Blaney, Joseph E; Marzi, Andrea; Willet, Mallory; Papaneri, Amy B; Wirblich, Christoph; Feldmann, Friederike; Holbrook, Michael; Jahrling, Peter; Feldmann, Heinz; Schnell, Matthias J
2013-01-01
We have previously described the generation of a novel Ebola virus (EBOV) vaccine platform based on (a) replication-competent rabies virus (RABV), (b) replication-deficient RABV, or (c) chemically inactivated RABV expressing EBOV glycoprotein (GP). Mouse studies demonstrated safety, immunogenicity, and protective efficacy of these live or inactivated RABV/EBOV vaccines. Here, we evaluated these vaccines in nonhuman primates. Our results indicate that all three vaccines do induce potent immune responses against both RABV and EBOV, while the protection of immunized animals against EBOV was largely dependent on the quality of humoral immune response against EBOV GP. We also determined if the induced antibodies against EBOV GP differ in their target, affinity, or the isotype. Our results show that IgG1-biased humoral responses as well as high levels of GP-specific antibodies were beneficial for the control of EBOV infection after immunization. These results further support the concept that a successful EBOV vaccine needs to induce strong antibodies against EBOV. We also showed that a dual vaccine against RABV and filoviruses is achievable; therefore addressing concerns for the marketability of this urgently needed vaccine.
Marzi, Andrea; Hanley, Patrick W; Haddock, Elaine; Martellaro, Cynthia; Kobinger, Gary; Feldmann, Heinz
2016-10-15
The Ebola virus (EBOV) epidemic in West Africa increased the focus on vaccine development against this hemorrhagic fever-causing pathogen, and as a consequence human clinical trials for a few selected platforms were accelerated. One of these vaccines is vesicular stomatitis virus (VSV)-EBOV, also known as rVSV-ZEBOV, a fast-acting vaccine against EBOV and so far the only vaccine with reported efficacy against EBOV infections in humans in phase III clinical trials. In this study, we analyzed the potential of VSV-EBOV for postexposure treatment of rhesus macaques infected with EBOV-Makona. We treated groups of animals with 1 dose of VSV-EBOV either in a single injection at 1 or 24 hours after EBOV exposure or with 2 injections, half the dose at each time point; 1 control group received the same dose of the VSV-based Marburg virus vaccine at both time points; another group remained untreated. Although all untreated animals succumbed to EBOV infection, 33%-67% of the animals in each treatment group survived the infection, including the group treated with the VSV-based Marburg virus vaccine. This result suggests that protection from postexposure vaccination may be antigen unspecific and due rather to an early activation of the innate immune system. In conclusion, VSV-EBOV remains a potent and fast-acting prophylactic vaccine but demonstrates only limited efficacy in postexposure treatment. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Recombinant Modified Vaccinia Virus Ankara Generating Ebola Virus-Like Particles.
Schweneker, Marc; Laimbacher, Andrea S; Zimmer, Gert; Wagner, Susanne; Schraner, Elisabeth M; Wolferstätter, Michael; Klingenberg, Marieken; Dirmeier, Ulrike; Steigerwald, Robin; Lauterbach, Henning; Hochrein, Hubertus; Chaplin, Paul; Suter, Mark; Hausmann, Jürgen
2017-06-01
There are currently no approved therapeutics or vaccines to treat or protect against the severe hemorrhagic fever and death caused by Ebola virus (EBOV). Ebola virus-like particles (EBOV VLPs) consisting of the matrix protein VP40, the glycoprotein (GP), and the nucleoprotein (NP) are highly immunogenic and protective in nonhuman primates against Ebola virus disease (EVD). We have constructed a modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) recombinant coexpressing VP40 and GP of EBOV Mayinga and the NP of Taï Forest virus (TAFV) (MVA-BN-EBOV-VLP) to launch noninfectious EBOV VLPs as a second vaccine modality in the MVA-BN-EBOV-VLP-vaccinated organism. Human cells infected with either MVA-BN-EBOV-VLP or MVA-BN-EBOV-GP showed comparable GP expression levels and transport of complex N-glycosylated GP to the cell surface. Human cells infected with MVA-BN-EBOV-VLP produced large amounts of EBOV VLPs that were decorated with GP spikes but excluded the poxviral membrane protein B5, thus resembling authentic EBOV particles. The heterologous TAFV NP enhanced EBOV VP40-driven VLP formation with efficiency similar to that of the homologous EBOV NP in a transient-expression assay, and both NPs were incorporated into EBOV VLPs. EBOV GP-specific CD8 T cell responses were comparable between MVA-BN-EBOV-VLP- and MVA-BN-EBOV-GP-immunized mice. The levels of EBOV GP-specific neutralizing and binding antibodies, as well as GP-specific IgG1/IgG2a ratios induced by the two constructs, in mice were also similar, raising the question whether the quality rather than the quantity of the GP-specific antibody response might be altered by an EBOV VLP-generating MVA recombinant. IMPORTANCE The recent outbreak of Ebola virus (EBOV), claiming more than 11,000 lives, has underscored the need to advance the development of safe and effective filovirus vaccines. Virus-like particles (VLPs), as well as recombinant viral vectors, have proved to be promising vaccine candidates. Modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) is a safe and immunogenic vaccine vector with a large capacity to accommodate multiple foreign genes. In this study, we combined the advantages of VLPs and the MVA platform by generating a recombinant MVA-BN-EBOV-VLP that would produce noninfectious EBOV VLPs in the vaccinated individual. Our results show that human cells infected with MVA-BN-EBOV-VLP indeed formed and released EBOV VLPs, thus producing a highly authentic immunogen. MVA-BN-EBOV-VLP efficiently induced EBOV-specific humoral and cellular immune responses in vaccinated mice. These results are the basis for future advancements, e.g., by including antigens from various filoviral species to develop multivalent VLP-producing MVA-based filovirus vaccines. Copyright © 2017 American Society for Microbiology.
Novel Small Molecule Entry Inhibitors of Ebola Virus
Basu, Arnab; Mills, Debra M.; Mitchell, Daniel; Ndungo, Esther; Williams, John D.; Herbert, Andrew S.; Dye, John M.; Moir, Donald T.; Chandran, Kartik; Patterson, Jean L.; Rong, Lijun; Bowlin, Terry L.
2015-01-01
Background. The current Ebola virus (EBOV) outbreak has highlighted the troubling absence of available antivirals or vaccines to treat infected patients and stop the spread of EBOV. The EBOV glycoprotein (GP) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-EBOV drugs. We report the identification of 2 novel EBOV inhibitors targeting viral entry. Methods. To identify small molecule inhibitors of EBOV entry, we carried out a cell-based high-throughput screening using human immunodeficiency virus–based pseudotyped viruses expressing EBOV-GP. Two compounds were identified, and mechanism-of-action studies were performed using immunoflourescence, AlphaLISA, and enzymatic assays for cathepsin B inhibition. Results. We report the identification of 2 novel entry inhibitors. These inhibitors (1) inhibit EBOV infection (50% inhibitory concentration, approximately 0.28 and approximately 10 µmol/L) at a late stage of entry, (2) induce Niemann-Pick C phenotype, and (3) inhibit GP–Niemann-Pick C1 (NPC1) protein interaction. Conclusions. We have identified 2 novel EBOV inhibitors, MBX2254 and MBX2270, that can serve as starting points for the development of an anti-EBOV therapeutic agent. Our findings also highlight the importance of NPC1-GP interaction in EBOV entry and the attractiveness of NPC1 as an antifiloviral therapeutic target. PMID:26206510
Mühlberger, Elke; Weik, Michael; Volchkov, Viktor E.; Klenk, Hans-Dieter; Becker, Stephan
1999-01-01
The members of the family Filoviridae, Marburg virus (MBGV) and Ebola virus (EBOV), are very similar in terms of morphology, genome organization, and protein composition. To compare the replication and transcription strategies of both viruses, an artificial replication system based on the vaccinia virus T7 expression system was established for EBOV. Specific transcription and replication of an artificial monocistronic minireplicon was demonstrated by reporter gene expression and detection of the transcribed and replicated RNA species. As it was shown previously for MBGV, three of the four EBOV nucleocapsid proteins, NP, VP35, and L, were essential and sufficient for replication. In contrast to MBGV, EBOV-specific transcription was dependent on the presence of the fourth nucleocapsid protein, VP30. When EBOV VP30 was replaced by MBGV VP30, EBOV-specific transcription was observed but with lower efficiency. Exchange of NP, VP35, and L between the two replication systems did not lead to detectable reporter gene expression. It was further observed that neither MBGV nor EBOV were able to replicate the heterologous minigenomes. A chimeric minigenome, however, containing the EBOV leader and the MBGV trailer was encapsidated, replicated, transcribed, and packaged by both viruses. PMID:9971816
Spengler, Jessica R; McElroy, Anita K; Harmon, Jessica R; Ströher, Ute; Nichol, Stuart T; Spiropoulou, Christina F
2015-10-01
We performed a longitudinal analysis of plasma samples obtained from 4 patients with Ebola virus (EBOV) disease (EVD) to determine the relationship between the real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR)-based threshold cycle (Ct) value and the presence of infectious EBOV. EBOV was not isolated from plasma samples with a Ct value of >35.5 or >12 days after onset of symptoms. EBOV was not isolated from plasma samples in which anti-EBOV nucleoprotein immunoglobulin G was detected. These data demonstrate the utility of interpreting qRT-PCR results in the context of the course of EBOV infection and associated serological responses for patient-management decisions. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Touré, Abdoulaye; Butel, Christelle; Keita, Alpha Kabinet; Binetruy, Florian; Sow, Mamadou S.; Foulongne, Vincent; Delaporte, Eric; Peeters, Martine
2016-01-01
ABSTRACT The recent Zaire Ebola virus (EBOV) outbreak in West Africa illustrates clearly the need for additional studies with humans and animals to elucidate the ecology of Ebola viruses (EBVs). In this study, we developed a serological assay based on the Luminex technology. Nine recombinant proteins representing different viral regions (nucleoprotein [NP], 40-kDa viral protein [VP40], and glycoprotein [GP]) from four of the five EBV lineages were used. Samples from 94 survivors of the EBOV outbreak in Guinea and negative samples from 108 patients in France were used to calculate test performance for EBOV detection and cross-reaction with other Ebola virus lineages. For EBOV antibody detection, sensitivities of 95.7%, 96.8%, and 92.5% and specificities of 94.4%, 95.4%, and 96.3% for NP, GP, and VP40, respectively, were observed. All EBOV-negative samples that presented a reaction, except for one, interacted with a single antigen, whereas almost all samples from EBOV survivors were simultaneously reactive with NP and GP (90/94) or with NP, GP, and VP40 (87/94). Considering as positive for past EBOV infection only samples that reacted with EBOV NP and GP, sensitivity was 95.7% and specificity increased to 99.1%. Comparing results with commercial EBOV NP and GP enzyme-linked immunosorbent assays (ELISAs; Alpha Diagnostic, San Antonio, TX), lower sensitivity (92.5%) and high specificity (100%) were observed with the same positivity criteria. Samples from EBOV survivors cross-reacted with GP from Sudan Ebola virus (GP-SUDV) (81.9%), GP from Bundibugyo Ebola virus (GP-BDBV) (51.1%), GP from Reston Ebola virus (GP-RESTV) (9.6%), VP40-SUDV (76.6%), and VP40-BDBV (38.3%). Overall, we developed a sensitive and specific high-throughput serological assay, and defined an algorithm, for epidemiological surveys with humans. PMID:27795350
Ayouba, Ahidjo; Touré, Abdoulaye; Butel, Christelle; Keita, Alpha Kabinet; Binetruy, Florian; Sow, Mamadou S; Foulongne, Vincent; Delaporte, Eric; Peeters, Martine
2017-01-01
The recent Zaire Ebola virus (EBOV) outbreak in West Africa illustrates clearly the need for additional studies with humans and animals to elucidate the ecology of Ebola viruses (EBVs). In this study, we developed a serological assay based on the Luminex technology. Nine recombinant proteins representing different viral regions (nucleoprotein [NP], 40-kDa viral protein [VP40], and glycoprotein [GP]) from four of the five EBV lineages were used. Samples from 94 survivors of the EBOV outbreak in Guinea and negative samples from 108 patients in France were used to calculate test performance for EBOV detection and cross-reaction with other Ebola virus lineages. For EBOV antibody detection, sensitivities of 95.7%, 96.8%, and 92.5% and specificities of 94.4%, 95.4%, and 96.3% for NP, GP, and VP40, respectively, were observed. All EBOV-negative samples that presented a reaction, except for one, interacted with a single antigen, whereas almost all samples from EBOV survivors were simultaneously reactive with NP and GP (90/94) or with NP, GP, and VP40 (87/94). Considering as positive for past EBOV infection only samples that reacted with EBOV NP and GP, sensitivity was 95.7% and specificity increased to 99.1%. Comparing results with commercial EBOV NP and GP enzyme-linked immunosorbent assays (ELISAs; Alpha Diagnostic, San Antonio, TX), lower sensitivity (92.5%) and high specificity (100%) were observed with the same positivity criteria. Samples from EBOV survivors cross-reacted with GP from Sudan Ebola virus (GP-SUDV) (81.9%), GP from Bundibugyo Ebola virus (GP-BDBV) (51.1%), GP from Reston Ebola virus (GP-RESTV) (9.6%), VP40-SUDV (76.6%), and VP40-BDBV (38.3%). Overall, we developed a sensitive and specific high-throughput serological assay, and defined an algorithm, for epidemiological surveys with humans. Copyright © 2016 American Society for Microbiology.
Liu, Ying; Ye, Ling; Lin, Fang; Gomaa, Yasmine; Flyer, David; Carrion, Ricardo; Patterson, Jean L; Prausnitz, Mark R; Smith, Gale; Glenn, Gregory; Wu, Hua; Compans, Richard W; Yang, Chinglai
2018-06-08
In this study, we investigated immune responses induced by purified Ebola virus (EBOV) soluble glycoprotein (sGP) subunit vaccines via intradermal immunization with microneedle (MN) patches in comparison with intramuscular (IM) injection in mice. Our results showed that MN delivery of EBOV sGP was superior to IM injection in eliciting higher levels and longer lasting antibody responses against EBOV sGP and GP antigens. Moreover, sGP-specific immune responses induced by MN or IM immunizations were effectively augmented by formulating sGP with a saponin-based adjuvant, and they were shown to confer complete protection of mice against lethal mouse-adapted EBOV (MA-EBOV) challenge. In comparison, mice that received sGP without adjuvant by MN or IM immunizations succumbed to lethal MA-EBOV challenge. These results show that immunization with EBOV sGP subunit vaccines with adjuvant by MN patches, which have been shown to provide improved safety and thermal stability, is a promising approach to protect against EBOV infection.
Johnson, Reed F; Kurup, Drishya; Hagen, Katie R; Fisher, Christine; Keshwara, Rohan; Papaneri, Amy; Perry, Donna L; Cooper, Kurt; Jahrling, Peter B; Wang, Jonathan T; Ter Meulen, Jan; Wirblich, Christoph; Schnell, Matthias J
2016-10-15
The 2013-2016 West African Ebola virus (EBOV) disease outbreak was the largest filovirus outbreak to date. Over 28 000 suspected, probable, or confirmed cases have been reported, with a 53% case-fatality rate. The magnitude and international impact of this EBOV outbreak has highlighted the urgent need for a safe and efficient EBOV vaccine. To this end, we demonstrate the immunogenicity and protective efficacy of FILORAB1, a recombinant, bivalent, inactivated rabies virus-based EBOV vaccine, in rhesus and cynomolgus monkeys. Our results demonstrate that the use of the synthetic Toll-like receptor 4 agonist glucopyranosyl lipid A in stable emulsion (GLA-SE) as an adjuvant increased the efficacy of FILORAB1 to 100% protection against lethal EBOV challenge, with no to mild clinical signs of disease. Furthermore, all vaccinated subjects developed protective anti-rabies virus antibody titers. Taken together, these results support further development of FILORAB1/GLA-SE as an effective preexposure EBOV vaccine. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Reynard, O.; Mokhonov, V.; Mokhonova, E.; Leung, J.; Page, A.; Mateo, M.; Pyankova, O.; Georges-Courbot, M. C.; Raoul, H.; Khromykh, A. A.
2011-01-01
Pre- or postexposure treatments against the filoviral hemorrhagic fevers are currently not available for human use. We evaluated, in a guinea pig model, the immunogenic potential of Kunjin virus (KUN)–derived replicons as a vaccine candidate against Ebola virus (EBOV). Virus like particles (VLPs) containing KUN replicons expressing EBOV wild-type glycoprotein GP, membrane anchor-truncated GP (GP/Ctr), and mutated GP (D637L) with enhanced shedding capacity were generated and assayed for their protective efficacy. Immunization with KUN VLPs expressing full-length wild-type and D637L-mutated GPs but not membrane anchor–truncated GP induced dose-dependent protection against a challenge of a lethal dose of recombinant guinea pig-adapted EBOV. The surviving animals showed complete clearance of the virus. Our results demonstrate the potential for KUN replicon vectors as vaccine candidates against EBOV infection. PMID:21987742
Kugelman, Jeffrey R; Wiley, Michael R; Mate, Suzanne; Ladner, Jason T; Beitzel, Brett; Fakoli, Lawrence; Taweh, Fahn; Prieto, Karla; Diclaro, Joseph W; Minogue, Timothy; Schoepp, Randal J; Schaecher, Kurt E; Pettitt, James; Bateman, Stacey; Fair, Joseph; Kuhn, Jens H; Hensley, Lisa; Park, Daniel J; Sabeti, Pardis C; Sanchez-Lockhart, Mariano; Bolay, Fatorma K; Palacios, Gustavo
2015-07-01
To support Liberia's response to the ongoing Ebola virus (EBOV) disease epidemic in Western Africa, we established in-country advanced genomic capabilities to monitor EBOV evolution. Twenty-five EBOV genomes were sequenced at the Liberian Institute for Biomedical Research, which provided an in-depth view of EBOV diversity in Liberia during September 2014-February 2015. These sequences were consistent with a single virus introduction to Liberia; however, shared ancestry with isolates from Mali indicated at least 1 additional instance of movement into or out of Liberia. The pace of change is generally consistent with previous estimates of mutation rate. We observed 23 nonsynonymous mutations and 1 nonsense mutation. Six of these changes are within known binding sites for sequence-based EBOV medical countermeasures; however, the diagnostic and therapeutic impact of EBOV evolution within Liberia appears to be low.
Kugelman, Jeffrey R.; Wiley, Michael R.; Mate, Suzanne; Ladner, Jason T.; Beitzel, Brett; Fakoli, Lawrence; Taweh, Fahn; Prieto, Karla; Diclaro, Joseph W.; Minogue, Timothy; Schoepp, Randal J.; Schaecher, Kurt E.; Pettitt, James; Bateman, Stacey; Fair, Joseph; Kuhn, Jens H.; Hensley, Lisa; Park, Daniel J.; Sabeti, Pardis C.; Sanchez-Lockhart, Mariano; Bolay, Fatorma K.
2015-01-01
To support Liberia’s response to the ongoing Ebola virus (EBOV) disease epidemic in Western Africa, we established in-country advanced genomic capabilities to monitor EBOV evolution. Twenty-five EBOV genomes were sequenced at the Liberian Institute for Biomedical Research, which provided an in-depth view of EBOV diversity in Liberia during September 2014–February 2015. These sequences were consistent with a single virus introduction to Liberia; however, shared ancestry with isolates from Mali indicated at least 1 additional instance of movement into or out of Liberia. The pace of change is generally consistent with previous estimates of mutation rate. We observed 23 nonsynonymous mutations and 1 nonsense mutation. Six of these changes are within known binding sites for sequence-based EBOV medical countermeasures; however, the diagnostic and therapeutic impact of EBOV evolution within Liberia appears to be low. PMID:26079255
Konduru, Krishnamurthy; Shurtleff, Amy C; Bavari, Sina; Kaplan, Gerardo
2018-04-01
Ebola virus (EBOV), classified as a category A agent by the CDC and NIH, requires BSL-4 containment and induces high morbidity and mortality in humans. The 2013-2015 epidemic in West Africa underscored the urgent need to develop vaccines and therapeutics to prevent and treat EBOV disease. Neutralization assays are needed to evaluate the efficacy of EBOV vaccines and antibody therapies. Pseudotyped viruses based on nonpathogenic or attenuated vectors reduce the risks involved in the evaluation of neutralizing antibodies against highly pathogenic viruses. Selectable markers, fluorescent proteins, and luciferase have been introduced into pseudotyped viruses for detection and quantitation purposes. The current study describes the development of a BSL-2 fluorescence reduction neutralization test (FRNT) using a recombinant vesicular stomatitis virus (VSV) in which the VSV-G envelope gene was replaced with the EBOV glycoprotein (GP) and green fluorescent protein (GFP) genes (rVSV-EBOVgp-GFP). Cells infected with rVSV-EBOVgp-GFP express GFP. Anti-GP neutralizing monoclonal and polyclonal antibodies blocked rVSV-EBOVgp-GFP infection preventing or reducing GFP fluorescence. The high degree of correlation between the EBOV BSL-2 FRNT and the BSL-4 plaque reduction neutralization test (PRNT), the accepted standard of EBOV neutralization tests, supports the use of the EBOV BSL-2 FRNT to evaluate neutralizing antibodies in clinical trials. Published by Elsevier B.V.
Luthra, Priya; Liang, Jue; Pietzsch, Colette A; Khadka, Sudip; Edwards, Megan R; Wei, Shuguang; De, Sampriti; Posner, Bruce; Bukreyev, Alexander; Ready, Joseph M; Basler, Christopher F
2018-02-01
Ebola virus (EBOV) is an enveloped negative-sense, single-stranded RNA virus of the filovirus family that causes severe disease in humans. Approved therapies for EBOV disease are lacking. EBOV RNA synthesis is carried out by a virus-encoded complex with RNA-dependent RNA polymerase activity that is required for viral propagation. This complex and its activities are therefore potential antiviral targets. To identify potential lead inhibitors of EBOV RNA synthesis, a library of small molecule compounds was screened against a previously established assay of EBOV RNA synthesis, the EBOV minigenome assay (MGA), in 384 well microplate format. The screen identified 56 hits that inhibited EBOV MGA activity by more than 70% while exhibiting less than 20% cell cytotoxicity. Inhibitory chemical scaffolds included angelicin derivatives, derivatives of the antiviral compound GSK983 and benzoquinolines. Structure-activity relationship (SAR) studies of the benzoquinoline scaffold produced ∼50 analogs and led to identification of an optimized compound, SW456, with a submicromolar IC 50 in the EBOV MGA and antiviral activity against infectious EBOV in cell culture. The compound was also active against a MGA for another deadly filovirus, Marburg virus. It also exhibited antiviral activity towards a negative-sense RNA virus from the rhabdovirus family, vesicular stomatitis virus, and a positive-sense RNA virus, Zika virus. Overall, these data demonstrate the potential of the EBOV MGA to identify anti-EBOV compounds and identifies the benzoquinoline series as a broad-spectrum antiviral lead. Copyright © 2017. Published by Elsevier B.V.
Homologous and heterologous protection of nonhuman primates by Ebola and Sudan virus-like particles.
Warfield, Kelly L; Dye, John M; Wells, Jay B; Unfer, Robert C; Holtsberg, Frederick W; Shulenin, Sergey; Vu, Hong; Swenson, Dana L; Bavari, Sina; Aman, M Javad
2015-01-01
Filoviruses cause hemorrhagic fever resulting in significant morbidity and mortality in humans. Several vaccine platforms that include multiple virus-vectored approaches and virus-like particles (VLPs) have shown efficacy in nonhuman primates. Previous studies have shown protection of cynomolgus macaques against homologous infection for Ebola virus (EBOV) and Marburg virus (MARV) following a three-dose vaccine regimen of EBOV or MARV VLPs, as well as heterologous protection against Ravn Virus (RAVV) following vaccination with MARV VLPs. The objectives of the current studies were to determine the minimum number of vaccine doses required for protection (using EBOV as the test system) and then demonstrate protection against Sudan virus (SUDV) and Taï Forest virus (TAFV). Using the EBOV nonhuman primate model, we show that one or two doses of VLP vaccine can confer protection from lethal infection. VLPs containing the SUDV glycoprotein, nucleoprotein and VP40 matrix protein provide complete protection against lethal SUDV infection in macaques. Finally, we demonstrate protective efficacy mediated by EBOV, but not SUDV, VLPs against TAFV; this is the first demonstration of complete cross-filovirus protection using a single component heterologous vaccine within the Ebolavirus genus. Along with our previous results, this observation provides strong evidence that it will be possible to develop and administer a broad-spectrum VLP-based vaccine that will protect against multiple filoviruses by combining only three EBOV, SUDV and MARV components.
Homologous and Heterologous Protection of Nonhuman Primates by Ebola and Sudan Virus-Like Particles
Warfield, Kelly L.; Dye, John M.; Wells, Jay B.; Unfer, Robert C.; Holtsberg, Frederick W.; Shulenin, Sergey; Vu, Hong; Swenson, Dana L.; Bavari, Sina; Aman, M. Javad
2015-01-01
Filoviruses cause hemorrhagic fever resulting in significant morbidity and mortality in humans. Several vaccine platforms that include multiple virus-vectored approaches and virus-like particles (VLPs) have shown efficacy in nonhuman primates. Previous studies have shown protection of cynomolgus macaques against homologous infection for Ebola virus (EBOV) and Marburg virus (MARV) following a three-dose vaccine regimen of EBOV or MARV VLPs, as well as heterologous protection against Ravn Virus (RAVV) following vaccination with MARV VLPs. The objectives of the current studies were to determine the minimum number of vaccine doses required for protection (using EBOV as the test system) and then demonstrate protection against Sudan virus (SUDV) and Taï Forest virus (TAFV). Using the EBOV nonhuman primate model, we show that one or two doses of VLP vaccine can confer protection from lethal infection. VLPs containing the SUDV glycoprotein, nucleoprotein and VP40 matrix protein provide complete protection against lethal SUDV infection in macaques. Finally, we demonstrate protective efficacy mediated by EBOV, but not SUDV, VLPs against TAFV; this is the first demonstration of complete cross-filovirus protection using a single component heterologous vaccine within the Ebolavirus genus. Along with our previous results, this observation provides strong evidence that it will be possible to develop and administer a broad-spectrum VLP-based vaccine that will protect against multiple filoviruses by combining only three EBOV, SUDV and MARV components. PMID:25793502
A Perspective on the Development of Plant-Made Vaccines in the Fight against Ebola Virus
Rosales-Mendoza, Sergio; Nieto-Gómez, Ricardo; Angulo, Carlos
2017-01-01
The Ebola virus (EBOV) epidemic indicated a great need for prophylactic and therapeutic strategies. The use of plants for the production of biopharmaceuticals is a concept being adopted by the pharmaceutical industry, with an enzyme for human use currently commercialized since 2012 and some plant-based vaccines close to being commercialized. Although plant-based antibodies against EBOV are under clinical evaluation, the development of plant-based vaccines against EBOV essentially remains an unexplored area. The current technologies for the production of plant-based vaccines include stable nuclear expression, transient expression mediated by viral vectors, and chloroplast expression. Specific perspectives on how these technologies can be applied for developing anti-EBOV vaccines are provided, including possibilities for the design of immunogens as well as the potential of the distinct expression modalities to produce the most relevant EBOV antigens in plants considering yields, posttranslational modifications, production time, and downstream processing. PMID:28344580
Lázaro-Frías, Adrián; Gómez-Medina, Sergio; Sánchez-Sampedro, Lucas; Ljungberg, Karl; Ustav, Mart; Liljeström, Peter; Muñoz-Fontela, César; Esteban, Mariano; García-Arriaza, Juan
2018-06-01
Zaire and Sudan ebolavirus species cause a severe disease in humans and nonhuman primates (NHPs) characterized by a high mortality rate. There are no licensed therapies or vaccines against Ebola virus disease (EVD), and the recent 2013 to 2016 outbreak in West Africa highlighted the need for EVD-specific medical countermeasures. Here, we generated and characterized head-to-head the immunogenicity and efficacy of five vaccine candidates against Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV) based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing either the virus glycoprotein (GP) or GP together with the virus protein 40 (VP40) forming virus-like particles (VLPs). In a human monocytic cell line, the different MVA vectors (termed MVA-EBOVs and MVA-SUDVs) triggered robust innate immune responses, with production of beta interferon (IFN-β), proinflammatory cytokines, and chemokines. Additionally, several innate immune cells, such as dendritic cells, neutrophils, and natural killer cells, were differentially recruited in the peritoneal cavity of mice inoculated with MVA-EBOVs. After immunization of mice with a homologous prime/boost protocol (MVA/MVA), total IgG antibodies against GP or VP40 from Zaire and Sudan ebolavirus were differentially induced by these vectors, which were mainly of the IgG1 and IgG3 isotypes. Remarkably, an MVA-EBOV construct coexpressing GP and VP40 protected chimeric mice challenged with EBOV to a greater extent than a vector expressing GP alone. These results support the consideration of MVA-EBOVs and MVA-SUDVs expressing GP and VP40 and producing VLPs as best-in-class potential vaccine candidates against EBOV and SUDV. IMPORTANCE EBOV and SUDV cause a severe hemorrhagic fever affecting humans and NHPs. Since their discovery in 1976, they have caused several sporadic epidemics, with the recent outbreak in West Africa from 2013 to 2016 being the largest and most severe, with more than 11,000 deaths being reported. Although some vaccines are in advanced clinical phases, less expensive, safer, and more effective licensed vaccines are desirable. We generated and characterized head-to-head the immunogenicity and efficacy of five novel vaccines against EBOV and SUDV based on the poxvirus MVA expressing GP or GP and VP40. The expression of GP and VP40 leads to the formation of VLPs. These MVA-EBOV and MVA-SUDV recombinants triggered robust innate and humoral immune responses in mice. Furthermore, MVA-EBOV recombinants expressing GP and VP40 induced high protection against EBOV in a mouse challenge model. Thus, MVA expressing GP and VP40 and producing VLPs is a promising vaccine candidate against EBOV and SUDV. Copyright © 2018 American Society for Microbiology.
Filone, Claire Marie; Hodges, Erin N.; Honeyman, Brian; Bushkin, G. Guy; Boyd, Karla; Platt, Andrew; Ni, Feng; Strom, Kyle; Hensley, Lisa; Snyder, John K.; Connor, John H.
2013-01-01
There are no approved therapeutics for the most deadly nonsegmented negative-strand (NNS) RNA viruses, including Ebola (EBOV). To identify new chemical scaffolds for development of broad-spectrum antivirals, we undertook a prototype-based lead identification screen. Using the prototype NNS virus, vesicular stomatitis virus (VSV), multiple inhibitory compounds were identified. Three compounds were investigated for broad-spectrum activity, and inhibited EBOV infection. The most potent, CMLDBU3402, was selected for further study. CMLDBU3402 did not show significant activity against segmented negative-strand RNA viruses suggesting proscribed broad-spectrum activity. Mechanistic analysis indicated that CMLDBU3402 blocked VSV viral RNA synthesis and inhibited EBOV RNA transcription, demonstrating a consistent mechanism of action against genetically distinct viruses. The identification of this chemical backbone as a broad-spectrum inhibitor of viral RNA synthesis offers significant potential for the development of new therapies for highly pathogenic viruses. PMID:23521799
Cannas, Valeria; Daino, Gian Luca; Corona, Angela; Esposito, Francesca; Tramontano, Enzo
2015-10-01
During Ebola virus (EBOV) infection, the type I interferon α/β (IFN-α/β) innate immune response is suppressed by EBOV viral protein 35 (VP35), a validated drug target. Identification of EBOV VP35 inhibitors requires a cellular system able to assess the VP35-based inhibitory functions of viral double-stranded RNA (dsRNA) IFN-β induction. We established a miniaturized luciferase gene reporter assay in A549 cells that measures IFN-β induction by viral dsRNA and is dose-dependently inhibited by VP35 expression. When compared to influenza A virus NS1 protein, EBOV VP35 showed improved inhibition of viral dsRNA-based IFN-β induction. This assay can be used to screen for EBOV VP35 inhibitors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Modelling Ebola virus dynamics: Implications for therapy.
Martyushev, Alexey; Nakaoka, Shinji; Sato, Kei; Noda, Takeshi; Iwami, Shingo
2016-11-01
Ebola virus (EBOV) causes a severe, often fatal Ebola virus disease (EVD), for which no approved antivirals exist. Recently, some promising anti-EBOV drugs, which are experimentally potent in animal models, have been developed. However, because the quantitative dynamics of EBOV replication in humans is uncertain, it remains unclear how much antiviral suppression of viral replication affects EVD outcome in patients. Here, we developed a novel mathematical model to quantitatively analyse human viral load data obtained during the 2000/01 Uganda EBOV outbreak and evaluated the effects of different antivirals. We found that nucleoside analogue- and siRNA-based therapies are effective if a therapy with a >50% inhibition rate is initiated within a few days post-symptom-onset. In contrast, antibody-based therapy requires not only a higher inhibition rate but also an earlier administration, especially for otherwise fatal cases. Our results demonstrate that an appropriate choice of EBOV-specific drugs is required for effective EVD treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Domi, Arban; Feldmann, Friederike; Basu, Rahul; McCurley, Nathanael; Shifflett, Kyle; Emanuel, Jackson; Hellerstein, Michael S; Guirakhoo, Farshad; Orlandi, Chiara; Flinko, Robin; Lewis, George K; Hanley, Patrick W; Feldmann, Heinz; Robinson, Harriet L; Marzi, Andrea
2018-01-16
Ebola virus (EBOV), isolate Makona, was the causative agent of the West African epidemic devastating predominantly Guinea, Liberia and Sierra Leone from 2013-2016. While several experimental vaccine and treatment approaches have been accelerated through human clinical trials, there is still no approved countermeasure available against this disease. Here, we report the construction and preclinical efficacy testing of a novel recombinant modified vaccinia Ankara (MVA)-based vaccine expressing the EBOV-Makona glycoprotein GP and matrix protein VP40 (MVA-EBOV). GP and VP40 form EBOV-like particles and elicit protective immune responses. In this study, we report 100% protection against lethal EBOV infection in guinea pigs after prime/boost vaccination with MVA-EBOV. Furthermore, this MVA-EBOV protected macaques from lethal disease after a single dose or prime/boost vaccination. The vaccine elicited a variety of antibody responses to both antigens, including neutralizing antibodies and antibodies with antibody-dependent cellular cytotoxic activity specific for GP. This is the first report that a replication-deficient MVA vector can confer full protection against lethal EBOV challenge after a single dose vaccination in macaques.
Wu, Shipo; Kroeker, Andrea; Wong, Gary; He, Shihua; Hou, Lihua; Audet, Jonathan; Wei, Haiyan; Zhang, Zhe; Fernando, Lisa; Soule, Geoff; Tran, Kaylie; Bi, Shengli; Zhu, Tao; Yu, Xuefeng; Chen, Wei; Qiu, Xiangguo
2016-10-15
A licensed vaccine against Ebola virus (EBOV) remains unavailable, despite >11 000 deaths from the 2014-2016 outbreak of EBOV disease in West Africa. Past studies have shown that recombinant vaccine viruses expressing EBOV glycoprotein (GP) are able to protect nonhuman primates (NHPs) from a lethal EBOV challenge. However, these vaccines express the viral GP-based EBOV variants found in Central Africa, which has 97.3% amino acid homology to the Makona variant found in West Africa. Our previous study showed that a recombinant adenovirus serotype 5 (Ad5)-vectored vaccine expressing the Makona EBOV GP (MakGP) was safe and immunogenic during clinical trials in China, but it is unknown whether the vaccine protects against EBOV infection. Here, we demonstrate that guinea pigs immunized with Ad5-MakGP developed robust humoral responses and were protected against exposure to guinea pig-adapted EBOV. Ad5-MakGP also elicited specific B- and T-cell immunity in NHPs and conferred 100% protection when animals were challenged 4 weeks after immunization. These results support further clinical development of this candidate and highlight the utility of Ad5-MakGP as a prophylactic measure in future outbreaks of EBOV disease. © Crown copyright 2016.
Vesicular stomatitis virus-based Ebola vaccines with improved cross-protective efficacy.
Marzi, Andrea; Ebihara, Hideki; Callison, Julie; Groseth, Allison; Williams, Kinola J; Geisbert, Thomas W; Feldmann, Heinz
2011-11-01
For Ebola virus (EBOV), 4 different species are known: Zaire, Sudan, Côte d'Ivoire, and Reston ebolavirus. The newly discovered Bundibugyo ebolavirus has been proposed as a 5th species. So far, no cross-neutralization among EBOV species has been described, aggravating progress toward cross-species protective vaccines. With the use of recombinant vesicular stomatitis virus (rVSV)-based vaccines, guinea pigs could be protected against Zaire ebolavirus (ZEBOV) infection only when immunized with a vector expressing the homologous, but not a heterologous, EBOV glycoprotein (GP). However, infection of guinea pigs with nonadapted wild-type strains of the different species resulted in full protection of all animals against subsequent challenge with guinea pig-adapted ZEBOV, showing that cross-species protection is possible. New vectors were generated that contain EBOV viral protein 40 (VP40) or EBOV nucleoprotein (NP) as a second antigen expressed by the same rVSV vector that encodes the heterologous GP. After applying a 2-dose immunization approach, we observed an improved cross-protection rate, with 5 of 6 guinea pigs surviving the lethal ZEBOV challenge if vaccinated with rVSV-expressing SEBOV-GP and -VP40. Our data demonstrate that cross-protection between the EBOV species can be achieved, although EBOV-GP alone cannot induce the required immune response.
Herbert, Andrew S.; Kuehne, Ana I.; Barth, James F.; Ortiz, Ramon A.; Nichols, Donald K.; Zak, Samantha E.; Stonier, Spencer W.; Muhammad, Majidat A.; Bakken, Russell R.; Prugar, Laura I.; Olinger, Gene G.; Groebner, Jennifer L.; Lee, John S.; Pratt, William D.; Custer, Max; Kamrud, Kurt I.; Smith, Jonathan F.; Hart, Mary Kate
2013-01-01
There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine. PMID:23408633
Herbert, Andrew S; Kuehne, Ana I; Barth, James F; Ortiz, Ramon A; Nichols, Donald K; Zak, Samantha E; Stonier, Spencer W; Muhammad, Majidat A; Bakken, Russell R; Prugar, Laura I; Olinger, Gene G; Groebner, Jennifer L; Lee, John S; Pratt, William D; Custer, Max; Kamrud, Kurt I; Smith, Jonathan F; Hart, Mary Kate; Dye, John M
2013-05-01
There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.
Pathogenicity Comparison Between the Kikwit and Makona Ebola Virus Variants in Rhesus Macaques.
Wong, Gary; Qiu, Xiangguo; de La Vega, Marc-Antoine; Fernando, Lisa; Wei, Haiyan; Bello, Alexander; Fausther-Bovendo, Hugues; Audet, Jonathan; Kroeker, Andrea; Kozak, Robert; Tran, Kaylie; He, Shihua; Tierney, Kevin; Soule, Geoff; Moffat, Estella; Günther, Stephan; Gao, George F; Strong, Jim; Embury-Hyatt, Carissa; Kobinger, Gary
2016-10-15
Enhanced virulence and/or transmission of West African Ebola virus (EBOV) variants, which are divergent from their Central African counterparts, are suspected to have contributed to the sizable toll of the recent Ebola virus disease (EVD) outbreak. This study evaluated the pathogenicity and shedding in rhesus macaques infected with 1 of 2 West African isolates (EBOV-C05 or EBOV-C07) or a Central African isolate (EBOV-K). All animals infected with EBOV-C05 or EBOV-C07 died of EVD, whereas 2 of 3 EBOV-K-infected animals died. The viremia level was elevated 10-fold in EBOV-C05-infected animals, compared with EBOV-C07- or EBOV-K-infected animals. More-severe lung pathology was observed in 2 of 6 EBOV-C05/C07-infected macaques. This is the first detailed analysis of the recently circulating EBOV-C05/C07 in direct comparison to EBOV-K with 6 animals per group, and it showed that EBOV-C05 but not EBOV-C07 can replicate at higher levels and cause more tissue damage in some animals. Increased virus shedding from individuals who are especially susceptible to EBOV replication is possibly one of the many challenges facing the community of healthcare and policy-making responders since the beginning of the outbreak. © Crown copyright 2016.
Frei, Julia C; Nyakatura, Elisabeth K; Zak, Samantha E; Bakken, Russell R; Chandran, Kartik; Dye, John M; Lai, Jonathan R
2016-01-13
Filoviruses (Ebola and Marburg) cause severe hemorrhagic fever. There are five species of ebolavirus; among these, the Ebola (Zaire) and Sudan viruses (EBOV and SUDV, respectively) are highly pathogenic and have both caused recurring, large outbreaks. However, the EBOV and SUDV glycoprotein (GP) sequences are 45% divergent and thus antigenically distinct. Few antibodies with cross-neutralizing properties have been described to date. We used antibody engineering to develop novel bispecific antibodies (Bis-mAbs) that are cross-reactive toward base epitopes on GP from EBOV and SUDV. These Bis-mAbs exhibit potent neutralization against EBOV and SUDV GP pseudotyped viruses as well as authentic pathogens, and confer a high degree (in one case 100%) post-exposure protection of mice from both viruses. Our studies show that a single agent that targets the GP base epitopes is sufficient for protection in mice; such agents could be included in panfilovirus therapeutic antibody cocktails.
Ebola Virus and Marburg Virus in Human Milk Are Inactivated by Holder Pasteurization.
Hamilton Spence, Erin; Huff, Monica; Shattuck, Karen; Vickers, Amy; Yun, Nadezda; Paessler, Slobodan
2017-05-01
Potential donors of human milk are screened for Ebola virus (EBOV) using standard questions, but testing for EBOV and Marburg virus (MARV) is not part of routine serological testing performed by milk banks. Research aim: This study tested the hypothesis that EBOV would be inactivated in donor human milk (DHM) by standard pasteurization techniques (Holder) used in all North American nonprofit milk banks. Milk samples were obtained from a nonprofit milk bank. They were inoculated with EBOV (Zaire strain) and MARV (Angola strain) and processed by standard Holder pasteurization technique. Plaque assays for EBOV and MARV were performed to detect the presence of virus after pasteurization. Neither EBOV nor MARV was detectable by viral plaque assay in DHM or culture media samples, which were pasteurized by the Holder process. EBOV and MARV are safely inactivated in human milk by standard Holder pasteurization technique. Screening for EBOV or MARV beyond questionnaire and self-deferral is not needed to ensure safety of DHM for high-risk infants.
Cao, HuanHuan; Zhang, YuHang; Zhao, Jia; Zhu, Liucun; Wang, Yi; Li, JiaRui; Feng, Yuan-Ming; Zhang, Ning
2017-01-01
Ebola hemorrhagic fever (EHF) is caused by Ebola virus (EBOV). It is reported that human could be infected by EBOV with a high fatality rate. However, association factors between EBOV and host still tend to be ambiguous. According to the "guilt by association" (GBA) principle, proteins interacting with each other are very likely to function similarly or the same. Based on this assumption, we tried to obtain EBOV infection-related human genes in a protein-protein interaction network using Dijkstra algorithm. We hope it could contribute to the discovery of novel effective treatments. Finally, 15 genes were selected as potential EBOV infection-related human genes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Yang, Mingjuan; Ke, Yuehua; Wang, Xuesong; Ren, Hang; Liu, Wei; Lu, Huijun; Zhang, Wenyi; Liu, Shiwei; Chang, Guohui; Tian, Shuguang; Wang, Lihua; Huang, Liuyu; Liu, Chao; Yang, Ruifu; Chen, Zeliang
2016-06-01
Confirming Ebola virus disease (EVD), a deadly infectious disease, requires real-time RT-PCR, which takes up to a few hours to yield results. Therefore, a rapid diagnostic assay is imperative for EVD diagnosis. A rapid nucleic acid test based on recombinase polymerase amplification (EBOV-RPA) was developed to specifically detect the 2014 outbreak strains. The EBOV-RPA assay was evaluated by testing samples from suspected EVD patients in parallel with RT-PCR. An EBOV-RPA, which could be completed in 20 min, was successfully developed. Of 271 patients who tested positive for Ebola virus by RT-PCR, 264 (sensitivity: 97%, 95% CI: 95.5-99.3%) were positive by EBOV-RPA; 101 of 104 patients (specificity: 97%, 95% CI: 93.9-100%) who tested negative by RT-PCR were also negative by EBOV-RPA. The sensitivity values for samples with a Ct value of <34, which accounted for 95.59% of the samples, was 100%. Discordant samples positive by RT-PCR but negative by EBOV-RPA had significantly high Ct values. Results of external quality assessment samples with EBOV-RPA were 100%, consistent with those of RT-PCR. The EBOV-RPA assay showed 97% sensitivity and 97% specificity for all EVD samples tested, making it a rapid and sensitive test for EVD diagnosis.
Determination and Therapeutic Exploitation of Ebola Virus Spontaneous Mutation Frequency.
Alfson, Kendra J; Worwa, Gabriella; Carrion, Ricardo; Griffiths, Anthony
2015-12-16
Ebola virus (EBOV) is an RNA virus that can cause hemorrhagic fever with high fatality rates, and there are no approved vaccines or therapies. Typically, RNA viruses have high spontaneous mutation rates, which permit rapid adaptation to selection pressures and have other important biological consequences. However, it is unknown if filoviruses exhibit high mutation frequencies. Ultradeep sequencing and a recombinant EBOV that carries the gene encoding green fluorescent protein were used to determine the spontaneous mutation frequency of EBOV. The effects of the guanosine analogue ribavirin during EBOV infections were also assessed. Ultradeep sequencing revealed that the mutation frequency for EBOV was high and similar to those of other RNA viruses. Interestingly, significant genetic diversity was not observed in viable viruses, implying that changes were not well tolerated. We hypothesized that this could be exploited therapeutically. In vitro, the presence of ribavirin increased the error rate, and the 50% inhibitory concentration (IC50) was 27 μM. In a mouse model of ribavirin therapy given pre-EBOV exposure, ribavirin treatment corresponded with a significant delay in time to death and up to 75% survival. In mouse and monkey models of therapy given post-EBOV exposure, ribavirin treatment also delayed the time to death and increased survival. These results demonstrate that EBOV has a spontaneous mutation frequency similar to those of other RNA viruses. These data also suggest a potential for therapeutic use of ribavirin for human EBOV infections. Ebola virus (EBOV) causes a severe hemorrhagic disease with high case fatality rates; there are no approved vaccines or therapies. We determined the spontaneous mutation frequency of EBOV, which is relevant to understanding the potential for the virus to adapt. The frequency was similar to those of other RNA viruses. Significant genetic diversity was not observed in viable viruses, implying that changes were not well tolerated. We hypothesized that this could be exploited therapeutically. Ribavirin is a viral mutagen approved for treatment of several virus infections; it is also cheap and readily available. In cell culture, we showed that ribavirin was effective at reducing production of infectious EBOV. In mouse and monkey models of therapy given post-EBOV exposure, ribavirin treatment delayed the time to death and increased survival. These data provide a better understanding of EBOV spontaneous mutation and suggest that ribavirin may have great value in the context of human disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication.
Hill-Batorski, Lindsay; Halfmann, Peter; Neumann, Gabriele; Kawaoka, Yoshihiro
2013-12-01
Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever in humans with reported case fatality rates as high as 90%. There are currently no licensed vaccines or antiviral therapeutics to combat EBOV infections. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the rate-limiting step in heme degradation, has antioxidative properties and protects cells from various stresses. Activated HO-1 was recently shown to have antiviral activity, potently inhibiting the replication of viruses such as hepatitis C virus and human immunodeficiency virus. However, the effect of HO-1 activation on EBOV replication remains unknown. To determine whether the upregulation of HO-1 attenuates EBOV replication, we treated cells with cobalt protoporphyrin (CoPP), a selective HO-1 inducer, and assessed its effects on EBOV replication. We found that CoPP treatment, pre- and postinfection, significantly suppressed EBOV replication in a manner dependent upon HO-1 upregulation and activity. In addition, stable overexpression of HO-1 significantly attenuated EBOV growth. Although the exact mechanism behind the antiviral properties of HO-1 remains to be elucidated, our data show that HO-1 upregulation does not attenuate EBOV entry or budding but specifically targets EBOV transcription/replication. Therefore, modulation of the cellular enzyme HO-1 may represent a novel therapeutic strategy against EBOV infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albariño, César G., E-mail: calbarino@cdc.gov; Wiggleton Guerrero, Lisa; Lo, Michael K.
Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulnessmore » as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.« less
Smither, Sophie J.; Eastaugh, Lin; Filone, Claire Marie; Freeburger, Denise; Herzog, Artemas; Lever, M. Stephen; Miller, David M.; Mitzel, Dana; Noah, James W.; Reddick-Elick, Mary S.; Reese, Amy; Schuit, Michael; Wlazlowski, Carly B.; Hevey, Michael
2018-01-01
Ebola virus (EBOV) in body fluids poses risk for virus transmission. However, there are limited experimental data for such matrices on the disinfectant efficacy against EBOV. We evaluated the effectiveness of disinfectants against EBOV in blood on surfaces. Only 5% peracetic acid consistently reduced EBOV titers in dried blood to the assay limit of quantification. PMID:29261093
Smither, Sophie J; Eastaugh, Lin; Filone, Claire Marie; Freeburger, Denise; Herzog, Artemas; Lever, M Stephen; Miller, David M; Mitzel, Dana; Noah, James W; Reddick-Elick, Mary S; Reese, Amy; Schuit, Michael; Wlazlowski, Carly B; Hevey, Michael; Wahl-Jensen, Victoria
2018-01-01
Ebola virus (EBOV) in body fluids poses risk for virus transmission. However, there are limited experimental data for such matrices on the disinfectant efficacy against EBOV. We evaluated the effectiveness of disinfectants against EBOV in blood on surfaces. Only 5% peracetic acid consistently reduced EBOV titers in dried blood to the assay limit of quantification.
Vaccines. An Ebola whole-virus vaccine is protective in nonhuman primates.
Marzi, Andrea; Halfmann, Peter; Hill-Batorski, Lindsay; Feldmann, Friederike; Shupert, W Lesley; Neumann, Gabriele; Feldmann, Heinz; Kawaoka, Yoshihiro
2015-04-24
Zaire ebolavirus is the causative agent of the current outbreak of hemorrhagic fever disease in West Africa. Previously, we showed that a whole Ebola virus (EBOV) vaccine based on a replication-defective EBOV (EBOVΔVP30) protects immunized mice and guinea pigs against lethal challenge with rodent-adapted EBOV. Here, we demonstrate that EBOVΔVP30 protects nonhuman primates against lethal infection with EBOV. Although EBOVΔVP30 is replication-incompetent, we additionally inactivated the vaccine with hydrogen peroxide; the chemically inactivated vaccine remained antigenic and protective in nonhuman primates. EBOVΔVP30 thus represents a safe, efficacious, whole-EBOV vaccine candidate that differs from other EBOV vaccine platforms in that it presents all viral proteins and the viral RNA to the host immune system, which might contribute to protective immune responses. Copyright © 2015, American Association for the Advancement of Science.
Lennemann, Nicholas J.; Herbert, Andrew S.; Brouillette, Rachel; Rhein, Bethany; Bakken, Russell A.; Perschbacher, Katherine J.; Cooney, Ashley L.; Miller-Hunt, Catherine L.; Ten Eyck, Patrick; Biggins, Julia; Olinger, Gene; Dye, John M.
2017-01-01
ABSTRACT The recent Ebola virus (EBOV) epidemic in West Africa demonstrates the potential for a significant public health burden caused by filoviral infections. No vaccine or antiviral is currently FDA approved. To expand the vaccine options potentially available, we assessed protection conferred by an EBOV vaccine composed of vesicular stomatitis virus pseudovirions that lack native G glycoprotein (VSVΔG) and bear EBOV glycoprotein (GP). These pseudovirions mediate a single round of infection. Both single-dose and prime/boost vaccination regimens protected mice against lethal challenge with mouse-adapted Ebola virus (ma-EBOV) in a dose-dependent manner. The prime/boost regimen provided significantly better protection than a single dose. As N-linked glycans are thought to shield conserved regions of the EBOV GP receptor-binding domain (RBD), thereby blocking epitopes within the RBD, we also tested whether VSVΔG bearing EBOV GPs that lack GP1 N-linked glycans provided effective immunity against challenge with ma-EBOV or a more distantly related virus, Sudan virus. Using a prime/boost strategy, high doses of GP/VSVΔG partially or fully denuded of N-linked glycans on GP1 protected mice against ma-EBOV challenge, but these mutants were no more effective than wild-type (WT) GP/VSVΔG and did not provide cross protection against Sudan virus. As reported for other EBOV vaccine platforms, the protection conferred correlated with the quantity of EBOV GP-specific Ig produced but not with the production of neutralizing antibodies. Our results show that EBOV GP/VSVΔG pseudovirions serve as a successful vaccination platform in a rodent model of Ebola virus disease and that GP1 N-glycan loss does not influence immunogenicity or vaccination success. IMPORTANCE The West African Ebola virus epidemic was the largest to date, with more than 28,000 people infected. No FDA-approved vaccines are yet available, but in a trial vaccination strategy in West Africa, recombinant, infectious VSV encoding the Ebola virus glycoprotein effectively prevented virus-associated disease. VSVΔG pseudovirion vaccines may prove as efficacious and have better safety, but they have not been tested to date. Thus, we tested the efficacy of VSVΔG pseudovirions bearing Ebola virus glycoprotein as a vaccine platform. We found that wild-type Ebola virus glycoprotein, in the context of this platform, provides robust protection of EBOV-challenged mice. Further, we found that removal of the heavy glycan shield surrounding conserved regions of the glycoprotein does not enhance vaccine efficacy. PMID:28615211
Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge.
Konduru, Krishnamurthy; Shurtleff, Amy C; Bradfute, Steven B; Nakamura, Siham; Bavari, Sina; Kaplan, Gerardo
2016-01-01
Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulated with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 105-106 and neutralizing antibody titers of approximately 103 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deleted EBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-length GP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc, and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. Our data further support the development of Fc fusions of GP as a candidate vaccine for human use.
Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge
Konduru, Krishnamurthy; Shurtleff, Amy C.; Bradfute, Steven B.; ...
2016-09-13
Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulatedmore » with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 10 5–10 6 and neutralizing antibody titers of approximately 10 3 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deletedEBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-lengthGP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc,and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. In conclusion, our data further support the development of Fc fusions of GP as a candidate vaccine for human use.« less
Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge
Konduru, Krishnamurthy; Shurtleff, Amy C.; Bradfute, Steven B.; Nakamura, Siham; Bavari, Sina; Kaplan, Gerardo
2016-01-01
Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulated with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 105−106 and neutralizing antibody titers of approximately 103 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deleted EBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-length GP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc, and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. Our data further support the development of Fc fusions of GP as a candidate vaccine for human use. PMID:27622456
Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konduru, Krishnamurthy; Shurtleff, Amy C.; Bradfute, Steven B.
Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulatedmore » with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 10 5–10 6 and neutralizing antibody titers of approximately 10 3 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deletedEBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-lengthGP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc,and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. In conclusion, our data further support the development of Fc fusions of GP as a candidate vaccine for human use.« less
Towards Detection and Diagnosis of Ebola Virus Disease at Point-of-Care
Kaushik, Ajeet; Tiwari, Sneham; Jayant, Rahul Dev; Marty, Aileen; Nair, Madhavan
2015-01-01
Ebola outbreak-2014 (mainly Zaire strain related Ebola virus) has been declared most widely spread deadly persistent epidemic due to unavailability of rapid diagnostic, detection, and therapeutics. Ebola virus disease (EVD), a severe viral hemorrhagic fever syndrome caused by Ebola virus (EBOV) is transmitted by direct contact with the body fluids of infected person and objects contaminated with virus or infected animals. World Health Organization (WHO) has declared EVD epidemic as public health emergency of international concern with severe global economic burden. At fatal EBOV infection stage, patients usually die before the antibody response. Currently, rapid blood tests to diagnose EBOV infection include the antigen or antibodies capture using ELISA and RNA detection using RT/Q-PCR within 3–10 days after the onset of symptoms. Moreover, few nanotechnology-based colorimetric and paper-based immunoassay methods have been recently reported to detect Ebola virus. Unfortunately, these methods are limited to laboratory only. As state-of-the art (SoA) diagnostics time to confirm Ebola infection, varies from 6 hours to about 3 days, it causes delay in therapeutic approaches. Thus developing a cost-effective, rapid, sensitive, and selective sensor to detect EVD at point-of-care (POC) is certainly worth exploring to establish rapid diagnostics to decide therapeutics. This review highlights SoA of Ebola diagnostics and also a call to develop rapid, selective and sensitive POC detection of EBOV for global health care. We propose that adopting miniaturized electrochemical EBOV immunosensing can detect virus level at pM concentration within ~40 minute compared to 3 days of ELISA test at nM levels. PMID:26319169
Wong, Gary; Audet, Jonathan; Fernando, Lisa; Fausther-Bovendo, Hugues; Alimonti, Judie B; Kobinger, Gary P; Qiu, Xiangguo
2014-09-29
Ebola virus (EBOV) infections cause lethal hemorrhagic fever in humans, resulting in up to 90% mortality. EBOV outbreaks are sporadic and unpredictable in nature; therefore, a vaccine that is able to provide durable immunity is needed to protect those who are at risk of exposure to the virus. This study assesses the long-term efficacy of the vesicular stomatitis virus (VSV)-based vaccine (VSVΔG/EBOVGP) in two rodent models of EBOV infection. Mice and guinea pigs were first immunized with 2×10(4) or 2×10(5) plaque forming units (PFU) of VSVΔG/EBOVGP, respectively. Challenge of mice with a lethal dose of mouse-adapted EBOV (MA-EBOV) at 6.5 and 9 months after vaccination provided complete protection, and 80% (12 of 15 survivors) protection at 12 months after vaccination. Challenge of guinea pigs with a lethal dose of guinea pig-adapted EBOV (GA-EBOV) at 7, 12 and 18 months after vaccination resulted in 83% (5 of 6 survivors) at 7 months after vaccination, and 100% survival at 12 and 18 months after vaccination. No weight loss or clinical signs were observed in the surviving animals. Antibody responses were analyzed using sera from individual rodents. Levels of EBOV glycoprotein-specific IgG antibody measured immediately before challenge appeared to correlate with protection. These studies confirm that vaccination with VSVΔG/EBOVGP is able to confer long-term protection against Ebola infection in mice and guinea pigs, and support follow-up studies in non-human primates. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Genetic diversity and evolutionary dynamics of Ebola virus in Sierra Leone.
Tong, Yi-Gang; Shi, Wei-Feng; Liu, Di; Qian, Jun; Liang, Long; Bo, Xiao-Chen; Liu, Jun; Ren, Hong-Guang; Fan, Hang; Ni, Ming; Sun, Yang; Jin, Yuan; Teng, Yue; Li, Zhen; Kargbo, David; Dafae, Foday; Kanu, Alex; Chen, Cheng-Chao; Lan, Zhi-Heng; Jiang, Hui; Luo, Yang; Lu, Hui-Jun; Zhang, Xiao-Guang; Yang, Fan; Hu, Yi; Cao, Yu-Xi; Deng, Yong-Qiang; Su, Hao-Xiang; Sun, Yu; Liu, Wen-Sen; Wang, Zhuang; Wang, Cheng-Yu; Bu, Zhao-Yang; Guo, Zhen-Dong; Zhang, Liu-Bo; Nie, Wei-Min; Bai, Chang-Qing; Sun, Chun-Hua; An, Xiao-Ping; Xu, Pei-Song; Zhang, Xiang-Li-Lan; Huang, Yong; Mi, Zhi-Qiang; Yu, Dong; Yao, Hong-Wu; Feng, Yong; Xia, Zhi-Ping; Zheng, Xue-Xing; Yang, Song-Tao; Lu, Bing; Jiang, Jia-Fu; Kargbo, Brima; He, Fu-Chu; Gao, George F; Cao, Wu-Chun
2015-08-06
A novel Ebola virus (EBOV) first identified in March 2014 has infected more than 25,000 people in West Africa, resulting in more than 10,000 deaths. Preliminary analyses of genome sequences of 81 EBOV collected from March to June 2014 from Guinea and Sierra Leone suggest that the 2014 EBOV originated from an independent transmission event from its natural reservoir followed by sustained human-to-human infections. It has been reported that the EBOV genome variation might have an effect on the efficacy of sequence-based virus detection and candidate therapeutics. However, only limited viral information has been available since July 2014, when the outbreak entered a rapid growth phase. Here we describe 175 full-length EBOV genome sequences from five severely stricken districts in Sierra Leone from 28 September to 11 November 2014. We found that the 2014 EBOV has become more phylogenetically and genetically diverse from July to November 2014, characterized by the emergence of multiple novel lineages. The substitution rate for the 2014 EBOV was estimated to be 1.23 × 10(-3) substitutions per site per year (95% highest posterior density interval, 1.04 × 10(-3) to 1.41 × 10(-3) substitutions per site per year), approximating to that observed between previous EBOV outbreaks. The sharp increase in genetic diversity of the 2014 EBOV warrants extensive EBOV surveillance in Sierra Leone, Guinea and Liberia to better understand the viral evolution and transmission dynamics of the ongoing outbreak. These data will facilitate the international efforts to develop vaccines and therapeutics.
Review of Ebola virus infections in domestic animals.
Weingartl, H M; Nfon, C; Kobinger, G
2013-01-01
Ebola viruses (EBOV; genus Ebolavirus, family Filoviridae) cause often fatal, hemorrhagic fever in several species of simian primates including human. While fruit bats are considered a natural reservoir, the involvement of other species in the EBOV transmission cycle is unclear, especially for domesticated animals. Dogs and pigs are so far the only domestic animals identified as species that can be infected with EBOV. In 2009 Reston-EBOV was the first EBOV reported to infect swine with indicated transmission to humans; and a survey in Gabon found over 30% seroprevalence for EBOV in dogs during the Ebola outbreak in 2001-2002. While infections in dogs appear to be asymptomatic, pigs experimentally infected with EBOV can develop clinical disease, depending on the virus species and possibly the age of the infected animals. In the experimental settings, pigs can transmit Zaire-Ebola virus to naive pigs and macaques; however, their role during Ebola outbreaks in Africa needs to be clarified. Attempts at virus and antibody detection require as a prerequisite validation of viral RNA and antibody detection methods especially for pigs, as well as the development of a sampling strategy. Significant issues about disease development remain to be resolved for EBOV. Evaluation of current human vaccine candidates or development of veterinary vaccines de novo for EBOV might need to be considered, especially if pigs or dogs are implicated in the transmission of an African species of EBOV to humans.
Johnson, Reed F.; Kurup, Drishya; Hagen, Katie R.; Fisher, Christine; Keshwara, Rohan; Papaneri, Amy; Perry, Donna L.; Cooper, Kurt; Jahrling, Peter B.; Wang, Jonathan T.; ter Meulen, Jan; Wirblich, Christoph; Schnell, Matthias J.
2016-01-01
The 2013–2016 West African Ebola virus (EBOV) disease outbreak was the largest filovirus outbreak to date. Over 28 000 suspected, probable, or confirmed cases have been reported, with a 53% case-fatality rate. The magnitude and international impact of this EBOV outbreak has highlighted the urgent need for a safe and efficient EBOV vaccine. To this end, we demonstrate the immunogenicity and protective efficacy of FILORAB1, a recombinant, bivalent, inactivated rabies virus–based EBOV vaccine, in rhesus and cynomolgus monkeys. Our results demonstrate that the use of the synthetic Toll-like receptor 4 agonist glucopyranosyl lipid A in stable emulsion (GLA-SE) as an adjuvant increased the efficacy of FILORAB1 to 100% protection against lethal EBOV challenge, with no to mild clinical signs of disease. Furthermore, all vaccinated subjects developed protective anti–rabies virus antibody titers. Taken together, these results support further development of FILORAB1/GLA-SE as an effective preexposure EBOV vaccine. PMID:27456709
Rhein, Bethany A; Brouillette, Rachel B; Schaack, Grace A; Chiorini, John A; Maury, Wendy
2016-07-01
Phosphatidylserine (PtdSer) receptors that are responsible for the clearance of dying cells have recently been found to mediate enveloped virus entry. Ebola virus (EBOV), a member of the Filoviridae family of viruses, utilizes PtdSer receptors for entry into target cells. The PtdSer receptors human and murine T-cell immunoglobulin mucin (TIM) domain proteins TIM-1 and TIM-4 mediate filovirus entry by binding to PtdSer on the virion surface via a conserved PtdSer binding pocket within the amino-terminal IgV domain. While the residues within the TIM-1 IgV domain that are important for EBOV entry are characterized, the molecular details of virion-TIM-4 interactions have yet to be investigated. As sequences and structural alignments of the TIM proteins suggest distinct differences in the TIM-1 and TIM-4 IgV domain structures, we sought to characterize TIM-4 IgV domain residues required for EBOV entry. Using vesicular stomatitis virus pseudovirions bearing EBOV glycoprotein (EBOV GP/VSVΔG), we evaluated virus binding and entry into cells expressing TIM-4 molecules mutated within the IgV domain, allowing us to identify residues important for entry. Similar to TIM-1, residues in the PtdSer binding pocket of murine and human TIM-4 (mTIM-4 and hTIM-4) were found to be important for EBOV entry. However, additional TIM-4-specific residues were also found to impact EBOV entry, with a total of 8 mTIM-4 and 14 hTIM-4 IgV domain residues being critical for virion binding and internalization. Together, these findings provide a greater understanding of the interaction of TIM-4 with EBOV virions. With more than 28,000 cases and over 11,000 deaths during the largest and most recent Ebola virus (EBOV) outbreak, there has been increased emphasis on the development of therapeutics against filoviruses. Many therapies under investigation target EBOV cell entry. T-cell immunoglobulin mucin (TIM) domain proteins are cell surface factors important for the entry of many enveloped viruses, including EBOV. TIM family member TIM-4 is expressed on macrophages and dendritic cells, which are early cellular targets during EBOV infection. Here, we performed a mutagenesis screening of the IgV domain of murine and human TIM-4 to identify residues that are critical for EBOV entry. Surprisingly, we identified more human than murine TIM-4 IgV domain residues that are required for EBOV entry. Defining the TIM IgV residues needed for EBOV entry clarifies the virus-receptor interactions and paves the way for the development of novel therapeutics targeting virus binding to this cell surface receptor. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Rhein, Bethany A.; Brouillette, Rachel B.; Schaack, Grace A.; Chiorini, John A.
2016-01-01
ABSTRACT Phosphatidylserine (PtdSer) receptors that are responsible for the clearance of dying cells have recently been found to mediate enveloped virus entry. Ebola virus (EBOV), a member of the Filoviridae family of viruses, utilizes PtdSer receptors for entry into target cells. The PtdSer receptors human and murine T-cell immunoglobulin mucin (TIM) domain proteins TIM-1 and TIM-4 mediate filovirus entry by binding to PtdSer on the virion surface via a conserved PtdSer binding pocket within the amino-terminal IgV domain. While the residues within the TIM-1 IgV domain that are important for EBOV entry are characterized, the molecular details of virion–TIM-4 interactions have yet to be investigated. As sequences and structural alignments of the TIM proteins suggest distinct differences in the TIM-1 and TIM-4 IgV domain structures, we sought to characterize TIM-4 IgV domain residues required for EBOV entry. Using vesicular stomatitis virus pseudovirions bearing EBOV glycoprotein (EBOV GP/VSVΔG), we evaluated virus binding and entry into cells expressing TIM-4 molecules mutated within the IgV domain, allowing us to identify residues important for entry. Similar to TIM-1, residues in the PtdSer binding pocket of murine and human TIM-4 (mTIM-4 and hTIM-4) were found to be important for EBOV entry. However, additional TIM-4-specific residues were also found to impact EBOV entry, with a total of 8 mTIM-4 and 14 hTIM-4 IgV domain residues being critical for virion binding and internalization. Together, these findings provide a greater understanding of the interaction of TIM-4 with EBOV virions. IMPORTANCE With more than 28,000 cases and over 11,000 deaths during the largest and most recent Ebola virus (EBOV) outbreak, there has been increased emphasis on the development of therapeutics against filoviruses. Many therapies under investigation target EBOV cell entry. T-cell immunoglobulin mucin (TIM) domain proteins are cell surface factors important for the entry of many enveloped viruses, including EBOV. TIM family member TIM-4 is expressed on macrophages and dendritic cells, which are early cellular targets during EBOV infection. Here, we performed a mutagenesis screening of the IgV domain of murine and human TIM-4 to identify residues that are critical for EBOV entry. Surprisingly, we identified more human than murine TIM-4 IgV domain residues that are required for EBOV entry. Defining the TIM IgV residues needed for EBOV entry clarifies the virus-receptor interactions and paves the way for the development of novel therapeutics targeting virus binding to this cell surface receptor. PMID:27122575
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bukreyev, Alexander; Marzi, Andrea; Feldmann, Friederike
2009-01-20
We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/{delta}F-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/{delta}F-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface,more » the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/{delta}F-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV.« less
Kota, Krishna P; Benko, Jacqueline G; Mudhasani, Rajini; Retterer, Cary; Tran, Julie P; Bavari, Sina; Panchal, Rekha G
2012-09-25
Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI) assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV) infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.
Dowall, Stuart D; Bosworth, Andrew; Rayner, Emma; Taylor, Irene; Landon, John; Cameron, Ian; Coxon, Ruth; Al Abdulla, Ibrahim; Graham, Victoria A; Hall, Graham; Kobinger, Gary; Hewson, Roger; Carroll, Miles W
2016-07-28
Ebola virus (EBOV) is highly pathogenic, with a predisposition to cause outbreaks in human populations accompanied by significant mortality. An ovine polyclonal antibody therapy has been developed against EBOV, named EBOTAb. When tested in the stringent guinea pig model of EBOV disease, EBOTAb has been shown to confer protection at levels of 83.3%, 50% and 33.3% when treatment was first started on days 3, 4 and 5 post-challenge, respectively. These timepoints of when EBOTAb treatment was initiated correspond to when levels of EBOV are detectable in the circulation and thus mimic when treatment would likely be initiated in human infection. The effects of EBOTAb were compared with those of a monoclonal antibody cocktail, ZMapp, when delivered on day 3 post-challenge. Results showed ZMapp to confer complete protection against lethal EBOV challenge in the guinea pig model at this timepoint. The data reported demonstrate that EBOTAb is an effective treatment against EBOV disease, even when delivered late after infection.
Becquart, Pierre; Mahlakõiv, Tanel; Nkoghe, Dieudonné; Leroy, Eric M.
2014-01-01
Ebola virus (EBOV) is a highly virulent human pathogen. Recovery of infected patients is associated with efficient EBOV-specific immunoglobulin G (IgG) responses, whereas fatal outcome is associated with defective humoral immunity. As B-cell epitopes on EBOV are poorly defined, we sought to identify specific epitopes in four EBOV proteins (Glycoprotein (GP), Nucleoprotein (NP), and matrix Viral Protein (VP)40 and VP35). For the first time, we tested EBOV IgG+ sera from asymptomatic individuals and symptomatic Gabonese survivors, collected during the early humoral response (seven days after the end of symptoms) and the late memory phase (7–12 years post-infection). We also tested sera from EBOV-seropositive patients who had never had clinical signs of hemorrhagic fever or who lived in non-epidemic areas (asymptomatic subjects). We found that serum from asymptomatic individuals was more strongly reactive to VP40 peptides than to GP, NP or VP35. Interestingly, anti-EBOV IgG from asymptomatic patients targeted three immunodominant regions of VP40 reported to play a crucial role in virus assembly and budding. In contrast, serum from most survivors of the three outbreaks, collected a few days after the end of symptoms, reacted mainly with GP peptides. However, in asymptomatic subjects the longest immunodominant domains were identified in GP, and analysis of the GP crystal structure revealed that these domains covered a larger surface area of the chalice bowl formed by three GP1 subunits. The B-cell epitopes we identified in the EBOV VP35, VP40, NP and GP proteins may represent important tools for understanding the humoral response to this virus and for developing new antibody-based therapeutics or detection methods. PMID:24914933
Becquart, Pierre; Mahlakõiv, Tanel; Nkoghe, Dieudonné; Leroy, Eric M
2014-01-01
Ebola virus (EBOV) is a highly virulent human pathogen. Recovery of infected patients is associated with efficient EBOV-specific immunoglobulin G (IgG) responses, whereas fatal outcome is associated with defective humoral immunity. As B-cell epitopes on EBOV are poorly defined, we sought to identify specific epitopes in four EBOV proteins (Glycoprotein (GP), Nucleoprotein (NP), and matrix Viral Protein (VP)40 and VP35). For the first time, we tested EBOV IgG+ sera from asymptomatic individuals and symptomatic Gabonese survivors, collected during the early humoral response (seven days after the end of symptoms) and the late memory phase (7-12 years post-infection). We also tested sera from EBOV-seropositive patients who had never had clinical signs of hemorrhagic fever or who lived in non-epidemic areas (asymptomatic subjects). We found that serum from asymptomatic individuals was more strongly reactive to VP40 peptides than to GP, NP or VP35. Interestingly, anti-EBOV IgG from asymptomatic patients targeted three immunodominant regions of VP40 reported to play a crucial role in virus assembly and budding. In contrast, serum from most survivors of the three outbreaks, collected a few days after the end of symptoms, reacted mainly with GP peptides. However, in asymptomatic subjects the longest immunodominant domains were identified in GP, and analysis of the GP crystal structure revealed that these domains covered a larger surface area of the chalice bowl formed by three GP1 subunits. The B-cell epitopes we identified in the EBOV VP35, VP40, NP and GP proteins may represent important tools for understanding the humoral response to this virus and for developing new antibody-based therapeutics or detection methods.
Cross, Robert W.; Boisen, Matthew L.; Millett, Molly M.; Nelson, Diana S.; Oottamasathien, Darin; Hartnett, Jessica N.; Jones, Abigal B.; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Bornholdt, Zachary A.; Fusco, Marnie L.; Abelson, Dafna M.; Oda, Shunichiro; Brown, Bethany L.; Pham, Ha; Rowland, Megan M.; Agans, Krystle N.; Geisbert, Joan B.; Heinrich, Megan L.; Kulakosky, Peter C.; Shaffer, Jeffrey G.; Schieffelin, John S.; Kargbo, Brima; Gbetuwa, Momoh; Gevao, Sahr M.; Wilson, Russell B.; Saphire, Erica Ollmann; Pitts, Kelly R.; Khan, Sheik Humarr; Grant, Donald S.; Geisbert, Thomas W.; Branco, Luis M.; Garry, Robert F.
2016-01-01
Background. Ebola virus disease (EVD) is a severe viral illness caused by Ebola virus (EBOV). The 2013–2016 EVD outbreak in West Africa is the largest recorded, with >11 000 deaths. Development of the ReEBOV Antigen Rapid Test (ReEBOV RDT) was expedited to provide a point-of-care test for suspected EVD cases. Methods. Recombinant EBOV viral protein 40 antigen was used to derive polyclonal antibodies for RDT and enzyme-linked immunosorbent assay development. ReEBOV RDT limits of detection (LOD), specificity, and interference were analytically validated on the basis of Food and Drug Administration (FDA) guidance. Results. The ReEBOV RDT specificity estimate was 95% for donor serum panels and 97% for donor whole-blood specimens. The RDT demonstrated sensitivity to 3 species of Ebolavirus (Zaire ebolavirus, Sudan ebolavirus, and Bundibugyo ebolavirus) associated with human disease, with no cross-reactivity by pathogens associated with non-EBOV febrile illness, including malaria parasites. Interference testing exhibited no reactivity by medications in common use. The LOD for antigen was 4.7 ng/test in serum and 9.4 ng/test in whole blood. Quantitative reverse transcription–polymerase chain reaction testing of nonhuman primate samples determined the range to be equivalent to 3.0 × 105–9.0 × 108 genomes/mL. Conclusions. The analytical validation presented here contributed to the ReEBOV RDT being the first antigen-based assay to receive FDA and World Health Organization emergency use authorization for this EVD outbreak, in February 2015. PMID:27587634
Grant-Klein, Rebecca J; Altamura, Louis A; Badger, Catherine V; Bounds, Callie E; Van Deusen, Nicole M; Kwilas, Steven A; Vu, Hong A; Warfield, Kelly L; Hooper, Jay W; Hannaman, Drew; Dupuy, Lesley C; Schmaljohn, Connie S
2015-01-01
Cynomolgus macaques were vaccinated by intramuscular electroporation with DNA plasmids expressing codon-optimized glycoprotein (GP) genes of Ebola virus (EBOV) or Marburg virus (MARV) or a combination of codon-optimized GP DNA vaccines for EBOV, MARV, Sudan virus and Ravn virus. When measured by ELISA, the individual vaccines elicited slightly higher IgG responses to EBOV or MARV than did the combination vaccines. No significant differences in immune responses of macaques given the individual or combination vaccines were measured by pseudovirion neutralization or IFN-γ ELISpot assays. Both the MARV and mixed vaccines were able to protect macaques from lethal MARV challenge (5/6 vs. 6/6). In contrast, a greater proportion of macaques vaccinated with the EBOV vaccine survived lethal EBOV challenge in comparison to those that received the mixed vaccine (5/6 vs. 1/6). EBOV challenge survivors had significantly higher pre-challenge neutralizing antibody titers than those that succumbed.
Takamatsu, Yuki; Kolesnikova, Larissa; Becker, Stephan
2018-01-30
The intracytoplasmic movement of nucleocapsids is a crucial step in the life cycle of enveloped viruses. Determination of the viral components necessary for viral nucleocapsid transport competency is complicated by the dynamic and complex nature of nucleocapsid assembly and the lack of appropriate model systems. Here, we established a live-cell imaging system based on the ectopic expression of fluorescent Ebola virus (EBOV) fusion proteins, allowing the visualization and analysis of the movement of EBOV nucleocapsid-like structures with different protein compositions. Only three of the five EBOV nucleocapsid proteins-nucleoprotein, VP35, and VP24-were necessary and sufficient to form transport-competent nucleocapsid-like structures. The transport of these structures was found to be dependent on actin polymerization and to have dynamics that were undistinguishable from those of nucleocapsids in EBOV-infected cells. The intracytoplasmic movement of nucleocapsid-like structures was completely independent of the viral matrix protein VP40 and the viral surface glycoprotein GP. However, VP40 greatly enhanced the efficiency of nucleocapsid recruitment into filopodia, the sites of EBOV budding.
Transmission of Ebola virus from pigs to non-human primates.
Weingartl, Hana M; Embury-Hyatt, Carissa; Nfon, Charles; Leung, Anders; Smith, Greg; Kobinger, Gary
2012-01-01
Ebola viruses (EBOV) cause often fatal hemorrhagic fever in several species of simian primates including human. While fruit bats are considered natural reservoir, involvement of other species in EBOV transmission is unclear. In 2009, Reston-EBOV was the first EBOV detected in swine with indicated transmission to humans. In-contact transmission of Zaire-EBOV (ZEBOV) between pigs was demonstrated experimentally. Here we show ZEBOV transmission from pigs to cynomolgus macaques without direct contact. Interestingly, transmission between macaques in similar housing conditions was never observed. Piglets inoculated oro-nasally with ZEBOV were transferred to the room housing macaques in an open inaccessible cage system. All macaques became infected. Infectious virus was detected in oro-nasal swabs of piglets, and in blood, swabs, and tissues of macaques. This is the first report of experimental interspecies virus transmission, with the macaques also used as a human surrogate. Our finding may influence prevention and control measures during EBOV outbreaks.
Cap, Andrew P; Pidcoke, Heather F; Keil, Shawn D; Staples, Hilary M; Anantpadma, Manu; Carrion, Ricardo; Davey, Robert A; Frazer-Abel, Ashley; Taylor, Audra L; Gonzales, Richard; Patterson, Jean L; Goodrich, Raymond P
2016-03-01
Transfusion of plasma from recovered patients after Ebolavirus (EBOV) infection, typically called "convalescent plasma," is an effective treatment for active disease available in endemic areas, but carries the risk of introducing other pathogens, including other strains of EBOV. A pathogen reduction technology using ultraviolet light and riboflavin (UV+RB) is effective against multiple enveloped, negative-sense, single-stranded RNA viruses that are similar in structure to EBOV. We hypothesized that UV+RB is effective against EBOV in blood products without activating complement or reducing protective immunoglobulin titers that are important for the treatment of Ebola virus disease (EVD). Four in vitro experiments were conducted to evaluate effects of UV+RB on green fluorescent protein EBOV (EBOV-GFP), wild-type EBOV in serum, and whole blood, respectively, and on immunoglobulins and complement in plasma. Initial titers for Experiments 1 to 3 were 4.21 log GFP units/mL, 4.96 log infectious units/mL, and 4.23 log plaque-forming units/mL. Conditions tested in the first three experiments included the following: 1-EBOV-GFP plus UV+RB; 2-EBOV-GFP plus RB only; 3-EBOV-GFP plus UV only; 4-EBOV-GFP without RB or UV; 5-virus-free control plus UV only; and 6-virus-free control without RB or UV. UV+RB reduced EBOV titers to nondetectable levels in both nonhuman primate serum (≥2.8- to 3.2-log reduction) and human whole blood (≥3.0-log reduction) without decreasing protective antibody titers in human plasma. Our in vitro results demonstrate that the UV+RB treatment efficiently reduces EBOV titers to below limits of detection in both serum and whole blood. In vivo testing to determine whether UV+RB can improve convalescent blood product safety is indicated. © 2016 AABB.
Lloviu virus VP24 and VP35 proteins function as innate immune antagonists in human and bat cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feagins, Alicia R.; Basler, Christopher F., E-mail: chris.basler@mssm.edu
Lloviu virus (LLOV) is a new member of the filovirus family that also includes Ebola virus (EBOV) and Marburg virus (MARV). LLOV has not been cultured; however, its genomic RNA sequence indicates the coding capacity to produce homologs of the EBOV and MARV VP24, VP35, and VP40 proteins. EBOV and MARV VP35 proteins inhibit interferon (IFN)-alpha/beta production and EBOV VP35 blocks activation of the antiviral kinase PKR. The EBOV VP24 and MARV VP40 proteins inhibit IFN signaling, albeit by different mechanisms. Here we demonstrate that LLOV VP35 suppresses Sendai virus induced IFN regulatory factor 3 (IRF3) phosphorylation, IFN-α/β production, andmore » PKR phosphorylation. Additionally, LLOV VP24 blocks tyrosine phosphorylated STAT1 binding to karyopherin alpha 5 (KPNA5), STAT1 nuclear accumulation, and IFN-induced gene expression. LLOV VP40 lacks detectable IFN antagonist function. These activities parallel EBOV IFN inhibitory functions. EBOV and LLOV VP35 and VP24 proteins also inhibit IFN responses in bat cells. These data suggest that LLOV infection will block innate immune responses in a manner similar to EBOV. - Highlights: • Lloviu virus (LLOV) is a new member of the filovirus family. • LLOV VP35 blocks IRF3 phosphorylation, IFN-α/β production and PKR phosphorylation. • LLOV VP24 inhibits IFN responses by targeting phospho-STAT1 KPNA interaction. • Infection by LLOV may block innate immune responses in a manner similar to EBOV.« less
Hoffmann, Markus; Crone, Lisa; Dietzel, Erik; Paijo, Jennifer; González-Hernández, Mariana; Nehlmeier, Inga; Kalinke, Ulrich; Becker, Stephan; Pöhlmann, Stefan
2017-05-01
The large scale of the Ebola virus disease (EVD) outbreak in West Africa in 2013-2016 raised the question whether the host cell interactions of the responsible Ebola virus (EBOV) strain differed from those of other ebolaviruses. We previously reported that the glycoprotein (GP) of the virus circulating in West Africa in 2014 (EBOV2014) exhibited reduced ability to mediate entry into two nonhuman primate (NHP)-derived cell lines relative to the GP of EBOV1976. Here, we investigated the molecular determinants underlying the differential entry efficiency. We found that EBOV2014-GP-driven entry into diverse NHP-derived cell lines, as well as human monocyte-derived macrophages and dendritic cells, was reduced compared to EBOV1976-GP, although entry into most human- and all bat-derived cell lines tested was comparable. Moreover, EBOV2014 replication in NHP but not human cells was diminished relative to EBOV1976, suggesting that reduced cell entry translated into reduced viral spread. Mutagenic analysis of EBOV2014-GP and EBOV1976-GP revealed that an amino acid polymorphism in the receptor-binding domain, A82V, modulated entry efficiency in a cell line-independent manner and did not account for the reduced EBOV2014-GP-driven entry into NHP cells. In contrast, polymorphism T544I, located in the internal fusion loop in the GP2 subunit, was found to be responsible for the entry phenotype. These results suggest that position 544 is an important determinant of EBOV infectivity for both NHP and certain human target cells. IMPORTANCE The Ebola virus disease outbreak in West Africa in 2013 entailed more than 10,000 deaths. The scale of the outbreak and its dramatic impact on human health raised the question whether the responsible virus was particularly adept at infecting human cells. Our study shows that an amino acid exchange, A82V, that was acquired during the epidemic and that was not observed in previously circulating viruses, increases viral entry into diverse target cells. In contrast, the epidemic virus showed a reduced ability to enter cells of nonhuman primates compared to the virus circulating in 1976, and a single amino acid exchange in the internal fusion loop of the viral glycoprotein was found to account for this phenotype. Copyright © 2017 American Society for Microbiology.
Albariño, César G; Guerrero, Lisa Wiggleton; Chakrabarti, Ayan K; Kainulainen, Markus H; Whitmer, Shannon L M; Welch, Stephen R; Nichol, Stuart T
2016-09-01
During the large outbreak of Ebola virus disease that occurred in Western Africa from late 2013 to early 2016, several hundred Ebola virus (EBOV) genomes have been sequenced and the virus genetic drift analyzed. In a previous report, we described an efficient reverse genetics system designed to generate recombinant EBOV based on a Makona variant isolate obtained in 2014. Using this system, we characterized the replication and fitness of 2 isolates of the Makona variant. These virus isolates are nearly identical at the genetic level, but have single amino acid differences in the VP30 and L proteins. The potential effects of these differences were tested using minigenomes and recombinant viruses. The results obtained with this approach are consistent with the role of VP30 and L as components of the EBOV RNA replication machinery. Moreover, the 2 isolates exhibited clear fitness differences in competitive growth assays. Published by Elsevier Inc.
Abad, Neetu; Malik, Tasneem; Ariyarajah, Archchun; Ongpin, Patricia; Hogben, Matthew; McDonald, Suzanna L R; Marrinan, Jaclyn; Massaquoi, Thomas; Thorson, Anna; Ervin, Elizabeth; Bernstein, Kyle; Ross, Christine; Liu, William J; Kroeger, Karen; Durski, Kara N; Broutet, Nathalie; Knust, Barbara; Deen, Gibrilla F
2017-09-01
During the 2014-2016 West Africa Ebola Virus Disease (EVD) epidemic, the public health community had concerns that sexual transmission of the Ebola virus (EBOV) from EVD survivors was a risk, due to EBOV persistence in body fluids of EVD survivors, particularly semen. The Sierra Leone Ebola Virus Persistence Study was initiated to investigate this risk by assessing EBOV persistence in numerous body fluids of EVD survivors and providing risk reduction counseling based on test results for semen, vaginal fluid, menstrual blood, urine, rectal fluid, sweat, tears, saliva, and breast milk. This publication describes implementation of the counseling protocol and the key lessons learned. The Ebola Virus Persistence Risk Reduction Behavioral Counseling Protocol was developed from a framework used to prevent transmission of HIV and other sexually transmitted infections. The framework helped to identify barriers to risk reduction and facilitated the development of a personalized risk-reduction plan, particularly around condom use and abstinence. Pre-test and post-test counseling sessions included risk reduction guidance, and post-test counseling was based on the participants' individual test results. The behavioral counseling protocol enabled study staff to translate the study's body fluid test results into individualized information for study participants. The Ebola Virus Persistence Risk Reduction Behavioral Counseling Protocol provided guidance to mitigate the risk of EBOV transmission from EVD survivors. It has since been shared with and adapted by other EVD survivor body fluid testing programs and studies in Ebola-affected countries.
González-Hernández, Mariana; Hoffmann, Markus; Brinkmann, Constantin; Nehls, Julia; Winkler, Michael; Schindler, Michael; Pöhlmann, Stefan
2018-04-18
The interferon-induced antiviral host cell protein tetherin can inhibit the release of several enveloped viruses from infected cells. The Ebola virus (EBOV) glycoprotein (GP) antagonizes tetherin but the domains and amino acids in GP that are required for tetherin antagonism have not been fully defined. A GXXXA motif within the transmembrane domain (TMD) of EBOV-GP was previously shown to be important for GP-mediated cellular detachment. Here, we investigated whether this motif also contributes to tetherin antagonism. Mutation of the GXXXA motif did not impact GP expression or particle incorporation and only modestly reduced EBOV-GP-driven entry. In contrast, the GXXXA motif was required for tetherin antagonism in transfected cells. Moreover, alteration of the GXXXA motif increased tetherin-sensitivity of a replication-competent vesicular stomatitis virus (VSV) chimera encoding EBOV-GP. Although these results await confirmation with authentic EBOV, they indicate that a GXXXA motif in the TMD of EBOV-GP is important for tetherin antagonism. Moreover, they provide the first evidence that GP can antagonize tetherin in the context of an infectious EBOV surrogate. IMPORTANCE The glycoprotein (GP) of Ebola virus (EBOV) inhibits the antiviral host cell protein tetherin and may promote viral spread in tetherin-positive cells. However, tetherin antagonism by GP has so far only been demonstrated using virus-like particles and it is unknown whether GP can block tetherin in infected cells. Moreover, a mutation in GP that selectively abrogates tetherin antagonism is unknown. Here, we show that a GXXXA motif in the transmembrane domain of EBOV-GP, which was previously reported to be required for GP-mediated cell rounding, is also important for tetherin counteraction. Moreover, analysis of this mutation in the context of vesicular stomatitis virus chimeras encoding EBOV-GP revealed that GP-mediated tetherin counteraction is operative in infected cells. To our knowledge, these findings demonstrate for the first time that GP can antagonize tetherin in infected cells and provide a tool to study the impact of GP-dependent tetherin counteraction on EBOV spread. Copyright © 2018 American Society for Microbiology.
Cross, Robert W; Boisen, Matthew L; Millett, Molly M; Nelson, Diana S; Oottamasathien, Darin; Hartnett, Jessica N; Jones, Abigal B; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Bornholdt, Zachary A; Fusco, Marnie L; Abelson, Dafna M; Oda, Shunichiro; Brown, Bethany L; Pham, Ha; Rowland, Megan M; Agans, Krystle N; Geisbert, Joan B; Heinrich, Megan L; Kulakosky, Peter C; Shaffer, Jeffrey G; Schieffelin, John S; Kargbo, Brima; Gbetuwa, Momoh; Gevao, Sahr M; Wilson, Russell B; Saphire, Erica Ollmann; Pitts, Kelly R; Khan, Sheik Humarr; Grant, Donald S; Geisbert, Thomas W; Branco, Luis M; Garry, Robert F
2016-10-15
Ebola virus disease (EVD) is a severe viral illness caused by Ebola virus (EBOV). The 2013-2016 EVD outbreak in West Africa is the largest recorded, with >11 000 deaths. Development of the ReEBOV Antigen Rapid Test (ReEBOV RDT) was expedited to provide a point-of-care test for suspected EVD cases. Recombinant EBOV viral protein 40 antigen was used to derive polyclonal antibodies for RDT and enzyme-linked immunosorbent assay development. ReEBOV RDT limits of detection (LOD), specificity, and interference were analytically validated on the basis of Food and Drug Administration (FDA) guidance. The ReEBOV RDT specificity estimate was 95% for donor serum panels and 97% for donor whole-blood specimens. The RDT demonstrated sensitivity to 3 species of Ebolavirus (Zaire ebolavirus, Sudan ebolavirus, and Bundibugyo ebolavirus) associated with human disease, with no cross-reactivity by pathogens associated with non-EBOV febrile illness, including malaria parasites. Interference testing exhibited no reactivity by medications in common use. The LOD for antigen was 4.7 ng/test in serum and 9.4 ng/test in whole blood. Quantitative reverse transcription-polymerase chain reaction testing of nonhuman primate samples determined the range to be equivalent to 3.0 × 10 5 -9.0 × 10 8 genomes/mL. The analytical validation presented here contributed to the ReEBOV RDT being the first antigen-based assay to receive FDA and World Health Organization emergency use authorization for this EVD outbreak, in February 2015. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Nelson, Elizabeth A.; Barnes, Alyson B.; Wiehle, Ronald D.; Fontenot, Gregory K.; Hoenen, Thomas; White, Judith M.
2016-01-01
The 2014 outbreak of Ebola virus (EBOV) in Western Africa highlighted the need for anti-EBOV therapeutics. Clomiphene is a U.S. Food and Drug Administration (FDA)-approved drug that blocks EBOV entry and infection in cells and significantly protects EBOV-challenged mice. As provided, clomiphene is, approximately, a 60:40 mixture of two stereoisomers, enclomiphene and zuclomiphene. The pharmacokinetic properties of the two isomers vary, but both accumulate in the eye and male reproductive tract, tissues in which EBOV can persist. Here we compared the ability of clomiphene and its isomers to inhibit EBOV using viral-like particle (VLP) entry and transcription/replication-competent VLP (trVLP) assays. Clomiphene and its isomers inhibited the entry and infection of VLPs and trVLPs with similar potencies. This was demonstrated with VLPs bearing the glycoproteins from three filoviruses (EBOV Mayinga, EBOV Makona, and Marburg virus) and in two cell lines (293T/17 and Vero E6). Visual problems have been noted in EBOV survivors, and viral RNA has been isolated from semen up to nine months post-infection. Since the clomiphene isomers accumulate in these affected tissues, clomiphene or one of its isomers warrants consideration as an anti-EBOV agent, for example, to potentially help ameliorate symptoms in EBOV survivors. PMID:27490565
Nelson, Elizabeth A; Barnes, Alyson B; Wiehle, Ronald D; Fontenot, Gregory K; Hoenen, Thomas; White, Judith M
2016-08-02
The 2014 outbreak of Ebola virus (EBOV) in Western Africa highlighted the need for anti-EBOV therapeutics. Clomiphene is a U.S. Food and Drug Administration (FDA)-approved drug that blocks EBOV entry and infection in cells and significantly protects EBOV-challenged mice. As provided, clomiphene is, approximately, a 60:40 mixture of two stereoisomers, enclomiphene and zuclomiphene. The pharmacokinetic properties of the two isomers vary, but both accumulate in the eye and male reproductive tract, tissues in which EBOV can persist. Here we compared the ability of clomiphene and its isomers to inhibit EBOV using viral-like particle (VLP) entry and transcription/replication-competent VLP (trVLP) assays. Clomiphene and its isomers inhibited the entry and infection of VLPs and trVLPs with similar potencies. This was demonstrated with VLPs bearing the glycoproteins from three filoviruses (EBOV Mayinga, EBOV Makona, and Marburg virus) and in two cell lines (293T/17 and Vero E6). Visual problems have been noted in EBOV survivors, and viral RNA has been isolated from semen up to nine months post-infection. Since the clomiphene isomers accumulate in these affected tissues, clomiphene or one of its isomers warrants consideration as an anti-EBOV agent, for example, to potentially help ameliorate symptoms in EBOV survivors.
Identification of a New Ribonucleoside Inhibitor of Ebola Virus Replication
Reynard, Olivier; Nguyen, Xuan-Nhi; Alazard-Dany, Nathalie; Barateau, Véronique; Cimarelli, Andrea; Volchkov, Viktor E.
2015-01-01
The current outbreak of Ebola virus (EBOV) in West Africa has claimed the lives of more than 15,000 people and highlights an urgent need for therapeutics capable of preventing virus replication. In this study we screened known nucleoside analogues for their ability to interfere with EBOV replication. Among them, the cytidine analogue β-d-N4-hydroxycytidine (NHC) demonstrated potent inhibitory activities against EBOV replication and spread at non-cytotoxic concentrations. Thus, NHC constitutes an interesting candidate for the development of a suitable drug treatment against EBOV. PMID:26633464
Moyen, Nanikaly; Thirion, Laurence; Emmerich, Petra; Dzia-Lepfoundzou, Amelia; Richet, Hervé; Boehmann, Yannik; Dimi, Yannick; Gallian, Pierre; Gould, Ernest A; Günther, Stephan; de Lamballerie, Xavier
2015-01-01
Ebola and Marburg viruses (family Filoviridae, genera Ebolavirus and Marburgvirus) cause haemorrhagic fevers in humans, often associated with high mortality rates. The presence of antibodies to Ebola virus (EBOV) and Marburg virus (MARV) has been reported in some African countries in individuals without a history of haemorrhagic fever. In this study, we present a MARV and EBOV seroprevalence study conducted amongst blood donors in the Republic of Congo and the analysis of risk factors for contact with EBOV. In 2011, we conducted a MARV and EBOV seroprevalence study amongst 809 blood donors recruited in rural (75; 9.3%) and urban (734; 90.7%) areas of the Republic of Congo. Serum titres of IgG antibodies to MARV and EBOV were assessed by indirect double-immunofluorescence microscopy. MARV seroprevalence was 0.5% (4 in 809) without any identified risk factors. Prevalence of IgG to EBOV was 2.5%, peaking at 4% in rural areas and in Pointe Noire. Independent risk factors identified by multivariate analysis were contact with bats and exposure to birds. This MARV and EBOV serological survey performed in the Republic of Congo identifies a probable role for environmental determinants of exposure to EBOV. It highlights the requirement for extending our understanding of the ecological and epidemiological risk of bats (previously identified as a potential ecological reservoir) and birds as vectors of EBOV to humans, and characterising the protection potentially afforded by EBOV-specific antibodies as detected in blood donors.
