educational Resources Information Center

    Mroz, Aurore

    2015-01-01

    This article presents a process-oriented mixed-method study, focusing on the emergence of second language (L2) critical thinking (CT) skills in the collaborative discourse produced by a focal group of five college-level students of French working in a virtual language learning environment (the VLLE Cinet Second Life). Levels of CT ability were…

  12. Getting with the times: a narrative review of the literature on group decision making in virtual environments and implications for promotions committees.

    PubMed

    Acai, Anita; Sonnadara, Ranil R; O'Neill, Thomas A

    2018-06-01

    Concerns around the time and administrative burden of trainee promotion processes have been reported, making virtual meetings an attractive option for promotions committees in undergraduate and postgraduate medicine. However, whether such meetings can uphold the integrity of decision-making processes has yet to be explored. This narrative review aimed to summarize the literature on decision making in virtual teams, discuss ways to improve the effectiveness of virtual teams, and explore their implications for practice. In August 2017, the Web of Science platform was searched with the terms 'decision making' AND 'virtual teams' for articles published within the last 20 years. The search yielded 336 articles, which was narrowed down to a final set of 188 articles. A subset of these, subjectively deemed to be of high-quality and relevant to the work of promotions committees, was included in this review. Virtual team functioning was explored with respect to team composition and development, idea generation and selection, group memory, and communication. While virtual teams were found to potentially offer a number of key benefits over face-to-face meetings including convenience and scheduling flexibility, inclusion of members at remote sites, and enhanced idea generation and external storage, these benefits must be carefully weighed against potential challenges involving planning and coordination, integration of perspectives, and relational conflict among members, all of which can potentially reduce decision-making quality. Avenues to address these issues and maximize the outcomes of virtual promotions meetings are offered in light of the evidence.

  13. Virtual care policy recommendations for patient-centred primary care: findings of a consensus policy dialogue using a nominal group technique.

    PubMed

    Shaw, James; Jamieson, Trevor; Agarwal, Payal; Griffin, Bailey; Wong, Ivy; Bhatia, R Sacha

    2017-01-01

    Background The development of new virtual care technologies (including telehealth and telemedicine) is growing rapidly, leading to a number of challenges related to health policy and planning for health systems around the world. Methods We brought together a diverse group of health system stakeholders, including patient representatives, to engage in policy dialogue to set health system priorities for the application of virtual care in the primary care sector in the Province of Ontario, Canada. We applied a nominal group technique (NGT) process to determine key priorities, and synthesized these priorities with group discussion to develop recommendations for virtual care policy. Methods included a structured priority ranking process, open-ended note-taking, and thematic analysis to identify priorities. Results Recommendations were summarized under the following themes: (a) identify clear health system leadership to embed virtual care strategies into all aspects of primary and community care; (b) make patients the focal point of health system decision-making; (c) leverage incentives to achieve meaningful health system improvements; and (d) building virtual care into streamlined workflows. Two key implications of our policy dialogue are especially relevant for an international audience. First, shifting the dialogue away from technology toward more meaningful patient engagement will enable policy planning for applications of technology that better meet patients' needs. Second, a strong conceptual framework on guiding the meaningful use of technology in health care settings is essential for intelligent planning of virtual care policy. Conclusions Policy planning for virtual care needs to shift toward a stronger focus on patient engagement to understand patients' needs.

  14. Exploring the use of Virtual Field Trips with elementary school teachers: A collaborative action research approach

    NASA Astrophysics Data System (ADS)

    Scott, Jeffrey Lance

    This research examines how elementary school teachers, when supported, use Virtual Field Trips (VFTs) to address the curricula in meaningful ways. I conducted a qualitative study with six teachers, in a collaborative action research context over a six month period. The teachers, five males and one female, all taught either grade five or six and utilized Virtual Field Trips within a variety of curricula areas including science, social studies, music and language arts. In addition, the thesis examines resulting integration of technology into the regular classroom program as a product of the utilization of Virtual Field Trips. The process of collaborative action research was applied as a means of personal and professional growth both for the participants and the researcher/facilitator. By the end of the research study, all participants had learned to integrate Virtual Field Trips into their classroom program, albeit with different levels of success and in different curricula areas. The development of attitudes, skills and knowledge for students and teachers alike was fostered through the participation in Virtual Field Trips. A common concern regarding the utilization of Virtual Field Trips was the time spent locating an appropriate site that met curricula expectations. Participation in the collaborative action research process allowed each teacher to grow professionally, personally and socially. Each participant strongly encouraged the utilization of a long term project with a common area of exploration as a means for positive professional development. Implications and recommendations for future research on the utilization of Virtual Field Trips, as well as the viability of collaborative action research to facilitate teacher development are presented.

  15. Fortran graphics routines for the Macintosh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shore, B.W.

    1992-06-01

    The Language Systems MPW Fortran is a popular Fortran compiler for the Macintosh. Unfortunately, it does not have any built-in calls to graphics routines (such as are available with Graflib on the NLTSS), so there is no simple way to make x-y plots from calls within Fortran. Instead, a file of data must be created and a commercial plotting routine (such as IGOR or KALEIDAGRAPH) or a spreadsheet with graphics (such as WINGZ) must be applied to post-process the data. The Macintosh does have available many built-in calls (to the Macintosh Toolbox) that allow drawing shapes and lines with quickdraw,more » but these are not designed for plotting functions and are difficult to learn to use. This work outlines some Fortran routines that can be called from LS Fortran to make the necessary calls to the Macintosh toolbox to create simple two-dimensional plots or contour plots. The source code DEMOGRAF.F shows how these routines may be used. DEMOGRAF.F simply demonstrates some Fortran subroutines that can be called with language systems MPW Fortran on the Macintosh to plot arrays of numbers. The subroutines essentially mimic the functionality that has been available at LTSS and NLTSS and UNICOS at LLNL. The graphics primitives are kept in four separate files, each containing several subroutines. The subroutines are compiled and stored in a library file, LIBgraf.o. Makefile is used to link this library to the source code. A discussion is included on requirements for interactive plotting of functions.« less

  16. Performance verification of network function virtualization in software defined optical transport networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Hu, Liyazhou; Wang, Wei; Li, Yajie; Zhang, Jie

    2017-01-01

    With the continuous opening of resource acquisition and application, there are a large variety of network hardware appliances deployed as the communication infrastructure. To lunch a new network application always implies to replace the obsolete devices and needs the related space and power to accommodate it, which will increase the energy and capital investment. Network function virtualization1 (NFV) aims to address these problems by consolidating many network equipment onto industry standard elements such as servers, switches and storage. Many types of IT resources have been deployed to run Virtual Network Functions (vNFs), such as virtual switches and routers. Then how to deploy NFV in optical transport networks is a of great importance problem. This paper focuses on this problem, and gives an implementation architecture of NFV-enabled optical transport networks based on Software Defined Optical Networking (SDON) with the procedure of vNFs call and return. Especially, an implementation solution of NFV-enabled optical transport node is designed, and a parallel processing method for NFV-enabled OTN nodes is proposed. To verify the performance of NFV-enabled SDON, the protocol interaction procedures of control function virtualization and node function virtualization are demonstrated on SDON testbed. Finally, the benefits and challenges of the parallel processing method for NFV-enabled OTN nodes are simulated and analyzed.

  17. A second life for eHealth: prospects for the use of 3-D virtual worlds in clinical psychology.

    PubMed

    Gorini, Alessandra; Gaggioli, Andrea; Vigna, Cinzia; Riva, Giuseppe

    2008-08-05

    The aim of the present paper is to describe the role played by three-dimensional (3-D) virtual worlds in eHealth applications, addressing some potential advantages and issues related to the use of this emerging medium in clinical practice. Due to the enormous diffusion of the World Wide Web (WWW), telepsychology, and telehealth in general, have become accepted and validated methods for the treatment of many different health care concerns. The introduction of the Web 2.0 has facilitated the development of new forms of collaborative interaction between multiple users based on 3-D virtual worlds. This paper describes the development and implementation of a form of tailored immersive e-therapy called p-health whose key factor is interreality, that is, the creation of a hybrid augmented experience merging physical and virtual worlds. We suggest that compared with conventional telehealth applications such as emails, chat, and videoconferences, the interaction between real and 3-D virtual worlds may convey greater feelings of presence, facilitate the clinical communication process, positively influence group processes and cohesiveness in group-based therapies, and foster higher levels of interpersonal trust between therapists and patients. However, challenges related to the potentially addictive nature of such virtual worlds and questions related to privacy and personal safety will also be discussed.

  18. Adapting Document Similarity Measures for Ligand-Based Virtual Screening.

    PubMed

    Himmat, Mubarak; Salim, Naomie; Al-Dabbagh, Mohammed Mumtaz; Saeed, Faisal; Ahmed, Ali

    2016-04-13

    Quantifying the similarity of molecules is considered one of the major tasks in virtual screening. There are many similarity measures that have been proposed for this purpose, some of which have been derived from document and text retrieving areas as most often these similarity methods give good results in document retrieval and can achieve good results in virtual screening. In this work, we propose a similarity measure for ligand-based virtual screening, which has been derived from a text processing similarity measure. It has been adopted to be suitable for virtual screening; we called this proposed measure the Adapted Similarity Measure of Text Processing (ASMTP). For evaluating and testing the proposed ASMTP we conducted several experiments on two different benchmark datasets: the Maximum Unbiased Validation (MUV) and the MDL Drug Data Report (MDDR). The experiments have been conducted by choosing 10 reference structures from each class randomly as queries and evaluate them in the recall of cut-offs at 1% and 5%. The overall obtained results are compared with some similarity methods including the Tanimoto coefficient, which are considered to be the conventional and standard similarity coefficients for fingerprint-based similarity calculations. The achieved results show that the performance of ligand-based virtual screening is better and outperforms the Tanimoto coefficients and other methods.

  19. Visualization of N-body Simulations in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Knop, Robert A.; Ames, J.; Djorgovski, G.; Farr, W.; Hut, P.; Johnson, A.; McMillan, S.; Nakasone, A.; Vesperini, E.

    2010-01-01

    We report on work to use virtual worlds for visualizing the results of N-body calculations, on three levels. First, we have written a demonstration 3-body solver entirely in the scripting language of the popularly used virtual world Second Life. Second, we have written a physics module for the open source virtual world OpenSim that performs N-body calculations as the physics engine for the server, allowing natural 3-d visualization of the solution as the solution is being performed. Finally, we give an initial report on the potential use of virtual worlds to visualize calculations which have previously been performed, or which are being performed in other processes and reported to the virtual world server. This work has been performed as part of the Meta-Institute of Computational Astrophysics (MICA). http://www.mica-vw.org

  20. Validation of virtual learning object to support the teaching of nursing care systematization.

    PubMed

    Salvador, Pétala Tuani Candido de Oliveira; Mariz, Camila Maria Dos Santos; Vítor, Allyne Fortes; Ferreira Júnior, Marcos Antônio; Fernandes, Maria Isabel Domingues; Martins, José Carlos Amado; Santos, Viviane Euzébia Pereira

    2018-01-01

    to describe the content validation process of a Virtual Learning Object to support the teaching of nursing care systematization to nursing professionals. methodological study, with quantitative approach, developed according to the methodological reference of Pasquali's psychometry and conducted from March to July 2016, from two-stage Delphi procedure. in the Delphi 1 stage, eight judges evaluated the Virtual Object; in Delphi 2 stage, seven judges evaluated it. The seven screens of the Virtual Object were analyzed as to the suitability of its contents. The Virtual Learning Object to support the teaching of nursing care systematization was considered valid in its content, with a Total Content Validity Coefficient of 0.96. it is expected that the Virtual Object can support the teaching of nursing care systematization in light of appropriate and effective pedagogical approaches.

  1. Virtual Teams and Human Work Interaction Design - Learning to Work in and Designing for Virtual Teams

    NASA Astrophysics Data System (ADS)

    Orngreen, Rikke; Clemmensen, Torkil; Pejtersen, Annelise Mark

    The boundaries and work processes for how virtual teams interact are undergoing changes, from a tool and stand-alone application orientation, to the use of multiple generic platforms chosen and redesigned to the specific context. These are often at the same time designed both by professional software developers and the individual members of the virtual teams, rather than determined on a single organizational level. There may be no impact of the technology per se on individuals, groups or organizations, as the technology for virtual teams rather enhance situation ambiguity and disrupt existing task-artifact cycles. This ambiguous situation calls for new methods for empirical work analysis and interaction design that can help us understand how organizations, teams and individuals learn to organize, design and work in virtual teams in various networked contexts.

  2. Cognitive Styles and Virtual Environments.

    ERIC Educational Resources Information Center

    Ford, Nigel

    2000-01-01

    Discussion of navigation through virtual information environments focuses on the need for robust user models that take into account individual differences. Considers Pask's information processing styles and strategies; deep (transformational) and surface (reproductive) learning; field dependence/independence; divergent/convergent thinking;…

  3. The design and application of virtual ion meter based on LABVIEW 8.0.

    PubMed

    Meng, Hu; Li, Jiangyuan; Tang, Yonghuai

    2009-08-01

    The virtual ion meter is developed based on LABVIEW 8.0 by homemade adjusting circuit, data acquisition (DAQ) board, and computer. This note provides details of the structure of testing system and flow chart of DAQ program. This virtual instrument system is applied to multitask testing such as determining rate constant of second-order reaction by pX, pX potentiometric titration, determining oscillating reaction by potential, etc. The result of application indicates that this test system not only has function of real-time data acquiring, displaying, storage, but also realizes remote monitoring and controlling test-control spots through internet, automatic analyzing and processing of data, reporting of result according to the different testing task; moreover, the veracity and repeatability of data processing result are higher than the results of manual data processing.

  4. Global Detection of Live Virtual Machine Migration Based on Cellular Neural Networks

    PubMed Central

    Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian

    2014-01-01

    In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better. PMID:24959631

  5. Global detection of live virtual machine migration based on cellular neural networks.

    PubMed

    Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian

    2014-01-01

    In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better.

  6. On the way to the smart education in the cloud: The experience of using a virtual learning environment and webinars in educational and career guidance process

    NASA Astrophysics Data System (ADS)

    Lapshinsky, V. A.

    2017-01-01

    The article is devoted to the consideration of issues of functionality and application of educational portal as virtual learning environments and webinars as SaaS services. Examples of their use in educational and vocational guidance processes are presented. The prospects of transition from portal VLE to SaaS and cloud services are marked. Portal www.valinfo.ru with original learning management system has been used in the educational process since 2003 in the National Research Nuclear University MEPhI and in the Peoples' Friendship University of Russia. Supported courses: Computer Science, Computer Workshop, Networks, Information Technology, The Introduction to Nano-Engineer, Nanotechnology and Nanomaterials etc. For webinars as SaaS services, used the "virtual classroom," kindly provided by WebSoft Company.

  7. Virtual reality for spherical images

    NASA Astrophysics Data System (ADS)

    Pilarczyk, Rafal; Skarbek, Władysław

    2017-08-01

    Paper presents virtual reality application framework and application concept for mobile devices. Framework uses Google Cardboard library for Android operating system. Framework allows to create virtual reality 360 video player using standard OpenGL ES rendering methods. Framework provides network methods in order to connect to web server as application resource provider. Resources are delivered using JSON response as result of HTTP requests. Web server also uses Socket.IO library for synchronous communication between application and server. Framework implements methods to create event driven process of rendering additional content based on video timestamp and virtual reality head point of view.

  8. Paging memory from random access memory to backing storage in a parallel computer

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Inglett, Todd A; Ratterman, Joseph D; Smith, Brian E

    2013-05-21

    Paging memory from random access memory (`RAM`) to backing storage in a parallel computer that includes a plurality of compute nodes, including: executing a data processing application on a virtual machine operating system in a virtual machine on a first compute node; providing, by a second compute node, backing storage for the contents of RAM on the first compute node; and swapping, by the virtual machine operating system in the virtual machine on the first compute node, a page of memory from RAM on the first compute node to the backing storage on the second compute node.

  9. The effects of viewpoint on the virtual space of pictures

    NASA Technical Reports Server (NTRS)

    Sedgwick, H. A.

    1989-01-01

    Pictorial displays whose primary purpose is to convey accurate information about the 3-D spatial layout of an environment are discussed. How and how well, pictures can convey such information is discussed. It is suggested that picture perception is not best approached as a unitary, indivisible process. Rather, it is a complex process depending on multiple, partially redundant, interacting sources of visual information for both the real surface of the picture and the virtual space beyond. Each picture must be assessed for the particular information that it makes available. This will determine how accurately the virtual space represented by the picture is seen, as well as how it is distorted when seen from the wrong viewpoint.

  10. Research on the control strategy of distributed energy resources inverter based on improved virtual synchronous generator.

    PubMed

    Gao, Changwei; Liu, Xiaoming; Chen, Hai

    2017-08-22

    This paper focus on the power fluctuations of the virtual synchronous generator(VSG) during the transition process. An improved virtual synchronous generator(IVSG) control strategy based on feed-forward compensation is proposed. Adjustable parameter of the compensation section can be modified to achieve the goal of reducing the order of the system. It can effectively suppress the power fluctuations of the VSG in transient process. To verify the effectiveness of the proposed control strategy for distributed energy resources inverter, the simulation model is set up in MATLAB/SIMULINK platform and physical experiment platform is established. Simulation and experiment results demonstrate the effectiveness of the proposed IVSG control strategy.

  11. Migrating EO/IR sensors to cloud-based infrastructure as service architectures

    NASA Astrophysics Data System (ADS)

    Berglie, Stephen T.; Webster, Steven; May, Christopher M.

    2014-06-01

    The Night Vision Image Generator (NVIG), a product of US Army RDECOM CERDEC NVESD, is a visualization tool used widely throughout Army simulation environments to provide fully attributed synthesized, full motion video using physics-based sensor and environmental effects. The NVIG relies heavily on contemporary hardware-based acceleration and GPU processing techniques, which push the envelope of both enterprise and commodity-level hypervisor support for providing virtual machines with direct access to hardware resources. The NVIG has successfully been integrated into fully virtual environments where system architectures leverage cloudbased technologies to various extents in order to streamline infrastructure and service management. This paper details the challenges presented to engineers seeking to migrate GPU-bound processes, such as the NVIG, to virtual machines and, ultimately, Cloud-Based IAS architectures. In addition, it presents the path that led to success for the NVIG. A brief overview of Cloud-Based infrastructure management tool sets is provided, and several virtual desktop solutions are outlined. A discrimination is made between general purpose virtual desktop technologies compared to technologies that expose GPU-specific capabilities, including direct rendering and hard ware-based video encoding. Candidate hypervisor/virtual machine configurations that nominally satisfy the virtualized hardware-level GPU requirements of the NVIG are presented , and each is subsequently reviewed in light of its implications on higher-level Cloud management techniques. Implementation details are included from the hardware level, through the operating system, to the 3D graphics APls required by the NVIG and similar GPU-bound tools.

  12. Cold Spray for Repair of Magnesium Components

    DTIC Science & Technology

    2011-11-01

    powder material. Other advantages of the Cold Spray process include:  It provides extremely dense coatings with virtually no inclusions or cracks ... crack on insertion of Rosan fitting and does not reclaim the mechanical properties of the Mg alloy. It is expected that the use of Cold Spray coating...Spray process include:  Extremely dense coatings with virtually no inclusions or cracks .  Retains properties and microstructure of initial powder

  13. Modeling virtual organizations with Latent Dirichlet Allocation: a case for natural language processing.

    PubMed

    Gross, Alexander; Murthy, Dhiraj

    2014-10-01

    This paper explores a variety of methods for applying the Latent Dirichlet Allocation (LDA) automated topic modeling algorithm to the modeling of the structure and behavior of virtual organizations found within modern social media and social networking environments. As the field of Big Data reveals, an increase in the scale of social data available presents new challenges which are not tackled by merely scaling up hardware and software. Rather, they necessitate new methods and, indeed, new areas of expertise. Natural language processing provides one such method. This paper applies LDA to the study of scientific virtual organizations whose members employ social technologies. Because of the vast data footprint in these virtual platforms, we found that natural language processing was needed to 'unlock' and render visible latent, previously unseen conversational connections across large textual corpora (spanning profiles, discussion threads, forums, and other social media incarnations). We introduce variants of LDA and ultimately make the argument that natural language processing is a critical interdisciplinary methodology to make better sense of social 'Big Data' and we were able to successfully model nested discussion topics from forums and blog posts using LDA. Importantly, we found that LDA can move us beyond the state-of-the-art in conventional Social Network Analysis techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Virtual reality in the assessment of selected cognitive function after brain injury.

    PubMed

    Zhang, L; Abreu, B C; Masel, B; Scheibel, R S; Christiansen, C H; Huddleston, N; Ottenbacher, K J

    2001-08-01

    To assess selected cognitive functions of persons with traumatic brain injury using a computer-simulated virtual reality environment. A computer-simulated virtual kitchen was used to assess the ability of 30 patients with brain injury and 30 volunteers without brain injury to process and sequence information. The overall assessment score was based on the number of correct responses and the time needed to complete daily living tasks. Identical daily living tasks were tested and scored in participants with and without brain injury. Each subject was evaluated twice within 7 to 10 days. A total of 30 tasks were categorized as follows: information processing, problem solving, logical sequencing, and speed of responding. Persons with brain injuries consistently demonstrated a significant decrease in the ability to process information (P = 0.04-0.01), identify logical sequencing (P = 0.04-0.01), and complete the overall assessment (P < 0.01), compared with volunteers without brain injury. The time needed to process tasks, representing speed of cognitive responding, was also significantly different between the two groups (P < 0.01). A computer-generated virtual reality environment represents a reproducible tool to assess selected cognitive functions and can be used as a supplement to traditional rehabilitation assessment in persons with acquired brain injury.

  15. Local concurrent error detection and correction in data structures using virtual backpointers

    NASA Technical Reports Server (NTRS)

    Li, C. C.; Chen, P. P.; Fuchs, W. K.

    1987-01-01

    A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data structures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared databased of Virtual Double Linked Lists.

  16. Local concurrent error detection and correction in data structures using virtual backpointers

    NASA Technical Reports Server (NTRS)

    Li, Chung-Chi Jim; Chen, Paul Peichuan; Fuchs, W. Kent

    1989-01-01

    A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data strutures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared database of Virtual Double Linked Lists.

  17. [Application of virtual reality in surgical treatment of complex head and neck carcinoma].

    PubMed

    Zhou, Y Q; Li, C; Shui, C Y; Cai, Y C; Sun, R H; Zeng, D F; Wang, W; Li, Q L; Huang, L; Tu, J; Jiang, J

    2018-01-07

    Objective: To investigate the application of virtual reality technology in the preoperative evaluation of complex head and neck carcinoma and he value of virtual reality technology in surgical treatment of head and neck carcinoma. Methods: The image data of eight patients with complex head and neck carcinoma treated from December 2016 to May 2017 was acquired. The data were put into virtual reality system to built the three-dimensional anatomical model of carcinoma and to created the surgical scene. The process of surgery was stimulated by recognizing the relationship between tumor and surrounding important structures. Finally all patients were treated with surgery. And two typical cases were reported. Results: With the help of virtual reality, surgeons could adequately assess the condition of carcinoma and the security of operation and ensured the safety of operations. Conclusions: Virtual reality can provide the surgeons with the sensory experience in virtual surgery scenes and achieve the man-computer cooperation and stereoscopic assessment, which will ensure the safety of surgery. Virtual reality has a huge impact on guiding the traditional surgical procedure of head and neck carcinoma.

  18. Cognitive load of navigating without vision when guided by virtual sound versus spatial language.

    PubMed

    Klatzky, Roberta L; Marston, James R; Giudice, Nicholas A; Golledge, Reginald G; Loomis, Jack M

    2006-12-01

    A vibrotactile N-back task was used to generate cognitive load while participants were guided along virtual paths without vision. As participants stepped in place, they moved along a virtual path of linear segments. Information was provided en route about the direction of the next turning point, by spatial language ("left," "right," or "straight") or virtual sound (i.e., the perceived azimuth of the sound indicated the target direction). The authors hypothesized that virtual sound, being processed at direct perceptual levels, would have lower load than even simple language commands, which require cognitive mediation. As predicted, whereas the guidance modes did not differ significantly in the no-load condition, participants showed shorter distance traveled and less time to complete a path when performing the N-back task while navigating with virtual sound as guidance. Virtual sound also produced better N-back performance than spatial language. By indicating the superiority of virtual sound for guidance when cognitive load is present, as is characteristic of everyday navigation, these results have implications for guidance systems for the visually impaired and others.

  19. Elettrodinamica classica

    NASA Astrophysics Data System (ADS)

    Lechner, Kurt

    Nella scoperta della Relatività Ristretta l'Elettrodinamica, rappresentando una teoria relativistica per eccellenza, ha giocato un ruolo fondamentale. Il principio di relativit` a einsteiniana, che afferma che tutte le leggi della fisica devono avere la stessa forma in tutti i sistemi di riferimento inerziali, è emerso con forza da questa teoria ed è andato consolidandosi sempre di più, man mano che le nostre conoscenze del mondo microscopico sono diventate più complete: tutte le interazioni fondamentali rispettano infatti tale principio. Il modo più semplice ed elegante per implementarlo — difatti l'unico di un'utilità concreta — è rappresentato dal paradigma della covarianza a vista nell'ambito del calcolo tensoriale. Questo paradigma è stato applicato con successo a tutte le teorie di carattere fondamentale, come le teorie che descrivono le quattro interazioni fondamentali e le più speculative teorie di superstringa, e mantiene la sua piena efficacia anche in teoria quantistica. La nostra esposizione dell'Elettrodinamica classica si baserà dunque a ragione su questo paradigma.

  20. The Performance of the NAS HSPs in 1st Half of 1994

    NASA Technical Reports Server (NTRS)

    Bergeron, Robert J.; Walter, Howard (Technical Monitor)

    1995-01-01

    During the first six months of 1994, the NAS (National Airspace System) 16-CPU Y-MP C90 Von Neumann (VN) delivered an average throughput of 4.045 GFLOPS while the ACSF (Aeronautics Consolidated Supercomputer Facility) 8-CPU Y-MP C90 Eagle averaged 1.658 GFLOPS. The VN rate represents a machine efficiency of 26.3% whereas the Eagle rate corresponds to a machine efficiency of 21.6%. VN displayed a greater efficiency than Eagle primarily because the stronger workload demand for its CPU cycles allowed it to devote more time to user programs and less time to idle. An additional factor increasing VN efficiency was the ability of the UNICOS 8.0 Operating System to deliver a larger fraction of CPU time to user programs. Although measurements indicate increasing vector length for both workloads, insufficient vector lengths continue to hinder HSP (High Speed Processor) performance. To improve HSP performance, NAS should continue to encourage the HSP users to modify their codes to increase program vector length.

  1. The Virtual Liver: Modeling Chemical-Induced Liver Toxicity

    EPA Science Inventory

    The US EPA Virtual Liver (v-Liver) project is aimed at modeling chemical-induced processes in hepatotoxicity and simulating their dose-dependent perturbations. The v-Liver embodies an emerging field of research in computational tissue modeling that integrates molecular and cellul...

  2. The Components of Effective Teacher Training in the Use of Three-Dimensional Immersive Virtual Worlds for Learning and Instruction Purposes: A Literature Review

    ERIC Educational Resources Information Center

    Nussli, Natalie; Oh, Kevin

    2014-01-01

    The overarching question that guides this review is to identify the key components of effective teacher training in virtual schooling, with a focus on three-dimensional (3D) immersive virtual worlds (IVWs). The process of identifying the essential components of effective teacher training in the use of 3D IVWs will be described step-by-step. First,…

  3. Virtual time and time warp on the JPL hypercube. [operating system implementation for distributed simulation

    NASA Technical Reports Server (NTRS)

    Jefferson, David; Beckman, Brian

    1986-01-01

    This paper describes the concept of virtual time and its implementation in the Time Warp Operating System at the Jet Propulsion Laboratory. Virtual time is a distributed synchronization paradigm that is appropriate for distributed simulation, database concurrency control, real time systems, and coordination of replicated processes. The Time Warp Operating System is targeted toward the distributed simulation application and runs on a 32-node JPL Mark II Hypercube.

  4. Virtual TeleRehab: a case study.

    PubMed

    Pareto, Lena; Johansson, Britt; Zeller, Sally; Sunnerhagen, Katharina S; Rydmark, Martin; Broeren, Jurgen

    2011-01-01

    We examined the efficacy of a remotely based occupational therapy intervention. A 40-year-old woman who suffered a stroke participated in a telerehabilitation program. The intervention method is based on virtual reality gaming to enhance the training experience and to facilitate the relearning processes. The results indicate that Virtual TeleRehab is an effective method for motivational, economical, and practical reasons by combining game-based rehabilitation in the home with weekly distance meetings.

  5. Worse than imagined: Unidentified virtual water flows in China.

    PubMed

    Cai, Beiming; Wang, Chencheng; Zhang, Bing

    2017-07-01

    The impact of virtual water flows on regional water scarcity in China had been deeply discussed in previous research. However, these studies only focused on water quantity, the impact of virtual water flows on water quality has been largely neglected. In this study, we incorporate the blue water footprint related with water quantity and grey water footprint related with water quality into virtual water flow analysis based on the multiregional input-output model of 2007. The results find that the interprovincial virtual flows accounts for 23.4% of China's water footprint. The virtual grey water flows are 8.65 times greater than the virtual blue water flows; the virtual blue water and grey water flows are 91.8 and 794.6 Gm 3 /y, respectively. The use of the indicators related with water quantity to represent virtual water flows in previous studies will underestimate their impact on water resources. In addition, the virtual water flows are mainly derived from agriculture, chemical industry and petroleum processing and the coking industry, which account for 66.8%, 7.1% and 6.2% of the total virtual water flows, respectively. Virtual water flows have intensified both quantity- and quality-induced water scarcity of export regions, where low-value-added but water-intensive and high-pollution goods are produced. Our study on virtual water flows can inform effective water use policy for both water resources and water pollution in China. Our methodology about virtual water flows also can be used in global scale or other countries if data available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Hirarchical emotion calculation model for virtual human modellin - biomed 2010.