Development and Testing of a Method for Validating Chemical Inactivation of Ebola Virus.
Alfson, Kendra J; Griffiths, Anthony
2018-03-13
Complete inactivation of infectious Ebola virus (EBOV) is required before a sample may be removed from a Biosafety Level 4 laboratory. The United States Federal Select Agent Program regulations require that procedures used to demonstrate chemical inactivation must be validated in-house to confirm complete inactivation. The objective of this study was to develop a method for validating chemical inactivation of EBOV and then demonstrate the effectiveness of several commonly-used inactivation methods. Samples containing infectious EBOV ( Zaire ebolavirus ) in different matrices were treated, and the sample was diluted to limit the cytopathic effect of the inactivant. The presence of infectious virus was determined by assessing the cytopathic effect in Vero E6 cells. Crucially, this method did not result in a loss of infectivity in control samples, and we were able to detect less than five infectious units of EBOV ( Zaire ebolavirus ). We found that TRIzol LS reagent and RNA-Bee inactivated EBOV in serum; TRIzol LS reagent inactivated EBOV in clarified cell culture media; TRIzol reagent inactivated EBOV in tissue and infected Vero E6 cells; 10% neutral buffered formalin inactivated EBOV in tissue; and osmium tetroxide vapors inactivated EBOV on transmission electron microscopy grids. The methods described herein are easily performed and can be adapted to validate inactivation of viruses in various matrices and by various chemical methods.
Virus-encoded miRNAs in Ebola virus disease.
Duy, Janice; Honko, Anna N; Altamura, Louis A; Bixler, Sandra L; Wollen-Roberts, Suzanne; Wauquier, Nadia; O'Hearn, Aileen; Mucker, Eric M; Johnson, Joshua C; Shamblin, Joshua D; Zelko, Justine; Botto, Miriam A; Bangura, James; Coomber, Moinya; Pitt, M Louise; Gonzalez, Jean-Paul; Schoepp, Randal J; Goff, Arthur J; Minogue, Timothy D
2018-04-24
Ebola virus (EBOV) is a negative-strand RNA virus that replicates in the cytoplasm and causes an often-fatal hemorrhagic fever. EBOV, like other viruses, can reportedly encode its own microRNAs (miRNAs) to subvert host immune defenses. miRNAs are short noncoding RNAs that can regulate gene expression by hybridizing to multiple mRNAs, and viral miRNAs can enhance viral replication and infectivity by regulating host or viral genes. To date, only one EBOV miRNA has been examined in human infection. Here, we assayed mouse, rhesus macaque, cynomolgus macaque, and human samples infected with three EBOV variants for twelve computationally predicted viral miRNAs using RT-qPCR. Ten miRNAs aligned to EBOV variants and were detectable in the four species during disease with several viral miRNAs showing presymptomatic amplification in animal models. miRNA abundances in both the mouse and nonhuman primate models mirrored the human cohort, with miR-1-5p, miR-1-3p, and miR-T3-3p consistently at the highest levels. These striking similarities in the most abundant miRNAs during infection with different EBOV variants and hosts indicate that these miRNAs are potential valuable diagnostic markers and key effectors of EBOV pathogenesis.
How Ebola virus counters the interferon system.
Kühl, A; Pöhlmann, S
2012-09-01
Zoonotic transmission of Ebola virus (EBOV) to humans causes a severe haemorrhagic fever in afflicted individuals with high case-fatality rates. Neither vaccines nor therapeutics are at present available to combat EBOV infection, making the virus a potential threat to public health. To devise antiviral strategies, it is important to understand which components of the immune system could be effective against EBOV infection. The interferon (IFN) system constitutes a key innate defence against viral infections and prevents development of lethal disease in mice infected with EBOV strains not adapted to this host. Recent research revealed that expression of the host cell IFN-inducible transmembrane proteins 1-3 (IFITM1-3) and tetherin is induced by IFN and restricts EBOV infection, at least in cell culture model systems. IFITMs, tetherin and other effector molecules of the IFN system could thus pose a potent barrier against EBOV spread in humans. However, EBOV interferes with signalling events required for human cells to express these proteins. Here, we will review the strategies employed by EBOV to fight the IFN system, and we will discuss how IFITM proteins and tetherin inhibit EBOV infection. © 2012 Blackwell Verlag GmbH.
Shuai, Lei; Wang, Xijun; Wen, Zhiyuan; Ge, Jinying; Wang, Jinliang; Zhao, Dandan; Bu, Zhigao
2017-10-01
Ebola viruses (EBOVs) are zoonotic pathogens that cause EBOV disease (EVD) with high case fatality in humans. Currently, EVD vaccines are still under development in several countries. Here, we generated two recombinant rabies viruses (RABVs), rERAG 333E /ZGP and rERAG 333E /SGP, expressing the Zaire EBOV glycoprotein (ZGP) or Sudan EBOV glycoprotein (SGP) gene based on a modified ERA vaccine strain (rERAG 333E ) vector platform. The recombinant RABVs retained growth properties similar to those of the vector virus in BSR cell culture and efficiently expressed ZGP or SGP. After intracerebral (i.c.) inoculation with rERAG 333E /ZGP or rERAG 333E /SGP, all adult mice showed no signs of disease or weight loss and suckling mice maintained similar survivorship curve as those mice inoculated with control vector rERAG 333E , demonstrating that ZGP or SGP expression did not increase the virulence of the vector. Mouse immunization studies showed that vaccination with rERAG 333E /ZGP and rERAG 333E /SGP induced Zaire or Sudan EBOV neutralizing antibody (VNA) responses and IgG, IgG2a responses to ZGP or SGP, suggesting their potential as oral or inactivated bivalent vaccines against rabies and EVD. Most importantly, all dogs immunized orally with rERAG 333E /ZGP developed long-lasting ZEBOV and RABV VNA responses with or without previous rabies vaccine immunization history. Live rERAG 333E with EBOV GP thus appear to have the potential to be oral vaccines for free-roaming animals in endemic areas of EVD and rabies, and may serve as inactivated vaccines for use in humans. Copyright © 2017. Published by Elsevier B.V.
Dowall, Stuart David; Callan, Jo; Zeltina, Antra; Al-Abdulla, Ibrahim; Strecker, Thomas; Fehling, Sarah K.; Krähling, Verena; Bosworth, Andrew; Rayner, Emma; Taylor, Irene; Charlton, Sue; Landon, John; Cameron, Ian; Hewson, Roger; Nasidi, Abdulsalami; Bowden, Thomas A.; Carroll, Miles W.
2016-01-01
The highly glycosylated glycoprotein spike of Ebola virus (EBOV-GP1,2) is the primary target of the humoral host response. Recombinant EBOV-GP ectodomain (EBOV-GP1,2ecto) expressed in mammalian cells was used to immunize sheep and elicited a robust immune response and produced high titers of high avidity polyclonal antibodies. Investigation of the neutralizing activity of the ovine antisera in vitro revealed that it neutralized EBOV. A pool of intact ovine immunoglobulin G, herein termed EBOTAb, was prepared from the antisera and used for an in vivo guinea pig study. When EBOTAb was delivered 6 hours after challenge, all animals survived without experiencing fever or other clinical manifestations. In a second series of guinea pig studies, the administration of EBOTAb dosing was delayed for 48 or 72 hours after challenge, resulting in 100% and 75% survival, respectively. These studies illustrate the usefulness of EBOTAb in protecting against EBOV-induced disease. PMID:26715676
Ebola and Marburg virus vaccines.
Reynolds, Pierce; Marzi, Andrea
2017-08-01
The filoviruses, Ebola virus (EBOV), and Marburg virus (MARV), are among the most pathogenic viruses known to man and the causative agents of viral hemorrhagic fever outbreaks in Africa with case fatality rates of up to 90%. Nearly 30,000 infections were observed in the latest EBOV epidemic in West Africa; previous outbreaks were much smaller, typically only affecting less than a few hundred people. Compared to other diseases such as AIDS or Malaria with millions of cases annually, filovirus hemorrhagic fever (FHF) is one of the neglected infectious diseases. There are no licensed vaccines or therapeutics available to treat EBOV and MARV infections; therefore, these pathogens can only be handled in maximum containment laboratories and are classified as select agents. Under these limitations, a very few laboratories worldwide conducted basic research and countermeasure development for EBOV and MARV since their respective discoveries in 1967 (MARV) and 1976 (EBOV). In this review, we discuss several vaccine platforms against EBOV and MARV, which have been assessed for their protective efficacy in animal models of FHF. The focus is on the most promising approaches, which were accelerated in clinical development (phase I-III trials) during the EBOV epidemic in West Africa.
Ebola Virus Localization in the Macaque Reproductive Tract during Acute Ebola Virus Disease.
Perry, Donna L; Huzella, Louis M; Bernbaum, John G; Holbrook, Michael R; Jahrling, Peter B; Hagen, Katie R; Schnell, Matthias J; Johnson, Reed F
2018-03-01
Sexual transmission of Ebola virus (EBOV) has been demonstrated more than a year after recovery from the acute phase of Ebola virus disease (EVD). The mechanisms underlying EBOV persistence and sexual transmission are not currently understood. Using the acute macaque model of EVD, we hypothesized EBOV would infect the reproductive tissues and sought to localize the infection in these tissues using immunohistochemistry and transmission electron microscopy. In four female and eight male macaques that succumbed to EVD between 6 and 9 days after EBOV challenge, we demonstrate widespread EBOV infection of the interstitial tissues and endothelium in the ovary, uterus, testis, seminal vesicle, epididymis, and prostate gland, with minimal associated tissue immune response or organ pathology. Given the widespread involvement of EBOV in the reproductive tracts of both male and female macaques, it is reasonable to surmise that our understanding of the mechanisms underlying sexual transmission of EVD and persistence of EBOV in immune-privileged sites would be facilitated by the development of a nonhuman primate model in which the macaques survived past the acute stage into convalescence. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Differences in the Comparative Stability of Ebola Virus Makona-C05 and Yambuku-Mayinga in Blood
Schuit, Michael; Miller, David M.; Reddick-Elick, Mary S.; Wlazlowski, Carly B.; Filone, Claire Marie; Herzog, Artemas; Colf, Leremy A.; Wahl-Jensen, Victoria; Hevey, Michael; Noah, James W.
2016-01-01
In support of the response to the 2013–2016 Ebola virus disease (EVD) outbreak in Western Africa, we investigated the persistence of Ebola virus/H.sapiens-tc/GIN/2014/Makona-C05 (EBOV/Mak-C05) on non-porous surfaces that are representative of hospitals, airplanes, and personal protective equipment. We performed persistence studies in three clinically-relevant human fluid matrices (blood, simulated vomit, and feces), and at environments representative of in-flight airline passenger cabins, environmentally-controlled hospital rooms, and open-air Ebola treatment centers in Western Africa. We also compared the surface stability of EBOV/Mak-C05 to that of the prototype Ebola virus/H.sapiens-tc/COD/1976/Yambuku-Mayinga (EBOV/Yam-May), in a subset of these conditions. We show that on inert, non-porous surfaces, EBOV decay rates are matrix- and environment-dependent. Among the clinically-relevant matrices tested, EBOV persisted longest in dried human blood, had limited viability in dried simulated vomit, and did not persist in feces. EBOV/Mak-C05 and EBOV/Yam-May decay rates in dried matrices were not significantly different. However, during the drying process in human blood, EBOV/Yam-May showed significantly greater loss in viability than EBOV/Mak-C05 under environmental conditions relevant to the outbreak region, and to a lesser extent in conditions relevant to an environmentally-controlled hospital room. This factor may contribute to increased communicability of EBOV/Mak-C05 when surfaces contaminated with dried human blood are the vector and may partially explain the magnitude of the most recent outbreak, compared to prior outbreaks. These EBOV persistence data will improve public health efforts by informing risk assessments, structure remediation decisions, and response procedures for future EVD outbreaks. PMID:26849135
Cap, Andrew P.; Pidcoke, Heather F.; Keil, Shawn D.; Staples, Hilary M.; Anantpadma, Manu; Carrion, Ricardo; Davey, Robert A.; Frazer-Abel, Ashley; Taylor, Audra L.; Gonzales, Richard; Patterson, Jean L.; Goodrich, Raymond P.
2018-01-01
BACKGROUND Transfusion of plasma from recovered patients after Ebolavirus (EBOV) infection, typically called ‘convalescent plasma,’ is an effective treatment for active disease available in endemic areas, but carries the risk of introducing other pathogens, including other strains of EBOV. A pathogen reduction technology using ultraviolet light and riboflavin (UV + RB) is effective against multiple enveloped, negative-sense, single-stranded RNA viruses that are similar in structure to EBOV. We hypothesized that UV + RB is effective against EBOV in blood products without activating complement or reducing protective immunoglobulin titers that are important for the treatment of ebolavirus disease (EVD). STUDY DESIGN AND METHODS Four in vitro experiments were conducted to evaluate effects of UV + RB on green fluorescent protein EBOV (EBOV-GFP), wild-type EBOV in serum and whole blood, respectively, and on immunoglobulins and complement in plasma. Initial titers for Experiments 1–3 were: 4.21 log10 GFP units/mL, 4.96 log10 infectious units per mL, and 4.23 log10 plaque forming units per mL (PFU/mL). Conditions tested in the first three experiments included: 1. EBOV-GFP + UV + RB; 2. EBOV-GFP + RB only; 3 EBOV-GFP + UV only; 4. EBOV-GFP without RB or UV; 5. Virus-free control + UV only; and 6. Virus-free control without RB or UV. RESULTS UV + RB reduced EBOV titers to non-detectable levels in both non-human primate serum (≥ 2.8 to 3.2 log reduction) and human whole blood (≥ 3.0 log reduction) without decreasing protective antibody titers in human plasma. CONCLUSION Our in vitro results demonstrate that the UV + RB treatment efficiently reduces EBOV titers to below limits of detection in both serum and whole blood. In vivo testing to determine whether UV + RB can improve convalescent blood product safety is indicated. PMID:27001363
Spengler, Jessica R; Saturday, Greg; Lavender, Kerry J; Martellaro, Cynthia; Keck, James G; Nichol, Stuart T; Spiropoulou, Christina F; Feldmann, Heinz; Prescott, Joseph
2017-12-27
Both Ebola virus (EBOV) and Reston virus (RESTV) cause disease in nonhuman primates, yet only EBOV causes disease in humans. To investigate differences in viral pathogenicity, humanized mice (hu-NSG-SGM3) were inoculated with EBOV or RESTV. Consistent with differences in disease in human infection, pronounced weight loss and markers of hepatic damage and disease were observed exclusively in EBOV-infected mice. These abnormalities were associated with significantly higher EBOV replication in the liver but not in the spleen, suggesting that in this model, efficiency of viral replication in select tissues early in infection may contribute to differences in viral pathogenicity. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Moyen, Nanikaly; Thirion, Laurence; Emmerich, Petra; Dzia-Lepfoundzou, Amelia; Richet, Hervé; Boehmann, Yannik; Dimi, Yannick; Gallian, Pierre; Gould, Ernest A.; Günther, Stephan; de Lamballerie, Xavier
2015-01-01
Background Ebola and Marburg viruses (family Filoviridae, genera Ebolavirus and Marburgvirus) cause haemorrhagic fevers in humans, often associated with high mortality rates. The presence of antibodies to Ebola virus (EBOV) and Marburg virus (MARV) has been reported in some African countries in individuals without a history of haemorrhagic fever. In this study, we present a MARV and EBOV seroprevalence study conducted amongst blood donors in the Republic of Congo and the analysis of risk factors for contact with EBOV. Methodology and Findings In 2011, we conducted a MARV and EBOV seroprevalence study amongst 809 blood donors recruited in rural (75; 9.3%) and urban (734; 90.7%) areas of the Republic of Congo. Serum titres of IgG antibodies to MARV and EBOV were assessed by indirect double-immunofluorescence microscopy. MARV seroprevalence was 0.5% (4 in 809) without any identified risk factors. Prevalence of IgG to EBOV was 2.5%, peaking at 4% in rural areas and in Pointe Noire. Independent risk factors identified by multivariate analysis were contact with bats and exposure to birds. Conclusions/Significance This MARV and EBOV serological survey performed in the Republic of Congo identifies a probable role for environmental determinants of exposure to EBOV. It highlights the requirement for extending our understanding of the ecological and epidemiological risk of bats (previously identified as a potential ecological reservoir) and birds as vectors of EBOV to humans, and characterising the protection potentially afforded by EBOV-specific antibodies as detected in blood donors. PMID:26047124
Malik, Tasneem; Ariyarajah, Archchun; Ongpin, Patricia; Hogben, Matthew; McDonald, Suzanna L. R.; Marrinan, Jaclyn; Massaquoi, Thomas; Thorson, Anna; Ervin, Elizabeth; Bernstein, Kyle; Ross, Christine; Liu, William J.; Kroeger, Karen; Durski, Kara N.; Broutet, Nathalie; Knust, Barbara; Deen, Gibrilla F.
2017-01-01
Background During the 2014–2016 West Africa Ebola Virus Disease (EVD) epidemic, the public health community had concerns that sexual transmission of the Ebola virus (EBOV) from EVD survivors was a risk, due to EBOV persistence in body fluids of EVD survivors, particularly semen. The Sierra Leone Ebola Virus Persistence Study was initiated to investigate this risk by assessing EBOV persistence in numerous body fluids of EVD survivors and providing risk reduction counseling based on test results for semen, vaginal fluid, menstrual blood, urine, rectal fluid, sweat, tears, saliva, and breast milk. This publication describes implementation of the counseling protocol and the key lessons learned. Methodology/Principal findings The Ebola Virus Persistence Risk Reduction Behavioral Counseling Protocol was developed from a framework used to prevent transmission of HIV and other sexually transmitted infections. The framework helped to identify barriers to risk reduction and facilitated the development of a personalized risk-reduction plan, particularly around condom use and abstinence. Pre-test and post-test counseling sessions included risk reduction guidance, and post-test counseling was based on the participants’ individual test results. The behavioral counseling protocol enabled study staff to translate the study’s body fluid test results into individualized information for study participants. Conclusions/Significance The Ebola Virus Persistence Risk Reduction Behavioral Counseling Protocol provided guidance to mitigate the risk of EBOV transmission from EVD survivors. It has since been shared with and adapted by other EVD survivor body fluid testing programs and studies in Ebola-affected countries. PMID:28892490
Immunobiology of Ebola and Lassa virus infections.
Prescott, Joseph B; Marzi, Andrea; Safronetz, David; Robertson, Shelly J; Feldmann, Heinz; Best, Sonja M
2017-03-01
Two of the most important contemporary emerging viruses that affect human health in Africa are Ebola virus (EBOV) and Lassa virus (LASV). The 2013-2016 West African outbreak of EBOV was responsible for more than 11,000 deaths, primarily in Guinea, Sierra Leone and Liberia. LASV is constantly emerging in these and surrounding West African countries, with an estimate of more than 500,000 cases of Lassa fever, and approximately 5,000 deaths, annually. Both EBOV and LASV are zoonotic, and human infection often results in a severe haemorrhagic fever in both cases. However, the contribution of specific immune responses to disease differs between EBOV and LASV. This Review examines innate and adaptive immune responses to these viruses with the goal of delineating responses that are associated with protective versus pathogenic outcomes.
Wahl-Jensen, Victoria; Safronetz, David; Trost, Brett; Hoenen, Thomas; Arsenault, Ryan; Feldmann, Friederike; Traynor, Dawn; Postnikova, Elena; Kusalik, Anthony; Napper, Scott; Blaney, Joseph E.; Feldmann, Heinz; Jahrling, Peter B.
2014-01-01
ABSTRACT Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-β)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-β signaling in the kinome data sets correlated with the upregulation of TGF-β secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-β signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-β signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-β signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-β that may contribute to this process. From these observations, we propose a model for a broader role of TGF-β-mediated signaling responses in the pathogenesis of Ebola virus disease. IMPORTANCE Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman primates and is the most lethal Ebola virus species, with case fatality rates of up to 90%. Although EBOV is considered a worldwide concern, many questions remain regarding EBOV molecular pathogenesis. As it is appreciated that many cellular processes are regulated through kinase-mediated phosphorylation events, we employed temporal kinome analysis to investigate the functional responses of human hepatocytes to EBOV infection. Administration of kinase inhibitors targeting signaling pathway intermediates identified in our kinome analysis inhibited viral replication in vitro and reduced EBOV pathogenesis in vivo. Further analysis of our data also demonstrated that EBOV infection modulated TGF-β-mediated signaling responses and promoted “mesenchyme-like” phenotypic changes. Taken together, these results demonstrated that EBOV infection specifically modulates TGF-β-mediated signaling responses in epithelial cells and may have broader implications in EBOV pathogenesis. PMID:24942569
Serological evidence of Ebola virus infection in Indonesian orangutans.
Nidom, Chairul A; Nakayama, Eri; Nidom, Reviany V; Alamudi, Mohamad Y; Daulay, Syafril; Dharmayanti, Indi N L P; Dachlan, Yoes P; Amin, Mohamad; Igarashi, Manabu; Miyamoto, Hiroko; Yoshida, Reiko; Takada, Ayato
2012-01-01
Ebola virus (EBOV) and Marburg virus (MARV) belong to the family Filoviridae and cause severe hemorrhagic fever in humans and nonhuman primates. Despite the discovery of EBOV (Reston virus) in nonhuman primates and domestic pigs in the Philippines and the serological evidence for its infection of humans and fruit bats, information on the reservoirs and potential amplifying hosts for filoviruses in Asia is lacking. In this study, serum samples collected from 353 healthy Bornean orangutans (Pongo pygmaeus) in Kalimantan Island, Indonesia, during the period from December 2005 to December 2006 were screened for filovirus-specific IgG antibodies using a highly sensitive enzyme-linked immunosorbent assay (ELISA) with recombinant viral surface glycoprotein (GP) antigens derived from multiple species of filoviruses (5 EBOV and 1 MARV species). Here we show that 18.4% (65/353) and 1.7% (6/353) of the samples were seropositive for EBOV and MARV, respectively, with little cross-reactivity among EBOV and MARV antigens. In these positive samples, IgG antibodies to viral internal proteins were also detected by immunoblotting. Interestingly, while the specificity for Reston virus, which has been recognized as an Asian filovirus, was the highest in only 1.4% (5/353) of the serum samples, the majority of EBOV-positive sera showed specificity to Zaire, Sudan, Cote d'Ivoire, or Bundibugyo viruses, all of which have been found so far only in Africa. These results suggest the existence of multiple species of filoviruses or unknown filovirus-related viruses in Indonesia, some of which are serologically similar to African EBOVs, and transmission of the viruses from yet unidentified reservoir hosts into the orangutan populations. Our findings point to the need for risk assessment and continued surveillance of filovirus infection of human and nonhuman primates, as well as wild and domestic animals, in Asia.
Serological Evidence of Ebola Virus Infection in Indonesian Orangutans
Nidom, Reviany V.; Alamudi, Mohamad Y.; Daulay, Syafril; Dharmayanti, Indi N. L. P.; Dachlan, Yoes P.; Amin, Mohamad; Igarashi, Manabu; Miyamoto, Hiroko; Yoshida, Reiko; Takada, Ayato
2012-01-01
Ebola virus (EBOV) and Marburg virus (MARV) belong to the family Filoviridae and cause severe hemorrhagic fever in humans and nonhuman primates. Despite the discovery of EBOV (Reston virus) in nonhuman primates and domestic pigs in the Philippines and the serological evidence for its infection of humans and fruit bats, information on the reservoirs and potential amplifying hosts for filoviruses in Asia is lacking. In this study, serum samples collected from 353 healthy Bornean orangutans (Pongo pygmaeus) in Kalimantan Island, Indonesia, during the period from December 2005 to December 2006 were screened for filovirus-specific IgG antibodies using a highly sensitive enzyme-linked immunosorbent assay (ELISA) with recombinant viral surface glycoprotein (GP) antigens derived from multiple species of filoviruses (5 EBOV and 1 MARV species). Here we show that 18.4% (65/353) and 1.7% (6/353) of the samples were seropositive for EBOV and MARV, respectively, with little cross-reactivity among EBOV and MARV antigens. In these positive samples, IgG antibodies to viral internal proteins were also detected by immunoblotting. Interestingly, while the specificity for Reston virus, which has been recognized as an Asian filovirus, was the highest in only 1.4% (5/353) of the serum samples, the majority of EBOV-positive sera showed specificity to Zaire, Sudan, Cote d’Ivoire, or Bundibugyo viruses, all of which have been found so far only in Africa. These results suggest the existence of multiple species of filoviruses or unknown filovirus-related viruses in Indonesia, some of which are serologically similar to African EBOVs, and transmission of the viruses from yet unidentified reservoir hosts into the orangutan populations. Our findings point to the need for risk assessment and continued surveillance of filovirus infection of human and nonhuman primates, as well as wild and domestic animals, in Asia. PMID:22815803
Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing.
Shrivastava-Ranjan, Punya; Flint, Mike; Bergeron, Éric; McElroy, Anita K; Chatterjee, Payel; Albariño, César G; Nichol, Stuart T; Spiropoulou, Christina F
2018-05-01
Ebola virus (EBOV) infection is a major public health concern due to high fatality rates and limited effective treatments. Statins, widely used cholesterol-lowering drugs, have pleiotropic mechanisms of action and were suggested as potential adjunct therapy for Ebola virus disease (EVD) during the 2013-2016 outbreak in West Africa. Here, we evaluated the antiviral effects of statin (lovastatin) on EBOV infection in vitro Statin treatment decreased infectious EBOV production in primary human monocyte-derived macrophages and in the hepatic cell line Huh7. Statin treatment did not interfere with viral entry, but the viral particles released from treated cells showed reduced infectivity due to inhibition of viral glycoprotein processing, as evidenced by decreased ratios of the mature glycoprotein form to precursor form. Statin-induced inhibition of infectious virus production and glycoprotein processing was reversed by exogenous mevalonate, the rate-limiting product of the cholesterol biosynthesis pathway, but not by low-density lipoprotein. Finally, statin-treated cells produced EBOV particles devoid of the surface glycoproteins required for virus infectivity. Our findings demonstrate that statin treatment inhibits EBOV infection and suggest that the efficacy of statin treatment should be evaluated in appropriate animal models of EVD. IMPORTANCE Treatments targeting Ebola virus disease (EVD) are experimental, expensive, and scarce. Statins are inexpensive generic drugs that have been used for many years for the treatment of hypercholesterolemia and have a favorable safety profile. Here, we show the antiviral effects of statins on infectious Ebola virus (EBOV) production. Our study reveals a novel molecular mechanism in which statin regulates EBOV particle infectivity by preventing glycoprotein processing and incorporation into virus particles. Additionally, statins have anti-inflammatory and immunomodulatory effects. Since inflammation and dysregulation of the immune system are characteristic features of EVD, statins could be explored as part of EVD therapeutics.
Matassov, Demetrius; Marzi, Andrea; Latham, Terri; Xu, Rong; Ota-Setlik, Ayuko; Feldmann, Friederike; Geisbert, Joan B.; Mire, Chad E.; Hamm, Stefan; Nowak, Becky; Egan, Michael A.; Geisbert, Thomas W.; Eldridge, John H.; Feldmann, Heinz; Clarke, David K.
2015-01-01
Previously, recombinant vesicular stomatitis virus (rVSV) pseudotypes expressing Ebolavirus glycoproteins (GPs) in place of the VSV G protein demonstrated protection of nonhuman primates from lethal homologous Ebolavirus challenge. Those pseudotype vectors contained no additional attenuating mutations in the rVSV genome. Here we describe rVSV vectors containing a full complement of VSV genes and expressing the Ebola virus (EBOV) GP from an additional transcription unit. These rVSV vectors contain the same combination of attenuating mutations used previously in the clinical development pathway of an rVSV/human immunodeficiency virus type 1 vaccine. One of these rVSV vectors (N4CT1-EBOVGP1), which expresses membrane-anchored EBOV GP from the first position in the genome (GP1), elicited a balanced cellular and humoral GP-specific immune response in mice. Guinea pigs immunized with a single dose of this vector were protected from any signs of disease following lethal EBOV challenge, while control animals died in 7–9 days. Subsequently, N4CT1-EBOVGP1 demonstrated complete, single-dose protection of 2 macaques following lethal EBOV challenge. A single sham-vaccinated macaque died from disease due to EBOV infection. These results demonstrate that highly attenuated rVSV vectors expressing EBOV GP may provide safer alternatives to current EBOV vaccines. PMID:26109675
Evolutionary conservation of Ebola virus proteins predicts important functions at residue level.
Arslan, Ahmed; van Noort, Vera
2017-01-15
The recent outbreak of Ebola virus disease (EVD) resulted in a large number of human deaths. Due to this devastation, the Ebola virus has attracted renewed interest as model for virus evolution. Recent literature on Ebola virus (EBOV) has contributed substantially to our understanding of the underlying genetics and its scope with reference to the 2014 outbreak. But no study yet, has focused on the conservation patterns of EBOV proteins. We analyzed the evolution of functional regions of EBOV and highlight the function of conserved residues in protein activities. We apply an array of computational tools to dissect the functions of EBOV proteins in detail: (i) protein sequence conservation, (ii) protein-protein interactome analysis, (iii) structural modeling and (iv) kinase prediction. Our results suggest the presence of novel post-translational modifications in EBOV proteins and their role in the modulation of protein functions and protein interactions. Moreover, on the basis of the presence of ATM recognition motifs in all EBOV proteins we postulate a role of DNA damage response pathways and ATM kinase in EVD. The ATM kinase is put forward, for further evaluation, as novel potential therapeutic target. http://www.biw.kuleuven.be/CSB/EBOV-PTMs CONTACT: vera.vannoort@biw.kuleuven.beSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Ebola Virus Enters Host Cells by Macropinocytosis and Clathrin-Mediated Endocytosis
Aleksandrowicz, Paulina; Marzi, Andrea; Biedenkopf, Nadine; Beimforde, Nadine; Becker, Stephan; Hoenen, Thomas; Feldmann, Heinz
2011-01-01
Virus entry into host cells is the first step of infection and a crucial determinant of pathogenicity. Here we show that Ebola virus-like particles (EBOV-VLPs) composed of the glycoprotein GP1,2 and the matrix protein VP40 use macropinocytosis and clathrin-mediated endocytosis to enter cells. EBOV-VLPs applied to host cells induced actin-driven ruffling and enhanced FITC-dextran uptake, which indicated macropinocytosis as the main entry mechanism. This was further supported by inhibition of entry through inhibitors of actin polymerization (latrunculin A), Na+/H+-exchanger (EIPA), and PI3-kinase (wortmannin). A fraction of EBOV-VLPs, however, colocalized with clathrin heavy chain (CHC), and VLP uptake was reduced by CHC small interfering RNA transfection and expression of the dominant negative dynamin II–K44A mutant. In contrast, we found no evidence that EBOV-VLPs enter cells via caveolae. This work identifies macropinocytosis as the major, and clathrin-dependent endocytosis as an alternative, entry route for EBOV particles. Therefore, EBOV seems to utilize different entry pathways depending on both cell type and virus particle size. PMID:21987776
Bharaj, Preeti; Atkins, Colm; Luthra, Priya; Giraldo, Maria Isabel; Dawes, Brian E; Miorin, Lisa; Johnson, Jeffrey R; Krogan, Nevan J; Basler, Christopher F; Freiberg, Alexander N; Rajsbaum, Ricardo
2017-09-15
Ebola virus (EBOV), a member of the Filoviridae family, is a highly pathogenic virus that causes severe hemorrhagic fever in humans and is responsible for epidemics throughout sub-Saharan, central, and West Africa. The EBOV genome encodes VP35, an important viral protein involved in virus replication by acting as an essential cofactor of the viral polymerase as well as a potent antagonist of the host antiviral type I interferon (IFN-I) system. By using mass spectrometry analysis and coimmunoprecipitation assays, we show here that VP35 is ubiquitinated on lysine 309 (K309), a residue located on its IFN antagonist domain. We also found that VP35 interacts with TRIM6, a member of the E3-ubiquitin ligase tripartite motif (TRIM) family. We recently reported that TRIM6 promotes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, to induce efficient antiviral IFN-I-mediated responses. Consistent with this notion, VP35 also associated noncovalently with polyubiquitin chains and inhibited TRIM6-mediated IFN-I induction. Intriguingly, we also found that TRIM6 enhances EBOV polymerase activity in a minigenome assay and TRIM6 knockout cells have reduced replication of infectious EBOV, suggesting that VP35 hijacks TRIM6 to promote EBOV replication through ubiquitination. Our work provides evidence that TRIM6 is an important host cellular factor that promotes EBOV replication, and future studies will focus on whether TRIM6 could be targeted for therapeutic intervention against EBOV infection. IMPORTANCE EBOV belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans and other mammals with high mortality rates (40 to 90%). Because of its high pathogenicity and lack of licensed antivirals and vaccines, EBOV is listed as a tier 1 select-agent risk group 4 pathogen. An important mechanism for the severity of EBOV infection is its suppression of innate immune responses. The EBOV VP35 protein contributes to pathogenesis, because it serves as an essential cofactor of the viral polymerase as well as a potent antagonist of innate immunity. However, how VP35 function is regulated by host cellular factors is poorly understood. Here, we report that the host E3-ubiquitin ligase TRIM6 promotes VP35 ubiquitination and is important for efficient virus replication. Therefore, our study identifies a new host factor, TRIM6, as a potential target in the development of antiviral drugs against EBOV. Copyright © 2017 American Society for Microbiology.
Bharaj, Preeti; Atkins, Colm; Luthra, Priya; Giraldo, Maria Isabel; Dawes, Brian E.; Miorin, Lisa; Johnson, Jeffrey R.; Krogan, Nevan J.; Basler, Christopher F.; Freiberg, Alexander N.
2017-01-01
ABSTRACT Ebola virus (EBOV), a member of the Filoviridae family, is a highly pathogenic virus that causes severe hemorrhagic fever in humans and is responsible for epidemics throughout sub-Saharan, central, and West Africa. The EBOV genome encodes VP35, an important viral protein involved in virus replication by acting as an essential cofactor of the viral polymerase as well as a potent antagonist of the host antiviral type I interferon (IFN-I) system. By using mass spectrometry analysis and coimmunoprecipitation assays, we show here that VP35 is ubiquitinated on lysine 309 (K309), a residue located on its IFN antagonist domain. We also found that VP35 interacts with TRIM6, a member of the E3-ubiquitin ligase tripartite motif (TRIM) family. We recently reported that TRIM6 promotes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, to induce efficient antiviral IFN-I-mediated responses. Consistent with this notion, VP35 also associated noncovalently with polyubiquitin chains and inhibited TRIM6-mediated IFN-I induction. Intriguingly, we also found that TRIM6 enhances EBOV polymerase activity in a minigenome assay and TRIM6 knockout cells have reduced replication of infectious EBOV, suggesting that VP35 hijacks TRIM6 to promote EBOV replication through ubiquitination. Our work provides evidence that TRIM6 is an important host cellular factor that promotes EBOV replication, and future studies will focus on whether TRIM6 could be targeted for therapeutic intervention against EBOV infection. IMPORTANCE EBOV belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans and other mammals with high mortality rates (40 to 90%). Because of its high pathogenicity and lack of licensed antivirals and vaccines, EBOV is listed as a tier 1 select-agent risk group 4 pathogen. An important mechanism for the severity of EBOV infection is its suppression of innate immune responses. The EBOV VP35 protein contributes to pathogenesis, because it serves as an essential cofactor of the viral polymerase as well as a potent antagonist of innate immunity. However, how VP35 function is regulated by host cellular factors is poorly understood. Here, we report that the host E3-ubiquitin ligase TRIM6 promotes VP35 ubiquitination and is important for efficient virus replication. Therefore, our study identifies a new host factor, TRIM6, as a potential target in the development of antiviral drugs against EBOV. PMID:28679761
Comparative analysis of Ebola virus glycoprotein interactions with human and bat cells.
Kühl, Annika; Hoffmann, Markus; Müller, Marcel A; Munster, Vincent J; Gnirss, Kerstin; Kiene, Miriam; Tsegaye, Theodros Solomon; Behrens, Georg; Herrler, Georg; Feldmann, Heinz; Drosten, Christian; Pöhlmann, Stefan
2011-11-01
Infection with Ebola virus (EBOV) causes hemorrhagic fever in humans with high case-fatality rates. The EBOV-glycoprotein (EBOV-GP) facilitates viral entry and promotes viral release from human cells. African fruit bats are believed not to develop disease upon EBOV infection and have been proposed as a natural reservoir of EBOV. We compared EBOV-GP interactions with human cells and cells from African fruit bats. We found that susceptibility to EBOV-GP-dependent infection was not limited to bat cells from potential reservoir species, and we observed that GP displayed similar biological properties in human and bat cells. The only exception was GP localization, which was to a greater extent intracellular in bat cells as compared to human cells. Collectively, our results suggest that GP interactions with fruit bat and human cells are similar and do not limit EBOV tropism for certain bat species.
Lüdtke, Anja; Ruibal, Paula; Wozniak, David M.; Pallasch, Elisa; Wurr, Stephanie; Bockholt, Sabrina; Gómez-Medina, Sergio; Qiu, Xiangguo; Kobinger, Gary P.; Rodríguez, Estefanía; Günther, Stephan; Krasemann, Susanne; Idoyaga, Juliana; Oestereich, Lisa; Muñoz-Fontela, César
2017-01-01
Ebola virus (EBOV) causes severe systemic disease in humans and non-human primates characterized by high levels of viremia and virus titers in peripheral organs. The natural portals of virus entry are the mucosal surfaces and the skin where macrophages and dendritic cells (DCs) are primary EBOV targets. Due to the migratory properties of DCs, EBOV infection of these cells has been proposed as a necessary step for virus dissemination via draining lymph nodes and blood. Here we utilize chimeric mice with competent hematopoietic-driven immunity, to show that EBOV primarily infects CD11b+ DCs in non-lymphoid and lymphoid tissues, but spares the main cross-presenting CD103+ DC subset. Furthermore, depletion of CD8 and CD4 T cells resulted in loss of early control of virus replication, viremia and fatal Ebola virus disease (EVD). Thus, our findings point out at T cell function as a key determinant of EVD progress and outcome. PMID:28256637
Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys.
Warren, Travis K; Jordan, Robert; Lo, Michael K; Ray, Adrian S; Mackman, Richard L; Soloveva, Veronica; Siegel, Dustin; Perron, Michel; Bannister, Roy; Hui, Hon C; Larson, Nate; Strickley, Robert; Wells, Jay; Stuthman, Kelly S; Van Tongeren, Sean A; Garza, Nicole L; Donnelly, Ginger; Shurtleff, Amy C; Retterer, Cary J; Gharaibeh, Dima; Zamani, Rouzbeh; Kenny, Tara; Eaton, Brett P; Grimes, Elizabeth; Welch, Lisa S; Gomba, Laura; Wilhelmsen, Catherine L; Nichols, Donald K; Nuss, Jonathan E; Nagle, Elyse R; Kugelman, Jeffrey R; Palacios, Gustavo; Doerffler, Edward; Neville, Sean; Carra, Ernest; Clarke, Michael O; Zhang, Lijun; Lew, Willard; Ross, Bruce; Wang, Queenie; Chun, Kwon; Wolfe, Lydia; Babusis, Darius; Park, Yeojin; Stray, Kirsten M; Trancheva, Iva; Feng, Joy Y; Barauskas, Ona; Xu, Yili; Wong, Pamela; Braun, Molly R; Flint, Mike; McMullan, Laura K; Chen, Shan-Shan; Fearns, Rachel; Swaminathan, Swami; Mayers, Douglas L; Spiropoulou, Christina F; Lee, William A; Nichol, Stuart T; Cihlar, Tomas; Bavari, Sina
2016-03-17
The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734 in vitro, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg(-1) GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734 in vitro against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.
Kugelman, Jeffrey R; Sanchez-Lockhart, Mariano; Andersen, Kristian G; Gire, Stephen; Park, Daniel J; Sealfon, Rachel; Lin, Aaron E; Wohl, Shirlee; Sabeti, Pardis C; Kuhn, Jens H; Palacios, Gustavo F
2015-01-20
Until recently, Ebola virus (EBOV) was a rarely encountered human pathogen that caused disease among small populations with extraordinarily high lethality. At the end of 2013, EBOV initiated an unprecedented disease outbreak in West Africa that is still ongoing and has already caused thousands of deaths. Recent studies revealed the genomic changes this particular EBOV variant undergoes over time during human-to-human transmission. Here we highlight the genomic changes that might negatively impact the efficacy of currently available EBOV sequence-based candidate therapeutics, such as small interfering RNAs (siRNAs), phosphorodiamidate morpholino oligomers (PMOs), and antibodies. Ten of the observed mutations modify the sequence of the binding sites of monoclonal antibody (MAb) 13F6, MAb 1H3, MAb 6D8, MAb 13C6, and siRNA EK-1, VP24, and VP35 targets and might influence the binding efficacy of the sequence-based therapeutics, suggesting that their efficacy should be reevaluated against the currently circulating strain. Copyright © 2015 Kugelman, et al.
Uebelhoer, Luke S; Albariño, César G; McMullan, Laura K; Chakrabarti, Ayan K; Vincent, Joel P; Nichol, Stuart T; Towner, Jonathan S
2014-06-01
Marburg virus (MARV) and Ebola virus (EBOV), members of the family Filoviridae, represent a significant challenge to global public health. Currently, no licensed therapies exist to treat filovirus infections, which cause up to 90% mortality in human cases. To facilitate development of antivirals against these viruses, we established two distinct screening platforms based on MARV and EBOV reverse genetics systems that express secreted Gaussia luciferase (gLuc). The first platform is a mini-genome replicon to screen viral replication inhibitors using gLuc quantification in a BSL-2 setting. The second platform is complementary to the first and expresses gLuc as a reporter gene product encoded in recombinant infectious MARV and EBOV, thereby allowing for rapid quantification of viral growth during treatment with antiviral compounds. We characterized these viruses by comparing luciferase activity to virus production, and validated luciferase activity as an authentic real-time measure of viral growth. As proof of concept, we adapt both mini-genome and infectious virus platforms to high-throughput formats, and demonstrate efficacy of several antiviral compounds. We anticipate that both approaches will prove highly useful in the development of anti-filovirus therapies, as well as in basic research on the filovirus life cycle. Published by Elsevier B.V.
Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4
Lai, Chih-Yun; Strange, Daniel P.; Wong, Teri Ann S.; Lehrer, Axel T.; Verma, Saguna
2017-01-01
Ebola virus (EBOV), a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD) is currently available, Ebola virus glycoprotein (GP) is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs). Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4 pathway and are able to modulate the innate-adaptive interface. These mechanistic insights into the adjuvant-like property of EBOV GP may help to develop a better understanding of how optimal prophylactic efficacy of EBOV vaccines can be achieved as well as further explore the potential post-exposure use of vaccines to prevent filoviral disease. PMID:28861075
Sztuba-Solinska, Joanna; Diaz, Larissa; Kumar, Mia R.; Kolb, Gaëlle; Wiley, Michael R.; Jozwick, Lucas; Kuhn, Jens H.; Palacios, Gustavo; Radoshitzky, Sheli R.; J. Le Grice, Stuart F.; Johnson, Reed F.
2016-01-01
Ebola virus (EBOV) is a single-stranded negative-sense RNA virus belonging to the Filoviridae family. The leader and trailer non-coding regions of the EBOV genome likely regulate its transcription, replication, and progeny genome packaging. We investigated the cis-acting RNA signals involved in RNA–RNA and RNA–protein interactions that regulate replication of eGFP-encoding EBOV minigenomic RNA and identified heat shock cognate protein family A (HSC70) member 8 (HSPA8) as an EBOV trailer-interacting host protein. Mutational analysis of the trailer HSPA8 binding motif revealed that this interaction is essential for EBOV minigenome replication. Selective 2′-hydroxyl acylation analyzed by primer extension analysis of the secondary structure of the EBOV minigenomic RNA indicates formation of a small stem-loop composed of the HSPA8 motif, a 3′ stem-loop (nucleotides 1868–1890) that is similar to a previously identified structure in the replicative intermediate (RI) RNA and a panhandle domain involving a trailer-to-leader interaction. Results of minigenome assays and an EBOV reverse genetic system rescue support a role for both the panhandle domain and HSPA8 motif 1 in virus replication. PMID:27651462
Mingo, Rebecca M.; Simmons, James A.; Shoemaker, Charles J.; Nelson, Elizabeth A.; Schornberg, Kathryn L.; D'Souza, Ryan S.; Casanova, James E.
2014-01-01
ABSTRACT Ebola virus (EBOV) causes hemorrhagic fevers with high mortality rates. During cellular entry, the virus is internalized by macropinocytosis and trafficked through endosomes until fusion between the viral and an endosomal membrane is triggered, releasing the RNA genome into the cytoplasm. We found that while macropinocytotic uptake of filamentous EBOV viruslike particles (VLPs) expressing the EBOV glycoprotein (GP) occurs relatively quickly, VLPs only begin to enter the cytoplasm after a 30-min lag, considerably later than particles bearing the influenza hemagglutinin or GP from lymphocytic choriomeningitis virus, which enter through late endosomes (LE). For EBOV, the long lag is not due to the large size or unusual shape of EBOV filaments, the need to prime EBOV GP to the 19-kDa receptor-binding species, or a need for unusually low endosomal pH. In contrast, since we observed that EBOV entry occurs upon arrival in Niemann-Pick C1 (NPC1)-positive endolysosomes (LE/Lys), we propose that trafficking to LE/Lys is a key rate-defining step. Additional experiments revealed, unexpectedly, that severe acute respiratory syndrome (SARS) S-mediated entry also begins only after a 30-min lag. Furthermore, although SARS does not require NPC1 for entry, SARS entry also begins after colocalization with NPC1. Since the only endosomal requirement for SARS entry is cathepsin L activity, we tested and provide evidence that NPC1+ LE/Lys have higher cathepsin L activity than LE, with no detectable activity in earlier endosomes. Our findings suggest that both EBOV and SARS traffic deep into the endocytic pathway for entry and that they do so to access higher cathepsin activity. IMPORTANCE Ebola virus is a hemorrhagic fever virus that causes high fatality rates when it spreads from zoonotic vectors into the human population. Infection by severe acute respiratory syndrome coronavirus (SARS-CoV) causes severe respiratory distress in infected patients. A devastating outbreak of EBOV occurred in West Africa in 2014, and there was a significant outbreak of SARS in 2003. No effective vaccine or treatment has yet been approved for either virus. We present evidence that both viruses traffic late into the endocytic pathway, to NPC1+ LE/Lys, in order to enter host cells, and that they do so to access high levels of cathepsin activity, which both viruses use in their fusion-triggering mechanisms. This unexpected similarity suggests an unexplored vulnerability, trafficking to NPC1+ LE/Lys, as a therapeutic target for SARS and EBOV. PMID:25552710
Electron Microscopy of Ebola Virus-Infected Cells.