    PubMed

    Zhao, Yue; Wright, David

    2010-01-01

    This paper introduces a new emotion generation method for virtual human modelling. The method includes a novel hierarchical emotion structure, a group of emotion calculation equations and a simple heuristics decision making mechanism, which enables virtual humans to perform emotionally in real-time according to their internal and external factors. Emotion calculation equations used in this research were derived from psychologic emotion measurements. Virtual humans can utilise the information in virtual memory and emotion calculation equations to generate their own numerical emotion states within the hierarchical emotion structure. Those emotion states are important internal references for virtual humans to adopt appropriate behaviours and also key cues for their decision making. A simple heuristics theory is introduced and integrated into decision making process in order to make the virtual humans decision making more like a real human. A data interface which connects the emotion calculation and the decision making structure together has also been designed and simulated to test the method in Virtools environment.

  7. Issue of data acquisition and processing using short range photogrammetry and terrestrial laser scanning for educational portals and virtual museums based on Wawel cathedral. (Polish Title: Problematyka pozyskiwania i przetwarzania danych fotogrametrycznych i z naziemnego skaningu laserowego na potrzeby tworzenia portali edukacyjnych i wirtualnych muzeów na przykładzie Katedry Wawelskiej)

    NASA Astrophysics Data System (ADS)

    Mitka, B.; Szelest, P.

    2013-12-01

    This paper presents the issues related to the acquisition and processing of terrestrial photogrammetry and laser scanning for building educational portals and virtual museums. Discusses the specific requirements of measurement technology and data processing for all kinds of objects, ranging from architecture through sculpture and architectural detail on the fabric and individual museum exhibits. Educational portals and virtual museums require a modern, high-quality visuals (3D models, virtual tours, animations, etc.) supplemented by descriptive content or audio commentary. Source for obtaining such materials are mostly terrestrial laser scanning and photogrammetry as technologies that provide complete information about the presented geometric objects. However, the performance requirements of web services impose severe restrictions on the presented content. It is necessary to use optimalization geometry process to streamline the way of its presentation. Equally important problem concerns the selection of appropriate technology and process measurement data processing presented for each type of objects. Only skillful selection of measuring equipment and data processing tools effectively ensure the achievement of a satisfactory end result. Both terrestrial laser scanning technology and digital close range photogrammetry has its strengths which should be used but also the limitations that must be taken into account in this kind of work. The key is choosing the right scanner for both the measured object and terrain such as pixel size in the performance of his photos.

  8. Virtualization and cloud computing in dentistry.

    PubMed

    Chow, Frank; Muftu, Ali; Shorter, Richard

    2014-01-01

    The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.

  9. Factors to keep in mind when introducing virtual microscopy.

    PubMed

    Glatz-Krieger, Katharina; Spornitz, Udo; Spatz, Alain; Mihatsch, Michael J; Glatz, Dieter

    2006-03-01

    Digitization of glass slides and delivery of so-called virtual slides (VS) emulating a real microscope over the Internet have become reality due to recent improvements in technology. We have implemented a virtual microscope for instruction of medical students and for continuing medical education. Up to 30,000 images per slide are captured using a microscope with an automated stage. The images are post-processed and then served by a plain hypertext transfer protocol (http)-server. A virtual slide client (vMic) based on Macromedia's Flash MX, a highly accepted technology available on every modern Web browser, has been developed. All necessary virtual slide parameters are stored in an XML file together with the image. Evaluation of the courses by questionnaire indicated that most students and many but not all pathologists regard virtual slides as an adequate replacement for traditional slides. All our virtual slides are publicly accessible over the World Wide Web (WWW) at http://vmic.unibas.ch . Recently, several commercially available virtual slide acquisition systems (VSAS) have been developed that use various technologies to acquire and distribute virtual slides. These systems differ in speed, image quality, compatibility, viewer functionalities and price. This paper gives an overview of the factors to keep in mind when introducing virtual microscopy.

  10. Intelligent virtual teacher

    NASA Astrophysics Data System (ADS)

    Takács, Ondřej; Kostolányová, Kateřina

    2016-06-01

    This paper describes the Virtual Teacher that uses a set of rules to automatically adapt the way of teaching. These rules compose of two parts: conditions on various students' properties or learning situation; conclusions that specify different adaptation parameters. The rules can be used for general adaptation of each subject or they can be specific to some subject. The rule based system of Virtual Teacher is dedicated to be used in pedagogical experiments in adaptive e-learning and is therefore designed for users without education in computer science. The Virtual Teacher was used in dissertation theses of two students, who executed two pedagogical experiments. This paper also describes the phase of simulating and modeling of the theoretically prepared adaptive process in the modeling tool, which has all the required parameters and has been created especially for the occasion. The experiments are being conducted on groups of virtual students and by using a virtual study material.

  11. Dockres: a computer program that analyzes the output of virtual screening of small molecules

    PubMed Central

    2010-01-01

    Background This paper describes a computer program named Dockres that is designed to analyze and summarize results of virtual screening of small molecules. The program is supplemented with utilities that support the screening process. Foremost among these utilities are scripts that run the virtual screening of a chemical library on a large number of processors in parallel. Methods Dockres and some of its supporting utilities are written Fortran-77; other utilities are written as C-shell scripts. They support the parallel execution of the screening. The current implementation of the program handles virtual screening with Autodock-3 and Autodock-4, but can be extended to work with the output of other programs. Results Analysis of virtual screening by Dockres led to both active and selective lead compounds. Conclusions Analysis of virtual screening was facilitated and enhanced by Dockres in both the authors' laboratories as well as laboratories elsewhere. PMID:20205801

  12. A fast simulation method for radiation maps using interpolation in a virtual environment.

    PubMed

    Li, Meng-Kun; Liu, Yong-Kuo; Peng, Min-Jun; Xie, Chun-Li; Yang, Li-Qun

    2018-05-10

    In nuclear decommissioning, virtual simulation technology is a useful tool to achieve an effective work process by using virtual environments to represent the physical and logical scheme of a real decommissioning project. This technology is cost-saving and time-saving, with the capacity to develop various decommissioning scenarios and reduce the risk of retrofitting. The method utilises a radiation map in a virtual simulation as the basis for the assessment of exposure to a virtual human. In this paper, we propose a fast simulation method using a known radiation source. The method has a unique advantage over point kernel and Monte Carlo methods because it generates the radiation map using interpolation in a virtual environment. The simulation of the radiation map including the calculation and the visualisation were realised using UNITY and MATLAB. The feasibility of the proposed method was tested on a hypothetical case and the results obtained are discussed in this paper.

  13. Virtual Model Validation of Complex Multiscale Systems: Applications to Nonlinear Elastostatics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oden, John Tinsley; Prudencio, Ernest E.; Bauman, Paul T.

    We propose a virtual statistical validation process as an aid to the design of experiments for the validation of phenomenological models of the behavior of material bodies, with focus on those cases in which knowledge of the fabrication process used to manufacture the body can provide information on the micro-molecular-scale properties underlying macroscale behavior. One example is given by models of elastomeric solids fabricated using polymerization processes. We describe a framework for model validation that involves Bayesian updates of parameters in statistical calibration and validation phases. The process enables the quanti cation of uncertainty in quantities of interest (QoIs) andmore » the determination of model consistency using tools of statistical information theory. We assert that microscale information drawn from molecular models of the fabrication of the body provides a valuable source of prior information on parameters as well as a means for estimating model bias and designing virtual validation experiments to provide information gain over calibration posteriors.« less

  14. Application of image processing to calculate the number of fish seeds using raspberry-pi

    NASA Astrophysics Data System (ADS)

    Rahmadiansah, A.; Kusumawardhani, A.; Duanto, F. N.; Qoonita, F.

    2018-03-01

    Many fish cultivator in Indonesia who suffered losses due to the sale and purchase of fish seeds did not match the agreed amount. The loss is due to the calculation of fish seed still using manual method. To overcome these problems, then in this study designed fish counting system automatically and real-time fish using the image processing based on Raspberry Pi. Used image processing because it can calculate moving objects and eliminate noise. Image processing method used to calculate moving object is virtual loop detector or virtual detector method and the approach used is “double difference image”. The “double difference” approach uses information from the previous frame and the next frame to estimate the shape and position of the object. Using these methods and approaches, the results obtained were quite good with an average error of 1.0% for 300 individuals in a test with a virtual detector width of 96 pixels and a slope of 1 degree test plane.

  15. Construction of Virtual-Experiment Systems for Information Science Education

    NASA Astrophysics Data System (ADS)

    She, Jin-Hua; Amano, Naoki

    Practice is very important in education because it not only can stimulate the motivation of learning, but also can deepen the understanding of theory. However, due to the limitations on the time and experiment resources, experiments cannot be simply introduced in every lesson. To make the best use of multimedia technology, this paper designs five virtual experiment systems, which are based on the knowledge of physics at the high-school lever, to improve the effectiveness of teaching data processing. The systems are designed by employing the cognitive theory of multimedia learning and the inner game principle to ensure the easy use and to reduce the cognitive load. The learning process is divided into two stages: the first stage teaches the basic concepts of data processing; and the second stage practices the techniques taught in the first stage and uses them to build a linear model and to carry out estimation. The virtual experiment systems have been tested in an university's data processing course, and have demonstrated their validity.

  16. Global tree network for computing structures enabling global processing operations

    DOEpatents

    Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2010-01-19

    A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.

  17. Cloud-based opportunities in scientific computing: insights from processing Suomi National Polar-Orbiting Partnership (S-NPP) Direct Broadcast data

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Hao, W.; Chettri, S.

    2013-12-01

    The cloud is proving to be a uniquely promising platform for scientific computing. Our experience with processing satellite data using Amazon Web Services highlights several opportunities for enhanced performance, flexibility, and cost effectiveness in the cloud relative to traditional computing -- for example: - Direct readout from a polar-orbiting satellite such as the Suomi National Polar-Orbiting Partnership (S-NPP) requires bursts of processing a few times a day, separated by quiet periods when the satellite is out of receiving range. In the cloud, by starting and stopping virtual machines in minutes, we can marshal significant computing resources quickly when needed, but not pay for them when not needed. To take advantage of this capability, we are automating a data-driven approach to the management of cloud computing resources, in which new data availability triggers the creation of new virtual machines (of variable size and processing power) which last only until the processing workflow is complete. - 'Spot instances' are virtual machines that run as long as one's asking price is higher than the provider's variable spot price. Spot instances can greatly reduce the cost of computing -- for software systems that are engineered to withstand unpredictable interruptions in service (as occurs when a spot price exceeds the asking price). We are implementing an approach to workflow management that allows data processing workflows to resume with minimal delays after temporary spot price spikes. This will allow systems to take full advantage of variably-priced 'utility computing.' - Thanks to virtual machine images, we can easily launch multiple, identical machines differentiated only by 'user data' containing individualized instructions (e.g., to fetch particular datasets or to perform certain workflows or algorithms) This is particularly useful when (as is the case with S-NPP data) we need to launch many very similar machines to process an unpredictable number of data files concurrently. Our experience shows the viability and flexibility of this approach to workflow management for scientific data processing. - Finally, cloud computing is a promising platform for distributed volunteer ('interstitial') computing, via mechanisms such as the Berkeley Open Infrastructure for Network Computing (BOINC) popularized with the SETI@Home project and others such as ClimatePrediction.net and NASA's Climate@Home. Interstitial computing faces significant challenges as commodity computing shifts from (always on) desktop computers towards smartphones and tablets (untethered and running on scarce battery power); but cloud computing offers significant slack capacity. This capacity includes virtual machines with unused RAM or underused CPUs; virtual storage volumes allocated (& paid for) but not full; and virtual machines that are paid up for the current hour but whose work is complete. We are devising ways to facilitate the reuse of these resources (i.e., cloud-based interstitial computing) for satellite data processing and related analyses. We will present our findings and research directions on these and related topics.

  18. Development of visual 3D virtual environment for control software

    NASA Technical Reports Server (NTRS)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D environment has considerable potential in the field of software engineering.

  19. Grasping trajectories in a virtual environment adhere to Weber's law.

    PubMed

    Ozana, Aviad; Berman, Sigal; Ganel, Tzvi

    2018-06-01

    Virtual-reality and telerobotic devices simulate local motor control of virtual objects within computerized environments. Here, we explored grasping kinematics within a virtual environment and tested whether, as in normal 3D grasping, trajectories in the virtual environment are performed analytically, violating Weber's law with respect to object's size. Participants were asked to grasp a series of 2D objects using a haptic system, which projected their movements to a virtual space presented on a computer screen. The apparatus also provided object-specific haptic information upon "touching" the edges of the virtual targets. The results showed that grasping movements performed within the virtual environment did not produce the typical analytical trajectory pattern obtained during 3D grasping. Unlike as in 3D grasping, grasping trajectories in the virtual environment adhered to Weber's law, which indicates relative resolution in size processing. In addition, the trajectory patterns differed from typical trajectories obtained during 3D grasping, with longer times to complete the movement, and with maximum grip apertures appearing relatively early in the movement. The results suggest that grasping movements within a virtual environment could differ from those performed in real space, and are subjected to irrelevant effects of perceptual information. Such atypical pattern of visuomotor control may be mediated by the lack of complete transparency between the interface and the virtual environment in terms of the provided visual and haptic feedback. Possible implications of the findings to movement control within robotic and virtual environments are further discussed.

  20. Simulating the decentralized processes of the human immune system in a virtual anatomy model.

    PubMed

    Sarpe, Vladimir; Jacob, Christian

    2013-01-01

    Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.

  1. Cracking the egg: virtual embryogenesis of real robots.

    PubMed

    Cussat-Blanc, Sylvain; Pollack, Jordan

    2014-01-01

    All multicellular living beings are created from a single cell. A developmental process, called embryogenesis, takes this first fertilized cell down a complex path of reproduction, migration, and specialization into a complex organism adapted to its environment. In most cases, the first steps of the embryogenesis take place in a protected environment such as in an egg or in utero. Starting from this observation, we propose a new approach to the generation of real robots, strongly inspired by living systems. Our robots are composed of tens of specialized cells, grown from a single cell using a bio-inspired virtual developmental process. Virtual cells, controlled by gene regulatory networks, divide, migrate, and specialize to produce the robot's body plan (morphology), and then the robot is manually built from this plan. Because the robot is as easy to assemble as Lego, the building process could be easily automated.

  2. Virtual viewpoint generation for three-dimensional display based on the compressive light field

    NASA Astrophysics Data System (ADS)

    Meng, Qiao; Sang, Xinzhu; Chen, Duo; Guo, Nan; Yan, Binbin; Yu, Chongxiu; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Virtual view-point generation is one of the key technologies the three-dimensional (3D) display, which renders the new scene image perspective with the existing viewpoints. The three-dimensional scene information can be effectively recovered at different viewing angles to allow users to switch between different views. However, in the process of multiple viewpoints matching, when N free viewpoints are received, we need to match N viewpoints each other, namely matching C 2N = N(N-1)/2 times, and even in the process of matching different baselines errors can occur. To address the problem of great complexity of the traditional virtual view point generation process, a novel and rapid virtual view point generation algorithm is presented in this paper, and actual light field information is used rather than the geometric information. Moreover, for better making the data actual meaning, we mainly use nonnegative tensor factorization(NTF). A tensor representation is introduced for virtual multilayer displays. The light field emitted by an N-layer, M-frame display is represented by a sparse set of non-zero elements restricted to a plane within an Nth-order, rank-M tensor. The tensor representation allows for optimal decomposition of a light field into time-multiplexed, light-attenuating layers using NTF. Finally, the compressive light field of multilayer displays information synthesis is used to obtain virtual view-point by multiple multiplication. Experimental results show that the approach not only the original light field is restored with the high image quality, whose PSNR is 25.6dB, but also the deficiency of traditional matching is made up and any viewpoint can obtained from N free viewpoints.

  3. Virtual fragment preparation for computational fragment-based drug design.

    PubMed

    Ludington, Jennifer L

    2015-01-01

    Fragment-based drug design (FBDD) has become an important component of the drug discovery process. The use of fragments can accelerate both the search for a hit molecule and the development of that hit into a lead molecule for clinical testing. In addition to experimental methodologies for FBDD such as NMR and X-ray Crystallography screens, computational techniques are playing an increasingly important role. The success of the computational simulations is due in large part to how the database of virtual fragments is prepared. In order to prepare the fragments appropriately it is necessary to understand how FBDD differs from other approaches and the issues inherent in building up molecules from smaller fragment pieces. The ultimate goal of these calculations is to link two or more simulated fragments into a molecule that has an experimental binding affinity consistent with the additive predicted binding affinities of the virtual fragments. Computationally predicting binding affinities is a complex process, with many opportunities for introducing error. Therefore, care should be taken with the fragment preparation procedure to avoid introducing additional inaccuracies.This chapter is focused on the preparation process used to create a virtual fragment database. Several key issues of fragment preparation which affect the accuracy of binding affinity predictions are discussed. The first issue is the selection of the two-dimensional atomic structure of the virtual fragment. Although the particular usage of the fragment can affect this choice (i.e., whether the fragment will be used for calibration, binding site characterization, hit identification, or lead optimization), general factors such as synthetic accessibility, size, and flexibility are major considerations in selecting the 2D structure. Other aspects of preparing the virtual fragments for simulation are the generation of three-dimensional conformations and the assignment of the associated atomic point charges.

  4. Image processing, geometric modeling and data management for development of a virtual bone surgery system.

    PubMed

    Niu, Qiang; Chi, Xiaoyi; Leu, Ming C; Ochoa, Jorge

    2008-01-01

    This paper describes image processing, geometric modeling and data management techniques for the development of a virtual bone surgery system. Image segmentation is used to divide CT scan data into different segments representing various regions of the bone. A region-growing algorithm is used to extract cortical bone and trabecular bone structures systematically and efficiently. Volume modeling is then used to represent the bone geometry based on the CT scan data. Material removal simulation is achieved by continuously performing Boolean subtraction of the surgical tool model from the bone model. A quadtree-based adaptive subdivision technique is developed to handle the large set of data in order to achieve the real-time simulation and visualization required for virtual bone surgery. A Marching Cubes algorithm is used to generate polygonal faces from the volumetric data. Rendering of the generated polygons is performed with the publicly available VTK (Visualization Tool Kit) software. Implementation of the developed techniques consists of developing a virtual bone-drilling software program, which allows the user to manipulate a virtual drill to make holes with the use of a PHANToM device on a bone model derived from real CT scan data.

  5. Virtual Reality for Research in Social Neuroscience

    PubMed Central

    Parsons, Thomas D.; Gaggioli, Andrea; Riva, Giuseppe

    2017-01-01

    The emergence of social neuroscience has significantly advanced our understanding of the relationship that exists between social processes and their neurobiological underpinnings. Social neuroscience research often involves the use of simple and static stimuli lacking many of the potentially important aspects of real world activities and social interactions. Whilst this research has merit, there is a growing interest in the presentation of dynamic stimuli in a manner that allows researchers to assess the integrative processes carried out by perceivers over time. Herein, we discuss the potential of virtual reality for enhancing ecological validity while maintaining experimental control in social neuroscience research. Virtual reality is a technology that allows for the creation of fully interactive, three-dimensional computerized models of social situations that can be fully controlled by the experimenter. Furthermore, the introduction of interactive virtual characters—either driven by a human or by a computer—allows the researcher to test, in a systematic and independent manner, the effects of various social cues. We first introduce key technical features and concepts related to virtual reality. Next, we discuss the potential of this technology for enhancing social neuroscience protocols, drawing on illustrative experiments from the literature. PMID:28420150

  6. Challenges to the development of complex virtual reality surgical simulations.

    PubMed

    Seymour, N E; Røtnes, J S

    2006-11-01

    Virtual reality simulation in surgical training has become more widely used and intensely investigated in an effort to develop safer, more efficient, measurable training processes. The development of virtual reality simulation of surgical procedures has begun, but well-described technical obstacles must be overcome to permit varied training in a clinically realistic computer-generated environment. These challenges include development of realistic surgical interfaces and physical objects within the computer-generated environment, modeling of realistic interactions between objects, rendering of the surgical field, and development of signal processing for complex events associated with surgery. Of these, the realistic modeling of tissue objects that are fully responsive to surgical manipulations is the most challenging. Threats to early success include relatively limited resources for development and procurement, as well as smaller potential for return on investment than in other simulation industries that face similar problems. Despite these difficulties, steady progress continues to be made in these areas. If executed properly, virtual reality offers inherent advantages over other training systems in creating a realistic surgical environment and facilitating measurement of surgeon performance. Once developed, complex new virtual reality training devices must be validated for their usefulness in formative training and assessment of skill to be established.

  7. Virtual Reality for Research in Social Neuroscience.

    PubMed

    Parsons, Thomas D; Gaggioli, Andrea; Riva, Giuseppe

    2017-04-16

    The emergence of social neuroscience has significantly advanced our understanding of the relationship that exists between social processes and their neurobiological underpinnings. Social neuroscience research often involves the use of simple and static stimuli lacking many of the potentially important aspects of real world activities and social interactions. Whilst this research has merit, there is a growing interest in the presentation of dynamic stimuli in a manner that allows researchers to assess the integrative processes carried out by perceivers over time. Herein, we discuss the potential of virtual reality for enhancing ecological validity while maintaining experimental control in social neuroscience research. Virtual reality is a technology that allows for the creation of fully interactive, three-dimensional computerized models of social situations that can be fully controlled by the experimenter. Furthermore, the introduction of interactive virtual characters-either driven by a human or by a computer-allows the researcher to test, in a systematic and independent manner, the effects of various social cues. We first introduce key technical features and concepts related to virtual reality. Next, we discuss the potential of this technology for enhancing social neuroscience protocols, drawing on illustrative experiments from the literature.

  8. Virtual manufacturing in reality

    NASA Astrophysics Data System (ADS)

    Papstel, Jyri; Saks, Alo

    2000-10-01

    SMEs play an important role in manufacturing industry. But from time to time there is a shortage in resources to complete the particular order in time. Number of systems is introduced to produce digital information in order to support product and process development activities. Main problem is lack of opportunity for direct data transition within design system modules when needed temporary extension of design capacity (virtuality) or to implement integrated concurrent product development principles. The planning experience in the field is weakly used as well. The concept of virtual manufacturing is a supporting idea to solve this problem. At the same time a number of practical problems should be solved like information conformity, data transfer, unified technological concepts acceptation etc. In the present paper the proposed ways to solve the practical problems of virtual manufacturing are described. General objective is to introduce the knowledge-based CAPP system as missing module for Virtual Manufacturing in the selected product domain. Surface-centered planning concept based on STEP- based modeling principles, and knowledge-based process planning methodology will be used to gain the objectives. As a result the planning module supplied by design data with direct access, and supporting advising environment is expected. Mould producing SME would be as test basis.

  9. Dopant profile modeling by rare event enhanced domain-following molecular dynamics

    DOEpatents

    Beardmore, Keith M.; Jensen, Niels G.

    2002-01-01

    A computer-implemented molecular dynamics-based process simulates a distribution of ions implanted in a semiconductor substrate. The properties of the semiconductor substrate and ion dose to be simulated are first initialized, including an initial set of splitting depths that contain an equal number of virtual ions implanted in each substrate volume determined by the splitting depths. A first ion with selected velocity is input onto an impact position of the substrate that defines a first domain for the first ion during a first timestep, where the first domain includes only those atoms of the substrate that exert a force on the ion. A first position and velocity of the first ion is determined after the first timestep and a second domain of the first ion is formed at the first position. The first ion is split into first and second virtual ions if the first ion has passed through a splitting interval. The process then follows each virtual ion until all of the virtual ions have come to rest. A new ion is input to the surface and the process repeats until all of the ion dose has been input. The resulting ion rest positions form the simulated implant distribution.

  10. Cognitive factors associated with immersion in virtual environments

    NASA Technical Reports Server (NTRS)

    Psotka, Joseph; Davison, Sharon

    1993-01-01

    Immersion into the dataspace provided by a computer, and the feeling of really being there or 'presence', are commonly acknowledged as the uniquely important features of virtual reality environments. How immersed one feels appears to be determined by a complex set of physical components and affordances of the environment, and as yet poorly understood psychological processes. Pimentel and Teixeira say that the experience of being immersed in a computer-generated world involves the same mental shift of 'suspending your disbelief for a period of time' as 'when you get wrapped up in a good novel or become absorbed in playing a computer game'. That sounds as if it could be right, but it would be good to get some evidence for these important conclusions. It might be even better to try to connect these statements with theoretical positions that try to do justice to complex cognitive processes. The basic precondition for understanding Virtual Reality (VR) is understanding the spatial representation systems that localize our bodies or egocenters in space. The effort to understand these cognitive processes is being driven with new energy by the pragmatic demands of successful virtual reality environments, but the literature is largely sparse and anecdotal.

  11. Virtual commissioning of automated micro-optical assembly

    NASA Astrophysics Data System (ADS)

    Schlette, Christian; Losch, Daniel; Haag, Sebastian; Zontar, Daniel; Roßmann, Jürgen; Brecher, Christian

    2015-02-01

    In this contribution, we present a novel approach to enable virtual commissioning for process developers in micro-optical assembly. Our approach aims at supporting micro-optics experts to effectively develop assisted or fully automated assembly solutions without detailed prior experience in programming while at the same time enabling them to easily implement their own libraries of expert schemes and algorithms for handling optical components. Virtual commissioning is enabled by a 3D simulation and visualization system in which the functionalities and properties of automated systems are modeled, simulated and controlled based on multi-agent systems. For process development, our approach supports event-, state- and time-based visual programming techniques for the agents and allows for their kinematic motion simulation in combination with looped-in simulation results for the optical components. First results have been achieved for simply switching the agents to command the real hardware setup after successful process implementation and validation in the virtual environment. We evaluated and adapted our system to meet the requirements set by industrial partners-- laser manufacturers as well as hardware suppliers of assembly platforms. The concept is applied to the automated assembly of optical components for optically pumped semiconductor lasers and positioning of optical components for beam-shaping

  12. A framework for different levels of integration of computational models into web-based virtual patients.

    PubMed

    Kononowicz, Andrzej A; Narracott, Andrew J; Manini, Simone; Bayley, Martin J; Lawford, Patricia V; McCormack, Keith; Zary, Nabil

    2014-01-23

    Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients' interactivity by enriching them with computational models of physiological and pathological processes. The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the description of four integration strategies, and the last element consisted of evaluation profiles specifying the relevant feasibility features and acceptance thresholds for specific purposes. The group of experts who evaluated the virtual patient exemplar found higher integration more interesting, but at the same time they were more concerned with the validity of the result. The observed differences were not statistically significant. This paper outlines a framework for the integration of computational models into virtual patients. The opportunities and challenges of model exploitation are discussed from a number of user perspectives, considering different levels of model integration. The long-term aim for future research is to isolate the most crucial factors in the framework and to determine their influence on the integration outcome.

  13. A Framework for Different Levels of Integration of Computational Models Into Web-Based Virtual Patients

    PubMed Central

    Narracott, Andrew J; Manini, Simone; Bayley, Martin J; Lawford, Patricia V; McCormack, Keith; Zary, Nabil

    2014-01-01

    Background Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients’ interactivity by enriching them with computational models of physiological and pathological processes. Objective The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. Methods The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. Results The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the description of four integration strategies, and the last element consisted of evaluation profiles specifying the relevant feasibility features and acceptance thresholds for specific purposes. The group of experts who evaluated the virtual patient exemplar found higher integration more interesting, but at the same time they were more concerned with the validity of the result. The observed differences were not statistically significant. Conclusions This paper outlines a framework for the integration of computational models into virtual patients. The opportunities and challenges of model exploitation are discussed from a number of user perspectives, considering different levels of model integration. The long-term aim for future research is to isolate the most crucial factors in the framework and to determine their influence on the integration outcome. PMID:24463466

  14. A Second Life for eHealth: Prospects for the Use of 3-D Virtual Worlds in Clinical Psychology

    PubMed Central

    Gaggioli, Andrea; Vigna, Cinzia; Riva, Giuseppe

    2008-01-01

    The aim of the present paper is to describe the role played by three-dimensional (3-D) virtual worlds in eHealth applications, addressing some potential advantages and issues related to the use of this emerging medium in clinical practice. Due to the enormous diffusion of the World Wide Web (WWW), telepsychology, and telehealth in general, have become accepted and validated methods for the treatment of many different health care concerns. The introduction of the Web 2.0 has facilitated the development of new forms of collaborative interaction between multiple users based on 3-D virtual worlds. This paper describes the development and implementation of a form of tailored immersive e-therapy called p-health whose key factor is interreality, that is, the creation of a hybrid augmented experience merging physical and virtual worlds. We suggest that compared with conventional telehealth applications such as emails, chat, and videoconferences, the interaction between real and 3-D virtual worlds may convey greater feelings of presence, facilitate the clinical communication process, positively influence group processes and cohesiveness in group-based therapies, and foster higher levels of interpersonal trust between therapists and patients. However, challenges related to the potentially addictive nature of such virtual worlds and questions related to privacy and personal safety will also be discussed. PMID:18678557

  15. Visualized modeling platform for virtual plant growth and monitoring on the internet

    NASA Astrophysics Data System (ADS)

    Zhou, De-fu; Tian, Feng-qui; Ren, Ping

    2009-07-01

    Virtual plant growth is a key research topic in Agriculture Information Technique and Computer Graphics. It has been applied in botany, agronomy, environmental sciences, computre sciences and applied mathematics. Modeling leaf color dynamics in plant is of significant importance for realizing virtual plant growth. Using systematic analysis method and dynamic modeling technology, a SPAD-based leaf color dynamic model was developed to simulate time-course change characters of leaf SPAD on the plant. In addition, process of plant growth can be computer-stimulated using Virtual Reality Modeling Language (VRML) to establish a vivid and visible model, including shooting, rooting, blooming, as well as growth of the stems and leaves. In the resistance environment, e.g., lacking of water, air or nutrient substances, high salt or alkaline, freezing injury, high temperature, suffering from diseases and insect pests, the changes from the level of whole plant to organs, tissues and cells could be computer-stimulated. Changes from physiological and biochemistry could also be described. When a series of indexes were input by the costumers, direct view and microcosmic changes could be shown. Thus, the model has a good performance in predicting growth condition of the plant, laying a foundation for further constructing virtual plant growth system. The results revealed that realistic physiological and pathological processes of 3D virtual plants could be demonstrated by proper design and effectively realized in the internet.