Noda, Takeshi
2017-01-01
Ebola virus (EBOV) replicates in host cells, where both viral and cellular components show morphological changes during the process of viral replication from entry to budding. These steps in the replication cycle can be studied using electron microscopy (EM), including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which is one of the most useful methods for visualizing EBOV particles and EBOV-infected cells at the ultrastructural level. This chapter describes conventional methods for EM sample preparation of cultured cells infected with EBOV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinsky, Benjamin A.; Sahoo, Malaya K.; Sandlund, Johanna
The recently developed Xpert® Ebola Assay is a novel nucleic acid amplification test for simplified detection of Ebola virus (EBOV) in whole blood and buccal swab samples. The assay targets sequences in two EBOV genes, lowering the risk for new variants to escape detection in the test. The objective of this report is to present analytical characteristics of the Xpert® Ebola Assay on whole blood samples. Our study evaluated the assay’s analytical sensitivity, analytical specificity, inclusivity and exclusivity performance in whole blood specimens. EBOV RNA, inactivated EBOV, and infectious EBOV were used as targets. The dynamic range of the assay,more » the inactivation of virus, and specimen stability were also evaluated. The lower limit of detection (LoD) for the assay using inactivated virus was estimated to be 73 copies/mL (95% CI: 51–97 copies/mL). The LoD for infectious virus was estimated to be 1 plaque-forming unit/mL, and for RNA to be 232 copies/mL (95% CI 163–302 copies/mL). The assay correctly identified five different Ebola viruses, Yambuku-Mayinga, Makona-C07, Yambuku-Ecran, Gabon-Ilembe, and Kikwit-956210, and correctly excluded all non-EBOV isolates tested. The conditions used by Xpert® Ebola for inactivation of infectious virus reduced EBOV titer by ≥6 logs. In conclusion, we found the Xpert® Ebola Assay to have high analytical sensitivity and specificity for the detection of EBOV in whole blood. It offers ease of use, fast turnaround time, and remote monitoring. The test has an efficient viral inactivation protocol, fulfills inclusivity and exclusivity criteria, and has specimen stability characteristics consistent with the need for decentralized testing. The simplicity of the assay should enable testing in a wide variety of laboratory settings, including remote laboratories that are not capable of performing highly complex nucleic acid amplification tests, and during outbreaks where time to detection is critical.« less
Pinsky, Benjamin A.; Sahoo, Malaya K.; Sandlund, Johanna; ...
2015-11-12
The recently developed Xpert® Ebola Assay is a novel nucleic acid amplification test for simplified detection of Ebola virus (EBOV) in whole blood and buccal swab samples. The assay targets sequences in two EBOV genes, lowering the risk for new variants to escape detection in the test. The objective of this report is to present analytical characteristics of the Xpert® Ebola Assay on whole blood samples. Our study evaluated the assay’s analytical sensitivity, analytical specificity, inclusivity and exclusivity performance in whole blood specimens. EBOV RNA, inactivated EBOV, and infectious EBOV were used as targets. The dynamic range of the assay,more » the inactivation of virus, and specimen stability were also evaluated. The lower limit of detection (LoD) for the assay using inactivated virus was estimated to be 73 copies/mL (95% CI: 51–97 copies/mL). The LoD for infectious virus was estimated to be 1 plaque-forming unit/mL, and for RNA to be 232 copies/mL (95% CI 163–302 copies/mL). The assay correctly identified five different Ebola viruses, Yambuku-Mayinga, Makona-C07, Yambuku-Ecran, Gabon-Ilembe, and Kikwit-956210, and correctly excluded all non-EBOV isolates tested. The conditions used by Xpert® Ebola for inactivation of infectious virus reduced EBOV titer by ≥6 logs. In conclusion, we found the Xpert® Ebola Assay to have high analytical sensitivity and specificity for the detection of EBOV in whole blood. It offers ease of use, fast turnaround time, and remote monitoring. The test has an efficient viral inactivation protocol, fulfills inclusivity and exclusivity criteria, and has specimen stability characteristics consistent with the need for decentralized testing. The simplicity of the assay should enable testing in a wide variety of laboratory settings, including remote laboratories that are not capable of performing highly complex nucleic acid amplification tests, and during outbreaks where time to detection is critical.« less
Han, Ziying; Madara, Jonathan J; Liu, Yuliang; Liu, Wenbo; Ruthel, Gordon; Freedman, Bruce D; Harty, Ronald N
2015-10-01
Ebola (EBOV) is an enveloped, negative-sense RNA virus belonging to the family Filoviridae that causes hemorrhagic fever syndromes with high-mortality rates. To date, there are no licensed vaccines or therapeutics to control EBOV infection and prevent transmission. Consequently, the need to better understand the mechanisms that regulate virus transmission is critical to developing countermeasures. The EBOV VP40 matrix protein plays a central role in late stages of virion assembly and egress, and independent expression of VP40 leads to the production of virus-like particles (VLPs) by a mechanism that accurately mimics budding of live virus. VP40 late (L) budding domains mediate efficient virus-cell separation by recruiting host ESCRT and ESCRT-associated proteins to complete the membrane fission process. L-domains consist of core consensus amino acid motifs including PPxY, P(T/S)AP, and YPx(n)L/I, and EBOV VP40 contains overlapping PPxY and PTAP motifs whose interactions with Nedd4 and Tsg101, respectively, have been characterized extensively. Here, we present data demonstrating for the first time that EBOV VP40 possesses a third L-domain YPx(n)L/I consensus motif that interacts with the ESCRT-III protein Alix. We show that the YPx(n)L/I motif mapping to amino acids 18-26 of EBOV VP40 interacts with the Alix Bro1-V fragment, and that siRNA knockdown of endogenous Alix expression inhibits EBOV VP40 VLP egress. Furthermore, overexpression of Alix Bro1-V rescues VLP production of the budding deficient EBOV VP40 double PTAP/PPEY L-domain deletion mutant to wild-type levels. Together, these findings demonstrate that EBOV VP40 recruits host Alix via a YPx(n)L/I motif that can function as an alternative L-domain to promote virus egress. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Retinal Pigment Epithelial Cells are a Potential Reservoir for Ebola Virus in the Human Eye
Smith, Justine R.; Todd, Shawn; Ashander, Liam M.; Charitou, Theodosia; Ma, Yuefang; Yeh, Steven; Crozier, Ian; Michael, Michael Z.; Appukuttan, Binoy; Williams, Keryn A.; Lynn, David J.; Marsh, Glenn A.
2017-01-01
Purpose Success of Ebola virus (EBOV) as a human pathogen relates at the molecular level primarily to blockade the host cell type I interferon (IFN) antiviral response. Most individuals who survive Ebola virus disease (EVD) develop a chronic disease syndrome: approximately one-quarter of survivors suffer from uveitis, which has been associated with presence of EBOV within the eye. Clinical observations of post-Ebola uveitis indicate involvement of retinal pigment epithelial cells. Methods We inoculated ARPE-19 human retinal pigment epithelial cells with EBOV, and followed course of infection by immunocytochemistry and measurement of titer in culture supernatant. To interrogate transcriptional responses of infected cells, we combined RNA sequencing with in silico pathway, gene ontology, transcription factor binding site, and network analyses. We measured infection-induced changes of selected transcripts by reverse transcription-quantitative polymerase chain reaction. Results Human retinal pigment epithelial cells were permissive to infection with EBOV, and supported viral replication and release of virus in high titer. Unexpectedly, 28% of 560 upregulated transcripts in EBOV-infected cells were type I IFN responsive, indicating a robust type I IFN response. Following EBOV infection, cells continued to express multiple immunomodulatory molecules linked to ocular immune privilege. Conclusions Human retinal pigment epithelial cells may serve as an intraocular reservoir for EBOV, and the molecular response of infected cells may contribute to the persistence of live EBOV within the human eye. Translational Relevance This bedside-to-bench research links ophthalmic findings in survivors of EVD who suffer from uveitis with interactions between retinal pigment epithelial cells and EBOV. PMID:28721309
RNA Editing of the GP Gene of Ebola Virus is an Important Pathogenicity Factor.
Volchkova, Valentina A; Dolnik, Olga; Martinez, Mikel J; Reynard, Olivier; Volchkov, Viktor E
2015-10-01
Synthesis of the surface glycoprotein GP of Ebola virus (EBOV) is dependent on transcriptional RNA editing, whereas direct expression of the GP gene results in synthesis of nonstructural secreted glycoprotein sGP. In this study, we investigate the role of RNA editing in the pathogenicity of EBOV using a guinea pig model and recombinant guinea pig-adapted EBOV containing mutations at the editing site, allowing expression of surface GP without the need for RNA editing, and also preventing synthesis of sGP. We demonstrate that the elimination of the editing site leads to EBOV attenuation in vivo, explained by lower virus spread caused by the higher virus cytotoxicity and, most likely, by an increased ability of the host defense systems to recognize and eliminate virus-infected cells. We also demonstrate that expression of sGP does not affect pathogenicity of EBOV in guinea pigs. In conclusion, data obtained indicate that downregulation of the level of surface GP expression through a mechanism of GP gene RNA editing plays an important role in the high pathogenicity of EBOV. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi; Hoenen, Thomas; Olejnik, Judith; Schümann, Michael; Ebihara, Hideki
2014-01-01
ABSTRACT Ebola virus (EBOV) belongs to the group of nonsegmented negative-sense RNA viruses. The seven EBOV genes are separated by variable gene borders, including short (4- or 5-nucleotide) intergenic regions (IRs), a single long (144-nucleotide) IR, and gene overlaps, where the neighboring gene end and start signals share five conserved nucleotides. The unique structure of the gene overlaps and the presence of a single long IR are conserved among all filoviruses. Here, we sought to determine the impact of the EBOV gene borders during viral transcription. We show that readthrough mRNA synthesis occurs in EBOV-infected cells irrespective of the structure of the gene border, indicating that the gene overlaps do not promote recognition of the gene end signal. However, two consecutive gene end signals at the VP24 gene might improve termination at the VP24-L gene border, ensuring efficient L gene expression. We further demonstrate that the long IR is not essential for but regulates transcription reinitiation in a length-dependent but sequence-independent manner. Mutational analysis of bicistronic minigenomes and recombinant EBOVs showed no direct correlation between IR length and reinitiation rates but demonstrated that specific IR lengths not found naturally in filoviruses profoundly inhibit downstream gene expression. Intriguingly, although truncation of the 144-nucleotide-long IR to 5 nucleotides did not substantially affect EBOV transcription, it led to a significant reduction of viral growth. IMPORTANCE Our current understanding of EBOV transcription regulation is limited due to the requirement for high-containment conditions to study this highly pathogenic virus. EBOV is thought to share many mechanistic features with well-analyzed prototype nonsegmented negative-sense RNA viruses. A single polymerase entry site at the 3′ end of the genome determines that transcription of the genes is mainly controlled by gene order and cis-acting signals found at the gene borders. Here, we examined the regulatory role of the structurally unique EBOV gene borders during viral transcription. Our data suggest that transcriptional regulation in EBOV is highly complex and differs from that in prototype viruses and further the understanding of this most fundamental process in the filovirus replication cycle. Moreover, our results with recombinant EBOVs suggest a novel role of the long IR found in all filovirus genomes during the viral replication cycle. PMID:25142600
Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi; Hoenen, Thomas; Olejnik, Judith; Schümann, Michael; Ebihara, Hideki; Mühlberger, Elke
2014-11-01
Ebola virus (EBOV) belongs to the group of nonsegmented negative-sense RNA viruses. The seven EBOV genes are separated by variable gene borders, including short (4- or 5-nucleotide) intergenic regions (IRs), a single long (144-nucleotide) IR, and gene overlaps, where the neighboring gene end and start signals share five conserved nucleotides. The unique structure of the gene overlaps and the presence of a single long IR are conserved among all filoviruses. Here, we sought to determine the impact of the EBOV gene borders during viral transcription. We show that readthrough mRNA synthesis occurs in EBOV-infected cells irrespective of the structure of the gene border, indicating that the gene overlaps do not promote recognition of the gene end signal. However, two consecutive gene end signals at the VP24 gene might improve termination at the VP24-L gene border, ensuring efficient L gene expression. We further demonstrate that the long IR is not essential for but regulates transcription reinitiation in a length-dependent but sequence-independent manner. Mutational analysis of bicistronic minigenomes and recombinant EBOVs showed no direct correlation between IR length and reinitiation rates but demonstrated that specific IR lengths not found naturally in filoviruses profoundly inhibit downstream gene expression. Intriguingly, although truncation of the 144-nucleotide-long IR to 5 nucleotides did not substantially affect EBOV transcription, it led to a significant reduction of viral growth. Our current understanding of EBOV transcription regulation is limited due to the requirement for high-containment conditions to study this highly pathogenic virus. EBOV is thought to share many mechanistic features with well-analyzed prototype nonsegmented negative-sense RNA viruses. A single polymerase entry site at the 3' end of the genome determines that transcription of the genes is mainly controlled by gene order and cis-acting signals found at the gene borders. Here, we examined the regulatory role of the structurally unique EBOV gene borders during viral transcription. Our data suggest that transcriptional regulation in EBOV is highly complex and differs from that in prototype viruses and further the understanding of this most fundamental process in the filovirus replication cycle. Moreover, our results with recombinant EBOVs suggest a novel role of the long IR found in all filovirus genomes during the viral replication cycle. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Kelly, J Daniel; Barrie, Mohamed Bailor; Mesman, Annelies W; Karku, Sahr; Quiwa, Komba; Drasher, Michael; Schlough, Gabriel Warren; Dierberg, Kerry; Koedoyoma, Songor; Lindan, Christina P; Jones, James Holland; Chamie, Gabriel; Worden, Lee; Greenhouse, Bryan; Weiser, Sheri D; Porco, Travis C; Rutherford, George W; Richardson, Eugene T
2018-03-28
Studies have yet to include minimally symptomatic Ebola virus (EBOV) infections and unrecognized Ebola virus disease (EVD) in Ebola-related transmission chains and epidemiologic risk estimates. We conducted a cross-sectional, sero-epidemiological survey from October 2015 to January 2016 among 221 individuals living in quarantined households from November 2014 to February 2015 during the Ebola outbreak in the village of Sukudu, Sierra Leone. Of 48 EBOV-infected persons, 25% (95% confidence interval [CI], 14%-40%) had minimally symptomatic EBOV infections and 4% (95% CI, 1%-14%) were unrecognized EVD cases. The pattern of minimally symptomatic EBOV infections in the transmission chain was nonrandom (P < .001, permutation test). Not having lived in the same house as an EVD case was significantly associated with minimally symptomatic infection. This is the first study to investigate a chain of EBOV transmission inclusive of minimally symptomatic EBOV infections and unrecognized EVD. Our findings provide new insights into Ebola transmission dynamics and quarantine practices.
Yang, Shu; Xu, Miao; Lee, Emily M; Gorshkov, Kirill; Shiryaev, Sergey A; He, Shihua; Sun, Wei; Cheng, Yu-Shan; Hu, Xin; Tharappel, Anil Mathew; Lu, Billy; Pinto, Antonella; Farhy, Chen; Huang, Chun-Teng; Zhang, Zirui; Zhu, Wenjun; Wu, Yuying; Zhou, Yi; Song, Guang; Zhu, Heng; Shamim, Khalida; Martínez-Romero, Carles; García-Sastre, Adolfo; Preston, Richard A; Jayaweera, Dushyantha T; Huang, Ruili; Huang, Wenwei; Xia, Menghang; Simeonov, Anton; Ming, Guoli; Qiu, Xiangguo; Terskikh, Alexey V; Tang, Hengli; Song, Hongjun; Zheng, Wei
2018-01-01
The re-emergence of Zika virus (ZIKV) and Ebola virus (EBOV) poses serious and continued threats to the global public health. Effective therapeutics for these maladies is an unmet need. Here, we show that emetine, an anti-protozoal agent, potently inhibits ZIKV and EBOV infection with a low nanomolar half maximal inhibitory concentration (IC 50 ) in vitro and potent activity in vivo. Two mechanisms of action for emetine are identified: the inhibition of ZIKV NS5 polymerase activity and disruption of lysosomal function. Emetine also inhibits EBOV entry. Cephaeline, a desmethyl analog of emetine, which may be better tolerated in patients than emetine, exhibits a similar efficacy against both ZIKV and EBOV infections. Hence, emetine and cephaeline offer pharmaceutical therapies against both ZIKV and EBOV infection.
Kindrachuk, Jason; Wahl-Jensen, Victoria; Safronetz, David; Trost, Brett; Hoenen, Thomas; Arsenault, Ryan; Feldmann, Friederike; Traynor, Dawn; Postnikova, Elena; Kusalik, Anthony; Napper, Scott; Blaney, Joseph E; Feldmann, Heinz; Jahrling, Peter B
2014-09-01
Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-β)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-β signaling in the kinome data sets correlated with the upregulation of TGF-β secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-β signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-β signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-β signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-β that may contribute to this process. From these observations, we propose a model for a broader role of TGF-β-mediated signaling responses in the pathogenesis of Ebola virus disease. Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman primates and is the most lethal Ebola virus species, with case fatality rates of up to 90%. Although EBOV is considered a worldwide concern, many questions remain regarding EBOV molecular pathogenesis. As it is appreciated that many cellular processes are regulated through kinase-mediated phosphorylation events, we employed temporal kinome analysis to investigate the functional responses of human hepatocytes to EBOV infection. Administration of kinase inhibitors targeting signaling pathway intermediates identified in our kinome analysis inhibited viral replication in vitro and reduced EBOV pathogenesis in vivo. Further analysis of our data also demonstrated that EBOV infection modulated TGF-β-mediated signaling responses and promoted "mesenchyme-like" phenotypic changes. Taken together, these results demonstrated that EBOV infection specifically modulates TGF-β-mediated signaling responses in epithelial cells and may have broader implications in EBOV pathogenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Ren, Shoufeng; Wei, Qimei; Cai, Liya; Yang, Xuejing; Xing, Cuicui; Tan, Feng; Leavenworth, Jianmei W.; Liang, Shaohui; Liu, Wenquan
2018-01-01
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and no approved therapeutics or vaccine is currently available. Glycoprotein (GP) is the major protective antigen of EBOV, and can generate virus-like particles (VLPs) by co-expression with matrix protein (VP40). In this study, we constructed a recombinant Alphavirus Semliki Forest virus (SFV) replicon vector DREP to express EBOV GP and matrix viral protein (VP40). EBOV VLPs were successfully generated and achieved budding from 293 cells after co-transfection with DREP-based GP and VP40 vectors (DREP-GP+DREP-VP40). Vaccination of BALB/c mice with DREP-GP, DREP-VP40, or DREP-GP+DREP-VP40 vectors, followed by immediate electroporation resulted in a mixed IgG subclass production, which recognized EBOV GP and/or VP40 proteins. This vaccination regimen also led to the generation of both Th1 and Th2 cellular immune responses in mice. Notably, vaccination with DREP-GP and DREP-VP40, which produces both GP and VP40 antigens, induced a significantly higher level of anti-GP IgG2a antibody and increased IFN-γ secreting CD8+ T-cell responses relative to vaccination with DREP-GP or DREP-VP40 vector alone. Our study indicates that co-expression of GP and VP40 antigens based on the SFV replicon vector generates EBOV VLPs in vitro, and vaccination with recombinant DREP vectors containing GP and VP40 antigens induces Ebola antigen-specific humoral and cellular immune responses in mice. This novel approach provides a simple and efficient vaccine platform for Ebola disease prevention. PMID:29375526
Brinkmann, Constantin; Nehlmeier, Inga; Walendy-Gnirß, Kerstin; Nehls, Julia; González Hernández, Mariana; Hoffmann, Markus; Qiu, Xiangguo; Takada, Ayato; Schindler, Michael; Pöhlmann, Stefan
2016-12-15
The glycoprotein of Ebola virus (EBOV GP), a member of the family Filoviridae, facilitates viral entry into target cells. In addition, EBOV GP antagonizes the antiviral activity of the host cell protein tetherin, which may otherwise restrict EBOV release from infected cells. However, it is unclear how EBOV GP antagonizes tetherin, and it is unknown whether the GP of Lloviu virus (LLOV), a filovirus found in dead bats in Northern Spain, also counteracts tetherin. Here, we show that LLOV GP antagonizes tetherin, indicating that tetherin may not impede LLOV spread in human cells. Moreover, we demonstrate that appropriate processing of N-glycans in tetherin/GP-coexpressing cells is required for tetherin counteraction by EBOV GP. Furthermore, we show that an intact receptor-binding domain (RBD) in the GP1 subunit of EBOV GP is a prerequisite for tetherin counteraction. In contrast, blockade of Niemann-Pick disease type C1 (NPC1), a cellular binding partner of the RBD, did not interfere with tetherin antagonism. Finally, we provide evidence that an antibody directed against GP1, which protects mice from a lethal EBOV challenge, may block GP-dependent tetherin antagonism. Our data, in conjunction with previous reports, indicate that tetherin antagonism is conserved among the GPs of all known filoviruses and demonstrate that the GP1 subunit of EBOV GP plays a central role in tetherin antagonism. Filoviruses are reemerging pathogens that constitute a public health threat. Understanding how Ebola virus (EBOV), a highly pathogenic filovirus responsible for the 2013-2016 Ebola virus disease epidemic in western Africa, counteracts antiviral effectors of the innate immune system might help to define novel targets for antiviral intervention. Similarly, determining whether Lloviu virus (LLOV), a filovirus detected in bats in northern Spain, is inhibited by innate antiviral effectors in human cells might help to determine whether the virus constitutes a threat to humans. The present study shows that LLOV, like EBOV, counteracts the antiviral effector protein tetherin via its glycoprotein (GP), suggesting that tetherin does not pose a defense against LLOV spread in humans. Moreover, our work identifies the GP1 subunit of EBOV GP, in particular an intact receptor-binding domain, as critical for tetherin counteraction and provides evidence that antibodies directed against GP1 can interfere with tetherin counteraction. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Dowall, Stuart David; Callan, Jo; Zeltina, Antra; Al-Abdulla, Ibrahim; Strecker, Thomas; Fehling, Sarah K; Krähling, Verena; Bosworth, Andrew; Rayner, Emma; Taylor, Irene; Charlton, Sue; Landon, John; Cameron, Ian; Hewson, Roger; Nasidi, Abdulsalami; Bowden, Thomas A; Carroll, Miles W
2016-04-01
The highly glycosylated glycoprotein spike of Ebola virus (EBOV-GP1,2) is the primary target of the humoral host response. Recombinant EBOV-GP ectodomain (EBOV-GP1,2ecto) expressed in mammalian cells was used to immunize sheep and elicited a robust immune response and produced high titers of high avidity polyclonal antibodies. Investigation of the neutralizing activity of the ovine antisera in vitro revealed that it neutralized EBOV. A pool of intact ovine immunoglobulin G, herein termed EBOTAb, was prepared from the antisera and used for an in vivo guinea pig study. When EBOTAb was delivered 6 hours after challenge, all animals survived without experiencing fever or other clinical manifestations. In a second series of guinea pig studies, the administration of EBOTAb dosing was delayed for 48 or 72 hours after challenge, resulting in 100% and 75% survival, respectively. These studies illustrate the usefulness of EBOTAb in protecting against EBOV-induced disease. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America.
A review on the antagonist Ebola: A prophylactic approach.
Khan, Fatima Nazish; Qazi, Sahar; Tanveer, Khushnuma; Raza, Khalid
2017-12-01
Ebola virus (EBOV), a member of Filoviridae virus family under the genus Ebolavirus, has emerged as a dangerous and potential threat to human health globally. It causes a severe and deadly hemorrhagic fever in humans and other mammals, called Ebola Virus Disease (EVD). In recent outbreaks of EVD, there has been loss of large numbers of individual's life. Therefore, EBOV has attracted researchers and increased interests in developing new models for virus evolution, and therapies. The EBOV interacts with the immune system of the host which led to understand how the virus functions and effects immune system behaviour. This article presents an exhaustive review on Ebola research which includes EVD illness, symptoms, transmission patterns, patho-physiology conditions, development of antiviral agents and vaccines, resilient health system, dynamics and mathematical model of EBOV, challenges and prospects for future studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Nelson, Emily V; Pacheco, Jennifer R; Hume, Adam J; Cressey, Tessa N; Deflubé, Laure R; Ruedas, John B; Connor, John H; Ebihara, Hideki; Mühlberger, Elke
2017-10-01
Ebola virus (EBOV) causes a severe disease in humans with the potential for significant international public health consequences. Currently, treatments are limited to experimental vaccines and therapeutics. Therefore, research into prophylaxis and antiviral strategies to combat EBOV infections is of utmost importance. The requirement for high containment laboratories to study EBOV infection is a limiting factor for conducting EBOV research. To overcome this issue, minigenome systems have been used as valuable tools to study EBOV replication and transcription mechanisms and to screen for antiviral compounds at biosafety level 2. The most commonly used EBOV minigenome system relies on the ectopic expression of the T7 RNA polymerase (T7), which can be limiting for certain cell types. We have established an improved EBOV minigenome system that utilizes endogenous RNA polymerase II (pol II) as a driver for the synthesis of minigenome RNA. We show here that this system is as efficient as the T7-based minigenome system, but works in a wider range of cell types, including biologically relevant cell types such as bat cells. Importantly, we were also able to adapt this system to a reliable and cost-effective 96-well format antiviral screening assay with a Z-factor of 0.74, indicative of a robust assay. Using this format, we identified JG40, an inhibitor of Hsp70, as an inhibitor of EBOV replication, highlighting the potential for this system as a tool for antiviral drug screening. In summary, this updated EBOV minigenome system provides a convenient and effective means of advancing the field of EBOV research. Copyright © 2017 Elsevier B.V. All rights reserved.
Gale, P; Simons, R R L; Horigan, V; Snary, E L; Fooks, A R; Drew, T W
2016-01-01
Analysis of published data shows that experimental passaging of Zaire ebolavirus (EBOV) in guinea pigs changes the risk of infection per plaque-forming unit (PFU), increasing infectivity to some species while decreasing infectivity to others. Thus, a PFU of monkey-adapted EBOV is 10(7) -fold more lethal to mice than a PFU adapted to guinea pigs. The first conclusion is that the infectivity of EBOV to humans may depend on the identity of the donor species itself and, on the basis of limited epidemiological data, the question is raised as to whether bat-adapted EBOV is less infectious to humans than nonhuman primate (NHP)-adapted EBOV. Wildlife species such as bats, duikers and NHPs are naturally infected by EBOV through different species giving rise to EBOV with different wildlife species-passage histories (heritages). Based on the ecology of these wildlife species, three broad 'types' of EBOV-infected bushmeat are postulated reflecting differences in the number of passages within a given species, and hence the degree of adaptation of the EBOV present. The second conclusion is that the prior species-transmission chain may affect the infectivity to humans per PFU for EBOV from individuals of the same species. This is supported by the finding that the related Marburg marburgvirus requires ten passages in mice to fully adapt. It is even possible that the evolutionary trajectory of EBOV could vary in individuals of the same species giving rise to variants which are more or less virulent to humans and that the probability of a given trajectory is related to the heritage. Overall the ecology of the donor species (e.g. dog or bushmeat species) at the level of the individual animal itself may determine the risk of infection per PFU to humans reflecting the heritage of the virus and may contribute to the sporadic nature of EBOV outbreaks. © 2015 Crown copyright. © 2015 Society for Applied Microbiology.
[Research progress on ebola virus glycoprotein].
Ding, Guo-Yong; Wang, Zhi-Yu; Gao, Lu; Jiang, Bao-Fa
2013-03-01
Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans and there are no effective therapeutic or prophylactic treatments available. The glycoprotein (GP) of EBOV is a transmembrane envelope protein known to play multiple functions including virus attachment and entry, cell rounding and cytotoxicity, down-regulation of host surface proteins, and enhancement of virus assembly and budding. GP is the primary target of protective immunity and the key target for developing neutralizing antibodies. In this paper, the research progress on genetic structure, pathogenesis and immunogenicity of EBOV GP in the last 5 years is reviewed.
Ayub, Gohar; Waheed, Yasir
2016-06-01
The 2014 Ebola outbreak was one of the largest that have occurred; it started in Guinea and spread to Nigeria, Liberia and Sierra Leone. Phylogenetic analysis of the current virus species indicated that this outbreak is the result of a divergent lineage of the Zaire ebolavirus. The L protein of Ebola virus (EBOV) is the catalytic subunit of the RNA‑dependent RNA polymerase complex, which, with VP35, is key for the replication and transcription of viral RNA. Earlier sequence analysis demonstrated that the L protein of all non‑segmented negative‑sense (NNS) RNA viruses consists of six domains containing conserved functional motifs. The aim of the present study was to analyze the presence of these motifs in 2014 EBOV isolates, highlight their function and how they may contribute to the overall pathogenicity of the isolates. For this purpose, 81 2014 EBOV L protein sequences were aligned with 475 other NNS RNA viruses, including Paramyxoviridae and Rhabdoviridae viruses. Phylogenetic analysis of all EBOV outbreak L protein sequences was also performed. Analysis of the amino acid substitutions in the 2014 EBOV outbreak was conducted using sequence analysis. The alignment demonstrated the presence of previously conserved motifs in the 2014 EBOV isolates and novel residues. Notably, all the mutations identified in the 2014 EBOV isolates were tolerant, they were pathogenic with certain examples occurring within previously determined functional conserved motifs, possibly altering viral pathogenicity, replication and virulence. The phylogenetic analysis demonstrated that all sequences with the exception of the 2014 EBOV sequences were clustered together. The 2014 EBOV outbreak has acquired a great number of mutations, which may explain the reasons behind this unprecedented outbreak. Certain residues critical to the function of the polymerase remain conserved and may be targets for the development of antiviral therapeutic agents.
Wang, Zhongyi; Li, Jiaming; Fu, Yingying; Zhao, Zongzheng; Zhang, Chunmao; Li, Nan; Li, Jingjing; Cheng, Hongliang; Jin, Xiaojun; Lu, Bing; Guo, Zhendong; Qian, Jun; Liu, Linna
2018-05-16
MicroRNAs (miRNAs) may become efficient antiviral agents against the Ebola virus (EBOV) targeting viral genomic RNAs or transcripts. We previously conducted a genome-wide search for differentially expressed miRNAs during viral replication and transcription. In this study, we established a rapid screen for miRNAs with inhibitory effects against EBOV using a tetracistronic transcription- and replication-competent virus-like particle (trVLP) system. This system uses a minigenome comprising an EBOV leader region, luciferase reporter, VP40, GP, VP24, EBOV trailer region, and three noncoding regions from the EBOV genome and can be used to model the life cycle of EBOV under biosafety level (BSL) 2 conditions. Informatic analysis was performed to select up-regulated miRNAs targeting the coding regions of the minigenome with the highest binding energy to perform inhibitory effect screening. Among these miRNAs, miR-150-3p had the most significant inhibitory effect. Reverse transcription polymerase chain reaction (RT-PCR), Western blot, and double fluorescence reporter experiments demonstrated that miR-150-3p inhibited the reproduction of trVLPs via the regulation of GP and VP40 expression by directly targeting the coding regions of GP and VP40. This novel, rapid, and convenient screening method will efficiently facilitate the exploration of miRNAs against EBOV under BSL-2 conditions.
Sztuba-Solinska, Joanna; Diaz, Larissa; Kumar, Mia R; Kolb, Gaëlle; Wiley, Michael R; Jozwick, Lucas; Kuhn, Jens H; Palacios, Gustavo; Radoshitzky, Sheli R; J Le Grice, Stuart F; Johnson, Reed F
2016-11-16
Ebola virus (EBOV) is a single-stranded negative-sense RNA virus belonging to the Filoviridae family. The leader and trailer non-coding regions of the EBOV genome likely regulate its transcription, replication, and progeny genome packaging. We investigated the cis-acting RNA signals involved in RNA-RNA and RNA-protein interactions that regulate replication of eGFP-encoding EBOV minigenomic RNA and identified heat shock cognate protein family A (HSC70) member 8 (HSPA8) as an EBOV trailer-interacting host protein. Mutational analysis of the trailer HSPA8 binding motif revealed that this interaction is essential for EBOV minigenome replication. Selective 2'-hydroxyl acylation analyzed by primer extension analysis of the secondary structure of the EBOV minigenomic RNA indicates formation of a small stem-loop composed of the HSPA8 motif, a 3' stem-loop (nucleotides 1868-1890) that is similar to a previously identified structure in the replicative intermediate (RI) RNA and a panhandle domain involving a trailer-to-leader interaction. Results of minigenome assays and an EBOV reverse genetic system rescue support a role for both the panhandle domain and HSPA8 motif 1 in virus replication. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
New Perspectives on Ebola Virus Evolution.
Brown, Celeste J; Quates, Caleb J; Mirabzadeh, Christopher A; Miller, Craig R; Wichman, Holly A; Miura, Tanya A; Ytreberg, F Marty
2016-01-01
Since the recent devastating outbreak of Ebola virus disease in western Africa, there has been significant effort to understand the evolution of the deadly virus that caused the outbreak. There has been a considerable investment in sequencing Ebola virus (EBOV) isolates, and the results paint an important picture of how the virus has spread in western Africa. EBOV evolution cannot be understood outside the context of previous outbreaks, however. We have focused this study on the evolution of the EBOV glycoprotein gene (GP) because one of its products, the spike glycoprotein (GP1,2), is central to the host immune response and because it contains a large amount of the phylogenetic signal for this virus. We inferred the maximum likelihood phylogeny of 96 nonredundant GP gene sequences representing each of the outbreaks since 1976 up to the end of 2014. We tested for positive selection and considered the placement of adaptive amino acid substitutions along the phylogeny and within the protein structure of GP1,2. We conclude that: 1) the common practice of rooting the phylogeny of EBOV between the first known outbreak in 1976 and the next outbreak in 1995 provides a misleading view of EBOV evolution that ignores the fact that there is a non-human EBOV host between outbreaks; 2) the N-terminus of GP1 may be constrained from evolving in response to the host immune system by the highly expressed, secreted glycoprotein, which is encoded by the same region of the GP gene; 3) although the mucin-like domain of GP1 is essential for EBOV in vivo, it evolves rapidly without losing its twin functions: providing O-linked glycosylation sites and a flexible surface.
Comprehensive Review on Ebola (EBOV) Virus: Future Prospects.
Khan, Sajad; Muhammad; Rauf, Abdur; Khan, Ahsan; Rizwan, Muhammad; Patel, Seema; Khan, Haroon; Mahasneh, Adel M; Mubarak, Mohammad S
2018-01-01
Ebola virus (EBOV) was discovered for the first time in 1976. It belongs to the family Filoviridae, which causes hemorrhagic fever that could lead to death in a few days. West Africa faced a major outbreak where symptoms appeared in the form of chills, myalgia, fever, diarrhea, and vomiting, and the disease finally reached a severe state as a result of hemorrhagic complications and failure of multiple organs. EBOV spreads by contact with body fluids of an infected person such as blood, saliva, urine, and seminal fluid, and also spreads by a contact with contaminated surfaces. Viral infection depends on the virus and host defenses. When the virus invades the body, the immune system becomes activated in an attempt to neutralize it. However, if this fails, EBOV viral infection spreads and leads to impaired innate and adaptive immune responses and uncontrollable viral replication. Consequently, the symptomatic patient is isolated and various medicinal regimens such as BCX-4430n TKM- EBOV are used, to cure EBOV, though, a specific treatment is not available. Accordingly, the aim of the present review is to survey and summarize the recent literature pertaining to the outbreak of EBOV, systematic infection of the human body, along with transmission and treatment. In addition, the review also aims to identify areas that need more research and development in combatting this dangerous virus. In the meantime, it should be noted that there is no fully FDA approved drug to treat infections by this virus. Therefore, there is a pressing need to focus on drug discovery along with public awareness to effectively manage any outbreaks in the future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Pettitt, James; Higgs, Elizabeth; Fallah, Mosoka; Nason, Martha; Stavale, Eric; Marchand, Jonathan; Reilly, Cavan; Jensen, Kenneth; Dighero-Kemp, Bonnie; Tuznik, Kaylie; Logue, James; Bolay, Fatorma; Hensley, Lisa
2017-02-15
Recent studies have suggested that Ebola virus (EBOV) ribonucleic acid (RNA) potentially present in the semen of a large number of survivors of Ebola virus disease (EVD) in Western Africa may contribute to sexual transmission of EVD and generate new clusters of cases in regions previously declared EVD-free. These findings drive the immediate need for a reliable, rapid, user-friendly assay for detection of EBOV RNA in semen that is deployable to multiple sites across Western Africa. In this study, we optimized the Xpert EBOV assay for semen samples by adding dithiothreitol. Compared to the assays currently in use in Liberia (including Ebola Zaire Target 1, major groove binder real-time-polymerase chain reaction assays, and original Xpert EBOV assay), the modified Xpert EBOV assay demonstrated greater sensitivity than the comparator assays. Thus, the modified Xpert EBOV assay is optimal for large-scale monitoring of EBOV RNA persistence in male survivors. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prins, Kathleen C.; Delpeut, Sebastien; Leung, Daisy W.
2010-10-11
Ebola virus (EBOV) protein VP35 is a double-stranded RNA (dsRNA) binding inhibitor of host interferon (IFN)-{alpha}/{beta} responses that also functions as a viral polymerase cofactor. Recent structural studies identified key features, including a central basic patch, required for VP35 dsRNA binding activity. To address the functional significance of these VP35 structural features for EBOV replication and pathogenesis, two point mutations, K319A/R322A, that abrogate VP35 dsRNA binding activity and severely impair its suppression of IFN-{alpha}/{beta} production were identified. Solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography reveal minimal structural perturbations in the K319A/R322A VP35 double mutant and suggest that lossmore » of basic charge leads to altered function. Recombinant EBOVs encoding the mutant VP35 exhibit, relative to wild-type VP35 viruses, minimal growth attenuation in IFN-defective Vero cells but severe impairment in IFN-competent cells. In guinea pigs, the VP35 mutant virus revealed a complete loss of virulence. Strikingly, the VP35 mutant virus effectively immunized animals against subsequent wild-type EBOV challenge. These in vivo studies, using recombinant EBOV viruses, combined with the accompanying biochemical and structural analyses directly correlate VP35 dsRNA binding and IFN inhibition functions with viral pathogenesis. Moreover, these studies provide a framework for the development of antivirals targeting this critical EBOV virulence factor.« less
Martinez, Osvaldo; Tantral, Lee; Mulherkar, Nirupama; Chandran, Kartik; Basler, Christopher F
2011-11-01
Ebola virus (EBOV) glycoprotein (GP), responsible for mediating host-cell attachment and membrane fusion, contains a heavily glycosylated mucin-like domain hypothesized to shield GP from neutralizing antibodies. To test whether the mucin-like domain inhibits the production and function of anti-GP antibodies, we vaccinated mice with Ebola virus-like particles (VLPs) that express vesicular stomatitis virus G, wild-type EBOV GP (EBGP), EBOV GP without its mucin-like domain (ΔMucGP), or EBOV GP with a Crimean-Congo hemorrhagic fever virus mucin-like domain substituted for the EBOV mucin-like domain (CMsubGP). EBGP-VLP immunized mice elicited significantly higher serum antibody titers toward EBGP or its mutants, as detected by western blot analysis, than did VLP-ΔMucGP. However, EBGP-, ΔMucGP- and CMsubGP-VLP immunized mouse sera contained antibodies that bound to cell surface-expressed GP at similar levels. Furthermore, low but similar neutralizing antibody titers, measured against a vesicular stomatitis virus (VSV) expressing EBGP or ΔMucGP, were present in EBGP, ΔMucGP, and CMsubGP sera, although a slightly higher neutralizing titer (2- to 2.5-fold) was detected in ΔMucGP sera. We conclude that the EBOV GP mucin-like domain can increase relative anti-GP titers, however these titers appear to be directed, at least partly, to denatured GP. Furthermore, removing the mucin-like domain from immunizing VLPs has modest impact on neutralizing antibody titers in serum.
Mingo, Rebecca M; Simmons, James A; Shoemaker, Charles J; Nelson, Elizabeth A; Schornberg, Kathryn L; D'Souza, Ryan S; Casanova, James E; White, Judith M
2015-03-01
Ebola virus (EBOV) causes hemorrhagic fevers with high mortality rates. During cellular entry, the virus is internalized by macropinocytosis and trafficked through endosomes until fusion between the viral and an endosomal membrane is triggered, releasing the RNA genome into the cytoplasm. We found that while macropinocytotic uptake of filamentous EBOV viruslike particles (VLPs) expressing the EBOV glycoprotein (GP) occurs relatively quickly, VLPs only begin to enter the cytoplasm after a 30-min lag, considerably later than particles bearing the influenza hemagglutinin or GP from lymphocytic choriomeningitis virus, which enter through late endosomes (LE). For EBOV, the long lag is not due to the large size or unusual shape of EBOV filaments, the need to prime EBOV GP to the 19-kDa receptor-binding species, or a need for unusually low endosomal pH. In contrast, since we observed that EBOV entry occurs upon arrival in Niemann-Pick C1 (NPC1)-positive endolysosomes (LE/Lys), we propose that trafficking to LE/Lys is a key rate-defining step. Additional experiments revealed, unexpectedly, that severe acute respiratory syndrome (SARS) S-mediated entry also begins only after a 30-min lag. Furthermore, although SARS does not require NPC1 for entry, SARS entry also begins after colocalization with NPC1. Since the only endosomal requirement for SARS entry is cathepsin L activity, we tested and provide evidence that NPC1(+) LE/Lys have higher cathepsin L activity than LE, with no detectable activity in earlier endosomes. Our findings suggest that both EBOV and SARS traffic deep into the endocytic pathway for entry and that they do so to access higher cathepsin activity. Ebola virus is a hemorrhagic fever virus that causes high fatality rates when it spreads from zoonotic vectors into the human population. Infection by severe acute respiratory syndrome coronavirus (SARS-CoV) causes severe respiratory distress in infected patients. A devastating outbreak of EBOV occurred in West Africa in 2014, and there was a significant outbreak of SARS in 2003. No effective vaccine or treatment has yet been approved for either virus. We present evidence that both viruses traffic late into the endocytic pathway, to NPC1(+) LE/Lys, in order to enter host cells, and that they do so to access high levels of cathepsin activity, which both viruses use in their fusion-triggering mechanisms. This unexpected similarity suggests an unexplored vulnerability, trafficking to NPC1(+) LE/Lys, as a therapeutic target for SARS and EBOV. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Rieger, Toni; Kerber, Romy; El Halas, Hussein; Pallasch, Elisa; Duraffour, Sophie; Günther, Stephan; Ölschläger, Stephan
2016-01-01
Background. Diagnosis of Ebola virus (EBOV) disease (EVD) requires laboratory testing. Methods. The RealStar Filovirus Screen reverse transcription–polymerase chain reaction (RT-PCR) kit and the derived RealStar Zaire Ebolavirus RT-PCR kit were validated using in vitro transcripts, supernatant of infected cell cultures, and clinical specimens from patients with EVD. Results. The Filovirus Screen kit detected EBOV, Sudan virus, Taï Forest virus, Bundibugyo virus, Reston virus, and Marburg virus and differentiated between the genera Ebolavirus and Marburgvirus. The amount of filovirus RNA that could be detected with a probability of 95% ranged from 11 to 67 RNA copies/reaction on a LightCycler 480 II. The Zaire Ebolavirus kit is based on the Filovirus Screen kit but was optimized for detection of EBOV. It has an improved signal-to-noise ratio at low EBOV RNA concentrations and is somewhat more sensitive than the Filovirus kit. Both kits show significantly lower analytical sensitivity on a SmartCycler II. Clinical evaluation revealed that the SmartCycler II, compared with other real-time PCR platforms, decreases the clinical sensitivity of the Filovirus Screen kit to diagnose EVD at an early stage. Conclusions. The Filovirus Screen kit detects all human-pathogenic filoviruses with good analytical sensitivity if performed on an appropriate real-time PCR platform. High analytical sensitivity is important for early diagnosis of EVD. PMID:27549586
Yang, Lijuan; Sanchez, Anthony; Ward, Jerrold M; Murphy, Brian R; Collins, Peter L; Bukreyev, Alexander
2008-08-01
Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans. The virus can be transmitted by direct contact as well as by aerosol and is considered a potential bioweapon. Because direct immunization of the respiratory tract should be particularly effective against infection of mucosal surfaces, we previously developed an intranasal vaccine based on replication-competent human parainfluenza virus type 3 (HPIV3) expressing EBOV glycoprotein GP (HPIV3/EboGP) and showed that it is immunogenic and protective against a high dose parenteral EBOV challenge. However, because the adult human population has considerable immunity to HPIV3, which is a common human pathogen, replication and immunogenicity of the vaccine in this population might be greatly restricted. Indeed, in the present study, replication of the vaccine in the respiratory tract of HPIV3-immune guinea pigs was found to be restricted to undetectable levels. This restriction appeared to be based on both neutralizing antibodies and cellular or other components of the immunity to HPIV3. Surprisingly, even though replication of HPIV3/EboGP was highly restricted in HPIV3-immune animals, it induced a high level of EBOV-specific antibodies that nearly equaled that obtained in HPIV3-naive animals. We also show that the previously demonstrated presence of functional GP in the vector particle was not associated with increased replication in the respiratory tract nor with spread beyond the respiratory tract of HPIV3-naive guinea pigs, indicating that expression and functional incorporation of the attachment/penetration glycoprotein of this systemic virus did not mediate a change in tissue tropism.
Ramaswamy, Venkata Krishnan; Di Palma, Francesco; Vargiu, Attilio V; Corona, Angela; Piano, Dario; Ruggerone, Paolo; Zinzula, Luca; Tramontano, Enzo
2018-03-02
The multifunctional Ebola virus (EBOV) VP35 protein is a key determinant of virulence. VP35 is essential for EBOV replication, is a component of the viral RNA polymerase and participates in nucleocapsid formation. Furthermore, VP35 contributes to EBOV evasion of the host innate immune response by suppressing RNA silencing and blocking RIG-I like receptors' pathways that lead to type I interferon (IFN) production. VP35 homo-oligomerization has been reported to be critical for its replicative function and to increase its IFN-antagonism properties. Moreover, homo-oligomerization is mediated by a predicted coiled-coil (CC) domain located within its N-terminal region. Here we report the homo-oligomerization profile of full-length recombinant EBOV VP35 (rVP35) assessed by size-exclusion chromatography and native polyacrylamide gel electrophoresis. Based on our biochemical results and in agreement with previous experimental observations, we have built an in silico 3D model of the so-far structurally unsolved EBOV VP35 CC domain and performed self-assembly homo-oligomerization simulations by means of molecular dynamics. Our model advances the understanding of how VP35 may associate in different homo-oligomeric species, a crucial process for EBOV replication and pathogenicity. Copyright © 2018 Elsevier B.V. All rights reserved.
Reynard, Olivier; Jacquot, Frédéric; Evanno, Gwénaëlle; Mai, Hoa Le; Martinet, Bernard; Duvaux, Odile; Bach, Jean-Marie; Conchon, Sophie; Judor, Jean-Paul; Perota, Andrea; Lagutina, Irina; Duchi, Roberto; Lazzari, Giovanna; Le Berre, Ludmilla; Perreault, Hélène; Lheriteau, Elsa; Raoul, Hervé; Volchkov, Viktor; Galli, Cesare; Soulillou, Jean-Paul
2016-01-01
Polyclonal xenogenic IgGs, although having been used in the prevention and cure of severe infectious diseases, are highly immunogenic, which may restrict their usage in new applications such as Ebola hemorrhagic fever. IgG glycans display powerful xenogeneic antigens in humans, for example α1–3 Galactose and the glycolyl form of neuraminic acid Neu5Gc, and IgGs deprived of these key sugar epitopes may represent an advantage for passive immunotherapy. In this paper, we explored whether low immunogenicity IgGs had a protective effect on a guinea pig model of Ebola virus (EBOV) infection. For this purpose, a double knock-out pig lacking α1–3 Galactose and Neu5Gc was immunized against virus-like particles displaying surface EBOV glycoprotein GP. Following purification from serum, hyper-immune polyclonal IgGs were obtained, exhibiting an anti-EBOV GP titer of 1:100,000 and a virus neutralizing titer of 1:100. Guinea pigs were injected intramuscularly with purified IgGs on day 0 and day 3 post-EBOV infection. Compared to control animals treated with IgGs from non-immunized double KO pigs, the anti-EBOV IgGs-treated animals exhibited a significantly prolonged survival and a decreased virus load in blood on day 3. The data obtained indicated that IgGs lacking α1–3 Galactose and Neu5Gc, two highly immunogenic epitopes in humans, have a protective effect upon EBOV infection. PMID:27280712
Warren, Travis K; Whitehouse, Chris A; Wells, Jay; Welch, Lisa; Heald, Alison E; Charleston, Jay S; Sazani, Pete; Reid, St Patrick; Iversen, Patrick L; Bavari, Sina
2015-02-10
Ebola viruses (EBOV) cause severe disease in humans and nonhuman primates with high mortality rates and continue to emerge in new geographic locations, including several countries in West Africa, the site of a large ongoing outbreak. Phosphorodiamidate morpholino oligomers (PMOs) are synthetic antisense molecules that are able to target mRNAs in a sequence-specific fashion and suppress translation through steric hindrance. We previously showed that the use of PMOs targeting a combination of VP35 and VP24 protected rhesus monkeys from lethal EBOV infection. Surprisingly, the present study revealed that a PMOplus compound targeting VP24 alone was sufficient to confer protection from lethal EBOV infection but that a PMOplus targeting VP35 alone resulted in no protection. This study further substantiates recent data demonstrating that VP24 may be a key virulence factor encoded by EBOV and suggests that VP24 is a promising target for the development of effective anti-EBOV countermeasures. Several West African countries are currently being ravaged by an outbreak of Ebola virus (EBOV) that has become a major epidemic affecting not only these African countries but also Europe and the United States. A better understanding of the mechanism of virulence of EBOV is important for the development of effective treatments, as no licensed treatments or vaccines for EBOV disease are currently available. This study of phosphorodiamidate morpholino oligomers (PMOs) targeting the mRNAs of two different EBOV proteins, alone and in combination, demonstrated that targeting a single protein was effective at conferring a significant survival benefit in an EBOV lethal primate model. Future development of PMOs with efficacy against EBOV will be simplified if only one PMO is required instead of a combination, particularly in terms of regulatory approval. Copyright © 2015 Warren et al.