  16. Virtual screening of compound libraries.

    PubMed

    Cerqueira, Nuno M F S A; Sousa, Sérgio F; Fernandes, Pedro A; Ramos, Maria João

    2009-01-01

    During the last decade, Virtual Screening (VS) has definitively established itself as an important part of the drug discovery and development process. VS involves the selection of likely drug candidates from large libraries of chemical structures by using computational methodologies, but the generic definition of VS encompasses many different methodologies. This chapter provides an introduction to the field by reviewing a variety of important aspects, including the different types of virtual screening methods, and the several steps required for a successful virtual screening campaign within a state-of-the-art approach, from target selection to postfilter application. This analysis is further complemented with a small collection important VS success stories.

  17. A computer-based training system combining virtual reality and multimedia

    NASA Technical Reports Server (NTRS)

    Stansfield, Sharon A.

    1993-01-01

    Training new users of complex machines is often an expensive and time-consuming process. This is particularly true for special purpose systems, such as those frequently encountered in DOE applications. This paper presents a computer-based training system intended as a partial solution to this problem. The system extends the basic virtual reality (VR) training paradigm by adding a multimedia component which may be accessed during interaction with the virtual environment. The 3D model used to create the virtual reality is also used as the primary navigation tool through the associated multimedia. This method exploits the natural mapping between a virtual world and the real world that it represents to provide a more intuitive way for the student to interact with all forms of information about the system.

  18. Treatment of complicated grief using virtual reality: a case report.

    PubMed

    Botella, C; Osma, J; Palacios, A García; Guillén, V; Baños, R

    2008-01-01

    This is the first work exploring the application of new technologies, concretely virtual reality, to facilitate emotional processing in the treatment of Complicated Grief. Our research team has designed a virtual reality environment (EMMA's World) to foster the expression and processing of emotions. In this study the authors present a description of EMMA's World, the clinical protocol, and a case report. The treatment program was applied in eight sessions. We present a brief description of the session agendas including the techniques used. We offer short-term (from pre-test to post-test) and long-term (2-, 6- and 12-month follow-ups) efficacy data. Our results offer preliminary support of the use of EMMA's World for the treatment of Complicated Grief.

  19. Using virtualization to protect the proprietary material science applications in volunteer computing

    NASA Astrophysics Data System (ADS)

    Khrapov, Nikolay P.; Rozen, Valery V.; Samtsevich, Artem I.; Posypkin, Mikhail A.; Sukhomlin, Vladimir A.; Oganov, Artem R.

    2018-04-01

    USPEX is a world-leading software for computational material design. In essence, USPEX splits simulation into a large number of workunits that can be processed independently. This scheme ideally fits the desktop grid architecture. Workunit processing is done by a simulation package aimed at energy minimization. Many of such packages are proprietary and should be protected from unauthorized access when running on a volunteer PC. In this paper we present an original approach based on virtualization. In a nutshell, the proprietary code and input files are stored in an encrypted folder and run inside a virtual machine image that is also password protected. The paper describes this approach in detail and discusses its application in USPEX@home volunteer project.

  20. Virtual Earth System Laboratory (VESL): A Virtual Research Environment for The Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Quinn, J. D.; Larour, E. Y.; Halkides, D. J.

    2017-12-01

    The Virtual Earth System Laboratory (VESL) is a Web application, under continued development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. As with any project of its size, we have encountered both successes and challenges during the course of development. Our principal point of success is the fact that VESL users can interact seamlessly with our earth science simulations within their own Web browser. Some of the challenges we have faced include retrofitting the VESL Web application to respond to touch gestures, reducing page load time (especially as the application has grown), and accounting for the differences between the various Web browsers and computing platforms.

  1. Virtual Libraries: Service Realities.

    ERIC Educational Resources Information Center

    Novak, Jan

    This paper discusses client service issues to be considered when transitioning to a virtual library situation. Themes related to the transitional nature of society in the knowledge era are presented, including: paradox and a contradictory nature; blurring of boundaries; networks, systems, and holistic thinking; process/not product, becoming/not…

  2. Virtual OD: Facilitating Groups Online

    ERIC Educational Resources Information Center

    Milton, Judy; Watkins, Karen E.; Daley, Barbara J.

    2005-01-01

    This study examined the role of facilitators in nine virtual action learning groups. A qualitative analysis of the facilitators' interventions across all groups resulted in a typology that included group management, group process, and support interventions. A model showing the relationship among these categories proposes that effective…

  3. Ontology-Based Empirical Knowledge Verification for Professional Virtual Community

    ERIC Educational Resources Information Center

    Chen, Yuh-Jen

    2011-01-01

    A professional virtual community provides an interactive platform for enterprise experts to create and share their empirical knowledge cooperatively, and the platform contains a tremendous amount of hidden empirical knowledge that knowledge experts have preserved in the discussion process. Therefore, enterprise knowledge management highly…

  4. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.

    PubMed

    Aronov, Dmitriy; Tank, David W

    2014-10-22

    Virtual reality (VR) enables precise control of an animal's environment and otherwise impossible experimental manipulations. Neural activity in rodents has been studied on virtual 1D tracks. However, 2D navigation imposes additional requirements, such as the processing of head direction and environment boundaries, and it is unknown whether the neural circuits underlying 2D representations can be sufficiently engaged in VR. We implemented a VR setup for rats, including software and large-scale electrophysiology, that supports 2D navigation by allowing rotation and walking in any direction. The entorhinal-hippocampal circuit, including place, head direction, and grid cells, showed 2D activity patterns similar to those in the real world. Furthermore, border cells were observed, and hippocampal remapping was driven by environment shape, suggesting functional processing of virtual boundaries. These results illustrate that 2D spatial representations can be engaged by visual and rotational vestibular stimuli alone and suggest a novel VR tool for studying rat navigation.

  5. New database for improving virtual system “body-dress”

    NASA Astrophysics Data System (ADS)

    Yan, J. Q.; Zhang, S. C.; Kuzmichev, V. E.; Adolphe, D. C.

    2017-10-01

    The aim of this exploration is to develop a new database of solid algorithms and relations between the dress fit and the fabric mechanical properties, the pattern block construction for improving the reality of virtual system “body-dress”. In virtual simulation, the system “body-clothing” sometimes shown distinct results with reality, especially when important changes in pattern block and fabrics were involved. In this research, to enhance the simulation process, diverse fit parameters were proposed: bottom height of dress, angle of front center contours, air volume and its distribution between dress and dummy. Measurements were done and optimized by ruler, camera, 3D body scanner image processing software and 3D modeling software. In the meantime, pattern block indexes were measured and fabric properties were tested by KES. Finally, the correlation and linear regression equations between indexes of fabric properties, pattern blocks and fit parameters were investigated. In this manner, new database could be extended in programming modules of virtual design for more realistic results.

  6. VIRTOPSY - the Swiss virtual autopsy approach.

    PubMed

    Thali, Michael J; Jackowski, Christian; Oesterhelweg, Lars; Ross, Steffen G; Dirnhofer, Richard

    2007-03-01

    The aim of the VIRTOPSY project () is utilizing radiological scanning to push low-tech documentation and autopsy procedures in a world of high-tech medicine in order to improve scientific value, to increase significance and quality in the forensic field. The term VIRTOPSY was created from the terms virtual and autopsy: Virtual is derived from the Latin word 'virtus', which means 'useful, efficient and good'. Autopsy is a combination of the old Greek terms 'autos' (=self) and 'opsomei' (=I will see). Thus autopsy means 'to see with ones own eyes'. Because our goal was to eliminate the subjectivity of "autos", we merged the two terms virtual and autopsy - deleting "autos" - to create VIRTOPSY. Today the project VIRTOPSY combining the research topics under one scientific umbrella, is characterized by a trans-disciplinary research approach that combines Forensic Medicine, Pathology, Radiology, Image Processing, Physics, and Biomechanics to an international scientific network. The paper will give an overview of the Virtopsy change process in forensic medicine.

  7. Short-term motor learning through non-immersive virtual reality task in individuals with down syndrome.

    PubMed

    de Mello Monteiro, Carlos Bandeira; da Silva, Talita Dias; de Abreu, Luiz Carlos; Fregni, Felipe; de Araujo, Luciano Vieira; Ferreira, Fernando Henrique Inocêncio Borba; Leone, Claudio

    2017-04-14

    Down syndrome (DS) has unique physical, motor and cognitive characteristics. Despite cognitive and motor difficulties, there is a possibility of intervention based on the knowledge of motor learning. However, it is important to study the motor learning process in individuals with DS during a virtual reality task to justify the use of virtual reality to organize intervention programs. The aim of this study was to analyze the motor learning process in individuals with DS during a virtual reality task. A total of 40 individuals participated in this study, 20 of whom had DS (24 males and 8 females, mean age of 19 years, ranging between 14 and 30 yrs.) and 20 typically developing individuals (TD) who were matched by age and gender to the individuals with DS. To examine this issue, we used software that uses 3D images and reproduced a coincidence-timing task. The results showed that all individuals improved performance in the virtual task, but the individuals with DS that started the task with worse performance showed higher difference from the beginning. Besides that, they were able to retain and transfer the performance with increase of speed of the task. Individuals with DS are able to learn movements from virtual tasks, even though the movement time was higher compared to the TD individuals. The results showed that individuals with DS who started with low performance improved coincidence- timing task with virtual objects, but were less accurate than typically developing individuals. ClinicalTrials.gov Identifier: NCT02719600 .

  8. Neurosurgical Virtual Reality Simulation for Brain Tumor Using High-definition Computer Graphics: A Review of the Literature.

    PubMed

    Kin, Taichi; Nakatomi, Hirofumi; Shono, Naoyuki; Nomura, Seiji; Saito, Toki; Oyama, Hiroshi; Saito, Nobuhito

    2017-10-15

    Simulation and planning of surgery using a virtual reality model is becoming common with advances in computer technology. In this study, we conducted a literature search to find trends in virtual simulation of surgery for brain tumors. A MEDLINE search for "neurosurgery AND (simulation OR virtual reality)" retrieved a total of 1,298 articles published in the past 10 years. After eliminating studies designed solely for education and training purposes, 28 articles about the clinical application remained. The finding that the vast majority of the articles were about education and training rather than clinical applications suggests that several issues need be addressed for clinical application of surgical simulation. In addition, 10 of the 28 articles were from Japanese groups. In general, the 28 articles demonstrated clinical benefits of virtual surgical simulation. Simulation was particularly useful in better understanding complicated spatial relations of anatomical landmarks and in examining surgical approaches. In some studies, Virtual reality models were used on either surgical navigation system or augmented reality technology, which projects virtual reality images onto the operating field. Reported problems were difficulties in standardized, objective evaluation of surgical simulation systems; inability to respond to tissue deformation caused by surgical maneuvers; absence of the system functionality to reflect features of tissue (e.g., hardness and adhesion); and many problems with image processing. The amount of description about image processing tended to be insufficient, indicating that the level of evidence, risk of bias, precision, and reproducibility need to be addressed for further advances and ultimately for full clinical application.

  9. Virtual Averaging Making Nonframe-Averaged Optical Coherence Tomography Images Comparable to Frame-Averaged Images.

    PubMed

    Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A; Kagemann, Larry; Schuman, Joel S

    2016-01-01

    Developing a novel image enhancement method so that nonframe-averaged optical coherence tomography (OCT) images become comparable to active eye-tracking frame-averaged OCT images. Twenty-one eyes of 21 healthy volunteers were scanned with noneye-tracking nonframe-averaged OCT device and active eye-tracking frame-averaged OCT device. Virtual averaging was applied to nonframe-averaged images with voxel resampling and adding amplitude deviation with 15-time repetitions. Signal-to-noise (SNR), contrast-to-noise ratios (CNR), and the distance between the end of visible nasal retinal nerve fiber layer (RNFL) and the foveola were assessed to evaluate the image enhancement effect and retinal layer visibility. Retinal thicknesses before and after processing were also measured. All virtual-averaged nonframe-averaged images showed notable improvement and clear resemblance to active eye-tracking frame-averaged images. Signal-to-noise and CNR were significantly improved (SNR: 30.5 vs. 47.6 dB, CNR: 4.4 vs. 6.4 dB, original versus processed, P < 0.0001, paired t -test). The distance between the end of visible nasal RNFL and the foveola was significantly different before (681.4 vs. 446.5 μm, Cirrus versus Spectralis, P < 0.0001) but not after processing (442.9 vs. 446.5 μm, P = 0.76). Sectoral macular total retinal and circumpapillary RNFL thicknesses showed systematic differences between Cirrus and Spectralis that became not significant after processing. The virtual averaging method successfully improved nontracking nonframe-averaged OCT image quality and made the images comparable to active eye-tracking frame-averaged OCT images. Virtual averaging may enable detailed retinal structure studies on images acquired using a mixture of nonframe-averaged and frame-averaged OCT devices without concerning about systematic differences in both qualitative and quantitative aspects.

  10. Virtual Averaging Making Nonframe-Averaged Optical Coherence Tomography Images Comparable to Frame-Averaged Images

    PubMed Central

    Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A.; Kagemann, Larry; Schuman, Joel S.

    2016-01-01

    Purpose Developing a novel image enhancement method so that nonframe-averaged optical coherence tomography (OCT) images become comparable to active eye-tracking frame-averaged OCT images. Methods Twenty-one eyes of 21 healthy volunteers were scanned with noneye-tracking nonframe-averaged OCT device and active eye-tracking frame-averaged OCT device. Virtual averaging was applied to nonframe-averaged images with voxel resampling and adding amplitude deviation with 15-time repetitions. Signal-to-noise (SNR), contrast-to-noise ratios (CNR), and the distance between the end of visible nasal retinal nerve fiber layer (RNFL) and the foveola were assessed to evaluate the image enhancement effect and retinal layer visibility. Retinal thicknesses before and after processing were also measured. Results All virtual-averaged nonframe-averaged images showed notable improvement and clear resemblance to active eye-tracking frame-averaged images. Signal-to-noise and CNR were significantly improved (SNR: 30.5 vs. 47.6 dB, CNR: 4.4 vs. 6.4 dB, original versus processed, P < 0.0001, paired t-test). The distance between the end of visible nasal RNFL and the foveola was significantly different before (681.4 vs. 446.5 μm, Cirrus versus Spectralis, P < 0.0001) but not after processing (442.9 vs. 446.5 μm, P = 0.76). Sectoral macular total retinal and circumpapillary RNFL thicknesses showed systematic differences between Cirrus and Spectralis that became not significant after processing. Conclusion The virtual averaging method successfully improved nontracking nonframe-averaged OCT image quality and made the images comparable to active eye-tracking frame-averaged OCT images. Translational Relevance Virtual averaging may enable detailed retinal structure studies on images acquired using a mixture of nonframe-averaged and frame-averaged OCT devices without concerning about systematic differences in both qualitative and quantitative aspects. PMID:26835180

  11. Creation of virtual patients for midwifery education.

    PubMed

    Urbanová, Eva; Bašková, Martina; Maskálová, Erika; Kvaltínyová, Eva

    2018-07-01

    The objective of the study was to create several new, original virtual patients (VPs) in the Slovak language, especially for educational purposes in midwifery. Virtual patients have been created for the needs of university midwifery education in Slovakia. The creation of the six virtual patients basically consisted of three fixed stages: preparation, design and development, implementation into the virtual environment. We used the Open Labyrinth (OL) virtual environment, an open-source system for creating VPs. The VPs include six various scenarios of the most common problems seen in midwifery practice: preterm birth, perinatal loss, gestational diabetes, ineffective breastfeeding, postpartum bleeding and sudden home birth. Currently, six original virtual patients are used in university midwifery education in Slovakia. We use them for contact teaching as well as self-study of students. They present the first VPs in Slovakia and the Czech Republic created in academic settings in these countries. The future perspective of a virtual patient as an interactive process between the student and the medium is that it can deepen and improve learning outcomes, solve specific midwifery issues, and reduce mistakes in the clinical environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Virtual design and construction of plumbing systems

    NASA Astrophysics Data System (ADS)

    Filho, João Bosco P. Dantas; Angelim, Bruno Maciel; Guedes, Joana Pimentel; de Castro, Marcelo Augusto Farias; Neto, José de Paula Barros

    2016-12-01

    Traditionally, the design coordination process is carried out by overlaying and comparing 2D drawings made by different project participants. Detecting information errors from a composite drawing is especially challenging and error prone. This procedure usually leaves many design errors undetected until construction begins, and typically lead to rework. Correcting conflict issues, which were not identified during design and coordination phase, reduces the overall productivity for everyone involved in the construction process. The identification of construction issues in the field generate Request for Information (RFIs) that is one of delays causes. The application of Virtual Design and Construction (VDC) tools to the coordination processes can bring significant value to architecture, structure, and mechanical, electrical, and plumbing (MEP) designs in terms of a reduced number of errors undetected and requests for information. This paper is focused on evaluating requests for information (RFI) associated with water/sanitary facilities of a BIM model. Thus, it is expected to add improvements of water/sanitary facility designs, as well as to assist the virtual construction team to notice and identify design problems. This is an exploratory and descriptive research. A qualitative methodology is used. This study adopts RFI's classification in six analyzed categories: correction, omission, validation of information, modification, divergence of information and verification. The results demonstrate VDC's contribution improving the plumbing system designs. Recommendations are suggested to identify and avoid these RFI types in plumbing system design process or during virtual construction.

  13. An adaptive process-based cloud infrastructure for space situational awareness applications

    NASA Astrophysics Data System (ADS)

    Liu, Bingwei; Chen, Yu; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik; Rubin, Bruce

    2014-06-01

    Space situational awareness (SSA) and defense space control capabilities are top priorities for groups that own or operate man-made spacecraft. Also, with the growing amount of space debris, there is an increase in demand for contextual understanding that necessitates the capability of collecting and processing a vast amount sensor data. Cloud computing, which features scalable and flexible storage and computing services, has been recognized as an ideal candidate that can meet the large data contextual challenges as needed by SSA. Cloud computing consists of physical service providers and middleware virtual machines together with infrastructure, platform, and software as service (IaaS, PaaS, SaaS) models. However, the typical Virtual Machine (VM) abstraction is on a per operating systems basis, which is at too low-level and limits the flexibility of a mission application architecture. In responding to this technical challenge, a novel adaptive process based cloud infrastructure for SSA applications is proposed in this paper. In addition, the details for the design rationale and a prototype is further examined. The SSA Cloud (SSAC) conceptual capability will potentially support space situation monitoring and tracking, object identification, and threat assessment. Lastly, the benefits of a more granular and flexible cloud computing resources allocation are illustrated for data processing and implementation considerations within a representative SSA system environment. We show that the container-based virtualization performs better than hypervisor-based virtualization technology in an SSA scenario.

  14. Virtual Immunology: Software for Teaching Basic Immunology

    ERIC Educational Resources Information Center

    Berçot, Filipe Faria; Fidalgo-Neto, Antônio Augusto; Lopes, Renato Matos; Faggioni, Thais; Alves, Luiz Anastácio

    2013-01-01

    As immunology continues to evolve, many educational methods have found difficulty in conveying the degree of complexity inherent in its basic principles. Today, the teaching-learning process in such areas has been improved with tools such as educational software. This article introduces "Virtual Immunology," a software program available…

  15. The Virtual Liver Project: Simulating Tissue Injury Through Molecular and Cellular Processes

    EPA Science Inventory

    Efficiently and humanely testing the safety of thousands of environmental chemicals is a challenge. The US EPA Virtual Liver Project (v-Liver™) is aimed at simulating the effects of environmental chemicals computationally in order to estimate the risk of toxic outcomes in humans...

  16. Virtual Control Systems Environment (VCSE)

    ScienceCinema

    Atkins, Will

    2018-02-14

    Will Atkins, a Sandia National Laboratories computer engineer discusses cybersecurity research work for process control systems. Will explains his work on the Virtual Control Systems Environment project to develop a modeling and simulation framework of the U.S. electric grid in order to study and mitigate possible cyberattacks on infrastructure.

  17. Virtual Environments in Biology Teaching

    ERIC Educational Resources Information Center

    Mikropoulos, Tassos A.; Katsikis, Apostolos; Nikolou, Eugenia; Tsakalis, Panayiotis

    2003-01-01

    This article reports on the design, development and evaluation of an educational virtual environment for biology teaching. In particular it proposes a highly interactive three-dimensional synthetic environment involving certain learning tasks for the support of teaching plant cell biology and the process of photosynthesis. The environment has been…

  18. Virtual Bridge Design Challenge

    ERIC Educational Resources Information Center

    Mitts, Charles R.

    2013-01-01

    This design/problem-solving activity challenges students to design a replacement bridge for one that has been designated as either structurally deficient or functionally obsolete. The Aycock MS Technology/STEM Magnet Program Virtual Bridge Design Challenge is an authentic introduction to the engineering design process. It is a socially relevant…

  19. The virtual cooperation platform in enterprise and supplier cooperation models.

    PubMed

    Chang, Che-Wei; Wu, Cheng-Ru; Liao, Chia-Chun

    2010-08-01

    Abstract This study examines the use of the virtual enterprise network supplier supply-chain model of business behavior in creating synergies of cooperation. To explore virtual network behavior, it evaluates 60 samples, taken from of a few supply chains, and 17 items meeting certain behavioral criteria. Such an analysis may help to reduce costs and processing time effectively, as well as promote effective communication. Furthermore, the study of behavior in this electronic setting is a reliable and useful assessment method.

  20. LHCb experience with running jobs in virtual machines

    NASA Astrophysics Data System (ADS)

    McNab, A.; Stagni, F.; Luzzi, C.

    2015-12-01

    The LHCb experiment has been running production jobs in virtual machines since 2013 as part of its DIRAC-based infrastructure. We describe the architecture of these virtual machines and the steps taken to replicate the WLCG worker node environment expected by user and production jobs. This relies on the uCernVM system for providing root images for virtual machines. We use the CernVM-FS distributed filesystem to supply the root partition files, the LHCb software stack, and the bootstrapping scripts necessary to configure the virtual machines for us. Using this approach, we have been able to minimise the amount of contextualisation which must be provided by the virtual machine managers. We explain the process by which the virtual machine is able to receive payload jobs submitted to DIRAC by users and production managers, and how this differs from payloads executed within conventional DIRAC pilot jobs on batch queue based sites. We describe our operational experiences in running production on VM based sites managed using Vcycle/OpenStack, Vac, and HTCondor Vacuum. Finally we show how our use of these resources is monitored using Ganglia and DIRAC.

  1. ChemScreener: A Distributed Computing Tool for Scaffold based Virtual Screening.

    PubMed

    Karthikeyan, Muthukumarasamy; Pandit, Deepak; Vyas, Renu

    2015-01-01

    In this work we present ChemScreener, a Java-based application to perform virtual library generation combined with virtual screening in a platform-independent distributed computing environment. ChemScreener comprises a scaffold identifier, a distinct scaffold extractor, an interactive virtual library generator as well as a virtual screening module for subsequently selecting putative bioactive molecules. The virtual libraries are annotated with chemophore-, pharmacophore- and toxicophore-based information for compound prioritization. The hits selected can then be further processed using QSAR, docking and other in silico approaches which can all be interfaced within the ChemScreener framework. As a sample application, in this work scaffold selectivity, diversity, connectivity and promiscuity towards six important therapeutic classes have been studied. In order to illustrate the computational power of the application, 55 scaffolds extracted from 161 anti-psychotic compounds were enumerated to produce a virtual library comprising 118 million compounds (17 GB) and annotated with chemophore, pharmacophore and toxicophore based features in a single step which would be non-trivial to perform with many standard software tools today on libraries of this size.

  2. V-ROOM: a virtual meeting system with intelligent structured summarisation

    NASA Astrophysics Data System (ADS)

    James, Anne E.; Nanos, Antonios G.; Thompson, Philip

    2016-10-01

    With the growth of virtual organisations and multinational companies, virtual collaboration tasks are becoming more important for employees. This paper describes the development of a virtual meeting system called V-ROOM. An exploration of facilities required in such a system has been conducted. The findings highlighted that intelligent systems are needed, especially since information that individuals have to know and process is vast. The survey results showed that meeting summarisation is one of the most important new features that should be added to virtual meeting systems for enterprises. This paper highlights the innovative methods employed in V-ROOM to produce relevant meeting summaries. V-ROOM's approach is compared to other methods from the literature, and it is shown how the use of metadata provided by parts of the V-ROOM system can improve the quality of summaries produced.

  3. Collaborative Learning in Online Courses: Exploring Students' Perceptions

    ERIC Educational Resources Information Center

    Faja, Silvana

    2013-01-01

    Virtual collaborative activities have the potential to keep students engaged, create a sense of community in online courses and allow them to experience and practice virtual teamwork skills. This study presents an attempt to explore students' perceptions of online collaborative learning involving both process and product oriented activities. The…

  4. Cognitive Presence and Effect of Immersion in Virtual Learning Environment

    ERIC Educational Resources Information Center

    Katernyak, Ihor; Loboda, Viktoriya

    2016-01-01

    This paper presents the approach to successful application of two knowledge management techniques--community of practice and eLearning, in order to create and manage a competence-developing virtual learning environment. It explains how "4A" model of involving practitioners in eLearning process (through attention, actualization,…

  5. Offering a Framework for Value Co-Creation in Virtual Academic Learning Environments

    ERIC Educational Resources Information Center

    Ranjbarfard, Mina; Heidari Sureshjani, Mahboobeh

    2018-01-01

    Purpose: This research aims to convert the traditional teacher-student models, in which teachers determine the learning resources, into a flexible structure and an active learning environment so that students can participate in the educational processes and value co-creation in virtual academic learning environments (VALEs).…

  6. Transformation of Students Value Orientations: Behavioral Virtual Models

    ERIC Educational Resources Information Center

    Akhmadieva, Roza Sh.; Shagieva, Rozalina V.; Ganieva, Yoldyz N.; Zulfugarzade, Teymur E.; Ezhov, Sergey G.; Komarova, Nataliya M.

    2016-01-01

    The research urgency is caused by the intensification of virtual models of youth behavior that determine the educational process of modern University as the undifferentiated flows of information which are different by their value and that reduce the channels of personal communication of students as socio-cultural communication. Replicated in the…

  7. Simulating Limb Formation in the U.S. EPA Virtual Embryo - Risk Assessment Project

    EPA Science Inventory

    The U.S. EPA’s Virtual Embryo project (v-Embryo™) is a computer model simulation of morphogenesis that integrates cell and molecular level data from mechanistic and in vitro assays with knowledge about normal development processes to assess in silico the effects of chemicals on d...

  8. How Virtual Team Leaders Cope with Creativity Challenges

    ERIC Educational Resources Information Center

    Han, Soo Jeoung; Chae, Chungil; Macko, Patricia; Park, Woongbae; Beyerlein, Michael

    2017-01-01

    Purpose: As technology-mediated communication improves, many organizations increasingly use new types of collaborative online tools to promote team-based learning and performance. The purpose of this study is to explore how virtual team leaders cope with process challenges in developing a context for team creativity. Design/methodology/approach:…

  9. Virtual Bioinformatics Distance Learning Suite

    ERIC Educational Resources Information Center

    Tolvanen, Martti; Vihinen, Mauno

    2004-01-01

    Distance learning as a computer-aided concept allows students to take courses from anywhere at any time. In bioinformatics, computers are needed to collect, store, process, and analyze massive amounts of biological and biomedical data. We have applied the concept of distance learning in virtual bioinformatics to provide university course material…

  10. The development of a collaborative virtual environment for finite element simulation

    NASA Astrophysics Data System (ADS)

    Abdul-Jalil, Mohamad Kasim

    Communication between geographically distributed designers has been a major hurdle in traditional engineering design. Conventional methods of communication, such as video conferencing, telephone, and email, are less efficient especially when dealing with complex design models. Complex shapes, intricate features and hidden parts are often difficult to describe verbally or even using traditional 2-D or 3-D visual representations. Virtual Reality (VR) and Internet technologies have provided a substantial potential to bridge the present communication barrier. VR technology allows designers to immerse themselves in a virtual environment to view and manipulate this model just as in real-life. Fast Internet connectivity has enabled fast data transfer between remote locations. Although various collaborative virtual environment (CVE) systems have been developed in the past decade, they are limited to high-end technology that is not accessible to typical designers. The objective of this dissertation is to discover and develop a new approach to increase the efficiency of the design process, particularly for large-scale applications wherein participants are geographically distributed. A multi-platform and easily accessible collaborative virtual environment (CVRoom), is developed to accomplish the stated research objective. Geographically dispersed designers can meet in a single shared virtual environment to discuss issues pertaining to the engineering design process and to make trade-off decisions more quickly than before, thereby speeding the entire process. This 'faster' design process will be achieved through the development of capabilities to better enable the multidisciplinary and modeling the trade-off decisions that are so critical before launching into a formal detailed design. The features of the environment developed as a result of this research include the ability to view design models, use voice interaction, and to link engineering analysis modules (such as Finite Element Analysis module, such as is demonstrated in this work). One of the major issues in developing a CVE system for engineering design purposes is to obtain any pertinent simulation results in real-time. This is critical so that the designers can make decisions based on these results quickly. For example, in a finite element analysis, if a design model is changed or perturbed, the analysis results must be obtained in real-time or near real-time to make the virtual meeting environment realistic. In this research, the finite difference-based Design Sensitivity Analysis (DSA) approach is employed to approximate structural responses (i.e. stress, displacement, etc), so as to demonstrate the applicability of CVRoom for engineering design trade-offs. This DSA approach provides for fast approximation and is well-suited for the virtual meeting environment where fast response time is required. The DSA-based approach is tested on several example test problems to show its applicability and limitations. This dissertation demonstrates that an increase in efficiency and reduction of time required for a complex design processing can be accomplished using the approach developed in this dissertation research. Several implementations of CVRoom by students working on common design tasks were investigated. All participants confirmed the preference of using the collaborative virtual environment developed in this dissertation work (CVRoom) over other modes of interactions. It is proposed here that CVRoom is representative of the type of collaborative virtual environment that will be used by most designers in the future to reduce the time required in a design cycle and thereby reduce the associated cost.

  11. Analysis towards VMEM File of a Suspended Virtual Machine

    NASA Astrophysics Data System (ADS)

    Song, Zheng; Jin, Bo; Sun, Yongqing

    With the popularity of virtual machines, forensic investigators are challenged with more complicated situations, among which discovering the evidences in virtualized environment is of significant importance. This paper mainly analyzes the file suffixed with .vmem in VMware Workstation, which stores all pseudo-physical memory into an image. The internal file structure of .vmem file is studied and disclosed. Key information about processes and threads of a suspended virtual machine is revealed. Further investigation into the Windows XP SP3 heap contents is conducted and a proof-of-concept tool is provided. Different methods to obtain forensic memory images are introduced, with both advantages and limits analyzed. We conclude with an outlook.

  12. Effective factor of virtual team: Resolving communication breakdown in IBS construction project

    NASA Astrophysics Data System (ADS)

    Pozin, Mohd Affendi Ahmad; Nawi, Mohd. Nasrun Mohd.

    2016-08-01

    Currently, rapid development of information technology has provided new opportunities to organisation toward increasing the effectiveness of collaboration and teamwork management. Thus the virtual team approach has been implemented in numerous of field. However, there is limited study of virtual team in construction project management. Currently IBS project is still based on traditional construction process which is isolation team working environment. Therefore this approach has been declared as a main barrier to ensure cooperative working relation in term of communication and information in between project stakeholders. Thus, this paper through literature review is attempted to present a discussion of the virtual team approach toward IBS project in developing effective team communication during construction project.

  13. Creation of a 3-dimensional virtual dental patient for computer-guided surgery and CAD-CAM interim complete removable and fixed dental prostheses: A clinical report.

    PubMed

    Harris, Bryan T; Montero, Daniel; Grant, Gerald T; Morton, Dean; Llop, Daniel R; Lin, Wei-Shao

    2017-02-01

    This clinical report proposes a digital workflow using 2-dimensional (2D) digital photographs, a 3D extraoral facial scan, and cone beam computed tomography (CBCT) volumetric data to create a 3D virtual patient with craniofacial hard tissue, remaining dentition (including surrounding intraoral soft tissue), and the realistic appearance of facial soft tissue at an exaggerated smile under static conditions. The 3D virtual patient was used to assist the virtual diagnostic tooth arrangement process, providing patient with a pleasing preoperative virtual smile design that harmonized with facial features. The 3D virtual patient was also used to gain patient's pretreatment approval (as a communication tool), design a prosthetically driven surgical plan for computer-guided implant surgery, and fabricate the computer-aided design and computer-aided manufacturing (CAD-CAM) interim prostheses. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. A 3D character animation engine for multimodal interaction on mobile devices

    NASA Astrophysics Data System (ADS)

    Sandali, Enrico; Lavagetto, Fabio; Pisano, Paolo

    2005-03-01

    Talking virtual characters are graphical simulations of real or imaginary persons that enable natural and pleasant multimodal interaction with the user, by means of voice, eye gaze, facial expression and gestures. This paper presents an implementation of a 3D virtual character animation and rendering engine, compliant with the MPEG-4 standard, running on Symbian-based SmartPhones. Real-time animation of virtual characters on mobile devices represents a challenging task, since many limitations must be taken into account with respect to processing power, graphics capabilities, disk space and execution memory size. The proposed optimization techniques allow to overcome these issues, guaranteeing a smooth and synchronous animation of facial expressions and lip movements on mobile phones such as Sony-Ericsson's P800 and Nokia's 6600. The animation engine is specifically targeted to the development of new "Over The Air" services, based on embodied conversational agents, with applications in entertainment (interactive story tellers), navigation aid (virtual guides to web sites and mobile services), news casting (virtual newscasters) and education (interactive virtual teachers).

  15. Integration of PGD-virtual charts into an engineering design process

    NASA Astrophysics Data System (ADS)

    Courard, Amaury; Néron, David; Ladevèze, Pierre; Ballere, Ludovic

    2016-04-01

    This article deals with the efficient construction of approximations of fields and quantities of interest used in geometric optimisation of complex shapes that can be encountered in engineering structures. The strategy, which is developed herein, is based on the construction of virtual charts that allow, once computed offline, to optimise the structure for a negligible online CPU cost. These virtual charts can be used as a powerful numerical decision support tool during the design of industrial structures. They are built using the proper generalized decomposition (PGD) that offers a very convenient framework to solve parametrised problems. In this paper, particular attention has been paid to the integration of the procedure into a genuine engineering design process. In particular, a dedicated methodology is proposed to interface the PGD approach with commercial software.

  16. Virtual embryology: a 3D library reconstructed from human embryo sections and animation of development process.

    PubMed

    Komori, M; Miura, T; Shiota, K; Minato, K; Takahashi, T

    1995-01-01

    The volumetric shape of a human embryo and its development is hard to comprehend as they have been viewed as a 2D schemes in a textbook or microscopic sectional image. In this paper, a CAI and research support system for human embryology using multimedia presentation techniques is described. In this system, 3D data is acquired from a series of sliced specimens. Its 3D structure can be viewed interactively by rotating, extracting, and truncating its whole body or organ. Moreover, the development process of embryos can be animated using a morphing technique applied to the specimen in several stages. The system is intended to be used interactively, like a virtual reality system. Hence, the system is called Virtual Embryology.

  17. Exploiting virtual synchrony in distributed systems

    NASA Technical Reports Server (NTRS)

    Birman, Kenneth P.; Joseph, Thomas A.

    1987-01-01

    Applications of a virtually synchronous environment are described for distributed programming, which underlies a collection of distributed programming tools in the ISIS2 system. A virtually synchronous environment allows processes to be structured into process groups, and makes events like broadcasts to the group as an entity, group membership changes, and even migration of an activity from one place to another appear to occur instantaneously, in other words, synchronously. A major advantage to this approach is that many aspects of a distributed application can be treated independently without compromising correctness. Moreover, user code that is designed as if the system were synchronous can often be executed concurrently. It is argued that this approach to building distributed and fault tolerant software is more straightforward, more flexible, and more likely to yield correct solutions than alternative approaches.

  18. Virtual reality exposure therapy for social anxiety disorder: a randomized controlled trial.

    PubMed

    Anderson, Page L; Price, Matthew; Edwards, Shannan M; Obasaju, Mayowa A; Schmertz, Stefan K; Zimand, Elana; Calamaras, Martha R

    2013-10-01

    This is the first randomized trial comparing virtual reality exposure therapy to in vivo exposure for social anxiety disorder. Participants with a principal diagnosis of social anxiety disorder who identified public speaking as their primary fear (N = 97) were recruited from the community, resulting in an ethnically diverse sample (M age = 39 years) of mostly women (62%). Participants were randomly assigned to and completed 8 sessions of manualized virtual reality exposure therapy, exposure group therapy, or wait list. Standardized self-report measures were collected at pretreatment, posttreatment, and 12-month follow-up, and process measures were collected during treatment. A standardized speech task was delivered at pre- and posttreatment, and diagnostic status was reassessed at 3-month follow-up. Analysis of covariance showed that, relative to wait list, people completing either active treatment significantly improved on all but one measure (length of speech for exposure group therapy and self-reported fear of negative evaluation for virtual reality exposure therapy). At 12-month follow-up, people showed significant improvement from pretreatment on all measures. There were no differences between the active treatments on any process or outcome measure at any time, nor differences on achieving partial or full remission. Virtual reality exposure therapy is effective for treating social fears, and improvement is maintained for 1 year. Virtual reality exposure therapy is equally effective as exposure group therapy; further research with a larger sample is needed, however, to better control and statistically test differences between the treatments.

  19. Seeking virtual social support through blogging: A content analysis of published blog posts written by people with chronic pain

    PubMed Central

    Strong, Jenny

    2018-01-01

    Objective People with chronic pain often have limited avenues for social support. Social isolation often develops as their abilities to engage in daily social and vocational activities decrease. With recent advancements in technology and increasing use of social media, virtual platforms such as blogging may provide opportunities for social support. This study analyzed published blog posts of people with chronic pain to investigate how social support occurs through blogging for chronic pain blog users and the nature of such online interactions. Methods A total of 810 blog posts published from January 2014 to December 2015 on 44 publicly accessible chronic pain blogs were collected and analyzed through qualitative phenomenological thematic analysis. Results The Virtual Online Support Sequence (VOSS) was identified through the exchange of online comments; this sequence defines the process by which virtual social support can be established through the process of chronic pain blogging. Three subthemes were also identified in relation to social support in the online blogging environment: (a) the virtual community of pain blogging; (b) establishing social support through the VOSS; and (c) recounting everyday experiences related to pain. Conclusions These findings suggest that blogging can be useful in seeking, receiving and providing social support for people with chronic pain. Understanding this mechanism behind establishing virtual social support may potentially encourage people with chronic pain to pursue additional support online if they have limited face-to-face opportunities.

  20. Scalable Indoor Localization via Mobile Crowdsourcing and Gaussian Process

    PubMed Central

    Chang, Qiang; Li, Qun; Shi, Zesen; Chen, Wei; Wang, Weiping

    2016-01-01

    Indoor localization using Received Signal Strength Indication (RSSI) fingerprinting has been extensively studied for decades. The positioning accuracy is highly dependent on the density of the signal database. In areas without calibration data, however, this algorithm breaks down. Building and updating a dense signal database is labor intensive, expensive, and even impossible in some areas. Researchers are continually searching for better algorithms to create and update dense databases more efficiently. In this paper, we propose a scalable indoor positioning algorithm that works both in surveyed and unsurveyed areas. We first propose Minimum Inverse Distance (MID) algorithm to build a virtual database with uniformly distributed virtual Reference Points (RP). The area covered by the virtual RPs can be larger than the surveyed area. A Local Gaussian Process (LGP) is then applied to estimate the virtual RPs’ RSSI values based on the crowdsourced training data. Finally, we improve the Bayesian algorithm to estimate the user’s location using the virtual database. All the parameters are optimized by simulations, and the new algorithm is tested on real-case scenarios. The results show that the new algorithm improves the accuracy by 25.5% in the surveyed area, with an average positioning error below 2.2 m for 80% of the cases. Moreover, the proposed algorithm can localize the users in the neighboring unsurveyed area. PMID:26999139

  1. CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing.

    PubMed

    Angiuoli, Samuel V; Matalka, Malcolm; Gussman, Aaron; Galens, Kevin; Vangala, Mahesh; Riley, David R; Arze, Cesar; White, James R; White, Owen; Fricke, W Florian

    2011-08-30

    Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.

  2. Analysis of chemical concepts as the basic of virtual laboratory development and process science skills in solubility and solubility product subject

    NASA Astrophysics Data System (ADS)

    Syafrina, R.; Rohman, I.; Yuliani, G.

    2018-05-01

    This study aims to analyze the concept characteristics of solubility and solubility products that will serve as the basis for the development of virtual laboratory and students' science process skills. Characteristics of the analyzed concepts include concept definitions, concept attributes, and types of concepts. The concept analysis method uses concept analysis according to Herron. The results of the concept analysis show that there are twelve chemical concepts that become the prerequisite concept before studying the solubility and solubility and five core concepts that students must understand in the solubility and Solubility product. As many as 58.3% of the definitions of the concepts contained in high school textbooks support students' science process skills, the rest of the definition of the concept is memorized. Concept attributes that meet three levels of chemical representation and can be poured into a virtual laboratory have a percentage of 66.6%. Type of concept, 83.3% is a concept based on principle; and 16.6% concepts that state the process. Meanwhile, the science process skills that can be developed based on concept analysis are the ability to observe, calculate, measure, predict, interpret, hypothesize, apply, classify, and inference.

  3. Generalized Parton Distributions of the nucleon from exclusive lepto- and photo-production of lepton pairs

    NASA Astrophysics Data System (ADS)

    Boer, Marie

    2017-09-01

    Generalized Parton Distributions (GPDs) contain the correlation between the parton's longitudinal momentum and their transverse distribution. They are accessed through hard exclusive processes such as exclusive Compton processes, where two photons are exchanged with a quark of the nucleon, and at least one of them has a high virtuality. Exclusive Compton processes are considered ``golden'' channels, as the only non-perturbative part of the process corresponds to the GPDs. Deeply Virtual Compton Scattering (DVCS) corresponds to the lepto-production of a real photon and has been intensively studied in the past decade. We propose to access GPDs with the two other cases of exclusive Compton processes: Timelike Compton Scattering (TCS) corresponds to the photo-production of a lepton pair, and Double Deeply Virtual Compton Scattering (DDVCS) corresponds to the lepto-production of a lepton pair. The study of these two reactions is complementary to DVCS and will bring new constraints on our understanding of the nucleon structure, in particular for a tomographic interpretation of GPDs. We will discuss the interest of TCS and DDVCS in terms of GPD studies, and present the efforts held at Jefferson Lab for new experiments aiming at measuring TCS and DDVCS.

  4. Image Mosaicking Approach for a Double-Camera System in the GaoFen2 Optical Remote Sensing Satellite Based on the Big Virtual Camera.

    PubMed

    Cheng, Yufeng; Jin, Shuying; Wang, Mi; Zhu, Ying; Dong, Zhipeng

    2017-06-20

    The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper proposes a high accuracy image mosaicking approach based on the big virtual camera (BVC) in the double-camera system on the GaoFen2 optical remote sensing satellite (GF2). A big virtual camera can be built according to the rigorous imaging model of a single camera; then, each single image strip obtained by each TDI-CCD detector can be re-projected to the virtual detector of the big virtual camera coordinate system using forward-projection and backward-projection to obtain the corresponding single virtual image. After an on-orbit calibration and relative orientation, the complete final virtual image can be obtained by stitching the single virtual images together based on their coordinate information on the big virtual detector image plane. The paper subtly uses the concept of the big virtual camera to obtain a stitched image and the corresponding high accuracy rational function model (RFM) for concurrent post processing. Experiments verified that the proposed method can achieve seamless mosaicking while maintaining the geometric accuracy.

  5. Virtual microscopy: an evaluation of its validity and diagnostic performance in routine histologic diagnosis of skin tumors.

    PubMed

    Nielsen, Patricia Switten; Lindebjerg, Jan; Rasmussen, Jan; Starklint, Henrik; Waldstrøm, Marianne; Nielsen, Bjarne

    2010-12-01

    Digitization of histologic slides is associated with many advantages, and its use in routine diagnosis holds great promise. Nevertheless, few articles evaluate virtual microscopy in routine settings. This study is an evaluation of the validity and diagnostic performance of virtual microscopy in routine histologic diagnosis of skin tumors. Our aim is to investigate whether conventional microscopy of skin tumors can be replaced by virtual microscopy. Ninety-six skin tumors and skin-tumor-like changes were consecutively gathered over a 1-week period. Specimens were routinely processed, and digital slides were captured on Mirax Scan (Carl Zeiss MicroImaging, Göttingen, Germany). Four pathologists evaluated the 96 virtual slides and the associated 96 conventional slides twice with intermediate time intervals of at least 3 weeks. Virtual slides that caused difficulties were reevaluated to identify possible reasons for this. The accuracy was 89.2% for virtual microscopy and 92.7% for conventional microscopy. All κ coefficients expressed very good intra- and interobserver agreement. The sensitivities were 85.7% (78.0%-91.0%) and 92.0% (85.5%-95.7%) for virtual and conventional microscopy, respectively. The difference between the sensitivities was 6.3% (0.8%-12.6%). The subsequent reevaluation showed that virtual slides were as useful as conventional slides when rendering a diagnosis. Differences seen are presumed to be due to the pathologists' lack of experience using the virtual microscope. We conclude that it is feasible to make histologic diagnosis on the skin tumor types represented in this study using virtual microscopy after pathologists have completed a period of training. Larger studies should be conducted to verify whether virtual microscopy can replace conventional microscopy in routine practice. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. UPEML Version 3.0: A machine-portable CDC update emulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehlhorn, T.A.; Haill, T.A.

    1992-04-01

    UPEML is a machine-portable program that emulates a subset of the functions of the standard CDC Update. Machine-portability has been achieved by conforming to ANSI standards for Fortran-77. UPEML is compact and fairly efficient; however, it only allows a restricted syntax as compared with the CDC Update. This program was written primarily to facilitate the use of CDC-based scientific packages on alternate computer systems such as the VAX/VMS mainframes and UNIX workstations. UPEML has also been successfully used on the multiprocessor ELXSI, on CRAYs under both UNICOS and CTSS operating systems, and on Sun, HP, Stardent and IBM workstations. UPEMLmore » was originally released with the ITS electron/photon Monte Carlo transport package, which was developed on a CDC-7600 and makes extensive use of conditional file structure to combine several problem geometry and machine options into a single program file. UPEML 3.0 is an enhanced version of the original code and is being independently released for use at any installation or with any code package. Version 3.0 includes enhanced error checking, full ASCII character support, a program library audit capability, and a partial update option in which only selected or modified decks are written to the complete file. Version 3.0 also checks for overlapping corrections, allows processing of pested calls to common decks, and allows the use of alternate files in READ and ADDFILE commands. Finally, UPEML Version 3.0 allows the assignment of input and output files at runtime on the control line.« less

  7. UPEML Version 3. 0: A machine-portable CDC update emulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehlhorn, T.A.; Haill, T.A.

    1992-04-01

    UPEML is a machine-portable program that emulates a subset of the functions of the standard CDC Update. Machine-portability has been achieved by conforming to ANSI standards for Fortran-77. UPEML is compact and fairly efficient; however, it only allows a restricted syntax as compared with the CDC Update. This program was written primarily to facilitate the use of CDC-based scientific packages on alternate computer systems such as the VAX/VMS mainframes and UNIX workstations. UPEML has also been successfully used on the multiprocessor ELXSI, on CRAYs under both UNICOS and CTSS operating systems, and on Sun, HP, Stardent and IBM workstations. UPEMLmore » was originally released with the ITS electron/photon Monte Carlo transport package, which was developed on a CDC-7600 and makes extensive use of conditional file structure to combine several problem geometry and machine options into a single program file. UPEML 3.0 is an enhanced version of the original code and is being independently released for use at any installation or with any code package. Version 3.0 includes enhanced error checking, full ASCII character support, a program library audit capability, and a partial update option in which only selected or modified decks are written to the complete file. Version 3.0 also checks for overlapping corrections, allows processing of pested calls to common decks, and allows the use of alternate files in READ and ADDFILE commands. Finally, UPEML Version 3.0 allows the assignment of input and output files at runtime on the control line.« less

  8. VirtualPlant: A Software Platform to Support Systems Biology Research1[W][OA

    PubMed Central

    Katari, Manpreet S.; Nowicki, Steve D.; Aceituno, Felipe F.; Nero, Damion; Kelfer, Jonathan; Thompson, Lee Parnell; Cabello, Juan M.; Davidson, Rebecca S.; Goldberg, Arthur P.; Shasha, Dennis E.; Coruzzi, Gloria M.; Gutiérrez, Rodrigo A.

    2010-01-01

    Data generation is no longer the limiting factor in advancing biological research. In addition, data integration, analysis, and interpretation have become key bottlenecks and challenges that biologists conducting genomic research face daily. To enable biologists to derive testable hypotheses from the increasing amount of genomic data, we have developed the VirtualPlant software platform. VirtualPlant enables scientists to visualize, integrate, and analyze genomic data from a systems biology perspective. VirtualPlant integrates genome-wide data concerning the known and predicted relationships among genes, proteins, and molecules, as well as genome-scale experimental measurements. VirtualPlant also provides visualization techniques that render multivariate information in visual formats that facilitate the extraction of biological concepts. Importantly, VirtualPlant helps biologists who are not trained in computer science to mine lists of genes, microarray experiments, and gene networks to address questions in plant biology, such as: What are the molecular mechanisms by which internal or external perturbations affect processes controlling growth and development? We illustrate the use of VirtualPlant with three case studies, ranging from querying a gene of interest to the identification of gene networks and regulatory hubs that control seed development. Whereas the VirtualPlant software was developed to mine Arabidopsis (Arabidopsis thaliana) genomic data, its data structures, algorithms, and visualization tools are designed in a species-independent way. VirtualPlant is freely available at www.virtualplant.org. PMID:20007449

  9. Roi-Orientated Sensor Correction Based on Virtual Steady Reimaging Model for Wide Swath High Resolution Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Jin, S.; Tian, Y.; Wang, M.

    2017-09-01

    To meet the requirement of high accuracy and high speed processing for wide swath high resolution optical satellite imagery under emergency situation in both ground processing system and on-board processing system. This paper proposed a ROI-orientated sensor correction algorithm based on virtual steady reimaging model for wide swath high resolution optical satellite imagery. Firstly, the imaging time and spatial window of the ROI is determined by a dynamic search method. Then, the dynamic ROI sensor correction model based on virtual steady reimaging model is constructed. Finally, the corrected image corresponding to the ROI is generated based on the coordinates mapping relationship which is established by the dynamic sensor correction model for corrected image and rigours imaging model for original image. Two experimental results show that the image registration between panchromatic and multispectral images can be well achieved and the image distortion caused by satellite jitter can be also corrected efficiently.

  10. Freeform object design and simultaneous manufacturing

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhang, Weihan; Lin, Heng; Leu, Ming C.

    2003-04-01

    Today's product design, especially the consuming product design, focuses more and more on individuation, originality, and the time to market. One way to meet these challenges is using the interactive and creationary product design methods and rapid prototyping/rapid tooling. This paper presents a novel Freeform Object Design and Simultaneous Manufacturing (FODSM) method that combines the natural interaction feature in the design phase and simultaneous manufacturing feature in the prototyping phase. The natural interactive three-dimensional design environment is achieved by adopting virtual reality technology. The geometry of the designed object is defined through the process of "virtual sculpting" during which the designer can touch and visualize the designed object and can hear the virtual manufacturing environment noise. During the designing process, the computer records the sculpting trajectories and automatically translates them into NC codes so as to simultaneously machine the designed part. The paper introduced the principle, implementation process, and key techniques of the new method, and compared it with other popular rapid prototyping methods.

  11. The Virtual Geophysics Laboratory (VGL): Scientific Workflows Operating Across Organizations and Across Infrastructures

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Wyborn, L. A.; Fraser, R.; Rankine, T.; Woodcock, R.; Vote, J.; Evans, B.

    2012-12-01

    The Virtual Geophysics Laboratory (VGL) is web portal that provides geoscientists with an integrated online environment that: seamlessly accesses geophysical and geoscience data services from the AuScope national geoscience information infrastructure; loosely couples these data to a variety of gesocience software tools; and provides large scale processing facilities via cloud computing. VGL is a collaboration between CSIRO, Geoscience Australia, National Computational Infrastructure, Monash University, Australian National University and the University of Queensland. The VGL provides a distributed system whereby a user can enter an online virtual laboratory to seamlessly connect to OGC web services for geoscience data. The data is supplied in open standards formats using international standards like GeoSciML. A VGL user uses a web mapping interface to discover and filter the data sources using spatial and attribute filters to define a subset. Once the data is selected the user is not required to download the data. VGL collates the service query information for later in the processing workflow where it will be staged directly to the computing facilities. The combination of deferring data download and access to Cloud computing enables VGL users to access their data at higher resolutions and to undertake larger scale inversions, more complex models and simulations than their own local computing facilities might allow. Inside the Virtual Geophysics Laboratory, the user has access to a library of existing models, complete with exemplar workflows for specific scientific problems based on those models. For example, the user can load a geological model published by Geoscience Australia, apply a basic deformation workflow provided by a CSIRO scientist, and have it run in a scientific code from Monash. Finally the user can publish these results to share with a colleague or cite in a paper. This opens new opportunities for access and collaboration as all the resources (models, code, data, processing) are shared in the one virtual laboratory. VGL provides end users with access to an intuitive, user-centered interface that leverages cloud storage and cloud and cluster processing from both the research communities and commercial suppliers (e.g. Amazon). As the underlying data and information services are agnostic of the scientific domain, they can support many other data types. This fundamental characteristic results in a highly reusable virtual laboratory infrastructure that could also be used for example natural hazards, satellite processing, soil geochemistry, climate modeling, agriculture crop modeling.

  12. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    NASA Astrophysics Data System (ADS)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  13. Handling debugger breakpoints in a shared instruction system

    DOEpatents

    Gooding, Thomas Michael; Shok, Richard Michael

    2014-01-21

    A debugger debugs processes that execute shared instructions so that a breakpoint set for one process will not cause a breakpoint to occur in the other processes. A breakpoint is set by recording the original instruction at the desired location and writing a trap instruction to the shared instructions at that location. When a process encounters the breakpoint, the process passes control to the debugger for breakpoint processing if the breakpoint was set at that location for that process. If the trap was not set at that location for that process, the cacheline containing the trap is copied to a small scratchpad memory, and the virtual memory mappings are changed to translate the virtual address of the cacheline to the scratchpad. The original instruction is then written to replace the trap instruction in the scratchpad, so that process can execute the instructions in the scatchpad thereby avoiding the trap instruction.

  14. Dynamic Virtual Credit Card Numbers

    NASA Astrophysics Data System (ADS)

    Molloy, Ian; Li, Jiangtao; Li, Ninghui

    Theft of stored credit card information is an increasing threat to e-commerce. We propose a dynamic virtual credit card number scheme that reduces the damage caused by stolen credit card numbers. A user can use an existing credit card account to generate multiple virtual credit card numbers that are either usable for a single transaction or are tied with a particular merchant. We call the scheme dynamic because the virtual credit card numbers can be generated without online contact with the credit card issuers. These numbers can be processed without changing any of the infrastructure currently in place; the only changes will be at the end points, namely, the card users and the card issuers. We analyze the security requirements for dynamic virtual credit card numbers, discuss the design space, propose a scheme using HMAC, and prove its security under the assumption the underlying function is a PRF.

  15. Training Educators to Design Lessons Incorporating Virtual Worlds

    ERIC Educational Resources Information Center

    Downey, Steve

    2012-01-01

    In the past decade, virtual worlds have progressed from isolated sectors of the Internet, inhabited by computer and fantasy role-playing enthusiasts, to one of the fastest growing sectors in the gaming industry. In the process, they have established themselves as promising venues for the delivery of online instruction. Unfortunately, during that…

  16. Guiding Exploration through Three-Dimensional Virtual Environments: A Cognitive Load Reduction Approach

    ERIC Educational Resources Information Center

    Chen, Chwen Jen; Fauzy Wan Ismail, Wan Mohd

    2008-01-01

    The real-time interactive nature of three-dimensional virtual environments (VEs) makes this technology very appropriate for exploratory learning purposes. However, many studies have shown that the exploration process may cause cognitive overload that affects the learning of domain knowledge. This article reports a quasi-experimental study that…

  17. Collaboration Modality, Cognitive Load, and Science Inquiry Learning in Virtual Inquiry Environments

    ERIC Educational Resources Information Center

    Erlandson, Benjamin E.; Nelson, Brian C.; Savenye, Wilhelmina C.

    2010-01-01

    Educational multi-user virtual environments (MUVEs) have been shown to be effective platforms for situated science inquiry curricula. While researchers find MUVEs to be supportive of collaborative scientific inquiry processes, the complex mix of multi-modal messages present in MUVEs can lead to cognitive overload, with learners unable to…

  18. A Competence-Based Service for Supporting Self-Regulated Learning in Virtual Environments

    ERIC Educational Resources Information Center

    Nussbaumer, Alexander; Hillemann, Eva-Catherine; Gütl, Christian; Albert, Dietrich

    2015-01-01

    This paper presents a conceptual approach and a Web-based service that aim at supporting self-regulated learning in virtual environments. The conceptual approach consists of four components: 1) a self-regulated learning model for supporting a learner-centred learning process, 2) a psychological model for facilitating competence-based…

  19. Weaving the tapestry of learning: simulation, standardized patients, and virtual communities.

    PubMed

    Holland, Brian; Landry, Karen; Mountain, Angela; Middlebrooks, Mary Alice; Heim, Deborah; Missildine, Kathy

    2013-01-01

    Using situated cognition learning theory, nursing faculty developed simulated clinical learning experiences integrating virtual communities and standardized patients. These learning experiences provide authenticity and realism not easily achieved using the individual techniques in isolation. The authors describe the process of weaving these strategies into a rich learning experience for students.