Shoemaker, Charles J.; Schornberg, Kathryn L.; Delos, Sue E.; Scully, Corinne; Pajouhesh, Hassan; Olinger, Gene G.; Johansen, Lisa M.; White, Judith M.
2013-01-01
Ebola virus (EBOV) is an enveloped RNA virus that causes hemorrhagic fever in humans and non-human primates. Infection requires internalization from the cell surface and trafficking to a late endocytic compartment, where viral fusion occurs, providing a conduit for the viral genome to enter the cytoplasm and initiate replication. In a concurrent study, we identified clomiphene as a potent inhibitor of EBOV entry. Here, we screened eleven inhibitors that target the same biosynthetic pathway as clomiphene. From this screen we identified six compounds, including U18666A, that block EBOV infection (IC50 1.6 to 8.0 µM) at a late stage of entry. Intriguingly, all six are cationic amphiphiles that share additional chemical features. U18666A induces phenotypes, including cholesterol accumulation in endosomes, associated with defects in Niemann–Pick C1 protein (NPC1), a late endosomal and lysosomal protein required for EBOV entry. We tested and found that all six EBOV entry inhibitors from our screen induced cholesterol accumulation. We further showed that higher concentrations of cationic amphiphiles are required to inhibit EBOV entry into cells that overexpress NPC1 than parental cells, supporting the contention that they inhibit EBOV entry in an NPC1-dependent manner. A previously reported inhibitor, compound 3.47, inhibits EBOV entry by blocking binding of the EBOV glycoprotein to NPC1. None of the cationic amphiphiles tested had this effect. Hence, multiple cationic amphiphiles (including several FDA approved agents) inhibit EBOV entry in an NPC1-dependent fashion, but by a mechanism distinct from that of compound 3.47. Our findings suggest that there are minimally two ways of perturbing NPC1-dependent pathways that can block EBOV entry, increasing the attractiveness of NPC1 as an anti-filoviral therapeutic target. PMID:23441171
Clinical Laboratory Values as Early Indicators of Ebola Virus Infection in Nonhuman Primates.
Reisler, Ronald B; Yu, Chenggang; Donofrio, Michael J; Warren, Travis K; Wells, Jay B; Stuthman, Kelly S; Garza, Nicole L; Vantongeren, Sean A; Donnelly, Ginger C; Kane, Christopher D; Kortepeter, Mark G; Bavari, Sina; Cardile, Anthony P
2017-08-01
The Ebola virus (EBOV) outbreak in West Africa during 2013-2016 demonstrated the need to improve Ebola virus disease (EVD) diagnostics and standards of care. This retrospective study compared laboratory values and clinical features of 3 nonhuman primate models of lethal EVD to assess associations with improved survival time. In addition, the study identified laboratory values useful as predictors of survival, surrogates for EBOV viral loads, and triggers for initiation of therapeutic interventions in these nonhuman primate models. Furthermore, the data support that, in nonhuman primates, the Makona strain of EBOV may be less virulent than the Kikwit strain of EBOV. The applicability of these findings as potential diagnostic and management tools for EVD in humans warrants further investigation.
Dowall, Stuart D; Matthews, David A; Garcia-Dorival, Isabel; Taylor, Irene; Kenny, John; Hertz-Fowler, Christiane; Hall, Neil; Corbin-Lickfett, Kara; Empig, Cyril; Schlunegger, Kyle; Barr, John N; Carroll, Miles W; Hewson, Roger; Hiscox, Julian A
2014-01-01
Ebolaviruses causes a severe and often fatal hemorrhagic fever in humans, with some species such as Ebola virus having case fatality rates approaching 90%. Currently the worst Ebola virus outbreak since the disease was discovered is occurring in West Africa. Although thought to be a zoonotic infection, a concern is that with increasing numbers of humans being infected, Ebola virus variants could be selected which are better adapted for human-to-human transmission. To investigate whether genetic changes in Ebola virus become established in response to adaptation in a different host, a guinea pig model of infection was used. In this experimental system, guinea pigs were infected with Ebola virus (EBOV), which initially did not cause disease. To simulate transmission to uninfected individuals, the virus was serially passaged five times in naive animals. As the virus was passaged, virulence increased and clinical effects were observed in the guinea pig. An RNAseq and consensus mapping approach was then used to evaluate potential nucleotide changes in the Ebola virus genome at each passage. Upon passage in the guinea pig model, EBOV become more virulent, RNA editing and also coding changes in key proteins become established. The data suggest that the initial evolutionary trajectory of EBOV in a new host can lead to a gain in virulence. Given the circumstances of the sustained transmission of EBOV in the current outbreak in West Africa, increases in virulence may be associated with prolonged and uncontrolled epidemics of EBOV.
Xu, Changping; Wang, Hualei; Jin, Hongli; Feng, Na; Zheng, Xuexing; Cao, Zengguo; Li, Ling; Wang, Jianzhong; Yan, Feihu; Wang, Lina; Chi, Hang; Gai, Weiwei; Wang, Chong; Zhao, Yongkun; Feng, Yan; Wang, Tiecheng; Gao, Yuwei; Lu, Yiyu; Yang, Songtao; Xia, Xianzhu
2016-05-01
Ebola virus (species Zaire ebolavirus) (EBOV) is highly virulent in humans. The largest recorded outbreak of Ebola hemorrhagic fever in West Africa to date was caused by EBOV. Therefore, it is necessary to develop a detection method for this virus that can be easily distributed and implemented. In the current study, we developed a visual assay that can detect EBOV-associated nucleic acids. This assay combines reverse transcription loop-mediated isothermal amplification and nucleic acid strip detection (RT-LAMP-NAD). Nucleic acid amplification can be achieved in a one-step process at a constant temperature (58 °C, 35 min), and the amplified products can be visualized within 2-5 min using a nucleic acid strip detection device. The assay is capable of detecting 30 copies of artificial EBOV glycoprotein (GP) RNA and RNA encoding EBOV GP from 10(2) TCID50 recombinant viral particles per ml with high specificity. Overall, the RT-LAMP-NAD method is simple and has high sensitivity and specificity; therefore, it is especially suitable for the rapid detection of EBOV in African regions.
Ebola virus requires phosphatidylinositol (3,5) bisphosphate production for efficient viral entry.
Qiu, Shirley; Leung, Anders; Bo, Yuxia; Kozak, Robert A; Anand, Sai Priya; Warkentin, Corina; Salambanga, Fabiola D R; Cui, Jennifer; Kobinger, Gary; Kobasa, Darwyn; Côté, Marceline
2018-01-01
For entry, Ebola virus (EBOV) requires the interaction of its viral glycoprotein with the cellular protein Niemann-Pick C1 (NPC1) which resides in late endosomes and lysosomes. How EBOV is trafficked and delivered to NPC1 and whether this is positively regulated during entry remain unclear. Here, we show that the PIKfyve-ArPIKfyve-Sac3 cellular complex, which is involved in the metabolism of phosphatidylinositol (3,5) bisphosphate (PtdIns(3,5)P 2 ), is critical for EBOV infection. Although the expression of all subunits of the complex was required for efficient entry, PIKfyve kinase activity was specifically critical for entry by all pathogenic filoviruses. Inhibition of PIKfyve prevented colocalization of EBOV with NPC1 and led to virus accumulation in intracellular vesicles with characteristics of early endosomes. Importantly, genetically-encoded phosphoinositide probes revealed an increase in PtdIns(3,5)P 2 -positive vesicles in cells during EBOV entry. Taken together, our studies suggest that EBOV requires PtdIns(3,5)P 2 production in cells to promote efficient delivery to NPC1. Copyright © 2017 Elsevier Inc. All rights reserved.
Dutta, Mukta; Robertson, Shelly J; Okumura, Atsushi; Scott, Dana P; Chang, Jean; Weiss, Jeffrey M; Sturdevant, Gail L; Feldmann, Friederike; Haddock, Elaine; Chiramel, Abhilash I; Ponia, Sanket S; Dougherty, Jonathan D; Katze, Michael G; Rasmussen, Angela L; Best, Sonja M
2017-01-17
The unprecedented 2013-2016 outbreak of Ebola virus (EBOV) resulted in over 11,300 human deaths. Host resistance to RNA viruses requires RIG-I-like receptor (RLR) signaling through the adaptor protein, mitochondrial antiviral signaling protein (MAVS), but the role of RLR-MAVS in orchestrating anti-EBOV responses in vivo is not known. Here we apply a systems approach to MAVS -/- mice infected with either wild-type or mouse-adapted EBOV. MAVS controlled EBOV replication through the expression of IFNα, regulation of inflammatory responses in the spleen, and prevention of cell death in the liver, with macrophages implicated as a major cell type influencing host resistance. A dominant role for RLR signaling in macrophages was confirmed following conditional MAVS deletion in LysM+ myeloid cells. These findings reveal tissue-specific MAVS-dependent transcriptional pathways associated with resistance to EBOV, and they demonstrate that EBOV adaptation to cause disease in mice involves changes in two distinct events, RLR-MAVS antagonism and suppression of RLR-independent IFN-I responses. Published by Elsevier Inc.
Pinsky, Benjamin A.; Sahoo, Malaya K.; Sandlund, Johanna; Kleman, Marika; Kulkarni, Medha; Grufman, Per; Nygren, Malin; Kwiatkowski, Robert; Baron, Ellen Jo; Tenover, Fred; Denison, Blake; Higuchi, Russell; Van Atta, Reuel; Beer, Neil Reginald; Carrillo, Alda Celena; Naraghi-Arani, Pejman; Mire, Chad E.; Ranadheera, Charlene; Grolla, Allen; Lagerqvist, Nina; Persing, David H.
2015-01-01
Background The recently developed Xpert® Ebola Assay is a novel nucleic acid amplification test for simplified detection of Ebola virus (EBOV) in whole blood and buccal swab samples. The assay targets sequences in two EBOV genes, lowering the risk for new variants to escape detection in the test. The objective of this report is to present analytical characteristics of the Xpert® Ebola Assay on whole blood samples. Methods and Findings This study evaluated the assay’s analytical sensitivity, analytical specificity, inclusivity and exclusivity performance in whole blood specimens. EBOV RNA, inactivated EBOV, and infectious EBOV were used as targets. The dynamic range of the assay, the inactivation of virus, and specimen stability were also evaluated. The lower limit of detection (LoD) for the assay using inactivated virus was estimated to be 73 copies/mL (95% CI: 51–97 copies/mL). The LoD for infectious virus was estimated to be 1 plaque-forming unit/mL, and for RNA to be 232 copies/mL (95% CI 163–302 copies/mL). The assay correctly identified five different Ebola viruses, Yambuku-Mayinga, Makona-C07, Yambuku-Ecran, Gabon-Ilembe, and Kikwit-956210, and correctly excluded all non-EBOV isolates tested. The conditions used by Xpert® Ebola for inactivation of infectious virus reduced EBOV titer by ≥6 logs. Conclusion In summary, we found the Xpert® Ebola Assay to have high analytical sensitivity and specificity for the detection of EBOV in whole blood. It offers ease of use, fast turnaround time, and remote monitoring. The test has an efficient viral inactivation protocol, fulfills inclusivity and exclusivity criteria, and has specimen stability characteristics consistent with the need for decentralized testing. The simplicity of the assay should enable testing in a wide variety of laboratory settings, including remote laboratories that are not capable of performing highly complex nucleic acid amplification tests, and during outbreaks where time to detection is critical. PMID:26562786
Spengler, Jessica R.; Lavender, Kerry J.; Martellaro, Cynthia; Carmody, Aaron; Kurth, Andreas; Keck, James G.; Saturday, Greg; Scott, Dana P.; Nichol, Stuart T.; Hasenkrug, Kim J.; Spiropoulou, Christina F.; Feldmann, Heinz; Prescott, Joseph
2016-01-01
The study of Ebola virus (EBOV) pathogenesis in vivo has been limited to nonhuman primate models or use of an adapted virus to cause disease in rodent models. Herein we describe wild-type EBOV (Makona variant) infection of mice engrafted with human hematopoietic CD34+ stem cells (Hu-NSG™-SGM3 mice; hereafter referred to as SGM3 HuMice). SGM3 HuMice support increased development of myeloid immune cells, which are primary EBOV targets. In SGM3 HuMice, EBOV replicated to high levels, and disease was observed following either intraperitoneal or intramuscular inoculation. Despite the high levels of viral antigen and inflammatory cell infiltration in the liver, the characteristic histopathology of Ebola virus disease was not observed, and this absence of severe immunopathology may have contributed to the recovery and survival of some of the animals. Future investigations into the underlying mechanisms of the atypical disease presentation in SGM3 HuMice will provide additional insights into the immunopathogenesis of severe EBOV disease. PMID:27601621
Zumbrun, E E
2015-01-01
The reports for Ebola virus Zaire (EBOV), Nipah virus, and Machupo virus (MACV) pathogenesis, in this issue of Veterinary Pathology, are timely considering recent events, both nationally and internationally. EBOV, Nipah virus, and MACV cause highly lethal infections for which no Food and Drug Administration (FDA) licensed vaccines or therapies exist. Not only are there concerns that these agents could be used by those with malicious intent, but shifts in ecological distribution of viral reservoirs due to climate change or globalization could lead to more frequent infections within remote regions than previously seen as well as outbreaks in more populous areas. The current EBOV epidemic shows no sign of abating across 3 West African nations (as of October 2014), including densely populated areas, far outpacing infection rates of previous outbreaks. A limited number of cases have also arisen in the United States and Europe. With few treatment options for these deadly viruses, development of animal models reflective of human disease is paramount to combat these diseases. As an example of this potential, a new treatment compound, ZMapp, that had demonstrated efficacy against EBOV infection in nonhuman primates (NHPs) received an emergency compassionate use exception from the FDA for the treatment of 2 American medical workers infected with EBOV, and they are currently virus free and recovering. © The Author(s) 2014.
Candidate Medical Countermeasures Targeting Ebola Virus Cell Entry
2017-04-03
interface, rather than as expected to the more exposed surface of the 134 GP1,2 trimer [16]. Importantly, KZ52 protected guinea pigs (Cavia porcellus...from death after 135 inoculation with guinea pig -adapted EBOV [64], but failed to have a beneficial effect on EBOV-136 exposed rhesus monkeys... guinea pigs infected with 145 rodent-adapted EBOV or its antigenically distant relative, Sudan virus (SUDV) [68]. 146 Identification of ebolavirus
Candidate Medical Countermeasures Targeting Ebola Virus Cell Entry
2017-03-31
interface, rather than as expected to the more exposed surface of the 134 GP1,2 trimer [16]. Importantly, KZ52 protected guinea pigs (Cavia porcellus...from death after 135 inoculation with guinea pig -adapted EBOV [64], but failed to have a beneficial effect on EBOV-136 exposed rhesus monkeys... guinea pigs infected with 145 rodent-adapted EBOV or its antigenically distant relative, Sudan virus (SUDV) [68]. 146 Identification of ebolavirus
Human Adaptation of Ebola Virus during the West African Outbreak.
Urbanowicz, Richard A; McClure, C Patrick; Sakuntabhai, Anavaj; Sall, Amadou A; Kobinger, Gary; Müller, Marcel A; Holmes, Edward C; Rey, Félix A; Simon-Loriere, Etienne; Ball, Jonathan K
2016-11-03
The 2013-2016 outbreak of Ebola virus (EBOV) in West Africa was the largest recorded. It began following the cross-species transmission of EBOV from an animal reservoir, most likely bats, into humans, with phylogenetic analysis revealing the co-circulation of several viral lineages. We hypothesized that this prolonged human circulation led to genomic changes that increased viral transmissibility in humans. We generated a synthetic glycoprotein (GP) construct based on the earliest reported isolate and introduced amino acid substitutions that defined viral lineages. Mutant GPs were used to generate a panel of pseudoviruses, which were used to infect different human and bat cell lines. These data revealed that specific amino acid substitutions in the EBOV GP have increased tropism for human cells, while reducing tropism for bat cells. Such increased infectivity may have enhanced the ability of EBOV to transmit among humans and contributed to the wide geographic distribution of some viral lineages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Structure based virtual screening of the Ebola virus trimeric glycoprotein using consensus scoring.
Onawole, Abdulmujeeb T; Kolapo, Temitope U; Sulaiman, Kazeem O; Adegoke, Rukayat O
2018-02-01
Ebola virus (EBOV) causes zoonotic viral infection with a potential risk of global spread and a highly fatal effect on humans. Till date, no drug has gotten market approval for the treatment of Ebola virus disease (EVD), and this perhaps allows the use of both experimental and computational approaches in the antiviral drug discovery process. The main target of potential vaccines that are recently undergoing clinical trials is trimeric glycoprotein (GP) of the EBOV and its exact crystal structure was used in this structure based virtual screening study, with the aid of consensus scoring to select three possible hit compounds from about 36 million compounds in MCULE's database. Amongst these three compounds, (5R)-5-[[5-(4-chlorophenyl)-1,2,4-oxadiazol-3-yl]methyl]-N-[(4-methoxyphenyl)methyl]-4,5-dihydroisoxazole-3-carboxamide (SC-2, C 21 H 19 ClN 4 O 4 ) showed good features with respect to drug likeness, ligand efficiency metrics, solubility, absorption and distribution properties and non-carcinogenicity to emerge as the most promising compound that can be optimized to lead compound against the GP EBOV. The binding mode showed that SC-2 is well embedded within the trimeric chains of the GP EBOV with molecular interactions with some amino acids. The SC-2 hit compound, upon its optimization to lead, might be a good potential candidate with efficacy against the EBOV pathogen and subsequently receive necessary approval to be used as antiviral drug for the treatment of EVD. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Ebola virus-centered knowledge base
Kamdar, Maulik R.; Dumontier, Michel
2015-01-01
Ebola virus (EBOV), of the family Filoviridae viruses, is a NIAID category A, lethal human pathogen. It is responsible for causing Ebola virus disease (EVD) that is a severe hemorrhagic fever and has a cumulative death rate of 41% in the ongoing epidemic in West Africa. There is an ever-increasing need to consolidate and make available all the knowledge that we possess on EBOV, even if it is conflicting or incomplete. This would enable biomedical researchers to understand the molecular mechanisms underlying this disease and help develop tools for efficient diagnosis and effective treatment. In this article, we present our approach for the development of an Ebola virus-centered Knowledge Base (Ebola-KB) using Linked Data and Semantic Web Technologies. We retrieve and aggregate knowledge from several open data sources, web services and biomedical ontologies. This knowledge is transformed to RDF, linked to the Bio2RDF datasets and made available through a SPARQL 1.1 Endpoint. Ebola-KB can also be explored using an interactive Dashboard visualizing the different perspectives of this integrated knowledge. We showcase how different competency questions, asked by domain users researching the druggability of EBOV, can be formulated as SPARQL Queries or answered using the Ebola-KB Dashboard. Database URL: http://ebola.semanticscience.org. PMID:26055098
An Ebola virus-centered knowledge base.
Kamdar, Maulik R; Dumontier, Michel
2015-01-01
Ebola virus (EBOV), of the family Filoviridae viruses, is a NIAID category A, lethal human pathogen. It is responsible for causing Ebola virus disease (EVD) that is a severe hemorrhagic fever and has a cumulative death rate of 41% in the ongoing epidemic in West Africa. There is an ever-increasing need to consolidate and make available all the knowledge that we possess on EBOV, even if it is conflicting or incomplete. This would enable biomedical researchers to understand the molecular mechanisms underlying this disease and help develop tools for efficient diagnosis and effective treatment. In this article, we present our approach for the development of an Ebola virus-centered Knowledge Base (Ebola-KB) using Linked Data and Semantic Web Technologies. We retrieve and aggregate knowledge from several open data sources, web services and biomedical ontologies. This knowledge is transformed to RDF, linked to the Bio2RDF datasets and made available through a SPARQL 1.1 Endpoint. Ebola-KB can also be explored using an interactive Dashboard visualizing the different perspectives of this integrated knowledge. We showcase how different competency questions, asked by domain users researching the druggability of EBOV, can be formulated as SPARQL Queries or answered using the Ebola-KB Dashboard. © The Author(s) 2015. Published by Oxford University Press.
Evolution and spread of Ebola virus in Liberia, 2014–2015
Ladner, Jason T.; Wiley, Michael R.; Mate, Suzanne; Dudas, Gytis; Prieto, Karla; Lovett, Sean; Nagle, Elyse R.; Beitzel, Brett; Gilbert, Merle L.; Fakoli, Lawrence; Diclaro, Joseph W.; Schoepp, Randal J.; Fair, Joseph; Kuhn, Jens H.; Hensley, Lisa E.; Park, Daniel J.; Sabeti, Pardis C.; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Bolay, Fatorma K.; Kugelman, Jeffrey R.; Palacios, Gustavo
2015-01-01
SUMMARY The 2013–present Western African Ebola virus disease (EVD) outbreak is the largest ever recorded with >28,000 reported cases. Ebola virus (EBOV) genome sequencing has played an important role throughout this outbreak; however, relatively few sequences have been determined from patients in Liberia, the second worst-affected country. Here, we report 140 EBOV genome sequences from the second wave of the Liberian outbreak and analyze them in combination with 782 previously published sequences from throughout the Western African outbreak. While multiple early introductions of EBOV to Liberia are evident, the majority of Liberian EVD cases are consistent with a single introduction, followed by spread and diversification within the country. Movement of the virus within Liberia was widespread and reintroductions from Liberia served as an important source for the continuation of the already ongoing EVD outbreak in Guinea. Overall, little evidence was found for incremental adaptation of EBOV to the human host. PMID:26651942
Functional Characterization of Adaptive Mutations during the West African Ebola Virus Outbreak.
Dietzel, Erik; Schudt, Gordian; Krähling, Verena; Matrosovich, Mikhail; Becker, Stephan
2017-01-15
The Ebola virus (EBOV) outbreak in West Africa started in December 2013, claimed more than 11,000 lives, threatened to destabilize a whole region, and showed how easily health crises can turn into humanitarian disasters. EBOV genomic sequences of the West African outbreak revealed nonsynonymous mutations, which induced considerable public attention, but their role in virus spread and disease remains obscure. In this study, we investigated the functional significance of three nonsynonymous mutations that emerged early during the West African EBOV outbreak. Almost 90% of more than 1,000 EBOV genomes sequenced during the outbreak carried the signature of three mutations: a D759G substitution in the active center of the L polymerase, an A82V substitution in the receptor binding domain of surface glycoprotein GP, and an R111C substitution in the self-assembly domain of RNA-encapsidating nucleoprotein NP. Using a newly developed virus-like particle system and reverse genetics, we found that the mutations have an impact on the functions of the respective viral proteins and on the growth of recombinant EBOVs. The mutation in L increased viral transcription and replication, whereas the mutation in NP decreased viral transcription and replication. The mutation in the receptor binding domain of the glycoprotein GP improved the efficiency of GP-mediated viral entry into target cells. Recombinant EBOVs with combinations of the three mutations showed a growth advantage over the prototype isolate Makona C7 lacking the mutations. This study showed that virus variants with improved fitness emerged early during the West African EBOV outbreak. The dimension of the Ebola virus outbreak in West Africa was unprecedented. Amino acid substitutions in the viral L polymerase, surface glycoprotein GP, and nucleocapsid protein NP emerged, were fixed early in the outbreak, and were found in almost 90% of the sequences. Here we showed that these mutations affected the functional activity of viral proteins and improved viral growth in cell culture. Our results demonstrate emergence of adaptive changes in the Ebola virus genome during virus circulation in humans and prompt further studies on the potential role of these changes in virus transmissibility and pathogenicity. Copyright © 2017 American Society for Microbiology.
Alisporivir Has Limited Antiviral Effects Against Ebola Virus Strains Makona and Mayinga.
Chiramel, Abhilash I; Banadyga, Logan; Dougherty, Jonathan D; Falzarano, Darryl; Martellaro, Cynthia; Brees, Dominique; Taylor, R Travis; Ebihara, Hideki; Best, Sonja M
2016-10-15
Antiviral therapeutics with existing clinical safety profiles would be highly desirable in an outbreak situation, such as the 2013-2016 emergence of Ebola virus (EBOV) in West Africa. Although, the World Health Organization declared the end of the outbreak early 2016, sporadic cases of EBOV infection have since been reported. Alisporivir is the most clinically advanced broad-spectrum antiviral that functions by targeting a host protein, cyclophilin A (CypA). A modest antiviral effect of alisporivir against contemporary (Makona) but not historical (Mayinga) EBOV strains was observed in tissue culture. However, this effect was not comparable to observations for an alisporivir-susceptible virus, the flavivirus tick-borne encephalitis virus. Thus, EBOV does not depend on (CypA) for replication, in contrast to many other viruses pathogenic to humans. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Delayed Disease Progression in Cynomolgus Macaques Infected with Ebola Virus Makona Strain.
Marzi, Andrea; Feldmann, Friederike; Hanley, Patrick W; Scott, Dana P; Günther, Stephan; Feldmann, Heinz
2015-10-01
In late 2013, the largest documented outbreak of Ebola hemorrhagic fever started in Guinea and has since spread to neighboring countries, resulting in almost 27,000 cases and >11,000 deaths in humans. In March 2014, Ebola virus (EBOV) was identified as the causative agent. This study compares the pathogenesis of a new EBOV strain, Makona, which was isolated in Guinea in 2014 with the prototype strain from the 1976 EBOV outbreak in the former Zaire. Both strains cause lethal disease in cynomolgus macaques with similar pathologic changes and hallmark features of Ebola hemorrhagic fever. However, disease progression was delayed in EBOV-Makona-infected animals, suggesting decreased rather than increased virulence of this most recent EBOV strain.
Cnops, Lieselotte; Van den Eede, Peter; Pettitt, James; Heyndrickx, Leo; De Smet, Birgit; Coppens, Sandra; Andries, Ilse; Pattery, Theresa; Van Hove, Luc; Meersseman, Geert; Van Den Herrewegen, Sari; Vergauwe, Nicolas; Thijs, Rein; Jahrling, Peter B.; Nauwelaers, David; Ariën, Kevin K.
2016-01-01
Background. The 2013–2016 Ebola epidemic in West Africa resulted in accelerated development of rapid diagnostic tests for emergency outbreak preparedness. We describe the development and evaluation of the Idylla™ prototype Ebola virus test, a fully automated sample-to-result molecular diagnostic test for rapid detection of Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV). Methods. The Idylla™ prototype Ebola virus test can simultaneously detect EBOV and SUDV in 200 µL of whole blood. The sample is directly added to a disposable cartridge containing all reagents for sample preparation, RNA extraction, and amplification by reverse-transcription polymerase chain reaction analysis. The performance was evaluated with a variety of sample types, including synthetic constructs and whole blood samples from healthy volunteers spiked with viral RNA, inactivated virus, and infectious virus. Results. The 95% limits of detection for EBOV and SUDV were 465 plaque-forming units (PFU)/mL (1010 copies/mL) and 324 PFU/mL (8204 copies/mL), respectively. In silico and in vitro analyses demonstrated 100% correct reactivity for EBOV and SUDV and no cross-reactivity with relevant pathogens. The diagnostic sensitivity was 97.4% (for EBOV) and 91.7% (for SUDV), the specificity was 100%, and the diagnostic accuracy was 95.9%. Conclusions. The Idylla™ prototype Ebola virus test is a fast, safe, easy-to-use, and near-patient test that meets the performance criteria to detect EBOV in patients with suspected Ebola. PMID:27247341
Todd, Shawn; Boyd, Victoria; Tachedjian, Mary; Klein, Reuben; Shiell, Brian; Dearnley, Megan; McAuley, Alexander J.; Woon, Amanda P.; Purcell, Anthony W.; Marsh, Glenn A.; Baker, Michelle L.
2017-01-01
ABSTRACT Ebolavirus and Marburgvirus comprise two genera of negative-sense single-stranded RNA viruses that cause severe hemorrhagic fevers in humans. Despite considerable research efforts, the molecular events following Ebola virus (EBOV) infection are poorly understood. With the view of identifying host factors that underpin EBOV pathogenesis, we compared the transcriptomes of EBOV-infected human, pig, and bat kidney cells using a transcriptome sequencing (RNA-seq) approach. Despite a significant difference in viral transcription/replication between the cell lines, all cells responded to EBOV infection through a robust induction of extracellular growth factors. Furthermore, a significant upregulation of activator protein 1 (AP1) transcription factor complex members FOS and JUN was observed in permissive cell lines. Functional studies focusing on human cells showed that EBOV infection induces protein expression, phosphorylation, and nuclear accumulation of JUN and, to a lesser degree, FOS. Using a luciferase-based reporter, we show that EBOV infection induces AP1 transactivation activity within human cells at 48 and 72 h postinfection. Finally, we show that JUN knockdown decreases the expression of EBOV-induced host gene expression. Taken together, our study highlights the role of AP1 in promoting the host gene expression profile that defines EBOV pathogenesis. IMPORTANCE Many questions remain about the molecular events that underpin filovirus pathophysiology. The rational design of new intervention strategies, such as postexposure therapeutics, will be significantly enhanced through an in-depth understanding of these molecular events. We believe that new insights into the molecular pathogenesis of EBOV may be possible by examining the transcriptomic response of taxonomically diverse cell lines (derived from human, pig, and bat). We first identified the responsive pathways using an RNA-seq-based transcriptomics approach. Further functional and computational analysis focusing on human cells highlighted an important role for the AP1 transcription factor in mediating the transcriptional response to EBOV infection. Our study sheds new light on how host transcription factors respond to and promote the transcriptional landscape that follows viral infection. PMID:28931675
Buffer AVL Alone Does Not Inactivate Ebola Virus in a Representative Clinical Sample Type.
Smither, Sophie J; Weller, Simon A; Phelps, Amanda; Eastaugh, Lin; Ngugi, Sarah; O'Brien, Lyn M; Steward, Jackie; Lonsdale, Steve G; Lever, Mark S
2015-10-01
Rapid inactivation of Ebola virus (EBOV) is crucial for high-throughput testing of clinical samples in low-resource, outbreak scenarios. The EBOV inactivation efficacy of Buffer AVL (Qiagen) was tested against marmoset serum (EBOV concentration of 1 × 10(8) 50% tissue culture infective dose per milliliter [TCID50 · ml(-1)]) and murine blood (EBOV concentration of 1 × 10(7) TCID50 · ml(-1)) at 4:1 vol/vol buffer/sample ratios. Posttreatment cell culture and enzyme-linked immunosorbent assay (ELISA) analysis indicated that treatment with Buffer AVL did not inactivate EBOV in 67% of samples, indicating that Buffer AVL, which is designed for RNA extraction and not virus inactivation, cannot be guaranteed to inactivate EBOV in diagnostic samples. Murine blood samples treated with ethanol (4:1 [vol/vol] ethanol/sample) or heat (60°C for 15 min) also showed no viral inactivation in 67% or 100% of samples, respectively. However, combined Buffer AVL and ethanol or Buffer AVL and heat treatments showed total viral inactivation in 100% of samples tested. The Buffer AVL plus ethanol and Buffer AVL plus heat treatments were also shown not to affect the extraction of PCR quality RNA from EBOV-spiked murine blood samples. © Crown copyright 2015.
Molecular Evidence of Sexual Transmission of Ebola Virus
Mate, S.E.; Kugelman, J.R.; Nyenswah, T.G.; Ladner, J.T.; Wiley, M.R.; Cordier-Lassalle, T.; Christie, A; Schroth, G.P.; Gross, S.M.; Davies-Wayne, G.J.; Shinde, S.A.; Murugan, R.; Sieh, S.B.; Badio, M.; Fakoli, L.; Taweh, F.; de Wit, E.; van Doremalen, N.; Munster, V.J.; Pettitt, J.; Prieto, K.; Humrighouse, B.W.; Ströher, U.; DiClaro, J.W.; Hensley, L.E.; Schoepp, R.J.; Safronetz, D.; Fair, J.; Kuhn, J.H.; Blackley, D.J.; Laney, A.S.; Williams, D.E.; Lo, T.; Gasasira, A.; Nichol, S.T.; Formenty, P.; Kateh, F.N.; De Cock, K.M.; Bolay, F.; Sanchez-Lockhart, M.; Palacios, G.
2016-01-01
Summary A suspected case of sexual transmission from a male survivor of Ebola virus disease (EVD) to his female partner (the patient in this report) occurred in Liberia in March 2015. Ebola virus (EBOV) genomes assembled from blood samples from the patient and a semen sample from the survivor were consistent with direct transmission. The genomes shared three substitutions that were absent from all other Western African EBOV sequences and that were distinct from the last documented transmission chain in Liberia before this case. Combined with epidemiologic data, the genomic analysis provides evidence of sexual transmission of EBOV and evidence of the persistence of infective EBOV in semen for 179 days or more after the onset of EVD. (Funded by the Defense Threat Reduction Agency and others.) PMID:26465384
Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak.
Bornholdt, Zachary A; Turner, Hannah L; Murin, Charles D; Li, Wen; Sok, Devin; Souders, Colby A; Piper, Ashley E; Goff, Arthur; Shamblin, Joshua D; Wollen, Suzanne E; Sprague, Thomas R; Fusco, Marnie L; Pommert, Kathleen B J; Cavacini, Lisa A; Smith, Heidi L; Klempner, Mark; Reimann, Keith A; Krauland, Eric; Gerngross, Tillman U; Wittrup, Karl D; Saphire, Erica Ollmann; Burton, Dennis R; Glass, Pamela J; Ward, Andrew B; Walker, Laura M
2016-03-04
Antibodies targeting the Ebola virus surface glycoprotein (EBOV GP) are implicated in protection against lethal disease, but the characteristics of the human antibody response to EBOV GP remain poorly understood. We isolated and characterized 349 GP-specific monoclonal antibodies (mAbs) from the peripheral B cells of a convalescent donor who survived the 2014 EBOV Zaire outbreak. Remarkably, 77% of the mAbs neutralize live EBOV, and several mAbs exhibit unprecedented potency. Structures of selected mAbs in complex with GP reveal a site of vulnerability located in the GP stalk region proximal to the viral membrane. Neutralizing antibodies targeting this site show potent therapeutic efficacy against lethal EBOV challenge in mice. The results provide a framework for the design of new EBOV vaccine candidates and immunotherapies. Copyright © 2016, American Association for the Advancement of Science.
Active Ebola Virus Replication and Heterogeneous Evolutionary Rates in EVD Survivors.
Whitmer, Shannon L M; Ladner, Jason T; Wiley, Michael R; Patel, Ketan; Dudas, Gytis; Rambaut, Andrew; Sahr, Foday; Prieto, Karla; Shepard, Samuel S; Carmody, Ellie; Knust, Barbara; Naidoo, Dhamari; Deen, Gibrilla; Formenty, Pierre; Nichol, Stuart T; Palacios, Gustavo; Ströher, Ute
2018-01-30
Following cessation of continuous Ebola virus (EBOV) transmission within Western Africa, sporadic EBOV disease (EVD) cases continued to re-emerge beyond the viral incubation period. Epidemiological and genomic evidence strongly suggests that this represented transmission from EVD survivors. To investigate whether persistent infections are characterized by ongoing viral replication, we sequenced EBOV from the semen of nine EVD survivors and a subset of corresponding acute specimens. EBOV evolutionary rates during persistence were either similar to or reduced relative to acute infection rates. Active EBOV replication/transcription continued during convalescence, but decreased over time, consistent with viral persistence rather than viral latency. Patterns of genetic divergence suggest a moderate relaxation of selective constraints within the sGP carboxy-terminal tail during persistent infections, but do not support widespread diversifying selection. Altogether, our data illustrate that EBOV persistence in semen, urine, and aqueous humor is not a quiescent or latent infection. Published by Elsevier Inc.
Dowall, Stuart D; Bosworth, Andrew; Watson, Robert; Bewley, Kevin; Taylor, Irene; Rayner, Emma; Hunter, Laura; Pearson, Geoff; Easterbrook, Linda; Pitman, James; Hewson, Roger; Carroll, Miles W
2015-12-01
Ebola virus (EBOV) is highly pathogenic, with a predisposition to cause outbreaks in human populations accompanied by significant mortality. Owing to the lack of approved therapies, screening programmes of potentially efficacious drugs have been undertaken. One of these studies has demonstrated the possible utility of chloroquine against EBOV using pseudotyped assays. In mouse models of EBOV disease there are conflicting reports of the therapeutic effects of chloroquine. There are currently no reports of its efficacy using the larger and more stringent guinea pig model of infection. In this study we have shown that replication of live EBOV is impaired by chloroquine in vitro. However, no protective effects were observed in vivo when EBOV-infected guinea pigs were treated with chloroquine. These results advocate that chloroquine should not be considered as a treatment strategy for EBOV.
Francica, Joseph R.; Varela-Rohena, Angel; Medvec, Andrew; Plesa, Gabriela; Riley, James L.; Bates, Paul
2010-01-01
Many viruses alter expression of proteins on the surface of infected cells including molecules important for immune recognition, such as the major histocompatibility complex (MHC) class I and II molecules. Virus-induced downregulation of surface proteins has been observed to occur by a variety of mechanisms including impaired transcription, blocks to synthesis, and increased turnover. Viral infection or transient expression of the Ebola virus (EBOV) glycoprotein (GP) was previously shown to result in loss of staining of various host cell surface proteins including MHC1 and β1 integrin; however, the mechanism responsible for this effect has not been delineated. In the present study we demonstrate that EBOV GP does not decrease surface levels of β1 integrin or MHC1, but rather impedes recognition by steric occlusion of these proteins on the cell surface. Furthermore, steric occlusion also occurs for epitopes on the EBOV glycoprotein itself. The occluded epitopes in host proteins and EBOV GP can be revealed by removal of the surface subunit of GP or by removal of surface N- and O- linked glycans, resulting in increased surface staining by flow cytometry. Importantly, expression of EBOV GP impairs CD8 T-cell recognition of MHC1 on antigen presenting cells. Glycan-mediated steric shielding of host cell surface proteins by EBOV GP represents a novel mechanism for a virus to affect host cell function, thereby escaping immune detection. PMID:20844579
Singh, Raj Kumar; Dhama, Kuldeep; Malik, Yashpal Singh; Ramakrishnan, Muthannan Andavar; Karthik, Kumaragurubaran; Khandia, Rekha; Tiwari, Ruchi; Munjal, Ashok; Saminathan, Mani; Sachan, Swati; Desingu, Perumal Arumugam; Kattoor, Jobin Jose; Iqbal, Hafiz M N; Joshi, Sunil Kumar
2017-12-01
Ebola virus (EBOV) is an extremely contagious pathogen and causes lethal hemorrhagic fever disease in man and animals. The recently occurred Ebola virus disease (EVD) outbreaks in the West African countries have categorized it as an international health concern. For the virus maintenance and transmission, the non-human primates and reservoir hosts like fruit bats have played a vital role. For curbing the disease timely, we need effective therapeutics/prophylactics, however, in the absence of any approved vaccine, timely diagnosis and monitoring of EBOV remains of utmost importance. The technologically advanced vaccines like a viral-vectored vaccine, DNA vaccine and virus-like particles are underway for testing against EBOV. In the absence of any effective control measure, the adaptation of high standards of biosecurity measures, strict sanitary and hygienic practices, strengthening of surveillance and monitoring systems, imposing appropriate quarantine checks and vigilance on trade, transport, and movement of visitors from EVD endemic countries remains the answer of choice for tackling the EBOV spread. Herein, we converse with the current scenario of EBOV giving due emphasis on animal and veterinary perspectives along with advances in diagnosis and control strategies to be adopted, lessons learned from the recent outbreaks and the global preparedness plans. To retrieve the evolutionary information, we have analyzed a total of 56 genome sequences of various EBOV species submitted between 1976 and 2016 in public databases.
One-Step Reverse Transcription-Polymerase Chain Reaction for Ebola and Marburg Viruses.
Park, Sun-Whan; Lee, Ye-Ji; Lee, Won-Ja; Jee, Youngmee; Choi, WooYoung
2016-06-01
Ebola and Marburg viruses (EBOVs and MARVs, respectively) are causative agents of severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. In 2014, there was a major Ebola outbreak in various countries in West Africa, including Guinea, Liberia, Republic of Sierra Leone, and Nigeria. EBOV and MARV are clinically difficult to diagnose and distinguish from other African epidemic diseases. Therefore, in this study, we aimed to develop a method for rapid identification of the virus to prevent the spread of infection. We established a conventional one-step reverse transcription-polymerase chain reaction (RT-PCR) assay for these pathogens based on the Superscript Reverse Transcriptase-Platinum Taq polymerase enzyme mixture. All assays were thoroughly optimized using in vitro-transcribed RNA. We designed seven primer sets of nucleocapsid protein (NP) genes based on sequences from seven filoviruses, including five EBOVs and two MARVs. To evaluate the sensitivity of the RT-PCR assay for each filovirus, 10-fold serial dilutions of synthetic viral RNA transcripts of EBOV or MARV NP genes were used to assess detection limits of viral RNA copies. The potential for these primers to cross react with other filoviruses was also examined. The results showed that the primers were specific for individual genotype detection in the examined filoviruses. The assay established in this study may facilitate rapid, reliable laboratory diagnosis in suspected cases of Ebola and Marburg hemorrhagic fevers.
Easton, Victoria; McPhillie, Martin; Garcia-Dorival, Isabel; Barr, John N; Edwards, Thomas A; Foster, Richard; Fishwick, Colin; Harris, Mark
2018-06-02
Ebola virus (EBOV) causes a severe haemorrhagic fever in humans and has a mortality rate over 50%. With no licensed drug treatments available, EBOV poses a significant threat. Investigations into possible therapeutics have been severely hampered by the classification of EBOV as a BSL4 pathogen. Here, we describe a drug discovery pathway combining in silico screening of compounds predicted to bind to a hydrophobic pocket on the nucleoprotein (NP); with a robust and rapid EBOV minigenome assay for inhibitor validation at BSL2. One compound (MCCB4) was efficacious (EC 50 4.8 μM), exhibited low cytotoxicity (CC 50 > 100 μM) and was specific, with no effect on either a T7 RNA polymerase driven firefly luciferase or a Bunyamwera virus minigenome. Further investigations revealed that this small molecule inhibitor was able to outcompete established replication complexes, an essential aspect for a potential EBOV treatment. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Sozhamannan, Shanmuga; Holland, Mitchell Y.; Hall, Adrienne T.; Negrón, Daniel A.; Ivancich, Mychal; Koehler, Jeffrey W.; Minogue, Timothy D.; Campbell, Catherine E.; Berger, Walter J.; Christopher, George W.; Goodwin, Bruce G.; Smith, Michael A.
2015-01-01
Genome sequence analyses of the 2014 Ebola Virus (EBOV) isolates revealed a potential problem with the diagnostic assays currently in use; i.e., drifting genomic profiles of the virus may affect the sensitivity or even produce false-negative results. We evaluated signature erosion in ebolavirus molecular assays using an in silico approach and found frequent potential false-negative and false-positive results. We further empirically evaluated many EBOV assays, under real time PCR conditions using EBOV Kikwit (1995) and Makona (2014) RNA templates. These results revealed differences in performance between assays but were comparable between the old and new EBOV templates. Using a whole genome approach and a novel algorithm, termed BioVelocity, we identified new signatures that are unique to each of EBOV, Sudan virus (SUDV), and Reston virus (RESTV). Interestingly, many of the current assay signatures do not fall within these regions, indicating a potential drawback in the past assay design strategies. The new signatures identified in this study may be evaluated with real-time reverse transcription PCR (rRT-PCR) assay development and validation. In addition, we discuss regulatory implications and timely availability to impact a rapidly evolving outbreak using existing but perhaps less than optimal assays versus redesign these assays for addressing genomic changes. PMID:26090727
Two-mAb Cocktail Protects Macaques Against The Makona Variant of Ebola Virus
Qiu, Xiangguo; Audet, Jonathan; Lv, Ming; He, Shihua; Wong, Gary; Wei, Haiyan; Luo, Longlong; Fernando, Lisa; Kroeker, Andrea; Bovendo, Hugues Fausther; Bello, Alexander; Li, Feng; Ye, Pei; Jacobs, Michael; Ippolito, Giuseppe; Saphire, Erica Ollmann; Bi, Shengli; Shen, Beifen; Gao, George F; Zeitlin, Larry; Feng, Jiannan; Zhang, Boyan; Kobinger, Gary P.
2018-01-01
The 2014–15 Ebola virus (EBOV) outbreak in West Africa highlighted the urgent need for specific therapeutic interventions for infected patients. The human-mouse chimeric monoclonal antibody (mAb) cocktail ZMapp™, previously shown to be efficacious in EBOV (variant Kikwit) lethally infected nonhuman primates (NHPs) when administration was initiated up to 5 days, was used in some patients during the outbreak. Here we show that a two-antibody cocktail, MIL77E, is fully protective in NHPs when administered at 50 mg/kg 3 days after challenge with a lethal dose of EBOV, variant Makona, the virus responsible for the ongoing 2014–15 outbreak, while a similar formulation of ZMapp™ protected 2 of 3 NHPs. The chimeric MIL77E mAb cocktail is produced in engineered CHO cells and is based on mAbs c13C6 and c2G4 from ZMapp™. The use of only 2 antibodies in MIL77E opens the door to a pan-ebolavirus cocktail. PMID:26962157
Adapted Lethality: What We Can Learn from Guinea Pig-Adapted Ebola Virus Infection Model.
Cheresiz, S V; Semenova, E A; Chepurnov, A A
2016-01-01
Establishment of small animal models of Ebola virus (EBOV) infection is important both for the study of genetic determinants involved in the complex pathology of EBOV disease and for the preliminary screening of antivirals, production of therapeutic heterologic immunoglobulins, and experimental vaccine development. Since the wild-type EBOV is avirulent in rodents, the adaptation series of passages in these animals are required for the virulence/lethality to emerge in these models. Here, we provide an overview of our several adaptation series in guinea pigs, which resulted in the establishment of guinea pig-adapted EBOV (GPA-EBOV) variants different in their characteristics, while uniformly lethal for the infected animals, and compare the virologic, genetic, pathomorphologic, and immunologic findings with those obtained in the adaptation experiments of the other research groups.
Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Rodriguez, Ariane; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D; Patterson, Jean L; Mire, Chad E; Geisbert, Thomas W; Hooper, Jay W; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke; Zahn, Roland
2018-01-01
The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family.
Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D.; Patterson, Jean L.; Mire, Chad E.; Geisbert, Thomas W.; Hooper, Jay W.; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke
2018-01-01
The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family. PMID:29462200
Herrera, Bobby Brooke; Hamel, Donald J; Oshun, Philip; Akinsola, Rolake; Akanmu, Alani S; Chang, Charlotte A; Eromon, Philomena; Folarin, Onikepe; Adeyemi, Kayode T; Happi, Christian T; Lu, Yichen; Ogunsola, Folasade; Kanki, Phyllis J
2018-05-01
Ebola virus (EBOV) caused more than 11,000 deaths during the 2013-2016 epidemic in West Africa without approved vaccines or immunotherapeutics. Despite its high lethality in some individuals, EBOV infection can produce little to no symptoms in others. A better understanding of the immune responses in individuals who experienced minimally symptomatic and asymptomatic infection could aid the development of more effective vaccines and antivirals against EBOV and related filoviruses. Between August and November 2017, blood samples were collected from 19 study participants in Lagos, Nigeria, including 3 Ebola virus disease (EVD) survivors, 10 individuals with documented close contact with symptomatic EVD patients, and 6 control healthcare workers for a cross-sectional serosurvey and T cell analysis. The Lagos samples, as well as archived serum collected from healthy individuals living in surrounding areas of the 1976 Democratic Republic of Congo (DRC) epidemic, were tested for EBOV IgG using commercial enzyme-linked immunosorbent assays (ELISAs) and Western blots. We detected antibodies in 3 out of 3 Lagos survivors and identified 2 seropositive individuals not known to have ever been infected. Of the DRC samples tested, we detected antibodies in 9 out of 71 (12.7%). To characterize the T cell responses in the Lagos samples, we developed an anthrax toxin-based enzyme-linked immunospot (ELISPOT) assay. The seropositive asymptomatic individuals had T cell responses against EBOV nucleoprotein, matrix protein, and glycoprotein 1 that were stronger in magnitude compared to the survivors. Our data provide further evidence of EBOV exposure in individuals without EVD-like illness and, for the first time, demonstrate that these individuals have T cell responses that are stronger in magnitude compared to severe cases. These findings suggest that T cell immunity may protect against severe EVD, which has important implications for vaccine development.
Gabriel, Gülsah; Feldmann, Friederike; Reimer, Rudolph; Thiele, Swantje; Fischer, Meike; Hartmann, Enno; Bader, Michael; Ebihara, Hideki; Hoenen, Thomas; Feldmann, Heinz
2015-01-01
Ebola virus (EBOV) protein 24 antagonizes the host interferon (IFN) response by hijacking select nuclear importin-α isoforms. Thereby, it blocks STAT1-mediated IFN-α/β and IFN-γ synthesis. However, owing to the lack of importin-α knockout animal models in the past, their role in EBOV pathogenesis remained largely unknown. Here, we demonstrate that importin-α7 is involved in the formation of EBOV inclusion bodies and replication. However, deletion of the gene encoding importin-α7 was not sufficient to increase survival rates among mice infected with EBOV. PMID:26185094
Chen, Tan; Li, Dapeng; Song, Yufeng; Yang, Xi; Liu, Qingwei; Jin, Xia; Zhou, Dongming; Huang, Zhong
2017-09-01
Ebola virus (EBOV) is one of the most virulent pathogens known to humans. Neutralizing antibodies play a major role in the protection against EBOV infections. Thus, an EBOV vaccine capable of inducing a long-lasting neutralizing antibody response is highly desirable. We report here that a heterologous prime-boost vaccine regimen can elicit durable EBOV-neutralizing antibody response in mice. A chimpanzee serotype 7 adenovirus expressing EBOV GP (denoted AdC7-GP) was generated and used for priming. A truncated version of EBOV GP1 protein (denoted GP1t) was produced at high levels in Drosophila S2 cells and used for boosting. Mouse immunization studies showed that the AdC7-GP prime/GP1t boost vaccine regimen was more potent in eliciting neutralizing antibodies than either the AdC7-GP or GP1t alone. Neutralizing antibodies induced by the heterologous prime-boost regimen sustained at high titers for at least 18 weeks after immunization. Significantly, in vivo challenge studies revealed that the entry of reporter EBOV-like particles was efficiently blocked in mice receiving the heterologous prime-boost regimen even at 18 weeks after the final dose of immunization. These results suggest that this novel AdC7-GP prime/GP1t boost regimen represents an EBOV vaccine approach capable of establishing long-term protection, and therefore warrants further development. Copyright © 2017 Elsevier B.V. All rights reserved.
Identifying spatio-temporal dynamics of Ebola in Sierra Leone using virus genomes
Proctor, Joshua L.
2017-01-01
Containing the recent West African outbreak of Ebola virus (EBOV) required the deployment of substantial global resources. Despite recent progress in analysing and modelling EBOV epidemiological data, a complete characterization of the spatio-temporal spread of Ebola cases remains a challenge. In this work, we offer a novel perspective on the EBOV epidemic in Sierra Leone that uses individual virus genome sequences to inform population-level, spatial models. Calibrated to phylogenetic linkages of virus genomes, these spatial models provide unique insight into the disease mobility of EBOV in Sierra Leone without the need for human mobility data. Consistent with other investigations, our results show that the spread of EBOV during the beginning and middle portions of the epidemic strongly depended on the size of and distance between populations. Our phylodynamic analysis also revealed a change in model preference towards a spatial model with power-law characteristics in the latter portion of the epidemic, correlated with the timing of major intervention campaigns. More generally, we believe this framework, pairing molecular diagnostics with a dynamic model selection procedure, has the potential to be a powerful forecasting tool along with offering operationally relevant guidance for surveillance and sampling strategies during an epidemic. PMID:29187639
Favier, Anne-Laure; Gout, Evelyne; Reynard, Olivier; Ferraris, Olivier; Kleman, Jean-Philippe; Volchkov, Viktor; Peyrefitte, Christophe; Thielens, Nicole M
2016-06-01
Ebola virus infection requires the surface viral glycoprotein to initiate entry into the target cells. The trimeric glycoprotein is a highly glycosylated viral protein which has been shown to interact with host C-type lectin receptors and the soluble complement recognition protein mannose-binding lectin, thereby enhancing viral infection. Similarly to mannose-binding lectin, ficolins are soluble effectors of the innate immune system that recognize particular glycans at the pathogen surface. In this study, we demonstrate that ficolin-1 interacts with the Zaire Ebola virus (EBOV) glycoprotein, and we characterized this interaction by surface plasmon resonance spectroscopy. Ficolin-1 was shown to bind to the viral glycoprotein with a high affinity. This interaction was mediated by the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of the viral glycoprotein. Using a ficolin-1 control mutant devoid of sialic acid-binding capacity, we identified sialylated moieties of the mucin domain to be potential ligands on the glycoprotein. In cell culture, using both pseudotyped viruses and EBOV, ficolin-1 was shown to enhance EBOV infection independently of the serum complement. We also observed that ficolin-1 enhanced EBOV infection on human monocyte-derived macrophages, described to be major viral target cells,. Competition experiments suggested that although ficolin-1 and mannose-binding lectin recognized different carbohydrate moieties on the EBOV glycoprotein, the observed enhancement of the infection likely depended on a common cellular receptor/partner. In conclusion, ficolin-1 could provide an alternative receptor-mediated mechanism for enhancing EBOV infection, thereby contributing to viral subversion of the host innate immune system. A specific interaction involving ficolin-1 (M-ficolin), a soluble effector of the innate immune response, and the glycoprotein (GP) of EBOV was identified. Ficolin-1 enhanced virus infection instead of tipping the balance toward its elimination. An interaction between the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of Ebola virus GP occurred. In this model, the enhancement of infection was shown to be independent of the serum complement. The facilitation of EBOV entry into target host cells by the interaction with ficolin-1 and other host lectins shunts virus elimination, which likely facilitates the survival of the virus in infected host cells and contributes to the virus strategy to subvert the innate immune response. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Cnops, Lieselotte; Van den Eede, Peter; Pettitt, James; Heyndrickx, Leo; De Smet, Birgit; Coppens, Sandra; Andries, Ilse; Pattery, Theresa; Van Hove, Luc; Meersseman, Geert; Van Den Herrewegen, Sari; Vergauwe, Nicolas; Thijs, Rein; Jahrling, Peter B; Nauwelaers, David; Ariën, Kevin K
2016-10-15
The 2013-2016 Ebola epidemic in West Africa resulted in accelerated development of rapid diagnostic tests for emergency outbreak preparedness. We describe the development and evaluation of the Idylla™ prototype Ebola virus test, a fully automated sample-to-result molecular diagnostic test for rapid detection of Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV). The Idylla™ prototype Ebola virus test can simultaneously detect EBOV and SUDV in 200 µL of whole blood. The sample is directly added to a disposable cartridge containing all reagents for sample preparation, RNA extraction, and amplification by reverse-transcription polymerase chain reaction analysis. The performance was evaluated with a variety of sample types, including synthetic constructs and whole blood samples from healthy volunteers spiked with viral RNA, inactivated virus, and infectious virus. The 95% limits of detection for EBOV and SUDV were 465 plaque-forming units (PFU)/mL (1010 copies/mL) and 324 PFU/mL (8204 copies/mL), respectively. In silico and in vitro analyses demonstrated 100% correct reactivity for EBOV and SUDV and no cross-reactivity with relevant pathogens. The diagnostic sensitivity was 97.4% (for EBOV) and 91.7% (for SUDV), the specificity was 100%, and the diagnostic accuracy was 95.9%. The Idylla™ prototype Ebola virus test is a fast, safe, easy-to-use, and near-patient test that meets the performance criteria to detect EBOV in patients with suspected Ebola. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Characterization of the catalytic center of the Ebola virus L polymerase.
Schmidt, Marie Luisa; Hoenen, Thomas
2017-10-01
Ebola virus (EBOV) causes a severe hemorrhagic fever in humans and non-human primates. While no licensed therapeutics are available, recently there has been tremendous progress in developing antivirals. Targeting the ribonucleoprotein complex (RNP) proteins, which facilitate genome replication and transcription, and particularly the polymerase L, is a promising antiviral approach since these processes are essential for the virus life cycle. However, until now little is known about L in terms of its structure and function, and in particular the catalytic center of the RNA-dependent RNA polymerase (RdRp) of L, which is one of the most promising molecular targets, has never been experimentally characterized. Using multiple sequence alignments with other negative sense single-stranded RNA viruses we identified the putative catalytic center of the EBOV RdRp. An L protein with mutations in this center was then generated and characterized using various life cycle modelling systems. These systems are based on minigenomes, i.e. miniature versions of the viral genome, in which the viral genes are exchanged against a reporter gene. When such minigenomes are coexpressed with RNP proteins in mammalian cells, the RNP proteins recognize them as authentic templates for replication and transcription, resulting in reporter activity reflecting these processes. Replication-competent minigenome systems indicated that our L catalytic domain mutant was impaired in genome replication and/or transcription, and by using replication-deficient minigenome systems, as well as a novel RT-qPCR-based genome replication assay, we showed that it indeed no longer supported either of these processes. However, it still showed similar expression to wild-type L, and retained its ability to be incorporated into inclusion bodies, which are the sites of EBOV genome replication. We have experimentally defined the catalytic center of the EBOV RdRp, and thus a promising antiviral target regulating an essential aspect of the EBOV life cycle.
Rimoin, Anne W; Lu, Kai; Bramble, Matthew S; Steffen, Imke; Doshi, Reena H; Hoff, Nicole A; Mukadi, Patrick; Nicholson, Bradly P; Alfonso, Vivian H; Olinger, Gerrard; Sinai, Cyrus; Yamamoto, Lauren K; Ramirez, Christina M; Okitolonda Wemakoy, Emile; Kebela Illunga, Benoit; Pettitt, James; Logue, James; Bennett, Richard S; Jahrling, Peter; Heymann, David L; Piot, Peter; Muyembe-Tamfum, Jean Jacques; Hensley, Lisa E; Simmons, Graham
2018-01-04
The first reported outbreak of Ebola virus disease occurred in 1976 in Yambuku, Democratic Republic of Congo. Antibody responses in survivors 11 years after infection have been documented. However, this report is the first characterization of anti-Ebola virus antibody persistence and neutralization capacity 40 years after infection. Using ELISAs we measured survivor's immunological response to Ebola virus Zaire (EBOV) glycoprotein and nucleoprotein, and assessed VP40 reactivity. Neutralization of EBOV was measured using a pseudovirus approach and plaque reduction neutralization test with live EBOV. Some survivors from the original EBOV outbreak still harbor antibodies against all 3 measures. Interestingly, a subset of these survivors' serum antibodies could still neutralize live virus 40 years postinitial infection. These data provide the longest documentation of both anti-Ebola serological response and neutralization capacity within any survivor cohort, extending the known duration of response from 11 years postinfection to at least 40 years after symptomatic infection. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Ebola virus (EBOV) infection: Therapeutic strategies.
De Clercq, Erik
2015-01-01
Within less than a year after its epidemic started (in December 2013) in Guinea, Ebola virus (EBOV), a member of the filoviridae, has spread over a number of West-African countries (Guinea, Sierra Leone and Liberia) and gained allures that have been unprecedented except by human immunodeficiency virus (HIV). Although EBOV is highly contagious and transmitted by direct contact with body fluids, it could be counteracted by the adequate chemoprophylactic and -therapeutic interventions: vaccines, antibodies, siRNAs (small interfering RNAs), interferons and chemical substances, i.e. neplanocin A derivatives (i.e. 3-deazaneplanocin A), BCX4430, favipiravir (T-705), endoplasmic reticulum (ER) α-glucosidase inhibitors and a variety of compounds that have been found to inhibit EBOV infection blocking viral entry or by a mode of action that still has to be resolved. Much has to be learned from the mechanism of action of the compounds active against VSV (vesicular stomatitis virus), a virus belonging to the rhabdoviridae, that in its mode of replication could be exemplary for the replication of filoviridae. Copyright © 2014 Elsevier Inc. All rights reserved.
Melén, Krister; Kakkola, Laura; He, Felix; Airenne, Kari; Vapalahti, Olli; Karlberg, Helen; Mirazimi, Ali; Julkunen, Ilkka
2017-04-01
There is an urgent need for Ebola virus (EBOV) proteins, EBOV-specific antibodies and recombinant antigens to be used in diagnostics and as potential vaccine candidates. Our objective was to produce and purify recombinant proteins for immunological assays and for the production of polyclonal EBOV specific antibodies. In addition, a limited comparison of the adjuvant effects of Freund's complete adjuvant (FCA) and adjuvant system 03 (AS03) was carried out. Recombinant EBOV GST-VP24, -VP30, -VP35, -VP40 and -NP were produced in E. coli and purified with affinity chromatography followed by preparative gel electrophoresis. Recombinant EBOV GP-His was produced in Sf9 insect cells and purified by preparative gel electrophoresis. To compare the adjuvant effect of FCA and AS03, 12 rabbits were immunized four times with one of the six recombinant EBOV proteins using FCA or AS03. In addition, three guinea pigs were immunized with EBOV VP24 using FCA. With the exception of sera from two rabbits immunized with GST-VP24, the antisera against all other EBOV proteins showed very high and specific antibody responses after three to four immunizations. The adjuvant effect of AS03 was comparable to that of FCA. The produced antibodies recognized the corresponding EBOV proteins in wild type EBOV-infected cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Evolution and Spread of Ebola Virus in Liberia, 2014-2015.
Ladner, Jason T; Wiley, Michael R; Mate, Suzanne; Dudas, Gytis; Prieto, Karla; Lovett, Sean; Nagle, Elyse R; Beitzel, Brett; Gilbert, Merle L; Fakoli, Lawrence; Diclaro, Joseph W; Schoepp, Randal J; Fair, Joseph; Kuhn, Jens H; Hensley, Lisa E; Park, Daniel J; Sabeti, Pardis C; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Bolay, Fatorma K; Kugelman, Jeffrey R; Palacios, Gustavo
2015-12-09
The 2013-present Western African Ebola virus disease (EVD) outbreak is the largest ever recorded with >28,000 reported cases. Ebola virus (EBOV) genome sequencing has played an important role throughout this outbreak; however, relatively few sequences have been determined from patients in Liberia, the second worst-affected country. Here, we report 140 EBOV genome sequences from the second wave of the Liberian outbreak and analyze them in combination with 782 previously published sequences from throughout the Western African outbreak. While multiple early introductions of EBOV to Liberia are evident, the majority of Liberian EVD cases are consistent with a single introduction, followed by spread and diversification within the country. Movement of the virus within Liberia was widespread, and reintroductions from Liberia served as an important source for the continuation of the already ongoing EVD outbreak in Guinea. Overall, little evidence was found for incremental adaptation of EBOV to the human host. Copyright © 2015 Elsevier Inc. All rights reserved.
Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone
Park, Daniel J.; Dudas, Gytis; Wohl, Shirlee; Goba, Augustine; Whitmer, Shannon L.M.; Andersen, Kristian G.; Sealfon, Rachel S.; Ladner, Jason T.; Kugelman, Jeffrey R.; Matranga, Christian B.; Winnicki, Sarah M.; Qu, James; Gire, Stephen K.; Gladden-Young, Adrianne; Jalloh, Simbirie; Nosamiefan, Dolo; Yozwiak, Nathan L.; Moses, Lina M.; Jiang, Pan-Pan; Lin, Aaron E.; Schaffner, Stephen F.; Bird, Brian; Towner, Jonathan; Mamoh, Mambu; Gbakie, Michael; Kanneh, Lansana; Kargbo, David; Massally, James L.B.; Kamara, Fatima K.; Konuwa, Edwin; Sellu, Josephine; Jalloh, Abdul A.; Mustapha, Ibrahim; Foday, Momoh; Yillah, Mohamed; Erickson, Bobbie R.; Sealy, Tara; Blau, Dianna; Paddock, Christopher; Brault, Aaron; Amman, Brian; Basile, Jane; Bearden, Scott; Belser, Jessica; Bergeron, Eric; Campbell, Shelley; Chakrabarti, Ayan; Dodd, Kimberly; Flint, Mike; Gibbons, Aridth; Goodman, Christin; Klena, John; McMullan, Laura; Morgan, Laura; Russell, Brandy; Salzer, Johanna; Sanchez, Angela; Wang, David; Jungreis, Irwin; Tomkins-Tinch, Christopher; Kislyuk, Andrey; Lin, Michael F.; Chapman, Sinead; MacInnis, Bronwyn; Matthews, Ashley; Bochicchio, James; Hensley, Lisa E.; Kuhn, Jens H.; Nusbaum, Chad; Schieffelin, John S.; Birren, Bruce W.; Forget, Marc; Nichol, Stuart T.; Palacios, Gustavo F.; Ndiaye, Daouda; Happi, Christian; Gevao, Sahr M.; Vandi, Mohamed A.; Kargbo, Brima; Holmes, Edward C.; Bedford, Trevor; Gnirke, Andreas; Ströher, Ute; Rambaut, Andrew; Garry, Robert F.; Sabeti, Pardis C.
2015-01-01
Summary The 2013–2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission. PMID:26091036
Marzi, Andrea; Chadinah, Spencer; Haddock, Elaine; Feldmann, Friederike; Arndt, Nicolette; Martellaro, Cynthia; Scott, Dana P; Hanley, Patrick W; Nyenswah, Tolbert G; Sow, Samba; Massaquoi, Moses; Feldmann, Heinz
2018-05-08
Ebola virus (EBOV), isolate Makona, the causative agent of the West African EBOV epidemic, has been the subject of numerous investigations to determine the genetic diversity and its potential implication for virus biology, pathogenicity, and transmissibility. Despite various mutations that have emerged over time through multiple human-to-human transmission chains, their biological relevance remains questionable. Recently, mutations in the glycoprotein GP and polymerase L, which emerged and stabilized early during the outbreak, have been associated with improved viral fitness in cell culture. Here, we infected mice and rhesus macaques with EBOV-Makona isolates carrying or lacking those mutations. Surprisingly, all isolates behaved very similarly independent of the genotype, causing severe or lethal disease in mice and macaques, respectively. Likewise, we could not detect any evidence for differences in virus shedding. Thus, no specific biological phenotype could be associated with these EBOV-Makona mutations in two animal models. Published by Elsevier Inc.
Bixler, Sandra L; Bocan, Thomas M; Wells, Jay; Wetzel, Kelly S; Van Tongeren, Sean A; Garza, Nicole L; Donnelly, Ginger; Cazares, Lisa H; Soloveva, Veronica; Welch, Lisa; Epstein, Carol; Liang, Li-Fang; Giesing, Dennis; Lenk, Robert; Bavari, Sina; Warren, Travis K
2018-03-01
During the 2013-2016 Ebola virus (EBOV) outbreak in West Africa, our team at USAMRIID evaluated the antiviral activity of a number of compounds, including favipiravir (T-705), in vitro and in mouse and nonhuman primate (NHP) models of Ebola virus disease. In this short communication, we present our findings for favipiravir in cell culture and in mice, while an accompanying paper presents the results of NHP studies. We confirmed previous reports that favipiravir has anti-EBOV activity in mice. Additionally, we found that the active form of favipiravir is generated in mice in tissues relevant for the pathogenesis of EBOV infection. Finally, we observed that protection can be achieved in mice down to 8 mg/kg/day, which is lower than the dosing regimens previously reported. An accompanying paper reports the results of treating nonhuman primates infected with EBOV or with Marburg virus with oral or intravenous favipiravir. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Vu, Hong; Shulenin, Sergey; Grolla, Allen; Audet, Jonathan; He, Shihua; Kobinger, Gary; Unfer, Robert C; Warfield, Kelly L; Aman, M Javad; Holtsberg, Frederick W
2016-02-01
The West Africa Ebola virus disease (EVD) outbreak has reached unprecedented magnitude and caused worldwide concerns for the spread of this deadly virus. Recent findings in nonhuman primates (NHPs) demonstrate that antibodies can be protective against EVD. However, the role of antibody response in vaccine-mediated protection is not fully understood. To address these questions quantitative serology assays are needed for measurement of the antibody response to key Ebola virus (EBOV) proteins. Serology enzyme-linked immunosorbent assays (ELISA's), using a reference detection antibody, were developed in order to standardize the quantitation of antibody levels in vaccinated NHPs or in humans exposed to EBOV or immunized with an EBOV vaccine. Critical reagents were generated to support the development of the serology ELISAs. Recombinant EBOV matrix protein (VP40) was expressed in Escherichia coli and purified. Two variants of the glycoprotein (GP), the ectodomain lacking the transmembrane domain (GPΔTM), and an engineered GP lacking the mucin-like domain (GPΔmuc) were expressed and purified from mammalian cell systems. Using these proteins, three ELISA methods were developed and optimized for reproducibility and robustness, including stability testing of critical reagents. The assay was used to determine the antibody response against VP40, GPΔTM, and GPΔmuc in a NHP vaccine study using EBOV virus-like particles (VLP) vaccine expressing GP, VP40 and the nucleoprotein. Additionally, these ELISAs were used to successfully detect antibody responses to VP40, GPΔTM and GPΔmuc in human sera from EBOV infected individuals. Copyright © 2015 Elsevier B.V. All rights reserved.
Lasala, Fátima; Arce, Eva; Otero, Joaquín R.; Rojo, Javier; Delgado, Rafael
2003-01-01
We have designed a glycodendritic structure, BH30sucMan, that blocks the interaction between dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and Ebola virus (EBOV) envelope. BH30sucMan inhibits DC-SIGN-mediated EBOV infection at nanomolar concentrations. BH30sucMan may counteract important steps of the infective process of EBOV and, potentially, of microorganisms shown to exploit DC-SIGN for cell entry and infection. PMID:14638512
Adapted Lethality: What We Can Learn from Guinea Pig-Adapted Ebola Virus Infection Model
Cheresiz, S. V.; Semenova, E. A.; Chepurnov, A. A.
2016-01-01
Establishment of small animal models of Ebola virus (EBOV) infection is important both for the study of genetic determinants involved in the complex pathology of EBOV disease and for the preliminary screening of antivirals, production of therapeutic heterologic immunoglobulins, and experimental vaccine development. Since the wild-type EBOV is avirulent in rodents, the adaptation series of passages in these animals are required for the virulence/lethality to emerge in these models. Here, we provide an overview of our several adaptation series in guinea pigs, which resulted in the establishment of guinea pig-adapted EBOV (GPA-EBOV) variants different in their characteristics, while uniformly lethal for the infected animals, and compare the virologic, genetic, pathomorphologic, and immunologic findings with those obtained in the adaptation experiments of the other research groups. PMID:26989413
Bukreyev, Alexander A; Dinapoli, Joshua M; Yang, Lijuan; Murphy, Brian R; Collins, Peter L
2010-04-10
We previously used human parainfluenza virus type 3 (HPIV3) as a vector to express the Ebola virus (EBOV) GP glycoprotein. The resulting HPIV3/EboGP vaccine was immunogenic and protective against EBOV challenge in a non-human primate model. However, it remained unclear whether the vaccine would be effective in adults due to preexisting immunity to HPIV3. Here, the immunogenicity of HPIV3/EboGP was compared in HPIV3-naive and HPIV3-immune Rhesus monkeys. After a single dose of HPIV3/EboGP, the titers of EBOV-specific serum ELISA or neutralization antibodies were substantially less in HPIV3-immune animals compared to HPIV3-naive animals. However, after two doses, which were previously determined to be required for complete protection against EBOV challenge, the antibody titers were indistinguishable between the two groups. The vaccine virus appeared to replicate, at a reduced level, in the respiratory tract despite the preexisting immunity. This may reflect the known ability of HPIV3 to re-infect and may also reflect the presence of EBOV GP in the vector virion, which confers resistance to neutralization in vitro by HPIV3-specific antibodies. These data suggest that HPIV3/EboGP will be immunogenic in adults as well as children. Published by Elsevier Inc.
Williams, Kinola J N; Qiu, Xiangguo; Fernando, Lisa; Jones, Steven M; Alimonti, Judie B
2015-02-01
Members of the species Zaire ebolavirus cause severe hemorrhagic fever with up to a 90% mortality rate in humans. The VSVΔG/EBOV GP vaccine has provided 100% protection in the mouse, guinea pig, and nonhuman primate (NHP) models, and has also been utilized as a post-exposure therapeutic to protect mice, guinea pigs, and NHPs from a lethal challenge of Ebola virus (EBOV). EBOV infection causes rapid mortality in human and animal models, with death occurring as early as 6 days after infection, suggesting a vital role for the innate immune system to control the infection before cells of the adaptive immune system can assume control. Natural killer (NK) cells are the predominant cell of the innate immune response, which has been shown to expand with VSVΔG/EBOV GP treatment. In the current study, an in vivo mouse model of the VSVΔG/EBOV GP post-exposure treatment was used for a mouse adapted (MA)-EBOV infection, to determine the putative VSVΔG/EBOV GP-induced protective mechanism of NK cells. NK depletion studies demonstrated that mice with NK cells survive longer in a MA-EBOV infection, which is further enhanced with VSVΔG/EBOV GP treatment. NK cell mediated cytotoxicity and IFN-γ secretion was significantly higher with VSVΔG/EBOV GP treatment. Cell mediated cytotoxicity assays and perforin knockout mice experiments suggest that there are perforin-dependent and -independent mechanisms involved. Together, these data suggest that NK cells play an important role in VSVΔG/EBOV GP-induced protection of EBOV by increasing NK cytotoxicity, and IFN-γ secretion.
Cathepsin B & L are not required for ebola virus replication.
Marzi, Andrea; Reinheckel, Thomas; Feldmann, Heinz
2012-01-01
Ebola virus (EBOV), family Filoviridae, emerged in 1976 on the African continent. Since then it caused several outbreaks of viral hemorrhagic fever in humans with case fatality rates up to 90% and remains a serious Public Health concern and biothreat pathogen. The most pathogenic and best-studied species is Zaire ebolavirus (ZEBOV). EBOV encodes one viral surface glycoprotein (GP), which is essential for replication, a determinant of pathogenicity and an important immunogen. GP mediates viral entry through interaction with cellular surface molecules, which results in the uptake of virus particles via macropinocytosis. Later in this pathway endosomal acidification activates the cysteine proteases Cathepsin B and L (CatB, CatL), which have been shown to cleave ZEBOV-GP leading to subsequent exposure of the putative receptor-binding and fusion domain and productive infection. We studied the effect of CatB and CatL on in vitro and in vivo replication of EBOV. Similar to previous findings, our results show an effect of CatB, but not CatL, on ZEBOV entry into cultured cells. Interestingly, cell entry by other EBOV species (Bundibugyo, Côte d'Ivoire, Reston and Sudan ebolavirus) was independent of CatB or CatL as was EBOV replication in general. To investigate whether CatB and CatL have a role in vivo during infection, we utilized the mouse model for ZEBOV. Wild-type (control), catB(-/-) and catL(-/-) mice were equally susceptible to lethal challenge with mouse-adapted ZEBOV with no difference in virus replication and time to death. In conclusion, our results show that CatB and CatL activity is not required for EBOV replication. Furthermore, EBOV glycoprotein cleavage seems to be mediated by an array of proteases making targeted therapeutic approaches difficult.
Novel cyclo-peptides inhibit Ebola pseudotyped virus entry by targeting primed GP protein.
Li, Quanjie; Ma, Ling; Yi, Dongrong; Wang, Han; Wang, Jing; Zhang, Yongxin; Guo, Ying; Li, Xiaoyu; Zhou, Jinming; Shi, Yi; Gao, George F; Cen, Shan
2018-07-01
Ebola virus (EBOV) causes fatal hemorrhagic fever with high death rates in human. Currently, there are no available clinically-approved prophylactic or therapeutic treatments. The recently solved crystal structure of cleavage-primed EBOV glycoprotein (GPcl) in complex with the C domain of endosomal protein Niemann-Pick C1 (NPC1) provides a new target for the development of EBOV entry inhibitors. In this work, a computational approach using docking and molecular dynamic simulations is carried out for the rational design of peptide inhibitors. A novel cyclo-peptide (Pep-3.3) was identified to target at the late stage of EBOV entry and exhibit specific inhibitory activity against EBOV-GP pseudotyped viruses, with 50% inhibitory concentration (IC50) of 5.1 μM. In vitro binding assay and molecular simulations revealed that Pep-3.3 binds to GPcl with a KD value of 69.7 μM, through interacting with predicted residues in the hydrophobic binding pocket of GPcl. Mutation of predicted residues T83 caused resistance to Pep-3.3 inhibition in viral infectivity, providing preliminary support for the model of the peptide binding to GPcl. This study demonstrates the feasibility of inhibiting EBOV entry by targeting GPcl with peptides. Copyright © 2018 Elsevier B.V. All rights reserved.
Modeling Ebola Virus Genome Replication and Transcription with Minigenome Systems.
Cressey, Tessa; Brauburger, Kristina; Mühlberger, Elke
2017-01-01
In this chapter, we describe the minigenome system for Ebola virus (EBOV), which reconstitutes EBOV polymerase activity in cells and can be used to model viral genome replication and transcription. This protocol comprises all steps including cell culture, plasmid preparation, transfection, and luciferase reporter assay readout.
Humanized Mouse Model of Ebola Virus Disease Mimics the Immune Responses in Human Disease.
Bird, Brian H; Spengler, Jessica R; Chakrabarti, Ayan K; Khristova, Marina L; Sealy, Tara K; Coleman-McCray, JoAnn D; Martin, Brock E; Dodd, Kimberly A; Goldsmith, Cynthia S; Sanders, Jeanine; Zaki, Sherif R; Nichol, Stuart T; Spiropoulou, Christina F
2016-03-01
Animal models recapitulating human Ebola virus disease (EVD) are critical for insights into virus pathogenesis. Ebola virus (EBOV) isolates derived directly from human specimens do not, without adaptation, cause disease in immunocompetent adult rodents. Here, we describe EVD in mice engrafted with human immune cells (hu-BLT). hu-BLT mice developed EVD following wild-type EBOV infection. Infection with high-dose EBOV resulted in rapid, lethal EVD with high viral loads, alterations in key human antiviral immune cytokines and chemokines, and severe histopathologic findings similar to those shown in the limited human postmortem data available. A dose- and donor-dependent clinical course was observed in hu-BLT mice infected with lower doses of either Mayinga (1976) or Makona (2014) isolates derived from human EBOV cases. Engraftment of the human cellular immune system appeared to be essential for the observed virulence, as nonengrafted mice did not support productive EBOV replication or develop lethal disease. hu-BLT mice offer a unique model for investigating the human immune response in EVD and an alternative animal model for EVD pathogenesis studies and therapeutic screening. Published by Oxford University Press for the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Spengler, Jessica R; Lavender, Kerry J; Martellaro, Cynthia; Carmody, Aaron; Kurth, Andreas; Keck, James G; Saturday, Greg; Scott, Dana P; Nichol, Stuart T; Hasenkrug, Kim J; Spiropoulou, Christina F; Feldmann, Heinz; Prescott, Joseph
2016-10-15
The study of Ebola virus (EBOV) pathogenesis in vivo has been limited to nonhuman primate models or use of an adapted virus to cause disease in rodent models. Herein we describe wild-type EBOV (Makona variant) infection of mice engrafted with human hematopoietic CD34 + stem cells (Hu-NSG™-SGM3 mice; hereafter referred to as SGM3 HuMice). SGM3 HuMice support increased development of myeloid immune cells, which are primary EBOV targets. In SGM3 HuMice, EBOV replicated to high levels, and disease was observed following either intraperitoneal or intramuscular inoculation. Despite the high levels of viral antigen and inflammatory cell infiltration in the liver, the characteristic histopathology of Ebola virus disease was not observed, and this absence of severe immunopathology may have contributed to the recovery and survival of some of the animals. Future investigations into the underlying mechanisms of the atypical disease presentation in SGM3 HuMice will provide additional insights into the immunopathogenesis of severe EBOV disease. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Antiviral Screening of Multiple Compounds against Ebola Virus.
Dowall, Stuart D; Bewley, Kevin; Watson, Robert J; Vasan, Seshadri S; Ghosh, Chandradhish; Konai, Mohini M; Gausdal, Gro; Lorens, James B; Long, Jason; Barclay, Wendy; Garcia-Dorival, Isabel; Hiscox, Julian; Bosworth, Andrew; Taylor, Irene; Easterbrook, Linda; Pitman, James; Summers, Sian; Chan-Pensley, Jenny; Funnell, Simon; Vipond, Julia; Charlton, Sue; Haldar, Jayanta; Hewson, Roger; Carroll, Miles W
2016-10-27
In light of the recent outbreak of Ebola virus (EBOV) disease in West Africa, there have been renewed efforts to search for effective antiviral countermeasures. A range of compounds currently available with broad antimicrobial activity have been tested for activity against EBOV. Using live EBOV, eighteen candidate compounds were screened for antiviral activity in vitro. The compounds were selected on a rational basis because their mechanisms of action suggested that they had the potential to disrupt EBOV entry, replication or exit from cells or because they had displayed some antiviral activity against EBOV in previous tests. Nine compounds caused no reduction in viral replication despite cells remaining healthy, so they were excluded from further analysis (zidovudine; didanosine; stavudine; abacavir sulphate; entecavir; JB1a; Aimspro; celgosivir; and castanospermine). A second screen of the remaining compounds and the feasibility of appropriateness for in vivo testing removed six further compounds (ouabain; omeprazole; esomeprazole; Gleevec; D-LANA-14; and Tasigna). The three most promising compounds (17-DMAG; BGB324; and NCK-8) were further screened for in vivo activity in the guinea pig model of EBOV disease. Two of the compounds, BGB324 and NCK-8, showed some effect against lethal infection in vivo at the concentrations tested, which warrants further investigation. Further, these data add to the body of knowledge on the antiviral activities of multiple compounds against EBOV and indicate that the scientific community should invest more effort into the development of novel and specific antiviral compounds to treat Ebola virus disease.
Ebola Virus Epidemiology and Evolution in Nigeria.
Folarin, Onikepe A; Ehichioya, Deborah; Schaffner, Stephen F; Winnicki, Sarah M; Wohl, Shirlee; Eromon, Philomena; West, Kendra L; Gladden-Young, Adrianne; Oyejide, Nicholas E; Matranga, Christian B; Deme, Awa Bineta; James, Ayorinde; Tomkins-Tinch, Christopher; Onyewurunwa, Kenneth; Ladner, Jason T; Palacios, Gustavo; Nosamiefan, Iguosadolo; Andersen, Kristian G; Omilabu, Sunday; Park, Daniel J; Yozwiak, Nathan L; Nasidi, Abdusallam; Garry, Robert F; Tomori, Oyewale; Sabeti, Pardis C; Happi, Christian T
2016-10-15
Containment limited the 2014 Nigerian Ebola virus (EBOV) disease outbreak to 20 reported cases and 8 fatalities. We present here clinical data and contact information for at least 19 case patients, and full-length EBOV genome sequences for 12 of the 20. The detailed contact data permits nearly complete reconstruction of the transmission tree for the outbreak. The EBOV genomic data are consistent with that tree. It confirms that there was a single source for the Nigerian infections, shows that the Nigerian EBOV lineage nests within a lineage previously seen in Liberia but is genetically distinct from it, and supports the conclusion that transmission from Nigeria to elsewhere did not occur. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.
Dowall, Stuart D; Jacquot, Frédéric; Landon, John; Rayner, Emma; Hall, Graham; Carbonnelle, Caroline; Raoul, Hervé; Pannetier, Delphine; Cameron, Ian; Coxon, Ruth; Al Abdulla, Ibrahim; Hewson, Roger; Carroll, Miles W
2017-06-22
Despite sporadic outbreaks of Ebola virus (EBOV) over the last 4 decades and the recent public health emergency in West Africa, there are still no approved vaccines or therapeutics for the treatment of acute EBOV disease (EVD). In response to the 2014 outbreak, an ovine immunoglobulin therapy was developed, termed EBOTAb. After promising results in the guinea pig model of EBOV infection, EBOTAb was tested in the cynomolgus macaque non-human primate model of lethal EBOV infection. To ensure stringent therapeutic testing conditions to replicate likely clinical usage, EBOTAb was first delivered 1, 2 or 3 days post-challenge with a lethal dose of EBOV. Results showed a protective effect of EBOTAb given post-exposurally, with survival rates decreasing with increasing time after challenge. Viremia results demonstrated that EBOTAb resulted in a decreased circulation of EBOV in the bloodstream. Additionally, assay of liver enzymes and histology analysis of local tissues identified differences between EBOTAb-treated and untreated groups. The results presented demonstrate that EBOTAb conferred protection against EBOV when given post-exposure and should be explored and developed further as a potential intervention strategy for future outbreaks, which are likely to occur.
Eickmann, Markus; Gravemann, Ute; Handke, Wiebke; Tolksdorf, Frank; Reichenberg, Stefan; Müller, Thomas H; Seltsam, Axel
2018-05-06
Ebola virus (EBOV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have been identified as potential threats to blood safety. This study investigated the efficacy of the THERAFLEX UV-Platelets and THERAFLEX MB-Plasma pathogen inactivation systems to inactivate EBOV and MERS-CoV in platelet concentrates (PCs) and plasma, respectively. PCs and plasma were spiked with high titers of cell culture-derived EBOV and MERS-CoV, treated with various light doses of ultraviolet C (UVC; THERAFLEX UV-Platelets) or methylene blue (MB) plus visible light (MB/light; THERAFLEX MB-Plasma), and assessed for residual viral infectivity. UVC reduced EBOV (≥4.5 log) and MERS-CoV (≥3.7 log) infectivity in PCs to the limit of detection, and MB/light decreased EBOV (≥4.6 log) and MERS-CoV (≥3.3 log) titers in plasma to nondetectable levels. Both THERAFLEX UV-Platelets (UVC) and THERAFLEX MB-Plasma (MB/light) effectively reduce EBOV and MERS-CoV infectivity in platelets and plasma, respectively. © 2018 AABB.
Gnirss, Kerstin; Kühl, Annika; Karsten, Christina; Glowacka, Ilona; Bertram, Stephanie; Kaup, Franziska; Hofmann, Heike; Pöhlmann, Stefan
2012-03-01
Ebola (EBOV) and Marburg virus (MARV) cause severe hemorrhagic fever. The host cell proteases cathepsin B and L activate the Zaire ebolavirus glycoprotein (GP) for cellular entry and constitute potential targets for antiviral intervention. However, it is unclear if different EBOV species and MARV equally depend on cathepsin B/L activity for infection of cell lines and macrophages, important viral target cells. Here, we show that cathepsin B/L inhibitors markedly reduce 293T cell infection driven by the GPs of all EBOV species, independent of the type II transmembrane serine protease TMPRSS2, which cleaved but failed to activate EBOV-GPs. Similarly, a cathepsin B/L inhibitor blocked macrophage infection mediated by different EBOV-GPs. In contrast, MARV-GP-driven entry exhibited little dependence on cathepsin B/L activity. Still, MARV-GP-mediated entry was efficiently blocked by leupeptin. These results suggest that cathepsins B/L promote entry of EBOV while MARV might employ so far unidentified proteases for GP activation. Copyright © 2011 Elsevier Inc. All rights reserved.
Lingemann, Matthias; Liu, Xueqiao; Surman, Sonja; Liang, Bo; Herbert, Richard; Hackenberg, Ashley D; Buchholz, Ursula J; Collins, Peter L; Munir, Shirin
2017-05-15
The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation. IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect against mucosal as well as systemic inoculation are needed. We evaluated a version of human parainfluenza virus type 1 (HPIV1) bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ) as an intranasal vaccine vector to express the EBOV glycoprotein GP. We evaluated expression from two different genome positions (pre-N and N-P) and investigated the use of vector packaging signals. African green monkeys immunized with two doses of the vector expressing GP from the pre-N position developed high titers of GP neutralizing serum antibodies. The attenuated vaccine candidate is expected to be safe and immunogenic and is available for clinical development. Copyright © 2017 American Society for Microbiology.
Experimental Inoculation of Egyptian Fruit Bats (Rousettus aegyptiacus) with Ebola Virus
Paweska, Janusz T.; Storm, Nadia; Grobbelaar, Antoinette A.; Markotter, Wanda; Kemp, Alan; Jansen van Vuren, Petrus
2016-01-01
Colonized Egyptian fruit bats (Rousettus aegyptiacus), originating in South Africa, were inoculated subcutaneously with Ebola virus (EBOV). No overt signs of morbidity, mortality, or gross lesions were noted. Bats seroconverted by Day 10–16 post inoculation (p.i.), with the highest mean anti-EBOV IgG level on Day 28 p.i. EBOV RNA was detected in blood from one bat. In 16 other tissues tested, viral RNA distribution was limited and at very low levels. No seroconversion could be demonstrated in any of the control bats up to 28 days after in-contact exposure to subcutaneously-inoculated bats. The control bats were subsequently inoculated intraperitoneally, and intramuscularly with the same dose of EBOV. No mortality, morbidity or gross pathology was observed in these bats. Kinetics of immune response was similar to that in subcutaneously-inoculated bats. Viral RNA was more widely disseminated to multiple tissues and detectable in a higher proportion of individuals, but consistently at very low levels. Irrespective of the route of inoculation, no virus was isolated from tissues which tested positive for EBOV RNA. Viral RNA was not detected in oral, nasal, ocular, vaginal, penile and rectal swabs from any of the experimental groups. PMID:26805873
Polyamines and Hypusination Are Required for Ebolavirus Gene Expression and Replication
Olsen, Michelle E.; Filone, Claire Marie; Rozelle, Dan; Mire, Chad E.; Agans, Krystle N.; Hensley, Lisa
2016-01-01
ABSTRACT Ebolavirus (EBOV) is an RNA virus that is known to cause severe hemorrhagic fever in humans and other primates. EBOV successfully enters and replicates in many cell types. This replication is dependent on the virus successfully coopting a number of cellular factors. Many of these factors are currently unidentified but represent potential targets for antiviral therapeutics. Here we show that cellular polyamines are critical for EBOV replication. We found that small-molecule inhibitors of polyamine synthesis block gene expression driven by the viral RNA-dependent RNA polymerase. Short hairpin RNA (shRNA) knockdown of the polyamine pathway enzyme spermidine synthase also resulted in reduced EBOV replication. These findings led us to further investigate spermidine, a polyamine that is essential for the hypusination of eukaryotic initiation factor 5A (eIF5A). Blocking the hypusination of eIF5A (and thereby inhibiting its function) inhibited both EBOV gene expression and viral replication. The mechanism appears to be due to the importance of hypusinated eIF5A for the accumulation of VP30, an essential component of the viral polymerase. The same reduction in hypusinated eIF5A did not alter the accumulation of other viral polymerase components. This action makes eIF5A function an important gate for proper EBOV polymerase assembly and function through the control of a single virus protein. PMID:27460797
Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection.
Côté, Marceline; Misasi, John; Ren, Tao; Bruchez, Anna; Lee, Kyungae; Filone, Claire Marie; Hensley, Lisa; Li, Qi; Ory, Daniel; Chandran, Kartik; Cunningham, James
2011-08-24
Ebola virus (EboV) is a highly pathogenic enveloped virus that causes outbreaks of zoonotic infection in Africa. The clinical symptoms are manifestations of the massive production of pro-inflammatory cytokines in response to infection and in many outbreaks, mortality exceeds 75%. The unpredictable onset, ease of transmission, rapid progression of disease, high mortality and lack of effective vaccine or therapy have created a high level of public concern about EboV. Here we report the identification of a novel benzylpiperazine adamantane diamide-derived compound that inhibits EboV infection. Using mutant cell lines and informative derivatives of the lead compound, we show that the target of the inhibitor is the endosomal membrane protein Niemann-Pick C1 (NPC1). We find that NPC1 is essential for infection, that it binds to the virus glycoprotein (GP), and that antiviral compounds interfere with GP binding to NPC1. Combined with the results of previous studies of GP structure and function, our findings support a model of EboV infection in which cleavage of the GP1 subunit by endosomal cathepsin proteases removes heavily glycosylated domains to expose the amino-terminal domain, which is a ligand for NPC1 and regulates membrane fusion by the GP2 subunit. Thus, NPC1 is essential for EboV entry and a target for antiviral therapy.
Albariño, César G; Wiggleton Guerrero, Lisa; Spengler, Jessica R; Uebelhoer, Luke S; Chakrabarti, Ayan K; Nichol, Stuart T; Towner, Jonathan S
2015-02-01
Previous in vitro studies have demonstrated that Ebola and Marburg virus (EBOV and MARV) VP35 antagonize the host cell immune response. Moreover, specific mutations in the IFN inhibitory domain (IID) of EBOV and MARV VP35 that abrogate their interaction with virus-derived dsRNA, lack the ability to inhibit the host immune response. To investigate the role of MARV VP35 in the context of infectious virus, we used our reverse genetics system to generate two recombinant MARVs carrying specific mutations in the IID region of VP35. Our data show that wild-type and mutant viruses grow to similar titers in interferon deficient cells, but exhibit attenuated growth in interferon-competent cells. Furthermore, in contrast to wild-type virus, both MARV mutants were unable to inhibit expression of various antiviral genes. The MARV VP35 mutants exhibit similar phenotypes to those previously described for EBOV, suggesting the existence of a shared immune-modulatory strategy between filoviruses. Published by Elsevier Inc.
From bench to almost bedside: the long road to a licensed Ebola virus vaccine.
Wong, Gary; Mendoza, Emelissa J; Plummer, Francis A; Gao, George F; Kobinger, Gary P; Qiu, Xiangguo
2018-02-01
The Ebola virus (EBOV) disease epidemic during 2014-16 in West Africa has accelerated the clinical development of several vaccine candidates that have demonstrated efficacy in the gold standard nonhuman primate (NHP) model, namely cynomolgus macaques. Areas covered: This review discusses the pre-clinical research and if available, clinical evaluation of the currently available EBOV vaccine candidates, while emphasizing the translatability of pre-clinical data generated in the NHP model to clinical data in humans. Expert opinion: Despite the existence of many successful EBOV vaccine candidates in the pre-clinical stages, only two platforms became the focus of Phase 2/3 efficacy trials in Liberia, Sierra Leone, and Guinea near the peak of the epidemic: the Vesicular stomatitis virus (VSV)-vectored vaccine and the chimpanzee adenovirus type 3 (ChAd3)-vectored vaccine. The results of three distinct clinical trials involving these candidates may soon pave the way for a licensed, safe and efficacious EBOV vaccine to help combat future epidemics.
From bench to almost bedside: The long road to a licensed Ebola virus vaccine
Wong, Gary; Mendoza, Emelissa J.; Plummer, Francis A.; Gao, George F.; Kobinger, Gary P.; Qiu, Xiangguo
2018-01-01
Introduction The Ebola virus (EBOV) disease epidemic during 2014-16 in West Africa has accelerated the clinical development of several vaccine candidates that have demonstrated efficacy in the gold standard nonhuman primate (NHP) model, namely cynomolgus macaques. Areas covered This review discusses the pre-clinical research and if available, clinical evaluation of the currently available EBOV vaccine candidates, while emphasizing the translatability of pre-clinical data generated in the NHP model to clinical data in humans. Expert opinion Despite the existence of many successful EBOV vaccine candidates in the pre-clinical stages, only two platforms became the focus of Phase 2/3 efficacy trials in Liberia, Sierra Leone, and Guinea near the peak of the epidemic: the Vesicular stomatitis virus (VSV)-vectored vaccine and the chimpanzee adenovirus type 3 (ChAd3)-vectored vaccine. The results of three distinct clinical trials involving these candidates may soon pave the way for a licensed, safe and efficacious EBOV vaccine to help combat future epidemics. PMID:29148858
Gabriel, Gülsah; Feldmann, Friederike; Reimer, Rudolph; Thiele, Swantje; Fischer, Meike; Hartmann, Enno; Bader, Michael; Ebihara, Hideki; Hoenen, Thomas; Feldmann, Heinz
2015-10-01
Ebola virus (EBOV) protein 24 antagonizes the host interferon (IFN) response by hijacking select nuclear importin-α isoforms. Thereby, it blocks STAT1-mediated IFN-α/β and IFN-γ synthesis. However, owing to the lack of importin-α knockout animal models in the past, their role in EBOV pathogenesis remained largely unknown. Here, we demonstrate that importin-α7 is involved in the formation of EBOV inclusion bodies and replication. However, deletion of the gene encoding importin-α7 was not sufficient to increase survival rates among mice infected with EBOV. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Environmental Contamination and Persistence of Ebola Virus RNA in an Ebola Treatment Center.