  20. Learning as "Knowing": Towards Retaining and Visualizing Use in Virtual Settings

    ERIC Educational Resources Information Center

    Akoumianakis, Demosthenes

    2011-01-01

    The paper elaborates on the assumption that in modern organisations collaborative learning is an enacted capability that is more about "acting" and co-engaging in shared practices. In such settings, virtual learning can be conceived as an emergent knowledge process with no pre-determined outcomes that occupies multiple online and offline…

  1. Mechanics Simulations in Second Life

    ERIC Educational Resources Information Center

    Black, Kelly

    2010-01-01

    This paper examines the use of the 3-D virtual world Second Life to explore basic mechanics in physics. In Second Life, students can create scripts that take advantage of a virtual physics engine in order to conduct experiments that focus on specific phenomena. The paper explores two particular examples of this process: (1) the movement of an…

  2. Free the Sheep: Improvised Song and Performance in and around a Minecraft Community

    ERIC Educational Resources Information Center

    Bailey, Chris

    2016-01-01

    Recent work around the use of virtual world video games in educational contexts has conceptualised literacies as communal processes, whilst considering complex notions of collaboration through participants' multiplicity of presence in hybrid virtual/physical locations. However, further research is necessary in order to help us understand how the…

  3. Task Virtuality and Its Effect on Student Project Team Effectiveness

    ERIC Educational Resources Information Center

    Pineda, Rodley C.

    2015-01-01

    This study explores the extent to which students in colocated teams use synchronous and asynchronous computer-mediated communication channels (task virtuality) and how this use affects their perceptions of the team's performance, their satisfaction with the team, and the learning they derive from the process. Survey results show that different…

  4. Key Lessons for the Design and Integration of Virtual Environments in Secondary Science.

    ERIC Educational Resources Information Center

    Crosier, Joanna K.; Cobb, Sue; Wilson, John R.

    2002-01-01

    Discusses a three-year research project in which a virtual environment to teach radioactivity in secondary schools in the United Kingdom was developed and tested. Emphasizes the importance of involving teachers through the development process and confirms the importance of school-based evaluation studies in the development and evaluation of…

  5. Belle2VR: A Virtual-Reality Visualization of Subatomic Particle Physics in the Belle II Experiment.

    PubMed

    Duer, Zach; Piilonen, Leo; Glasson, George

    2018-05-01

    Belle2VR is an interactive virtual-reality visualization of subatomic particle physics, designed by an interdisciplinary team as an educational tool for learning about and exploring subatomic particle collisions. This article describes the tool, discusses visualization design decisions, and outlines our process for collaborative development.

  6. Enhancement of Spatial Thinking with Virtual Spaces 1.0

    ERIC Educational Resources Information Center

    Hauptman, Hanoch

    2010-01-01

    Developing a software environment to enhance 3D geometric proficiency demands the consideration of theoretical views of the learning process. Simultaneously, this effort requires taking into account the range of tools that technology offers, as well as their limitations. In this paper, we report on the design of Virtual Spaces 1.0 software, a…

  7. Kanbay's Global Leadership Development Program: A Case Study of Virtual Action Learning

    ERIC Educational Resources Information Center

    Marsh, Catherine; Johnson, Carrie

    2005-01-01

    This study examines action learning as a vehicle for the transfer of organizational values in a multi-cultural, virtual-team based leadership development process. A Case Study of Kanbay International's Global Leadership Development Program is used as a lens through which HRD researchers and practitioners may glimpse new possibilities for the…

  8. How Virtual Community Participation Influences Consumer Loyalty Intentions in Online Shopping Contexts: An Investigation of Mediating Factors

    ERIC Educational Resources Information Center

    Pai, Pei-Yu; Tsai, Hsien-Tung

    2011-01-01

    Extant studies generally recognise that virtual community building is an effective marketing programme for forging deep and enduring affective bonds with consumers. This study extends previous research by proposing and testing a model that investigates key mediating processes (via trust, satisfaction and identification) that underlie the…

  9. Impacts of a Redesigned Virtual Internship Program on Preservice Teachers' Skills and Attitudes

    ERIC Educational Resources Information Center

    Faucette, Nell; Nugent, Peg

    2015-01-01

    An important issue in teacher education is how to design and implement effective virtual internships for future educators. Today, these experiences should reflect best practices (as found in more traditional programs) by infusing constructivist values and strategies into the process. Interns can develop needed content knowledge and delivery skills…

  10. The Effects on Students' Conceptual Understanding of Electric Circuits of Introducing Virtual Manipulatives within a Physical Manipulatives-Oriented Curriculum

    ERIC Educational Resources Information Center

    Zacharia, Zacharias C.; de Jong, Ton

    2014-01-01

    This study investigates whether Virtual Manipulatives (VM) within a Physical Manipulatives (PM)-oriented curriculum affect conceptual understanding of electric circuits and related experimentation processes. A pre-post comparison study randomly assigned 194 undergraduates in an introductory physics course to one of five conditions: three…

  11. Teaching computer interfacing with virtual instruments in an object-oriented language.

    PubMed Central

    Gulotta, M

    1995-01-01

    LabVIEW is a graphic object-oriented computer language developed to facilitate hardware/software communication. LabVIEW is a complete computer language that can be used like Basic, FORTRAN, or C. In LabVIEW one creates virtual instruments that aesthetically look like real instruments but are controlled by sophisticated computer programs. There are several levels of data acquisition VIs that make it easy to control data flow, and many signal processing and analysis algorithms come with the software as premade VIs. In the classroom, the similarity between virtual and real instruments helps students understand how information is passed between the computer and attached instruments. The software may be used in the absence of hardware so that students can work at home as well as in the classroom. This article demonstrates how LabVIEW can be used to control data flow between computers and instruments, points out important features for signal processing and analysis, and shows how virtual instruments may be used in place of physical instrumentation. Applications of LabVIEW to the teaching laboratory are also discussed, and a plausible course outline is given. PMID:8580361

  12. Teaching computer interfacing with virtual instruments in an object-oriented language.

    PubMed

    Gulotta, M

    1995-11-01

    LabVIEW is a graphic object-oriented computer language developed to facilitate hardware/software communication. LabVIEW is a complete computer language that can be used like Basic, FORTRAN, or C. In LabVIEW one creates virtual instruments that aesthetically look like real instruments but are controlled by sophisticated computer programs. There are several levels of data acquisition VIs that make it easy to control data flow, and many signal processing and analysis algorithms come with the software as premade VIs. In the classroom, the similarity between virtual and real instruments helps students understand how information is passed between the computer and attached instruments. The software may be used in the absence of hardware so that students can work at home as well as in the classroom. This article demonstrates how LabVIEW can be used to control data flow between computers and instruments, points out important features for signal processing and analysis, and shows how virtual instruments may be used in place of physical instrumentation. Applications of LabVIEW to the teaching laboratory are also discussed, and a plausible course outline is given.

  13. Closed-loop dialog model of face-to-face communication with a photo-real virtual human

    NASA Astrophysics Data System (ADS)

    Kiss, Bernadette; Benedek, Balázs; Szijárto, Gábor; Takács, Barnabás

    2004-01-01

    We describe an advanced Human Computer Interaction (HCI) model that employs photo-realistic virtual humans to provide digital media users with information, learning services and entertainment in a highly personalized and adaptive manner. The system can be used as a computer interface or as a tool to deliver content to end-users. We model the interaction process between the user and the system as part of a closed loop dialog taking place between the participants. This dialog, exploits the most important characteristics of a face-to-face communication process, including the use of non-verbal gestures and meta communication signals to control the flow of information. Our solution is based on a Virtual Human Interface (VHI) technology that was specifically designed to be able to create emotional engagement between the virtual agent and the user, thus increasing the efficiency of learning and/or absorbing any information broadcasted through this device. The paper reviews the basic building blocks and technologies needed to create such a system and discusses its advantages over other existing methods.

  14. The Galics Project: Virtual Galaxy: from Cosmological N-body Simulations

    NASA Astrophysics Data System (ADS)

    Guiderdoni, B.

    The GalICS project develops extensive semi-analytic post-processing of large cosmological simulations to describe hierarchical galaxy formation. The multiwavelength statistical properties of high-redshift and local galaxies are predicted within the large-scale structures. The fake catalogs and mock images that are generated from the outputs are used for the analysis and preparation of deep surveys. The whole set of results is now available in an on-line database that can be easily queried. The GalICS project represents a first step towards a 'Virtual Observatory of virtual galaxies'.

  15. Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform.

    PubMed

    Sucar, Luis Enrique; Orihuela-Espina, Felipe; Velazquez, Roger Luis; Reinkensmeyer, David J; Leder, Ronald; Hernández-Franco, Jorge

    2014-05-01

    Virtual reality platforms capable of assisting rehabilitation must provide support for rehabilitation principles: promote repetition, task oriented training, appropriate feedback, and a motivating environment. As such, development of these platforms is a complex process which has not yet reached maturity. This paper presents our efforts to contribute to this field, presenting Gesture Therapy, a virtual reality-based platform for rehabilitation of the upper limb. We describe the system architecture and main features of the platform and provide preliminary evidence of the feasibility of the platform in its current status.

  16. Real-time functional magnetic imaging-brain-computer interface and virtual reality promising tools for the treatment of pedophilia.

    PubMed

    Renaud, Patrice; Joyal, Christian; Stoleru, Serge; Goyette, Mathieu; Weiskopf, Nikolaus; Birbaumer, Niels

    2011-01-01

    This chapter proposes a prospective view on using a real-time functional magnetic imaging (rt-fMRI) brain-computer interface (BCI) application as a new treatment for pedophilia. Neurofeedback mediated by interactive virtual stimuli is presented as the key process in this new BCI application. Results on the diagnostic discriminant power of virtual characters depicting sexual stimuli relevant to pedophilia are given. Finally, practical and ethical implications are briefly addressed. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Image-based 3D reconstruction and virtual environmental walk-through

    NASA Astrophysics Data System (ADS)

    Sun, Jifeng; Fang, Lixiong; Luo, Ying

    2001-09-01

    We present a 3D reconstruction method, which combines geometry-based modeling, image-based modeling and rendering techniques. The first component is an interactive geometry modeling method which recovery of the basic geometry of the photographed scene. The second component is model-based stereo algorithm. We discus the image processing problems and algorithms of walking through in virtual space, then designs and implement a high performance multi-thread wandering algorithm. The applications range from architectural planning and archaeological reconstruction to virtual environments and cinematic special effects.

  18. Can virtual science foster real skills? A study of inquiry skills in a virtual world

    NASA Astrophysics Data System (ADS)

    Dodds, Heather E.

    Online education has grown into a part of the educational market answering the demand for learning at the learner's choice of time and place. Inquiry skills such as observing, questioning, collecting data, and devising fair experiments are an essential element of 21st-century online science coursework. Virtual immersive worlds such as Second Life are being used as new frontiers in science education. There have been few studies looking specifically at science education in virtual worlds that foster inquiry skills. This quantitative quasi-experimental nonrandomized control group pretest and posttest study explored what affect a virtual world experience had on inquiry skills as measured by the TIPS (Test of Integrated Process Skills) and TIPS II (Integrated Process Skills Test II) instruments. Participants between the ages of 18 and 65 were recruited from educator mailing lists and Second Life discussion boards and then sorted into the experimental group, which received instructions to utilize several displays in Mendelian genetics at the Genome Island location within Second Life, or the control group, which received text-based PDF documents of the same genetics course content. All participants, in the form of avatars, were experienced Second Life residents to reduce any novelty effect. This study found a greater increase in inquiry skills in the experimental group interacting using a virtual world to learn science content (0.90 points) than a control group that is presented only with online text-based content (0.87 points). Using a mixed between-within ANOVA (analysis of variance), with an alpha level of 0.05, there was no significant interaction between the control or experimental groups and inquiry skills, F (1, 58) = .783, p = .380, partial eta squared = .013, at the specified .05 alpha level suggesting no significant difference as a result of the virtual world exercise. However, there is not enough evidence to state that there was no effect because there was a greater increase in scores for the group that experienced a virtual world exercise. This study adds to the increasing body of knowledge about virtual worlds and inquiry skills, particularly with adult learners.

  19. An evaluation of nonclinical dissociation utilizing a virtual environment shows enhanced working memory and attention.

    PubMed

    Saidel-Goley, Isaac N; Albiero, Erin E; Flannery, Kathleen A

    2012-02-01

    Dissociation is a mental process resulting in the disruption of memory, perception, and sometimes identity. At a nonclinical level, only mild dissociative experiences occur. The nature of nonclinical dissociation is disputed in the literature, with some asserting that it is a beneficial information processing style and others positing that it is a psychopathological phenomenon. The purpose of this study was to further the understanding of nonclinical dissociation with respect to memory and attention, by including a more ecologically valid virtual reality (VR) memory task along with standard neuropsychological tasks. Forty-five undergraduate students from a small liberal arts college in the northeast participated for course credit. The participants completed a battery of tasks including two standard memory tasks, a standard attention task, and an experimental VR memory task; the VR task included immersion in a virtual apartment, followed by incidental object-location recall for objects in the virtual apartment. Support for the theoretical model portraying nonclinical dissociation as a beneficial information processing style was found in this study. Dissociation scores were positively correlated with working memory scores and attentional processing scores on the standard neuropsychological tasks. In terms of the VR task, dissociation scores were positively correlated with more false positive memories that could be the result of a tendency of nonclinical highly dissociative individuals to create more elaborative schemas. This study also demonstrates that VR paradigms add to the prediction of cognitive functioning in testing protocols using standard neuropsychological tests, while simultaneously increasing ecological validity.

  20. Virtual experiments in electronics: beyond logistics, budgets, and the art of the possible

    NASA Astrophysics Data System (ADS)

    Chapman, Brian

    1999-09-01

    It is common and correct to suppose that computers support flexible delivery of educational resources by offering virtual experiments that replicate and substitute for experiments traditionally offered in conventional teaching laboratories. However, traditional methods are limited by logistics, costs, and what is physically possible to accomplish on a laboratory bench. Virtual experiments allow experimental approaches to teaching and learning to transcend these limits. This paper analyses recent and current developments in educational software for 1st- year physics, 2nd-year electronics engineering and 3rd-year communication engineering, based on three criteria: (1)Is the virtual experiment possible in a real laboratory? (2)How direct is the link between the experimental manipulation and the reinforcement of theoretical learning? (3) What impact might the virtual experiment have on the learner's acquisition of practical measurement skills? Virtual experiments allow more flexibility in the directness of the link between experimental manipulation and the theoretical message. However, increasing the directness of this link may reduce or even abolish the measurement processes associated with traditional experiments. Virtual experiments thus pose educational challenges: (a) expanding the design of experimentally based curricula beyond traditional boundaries and (b) ensuring that the learner acquires sufficient experience in making practical measurements.

  1. Offenders become the victim in virtual reality: impact of changing perspective in domestic violence.

    PubMed

    Seinfeld, S; Arroyo-Palacios, J; Iruretagoyena, G; Hortensius, R; Zapata, L E; Borland, D; de Gelder, B; Slater, M; Sanchez-Vives, M V

    2018-02-09

    The role of empathy and perspective-taking in preventing aggressive behaviors has been highlighted in several theoretical models. In this study, we used immersive virtual reality to induce a full body ownership illusion that allows offenders to be in the body of a victim of domestic abuse. A group of male domestic violence offenders and a control group without a history of violence experienced a virtual scene of abuse in first-person perspective. During the virtual encounter, the participants' real bodies were replaced with a life-sized virtual female body that moved synchronously with their own real movements. Participants' emotion recognition skills were assessed before and after the virtual experience. Our results revealed that offenders have a significantly lower ability to recognize fear in female faces compared to controls, with a bias towards classifying fearful faces as happy. After being embodied in a female victim, offenders improved their ability to recognize fearful female faces and reduced their bias towards recognizing fearful faces as happy. For the first time, we demonstrate that changing the perspective of an aggressive population through immersive virtual reality can modify socio-perceptual processes such as emotion recognition, thought to underlie this specific form of aggressive behaviors.

  2. Barriers to success: physical separation optimizes event-file retrieval in shared workspaces.

    PubMed

    Klempova, Bibiana; Liepelt, Roman

    2017-07-08

    Sharing tasks with other persons can simplify our work and life, but seeing and hearing other people's actions may also be very distracting. The joint Simon effect (JSE) is a standard measure of referential response coding when two persons share a Simon task. Sequential modulations of the joint Simon effect (smJSE) are interpreted as a measure of event-file processing containing stimulus information, response information and information about the just relevant control-state active in a given social situation. This study tested effects of physical (Experiment 1) and virtual (Experiment 2) separation of shared workspaces on referential coding and event-file processing using a joint Simon task. In Experiment 1, participants performed this task in individual (go-nogo), joint and standard Simon task conditions with and without a transparent curtain (physical separation) placed along the imagined vertical midline of the monitor. In Experiment 2, participants performed the same tasks with and without receiving background music (virtual separation). For response times, physical separation enhanced event-file retrieval indicated by an enlarged smJSE in the joint Simon task with curtain than without curtain (Experiment1), but did not change referential response coding. In line with this, we also found evidence for enhanced event-file processing through physical separation in the joint Simon task for error rates. Virtual separation did neither impact event-file processing, nor referential coding, but generally slowed down response times in the joint Simon task. For errors, virtual separation hampered event-file processing in the joint Simon task. For the cognitively more demanding standard two-choice Simon task, we found music to have a degrading effect on event-file retrieval for response times. Our findings suggest that adding a physical separation optimizes event-file processing in shared workspaces, while music seems to lead to a more relaxed task processing mode under shared task conditions. In addition, music had an interfering impact on joint error processing and more generally when dealing with a more complex task in isolation.

  3. A virtual university Web system for a medical school.

    PubMed

    Séka, L P; Duvauferrier, R; Fresnel, A; Le Beux, P

    1998-01-01

    This paper describes a Virtual Medical University Web Server. This project started in 1994 by the development of the French Radiology Server. The main objective of our Medical Virtual University is to offer not only an initial training (for students) but also the Continuing Professional Education (for practitioners). Our system is based on electronic textbooks, clinical cases (around 4000) and a medical knowledge base called A.D.M. ("Aide au Diagnostic Medical"). We have indexed all electronic textbooks and clinical cases according to the ADM base in order to facilitate the navigation on the system. This system base is supported by a relational database management system. The Virtual Medical University, available on the Web Internet, is presently in the process of external evaluations.

  4. Virtual Organizations: Trends and Models

    NASA Astrophysics Data System (ADS)

    Nami, Mohammad Reza; Malekpour, Abbaas

    The Use of ICT in business has changed views about traditional business. With VO, organizations with out physical, geographical, or structural constraint can collaborate with together in order to fulfill customer requests in a networked environment. This idea improves resource utilization, reduces development process and costs, and saves time. Virtual Organization (VO) is always a form of partnership and managing partners and handling partnerships are crucial. Virtual organizations are defined as a temporary collection of enterprises that cooperate and share resources, knowledge, and competencies to better respond to business opportunities. This paper presents an overview of virtual organizations and main issues in collaboration such as security and management. It also presents a number of different model approaches according to their purpose and applications.

  5. Using serious games and virtual worlds in pesticides transport teaching

    NASA Astrophysics Data System (ADS)

    Payraudeau, Sylvain; Alvarez-Zaldivar, Pablo; van Dijk, Paul; Imfeld, Gwenaël

    2017-04-01

    Teaching environmental scenarios, such as the availability and transport of pesticides in catchments, may fail with traditional lectures and tutorials due to the complex and synergic interplay of soil, landuse, compounds properties, hydroclimatic forcing and biogeochemical processes. To tackle and pedagogically enter into this complexity, virtual worlds (i.e. computer-based simulated environment) and serious games (i.e. applied games with added pedagogical value) can efficiently improve knowledge and know-how of the future water management stakeholders and scientists. We have developed an e-learning teaching unit using virtual catchments and serious games by gradually adapting the level of complexity depending of the targeted public. The first targeted group is farmers in continuing education centers. We developed a distributed pesticide transport tool in a virtual agricultural catchment to highlight the specific risks of off-site pesticide transport along crop growing season. Students of this first group can interactively define and combine climatic, land-use and soil type scenarios with different pesticides to experiment the components of worst-case situations and to propose best-management practices depending of the involved environmental compartments, i.e. atmosphere, soil, surface water or groundwater. For Master's degree students, we added a level of complexity by adding a specific module focusing on pesticide degradation using cutting-edge approaches. With the compound-specific isotope analysis (CSIA) module students are able to link the 13C/12C signature of pesticides to the ongoing dissipation processes within the catchment. By using and interpreting CSIA data, students can thus efficiently understand the difference between non-destructive (e.g. sorption) and destructive (e.g. bio and abiotic degradation) processes occurring in a catchment. This CSIA tool applied to a virtual agricultural catchment will also allow to distinguish the dilution effect from the degradation effect in complex agricultural catchments receiving pesticides. We anticipate our e-learning teaching unit based on serious game and virtual catchments will help future scientists and stakeholders to better understand and manage pesticides transport within catchments.

  6. Virtual Sensor Test Instrumentation

    NASA Technical Reports Server (NTRS)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of functions. The sensor data is processed in a distributed fashion across the network, providing a large pool of resources in real time to meet stringent latency requirements.

  7. Context-based virtual metrology

    NASA Astrophysics Data System (ADS)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitriy; Hartig, Carsten; Shifrin, Michael

    2018-03-01

    Hybrid and data feed forward methodologies are well established for advanced optical process control solutions in highvolume semiconductor manufacturing. Appropriate information from previous measurements, transferred into advanced optical model(s) at following step(s), provides enhanced accuracy and exactness of the measured topographic (thicknesses, critical dimensions, etc.) and material parameters. In some cases, hybrid or feed-forward data are missed or invalid for dies or for a whole wafer. We focus on approaches of virtual metrology to re-create hybrid or feed-forward data inputs in high-volume manufacturing. We discuss missing data inputs reconstruction which is based on various interpolation and extrapolation schemes and uses information about wafer's process history. Moreover, we demonstrate data reconstruction approach based on machine learning techniques utilizing optical model and measured spectra. And finally, we investigate metrics that allow one to assess error margin of virtual data input.

  8. Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance

    NASA Astrophysics Data System (ADS)

    Mirza, Imran M.; Begzjav, Tuguldur

    2016-04-01

    Recently a new class of single-photon timed Dicke (TD) subradiant states has been introduced with possible applications in single-photon-based quantum information storage and on demand ultrafast retrieval (Scully M. O., Phys. Rev. Lett., 115 (2015) 243602). However, the influence of any kind of virtual processes on the decay of these new kind of subradiant states has been left as an open question. In the present paper, we focus on this problem in detail. In particular, we investigate how pure Fano-Agarwal couplings and other virtual processes arising from non-rotating wave approximation impact the decay of otherwise sub- and superradiant states. In addition to the overall virtual couplings among all TD states, we also focus on the dominant role played by the couplings between specific TD states.

  9. Web-Based Virtual Patients in Nursing Education: Development and Validation of Theory-Anchored Design and Activity Models

    PubMed Central

    2014-01-01

    Background Research has shown that nursing students find it difficult to translate and apply their theoretical knowledge in a clinical context. Virtual patients (VPs) have been proposed as a learning activity that can support nursing students in their learning of scientific knowledge and help them integrate theory and practice. Although VPs are increasingly used in health care education, they still lack a systematic consistency that would allow their reuse outside of their original context. There is therefore a need to develop a model for the development and implementation of VPs in nursing education. Objective The aim of this study was to develop and evaluate a virtual patient model optimized to the learning and assessment needs in nursing education. Methods The process of modeling started by reviewing theoretical frameworks reported in the literature and used by practitioners when designing learning and assessment activities. The Outcome-Present State Test (OPT) model was chosen as the theoretical framework. The model was then, in an iterative manner, developed and optimized to the affordances of virtual patients. Content validation was performed with faculty both in terms of the relevance of the chosen theories but also its applicability in nursing education. The virtual patient nursing model was then instantiated in two VPs. The students’ perceived usefulness of the VPs was investigated using a questionnaire. The result was analyzed using descriptive statistics. Results A virtual patient Nursing Design Model (vpNDM) composed of three layers was developed. Layer 1 contains the patient story and ways of interacting with the data, Layer 2 includes aspects of the iterative process of clinical reasoning, and finally Layer 3 includes measurable outcomes. A virtual patient Nursing Activity Model (vpNAM) was also developed as a guide when creating VP-centric learning activities. The students perceived the global linear VPs as a relevant learning activity for the integration of theory and practice. Conclusions Virtual patients that are adapted to the nursing paradigm can support nursing students’ development of clinical reasoning skills. The proposed virtual patient nursing design and activity models will allow the systematic development of different types of virtual patients from a common model and thereby create opportunities for sharing pedagogical designs across technical solutions. PMID:24727709

  10. Development of the e-Baby serious game with regard to the evaluation of oxygenation in preterm babies: contributions of the emotional design.

    PubMed

    Fonseca, Luciana Mara Monti; Dias, Danielle Monteiro Vilela; Góes, Fernanda Dos Santos Nogueira; Seixas, Carlos Alberto; Scochi, Carmen Gracinda Silvan; Martins, José Carlos Amado; Rodrigues, Manuel Alves

    2014-09-01

    The present study aimed to describe the development process of a serious game that enables users to evaluate the respiratory process in a preterm infant based on an emotional design model. The e-Baby serious game was built to feature the simulated environment of an incubator, in which the user performs a clinical evaluation of the respiratory process in a virtual preterm infant. The user learns about the preterm baby's history, chooses the tools for the clinical evaluation, evaluates the baby, and determines whether his/her evaluation is appropriate. The e-Baby game presents phases that contain respiratory process impairments of higher or lower complexity in the virtual preterm baby. Included links give the user the option of recording the entire evaluation procedure and sharing his/her performance on a social network. e-Baby integrates a Clinical Evaluation of the Preterm Baby course in the Moodle virtual environment. This game, which evaluates the respiratory process in preterm infants, could support a more flexible, attractive, and interactive teaching and learning process that includes simulations with features very similar to neonatal unit realities, thus allowing more appropriate training for clinical oxygenation evaluations in at-risk preterm infants. e-Baby allows advanced user-technology-educational interactions because it requires active participation in the process and is emotionally integrated.

  11. The Photogrammetric Survey Methodologies Applied to Low Cost 3d Virtual Exploration in Multidisciplinary Field

    NASA Astrophysics Data System (ADS)

    Palestini, C.; Basso, A.

    2017-11-01

    In recent years, an increase in international investment in hardware and software technology to support programs that adopt algorithms for photomodeling or data management from laser scanners significantly reduced the costs of operations in support of Augmented Reality and Virtual Reality, designed to generate real-time explorable digital environments integrated to virtual stereoscopic headset. The research analyzes transversal methodologies related to the acquisition of these technologies in order to intervene directly on the phenomenon of acquiring the current VR tools within a specific workflow, in light of any issues related to the intensive use of such devices , outlining a quick overview of the possible "virtual migration" phenomenon, assuming a possible integration with the new internet hyper-speed systems, capable of triggering a massive cyberspace colonization process that paradoxically would also affect the everyday life and more in general, on human space perception. The contribution aims at analyzing the application systems used for low cost 3d photogrammetry by means of a precise pipeline, clarifying how a 3d model is generated, automatically retopologized, textured by color painting or photo-cloning techniques, and optimized for parametric insertion on virtual exploration platforms. Workflow analysis will follow some case studies related to photomodeling, digital retopology and "virtual 3d transfer" of some small archaeological artifacts and an architectural compartment corresponding to the pronaus of Aurum, a building designed in the 1940s by Michelucci. All operations will be conducted on cheap or free licensed software that today offer almost the same performance as their paid counterparts, progressively improving in the data processing speed and management.

  12. Simulation of mirror surfaces for virtual estimation of visibility lines for 3D motor vehicle collision reconstruction.

    PubMed

    Leipner, Anja; Dobler, Erika; Braun, Marcel; Sieberth, Till; Ebert, Lars

    2017-10-01

    3D reconstructions of motor vehicle collisions are used to identify the causes of these events and to identify potential violations of traffic regulations. Thus far, the reconstruction of mirrors has been a problem since they are often based on approximations or inaccurate data. Our aim with this paper was to confirm that structured light scans of a mirror improve the accuracy of simulating the field of view of mirrors. We analyzed the performances of virtual mirror surfaces based on structured light scans using real mirror surfaces and their reflections as references. We used an ATOS GOM III scanner to scan the mirrors and processed the 3D data using Geomagic Wrap. For scene reconstruction and to generate virtual images, we used 3ds Max. We compared the simulated virtual images and photographs of real scenes using Adobe Photoshop. Our results showed that we achieved clear and even mirror results and that the mirrors behaved as expected. The greatest measured deviation between an original photo and the corresponding virtual image was 20 pixels in the transverse direction for an image width of 4256 pixels. We discussed the influences of data processing and alignment of the 3D models on the results. The study was limited to a distance of 1.6m, and the method was not able to simulate an interior mirror. In conclusion, structured light scans of mirror surfaces can be used to simulate virtual mirror surfaces with regard to 3D motor vehicle collision reconstruction. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Gain and phase of perceived virtual rotation evoked by electrical vestibular stimuli

    PubMed Central

    Peters, Ryan M.; Rasman, Brandon G.; Inglis, J. Timothy

    2015-01-01

    Galvanic vestibular stimulation (GVS) evokes a perception of rotation; however, very few quantitative data exist on the matter. We performed psychophysical experiments on virtual rotations experienced when binaural bipolar electrical stimulation is applied over the mastoids. We also performed analogous real whole body yaw rotation experiments, allowing us to compare the frequency response of vestibular perception with (real) and without (virtual) natural mechanical stimulation of the semicircular canals. To estimate the gain of vestibular perception, we measured direction discrimination thresholds for virtual and real rotations. Real direction discrimination thresholds decreased at higher frequencies, confirming multiple previous studies. Conversely, virtual direction discrimination thresholds increased at higher frequencies, implying low-pass filtering of the virtual perception process occurring potentially anywhere between afferent transduction and cortical responses. To estimate the phase of vestibular perception, participants manually tracked their perceived position during sinusoidal virtual and real kinetic stimulation. For real rotations, perceived velocity was approximately in phase with actual velocity across all frequencies. Perceived virtual velocity was in phase with the GVS waveform at low frequencies (0.05 and 0.1 Hz). As frequency was increased to 1 Hz, the phase of perceived velocity advanced relative to the GVS waveform. Therefore, at low frequencies GVS is interpreted as an angular velocity signal and at higher frequencies GVS becomes interpreted increasingly as an angular position signal. These estimated gain and phase spectra for vestibular perception are a first step toward generating well-controlled virtual vestibular percepts, an endeavor that may reveal the usefulness of GVS in the areas of clinical assessment, neuroprosthetics, and virtual reality. PMID:25925318

  14. Gain and phase of perceived virtual rotation evoked by electrical vestibular stimuli.

    PubMed

    Peters, Ryan M; Rasman, Brandon G; Inglis, J Timothy; Blouin, Jean-Sébastien

    2015-07-01

    Galvanic vestibular stimulation (GVS) evokes a perception of rotation; however, very few quantitative data exist on the matter. We performed psychophysical experiments on virtual rotations experienced when binaural bipolar electrical stimulation is applied over the mastoids. We also performed analogous real whole body yaw rotation experiments, allowing us to compare the frequency response of vestibular perception with (real) and without (virtual) natural mechanical stimulation of the semicircular canals. To estimate the gain of vestibular perception, we measured direction discrimination thresholds for virtual and real rotations. Real direction discrimination thresholds decreased at higher frequencies, confirming multiple previous studies. Conversely, virtual direction discrimination thresholds increased at higher frequencies, implying low-pass filtering of the virtual perception process occurring potentially anywhere between afferent transduction and cortical responses. To estimate the phase of vestibular perception, participants manually tracked their perceived position during sinusoidal virtual and real kinetic stimulation. For real rotations, perceived velocity was approximately in phase with actual velocity across all frequencies. Perceived virtual velocity was in phase with the GVS waveform at low frequencies (0.05 and 0.1 Hz). As frequency was increased to 1 Hz, the phase of perceived velocity advanced relative to the GVS waveform. Therefore, at low frequencies GVS is interpreted as an angular velocity signal and at higher frequencies GVS becomes interpreted increasingly as an angular position signal. These estimated gain and phase spectra for vestibular perception are a first step toward generating well-controlled virtual vestibular percepts, an endeavor that may reveal the usefulness of GVS in the areas of clinical assessment, neuroprosthetics, and virtual reality. Copyright © 2015 the American Physiological Society.

  15. Perceptions of clinical utility of an Augmented Reality musical software among health care professionals.

    PubMed

    Corrêa, Ana Grasielle Dionísio; de Assis, Gilda Aparecida; do Nascimento, Marilena; de Deus Lopes, Roseli

    2017-04-01

    Augmented Reality musical software (GenVirtual) is a technology, which primarily allows users to develop music activities for rehabilitation. This study aimed to analyse the perceptions of health care professionals regarding the clinical utility of GenVirtual. A second objective was to identify improvements to GenVirtual software and similar technologies. Music therapists, occupational therapists, physiotherapists and speech and language therapist who assist people with physical and cognitive disabilities were enrolled in three focus groups. The quantitative and qualitative data were collected through inductive thematic analysis. Three main themes were identified: the use of GenVirtual in health care areas; opportunities for realistic application of GenVirtual; and limitations in the use of GenVirtual. The registration units identified were: motor stimulation, cognitive stimulation, verbal learning, recreation activity, musicality, accessibility, motivation, sonic accuracy, interference of lighting, poor sound, children and adults. This research suggested that the GenVirtual is a complementary tool to conventional clinical practice and has great potential to motor and cognitive rehabilitation of children and adults. Implications for Rehabilitation Gaining health professional' perceptions of the Augmented Reality musical game (GenVirtual) give valuable information as to the clinical utility of the software. GenVirtual was perceived as a tool that could be used as enhancing the motor and cognitive rehabilitation process. GenVirtual was viewed as a tool that could enhance clinical practice and communication among various agencies, but it was suggested that it should be used with caution to avoid confusion and replacement of important services.

  16. PP and PS interferometric images of near-seafloor sediments

    USGS Publications Warehouse

    Haines, S.S.

    2011-01-01

    I present interferometric processing examples from an ocean-bottom cable OBC dataset collected at a water depth of 800 m in the Gulf of Mexico. Virtual source and receiver gathers created through cross-correlation of full wavefields show clear PP reflections and PS conversions from near-seafloor layers of interest. Virtual gathers from wavefield-separated data show improved PP and PS arrivals. PP and PS brute stacks from the wavefield-separated data compare favorably with images from a non-interferometric processing flow. ?? 2011 Society of Exploration Geophysicists.

  17. Investigation of virtual reality concept based on system analysis of conceptual series

    NASA Astrophysics Data System (ADS)

    Romanova, A.; Shuklin, D. A.; Kalinkina, M. E.; Gotskaya, I. B.; Ponomarev, Y. E.

    2018-05-01

    The paper covers approaches to the definition of virtual reality from the point of view of the humanitarian sciences and technology. Each approach analyzing problems of concept perception of methods interpreted by representatives of philosophy, psychology and sociology is singled out. Terminological analysis of the basic concepts is carried out and their refinement is constructed in the process of comparing the concepts of virtuality and virtual reality. Using the analysis of selected sources, a number of singularity characteristics of the given concept are singled out and its definition is specified. Results consist in combining the interpretation of all approaches to determine the concept of virtual reality. Due to the use of a comprehensive approach to the definition of the investigated concept, which allows us to consider the object of research as a set of elements that are subject to study with the help of a corresponding set of methods, one can conclude that the concept under study is complex and multifaceted. The authors noted that virtual reality technologies have a flexible concept depending on the field of application.

  18. The Elderly Perceived Meanings and Values of Virtual Reality Leisure Activities: A Means-End Chain Approach.

    PubMed

    Lin, Cheng-Shih; Jeng, Mei-Yuan; Yeh, Tsu-Ming

    2018-04-03

    This study uses means-end chain (MEC) techniques to examine the awareness, decision-making procedure, and personal values of the elderly with regard to virtual reality leisure activities. The results of the study show that elderly respondents value virtual reality leisure activities that are fun, safe, and easy. In terms of outcome benefits, elderly respondents value feeling physically and mentally healthy, firsthand experience, and satisfied curiosity. In value terms, elderly respondents hope that their chosen virtual reality leisure activities improve not only their relationships with others, but also their enjoyment, quality of life, and sense of belonging. The results show that, while consumers with different awarenesses of virtual reality leisure activities have different decision-making processes, they share creating "good memories" as the terminal value with the most significant effect. This presents a potential opportunity to promote virtual reality leisure activities. Relevant bodies or enterprises can seek to create good memories in consumers by developing activities that are safe and fun, promote good health, and provide good service, thereby attracting the interest of elderly consumers.

  19. The Elderly Perceived Meanings and Values of Virtual Reality Leisure Activities: A Means-End Chain Approach

    PubMed Central

    Lin, Cheng-Shih; Jeng, Mei-Yuan

    2018-01-01

    This study uses means-end chain (MEC) techniques to examine the awareness, decision-making procedure, and personal values of the elderly with regard to virtual reality leisure activities. The results of the study show that elderly respondents value virtual reality leisure activities that are fun, safe, and easy. In terms of outcome benefits, elderly respondents value feeling physically and mentally healthy, firsthand experience, and satisfied curiosity. In value terms, elderly respondents hope that their chosen virtual reality leisure activities improve not only their relationships with others, but also their enjoyment, quality of life, and sense of belonging. The results show that, while consumers with different awarenesses of virtual reality leisure activities have different decision-making processes, they share creating “good memories” as the terminal value with the most significant effect. This presents a potential opportunity to promote virtual reality leisure activities. Relevant bodies or enterprises can seek to create good memories in consumers by developing activities that are safe and fun, promote good health, and provide good service, thereby attracting the interest of elderly consumers. PMID:29614012

  20. Semihard processes with BLM renormalization scale setting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caporale, Francesco; Ivanov, Dmitry Yu.; Murdaca, Beatrice

    We apply the BLM scale setting procedure directly to amplitudes (cross sections) of several semihard processes. It is shown that, due to the presence of β{sub 0}-terms in the NLA results for the impact factors, the obtained optimal renormalization scale is not universal, but depends both on the energy and on the process in question. We illustrate this general conclusion considering the following semihard processes: (i) inclusive production of two forward high-p{sub T} jets separated by large interval in rapidity (Mueller-Navelet jets); (ii) high-energy behavior of the total cross section for highly virtual photons; (iii) forward amplitude of the productionmore » of two light vector mesons in the collision of two virtual photons.« less

  1. Practicing Learner-Centered Teaching: Pedagogical Design and Assessment of a Second Life Project

    ERIC Educational Resources Information Center

    Schiller, Shu Z.

    2009-01-01

    Guided by the principles of learner-centered teaching methodology, a Second Life project is designed to engage students in active learning of virtual commerce through hands-on experiences and teamwork in a virtual environment. More importantly, an assessment framework is proposed to evaluate the learning objectives and learning process of the…

  2. Implementing Advanced Characteristics of X3D Collaborative Virtual Environments for Supporting e-Learning: The Case of EVE Platform

    ERIC Educational Resources Information Center

    Bouras, Christos; Triglianos, Vasileios; Tsiatsos, Thrasyvoulos

    2014-01-01

    Three dimensional Collaborative Virtual Environments are a powerful form of collaborative telecommunication applications, enabling the users to share a common three-dimensional space and interact with each other as well as with the environment surrounding them, in order to collaboratively solve problems or aid learning processes. Such an…

  3. Individual Factors That Encourage the Use of Virtual Platforms of Administrative Sciences Students: A Case Study

    ERIC Educational Resources Information Center

    Arias, Alejandro Valencia; Naffah, Salim Chalela; Bermudez Hernández, Jonathan; Bedoya Pérez, Luz Mirelia

    2015-01-01

    Higher education Institutions have incorporated into their educational processes the virtual learning platforms use, in their search to answers to the dynamic and changing needs of young students, thus students have practical training in the use of information technologies and communication (ICT) in their curses. However, few studies have been…

  4. Towards an Approach for an Accessible and Inclusive Virtual Education Using ESVI-AL Project Results

    ERIC Educational Resources Information Center

    Amado-Salvatierra, Hector R.; Hilera, Jose R.

    2015-01-01

    Purpose: This paper aims to present an approach to achieve accessible and inclusive Virtual Education for all, but especially intended for students with disabilities. This work proposes main steps to take into consideration for stakeholders involved in the educational process related to an inclusive e-Learning. Design/methodology/approach: The…

  5. The Role of Virtual Reference in Library Web Site Design: A Qualitative Source for Usage Data

    ERIC Educational Resources Information Center

    Powers, Amanda Clay; Shedd, Julie; Hill, Clay

    2011-01-01

    Gathering qualitative information about usage behavior of library Web sites is a time-consuming process requiring the active participation of patron communities. Libraries that collect virtual reference transcripts, however, hold valuable data regarding how the library Web site is used that could benefit Web designers. An analysis of virtual…

  6. The Time Factor: Leveraging Intelligent Agents and Directed Narratives in Online Learning Environments

    ERIC Educational Resources Information Center

    Jones, Greg; Warren, Scott

    2009-01-01

    Using video games, virtual simulations, and other digital spaces for learning can be a time-consuming process; aside from technical issues that may absorb class time, students take longer to achieve gains in learning in virtual environments. Greg Jones and Scott Warren describe how intelligent agents, in-game characters that respond to the context…

  7. From GUI to Gallery: A Study of Online Virtual Environments.

    ERIC Educational Resources Information Center

    Guynup, Stephen Lawrence

    This paper began as an attempt to clarify and classify the development of Web3D environments from 1995 to the present. In that process, important facts came to light. A large proportion of these sites were virtual galleries and museums. Second, these same environments covered a wide array of architectural interpretations and represented some of…

  8. Development and Evaluation of a Virtual Campus on Second Life: The Case of SecondDMI

    ERIC Educational Resources Information Center

    De Lucia, Andrea; Francese, Rita; Passero, Ignazio; Tortora, Genoveffa

    2009-01-01

    Video games and new communication metaphors are quickly changing today's young people habits. Considering the actual e-learning scenarios, embedded in a fully technological enabled environment it is crucial to take advantage of this kind of capabilities to let learning process gain best results. This paper presents a virtual campus created using…

  9. 78 FR 54626 - Announcing Approval of Federal Information Processing Standard (FIPS) Publication 201-2, Personal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... its virtual contact interface be made mandatory as soon as possible for the many beneficial features... messaging and the virtual contact interface in the Standard, some Federal departments and agencies have... Laboratory Programs. [FR Doc. 2013-21491 Filed 9-4-13; 8:45 am] BILLING CODE 3510-13-P ...

  10. Leadership Development through Virtual Action Learning: An Evaluation

    ERIC Educational Resources Information Center

    Aspinwall, Kath; Pedler, Mike; Radcliff, Phil

    2018-01-01

    This paper presents a case study based on the evaluation of the two VAL (virtual action learning) sets. We report participants learning both leadership and the VAL process based on the basis of telephone interviews. We conclude that what is learned about leadership is connected with how learning takes place and suggest that the content and process…

  11. Voicing on Virtual and Face to Face Discussion

    ERIC Educational Resources Information Center

    Yamat, Hamidah

    2013-01-01

    This paper presents and discusses findings of a study conducted on pre-service teachers' experiences in virtual and face to face discussions. Technology has brought learning nowadays beyond the classroom context or time zone. The learning context and process no longer rely solely on face to face communications in the presence of a teacher.…

  12. The Use of Virtual Worlds in Management Education: An Investigation of Current Practices in Second Life

    ERIC Educational Resources Information Center

    Klein, Amarolinda Zanela; Freitas, Angilberto; Machado, Lisiane; da Silva Freitas, José Carlos, Jr.; Graziola, Paulo Gaspar; Schlemmer, Eliane

    2014-01-01

    Frequently, research on management education does not take into account the role of Information Technology as a key resource to support teaching and learning processes. In this article, the authors explore the current applications of Three Dimensional Virtual Worlds (3DVW) for Management education. The authors researched the educational…

  13. Using VirtualGL/TurboVNC Software on the Peregrine System |

    Science.gov Websites

    High-Performance Computing | NREL VirtualGL/TurboVNC Software on the Peregrine System Using , allowing users to access and share large-memory visualization nodes with high-end graphics processing units may be better than just using X11 forwarding when connecting from a remote site with low bandwidth and

  14. Mechanism for Promoting Motivation, Confidence, and Autonomy through Synchronic Communication Sessions in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Valencia, Jorge Andrick Parra; Dallos, Adriana Rocío Lizcano; Ballesteros, Eliécer Pineda

    2017-01-01

    This study presents a mechanism which explains the effect of synchronous communication on students' perception of the training process in virtual learning methodology used in a postgraduate programme at the University of Santander. We use System Dynamics to design a mechanism that integrates motivation, confidence, trust, and autonomy in students.…

  15. Users' Continuance Intention of Virtual Learning Community Services: The Moderating Role of Usage Experience

    ERIC Educational Resources Information Center

    Zhang, Min; Liu, Yupei; Yan, Weiwei; Zhang, Yan

    2017-01-01

    Users' continuance intention plays a significant role in the process of information system (IS) service, especially virtual learning community (VLC) services. Following the IS success model and IS post-acceptance model, this study explores the determinants of users' intention to continue using VLCs' service from the perspective of quality,…

  16. Virtual Communication Processes of Open and Distance Education: Some Contributions from the Cultural Studies Field

    ERIC Educational Resources Information Center

    Fainholc, Beatriz

    2015-01-01

    The pressures of the information and digital culture exhibit innovation, but also a hegemonic power, and act in reciprocity with the global economy. Theoretical concepts and practical actions need to be revisited, to build equity in virtual communication. A sociological-cultural focus of communication mediated by technology, cannot occur without…

  17. Toying with the World: Children, Virtual Pets and the Value of Mobility

    ERIC Educational Resources Information Center

    Ruckenstein, Minna

    2010-01-01

    This article approaches childhood as an emergent condition in which children, their caregivers and toys all take an active part and argues that the focus on toys opens important insights for studying processes of social reproduction and change. This is demonstrated by describing children's interactions with virtual pets that encourage children to…

  18. Applicability of Virtual Environments as C4ISR Displays

    DTIC Science & Technology

    2006-06-01

    simulator sickness questionnaire (ssq): A method for quantifying simulator sickness. International Journal of Aviation Psychology, 3(3):203ff. Ergonomie ...Displays Thomas Alexander FGAN - Research Institute for Communication, Information Processing, and Ergonomics Wachtberg, Germany Ergonomie und...Führungssysteme FORSCHUNGSINSTITUT FÜR KOMMUNIKATION, INFORMATIONSVERARBEITUNG UND ERGONOMIE 1 FGAN Applicability of Virtual Environments as C4ISR Displays

  19. Designing Empathy: The Role of a "Control Room" in an E-Learning Environment

    ERIC Educational Resources Information Center

    Gentes, Annie; Cambone, Marie

    2013-01-01

    Purpose: The purpose of this paper is to focus on the challenge of designing an interface for a virtual class, where being represented together contributes to the learning process. It explores the possibility of virtual empathy. Design/methodology/approach: The challenges are: How can this feeling of empathy be recreated through a delicate staging…

  20. Effects of Cognitive Styles on an MSN Virtual Learning Companion System as an Adjunct to Classroom Instructions

    ERIC Educational Resources Information Center

    Hsieh, Sheng-Wen

    2011-01-01

    This study designed a chatbot system, Confucius, as a MSN virtual learning companion to examine how specific application design variables within educational software affect the learning process of subjects as defined by the cognitive continuum of field-dependent and field-independent learners. 104 college students participated in a 12 week…

  1. Business Students' Learning with Online Discussion Forums: The Case of a Virtual Classroom Community

    ERIC Educational Resources Information Center

    Zhu, Jake

    2010-01-01

    This study examined what learning is and how learning was facilitated in a virtual classroom community using online discussion forums. Results demonstrated that learning in such a community was the active participation by the members of the community in the process of meaning construction. The construction of meaning in such a community was…

  2. Brave New (Virtual) World: Transforming Language Learning into Cultural Studies through Online Learning Environments (MOOs).

    ERIC Educational Resources Information Center

    Schneider, Jeffrey; von der Emde, Silke

    2000-01-01

    Describes an online approach through using a MOO, a computer program that allows students to share text-based virtual reality. The goal of the program was to build an environment that both enabled practice in the target language and sustained reflection on the processes of cultural production and reception. (Author/VWL)

  3. Screening of a virtual mirror-image library of natural products.

    PubMed

    Noguchi, Taro; Oishi, Shinya; Honda, Kaori; Kondoh, Yasumitsu; Saito, Tamio; Ohno, Hiroaki; Osada, Hiroyuki; Fujii, Nobutaka

    2016-06-08

    We established a facile access to an unexplored mirror-image library of chiral natural product derivatives using d-protein technology. In this process, two chemical syntheses of mirror-image substances including a target protein and hit compound(s) allow the lead discovery from a virtual mirror-image library without the synthesis of numerous mirror-image compounds.

  4. Monitoring the englacial fracture state using virtual-reflector seismology

    NASA Astrophysics Data System (ADS)

    Lindner, F.; Weemstra, C.; Walter, F.; Hadziioannou, C.

    2017-12-01

    Fracturing and changes in the englacial macroscopic water content change the elastic bulk properties of ice bodies. Small seismic velocity variations, resulting from such changes, can be measured using a technique called coda-wave interferometry. Here, coda refers to the later-arriving, multiply scattered waves. Often, this technique is applied to so-called virtual-source responses, which can be obtained using seismic interferometry (a simple crosscorrelation process). Compared to other media (e.g., the Earth's crust), however, ice bodies exhibit relatively little scattering. This complicates the application of coda-wave interferometry to the retrieved virtual-source responses. In this work, we therefore investigate the applicability of coda-wave interferometry to virtual-source responses obtained using two alternative seismic interferometric techniques, namely, seismic interferometry by multidimensional deconvolution (SI by MDD), and virtual-reflector seismology (VRS). To that end, we use synthetic data, as well as active-source glacier data acquired on Glacier de la Plaine Morte, Switzerland. Both SI by MDD and VRS allow the retrieval of more accurate virtual-source responses. In particular, the dependence of the retrieved virtual-source responses on the illumination pattern is reduced. We find that this results in more accurate glacial phase-velocity estimates. In addition, VRS introduces virtual reflections from a receiver contour (partly) enclosing the medium of interest. By acting as a sort of virtual reverberation, the coda resulting from the application of VRS significantly increases seismic monitoring capabilities, in particular in cases where natural scattering coda is not available.

  5. LinAir: A multi-element discrete vortex Weissinger aerodynamic prediction method

    NASA Technical Reports Server (NTRS)

    Durston, Donald A.

    1993-01-01

    LinAir is a vortex lattice aerodynamic prediction method similar to Weissinger's extended lifting-line theory, except that the circulation around a wing is represented by discrete horseshoe vortices, not a continuous distribution of vorticity. The program calculates subsonic longitudinal and lateral/directional aerodynamic forces and moments for arbitrary aircraft geometries. It was originally written by Dr. Ilan Kroo of Stanford University, and subsequently modified by the author to simplify modeling of complex configurations. The Polhamus leading-edge suction analogy was added by the author to extend the range of applicability of LinAir to low aspect ratio (i.e., fighter-type) configurations. A brief discussion of the theory of LinAir is presented, and details on how to run the program are given along with some comparisons with experimental data to validate the code. Example input and output files are given in the appendices to aid in understanding the program and its use. This version of LinAir runs in the VAX/VMS, Cray UNICOS, and Silicon Graphics Iris workstation environments at the time of this writing.

  6. Orthopantomography and INAIL assessment of dental injury. Istituto Nazionale per l'Assicurazione contro gli Infortuni sul Lavoro.

    PubMed

    Iorio, M; Robetti, I; Malavenda, P

    1993-12-01

    The protection of workers' health is defended by the Italian Constitution, and sees its most extensive application in the work of the INAIL (Istituto Nazionale per l'Assicurazione contro gli Infortuni sul Lavoro-National Institute for Assurance against Work-related Accidents). In the T.U. (Testo Unico-Complete Text of Legislation) 1124/1965, dental injury is compensated with fixed percentages for permanent impairment, depending on whether the prosthesis applied is effectual or otherwise. The INAIL's primary task of assigning the necessary treatment and recovering the claimant's occupational aptitude requires that it meets in full the cost of his dental rehabilitation. In Turin in 1981 a systematic procedure was set up for the provision and monitoring of the dental treatment received by the injured person. Legislation relating to prostheses has further widened the scope of dental treatment. To deal correctly with the legal medicine aspects of dental rehabilitation, the authors illustrate a working procedure which is based on the reading of radiological evidence in order to determine the prior situation, extent of injury, results of the treatment and evaluation of residual permanent injury.

  7. CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing

    PubMed Central

    2011-01-01

    Background Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. Results We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. Conclusion The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing. PMID:21878105

  8. Laser Scanner Technology, Ground-Penetrating Radar and Augmented Reality for the Survey and Recovery of Artistic, Archaeological and Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Barrile, V.; Bilotta, G.; Meduri, G. M.; De Carlo, D.; Nunnari, A.

    2017-11-01

    In this study, using technologies such as laser scanner and GPR it was desired to see their potential in the cultural heritage. Also with regard to the processing part we are compared the results obtained by the various commercial software and algorithms developed and implemented in Matlab. Moreover, Virtual Reality and Augmented Reality allow integrating the real world with historical-artistic information, laser scanners and georadar (GPR) data and virtual objects, virtually enriching it with multimedia elements, graphic and textual information accessible through smartphones and tablets.

  9. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-06-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  10. Three-dimensional Virtual Simulation of Oil Spill of Yangtze River in Chongqing Area Based on Emergency Decision

    NASA Astrophysics Data System (ADS)

    Chen, Shuzhe; Huang, Liwen

    the river of Yangtze River in Chongqing area is continuous curved. Hydrology and channel situation is complex, and the transportation is busy. With the increasing of shipments of hazardous chemicals year by year, oil spill accident risk is rising. So establishment of three-dimensional virtual simulation of oil spill and its application in decision-making has become an urgent task. This paper detailed the process of three-dimensional virtual simulation of oil spill and established a system of three-dimensional virtual Simulation of oil spill of Yangtze River in Chongqing area by establishing an oil spill model of the Chongqing area based on oil particles model, and the system has been used in emergency decision to provide assistance for the oil spill response.

  11. Centrally managed unified shared virtual address space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkes, John

    Systems, apparatuses, and methods for managing a unified shared virtual address space. A host may execute system software and manage a plurality of nodes coupled to the host. The host may send work tasks to the nodes, and for each node, the host may externally manage the node's view of the system's virtual address space. Each node may have a central processing unit (CPU) style memory management unit (MMU) with an internal translation lookaside buffer (TLB). In one embodiment, the host may be coupled to a given node via an input/output memory management unit (IOMMU) interface, where the IOMMU frontendmore » interface shares the TLB with the given node's MMU. In another embodiment, the host may control the given node's view of virtual address space via memory-mapped control registers.« less

  12. Virtually-synchronous communication based on a weak failure suspector

    NASA Technical Reports Server (NTRS)

    Schiper, Andre; Ricciardi, Aleta

    1993-01-01

    Failure detectors (or, more accurately Failure Suspectors (FS)) appear to be a fundamental service upon which to build fault-tolerant, distributed applications. This paper shows that a FS with very weak semantics (i.e., that delivers failure and recovery information in no specific order) suffices to implement virtually-synchronous communication (VSC) in an asynchronous system subject to process crash failures and network partitions. The VSC paradigm is particularly useful in asynchronous systems and greatly simplifies building fault-tolerant applications that mask failures by replicating processes. We suggest a three-component architecture to implement virtually-synchronous communication: (1) at the lowest level, the FS component; (2) on top of it, a component (2a) that defines new views; and (3) a component (2b) that reliably multicasts messages within a view. The issues covered in this paper also lead to a better understanding of the various membership service semantics proposed in recent literature.

  13. Human-computer interface glove using flexible piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Cha, Youngsu; Seo, Jeonggyu; Kim, Jun-Sik; Park, Jung-Min

    2017-05-01

    In this note, we propose a human-computer interface glove based on flexible piezoelectric sensors. We select polyvinylidene fluoride as the piezoelectric material for the sensors because of advantages such as a steady piezoelectric characteristic and good flexibility. The sensors are installed in a fabric glove by means of pockets and Velcro bands. We detect changes in the angles of the finger joints from the outputs of the sensors, and use them for controlling a virtual hand that is utilized in virtual object manipulation. To assess the sensing ability of the piezoelectric sensors, we compare the processed angles from the sensor outputs with the real angles from a camera recoding. With good agreement between the processed and real angles, we successfully demonstrate the user interaction system with the virtual hand and interface glove based on the flexible piezoelectric sensors, for four hand motions: fist clenching, pinching, touching, and grasping.

  14. Microscopic Virtual Media (MVM) in Physics Learning: Case Study on Students Understanding of Heat Transfer

    NASA Astrophysics Data System (ADS)

    Wibowo, F. C.; Suhandi, A.; Rusdiana, D.; Darman, D. R.; Ruhiat, Y.; Denny, Y. R.; Suherman; Fatah, A.

    2016-08-01

    A Study area in physics learning is purposeful on the effects of various types of learning interventions to help students construct the basic of scientific conception about physics. Microscopic Virtual Media (MVM) are applications for physics learning to support powerful modelling microscopic involving physics concepts and processes. In this study groups (experimental) of 18±20 years old, students were studied to determine the role of MVM in the development of functional understanding of the concepts of thermal expansion in heat transfer. The experimental group used MVM in learning process. The results show that students who learned with virtual media exhibited significantly higher scores in the research tasks. Our findings proved that the MVM may be used as an alternative instructional tool, in order to help students to confront and constructed their basic of scientific conception and developed their understanding.

  15. 'To Boldly Go...' Building a Virtual Classroom

    NASA Technical Reports Server (NTRS)

    vandeVen, Ryan W.; Meurders, Mary F. E.

    2008-01-01

    The concept of a Exploration-Based Learning Environment has recently been introduced into the argument that technology can put students back into the field of real learning. IPN has set foot there, where no school has gone before, by actually building a Virtual Classroom.This paper is about our first step towards the Virtual Classroom: Experience-Based Learning by simulations. A field study on the processes involved when going from a regular educational setting to using simulations as part of the educational was done. We discuss eventual pitfalls and the role changes in education for both teacher and pupil, the importance of understanding the psychological process that the pupil goes through and the consequences this has for the guiding staff. Changes are not only necessary to keep up with the change but also to break through the vicious circle of what we call the trend of "Spectacle and Boredom" in education.