Poliquin, Philippe Guillaume; Vogt, Florian; Kasztura, Miriam; Leung, Anders; Deschambault, Yvon; Van den Bergh, Rafael; Dorion, Claire; Maes, Peter; Kamara, Abdul; Kobinger, Gary; Sprecher, Armand; Strong, James E
2016-10-15
Ebola viruses (EBOVs) are primarily transmitted by contact with infected body fluids. Ebola treatment centers (ETCs) contain areas that are exposed to body fluids through the care of patients suspected or confirmed to have EBOV disease. There are limited data documenting which areas/fomites within ETCs pose a risk for potential transmission. This study conducted environmental surveillance in 2 ETCs in Freetown, Sierra Leone, during the 2014-2016 West African Ebola outbreak. ETCs were surveyed over a 3-week period. Sites to be swabbed were identified with input from field personnel. Swab samples were collected and tested for the presence of EBOV RNA. Ebola-positive body fluid-impregnated cotton pads were serially sampled. General areas of both ETCs were negative for EBOV RNA. The immediate vicinity of patients was the area most likely to be positive for EBOV RNA. Personal protective equipment became positive during patient care, but chlorine solution washes rendered them negative. Personal protective equipment and patient environs do become positive for EBOV RNA, but careful attention to decontamination seems to remove it. EBOV RNA was not detected in general ward spaces. Careful attention to decontamination protocols seems to be important in minimizing the presence of EBOV RNA within ETC wards. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Amino acid mutations in Ebola virus glycoprotein of the 2014 epidemic.
Giovanetti, Marta; Grifoni, Alba; Lo Presti, Alessandra; Cella, Eleonora; Montesano, Carla; Zehender, Gianguglielmo; Colizzi, Vittorio; Amicosante, Massimo; Ciccozzi, Massimo
2015-06-01
Zaire Ebola virus (EBOV) is an enveloped non-segmented negative strand RNA virus of 19 kb in length belonging to the family Filoviridae. The virus was isolated and identified in 1976 during the epidemic of hemorrhagic fever in Zaire. The most recent outbreak of EBOV among humans, was that occurred in the forested areas of south eastern Guinea, that began in February 2014 and is still ongoing. The recent Ebola outbreak, is affecting other countries in West Africa, in addiction to Guinea: Liberia, Nigeria, and Sierra Leone. In this article, a selective pressure analysis and homology modeling based on the G Glycoprotein (GP) sequences retrieved from public databases were used to investigate the genetic diversity and modification of antibody response in the recent outbreak of Ebola Virus. Structural and the evolutionary analysis underline the 2014 epidemic virus being under negative selective pressure does not change with respect to the old epidemic in terms of genome adaptation. © 2015 Wiley Periodicals, Inc.
Li, Xingguang; Zai, Junjie; Liu, Haizhou; Feng, Yi; Li, Fan; Wei, Jing; Zou, Sen; Yuan, Zhiming; Shao, Yiming
2016-10-21
Following its immergence in December 2013, the recent Zaire Ebola virus (EBOV) outbreak in West Africa has spread and persisted for more than two years, making it the largest EBOV epidemic in both scale and geographical region to date. In this study, a total of 726 glycoprotein (GP) gene sequences of the EBOV full-length genome obtained from West Africa from the 2014 outbreak, combined with 30 from earlier outbreaks between 1976 and 2008 were used to investigate the genetic divergence, evolutionary history, population dynamics, and selection pressure of EBOV among distinct epidemic waves. Results from our dataset showed that no non-synonymous substitutions occurred on the GP gene coding sequences of EBOV that were likely to have affected protein structure or function in any way. Furthermore, the significantly different dN/dS ratios observed between the 2014 West African outbreak and earlier outbreaks were more likely due to the confounding presence of segregating polymorphisms. Our results highlight no robust evidence that the 2014 EBOV outbreak is fast-evolving and adapting to humans. Therefore, the unprecedented nature of the 2014 EBOV outbreak might be more likely related to non-virological elements, such as environmental and sociological factors.
Huang, Qing; Fu, Wei-Ling; You, Jian-Ping; Mao, Qing
2016-10-01
Ebola virus disease (EVD), caused by Ebola virus (EBOV), is a potent acute infectious disease with a high case-fatality rate. Etiological and serological EBOV detection methods, including techniques that involve the detection of the viral genome, virus-specific antigens and anti-virus antibodies, are standard laboratory diagnostic tests that facilitate confirmation or exclusion of EBOV infection. In addition, routine blood tests, liver and kidney function tests, electrolytes and coagulation tests and other diagnostic examinations are important for the clinical diagnosis and treatment of EVD. Because of the viral load in body fluids and secretions from EVD patients, all body fluids are highly contagious. As a result, biosafety control measures during the collection, transport and testing of clinical specimens obtained from individuals scheduled to undergo EBOV infection testing (including suspected, probable and confirmed cases) are crucial. This report has been generated following extensive work experience in the China Ebola Treatment Center (ETC) in Liberia and incorporates important information pertaining to relevant diagnostic standards, clinical significance, operational procedures, safety controls and other issues related to laboratory testing of EVD. Relevant opinions and suggestions are presented in this report to provide contextual awareness associated with the development of standards and/or guidelines related to EVD laboratory testing.
Leroy, Eric M; Baize, Sylvain; Mavoungou, Elie; Apetrei, Cristian
2002-01-01
The aims of this study were to determine if the clinical outcome of Ebola virus (EBOV) infection is associated with virus genetic structure and to document the genetic changes in the Gabon strains of EBOV by sequencing the GP, NP, VP40 and VP24 genes from deceased and surviving symptomatic and asymptomatic individuals. GP and NP sequences were identical in the three groups of patients and only one silent substitution occurred in the VP40 and VP24 genes in asymptomatic individuals. A strain from an asymptomatic individual had a reverse substitution to the Gabon-94 sequence, indicating that minor virus variants may cocirculate during an outbreak. These results suggest that the different clinical outcomes of EBOV infection do not result from virus mutations. Phylogenetic analysis confirmed that Gabon-96 belonged to the Zaire subtype of EBOV and revealed that synonymous substitution rates were higher than nonsynonymous substitution rates in the GP, VP40 and VP24 genes. In contrast, nonsynonymous substitutions predominated over synonymous substitutions in the NP gene of the two Gabon strains, pointing to divergent evolution of these strains and to selective pressures on this gene.
Flyak, Andrew I; Kuzmina, Natalia; Murin, Charles D; Bryan, Christopher; Davidson, Edgar; Gilchuk, Pavlo; Gulka, Christopher P; Ilinykh, Philipp A; Shen, Xiaoli; Huang, Kai; Ramanathan, Palaniappan; Turner, Hannah; Fusco, Marnie L; Lampley, Rebecca; Kose, Nurgun; King, Hannah; Sapparapu, Gopal; Doranz, Benjamin J; Ksiazek, Thomas G; Wright, David W; Saphire, Erica Ollmann; Ward, Andrew B; Bukreyev, Alexander; Crowe, James E
2018-05-07
Ebola virus (EBOV) in humans causes a severe illness with high mortality rates. Several strategies have been developed in the past to treat EBOV infection, including the antibody cocktail ZMapp, which has been shown to be effective in nonhuman primate models of infection 1 and has been used under compassionate-treatment protocols in humans 2 . ZMapp is a mixture of three chimerized murine monoclonal antibodies (mAbs) 3-6 that target EBOV-specific epitopes on the surface glycoprotein 7,8 . However, ZMapp mAbs do not neutralize other species from the genus Ebolavirus, such as Bundibugyo virus (BDBV), Reston virus (RESTV) or Sudan virus (SUDV). Here, we describe three naturally occurring human cross-neutralizing mAbs, from BDBV survivors, that target an antigenic site in the canonical heptad repeat 2 (HR2) region near the membrane-proximal external region (MPER) of the glycoprotein. The identification of a conserved neutralizing antigenic site in the glycoprotein suggests that these mAbs could be used to design universal antibody therapeutics against diverse ebolavirus species. Furthermore, we found that immunization with a peptide comprising the HR2-MPER antigenic site elicits neutralizing antibodies in rabbits. Structural features determined by conserved residues in the antigenic site described here could inform an epitope-based vaccine design against infection caused by diverse ebolavirus species.
Brauburger, Kristina; Boehmann, Yannik; Krähling, Verena
2015-01-01
ABSTRACT The highly pathogenic Ebola virus (EBOV) has a nonsegmented negative-strand (NNS) RNA genome containing seven genes. The viral genes either are separated by intergenic regions (IRs) of variable length or overlap. The structure of the EBOV gene overlaps is conserved throughout all filovirus genomes and is distinct from that of the overlaps found in other NNS RNA viruses. Here, we analyzed how diverse gene borders and noncoding regions surrounding the gene borders influence transcript levels and govern polymerase behavior during viral transcription. Transcription of overlapping genes in EBOV bicistronic minigenomes followed the stop-start mechanism, similar to that followed by IR-containing gene borders. When the gene overlaps were extended, the EBOV polymerase was able to scan the template in an upstream direction. This polymerase feature seems to be generally conserved among NNS RNA virus polymerases. Analysis of IR-containing gene borders showed that the IR sequence plays only a minor role in transcription regulation. Changes in IR length were generally well tolerated, but specific IR lengths led to a strong decrease in downstream gene expression. Correlation analysis revealed that these effects were largely independent of the surrounding gene borders. Each EBOV gene contains exceptionally long untranslated regions (UTRs) flanking the open reading frame. Our data suggest that the UTRs adjacent to the gene borders are the main regulators of transcript levels. A highly complex interplay between the different cis-acting elements to modulate transcription was revealed for specific combinations of IRs and UTRs, emphasizing the importance of the noncoding regions in EBOV gene expression control. IMPORTANCE Our data extend those from previous analyses investigating the implication of noncoding regions at the EBOV gene borders for gene expression control. We show that EBOV transcription is regulated in a highly complex yet not easily predictable manner by a set of interacting cis-active elements. These findings are important not only for the design of recombinant filoviruses but also for the design of other replicon systems widely used as surrogate systems to study the filovirus replication cycle under low biosafety levels. Insights into the complex regulation of EBOV transcription conveyed by noncoding sequences will also help to interpret the importance of mutations that have been detected within these regions, including in isolates of the current outbreak. PMID:26656691
Brauburger, Kristina; Boehmann, Yannik; Krähling, Verena; Mühlberger, Elke
2016-02-15
The highly pathogenic Ebola virus (EBOV) has a nonsegmented negative-strand (NNS) RNA genome containing seven genes. The viral genes either are separated by intergenic regions (IRs) of variable length or overlap. The structure of the EBOV gene overlaps is conserved throughout all filovirus genomes and is distinct from that of the overlaps found in other NNS RNA viruses. Here, we analyzed how diverse gene borders and noncoding regions surrounding the gene borders influence transcript levels and govern polymerase behavior during viral transcription. Transcription of overlapping genes in EBOV bicistronic minigenomes followed the stop-start mechanism, similar to that followed by IR-containing gene borders. When the gene overlaps were extended, the EBOV polymerase was able to scan the template in an upstream direction. This polymerase feature seems to be generally conserved among NNS RNA virus polymerases. Analysis of IR-containing gene borders showed that the IR sequence plays only a minor role in transcription regulation. Changes in IR length were generally well tolerated, but specific IR lengths led to a strong decrease in downstream gene expression. Correlation analysis revealed that these effects were largely independent of the surrounding gene borders. Each EBOV gene contains exceptionally long untranslated regions (UTRs) flanking the open reading frame. Our data suggest that the UTRs adjacent to the gene borders are the main regulators of transcript levels. A highly complex interplay between the different cis-acting elements to modulate transcription was revealed for specific combinations of IRs and UTRs, emphasizing the importance of the noncoding regions in EBOV gene expression control. Our data extend those from previous analyses investigating the implication of noncoding regions at the EBOV gene borders for gene expression control. We show that EBOV transcription is regulated in a highly complex yet not easily predictable manner by a set of interacting cis-active elements. These findings are important not only for the design of recombinant filoviruses but also for the design of other replicon systems widely used as surrogate systems to study the filovirus replication cycle under low biosafety levels. Insights into the complex regulation of EBOV transcription conveyed by noncoding sequences will also help to interpret the importance of mutations that have been detected within these regions, including in isolates of the current outbreak. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Biochemical Basis for Increased Activity of Ebola Glycoprotein in the 2013-16 Epidemic.
Wang, May K; Lim, Sun-Young; Lee, Soo Mi; Cunningham, James M
2017-03-08
Ebola virus (EBOV) infection is characterized by sporadic outbreaks caused by zoonotic transmission. Fixed changes in amino acid sequence, such as A82V in the EBOV glycoprotein (GP) that occurred early in the 2013-16 epidemic, are suspected to confer a selective advantage to the virus. We used biochemical assays of GP function to show that A82V, as well as a polymorphism in residue 544 identified in other outbreaks, enhances infection by decreasing the threshold for activation of membrane fusion activity triggered by the host factors cathepsin B and Niemann-Pick C1. Importantly, the increase in infectivity comes with the cost of decreased virus stability. Thus, emergence of a virus GP with altered properties that can affect transmission and virulence may have contributed to the severity and scope of the 2013-16 EBOV epidemic. Copyright © 2017 Elsevier Inc. All rights reserved.
Experimental Respiratory Infection of Marmosets (Callithrix jacchus) With Ebola Virus Kikwit.
Smither, Sophie J; Nelson, Michelle; Eastaugh, Lin; Nunez, Alejandro; Salguero, Francisco J; Lever, Mark S
2015-10-01
Ebola virus (EBOV) causes a highly infectious and lethal hemorrhagic fever in primates with high fatality rates during outbreaks and EBOV may be exploited as a potential biothreat pathogen. There is therefore a need to develop and license appropriate medical countermeasures against this virus. To determine whether the common marmoset (Callithrix jacchus) would be an appropriate model to assess vaccines or therapies against EBOV disease (EVD), initial susceptibility, lethality and pathogenesis studies were performed. Low doses of EBOV-Kikwit, between 4 and 27 times the 50% tissue culture infectious dose, were sufficient to cause a lethal, reproducible infection. Animals became febrile between days 5 and 6, maintaining a high fever before succumbing to EVD between 6 and 8 days after challenge. Typical signs of EVD were observed. Pathogenesis studies revealed that virus was isolated from the lungs of animals beginning on day 3 after challenge and from the liver, spleen and blood beginning on day 5. The most striking features were observed in animals that succumbed to infection, including high viral titers in all organs, increased levels of liver function enzymes and blood clotting times, decreased levels of platelets, multifocal moderate to severe hepatitis, and perivascular edema. © Crown copyright 2015.
Loss of Interleukin 1 Receptor Antagonist Enhances Susceptibility to Ebola Virus Infection.
Hill-Batorski, Lindsay; Halfmann, Peter; Marzi, Andrea; Lopes, Tiago J S; Neumann, Gabriele; Feldmann, Heinz; Kawaoka, Yoshihiro
2015-10-01
The current outbreak of Ebola virus (EBOV) infection in West Africa is unprecedented, with nearly 26 000 confirmed cases and >10 000 deaths. Comprehensive data on the pathogenesis of EBOV infection are lacking; however, recent studies suggested that fatal EBOV infections are characterized by dysregulation of the innate immune response and a subsequent cytokine storm. Specifically, several studies suggested that hypersecretion of interleukin 1 receptor antagonist (IL-1Ra) correlates with lethal EBOV infections. To examine the significance of IL-1Ra in EBOV infections, we infected mice that lack the gene encoding IL-1Ra, Il1rn (IL-1RN-KO), and mice with wild-type Il1rn (IL-1RN-WT) with a mouse-adapted EBOV (MA-EBOV). Infected IL-1RN-KO mice lost more weight and had a lower survival rate than IL-1RN-WT mice infected with MA-EBOV. In addition, IL-1RN-KO mice infected with wild-type EBOV, which does not cause lethal infection in adult immunocompetent mice, such as C57BL/6 mice, experienced greater weight loss than IL-1RN-WT mice infected with wild-type EBOV. Further studies revealed that the levels of 6 cytokines in spleens-IL-1α, IL-1β, interleukin 12p40, interleukin 17, granulocyte colony-stimulating factor, and regulated on activation, normal T-cell expressed and secreted-were significantly different between IL-1RN-KO mice and IL-1RN-WT mice infected with MA-EBOV. Collectively, our data suggest that IL-1Ra may have a protective effect upon EBOV infection, likely by damping an overactive proinflammatory immune response. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Effectiveness of Four Disinfectants against Ebola Virus on Different Materials
Smither, Sophie; Phelps, Amanda; Eastaugh, Lin; Ngugi, Sarah; O’Brien, Lyn; Dutch, Andrew; Lever, Mark Stephen
2016-01-01
The West Africa Ebola virus (EBOV) outbreak has highlighted the need for effective disinfectants capable of reducing viral load in a range of sample types, equipment and settings. Although chlorine-based products are widely used, they can also be damaging to equipment or apparatus that needs continuous use such as aircraft use for transportation of infected people. Two aircraft cleaning solutions were assessed alongside two common laboratory disinfectants in a contact kill assay with EBOV on two aircraft relevant materials representative of a porous and non-porous surface. A decimal log reduction of viral titre of 4 is required for a disinfectant to be deemed effective and two of the disinfectants fulfilled this criteria under the conditions tested. One product, Ardrox 6092, was found to perform similarly to sodium hypochlorite, but as it does not have the corrosive properties of sodium hypochlorite, it could be an alternative disinfectant solution to be used for decontamination of EBOV on sensitive apparatus. PMID:27399759
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Daisy W.; Borek, Dominika; Luthra, Priya
During viral RNA synthesis, Ebola virus (EBOV) nucleoprotein (NP) alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20–48) that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNP NTD complex, solved to 3.7 Å resolution, reveals how NPBP peptidemore » occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development.« less
Leung, Daisy W.; Borek, Dominika; Luthra, Priya; ...
2015-04-01
During viral RNA synthesis, Ebola virus (EBOV) nucleoprotein (NP) alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20–48) that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNP NTD complex, solved to 3.7 Å resolution, reveals how NPBP peptidemore » occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development.« less
Structure of the Ebola Virus Glycoprotein Bound to An Antibody From a Human Survivor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.E.; Fusco, M.L.; Hessell, A.J.
2009-05-20
Ebola virus (EBOV) entry requires the surface glycoprotein (GP) to initiate attachment and fusion of viral and host membranes. Here we report the crystal structure of EBOV GP in its trimeric, pre-fusion conformation (GP1+GP2) bound to a neutralizing antibody, KZ52, derived from a human survivor of the 1995 Kikwit outbreak. Three GP1 viral attachment subunits assemble to form a chalice, cradled by the GP2 fusion subunits, while a novel glycan cap and projected mucin-like domain restrict access to the conserved receptor-binding site sequestered in the chalice bowl. The glycocalyx surrounding GP is likely central to immune evasion and may explainmore » why survivors have insignificant neutralizing antibody titres. KZ52 recognizes a protein epitope at the chalice base where it clamps several regions of the pre-fusion GP2 to the amino terminus of GP1. This structure provides a template for unraveling the mechanism of EBOV GP-mediated fusion and for future immunotherapeutic development.« less
Leung, Daisy W; Borek, Dominika; Luthra, Priya; Binning, Jennifer M; Anantpadma, Manu; Liu, Gai; Harvey, Ian B; Su, Zhaoming; Endlich-Frazier, Ariel; Pan, Juanli; Shabman, Reed S; Chiu, Wah; Davey, Robert A; Otwinowski, Zbyszek; Basler, Christopher F; Amarasinghe, Gaya K
2015-04-21
During viral RNA synthesis, Ebola virus (EBOV) nucleoprotein (NP) alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20-48) that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNPNTD complex, solved to 3.7 Å resolution, reveals how NPBP peptide occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
A cellular automata model of Ebola virus dynamics
NASA Astrophysics Data System (ADS)
Burkhead, Emily; Hawkins, Jane
2015-11-01
We construct a stochastic cellular automaton (SCA) model for the spread of the Ebola virus (EBOV). We make substantial modifications to an existing SCA model used for HIV, introduced by others and studied by the authors. We give a rigorous analysis of the similarities between models due to the spread of virus and the typical immune response to it, and the differences which reflect the drastically different timing of the course of EBOV. We demonstrate output from the model and compare it with clinical data.
Innate Immune Responses of Bat and Human Cells to Filoviruses: Commonalities and Distinctions
Kuzmin, Ivan V.; Schwarz, Toni M.; Ilinykh, Philipp A.; Jordan, Ingo; Ksiazek, Thomas G.; Sachidanandam, Ravi; Basler, Christopher F.
2017-01-01
ABSTRACT Marburg (MARV) and Ebola (EBOV) viruses are zoonotic pathogens that cause severe hemorrhagic fever in humans. The natural reservoir of MARV is the Egyptian rousette bat (Rousettus aegyptiacus); that of EBOV is unknown but believed to be another bat species. The Egyptian rousette develops subclinical productive infection with MARV but is refractory to EBOV. Interaction of filoviruses with hosts is greatly affected by the viral interferon (IFN)-inhibiting domains (IID). Our study was aimed at characterization of innate immune responses to filoviruses and the role of filovirus IID in bat and human cells. The study demonstrated that EBOV and MARV replicate to similar levels in all tested cell lines, indicating that permissiveness for EBOV at cell and organism levels do not necessarily correlate. Filoviruses, particularly MARV, induced a potent innate immune response in rousette cells, which was generally stronger than that in human cells. Both EBOV VP35 and VP24 IID were found to suppress the innate immune response in rousette cells, but only VP35 IID appeared to promote virus replication. Along with IFN-α and IFN-β, IFN-γ was demonstrated to control filovirus infection in bat cells but not in human cells, suggesting host species specificity of the antiviral effect. The antiviral effects of bat IFNs appeared not to correlate with induction of IFN-stimulated genes 54 and 56, which were detected in human cells ectopically expressing bat IFN-α and IFN-β. As bat IFN-γ induced the type I IFN pathway, its antiviral effect is likely to be partially induced via cross talk. IMPORTANCE Bats serve as reservoirs for multiple emerging viruses, including filoviruses, henipaviruses, lyssaviruses, and zoonotic coronaviruses. Although there is no evidence for symptomatic disease caused by either Marburg or Ebola viruses in bats, spillover of these viruses into human populations causes deadly outbreaks. The reason for the lack of symptomatic disease in bats infected with filoviruses remains unknown. The outcome of a virus-host interaction depends on the ability of the host immune system to suppress viral replication and the ability of a virus to counteract the host defenses. Our study is a comparative analysis of the host innate immune response to either MARV or EBOV infection in bat and human cells and the role of viral interferon-inhibiting domains in the host innate immune responses. The data are useful for understanding the interactions of filoviruses with natural and accidental hosts and for identification of factors that influence filovirus evolution. PMID:28122983
Innate Immune Responses of Bat and Human Cells to Filoviruses: Commonalities and Distinctions.
Kuzmin, Ivan V; Schwarz, Toni M; Ilinykh, Philipp A; Jordan, Ingo; Ksiazek, Thomas G; Sachidanandam, Ravi; Basler, Christopher F; Bukreyev, Alexander
2017-04-15
Marburg (MARV) and Ebola (EBOV) viruses are zoonotic pathogens that cause severe hemorrhagic fever in humans. The natural reservoir of MARV is the Egyptian rousette bat ( Rousettus aegyptiacus ); that of EBOV is unknown but believed to be another bat species. The Egyptian rousette develops subclinical productive infection with MARV but is refractory to EBOV. Interaction of filoviruses with hosts is greatly affected by the viral interferon (IFN)-inhibiting domains (IID). Our study was aimed at characterization of innate immune responses to filoviruses and the role of filovirus IID in bat and human cells. The study demonstrated that EBOV and MARV replicate to similar levels in all tested cell lines, indicating that permissiveness for EBOV at cell and organism levels do not necessarily correlate. Filoviruses, particularly MARV, induced a potent innate immune response in rousette cells, which was generally stronger than that in human cells. Both EBOV VP35 and VP24 IID were found to suppress the innate immune response in rousette cells, but only VP35 IID appeared to promote virus replication. Along with IFN-α and IFN-β, IFN-γ was demonstrated to control filovirus infection in bat cells but not in human cells, suggesting host species specificity of the antiviral effect. The antiviral effects of bat IFNs appeared not to correlate with induction of IFN-stimulated genes 54 and 56, which were detected in human cells ectopically expressing bat IFN-α and IFN-β. As bat IFN-γ induced the type I IFN pathway, its antiviral effect is likely to be partially induced via cross talk. IMPORTANCE Bats serve as reservoirs for multiple emerging viruses, including filoviruses, henipaviruses, lyssaviruses, and zoonotic coronaviruses. Although there is no evidence for symptomatic disease caused by either Marburg or Ebola viruses in bats, spillover of these viruses into human populations causes deadly outbreaks. The reason for the lack of symptomatic disease in bats infected with filoviruses remains unknown. The outcome of a virus-host interaction depends on the ability of the host immune system to suppress viral replication and the ability of a virus to counteract the host defenses. Our study is a comparative analysis of the host innate immune response to either MARV or EBOV infection in bat and human cells and the role of viral interferon-inhibiting domains in the host innate immune responses. The data are useful for understanding the interactions of filoviruses with natural and accidental hosts and for identification of factors that influence filovirus evolution. Copyright © 2017 American Society for Microbiology.
Ebola Virus Binding to Tim-1 on T Lymphocytes Induces a Cytokine Storm
Younan, Patrick; Iampietro, Mathieu; Nishida, Andrew; Ramanathan, Palaniappan; Santos, Rodrigo I.; Dutta, Mukta; Lubaki, Ndongala Michel; Koup, Richard A.; Katze, Michael G.
2017-01-01
ABSTRACT Ebola virus (EBOV) disease (EVD) results from an exacerbated immunological response that is highlighted by a burst in the production of inflammatory mediators known as a “cytokine storm.” Previous reports have suggested that nonspecific activation of T lymphocytes may play a central role in this phenomenon. T-cell immunoglobulin and mucin domain-containing protein 1 (Tim-1) has recently been shown to interact with virion-associated phosphatidylserine to promote infection. Here, we demonstrate the central role of Tim-1 in EBOV pathogenesis, as Tim-1−/− mice exhibited increased survival rates and reduced disease severity; surprisingly, only a limited decrease in viremia was detected. Tim-1−/− mice exhibited a modified inflammatory response as evidenced by changes in serum cytokines and activation of T helper subsets. A series of in vitro assays based on the Tim-1 expression profile on T cells demonstrated that despite the apparent absence of detectable viral replication in T lymphocytes, EBOV directly binds to isolated T lymphocytes in a phosphatidylserine–Tim-1-dependent manner. Exposure to EBOV resulted in the rapid development of a CD4Hi CD3Low population, non-antigen-specific activation, and cytokine production. Transcriptome and Western blot analysis of EBOV-stimulated CD4+ T cells confirmed the induction of the Tim-1 signaling pathway. Furthermore, comparative analysis of transcriptome data and cytokine/chemokine analysis of supernatants highlight the similarities associated with EBOV-stimulated T cells and the onset of a cytokine storm. Flow cytometry revealed virtually exclusive binding and activation of central memory CD4+ T cells. These findings provide evidence for the role of Tim-1 in the induction of a cytokine storm phenomenon and the pathogenesis of EVD. PMID:28951472
A DNA vaccine for the prevention of Ebola virus infection.
Dery, Markalain; Bausch, Daniel G
2008-06-01
The NIH and Vical Inc are developing an intramuscular needle-free DNA vaccine containing plasmids encoding the envelope glycoprotein of Ebola virus (EBOV) from the Sudan and Zaire strains, and the nucleoprotein of EBOV Zaire strain. A phase I clinical trial demonstrated a good safety profile, with most adverse events limited to the site of injection and largely attributable to the delivery.
Evaluation of the Activity of Lamivudine and Zidovudine against Ebola Virus.
Cong, Yu; Dyall, Julie; Hart, Brit J; DeWald, Lisa Evans; Johnson, Joshua C; Postnikova, Elena; Zhou, Huanying; Gross, Robin; Rojas, Oscar; Alexander, Isis; Josleyn, Nicole; Zhang, Tengfei; Michelotti, Julia; Janosko, Krisztina; Glass, Pamela J; Flint, Mike; McMullan, Laura K; Spiropoulou, Christina F; Mierzwa, Tim; Guha, Rajarshi; Shinn, Paul; Michael, Sam; Klumpp-Thomas, Carleen; McKnight, Crystal; Thomas, Craig; Eakin, Ann E; O'Loughlin, Kathleen G; Green, Carol E; Catz, Paul; Mirsalis, Jon C; Honko, Anna N; Olinger, Gene G; Bennett, Richard S; Holbrook, Michael R; Hensley, Lisa E; Jahrling, Peter B
2016-01-01
In the fall of 2014, an international news agency reported that patients suffering from Ebola virus disease (EVD) in Liberia were treated successfully with lamivudine, an antiviral drug used to treat human immunodeficiency virus-1 and hepatitis B virus infections. According to the report, 13 out of 15 patients treated with lamivudine survived and were declared free from Ebola virus disease. In this study, the anti-Ebola virus (EBOV) activity of lamivudine and another antiretroviral, zidovudine, were evaluated in a diverse set of cell lines against two variants of wild-type EBOV. Variable assay parameters were assessed to include different multiplicities of infection, lengths of inoculation times, and durations of dosing. At a multiplicity of infection of 1, lamivudine and zidovudine had no effect on EBOV propagation in Vero E6, Hep G2, or HeLa cells, or in primary human monocyte-derived macrophages. At a multiplicity of infection of 0.1, zidovudine demonstrated limited anti-EBOV activity in Huh 7 cells. Under certain conditions, lamivudine had low anti-EBOV activity at the maximum concentration tested (320 μM). However, lamivudine never achieved greater than 30% viral inhibition, and the activity was not consistently reproducible. Combination of lamivudine and zidovudine showed no synergistic antiviral activity. Independently, a set of in vitro experiments testing lamivudine and zidovudine for antiviral activity against an Ebola-enhanced green fluorescent protein reporter virus was performed at the Centers for Disease Control and Prevention. No antiviral activity was observed for either compound. A study evaluating the efficacy of lamivudine in a guinea pig model of EVD found no survival benefit. This lack of benefit was observed despite plasma lamivudine concentrations in guinea pig of about 4 μg/ml obtained in a separately conducted pharmacokinetics study. These studies found no evidence to support the therapeutic use of lamivudine for the treatment of EVD.
Zhu, Tengfei; Song, Hao; Peng, Ruchao; Shi, Yi; Qi, Jianxun; Gao, George F
2017-09-15
Filovirus nucleoprotein (NP), viral protein 35 (VP35), and polymerase L are essential for viral replication and nucleocapsid formation. Here, we identify a 28-residue peptide (NP binding peptide [NPBP]) from Marburg virus (MARV) VP35 through sequence alignment with previously identified Ebola virus (EBOV) NPBP, which bound to the core region (residues 18 to 344) of the N-terminal portion of MARV NP with high affinity. The crystal structure of the MARV NP core/NPBP complex at a resolution of 2.6 Å revealed that NPBP binds to the C-terminal region of the NP core via electrostatic and nonpolar interactions. Further structural analysis revealed that the MARV and EBOV NP cores hold a conserved binding pocket for NPBP, and this pocket could serve as a promising target for the design of universal drugs against filovirus infection. In addition, cross-binding assays confirmed that the NP core of MARV or EBOV can bind the NPBP from the other virus, although with moderately reduced binding affinities that result from termini that are distinct between the MARV and EBOV NPBPs. IMPORTANCE Historically, Marburg virus (MARV) has caused severe disease with up to 90% lethality. Among the viral proteins produced by MARV, NP and VP35 are both multifunctional proteins that are essential for viral replication. In its relative, Ebola virus (EBOV), an N-terminal peptide from VP35 binds to the NP N-terminal region with high affinity. Whether this is a common mechanism among filoviruses is an unsolved question. Here, we present the crystal structure of a complex that consists of the core domain of MARV NP and the NPBP peptide from VP35. As we compared MARV NPBP with EBOV NPBP, several different features at the termini were identified. Although these differences reduce the affinity of the NP core for NPBPs across genera, a conserved pocket in the C-terminal region of the NP core makes cross-species binding possible. Our results expand our knowledge of filovirus NP-VP35 interactions and provide more details for therapeutic intervention. Copyright © 2017 American Society for Microbiology.
Luthra, Priya; Ramanan, Parameshwaran; Mire, Chad E; Weisend, Carla; Tsuda, Yoshimi; Yen, Benjamin; Liu, Gai; Leung, Daisy W; Geisbert, Thomas W; Ebihara, Hideki; Amarasinghe, Gaya K; Basler, Christopher F
2013-07-17
The cytoplasmic pattern recognition receptor RIG-I is activated by viral RNA and induces type I IFN responses to control viral replication. The cellular dsRNA binding protein PACT can also activate RIG-I. To counteract innate antiviral responses, some viruses, including Ebola virus (EBOV), encode proteins that antagonize RIG-I signaling. Here, we show that EBOV VP35 inhibits PACT-induced RIG-I ATPase activity in a dose-dependent manner. The interaction of PACT with RIG-I is disrupted by wild-type VP35, but not by VP35 mutants that are unable to bind PACT. In addition, PACT-VP35 interaction impairs the association between VP35 and the viral polymerase, thereby diminishing viral RNA synthesis and modulating EBOV replication. PACT-deficient cells are defective in IFN induction and are insensitive to VP35 function. These data support a model in which the VP35-PACT interaction is mutually antagonistic and plays a fundamental role in determining the outcome of EBOV infection. Copyright © 2013 Elsevier Inc. All rights reserved.
Validation of the Cepheid GeneXpert for Detecting Ebola Virus in Semen.
Loftis, Amy James; Quellie, Saturday; Chason, Kelly; Sumo, Emmanuel; Toukolon, Mason; Otieno, Yonnie; Ellerbrok, Heinzfried; Hobbs, Marcia M; Hoover, David; Dube, Karine; Wohl, David A; Fischer, William A
2017-02-01
Ebola virus (EBOV) RNA persistence in semen, reported sexual transmission, and sporadic clusters at the end of the 2013-2016 epidemic have prompted recommendations that male survivors refrain from unprotected sex unless their semen is confirmed to be EBOV free. However, there is no fully validated assay for EBOV detection in fluids other than blood. The Cepheid Xpert Ebola assay for EBOV RNA detection was validated for whole semen and blood using samples obtained from uninfected donors and spiked with inactivated EBOV. The validation procedure incorporated standards from Clinical and Laboratory Standards Institute and Good Clinical Laboratory Practices guidelines for evaluating molecular devices for use in infectious disease testing. The assay produced limits of detection of 1000 copies/mL in semen and 275 copies/mL in blood. Limits of detection for both semen and blood increased with longer intervals between collection and testing, with acceptable results obtained up to 72 hours after specimen collection. The Cepheid Xpert Ebola assay is accurate and precise for detecting EBOV in whole semen. A validated assay for EBOV RNA detection in semen informs the care of male survivors of Ebola, as well as recommendations for public health. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Tambunan, U. S. F.; Nasution, M. A. F.
2017-07-01
Ebola remains as one of the deadliest diseases in the world, with almost 29,000 cases were reported and kill 11,000 of them, and yet neither treatment nor vaccine that can combat this disease effectively. This disease is caused by ebolavirus (EBOV), a primary member of Filoviridae family. The life cycle of this virus has been operated by several key proteins, one of them is VP24 protein, which has been known for its crucial role in the transcription and replication of EBOV. Therefore, targeting VP24 protein can be a solution for treating this pathogenic disease. In this study, virtual screening of Indonesian natural products as EBOV VP24 inhibitor was performed. About 2,020 ligands from many sources, including HerbalDB database, were obtained and screened by using DataWarrior software to measure its molecular and pharmacological properties, resulting 301 ligands in the process. Then, the molecular docking simulation was performed to check the ligand's binding interaction and affinity with EBOV VP24 protein; this simulation was done by using MOE 2014.09 software. This study resulted that cycloartocarpin was the best ligand to inhibit the EBOV VP24 protein. Therefore, this ligand should be checked its stability through molecular dynamics simulation and performed in vitro test to verify its bioactivity against the EBOV VP24 protein.
Progression of Ebola Therapeutics During the 2014-2015 Outbreak.
Mendoza, Emelissa J; Qiu, Xiangguo; Kobinger, Gary P
2016-02-01
The recent Ebola virus (EBOV) outbreak in West Africa was the deadliest EBOV epidemic in history, highlighting the need for a safe and efficacious treatment against EBOV disease (EVD). In the absence of an approved treatment, experimental drugs were utilized under compassionate grounds hoping to diminish EVD-associated morbidity and mortality. As more data were collected from safety studies, Phase II/III clinical trials were introduced in Guinea, Sierra Leone, and Liberia to test promising candidates, including small-molecule drugs, RNA-based treatments, and antibody-based therapies. In this review, we summarize the use of, and preliminary observations from, current clinical trials with EVD therapeutics, shedding light on experimental drug selection, emergency clinical evaluation, and the impact these factors may have on future infectious disease outbreaks. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
FDA-Approved Selective Estrogen Receptor Modulators Inhibit Ebola Virus Infection
Johansen, Lisa M.; Brannan, Jennifer M.; Delos, Sue E.; Shoemaker, Charles J.; Stossel, Andrea; Lear, Calli; Hoffstrom, Benjamin G.; DeWald, Lisa Evans; Schornberg, Kathryn L.; Scully, Corinne; Lehár, Joseph; Hensley, Lisa E.; White, Judith M.; Olinger, Gene G.
2014-01-01
Ebola viruses remain a substantial threat to both civilian and military populations as bioweapons, during sporadic outbreaks, and from the possibility of accidental importation from endemic regions by infected individuals. Currently, no approved therapeutics exist to treat or prevent infection by Ebola viruses. Therefore, we performed an in vitro screen of Food and Drug Administration (FDA)– and ex–US-approved drugs and selected molecular probes to identify drugs with antiviral activity against the type species Zaire ebolavirus (EBOV). From this screen, we identified a set of selective estrogen receptor modulators (SERMs), including clomiphene and toremifene, which act as potent inhibitors of EBOV infection. Anti-EBOV activity was confirmed for both of these SERMs in an in vivo mouse infection model. This anti-EBOV activity occurred even in the absence of detectable estrogen receptor expression, and both SERMs inhibited virus entry after internalization, suggesting that clomiphene and toremifene are not working through classical pathways associated with the estrogen receptor. Instead, the response appeared to be an off-target effect where the compounds interfere with a step late in viral entry and likely affect the triggering of fusion. These data support the screening of readily available approved drugs to identify therapeutics for the Ebola viruses and other infectious diseases. The SERM compounds described in this report are an immediately actionable class of approved drugs that can be repurposed for treatment of filovirus infections. PMID:23785035
Siegel, Dustin; Hui, Hon C; Doerffler, Edward; Clarke, Michael O; Chun, Kwon; Zhang, Lijun; Neville, Sean; Carra, Ernest; Lew, Willard; Ross, Bruce; Wang, Queenie; Wolfe, Lydia; Jordan, Robert; Soloveva, Veronica; Knox, John; Perry, Jason; Perron, Michel; Stray, Kirsten M; Barauskas, Ona; Feng, Joy Y; Xu, Yili; Lee, Gary; Rheingold, Arnold L; Ray, Adrian S; Bannister, Roy; Strickley, Robert; Swaminathan, Swami; Lee, William A; Bavari, Sina; Cihlar, Tomas; Lo, Michael K; Warren, Travis K; Mackman, Richard L
2017-03-09
The recent Ebola virus (EBOV) outbreak in West Africa was the largest recorded in history with over 28,000 cases, resulting in >11,000 deaths including >500 healthcare workers. A focused screening and lead optimization effort identified 4b (GS-5734) with anti-EBOV EC 50 = 86 nM in macrophages as the clinical candidate. Structure activity relationships established that the 1'-CN group and C-linked nucleobase were critical for optimal anti-EBOV potency and selectivity against host polymerases. A robust diastereoselective synthesis provided sufficient quantities of 4b to enable preclinical efficacy in a non-human-primate EBOV challenge model. Once-daily 10 mg/kg iv treatment on days 3-14 postinfection had a significant effect on viremia and mortality, resulting in 100% survival of infected treated animals [ Nature 2016 , 531 , 381 - 385 ]. A phase 2 study (PREVAIL IV) is currently enrolling and will evaluate the effect of 4b on viral shedding from sanctuary sites in EBOV survivors.
Particle-to-PFU ratio of Ebola virus influences disease course and survival in cynomolgus macaques.
Alfson, Kendra J; Avena, Laura E; Beadles, Michael W; Staples, Hilary; Nunneley, Jerritt W; Ticer, Anysha; Dick, Edward J; Owston, Michael A; Reed, Christopher; Patterson, Jean L; Carrion, Ricardo; Griffiths, Anthony
2015-07-01
This study addresses the role of Ebola virus (EBOV) specific infectivity in virulence. Filoviruses are highly lethal, enveloped, single-stranded negative-sense RNA viruses that can cause hemorrhagic fever. No approved vaccines or therapies exist for filovirus infections, and infectious virus must be handled in maximum containment. Efficacy testing of countermeasures, in addition to investigations of pathogenicity and immune response, often requires a well-characterized animal model. For EBOV, an obstacle in performing accurate disease modeling is a poor understanding of what constitutes an infectious dose in animal models. One well-recognized consequence of viral passage in cell culture is a change in specific infectivity, often measured as a particle-to-PFU ratio. Here, we report that serial passages of EBOV in cell culture resulted in a decrease in particle-to-PFU ratio. Notably, this correlated with decreased potency in a lethal cynomolgus macaque (Macaca fascicularis) model of infection; animals were infected with the same viral dose as determined by plaque assay, but animals that received more virus particles exhibited increased disease. This suggests that some particles are unable to form a plaque in a cell culture assay but are able to result in lethal disease in vivo. These results have a significant impact on how future studies are designed to model EBOV disease and test countermeasures. Ebola virus (EBOV) can cause severe hemorrhagic disease with a high case-fatality rate, and there are no approved vaccines or therapies. Specific infectivity can be considered the total number of viral particles per PFU, and its impact on disease is poorly understood. In stocks of most mammalian viruses, there are particles that are unable to complete an infectious cycle or unable to cause cell pathology in cultured cells. We asked if these particles cause disease in nonhuman primates by infecting monkeys with equal infectious doses of genetically identical stocks possessing either high or low specific infectivities. Interestingly, some particles that did not yield plaques in cell culture assays were able to result in lethal disease in vivo. Furthermore, the number of PFU needed to induce lethal disease in animals was very low. Our results have a significant impact on how future studies are designed to model EBOV disease and test countermeasures.
A New Approach for Monitoring Ebolavirus in Wild Great Apes
Cameron, Kenneth N.; Ondzie, Alain U.; Joly, Damien; Bermejo, Magdalena; Rouquet, Pierre; Fabozzi, Giulia; Bailey, Michael; Shen, Zhimin; Keele, Brandon F.; Hahn, Beatrice; Karesh, William B.; Sullivan, Nancy J.
2014-01-01
Background Central Africa is a “hotspot” for emerging infectious diseases (EIDs) of global and local importance, and a current outbreak of ebolavirus is affecting multiple countries simultaneously. Ebolavirus is suspected to have caused recent declines in resident great apes. While ebolavirus vaccines have been proposed as an intervention to protect apes, their effectiveness would be improved if we could diagnostically confirm Ebola virus disease (EVD) as the cause of die-offs, establish ebolavirus geographical distribution, identify immunologically naïve populations, and determine whether apes survive virus exposure. Methodology/Principal findings Here we report the first successful noninvasive detection of antibodies against Ebola virus (EBOV) from wild ape feces. Using this method, we have been able to identify gorillas with antibodies to EBOV with an overall prevalence rate reaching 10% on average, demonstrating that EBOV exposure or infection is not uniformly lethal in this species. Furthermore, evidence of antibodies was identified in gorillas thought previously to be unexposed to EBOV (protected from exposure by rivers as topological barriers of transmission). Conclusions/Significance Our new approach will contribute to a strategy to protect apes from future EBOV infections by early detection of increased incidence of exposure, by identifying immunologically naïve at-risk populations as potential targets for vaccination, and by providing a means to track vaccine efficacy if such intervention is deemed appropriate. Finally, since human EVD is linked to contact with infected wildlife carcasses, efforts aimed at identifying great ape outbreaks could have a profound impact on public health in local communities, where EBOV causes case-fatality rates of up to 88%. PMID:25232832
A new approach for monitoring ebolavirus in wild great apes.
Reed, Patricia E; Mulangu, Sabue; Cameron, Kenneth N; Ondzie, Alain U; Joly, Damien; Bermejo, Magdalena; Rouquet, Pierre; Fabozzi, Giulia; Bailey, Michael; Shen, Zhimin; Keele, Brandon F; Hahn, Beatrice; Karesh, William B; Sullivan, Nancy J
2014-09-01
Central Africa is a "hotspot" for emerging infectious diseases (EIDs) of global and local importance, and a current outbreak of ebolavirus is affecting multiple countries simultaneously. Ebolavirus is suspected to have caused recent declines in resident great apes. While ebolavirus vaccines have been proposed as an intervention to protect apes, their effectiveness would be improved if we could diagnostically confirm Ebola virus disease (EVD) as the cause of die-offs, establish ebolavirus geographical distribution, identify immunologically naïve populations, and determine whether apes survive virus exposure. Here we report the first successful noninvasive detection of antibodies against Ebola virus (EBOV) from wild ape feces. Using this method, we have been able to identify gorillas with antibodies to EBOV with an overall prevalence rate reaching 10% on average, demonstrating that EBOV exposure or infection is not uniformly lethal in this species. Furthermore, evidence of antibodies was identified in gorillas thought previously to be unexposed to EBOV (protected from exposure by rivers as topological barriers of transmission). Our new approach will contribute to a strategy to protect apes from future EBOV infections by early detection of increased incidence of exposure, by identifying immunologically naïve at-risk populations as potential targets for vaccination, and by providing a means to track vaccine efficacy if such intervention is deemed appropriate. Finally, since human EVD is linked to contact with infected wildlife carcasses, efforts aimed at identifying great ape outbreaks could have a profound impact on public health in local communities, where EBOV causes case-fatality rates of up to 88%.
Analysis of the Cellular Stress Response During Ebola Virus Infection by Immunofluorescence.
Nelson, Emily V; Schmidt, Kristina M
2017-01-01
In this chapter, the use of immunofluorescence analysis as a tool to examine stress granule (SG) formation in Ebola virus (EBOV)-infected cells is described. The following protocol focuses on the process of inducing and analyzing the cellular stress response, including treatment of cells with inducers and inhibitors of the SG formation, and also describes EBOV infection, DNA transfection, and the usage of different cell lines.
Fu, Xu; Wang, Zhihua; Li, Lixin; Dong, Shishang; Li, Zhucui; Jiang, Zhenzuo; Wang, Yuefei; Shui, Wenqing
2016-01-01
The nucleoprotein (NP) of Ebola virus (EBOV) and Marburg virus (MARV) is an essential component of the viral ribonucleoprotein complex and significantly impacts replication and transcription of the viral RNA genome. Although NP is regarded as a promising antiviral druggable target, no chemical ligands have been reported to interact with EBOV NP or MARV NP. We identified two compounds from a traditional Chinese medicine Gancao (licorice root) that can bind both NPs by combining affinity mass spectrometry and metabolomics approaches. These two ligands, 18β-glycyrrhetinic acid and licochalcone A, were verified by defined compound mixture screens and further characterized with individual ligand binding assays. Accompanying biophysical analyses demonstrate that binding of 18β-glycyrrhetinic acid to EBOV NP significantly reduces protein thermal stability, induces formation of large NP oligomers, and disrupts the critical association of viral ssRNA with NP complexes whereas the compound showed no such activity on MARV NP. Our study has revealed the substantial potential of new analytical techniques in ligand discovery from natural herb resources. In addition, identification of a chemical ligand that influences the oligomeric state and RNA-binding function of EBOV NP sheds new light on antiviral drug development. PMID:27403722
Efficacy of favipiravir (T-705) in nonhuman primates infected with Ebola virus or Marburg virus.