  16. Computer-mediated interdisciplinary teams: theory and reality.

    PubMed

    Vroman, Kerryellen; Kovacich, Joann

    2002-05-01

    The benefit of experience, tempered with the wisdom of hindsight and 5 years of text-based, asynchronous, computer-mediated, interdisciplinary team communications, provides the energy, insights and data shared in this article. Through the theoretical lens of group dynamics and the epistemology of interdisciplinary teaming, we analyze the interactions of a virtual interdisciplinary team to provide an understanding and appreciation of collaborative interdisciplinary communication in the context of interactive technologies. Whilst interactive technologies may require new patterns of language similar to that of learning a foreign language, what is communicated in the interdisciplinary team process does not change. Most important is the recognition that virtual teams, similar to their face-to-face counterparts, undergo the same challenges of interdisciplinary teaming and group developmental processes of formation: forming, storming, norming, performing, and transforming. After examining these dynamics of communication and collaboration in the context of the virtual team, the article concludes with guidelines facilitating interdisciplinary team computer-mediated communication.

  17. Deviant bodies, stigmatized identities, and racist acts: examining the experiences of African-American gamers in Xbox Live

    NASA Astrophysics Data System (ADS)

    Gray, K. L.

    2012-12-01

    The purpose of this article is to illustrate how minority gamers, particularly African-American males, are subject to the label of deviant within the virtual gaming community of Xbox Live. They are labeled deviant based on the stigma of their physical identity - blackness, through a process of linguistic profiling. By employing virtual ethnography, the author identifies a process that leads to racism based on how the black gamer sounds within the space. The act of racism emerges through a process involving questioning, provoking, instigating, and ultimately racism. Many black gamers have normalized these racist experiences and have accepted the label of deviant placed upon their bodies.

  18. Non-resonant excitation of rare-earth ions via virtual Auger process

    NASA Astrophysics Data System (ADS)

    Yassievich, I. N.

    2011-05-01

    The luminescence of rare-earth ions (REI) is often intensified by defects associated with REIs or excitons bound to these defects. In this paper we show that the presence of such a state opens the possibility of non-resonance optical pumping via the process involving virtual Auger transition. It is the second order perturbation process when an electron arrives in an virtual intermediate state due to the optical transition (the first step) and the Auger transition is the second one. We have calculated the cross-section of such an excitation process when the optical transition is accompanied by creation of the exciton bound to the defect associated with REI and obtained a simple analytical expression for the cross-section. The excess energy of the excitation quanta is taken away by multiphonon emission. The electron-phonon interaction with local phonon vibrations of the bound exciton is assumed to determine the multiphonon process. It is shown that the probability of the process under study exceeds considerably the probability of direct optical 4f-4f absorption even in the case when the energy distance between the excitation quantum energy and the exciton energy is about 0.1 of the exciton energy. The excitation mechanism considered leads to the appearance of a broad unsymmetrical band in the excitation spectrum with the red side much wider and flatter than the blue one.

  19. Shifty: A Weight-Shifting Dynamic Passive Haptic Proxy to Enhance Object Perception in Virtual Reality.

    PubMed

    Zenner, Andre; Kruger, Antonio

    2017-04-01

    We define the concept of Dynamic Passive Haptic Feedback (DPHF) for virtual reality by introducing the weight-shifting physical DPHF proxy object Shifty. This concept combines actuators known from active haptics and physical proxies known from passive haptics to construct proxies that automatically adapt their passive haptic feedback. We describe the concept behind our ungrounded weight-shifting DPHF proxy Shifty and the implementation of our prototype. We then investigate how Shifty can, by automatically changing its internal weight distribution, enhance the user's perception of virtual objects interacted with in two experiments. In a first experiment, we show that Shifty can enhance the perception of virtual objects changing in shape, especially in length and thickness. Here, Shifty was shown to increase the user's fun and perceived realism significantly, compared to an equivalent passive haptic proxy. In a second experiment, Shifty is used to pick up virtual objects of different virtual weights. The results show that Shifty enhances the perception of weight and thus the perceived realism by adapting its kinesthetic feedback to the picked-up virtual object. In the same experiment, we additionally show that specific combinations of haptic, visual and auditory feedback during the pick-up interaction help to compensate for visual-haptic mismatch perceived during the shifting process.

  20. [Application of 3D virtual reality technology with multi-modality fusion in resection of glioma located in central sulcus region].

    PubMed

    Chen, T N; Yin, X T; Li, X G; Zhao, J; Wang, L; Mu, N; Ma, K; Huo, K; Liu, D; Gao, B Y; Feng, H; Li, F

    2018-05-08

    Objective: To explore the clinical and teaching application value of virtual reality technology in preoperative planning and intraoperative guide of glioma located in central sulcus region. Method: Ten patients with glioma in the central sulcus region were proposed to surgical treatment. The neuro-imaging data, including CT, CTA, DSA, MRI, fMRI were input to 3dgo sczhry workstation for image fusion and 3D reconstruction. Spatial relationships between the lesions and the surrounding structures on the virtual reality image were obtained. These images were applied to the operative approach design, operation process simulation, intraoperative auxiliary decision and the training of specialist physician. Results: Intraoperative founding of 10 patients were highly consistent with preoperative simulation with virtual reality technology. Preoperative 3D reconstruction virtual reality images improved the feasibility of operation planning and operation accuracy. This technology had not only shown the advantages for neurological function protection and lesion resection during surgery, but also improved the training efficiency and effectiveness of dedicated physician by turning the abstract comprehension to virtual reality. Conclusion: Image fusion and 3D reconstruction based virtual reality technology in glioma resection is helpful for formulating the operation plan, improving the operation safety, increasing the total resection rate, and facilitating the teaching and training of the specialist physician.

  1. Implementation of a virtual laboratory for training on sound insulation testing and uncertainty calculations in acoustic tests.

    PubMed

    Asensio, C; Gasco, L; Ruiz, M; Recuero, M

    2015-02-01

    This paper describes a methodology and case study for the implementation of educational virtual laboratories for practice training on acoustic tests according to international standards. The objectives of this activity are (a) to help the students understand and apply the procedures described in the standards and (b) to familiarize the students with the uncertainty in measurement and its estimation in acoustics. The virtual laboratory will not focus on the handling and set-up of real acoustic equipment but rather on procedures and uncertainty. The case study focuses on the application of the virtual laboratory for facade sound insulation tests according to ISO 140-5:1998 (International Organization for Standardization, Geneva, Switzerland, 1998), and the paper describes the causal and stochastic models and the constraints applied in the virtual environment under consideration. With a simple user interface, the laboratory will provide measurement data that the students will have to process to report the insulation results that must converge with the "virtual true values" in the laboratory. The main advantage of the virtual laboratory is derived from the customization of factors in which the student will be instructed or examined (for instance, background noise correction, the detection of sporadic corrupted observations, and the effect of instrument precision).

  2. [Virtual Campus of Public Health: six years of human resources education in Mexico].

    PubMed

    Ramos Herrera, Igor; Alfaro Alfaro, Noé; Fonseca León, Joel; García Sandoval, Cristóbal; González Castañeda, Miguel; López Zermeño, María Del Carmen; Benítez Morales, Ricardo

    2014-11-01

    This paper discusses the gestation process, implementation methodology, and results obtained from the initiative to use e-learning to train human resources for health, six years after the launch of the Virtual Campus of Public Health of the University of Guadalajara (Mexico); the discussion is framed by Pan American Health Organization (PAHO) standards and practices. This is a special report on the work done by the institutional committee of the Virtual Campus in western Mexico to create an Internet portal that follows the guidelines of the strategic model established by Nodo México and PAHO for the Region of the Americas. This Virtual Campus began its activities in 2007, on the basis of the use of free software and institutional collaboration. Since the initial year of implementation of the node, over 500 health professionals have been trained using virtual courses, the node's educational platform, and a repository of virtual learning resources that are interoperable with other repositories in Mexico and the Region of the Americas. The University of Guadalajara Virtual Campus committee has followed the proposed model as much as possible, thereby achieving most of the goals set in the initial work plan, despite a number of administrative challenges and the difficulty of motivating committee members.

  3. Minimizing Input-to-Output Latency in Virtual Environment

    NASA Technical Reports Server (NTRS)

    Adelstein, Bernard D.; Ellis, Stephen R.; Hill, Michael I.

    2009-01-01

    A method and apparatus were developed to minimize latency (time delay ) in virtual environment (VE) and other discrete- time computer-base d systems that require real-time display in response to sensor input s. Latency in such systems is due to the sum of the finite time requi red for information processing and communication within and between sensors, software, and displays.

  4. Command & Control in Virtual Environments: Laboratory Experimentation to Compare Virtual with Physical

    DTIC Science & Technology

    2010-06-01

    Markus, 1994). Media richness theory rests on the assumption that organizations process information to reduce uncertainty and equivocality ( Daft ... Organization Design ), 554-571. Daft , R. L., & Macintosh, N. B. (1981). A tentative exploration into the amount and equivocality of information... design and customization. For instance, recent research demonstrates further how the performance of both Hierarchy and Edge organizations is

  5. Virtual Reality Based Collaborative Design by Children with High-Functioning Autism: Design-Based Flexibility, Identity, and Norm Construction

    ERIC Educational Resources Information Center

    Ke, Fengfeng; Lee, Sungwoong

    2016-01-01

    This exploratory case study examined the process and potential impact of collaborative architectural design and construction in an OpenSimulator-based virtual reality (VR) on the social skills development of children with high-functioning autism (HFA). Two children with a formal medical diagnosis of HFA and one typically developing peer, aged…

  6. Efficient Learning Using a Virtual Learning Environment in a University Class

    ERIC Educational Resources Information Center

    Stricker, Daniel; Weibel, David; Wissmath, Bartholomaus

    2011-01-01

    This study examines a blended learning setting in an undergraduate course in psychology. A virtual learning environment (VLE) complemented the face-to-face lecture. The usage was voluntary and the VLE was designed to support the learning process of the students. Data from users (N = 80) and non-users (N = 82) from two cohorts were collected.…

  7. Paying to Get Paid.

    PubMed

    Sorrel, Amy Lynn

    2015-12-01

    Some health plans and third-party vendors that process plan payments are moving to virtual credit cards, without warning and without much explanation of fees or opt-out procedures. Physician practices don't have to accept the financial and administrative costs associated with virtual cards. TMA officials say doctors have a choice and the right to demand that their payers issue payments via direct deposit.

  8. An Internet Application To Relieve Constraints in the Flow of Technical Information--The Virtual Technology Market (VTM).

    ERIC Educational Resources Information Center

    Beverly, James E.; Xue, Lan; Lee, Chung-Shing

    1996-01-01

    Reports on the use of the Internet and World Wide Web as a virtual technology market (VTM) for information and technology transfer. The project focuses on creating awareness of technology demand (problems) and linking it to technology supply (solutions) in the field of particle technology and multiphase processes in the chemical industry. Benefits…

  9. An Activity Theory Approach to Analyze Barriers to a Virtual Management Information Systems (MIS) Curriculum

    ERIC Educational Resources Information Center

    Jaradat, Suhair; Qablan, Ahmad; Barham, Areej

    2011-01-01

    This paper explains how the activity theory is used as a framework to analyze the barriers to a virtual Management Information Stream (MIS) Curriculum in Jordanian schools, from both the sociocultural and pedagogical perspectives. Taking the activity system as a unit of analysis, this study documents the processes by which activities shape and are…

  10. Virtualization and New Geographies of Knowledge in Higher Education: Possibilities for the Transformation of Knowledge, Pedagogic Relations and Learner Identities

    ERIC Educational Resources Information Center

    Taylor, Carol A.; Dunne, Mairead

    2011-01-01

    This article considers some of the ways in which the transformative power of Web 2.0 digital technology is reconfiguring learning, knowledge and academic identities in the contemporary university. Through a focus on five specific examples, we consider the impact of virtualization processes on spatiality, materiality and embodiment, and pedagogic…

  11. Revising the 2001 Revised Recommendation Concerning Technical and Vocational Education. Report of the UNESCO-UNEVOC Special Virtual Conference, 1-14 April 2014

    ERIC Educational Resources Information Center

    UNESCO-UNEVOC International Centre for Technical and Vocational Education and Training, 2014

    2014-01-01

    This virtual conference is part of a larger consultation process through which UNESCO will consult with practitioners and researchers; representatives of key stakeholder groupings such as employers' federations, trade unions and youth organizations; other international agencies and Member States in order to draft a new Revised Recommendation that…

  12. Using Augmented Reality and Virtual Environments in Historic Places to Scaffold Historical Empathy

    ERIC Educational Resources Information Center

    Sweeney, Sara K.; Newbill, Phyllis; Ogle, Todd; Terry, Krista

    2018-01-01

    The authors explore how 3D visualizations of historical sites can be used as pedagogical tools to support historical empathy. They provide three visualizations created by a team at Virginia Tech as examples. They discuss virtual environments and how the digital restoration process is applied. They also define historical empathy, explain why it is…

  13. Creativity in Technology Education Facilitated through Virtual Reality Learning Environments: A Case Study

    ERIC Educational Resources Information Center

    Thorsteinsson, Gisli; Page, Tom

    2007-01-01

    Innovation Education (IE) is a new subject area in Icelandic schools. The aim of the subject is to train students to identify the needs and problems in their environment and to develop solutions: a process of ideation. This activity has been classroom based but now a Virtual Reality Learning Environment technology (VRLE) has been designed to…

  14. An Investigation of a Virtual School Program in One Public School District in Texas: A Descriptive Case Study

    ERIC Educational Resources Information Center

    Quadri, Rizvan

    2012-01-01

    This qualitative, descriptive case study employed the use of narrative to investigate a virtual school program in a public school district in Texas. A focus group interviewing process was used to interview the participants. Findings from this study conclude that with continued support from district leaders, along with having the appropriate…

  15. Scottish and Austrian Perspectives on Delivering a Master's: From Paper to Virtual and from Individual to Collaborative

    ERIC Educational Resources Information Center

    McLuckie, Joseph A.; Naulty, Michael; Luchoomun, Dharmadeo; Wahl, Harald

    2009-01-01

    This article explores the transition in course delivery from a paper-based format to blended learning, and highlights the role of the virtual learning environment (VLE) in this process. Professional practice in postgraduate programmes in particular is investigated during this transition stage at the University of Dundee (UoD) in Scotland, and the…

  16. On-line interactive virtual experiments on nanoscience

    NASA Astrophysics Data System (ADS)

    Kadar, Manuella; Ileana, Ioan; Hutanu, Constantin

    2009-01-01

    This paper is an overview on the next generation web which allows students to experience virtual experiments on nano science, physics devices, processes and processing equipment. Virtual reality is used to support a real university lab in which a student can experiment real lab sessions. The web material is presented in an intuitive and highly visual 3D form that is accessible to a diverse group of students. Such type of laboratory provides opportunities for professional and practical education for a wide range of users. The expensive equipment and apparatuses that build the experimental stage in a particular standard laboratory is used to create virtual educational research laboratories. Students learn how to prepare the apparatuses and facilities for the experiment. The online experiments metadata schema is the format for describing online experiments, much like the schema behind a library catalogue used to describe the books in a library. As an online experiment is a special kind of learning object, one specifies its schema as an extension to an established metadata schema for learning objects. The content of the courses, metainformation as well as readings and user data are saved on the server in a database as XML objects.

  17. A practical approach to virtualization in HEP

    NASA Astrophysics Data System (ADS)

    Buncic, P.; Aguado Sánchez, C.; Blomer, J.; Harutyunyan, A.; Mudrinic, M.

    2011-01-01

    In the attempt to solve the problem of processing data coming from LHC experiments at CERN at a rate of 15PB per year, for almost a decade the High Enery Physics (HEP) community has focused its efforts on the development of the Worldwide LHC Computing Grid. This generated large interest and expectations promising to revolutionize computing. Meanwhile, having initially taken part in the Grid standardization process, industry has moved in a different direction and started promoting the Cloud Computing paradigm which aims to solve problems on a similar scale and in equally seamless way as it was expected in the idealized Grid approach. A key enabling technology behind Cloud computing is server virtualization. In early 2008, an R&D project was established in the PH-SFT group at CERN to investigate how virtualization technology could be used to improve and simplify the daily interaction of physicists with experiment software frameworks and the Grid infrastructure. In this article we shall first briefly compare Grid and Cloud computing paradigms and then summarize the results of the R&D activity pointing out where and how virtualization technology could be effectively used in our field in order to maximize practical benefits whilst avoiding potential pitfalls.

  18. Knowledge and Valorization of Historical Sites Through 3d Documentation and Modeling

    NASA Astrophysics Data System (ADS)

    Farella, E.; Menna, F.; Nocerino, E.; Morabito, D.; Remondino, F.; Campi, M.

    2016-06-01

    The paper presents the first results of an interdisciplinary project related to the 3D documentation, dissemination, valorization and digital access of archeological sites. Beside the mere 3D documentation aim, the project has two goals: (i) to easily explore and share via web references and results of the interdisciplinary work, including the interpretative process and the final reconstruction of the remains; (ii) to promote and valorize archaeological areas using reality-based 3D data and Virtual Reality devices. This method has been verified on the ruins of the archeological site of Pausilypon, a maritime villa of Roman period (Naples, Italy). Using Unity3D, the virtual tour of the heritage site was integrated and enriched with the surveyed 3D data, text documents, CAAD reconstruction hypotheses, drawings, photos, etc. In this way, starting from the actual appearance of the ruins (panoramic images), passing through the 3D digital surveying models and several other historical information, the user is able to access virtual contents and reconstructed scenarios, all in a single virtual, interactive and immersive environment. These contents and scenarios allow to derive documentation and geometrical information, understand the site, perform analyses, see interpretative processes, communicate historical information and valorize the heritage location.

  19. Determining of a robot workspace using the integration of a CAD system with a virtual control system

    NASA Astrophysics Data System (ADS)

    Herbuś, K.; Ociepka, P.

    2016-08-01

    The paper presents a method for determining the workspace of an industrial robot using an approach consisting in integration a 3D model of an industrial robot with a virtual control system. The robot model with his work environment, prepared for motion simulation, was created in the “Motion Simulation” module of the Siemens PLM NX software. In the mentioned model components of the “link” type were created which map the geometrical form of particular elements of the robot and the components of “joint” type mapping way of cooperation of components of the “link” type. In the paper is proposed the solution in which the control process of a virtual robot is similar to the control process of a real robot using the manual control panel (teach pendant). For this purpose, the control application “JOINT” was created, which provides the manipulation of a virtual robot in accordance with its internal control system. The set of procedures stored in an .xlsx file is the element integrating the 3D robot model working in the CAD/CAE class system with the elaborated control application.

  20. Incorporation of stochastic engineering models as prior information in Bayesian medical device trials.

    PubMed

    Haddad, Tarek; Himes, Adam; Thompson, Laura; Irony, Telba; Nair, Rajesh

    2017-01-01

    Evaluation of medical devices via clinical trial is often a necessary step in the process of bringing a new product to market. In recent years, device manufacturers are increasingly using stochastic engineering models during the product development process. These models have the capability to simulate virtual patient outcomes. This article presents a novel method based on the power prior for augmenting a clinical trial using virtual patient data. To properly inform clinical evaluation, the virtual patient model must simulate the clinical outcome of interest, incorporating patient variability, as well as the uncertainty in the engineering model and in its input parameters. The number of virtual patients is controlled by a discount function which uses the similarity between modeled and observed data. This method is illustrated by a case study of cardiac lead fracture. Different discount functions are used to cover a wide range of scenarios in which the type I error rates and power vary for the same number of enrolled patients. Incorporation of engineering models as prior knowledge in a Bayesian clinical trial design can provide benefits of decreased sample size and trial length while still controlling type I error rate and power.

  1. Requirements for plug and play information infrastructure frameworks and architectures to enable virtual enterprises

    NASA Astrophysics Data System (ADS)

    Bolton, Richard W.; Dewey, Allen; Horstmann, Paul W.; Laurentiev, John

    1997-01-01

    This paper examines the role virtual enterprises will have in supporting future business engagements and resulting technology requirements. Two representative end-user scenarios are proposed that define the requirements for 'plug-and-play' information infrastructure frameworks and architectures necessary to enable 'virtual enterprises' in US manufacturing industries. The scenarios provide a high- level 'needs analysis' for identifying key technologies, defining a reference architecture, and developing compliant reference implementations. Virtual enterprises are short- term consortia or alliances of companies formed to address fast-changing opportunities. Members of a virtual enterprise carry out their tasks as if they all worked for a single organization under 'one roof', using 'plug-and-play' information infrastructure frameworks and architectures to access and manage all information needed to support the product cycle. 'Plug-and-play' information infrastructure frameworks and architectures are required to enhance collaboration between companies corking together on different aspects of a manufacturing process. This new form of collaborative computing will decrease cycle-time and increase responsiveness to change.

  2. Virtually Being Einstein Results in an Improvement in Cognitive Task Performance and a Decrease in Age Bias

    PubMed Central

    Banakou, Domna; Kishore, Sameer; Slater, Mel

    2018-01-01

    The brain's body representation is amenable to rapid change, even though we tend to think of our bodies as relatively fixed and stable. For example, it has been shown that a life-sized body perceived in virtual reality as substituting the participant's real body, can be felt as if it were their own, and that the body type can induce perceptual, attitudinal and behavioral changes. Here we show that changes can also occur in cognitive processing and specifically, executive functioning. Fifteen male participants were embodied in a virtual body that signifies super-intelligence (Einstein) and 15 in a (Normal) virtual body of similar age to their own. The Einstein body participants performed better on a cognitive task than the Normal body, considering prior cognitive ability (IQ), with the improvement greatest for those with low self-esteem. Einstein embodiment also reduced implicit bias against older people. Hence virtual body ownership may additionally be used to enhance executive functioning. PMID:29942270

  3. Approaches to the Successful Design and Implementation of VR Applications

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The successful design of virtual reality applications involves both "top-down" and "bottom-up" strategies. This talk will broadly outline these strategies: how bottom-up strategies are driven primarily by performance considerations; and how top-down strategies are driven primarily by the application task, the interaction metaphors, and the integration of the virtual environment. How to ensure these two approaches "meet in the middle" through Iterative design processes will be stressed. The discussion will be motivated by examples of both success and failure. The talk contains information bryson presented at SIGGRAPH '93 and Visualization '93, and is a high-level discussion of design principles for virtual reality. There will be essentially no discussion of virtual wind tunnel specific issues or any other matters relating to aerospace, the tutorial is a repeat of the tutorial Bryson and Steve Feiner presented at Visualization '93 In October 1993 in San Jose, CA, and will cite the virtual windtunnel only as an example.

  4. Virtually Being Einstein Results in an Improvement in Cognitive Task Performance and a Decrease in Age Bias.

    PubMed

    Banakou, Domna; Kishore, Sameer; Slater, Mel

    2018-01-01

    The brain's body representation is amenable to rapid change, even though we tend to think of our bodies as relatively fixed and stable. For example, it has been shown that a life-sized body perceived in virtual reality as substituting the participant's real body, can be felt as if it were their own, and that the body type can induce perceptual, attitudinal and behavioral changes. Here we show that changes can also occur in cognitive processing and specifically, executive functioning. Fifteen male participants were embodied in a virtual body that signifies super-intelligence (Einstein) and 15 in a (Normal) virtual body of similar age to their own. The Einstein body participants performed better on a cognitive task than the Normal body, considering prior cognitive ability (IQ), with the improvement greatest for those with low self-esteem. Einstein embodiment also reduced implicit bias against older people. Hence virtual body ownership may additionally be used to enhance executive functioning.

  5. Future directions for the development of virtual reality within an automotive manufacturer.

    PubMed

    Lawson, Glyn; Salanitri, Davide; Waterfield, Brian

    2016-03-01

    Virtual Reality (VR) can reduce time and costs, and lead to increases in quality, in the development of a product. Given the pressure on car companies to reduce time-to-market and to continually improve quality, the automotive industry has championed the use of VR across a number of applications, including design, manufacturing, and training. This paper describes interviews with 11 engineers and employees of allied disciplines from an automotive manufacturer about their current physical and virtual properties and processes. The results guided a review of research findings and scientific advances from the academic literature, which formed the basis of recommendations for future developments of VR technologies and applications. These include: develop a greater range of virtual contexts; use multi-sensory simulation; address perceived differences between virtual and real cars; improve motion capture capabilities; implement networked 3D technology; and use VR for market research. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Virtual arthroscopy of the visible human female temporomandibular joint.

    PubMed

    Ishimaru, T; Lew, D; Haller, J; Vannier, M W

    1999-07-01

    This study was designed to obtain views of the temporomandibular joint (TMJ) by means of computed arthroscopic simulation (virtual arthroscopy) using three-dimensional (3D) processing. Volume renderings of the TMJ from very thin cryosection slices of the Visible Human Female were taken off the Internet. Analyze(AVW) software (Biomedical Imaging Resource, Mayo Foundation, Rochester, MN) on a Silicon Graphics 02 workstation (Mountain View, CA) was then used to obtain 3D images and allow the navigation "fly-through" of the simulated joint. Good virtual arthroscopic views of the upper and lower joint spaces of both TMJs were obtained by fly-through simulation from the lateral and endaural sides. It was possible to observe the presence of a partial defect in the articular disc and an osteophyte on the condyle. Virtual arthroscopy provided visualization of regions not accessible to real arthroscopy. These results indicate that virtual arthroscopy will be a new technique to investigate the TMJ of the patient with TMJ disorders in the near future.

  7. Managing Distributed Innovation Processes in Virtual Organizations by Applying the Collaborative Network Relationship Analysis

    NASA Astrophysics Data System (ADS)

    Eschenbächer, Jens; Seifert, Marcus; Thoben, Klaus-Dieter

    Distributed innovation processes are considered as a new option to handle both the complexity and the speed in which new products and services need to be prepared. Indeed most research on innovation processes was focused on multinational companies with an intra-organisational perspective. The phenomena of innovation processes in networks - with an inter-organisational perspective - have been almost neglected. Collaborative networks present a perfect playground for such distributed innovation processes whereas the authors highlight in specific Virtual Organisation because of their dynamic behaviour. Research activities supporting distributed innovation processes in VO are rather new so that little knowledge about the management of such research is available. With the presentation of the collaborative network relationship analysis this gap will be addressed. It will be shown that a qualitative planning of collaboration intensities can support real business cases by proving knowledge and planning data.

  8. Virtual water trade of agri-food products: Evidence from italian-chinese relations.

    PubMed

    Lamastra, Lucrezia; Miglietta, Pier Paolo; Toma, Pierluigi; De Leo, Federica; Massari, Stefania

    2017-12-01

    At global scale, the majority of world water withdrawal is for the agricultural sector, with differences among countries depending on the relevance of agri-food sector in the economy. Virtual water and water footprint could be useful to express the impact on the water resources of each production process and good with the objective to lead to a sustainable use of water at a global level. International trade could be connected to the virtual water flows, in fact through commodities importation, water poor countries can save their own water resources. The present paper focuses on the bilateral virtual water flows connected to the top ten agri-food products traded between Italy and China. Comparing the virtual water flow related to the top 10 agri-food products, the virtual water flow from Italy to China is bigger than the water flow in the opposite direction. Moreover, the composition of virtual water flows is different; Italy imports significant amounts of grey water from China, depending on the different environmental strategies adopted by the two selected countries. This difference could be also related to the fact that traded commodities are very different; the 91% of virtual water imported by Italy is connected to crops products, while the 95% of virtual water imported by China is related to the animal products. Considering national water saving and global water saving, appears that Italy imports virtual water from China while China exerts pressure on its water resources to supply the exports to Italy. This result at global scale implies a global water loss of 129.29millionm3 because, in general, the agri-food products are traded from the area with lower water productivity to the area with the higher water productivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Virtual Environments: Issues and Opportunities for Researching Inclusive Educational Practices

    NASA Astrophysics Data System (ADS)

    Sheehy, Kieron

    This chapter argues that virtual environments offer new research areas for those concerned with inclusive education. Further, it proposes that they also present opportunities for developing increasingly inclusive research processes. This chapter considers how researchers might approach researching some of these affordances. It discusses the relationship between specific features of inclusive pedagogy, derived from an international systematic literature review, and the affordances of different forms of virtual characters and environments. Examples are drawn from research in Second LifeTM (SL), virtual tutors and augmented reality. In doing this, the chapter challenges a simplistic notion of isolated physical and virtual worlds and, in the context of inclusion, between the practice of research and the research topic itself. There are a growing number of virtual worlds in which identified educational activities are taking place, or whose activities are being noted for their educational merit. These encompasses non-themed worlds such as SL and Active Worlds, game based worlds such as World of Warcraft and Runescape, and even Club Penguin, a themed virtual where younger players interact through a variety of Penguin themed environments and activities. It has been argued that these spaces, outside traditional education, are able to offer pedagogical insights (Twining 2009) i.e. that these global virtual communities have been identified as being useful as creative educational environments (Delwiche 2006; Sheehy 2009). This chapter will explore how researchers might use these spaces to investigative and create inclusive educational experiences for learners. In order to do this the chapter considers three interrelated issues: What is inclusive education?; How might inclusive education influence virtual world research? And, what might inclusive education look like in virtual worlds?

  10. Virtual action and real action have different impacts on comprehension of concrete verbs

    PubMed Central

    Repetto, Claudia; Cipresso, Pietro; Riva, Giuseppe

    2015-01-01

    In the last decade, many results have been reported supporting the hypothesis that language has an embodied nature. According to this theory, the sensorimotor system is involved in linguistic processes such as semantic comprehension. One of the cognitive processes emerging from the interplay between action and language is motor simulation. The aim of the present study is to deepen the knowledge about the simulation of action verbs during comprehension in a virtual reality setting. We compared two experimental conditions with different motor tasks: one in which the participants ran in a virtual world by moving the joypad knob with their left hand (virtual action performed with their feet plus real action performed with the hand) and one in which they only watched a video of runners and executed an attentional task by moving the joypad knob with their left hand (no virtual action plus real action performed with the hand). In both conditions, participants had to perform a concomitant go/no-go semantic task, in which they were asked to press a button (with their right hand) when presented with a sentence containing a concrete verb, and to refrain from providing a response when the verb was abstract. Action verbs described actions performed with hand, foot, or mouth. We recorded electromyography (EMG) latencies to measure reaction times of the linguistic task. We wanted to test if the simulation occurs, whether it is triggered by the virtual or the real action, and which effect it produces (facilitation or interference). Results underlined that those who virtually ran in the environment were faster in understanding foot-action verbs; no simulation effect was found for the real action. The present findings are discussed in the light of the embodied language framework, and a hypothesis is provided that integrates our results with those in literature. PMID:25759678

  11. Reform and practice for photoelectric specialty experimental teaching based on virtual simulation experiment platform

    NASA Astrophysics Data System (ADS)

    Ye, Yan; Lv, Qingsong; Wu, Maocheng; Xu, Yishen; Gu, Jihua

    2017-08-01

    In view of some problems about the traditional photoelectric specialty experimental teaching process, such as separation of theoretical teaching and practical teaching, immobilization of experimental teaching contents, low quality of experiments and no obvious effect, we explored and practiced a new experimental teaching model of "theoretical teaching, virtual simulation and physical experiment", which combined the characteristics of photoelectric information science and engineering major and the essential requirements of engineering innovation talents cultivation. The virtual simulation experiment platform has many advantages, such as high performance-to-price ratio, easy operation and open experimental process, which makes virtual simulation combine physical experiment, complete each other with virtual for practical. After the users log into the virtual simulation experimental platform, they will first study the contents of the experiment, clarify the purpose and requirements of the experiment, master the method of using the instrument and the relevant notes, and then use the experimental instruments provided by the platform to build the corresponding experimental system. Once the experimenter's optical path is set incorrectly or the instrument parameters are set incorrectly, the error or warning message will be automatically triggered, and the reference information will be given instructing the student to complete the correct experimental operation. The results of our practice in recent years show that the teaching reform of the photoelectric specialty experiments has not only brought great convenience to the experimental teaching management, broadened the students' thinking and vision, enhanced the students' experimental skills and comprehensive qualities, but also made the students participate in the experiment with their enthusiasm. During the construction of experiment programs, the students' engineering practical ability and independent innovation awareness has been improved greatly. In the next time, based on the development trend of optoelectronic discipline and our own major characteristics, we will further perfect and enrich the construction of virtual simulation experimental platform and continuously improve the quality of experimental teaching.

  12. Virtually optimized insoles for offloading the diabetic foot: A randomized crossover study.

    PubMed

    Telfer, S; Woodburn, J; Collier, A; Cavanagh, P R

    2017-07-26

    Integration of objective biomechanical measures of foot function into the design process for insoles has been shown to provide enhanced plantar tissue protection for individuals at-risk of plantar ulceration. The use of virtual simulations utilizing numerical modeling techniques offers a potential approach to further optimize these devices. In a patient population at-risk of foot ulceration, we aimed to compare the pressure offloading performance of insoles that were optimized via numerical simulation techniques against shape-based devices. Twenty participants with diabetes and at-risk feet were enrolled in this study. Three pairs of personalized insoles: one based on shape data and subsequently manufactured via direct milling; and two were based on a design derived from shape, pressure, and ultrasound data which underwent a finite element analysis-based virtual optimization procedure. For the latter set of insole designs, one pair was manufactured via direct milling, and a second pair was manufactured through 3D printing. The offloading performance of the insoles was analyzed for forefoot regions identified as having elevated plantar pressures. In 88% of the regions of interest, the use of virtually optimized insoles resulted in lower peak plantar pressures compared to the shape-based devices. Overall, the virtually optimized insoles significantly reduced peak pressures by a mean of 41.3kPa (p<0.001, 95% CI [31.1, 51.5]) for milled and 40.5kPa (p<0.001, 95% CI [26.4, 54.5]) for printed devices compared to shape-based insoles. The integration of virtual optimization into the insole design process resulted in improved offloading performance compared to standard, shape-based devices. ISRCTN19805071, www.ISRCTN.org. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A Framework for Analyzing the Whole Body Surface Area from a Single View

    PubMed Central

    Doretto, Gianfranco; Adjeroh, Donald

    2017-01-01

    We present a virtual reality (VR) framework for the analysis of whole human body surface area. Usual methods for determining the whole body surface area (WBSA) are based on well known formulae, characterized by large errors when the subject is obese, or belongs to certain subgroups. For these situations, we believe that a computer vision approach can overcome these problems and provide a better estimate of this important body indicator. Unfortunately, using machine learning techniques to design a computer vision system able to provide a new body indicator that goes beyond the use of only body weight and height, entails a long and expensive data acquisition process. A more viable solution is to use a dataset composed of virtual subjects. Generating a virtual dataset allowed us to build a population with different characteristics (obese, underweight, age, gender). However, synthetic data might differ from a real scenario, typical of the physician’s clinic. For this reason we develop a new virtual environment to facilitate the analysis of human subjects in 3D. This framework can simulate the acquisition process of a real camera, making it easy to analyze and to create training data for machine learning algorithms. With this virtual environment, we can easily simulate the real setup of a clinic, where a subject is standing in front of a camera, or may assume a different pose with respect to the camera. We use this newly designated environment to analyze the whole body surface area (WBSA). In particular, we show that we can obtain accurate WBSA estimations with just one view, virtually enabling the possibility to use inexpensive depth sensors (e.g., the Kinect) for large scale quantification of the WBSA from a single view 3D map. PMID:28045895

  14. Using the Virtual Reality-Cognitive Rehabilitation Approach to Improve Contextual Processing in Children with Autism

    PubMed Central

    Reid, Denise

    2013-01-01

    Background. This pilot study investigated the efficacy of a novel virtual reality-cognitive rehabilitation (VR-CR) intervention to improve contextual processing of objects in children with autism. Previous research supports that children with autism show deficits in contextual processing, as well as deficits in its elementary components: abstraction and cognitive flexibility. Methods. Four children with autism participated in a multiple-baseline, single-subject study. The children were taught how to see objects in context by reinforcing attention to pivotal contextual information. Results. All children demonstrated statistically significant improvements in contextual processing and cognitive flexibility. Mixed results were found on the control test and changes in context-related behaviours. Conclusions. Larger-scale studies are warranted to determine the effectiveness and usability in comprehensive educational programs. PMID:24324379

  15. Using a Virtual Tablet Machine to Improve Student Understanding of the Complex Processes Involved in Tablet Manufacturing.

    PubMed

    Mattsson, Sofia; Sjöström, Hans-Erik; Englund, Claire

    2016-06-25

    Objective. To develop and implement a virtual tablet machine simulation to aid distance students' understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students' perceptions, the use of the tablet simulation contributed to their understanding of the compaction process.

  16. Using a Virtual Tablet Machine to Improve Student Understanding of the Complex Processes Involved in Tablet Manufacturing

    PubMed Central

    Sjöström, Hans-Erik; Englund, Claire

    2016-01-01

    Objective. To develop and implement a virtual tablet machine simulation to aid distance students’ understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students’ perceptions, the use of the tablet simulation contributed to their understanding of the compaction process. PMID:27402990

  17. Beyond seismic interferometry: imaging the earth's interior with virtual sources and receivers inside the earth

    NASA Astrophysics Data System (ADS)

    Wapenaar, C. P. A.; Van der Neut, J.; Thorbecke, J.; Broggini, F.; Slob, E. C.; Snieder, R.

    2015-12-01

    Imagine one could place seismic sources and receivers at any desired position inside the earth. Since the receivers would record the full wave field (direct waves, up- and downward reflections, multiples, etc.), this would give a wealth of information about the local structures, material properties and processes in the earth's interior. Although in reality one cannot place sources and receivers anywhere inside the earth, it appears to be possible to create virtual sources and receivers at any desired position, which accurately mimics the desired situation. The underlying method involves some major steps beyond standard seismic interferometry. With seismic interferometry, virtual sources can be created at the positions of physical receivers, assuming these receivers are illuminated isotropically. Our proposed method does not need physical receivers at the positions of the virtual sources; moreover, it does not require isotropic illumination. To create virtual sources and receivers anywhere inside the earth, it suffices to record the reflection response with physical sources and receivers at the earth's surface. We do not need detailed information about the medium parameters; it suffices to have an estimate of the direct waves between the virtual-source positions and the acquisition surface. With these prerequisites, our method can create virtual sources and receivers, anywhere inside the earth, which record the full wave field. The up- and downward reflections, multiples, etc. in the virtual responses are extracted directly from the reflection response at the surface. The retrieved virtual responses form an ideal starting point for accurate seismic imaging, characterization and monitoring.

  18. Virtual Solar Energy Center: A Case Study of the Use of Advanced Visualization Techniques for the Comprehension of Complex Engineering Products and Processes

    NASA Astrophysics Data System (ADS)

    Ritter, Kenneth August, III

    Industry has a continuing need to train its workforce on recent engineering developments, but many engineering products and processes are hard to explain because of limitations of size, visibility, time scale, cost, and safety. The product or process might be difficult to see because it is either very large or very small, because it is enclosed within an opaque container, or because it happens very fast or very slowly. Some engineering products and processes are also costly or unsafe to use for training purposes, and sometimes the domain expert is not physically available at the training location. All these limitations can potentially be addressed using advanced visualization techniques such as virtual reality. This dissertation describes the development of an immersive virtual reality application using the Six Sigma DMADV process to explain the main equipment and processes used in a concentrating solar power plant. The virtual solar energy center (VEC) application was initially developed and tested in a Cave Automatic Virtual Environment (CAVE) during 2013 and 2014. The software programs used for development were SolidWorks, 3ds Max Design, and Unity 3D. Current hardware and software technologies that could complement this research were analyzed. The NVIDA GRID Visual Computing Appliance (VCA) was chosen as the rendering solution for animating complex CAD models in this application. The MiddleVR software toolkit was selected as the toolkit for VR interactions and CAVE display. A non-immersive 3D version of the VEC application was tested and shown to be an effective training tool in late 2015. An immersive networked version of the VEC allows the user to receive live instruction from a trainer being projected via depth camera imagery from a remote location. Four comparative analysis studies were performed. These studies used the average normalized gain from pre-test scores to determine the effectiveness of the various training methods. With the DMADV approach, solutions were identified and verified during each iteration of the development, which saved valuable time and resulted in better results being achieved in each revision of the application, with the final version having 88% positive responses and same effectiveness as other methods assessed.

  19. A multilayer network dataset of interaction and influence spreading in a virtual world

    NASA Astrophysics Data System (ADS)

    Jankowski, Jarosław; Michalski, Radosław; Bródka, Piotr

    2017-10-01

    Presented data contains the record of five spreading campaigns that occurred in a virtual world platform. Users distributed avatars between each other during the campaigns. The processes varied in time and range and were either incentivized or not incentivized. Campaign data is accompanied by events. The data can be used to build a multilayer network to place the campaigns in a wider context. To the best of the authors' knowledge, the study is the first publicly available dataset containing a complete real multilayer social network together, along with five complete spreading processes in it.

  20. Varieties of virtualization

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    1991-01-01

    Natural environments have a content, i.e., the objects in them; a geometry, i.e., a pattern of rules for positioning and displacing the objects; and a dynamics, i.e., a system of rules describing the effects of forces acting on the objects. Human interaction with most common natural environments has been optimized by centuries of evolution. Virtual environments created through the human-computer interface similarly have a content, geometry, and dynamics, but the arbitrary character of the computer simulation creating them does not insure that human interaction with these virtual environments will be natural. The interaction, indeed, could be supernatural but it also could be impossible. An important determinant of the comprehensibility of a virtual environment is the correspondence between the environmental frames of reference and those associated with the control of environmental objects. The effects of rotation and displacement of control frames of reference with respect to corresponding environmental references differ depending upon whether perceptual judgement or manual tracking performance is measured. The perceptual effects of frame of reference displacement may be analyzed in terms of distortions in the process of virtualizing the synthetic environment space. The effects of frame of reference displacement and rotation have been studied by asking subjects to estimate exocentric direction in a virtual space.

  1. Steering a virtual blowfly: simulation of visual pursuit.

    PubMed

    Boeddeker, Norbert; Egelhaaf, Martin

    2003-09-22

    The behavioural repertoire of male flies includes visually guided chasing after moving targets. The visuomotor control system for these pursuits belongs to the fastest found in the animal kingdom. We simulated a virtual fly, to test whether or not experimentally established hypotheses on the underlying control system are sufficient to explain chasing behaviour. Two operating instructions for steering the chasing virtual fly were derived from behavioural experiments: (i) the retinal size of the target controls the fly's forward speed and, thus, indirectly its distance to the target; and (ii) a smooth pursuit system uses the retinal position of the target to regulate the fly's flight direction. Low-pass filters implement neuronal processing time. Treating the virtual fly as a point mass, its kinematics are modelled in consideration of the effects of translatory inertia and air friction. Despite its simplicity, the model shows behaviour similar to that of real flies. Depending on its starting position and orientation as well as on target size and speed, the virtual fly either catches the target or follows it indefinitely without capture. These two behavioural modes of the virtual fly emerge from the control system for flight steering without implementation of an explicit decision maker.

  2. Semi-Immersive Virtual Turbine Engine Simulation System

    NASA Astrophysics Data System (ADS)

    Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea

    2018-05-01

    The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.

  3. Virtual Proprioception for eccentric training.

    PubMed

    LeMoyne, Robert; Mastroianni, Timothy

    2017-07-01

    Wireless inertial sensors enable quantified feedback, which can be applied to evaluate the efficacy of therapy and rehabilitation. In particular eccentric training promotes a beneficial rehabilitation and strength training strategy. Virtual Proprioception for eccentric training applies real-time feedback from a wireless gyroscope platform enabled through a software application for a smartphone. Virtual Proprioception for eccentric training is applied to the eccentric phase of a biceps brachii strength training and contrasted to a biceps brachii strength training scenario without feedback. During the operation of Virtual Proprioception for eccentric training the intent is to not exceed a prescribed gyroscope signal threshold based on the real-time presentation of the gyroscope signal, in order to promote the eccentric aspect of the strength training endeavor. The experimental trial data is transmitted wireless through connectivity to the Internet as an email attachment for remote post-processing. A feature set is derived from the gyroscope signal for machine learning classification of the two scenarios of Virtual Proprioception real-time feedback for eccentric training and eccentric training without feedback. Considerable classification accuracy is achieved through the application of a multilayer perceptron neural network for distinguishing between the Virtual Proprioception real-time feedback for eccentric training and eccentric training without feedback.

  4. Virtualized Traffic: reconstructing traffic flows from discrete spatiotemporal data.

    PubMed

    Sewall, Jason; van den Berg, Jur; Lin, Ming C; Manocha, Dinesh

    2011-01-01

    We present a novel concept, Virtualized Traffic, to reconstruct and visualize continuous traffic flows from discrete spatiotemporal data provided by traffic sensors or generated artificially to enhance a sense of immersion in a dynamic virtual world. Given the positions of each car at two recorded locations on a highway and the corresponding time instances, our approach can reconstruct the traffic flows (i.e., the dynamic motions of multiple cars over time) between the two locations along the highway for immersive visualization of virtual cities or other environments. Our algorithm is applicable to high-density traffic on highways with an arbitrary number of lanes and takes into account the geometric, kinematic, and dynamic constraints on the cars. Our method reconstructs the car motion that automatically minimizes the number of lane changes, respects safety distance to other cars, and computes the acceleration necessary to obtain a smooth traffic flow subject to the given constraints. Furthermore, our framework can process a continuous stream of input data in real time, enabling the users to view virtualized traffic events in a virtual world as they occur. We demonstrate our reconstruction technique with both synthetic and real-world input. © 2011 IEEE Published by the IEEE Computer Society

  5. Virtual tutorials, Wikipedia books, and multimedia-based teaching for blended learning support in a course on algorithms and data structures

    NASA Astrophysics Data System (ADS)

    Knackmuß, Jenny; Creutzburg, Reiner

    2014-02-01

    The aim of this paper is to describe the benefit and support of virtual tutorials, Wikipedia books and multimedia-based teaching in a course on Algorithms and Data Structures. We describe our work and experiences gained from using virtual tutorials held in Netucate iLinc sessions and the use of various multimedia and animation elements for the support of deeper understanding of the ordinary lectures held in the standard classroom on Algorithms and Data Structures for undergraduate computer sciences students. We will describe the benefits, form, style and contents of those virtual tutorials. Furthermore, we mention the advantage of Wikipedia books to support the blended learning process using modern mobile devices. Finally, we give some first statistical measures of improved student's scores after introducing this new form of teaching support.

  6. NASA Virtual Glovebox: An Immersive Virtual Desktop Environment for Training Astronauts in Life Science Experiments

    NASA Technical Reports Server (NTRS)

    Twombly, I. Alexander; Smith, Jeffrey; Bruyns, Cynthia; Montgomery, Kevin; Boyle, Richard

    2003-01-01

    The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The Virtual GloveboX (VGX) integrates high-fidelity graphics, force-feedback devices and real- time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  7. Integration of the virtual 3D model of a control system with the virtual controller

    NASA Astrophysics Data System (ADS)

    Herbuś, K.; Ociepka, P.

    2015-11-01

    Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the operation of the adopted research object. The carried out work allowed foot the integration of the virtual model of the control system of the tunneling machine with the virtual controller, enabling the verification of its operation.

  8. LVC interaction within a mixed-reality training system

    NASA Astrophysics Data System (ADS)

    Pollock, Brice; Winer, Eliot; Gilbert, Stephen; de la Cruz, Julio

    2012-03-01

    The United States military is increasingly pursuing advanced live, virtual, and constructive (LVC) training systems for reduced cost, greater training flexibility, and decreased training times. Combining the advantages of realistic training environments and virtual worlds, mixed reality LVC training systems can enable live and virtual trainee interaction as if co-located. However, LVC interaction in these systems often requires constructing immersive environments, developing hardware for live-virtual interaction, tracking in occluded environments, and an architecture that supports real-time transfer of entity information across many systems. This paper discusses a system that overcomes these challenges to empower LVC interaction in a reconfigurable, mixed reality environment. This system was developed and tested in an immersive, reconfigurable, and mixed reality LVC training system for the dismounted warfighter at ISU, known as the Veldt, to overcome LVC interaction challenges and as a test bed for cuttingedge technology to meet future U.S. Army battlefield requirements. Trainees interact physically in the Veldt and virtually through commercial and developed game engines. Evaluation involving military trained personnel found this system to be effective, immersive, and useful for developing the critical decision-making skills necessary for the battlefield. Procedural terrain modeling, model-matching database techniques, and a central communication server process all live and virtual entity data from system components to create a cohesive virtual world across all distributed simulators and game engines in real-time. This system achieves rare LVC interaction within multiple physical and virtual immersive environments for training in real-time across many distributed systems.

  9. Tools virtualization for command and control systems

    NASA Astrophysics Data System (ADS)

    Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław

    2017-10-01

    Information management is an inseparable part of the command process. The result is that the person making decisions at the command post interacts with data providing devices in various ways. Tools virtualization process can introduce a number of significant modifications in the design of solutions for management and command. The general idea involves replacing physical devices user interface with their digital representation (so-called Virtual instruments). A more advanced level of the systems "digitalization" is to use the mixed reality environments. In solutions using Augmented reality (AR) customized HMI is displayed to the operator when he approaches to each device. Identification of device is done by image recognition of photo codes. Visualization is achieved by (optical) see-through head mounted display (HMD). Control can be done for example by means of a handheld touch panel. Using the immersive virtual environment, the command center can be digitally reconstructed. Workstation requires only VR system (HMD) and access to information network. Operator can interact with devices in such a way as it would perform in real world (for example with the virtual hands). Because of their procedures (an analysis of central vision, eye tracking) MR systems offers another useful feature of reducing requirements for system data throughput. Due to the fact that at the moment we focus on the single device. Experiments carried out using Moverio BT-200 and SteamVR systems and the results of experimental application testing clearly indicate the ability to create a fully functional information system with the use of mixed reality technology.

  10. Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Virtual mode

    NASA Astrophysics Data System (ADS)

    Lapshin, Rostislav V.

    2016-08-01

    A method of distributed calibration of a probe microscope scanner is suggested. The main idea consists in a search for a net of local calibration coefficients (LCCs) in the process of automatic measurement of a standard surface, whereby each point of the movement space of the scanner can be characterized by a unique set of scale factors. Feature-oriented scanning (FOS) methodology is used as a basis for implementation of the distributed calibration permitting to exclude in situ the negative influence of thermal drift, creep and hysteresis on the obtained results. Possessing the calibration database enables correcting in one procedure all the spatial systematic distortions caused by nonlinearity, nonorthogonality and spurious crosstalk couplings of the microscope scanner piezomanipulators. To provide high precision of spatial measurements in nanometer range, the calibration is carried out using natural standards - constants of crystal lattice. One of the useful modes of the developed calibration method is a virtual mode. In the virtual mode, instead of measurement of a real surface of the standard, the calibration program makes a surface image ;measurement; of the standard, which was obtained earlier using conventional raster scanning. The application of the virtual mode permits simulation of the calibration process and detail analysis of raster distortions occurring in both conventional and counter surface scanning. Moreover, the mode allows to estimate the thermal drift and the creep velocities acting while surface scanning. Virtual calibration makes possible automatic characterization of a surface by the method of scanning probe microscopy (SPM).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaskey, Alexander J.

    There is a lack of state-of-the-art HPC simulation tools for simulating general quantum computing. Furthermore, there are no real software tools that integrate current quantum computers into existing classical HPC workflows. This product, the Quantum Virtual Machine (QVM), solves this problem by providing an extensible framework for pluggable virtual, or physical, quantum processing units (QPUs). It enables the execution of low level quantum assembly codes and returns the results of such executions.

  12. The Fluke Security Project

    DTIC Science & Technology

    2000-04-01

    be an extension of Utah’s nascent Quarks system, oriented to closely coupled cluster environments. However, the grant did not actually begin until... Intel x86, implemented ten virtual machine monitors and servers, including a virtual memory manager, a checkpointer, a process manager, a file server...Fluke, we developed a novel hierarchical processor scheduling frame- work called CPU inheritance scheduling [5]. This is a framework for scheduling

  13. The Virtual Research and Extension Communication Network (VRECN): An Interactive Learning and Communication Network for Research and Extension Personnel. Concept Paper for the Food & Agriculture Organisation of the United Nations (FAO).

    ERIC Educational Resources Information Center

    Richardson, Don

    A Virtual Research and Extension Communication Network (VRECN) is a set of networked electronic tools facilitating improvement in communication processes and information sharing among stakeholders involved in agricultural development. In developing countries, research and extension personnel within a ministry of agriculture, in consultation and…

  14. Virtual endoscopy using spherical QuickTime-VR panorama views.

    PubMed

    Tiede, Ulf; von Sternberg-Gospos, Norman; Steiner, Paul; Höhne, Karl Heinz

    2002-01-01

    Virtual endoscopy needs some precomputation of the data (segmentation, path finding) before the diagnostic process can take place. We propose a method that precomputes multinode spherical panorama movies using Quick-Time VR. This technique allows almost the same navigation and visualization capabilities as a real endoscopic procedure, a significant reduction of interaction input is achieved and the movie represents a document of the procedure.

  15. Computing Accurate Grammatical Feedback in a Virtual Writing Conference for German-Speaking Elementary-School Children: An Approach Based on Natural Language Generation

    ERIC Educational Resources Information Center

    Harbusch, Karin; Itsova, Gergana; Koch, Ulrich; Kuhner, Christine

    2009-01-01

    We built a natural language processing (NLP) system implementing a "virtual writing conference" for elementary-school children, with German as the target language. Currently, state-of-the-art computer support for writing tasks is restricted to multiple-choice questions or quizzes because automatic parsing of the often ambiguous and fragmentary…

  16. My Ideal City (mic): Virtual Environments to Design the Future Town

    NASA Astrophysics Data System (ADS)

    Borgherini, M.; Garbin, E.

    2011-09-01

    MIC is an EU funded project to explore the use of shared virtual environments as part of a public discussion on the issues of building the city of the future. An interactive exploration of four european cities - in the digital city models were translated urban places, family problems and citizens wishes - is a chance to see them in different ways and from different points of view, to imagine new scenarios to overcome barriers and stereotypes no longer effective. This paper describes the process from data to visualization of virtual cities and, in detail, the project of two interactive digital model (Trento and Lisbon).

  17. Three-dimensional plotting and printing of an implant drilling guide: simplifying guided implant surgery.

    PubMed

    Flügge, Tabea Viktoria; Nelson, Katja; Schmelzeisen, Rainer; Metzger, Marc Christian

    2013-08-01

    To present an efficient workflow for the production of implant drilling guides using virtual planning tools. For this purpose, laser surface scanning, cone beam computed tomography, computer-aided design and manufacturing, and 3-dimensional (3D) printing were combined. Intraoral optical impressions (iTero, Align Technologies, Santa Clara, CA) and digital 3D radiographs (cone beam computed tomography) were performed at the first consultation of 1 exemplary patient. With image processing techniques, the intraoral surface data, acquired using an intraoral scanner, and radiologic 3D data were fused. The virtual implant planning process (using virtual library teeth) and the in-office production of the implant drilling guide was performed after only 1 clinical consultation of the patient. Implant surgery with a computer-aided design and manufacturing produced implant drilling guide was performed during the second consultation. The production of a scan prosthesis and multiple preoperative consultations of the patient were unnecessary. The presented procedure offers another step in facilitating the production of drilling guides in dental implantology. Four main advantages are realized with this procedure. First, no additional scan prosthesis is needed. Second, data acquisition can be performed during the first consultation. Third, the virtual planning is directly transferred to the drilling guide without a loss of accuracy. Finally, the treatment cost and time required are reduced with this facilitated production process. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Software system design for the non-null digital Moiré interferometer

    NASA Astrophysics Data System (ADS)

    Chen, Meng; Hao, Qun; Hu, Yao; Wang, Shaopu; Li, Tengfei; Li, Lin

    2016-11-01

    Aspheric optical components are an indispensable part of modern optics systems. With the development of aspheric optical elements fabrication technique, high-precision figure error test method of aspheric surfaces is a quite urgent issue now. We proposed a digital Moiré interferometer technique (DMIT) based on partial compensation principle for aspheric and freeform surface measurement. Different from traditional interferometer, DMIT consists of a real and a virtual interferometer. The virtual interferometer is simulated with Zemax software to perform phase-shifting and alignment. We can get the results by a series of calculation with the real interferogram and virtual interferograms generated by computer. DMIT requires a specific, reliable software system to ensure its normal work. Image acquisition and data processing are two important parts in this system. And it is also a challenge to realize the connection between the real and virtual interferometer. In this paper, we present a software system design for DMIT with friendly user interface and robust data processing features, enabling us to acquire the figure error of the measured asphere. We choose Visual C++ as the software development platform and control the ideal interferometer by using hybrid programming with Zemax. After image acquisition and data transmission, the system calls image processing algorithms written with Matlab to calculate the figure error of the measured asphere. We test the software system experimentally. In the experiment, we realize the measurement of an aspheric surface and prove the feasibility of the software system.

  19. The Role of the Virtual Astronomical Observatory in the Era of Big Data

    NASA Astrophysics Data System (ADS)

    Berriman, G. B.; Hanisch, R. J.; Lazio, T. J.

    2013-01-01

    The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. The rapid growth in the size and complexity of data sets is transforming the computing landscape in astronomy. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of an information backbone that responds to this growth. Such a backbone will, when complete, provide innovative mechanisms for fast discovery of, and access to, massive data sets, and services that enable distributed storage, publication processing of large datasets. All these services will be built so that new projects can incorporate them as part of their data management and processing plans. Services under development to date include a general purpose indexing scheme for fast access to data sets, a cross-comparison engine that operate on catalogs of 1 billion records or more, and an interface for managing distributed data sets and connecting them to data discovery and analysis tools. The VAO advises projects on technology solutions for their data access and processing needs, and recently advised the Sagan Workshop on using cloud computing to support hands-on data analysis sessions for 150+ participants. Acknowledgements: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  20. System analysis of graphics processor architecture using virtual prototyping

    NASA Astrophysics Data System (ADS)

    Hancock, William R.; Groat, Jeff; Steeves, Todd; Spaanenburg, Henk; Shackleton, John

    1995-06-01

    Honeywell has been actively involved in the definition of the next generation display processors for military and commercial cockpits. A major concern is how to achieve super graphics workstation performance in avionics application. Most notable are requirements for low volume, low power, harsh environmental conditions, real-time performance and low cost. This paper describes the application of VHDL to the system analysis tasks associated with achieving these goals in a cost effective manner. The paper will describe the top level architecture identified to provide the graphical and video processing power needed to drive future high resolution display devices and to generate more natural panoramic 3D formats. The major discussion, however, will be on the use of VHDL to model the processing elements and customized pipelines needed to realize the architecture and for doing the complex system tradeoff studies necessary to achieve a cost effective implementation. New software tools have been developed to allow 'virtual' prototyping in the VHDL environment. This results in a hardware/software codesign using VHDL performance and functional models. This unique architectural tool allows simulation and tradeoffs within a standard and tightly integrated toolset, which eventually will be used to specify and design the entire system from the top level requirements and system performance to the lowest level individual ASICs. New processing elements, algorithms, and standard graphical inputs can be designed, tested and evaluated without the costly hardware prototyping using the innovative 'virtual' prototyping techniques which are evolving on this project. In addition, virtual prototyping of the display processor does not bind the preliminary design to point solutions as a physical prototype will. when the development schedule is known, one can extrapolate processing elements performance and design the system around the most current technology.

Top