Bixler, Sandra L; Bocan, Thomas M; Wells, Jay; Wetzel, Kelly S; Van Tongeren, Sean A; Dong, Lian; Garza, Nicole L; Donnelly, Ginger; Cazares, Lisa H; Nuss, Jonathan; Soloveva, Veronica; Koistinen, Keith A; Welch, Lisa; Epstein, Carol; Liang, Li-Fang; Giesing, Dennis; Lenk, Robert; Bavari, Sina; Warren, Travis K
2018-03-01
Favipiravir is a broad-spectrum antiviral agent that has demonstrated efficacy against Ebola virus (EBOV) in rodents. However, there are no published reports of favipiravir efficacy for filovirus infection of nonhuman primates (NHPs). Here we evaluated the pharmacokinetic profile of favipiravir in NHPs, as well as in vivo efficacy against two filoviruses, EBOV and Marburg virus (MARV). While no survival benefit was observed in two studies employing once- or twice-daily oral dosing of favipiravir during EBOV infection of NHPs, an antiviral effect was observed in terms of extended time-to-death and reduced levels of viral RNA. However, oral dosing in biosafety level-4 (BSL-4) presents logistical and technical challenges, and repeated anesthesia events may potentially worsen survival outcome in animals. For the third study of treatment of MARV infection, we therefore made use of catheters, jackets, and tethers for intravenous (IV) dosing and blood collection, which minimized the requirement for repeated anesthesia events. When MARV infection was treated with IV favipiravir, five of six animals (83%) survived infection, while all untreated NHPs succumbed. An accompanying report presents the results of favipiravir treatment of EBOV infection in mice. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Nelson, Emily V; Schmidt, Kristina M; Deflubé, Laure R; Doğanay, Sultan; Banadyga, Logan; Olejnik, Judith; Hume, Adam J; Ryabchikova, Elena; Ebihara, Hideki; Kedersha, Nancy; Ha, Taekjip; Mühlberger, Elke
2016-08-15
A hallmark of Ebola virus (EBOV) infection is the formation of viral inclusions in the cytoplasm of infected cells. These viral inclusions contain the EBOV nucleocapsids and are sites of viral replication and nucleocapsid maturation. Although there is growing evidence that viral inclusions create a protected environment that fosters EBOV replication, little is known about their role in the host response to infection. The cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation and translational arrest mediated by the phosphorylation of a translation initiation factor, the α subunit of eukaryotic initiation factor 2 (eIF2α). Here, we show that selected SG proteins are sequestered within EBOV inclusions, where they form distinct granules that colocalize with viral RNA. These inclusion-bound (IB) granules are functionally and structurally different from canonical SGs. Formation of IB granules does not indicate translational arrest in the infected cells. We further show that EBOV does not induce formation of canonical SGs or eIF2α phosphorylation at any time postinfection but is unable to fully inhibit SG formation induced by different exogenous stressors, including sodium arsenite, heat, and hippuristanol. Despite the sequestration of SG marker proteins into IB granules, canonical SGs are unable to form within inclusions, which we propose might be mediated by a novel function of VP35, which disrupts SG formation. This function is independent of VP35's RNA binding activity. Further studies aim to reveal the mechanism for SG protein sequestration and precise function within inclusions. Although progress has been made developing antiviral therapeutics and vaccines against the highly pathogenic Ebola virus (EBOV), the cellular mechanisms involved in EBOV infection are still largely unknown. To better understand these intracellular events, we investigated the cellular stress response, an antiviral pathway manipulated by many viruses. We show that EBOV does not induce formation of stress granules (SGs) in infected cells and is therefore unrestricted by their concomitant translational arrest. We identified SG proteins sequestered within viral inclusions, which did not impair protein translation. We further show that EBOV is unable to block SG formation triggered by exogenous stress early in infection. These findings provide insight into potential targets of therapeutic intervention. Additionally, we identified a novel function of the interferon antagonist VP35, which is able to disrupt SG formation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Strong, James E; Wong, Gary; Jones, Shane E; Grolla, Allen; Theriault, Steven; Kobinger, Gary P; Feldmann, Heinz
2008-11-18
Human infections with Ebola virus (EBOV) result in a deadly viral disease known as Ebola hemorrhagic fever. Up to 90% of infected patients die, and there is no available treatment or vaccine. The sporadic human outbreaks are believed to result when EBOV "jumps" from an infected animal to a person and is subsequently transmitted between persons by direct contact with infected blood or body fluids. This study was undertaken to investigate the mechanism by which EBOV can persistently infect and then escape from model cell and animal reservoir systems. We report a model system in which infection of mouse and bat cell lines with EBOV leads to persistence, which can be broken with low levels of lipopolysaccharide or phorbol-12-myristate-13-acetate (PMA). This reactivation depends on the Ras/MAPK pathway through inhibition of RNA-dependent protein kinase and eukaryotic initiation factor 2alpha phosphorylation and occurs at the level of protein synthesis. EBOV also can be evoked from mice 7 days after infection by PMA treatment, indicating that a similar mechanism occurs in vivo. Our findings suggest that EBOV may persist in nature through subclinical infection of a reservoir species, such as bats, and that appropriate physiological stimulation may result in increased replication and transmission to new hosts. Identification of a presumptive mechanism responsible for EBOV emergence from its reservoir underscores the "hit-and-run" nature of the initiation of human and/or nonhuman primate EBOV outbreaks and may provide insight into possible countermeasures to interfere with transmission.
Strong, James E.; Wong, Gary; Jones, Shane E.; Grolla, Allen; Theriault, Steven; Kobinger, Gary P.; Feldmann, Heinz
2008-01-01
Human infections with Ebola virus (EBOV) result in a deadly viral disease known as Ebola hemorrhagic fever. Up to 90% of infected patients die, and there is no available treatment or vaccine. The sporadic human outbreaks are believed to result when EBOV “jumps” from an infected animal to a person and is subsequently transmitted between persons by direct contact with infected blood or body fluids. This study was undertaken to investigate the mechanism by which EBOV can persistently infect and then escape from model cell and animal reservoir systems. We report a model system in which infection of mouse and bat cell lines with EBOV leads to persistence, which can be broken with low levels of lipopolysaccharide or phorbol-12-myristate-13-acetate (PMA). This reactivation depends on the Ras/MAPK pathway through inhibition of RNA-dependent protein kinase and eukaryotic initiation factor 2α phosphorylation and occurs at the level of protein synthesis. EBOV also can be evoked from mice 7 days after infection by PMA treatment, indicating that a similar mechanism occurs in vivo. Our findings suggest that EBOV may persist in nature through subclinical infection of a reservoir species, such as bats, and that appropriate physiological stimulation may result in increased replication and transmission to new hosts. Identification of a presumptive mechanism responsible for EBOV emergence from its reservoir underscores the “hit-and-run” nature of the initiation of human and/or nonhuman primate EBOV outbreaks and may provide insight into possible countermeasures to interfere with transmission. PMID:18981410
Ayithan, Natarajan; Bradfute, Steven B; Anthony, Scott M; Stuthman, Kelly S; Dye, John M; Bavari, Sina; Bray, Mike; Ozato, Keiko
2014-02-01
Ebola viruses (EBOV) can cause severe hemorrhagic disease with high case fatality rates. Currently, no vaccines or therapeutics are approved for use in humans. Ebola virus-like particles (eVLP) comprising of virus protein (VP40), glycoprotein, and nucleoprotein protect rodents and nonhuman primates from lethal EBOV infection, representing as a candidate vaccine for EBOV infection. Previous reports have shown that eVLP stimulate the expression of proinflammatory cytokines in dendritic cells (DCs) and macrophages (MΦs) in vitro. However, the molecular mechanisms and signaling pathways through which eVLP induce innate immune responses remain obscure. In this study, we show that eVLP stimulate not only the expression of proinflammatory cytokines but also the expression of type I interferons (IFNs) and IFN-stimulated genes (ISGs) in murine bone marrow-derived DCs (BMDCs) and MΦs. Our data indicate that eVLP trigger host responses through toll-like receptor (TLR) pathway utilizing 2 distinct adaptors, MyD88 and TRIF. More interestingly, eVLP activated the IFN signaling pathway by inducing a set of potent antiviral ISGs. Last, eVLP and synthetic adjuvants, Poly I:C and CpG DNA, cooperatively increased the expression of cytokines and ISGs. Further supporting this synergy, eVLP when administered together with Poly I:C conferred mice enhanced protection against EBOV infection. These results indicate that eVLP stimulate early innate immune responses through TLR and type I IFN signaling pathways to protect the host from EBOV infection.
The molecular tweezer CLR01 inhibits Ebola and Zika virus infection.
Röcker, Annika E; Müller, Janis A; Dietzel, Erik; Harms, Mirja; Krüger, Franziska; Heid, Christian; Sowislok, Andrea; Riber, Camilla Frich; Kupke, Alexandra; Lippold, Sina; von Einem, Jens; Beer, Judith; Knöll, Bernd; Becker, Stephan; Schmidt-Chanasit, Jonas; Otto, Markus; Vapalahti, Olli; Zelikin, Alexander N; Bitan, Gal; Schrader, Thomas; Münch, Jan
2018-04-01
Ebola (EBOV) and Zika viruses (ZIKV) are responsible for recent global health threats. As no preventive vaccines or antiviral drugs against these two re-emerging pathogens are available, we evaluated whether the molecular tweezer CLR01 may inhibit EBOV and ZIKV infection. This small molecule has previously been shown to inactivate HIV-1 and herpes viruses through a selective interaction with lipid-raft-rich regions in the viral envelope, which results in membrane disruption and loss of infectivity. We found that CLR01 indeed blocked infection of EBOV and ZIKV in a dose-dependent manner. The tweezer inhibited infection of epidemic ZIKV strains in cells derived from the anogenital tract and the central nervous system, and remained antivirally active in the presence of semen, saliva, urine and cerebrospinal fluid. Our findings show that CLR01 is a broad-spectrum inhibitor of enveloped viruses with prospects as a preventative microbicide or antiviral agent. Copyright © 2018 Elsevier B.V. All rights reserved.
Host Factors in Ebola Infection.
Rasmussen, Angela L
2016-08-31
Ebola virus (EBOV) emerged in West Africa in 2014 to devastating effect, and demonstrated that infection can cause a broad range of severe disease manifestations. As the virus itself was genetically similar to other Zaire ebolaviruses, the spectrum of pathology likely resulted from variable responses to infection in a large and genetically diverse population. This review comprehensively summarizes current knowledge of the host response to EBOV infection, including pathways hijacked by the virus to facilitate replication, host processes that contribute directly to pathogenesis, and host-pathogen interactions involved in subverting or antagonizing host antiviral immunity.
Minimally Symptomatic Infection in an Ebola 'Hotspot': A Cross-Sectional Serosurvey.
Richardson, Eugene T; Kelly, J Daniel; Barrie, Mohamed Bailor; Mesman, Annelies W; Karku, Sahr; Quiwa, Komba; Marsh, Regan H; Koedoyoma, Songor; Daboh, Fodei; Barron, Kathryn P; Grady, Michael; Tucker, Elizabeth; Dierberg, Kerry L; Rutherford, George W; Barry, Michele; Jones, James Holland; Murray, Megan B; Farmer, Paul E
2016-11-01
Evidence for minimally symptomatic Ebola virus (EBOV) infection is limited. During the 2013-16 outbreak in West Africa, it was not considered epidemiologically relevant to published models or projections of intervention effects. In order to improve our understanding of the transmission dynamics of EBOV in humans, we investigated the occurrence of minimally symptomatic EBOV infection in quarantined contacts of reported Ebola virus disease cases in a recognized 'hotspot.' We conducted a cross-sectional serosurvey in Sukudu, Kono District, Sierra Leone, from October 2015 to January 2016. A blood sample was collected from 187 study participants, 132 negative controls (individuals with a low likelihood of previous exposure to Ebola virus), and 30 positive controls (Ebola virus disease survivors). IgG responses to Ebola glycoprotein and nucleoprotein were measured using Alpha Diagnostic International ELISA kits with plasma diluted at 1:200. Optical density was read at 450 nm (subtracting OD at 630nm to normalize well background) on a ChroMate 4300 microplate reader. A cutoff of 4.7 U/mL for the anti-GP ELISA yielded 96.7% sensitivity and 97.7% specificity in distinguishing positive and negative controls. We identified 14 seropositive individuals not known to have had Ebola virus disease. Two of the 14 seropositive individuals reported only fever during quarantine while the remaining 12 denied any signs or symptoms during quarantine. By using ELISA to measure Zaire Ebola virus antibody concentrations, we identified a significant number of individuals with previously undetected EBOV infection in a 'hotspot' village in Sierra Leone, approximately one year after the village outbreak. The findings provide further evidence that Ebola, like many other viral infections, presents with a spectrum of clinical manifestations, including minimally symptomatic infection. These data also suggest that a significant portion of Ebola transmission events may have gone undetected during the outbreak. Further studies are needed to understand the potential risk of transmission and clinical sequelae in individuals with previously undetected EBOV infection.
Initiating a watch list for Ebola virus antibody escape mutations.
Miller, Craig R; Johnson, Erin L; Burke, Aran Z; Martin, Kyle P; Miura, Tanya A; Wichman, Holly A; Brown, Celeste J; Ytreberg, F Marty
2016-01-01
The 2014 Ebola virus (EBOV) outbreak in West Africa is the largest in recorded history and resulted in over 11,000 deaths. It is essential that strategies for treatment and containment be developed to avoid future epidemics of this magnitude. With the development of vaccines and antibody-based therapies using the envelope glycoprotein (GP) of the 1976 Mayinga strain, one important strategy is to anticipate how the evolution of EBOV might compromise these efforts. In this study we have initiated a watch list of potential antibody escape mutations of EBOV by modeling interactions between GP and the antibody KZ52. The watch list was generated using molecular modeling to estimate stability changes due to mutation. Every possible mutation of GP was considered and the list was generated from those that are predicted to disrupt GP-KZ52 binding but not to disrupt the ability of GP to fold and to form trimers. The resulting watch list contains 34 mutations (one of which has already been seen in humans) at six sites in the GP2 subunit. Should mutations from the watch list appear and spread during an epidemic, it warrants attention as these mutations may reflect an evolutionary response from the virus that could reduce the effectiveness of interventions such as vaccination. However, this watch list is incomplete and emphasizes the need for more experimental structures of EBOV interacting with antibodies in order to expand the watch list to other epitopes. We hope that this work provokes experimental research on evolutionary escape in both Ebola and other viral pathogens.
Initiating a watch list for Ebola virus antibody escape mutations
Johnson, Erin L.; Burke, Aran Z.; Martin, Kyle P.; Miura, Tanya A.; Wichman, Holly A.; Brown, Celeste J.
2016-01-01
The 2014 Ebola virus (EBOV) outbreak in West Africa is the largest in recorded history and resulted in over 11,000 deaths. It is essential that strategies for treatment and containment be developed to avoid future epidemics of this magnitude. With the development of vaccines and antibody-based therapies using the envelope glycoprotein (GP) of the 1976 Mayinga strain, one important strategy is to anticipate how the evolution of EBOV might compromise these efforts. In this study we have initiated a watch list of potential antibody escape mutations of EBOV by modeling interactions between GP and the antibody KZ52. The watch list was generated using molecular modeling to estimate stability changes due to mutation. Every possible mutation of GP was considered and the list was generated from those that are predicted to disrupt GP-KZ52 binding but not to disrupt the ability of GP to fold and to form trimers. The resulting watch list contains 34 mutations (one of which has already been seen in humans) at six sites in the GP2 subunit. Should mutations from the watch list appear and spread during an epidemic, it warrants attention as these mutations may reflect an evolutionary response from the virus that could reduce the effectiveness of interventions such as vaccination. However, this watch list is incomplete and emphasizes the need for more experimental structures of EBOV interacting with antibodies in order to expand the watch list to other epitopes. We hope that this work provokes experimental research on evolutionary escape in both Ebola and other viral pathogens. PMID:26925318
Carter, Erik P; Seymour, Elif Ç; Scherr, Steven M; Daaboul, George G; Freedman, David S; Selim Ünlü, M; Connor, John H
2017-01-01
This chapter describes an approach for the label-free imaging and quantification of intact Ebola virus (EBOV) and EBOV viruslike particles (VLPs) using a light microscopy technique. In this technique, individual virus particles are captured onto a silicon chip that has been printed with spots of virus-specific capture antibodies. These captured virions are then detected using an optical approach called interference reflectance imaging. This approach allows for the detection of each virus particle that is captured on an antibody spot and can resolve the filamentous structure of EBOV VLPs without the need for electron microscopy. Capture of VLPs and virions can be done from a variety of sample types ranging from tissue culture medium to blood. The technique also allows automated quantitative analysis of the number of virions captured. This can be used to identify the virus concentration in an unknown sample. In addition, this technique offers the opportunity to easily image virions captured from native solutions without the need for additional labeling approaches while offering a means of assessing the range of particle sizes and morphologies in a quantitative manner.
Flyak, Andrew I; Shen, Xiaoli; Murin, Charles D; Turner, Hannah L; David, Joshua A; Fusco, Marnie L; Lampley, Rebecca; Kose, Nurgun; Ilinykh, Philipp A; Kuzmina, Natalia; Branchizio, Andre; King, Hannah; Brown, Leland; Bryan, Christopher; Davidson, Edgar; Doranz, Benjamin J; Slaughter, James C; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G; Saphire, Erica Ollmann; Ward, Andrew B; Bukreyev, Alexander; Crowe, James E
2016-01-28
Recent studies have suggested that antibody-mediated protection against the Ebolaviruses may be achievable, but little is known about whether or not antibodies can confer cross-reactive protection against viruses belonging to diverse Ebolavirus species, such as Ebola virus (EBOV), Sudan virus (SUDV), and Bundibugyo virus (BDBV). We isolated a large panel of human monoclonal antibodies (mAbs) against BDBV glycoprotein (GP) using peripheral blood B cells from survivors of the 2007 BDBV outbreak in Uganda. We determined that a large proportion of mAbs with potent neutralizing activity against BDBV bind to the glycan cap and recognize diverse epitopes within this major antigenic site. We identified several glycan cap-specific mAbs that neutralized multiple ebolaviruses, including SUDV, and a cross-reactive mAb that completely protected guinea pigs from the lethal challenge with heterologous EBOV. Our results provide a roadmap to develop a single antibody-based treatment effective against multiple Ebolavirus infections. Copyright © 2016 Elsevier Inc. All rights reserved.
Flyak, Andrew I.; Shen, Xiaoli; Murin, Charles D.; Turner, Hannah L.; David, Joshua A.; Fusco, Marnie L.; Lampley, Rebecca; Kose, Nurgun; Ilinykh, Philipp A.; Kuzmina, Natalia; Branchizio, Andre; King, Hannah; Brown, Leland; Bryan, Christopher; Davidson, Edgar; Doranz, Benjamin J.; Slaughter, James C.; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G.; Saphire, Erica Ollmann; Ward, Andrew B.; Bukreyev, Alexander; Crowe, James E.
2015-01-01
Summary Recent studies have suggested that antibody-mediated protection against the Ebolaviruses may be achievable, but little is known about whether or not antibodies can confer cross-reactive protection against viruses belonging to diverse Ebolavirus species, such as Ebola virus (EBOV), Sudan virus (SUDV) and Bundibugyo virus (BDBV). We isolated a large panel of human monoclonal antibodies (mAbs) against BDBV glycoprotein (GP) using peripheral blood B cells from survivors of the 2007 BDBV outbreak in Uganda. We determined that a large proportion of mAbs with potent neutralizing activity against BDBV bind to the glycan cap and recognize diverse epitopes within this major antigenic site. We identified several glycan cap-specific mAbs that neutralized multiple ebolaviruses including SUDV, and a cross-reactive mAb that completely protected guinea pigs from the lethal challenge with heterologous EBOV. Our results provide a roadmap to develop a single antibody-based treatment effective against multiple Ebolavirus infections. PMID:26806128
2011-01-06
identified viral restriction factors that inhibit infection mediated by the influenza A virus ( IAV ) hemagglutinin (HA) protein. Here we show that IFITM...observations, interferon-b specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV...We observed distinct patterns of IFITM-mediated restriction: compared with IAV , the entry processes of MARV and EBOV were less restricted by IFITM3
Molecular determinants of Ebola virus virulence in mice.
Ebihara, Hideki; Takada, Ayato; Kobasa, Darwyn; Jones, Steven; Neumann, Gabriele; Theriault, Steven; Bray, Mike; Feldmann, Heinz; Kawaoka, Yoshihiro
2006-07-01
Zaire ebolavirus (ZEBOV) causes severe hemorrhagic fever in humans and nonhuman primates, with fatality rates in humans of up to 90%. The molecular basis for the extreme virulence of ZEBOV remains elusive. While adult mice resist ZEBOV infection, the Mayinga strain of the virus has been adapted to cause lethal infection in these animals. To understand the pathogenesis underlying the extreme virulence of Ebola virus (EBOV), here we identified the mutations responsible for the acquisition of the high virulence of the adapted Mayinga strain in mice, by using reverse genetics. We found that mutations in viral protein 24 and in the nucleoprotein were primarily responsible for the acquisition of high virulence. Moreover, the role of these proteins in virulence correlated with their ability to evade type I interferon-stimulated antiviral responses. These findings suggest a critical role for overcoming the interferon-induced antiviral state in the pathogenicity of EBOV and offer new insights into the pathogenesis of EBOV infection.
Kuhn, Jens H.; Andersen, Kristian G.; Baize, Sylvain; Bào, Yīmíng; Bavari, Sina; Berthet, Nicolas; Blinkova, Olga; Brister, J. Rodney; Clawson, Anna N.; Fair, Joseph; Gabriel, Martin; Garry, Robert F.; Gire, Stephen K.; Goba, Augustine; Gonzalez, Jean-Paul; Günther, Stephan; Happi, Christian T.; Jahrling, Peter B.; Kapetshi, Jimmy; Kobinger, Gary; Kugelman, Jeffrey R.; Leroy, Eric M.; Maganga, Gael Darren; Mbala, Placide K.; Moses, Lina M.; Muyembe-Tamfum, Jean-Jacques; N’Faly, Magassouba; Nichol, Stuart T.; Omilabu, Sunday A.; Palacios, Gustavo; Park, Daniel J.; Paweska, Janusz T.; Radoshitzky, Sheli R.; Rossi, Cynthia A.; Sabeti, Pardis C.; Schieffelin, John S.; Schoepp, Randal J.; Sealfon, Rachel; Swanepoel, Robert; Towner, Jonathan S.; Wada, Jiro; Wauquier, Nadia; Yozwiak, Nathan L.; Formenty, Pierre
2014-01-01
In 2014, Ebola virus (EBOV) was identified as the etiological agent of a large and still expanding outbreak of Ebola virus disease (EVD) in West Africa and a much more confined EVD outbreak in Middle Africa. Epidemiological and evolutionary analyses confirmed that all cases of both outbreaks are connected to a single introduction each of EBOV into human populations and that both outbreaks are not directly connected. Coding-complete genomic sequence analyses of isolates revealed that the two outbreaks were caused by two novel EBOV variants, and initial clinical observations suggest that neither of them should be considered strains. Here we present consensus decisions on naming for both variants (West Africa: “Makona”, Middle Africa: “Lomela”) and provide database-compatible full, shortened, and abbreviated names that are in line with recently established filovirus sub-species nomenclatures. PMID:25421896
Immune barriers of Ebola virus infection.
McElroy, Anita K; Mühlberger, Elke; Muñoz-Fontela, César
2018-02-01
Since its initial emergence in 1976 in northern Democratic Republic of Congo (DRC), Ebola virus (EBOV) has been a global health concern due to its virulence in humans, the mystery surrounding the identity of its host reservoir and the unpredictable nature of Ebola virus disease (EVD) outbreaks. Early after the first clinical descriptions of a disease resembling a 'septic-shock-like syndrome', with coagulation abnormalities and multi-system organ failure, researchers began to evaluate the role of the host immune response in EVD pathophysiology. In this review, we summarize how data gathered during the last 40 years in the laboratory as well as in the field have provided insight into EBOV immunity. From molecular mechanisms involved in EBOV recognition in infected cells, to antigen processing and adaptive immune responses, we discuss current knowledge on the main immune barriers of infection as well as outstanding research questions. Copyright © 2018 Elsevier B.V. All rights reserved.
Kurosaki, Yohei; Ueda, Mahoko Takahashi; Nakano, Yusuke; Yasuda, Jiro; Koyanagi, Yoshio; Sato, Kei; Nakagawa, So
2018-01-04
Ebola virus (EBOV), which belongs to the genus Ebolavirus, causes a severe and often fatal infection in primates, including humans, whereas Reston virus (RESTV) only causes lethal disease in non-human primates. Two amino acids (aa) at positions 82 and 544 of the EBOV glycoprotein (GP) are involved in determining viral infectivity. However, it remains unclear how these two aa residues affect the infectivity of Ebolavirus species in various hosts. Here we performed viral pseudotyping experiments with EBOV and RESTV GP derivatives in 10 cell lines from 9 mammalian species. We demonstrated that isoleucine at position 544/545 increases viral infectivity in all host species, whereas valine at position 82/83 modulates viral infectivity, depending on the viral and host species. Structural modelling suggested that the former residue affects viral fusion, whereas the latter residue influences the interaction with the viral entry receptor, Niemann-Pick C1.
Nakano, Yusuke; Yasuda, Jiro; Koyanagi, Yoshio; Sato, Kei; Nakagawa, So
2018-01-01
Ebola virus (EBOV), which belongs to the genus Ebolavirus, causes a severe and often fatal infection in primates, including humans, whereas Reston virus (RESTV) only causes lethal disease in non-human primates. Two amino acids (aa) at positions 82 and 544 of the EBOV glycoprotein (GP) are involved in determining viral infectivity. However, it remains unclear how these two aa residues affect the infectivity of Ebolavirus species in various hosts. Here we performed viral pseudotyping experiments with EBOV and RESTV GP derivatives in 10 cell lines from 9 mammalian species. We demonstrated that isoleucine at position 544/545 increases viral infectivity in all host species, whereas valine at position 82/83 modulates viral infectivity, depending on the viral and host species. Structural modelling suggested that the former residue affects viral fusion, whereas the latter residue influences the interaction with the viral entry receptor, Niemann–Pick C1. PMID:29300152
Chimeric Filoviruses for Identification and Characterization of Monoclonal Antibodies.
Ilinykh, Philipp A; Shen, Xiaoli; Flyak, Andrew I; Kuzmina, Natalia; Ksiazek, Thomas G; Crowe, James E; Bukreyev, Alexander
2016-04-01
Recent experiments suggest that some glycoprotein (GP)-specific monoclonal antibodies (MAbs) can protect experimental animals against the filovirus Ebola virus (EBOV). There is a need for isolation of MAbs capable of neutralizing multiple filoviruses. Antibody neutralization assays for filoviruses frequently use surrogate systems such as the rhabdovirus vesicular stomatitis Indiana virus (VSV), lentiviruses or gammaretroviruses with their envelope proteins replaced with EBOV GP or pseudotyped with EBOV GP. It is optimal for both screening and in-depth characterization of newly identified neutralizing MAbs to generate recombinant filoviruses that express a reporter fluorescent protein in order to more easily monitor and quantify the infection. Our study showed that unlike neutralization-sensitive chimeric VSV, authentic filoviruses are highly resistant to neutralization by MAbs. We used reverse genetics techniques to replace EBOV GP with its counterpart from the heterologous filoviruses Bundibugyo virus (BDBV), Sudan virus, and even Marburg virus and Lloviu virus, which belong to the heterologous genera in the filovirus family. This work resulted in generation of multiple chimeric filoviruses, demonstrating the ability of filoviruses to tolerate swapping of the envelope protein. The sensitivity of chimeric filoviruses to neutralizing MAbs was similar to that of authentic biologically derived filoviruses with the same GP. Moreover, disabling the expression of the secreted GP (sGP) resulted in an increased susceptibility of an engineered virus to the BDBV52 MAb isolated from a BDBV survivor, suggesting a role for sGP in evasion of antibody neutralization in the context of a human filovirus infection. The study demonstrated that chimeric rhabdoviruses in which G protein is replaced with filovirus GP, widely used as surrogate targets for characterization of filovirus neutralizing antibodies, do not accurately predict the ability of antibodies to neutralize authentic filoviruses, which appeared to be resistant to neutralization. However, a recombinant EBOV expressing a fluorescent protein tolerated swapping of GP with counterparts from heterologous filoviruses, allowing high-throughput screening of B cell lines to isolate MAbs of any filovirus specificity. Human MAb BDBV52, which was isolated from a survivor of BDBV infection, was capable of partially neutralizing a chimeric EBOV carrying BDBV GP in which expression of sGP was disabled. In contrast, the parental virus expressing sGP was resistant to the MAb. Thus, the ability of filoviruses to tolerate swapping of GP can be used for identification of neutralizing MAbs specific to any filovirus and for the characterization of MAb specificity and mechanism of action. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Chimeric Filoviruses for Identification and Characterization of Monoclonal Antibodies
Ilinykh, Philipp A.; Shen, Xiaoli; Flyak, Andrew I.; Kuzmina, Natalia; Ksiazek, Thomas G.; Crowe, James E.
2016-01-01
ABSTRACT Recent experiments suggest that some glycoprotein (GP)-specific monoclonal antibodies (MAbs) can protect experimental animals against the filovirus Ebola virus (EBOV). There is a need for isolation of MAbs capable of neutralizing multiple filoviruses. Antibody neutralization assays for filoviruses frequently use surrogate systems such as the rhabdovirus vesicular stomatitis Indiana virus (VSV), lentiviruses or gammaretroviruses with their envelope proteins replaced with EBOV GP or pseudotyped with EBOV GP. It is optimal for both screening and in-depth characterization of newly identified neutralizing MAbs to generate recombinant filoviruses that express a reporter fluorescent protein in order to more easily monitor and quantify the infection. Our study showed that unlike neutralization-sensitive chimeric VSV, authentic filoviruses are highly resistant to neutralization by MAbs. We used reverse genetics techniques to replace EBOV GP with its counterpart from the heterologous filoviruses Bundibugyo virus (BDBV), Sudan virus, and even Marburg virus and Lloviu virus, which belong to the heterologous genera in the filovirus family. This work resulted in generation of multiple chimeric filoviruses, demonstrating the ability of filoviruses to tolerate swapping of the envelope protein. The sensitivity of chimeric filoviruses to neutralizing MAbs was similar to that of authentic biologically derived filoviruses with the same GP. Moreover, disabling the expression of the secreted GP (sGP) resulted in an increased susceptibility of an engineered virus to the BDBV52 MAb isolated from a BDBV survivor, suggesting a role for sGP in evasion of antibody neutralization in the context of a human filovirus infection. IMPORTANCE The study demonstrated that chimeric rhabdoviruses in which G protein is replaced with filovirus GP, widely used as surrogate targets for characterization of filovirus neutralizing antibodies, do not accurately predict the ability of antibodies to neutralize authentic filoviruses, which appeared to be resistant to neutralization. However, a recombinant EBOV expressing a fluorescent protein tolerated swapping of GP with counterparts from heterologous filoviruses, allowing high-throughput screening of B cell lines to isolate MAbs of any filovirus specificity. Human MAb BDBV52, which was isolated from a survivor of BDBV infection, was capable of partially neutralizing a chimeric EBOV carrying BDBV GP in which expression of sGP was disabled. In contrast, the parental virus expressing sGP was resistant to the MAb. Thus, the ability of filoviruses to tolerate swapping of GP can be used for identification of neutralizing MAbs specific to any filovirus and for the characterization of MAb specificity and mechanism of action. PMID:26819310
Khan, M A; Hossain, M U; Rakib-Uz-Zaman, S M; Morshed, M N
2015-07-01
Ebola viruses (EBOVs) have been identified as an emerging threat in recent year as it causes severe haemorrhagic fever in human. Epitope-based vaccine design for EBOVs remains a top priority because a mere progress has been made in this regard. Another reason is the lack of antiviral drug and licensed vaccine although there is a severe outbreak in Central Africa. In this study, we aimed to design an epitope-based vaccine that can trigger a significant immune response as well as to prognosticate inhibitor that can bind with potential drug target sites using various immunoinformatics and docking simulation tools. The capacity to induce both humoral and cell-mediated immunity by T cell and B cell was checked for the selected protein. The peptide region spanning 9 amino acids from 42 to 50 and the sequence TLASIGTAF were found as the most potential B and T cell epitopes, respectively. This peptide could interact with 12 HLAs and showed high population coverage up to 80.99%. Using molecular docking, the epitope was further appraised for binding against HLA molecules to verify the binding cleft interaction. In addition with this, the allergenicity of the epitopes was also evaluated. In the post-therapeutic strategy, docking study of predicted 3D structure identified suitable therapeutic inhibitor against targeted protein. However, this computational epitope-based peptide vaccine designing and target site prediction against EBOVs open up a new horizon which may be the prospective way in Ebola viruses research; the results require validation by in vitro and in vivo experiments. © 2015 John Wiley & Sons Ltd.
Li, Wen-Gang; Chen, Wei-Wei; Li, Lei; Ji, Dong; Ji, Ying-Jie; Li, Chen; Gao, Xu-Dong; Wang, Li-Fu; Zhao, Min; Duan, Xue-Zhang; Duan, Hui-Juan
2016-05-10
During the 2014 Ebola virus disease (EVD) outbreak, less than half of EVD-suspected cases were laboratory tested as Ebola virus (EBOV)-negative, but disease identity remained unknown. In this study we investigated the etiology of EVD-like illnesses in EBOV-negative cases. From November 13, 2014 to March 16, 2015, EVD-suspected patients were admitted to Jui Government Hospital and assessed for EBOV infection by real-time PCR. Of 278 EBOV negative patients, 223 (80.21%), 142 (51.08%), 123 (44.24%), 114 (41.01%), 59 (21.22%), 35 (12.59%), and 12 (4.32%) reported fever, headache, joint pain, fatigue, nausea/vomiting, diarrhea, hemorrhage, respectively. Furthermore, 121 (43.52%), 44 (15.83%), 36 (12.95%), 33 (11.87%), 23 (8.27%), 10 (3.60%) patients were diagnosed as infection with malaria, HIV, Lassa fever, tuberculosis, yellow fever, and pneumonia, respectively. No significant differences in clinical features and symptoms were found between non-EVD and EVD patients. To the best of our knowledge, the present study is the first to explore the etiology of EVD-like illnesses in uninfected patients in Sierra Leone, highlighting the importance of accurate diagnosis to EVD confirmation.
A new strategy for full-length Ebola virus glycoprotein expression in E.coli.
Zai, Junjie; Yi, Yinhua; Xia, Han; Zhang, Bo; Yuan, Zhiming
2016-12-01
Ebola virus (EBOV) causes severe hemorrhagic fever in humans and non-human primates with high rates of fatality. Glycoprotein (GP) is the only envelope protein of EBOV, which may play a critical role in virus attachment and entry as well as stimulating host protective immune responses. However, the lack of expression of full-length GP in Escherichia coli hinders the further study of its function in viral pathogenesis. In this study, the vp40 gene was fused to the full-length gp gene and cloned into a prokaryotic expression vector. We showed that the VP40-GP and GP-VP40 fusion proteins could be expressed in E.coli at 16 °C. In addition, it was shown that the position of vp40 in the fusion proteins affected the yields of the fusion proteins, with a higher level of production of the fusion protein when vp40 was upstream of gp compared to when it was downstream. The results provide a strategy for the expression of a large quantity of EBOV full-length GP, which is of importance for further analyzing the relationship between the structure and function of GP and developing an antibody for the treatment of EBOV infection.
Nanbo, Asuka; Maruyama, Junki; Imai, Masaki; Ujie, Michiko; Fujioka, Yoichiro; Nishide, Shinya; Takada, Ayato; Ohba, Yusuke; Kawaoka, Yoshihiro
2018-01-01
Cell surface receptors for phosphatidylserine contribute to the entry of Ebola virus (EBOV) particles, indicating that the presence of phosphatidylserine in the envelope of EBOV is important for the internalization of EBOV particles. Phosphatidylserine is typically distributed in the inner layer of the plasma membrane in normal cells. Progeny virions bud from the plasma membrane of infected cells, suggesting that phosphatidylserine is likely flipped to the outer leaflet of the plasma membrane in infected cells for EBOV virions to acquire it. Currently, the intracellular dynamics of phosphatidylserine during EBOV infection are poorly understood. Here, we explored the role of XK-related protein (Xkr) 8, which is a scramblase responsible for exposure of phosphatidylserine in the plasma membrane of apoptotic cells, to understand its significance in phosphatidylserine-dependent entry of EBOV. We found that Xkr8 and transiently expressed EBOV glycoprotein GP often co-localized in intracellular vesicles and the plasma membrane. We also found that co-expression of GP and viral major matrix protein VP40 promoted incorporation of Xkr8 into ebolavirus-like particles (VLPs) and exposure of phosphatidylserine on their surface, although only a limited amount of phosphatidylserine was exposed on the surface of the cells expressing GP and/or VP40. Downregulating Xkr8 or blocking caspase-mediated Xkr8 activation did not affect VLP production, but they reduced the amount of phosphatidylserine on the VLPs and their uptake in recipient cells. Taken together, our findings indicate that Xkr8 is trafficked to budding sites via GP-containing vesicles, is incorporated into VLPs, and then promote the entry of the released EBOV to cells in a phosphatidylserine-dependent manner.
Imai, Masaki; Ujie, Michiko; Fujioka, Yoichiro; Nishide, Shinya; Takada, Ayato; Ohba, Yusuke; Kawaoka, Yoshihiro
2018-01-01
Cell surface receptors for phosphatidylserine contribute to the entry of Ebola virus (EBOV) particles, indicating that the presence of phosphatidylserine in the envelope of EBOV is important for the internalization of EBOV particles. Phosphatidylserine is typically distributed in the inner layer of the plasma membrane in normal cells. Progeny virions bud from the plasma membrane of infected cells, suggesting that phosphatidylserine is likely flipped to the outer leaflet of the plasma membrane in infected cells for EBOV virions to acquire it. Currently, the intracellular dynamics of phosphatidylserine during EBOV infection are poorly understood. Here, we explored the role of XK-related protein (Xkr) 8, which is a scramblase responsible for exposure of phosphatidylserine in the plasma membrane of apoptotic cells, to understand its significance in phosphatidylserine-dependent entry of EBOV. We found that Xkr8 and transiently expressed EBOV glycoprotein GP often co-localized in intracellular vesicles and the plasma membrane. We also found that co-expression of GP and viral major matrix protein VP40 promoted incorporation of Xkr8 into ebolavirus-like particles (VLPs) and exposure of phosphatidylserine on their surface, although only a limited amount of phosphatidylserine was exposed on the surface of the cells expressing GP and/or VP40. Downregulating Xkr8 or blocking caspase-mediated Xkr8 activation did not affect VLP production, but they reduced the amount of phosphatidylserine on the VLPs and their uptake in recipient cells. Taken together, our findings indicate that Xkr8 is trafficked to budding sites via GP-containing vesicles, is incorporated into VLPs, and then promote the entry of the released EBOV to cells in a phosphatidylserine-dependent manner. PMID:29338048
Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists
Cheng, Han; Lear-Rooney, Calli M.; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W.; Olinger, Gene G.
2015-01-01
ABSTRACT Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. IMPORTANCE Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. Our results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. PMID:26202243
Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists.
Cheng, Han; Lear-Rooney, Calli M; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W; Olinger, Gene G; Rong, Lijun
2015-10-01
Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. Our results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Molecular mechanisms of Ebola virus pathogenesis: focus on cell death
Falasca, L; Agrati, C; Petrosillo, N; Di Caro, A; Capobianchi, M R; Ippolito, G; Piacentini, M
2015-01-01
Ebola virus (EBOV) belongs to the Filoviridae family and is responsible for a severe disease characterized by the sudden onset of fever and malaise accompanied by other non-specific signs and symptoms; in 30–50% of cases hemorrhagic symptoms are present. Multiorgan dysfunction occurs in severe forms with a mortality up to 90%. The EBOV first attacks macrophages and dendritic immune cells. The innate immune reaction is characterized by a cytokine storm, with secretion of numerous pro-inflammatory cytokines, which induces a huge number of contradictory signals and hurts the immune cells, as well as other tissues. Other highly pathogenic viruses also trigger cytokine storms, but Filoviruses are thought to be particularly lethal because they affect a wide array of tissues. In addition to the immune system, EBOV attacks the spleen and kidneys, where it kills cells that help the body to regulate its fluid and chemical balance and that make proteins that help the blood to clot. In addition, EBOV causes liver, lungs and kidneys to shut down their functions and the blood vessels to leak fluid into surrounding tissues. In this review, we analyze the molecular mechanisms at the basis of Ebola pathogenesis with a particular focus on the cell death pathways induced by the virus. We also discuss how the treatment of the infection can benefit from the recent experience of blocking/modulating cell death in human degenerative diseases. PMID:26024394
Molecular mechanisms of Ebola virus pathogenesis: focus on cell death.
Falasca, L; Agrati, C; Petrosillo, N; Di Caro, A; Capobianchi, M R; Ippolito, G; Piacentini, M
2015-08-01
Ebola virus (EBOV) belongs to the Filoviridae family and is responsible for a severe disease characterized by the sudden onset of fever and malaise accompanied by other non-specific signs and symptoms; in 30-50% of cases hemorrhagic symptoms are present. Multiorgan dysfunction occurs in severe forms with a mortality up to 90%. The EBOV first attacks macrophages and dendritic immune cells. The innate immune reaction is characterized by a cytokine storm, with secretion of numerous pro-inflammatory cytokines, which induces a huge number of contradictory signals and hurts the immune cells, as well as other tissues. Other highly pathogenic viruses also trigger cytokine storms, but Filoviruses are thought to be particularly lethal because they affect a wide array of tissues. In addition to the immune system, EBOV attacks the spleen and kidneys, where it kills cells that help the body to regulate its fluid and chemical balance and that make proteins that help the blood to clot. In addition, EBOV causes liver, lungs and kidneys to shut down their functions and the blood vessels to leak fluid into surrounding tissues. In this review, we analyze the molecular mechanisms at the basis of Ebola pathogenesis with a particular focus on the cell death pathways induced by the virus. We also discuss how the treatment of the infection can benefit from the recent experience of blocking/modulating cell death in human degenerative diseases.
Molecular architecture of the nucleoprotein C-terminal domain from the Ebola and Marburg viruses.
Baker, Laura E; Ellena, Jeffrey F; Handing, Katarzyna B; Derewenda, Urszula; Utepbergenov, Darkhan; Engel, Daniel A; Derewenda, Zygmunt S
2016-01-01
The Filoviridae family of negative-sense, single-stranded RNA (ssRNA) viruses is comprised of two species of Marburgvirus (MARV and RAVV) and five species of Ebolavirus, i.e. Zaire (EBOV), Reston (RESTV), Sudan (SUDV), Taï Forest (TAFV) and Bundibugyo (BDBV). In each of these viruses the ssRNA encodes seven distinct proteins. One of them, the nucleoprotein (NP), is the most abundant viral protein in the infected cell and within the viral nucleocapsid. It is tightly associated with the viral RNA in the nucleocapsid, and during the lifecycle of the virus is essential for transcription, RNA replication, genome packaging and nucleocapsid assembly prior to membrane encapsulation. The structure of the unique C-terminal globular domain of the NP from EBOV has recently been determined and shown to be structurally unrelated to any other known protein [Dziubańska et al. (2014), Acta Cryst. D70, 2420-2429]. In this paper, a study of the C-terminal domains from the NP from the remaining four species of Ebolavirus, as well as from the MARV strain of Marburgvirus, is reported. As expected, the crystal structures of the BDBV and TAFV proteins show high structural similarity to that from EBOV, while the MARV protein behaves like a molten globule with a core residual structure that is significantly different from that of the EBOV protein.
Role of the Phosphatidylserine Receptor TIM-1 in Enveloped-Virus Entry
Moller-Tank, Sven; Kondratowicz, Andrew S.; Davey, Robert A.; Rennert, Paul D.
2013-01-01
The cell surface receptor T cell immunoglobulin mucin domain 1 (TIM-1) dramatically enhances filovirus infection of epithelial cells. Here, we showed that key phosphatidylserine (PtdSer) binding residues of the TIM-1 IgV domain are critical for Ebola virus (EBOV) entry through direct interaction with PtdSer on the viral envelope. PtdSer liposomes but not phosphatidylcholine liposomes competed with TIM-1 for EBOV pseudovirion binding and transduction. Further, annexin V (AnxV) substituted for the TIM-1 IgV domain, supporting a PtdSer-dependent mechanism. Our findings suggest that TIM-1-dependent uptake of EBOV occurs by apoptotic mimicry. Additionally, TIM-1 enhanced infection of a wide range of enveloped viruses, including alphaviruses and a baculovirus. As further evidence of the critical role of enveloped-virion-associated PtdSer in TIM-1-mediated uptake, TIM-1 enhanced internalization of pseudovirions and virus-like proteins (VLPs) lacking a glycoprotein, providing evidence that TIM-1 and PtdSer-binding receptors can mediate virus uptake independent of a glycoprotein. These results provide evidence for a broad role of TIM-1 as a PtdSer-binding receptor that mediates enveloped-virus uptake. Utilization of PtdSer-binding receptors may explain the wide tropism of many of these viruses and provide new avenues for controlling their virulence. PMID:23698310
Comparative Evaluation of the Diagnostic Performance of the Prototype Cepheid GeneXpert Ebola Assay
Jansen van Vuren, Petrus; Grobbelaar, Antoinette; Storm, Nadia; Conteh, Ousman; Konneh, Kelfala; Kamara, Abdul; Sanne, Ian
2015-01-01
The Ebola virus disease (EVD) outbreak in West Africa has highlighted an urgent need for point-of-care (POC) assays for the diagnosis of this devastating disease in resource-limited African countries. The diagnostic performance characteristics of a prototype Cepheid GeneXpert Ebola POC used to detect Ebola virus (EBOV) in stored serum and plasma samples collected from suspected EVD cases in Sierra Leone in 2014 and 2015 was evaluated. The GeneXpert Ebola POC is a self-contained single-cartridge automated system that targets the glycoprotein (GP) and nucleoprotein (NP) genes of EBOV and yields results within 90 min. Results from 281 patient samples were compared to the results of a TaqMan real-time reverse transcription-PCR (RT-PCR) targeting the polymerase gene and performed on two real-time PCR machines. Agreement between the three platforms was 100% at cycle threshold (CT) values of ≤34.99, but discordant results were noted between CT values of 35 and 45.The diagnostic sensitivity of the three platforms was 100% in 91 patient samples that were confirmed to be infectious by virus isolation. All three molecular platforms detected viral EBOV RNA in additional samples that did not contain viable EBOV. The analytical sensitivity of the GeneXpert Ebola POC for the detection of NP was higher, and comparable to that of polymerase gene detection, than that for the detection of GP when using a titrated laboratory stock of EBOV. There was no detectable cross-reactivity with other hemorrhagic fever viruses or arboviruses. The GeneXpert Ebola POC offers an easy to operate and sensitive diagnostic tool that can be used for the rapid screening of suspected EVD cases in treatment or in holding centers during EVD outbreaks. PMID:26637383
Analysis of Ebola Virus Entry Into Macrophages
Dahlmann, Franziska; Biedenkopf, Nadine; Babler, Anne; Jahnen-Dechent, Willi; Karsten, Christina B.; Gnirß, Kerstin; Schneider, Heike; Wrensch, Florian; O'Callaghan, Christopher A.; Bertram, Stephanie; Herrler, Georg; Becker, Stephan; Pöhlmann, Stefan; Hofmann-Winkler, Heike
2015-01-01
Ebolaviruses constitute a public health threat, particularly in Central and Western Africa. Host cell factors required for spread of ebolaviruses may serve as targets for antiviral intervention. Lectins, TAM receptor tyrosine kinases (Tyro3, Axl, Mer), T cell immunoglobulin and mucin domain (TIM) proteins, integrins, and Niemann-Pick C1 (NPC1) have been reported to promote entry of ebolaviruses into certain cellular systems. However, the factors used by ebolaviruses to invade macrophages, major viral targets, are poorly defined. Here, we show that mannose-specific lectins, TIM-1 and Axl augment entry into certain cell lines but do not contribute to Ebola virus (EBOV)-glycoprotein (GP)–driven transduction of macrophages. In contrast, expression of Mer, integrin αV, and NPC1 was required for efficient GP-mediated transduction and EBOV infection of macrophages. These results define cellular factors hijacked by EBOV for entry into macrophages and, considering that Mer and integrin αV promote phagocytosis of apoptotic cells, support the concept that EBOV relies on apoptotic mimicry to invade target cells. PMID:25877552
Differential Regulation of Interferon Responses by Ebola and Marburg Virus VP35 Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Megan R.; Liu, Gai; Mire, Chad E.
2016-02-11
Suppression of innate immune responses during filoviral infection contributes to disease severity. Ebola (EBOV) and Marburg (MARV) viruses each encode a VP35 protein that suppresses RIG-I-like receptor signaling and interferon-α/β (IFN-α/β) production by several mechanisms, including direct binding to double stranded RNA (dsRNA). Here, we demonstrate that in cell culture, MARV infection results in a greater upregulation of IFN responses as compared to EBOV infection. This correlates with differences in the efficiencies by which EBOV and MARV VP35s antagonize RIG-I signaling. Furthermore, structural and biochemical studies suggest that differential recognition of RNA elements by the respective VP35 C-terminal IFN inhibitorymore » domain (IID) rather than affinity for RNA by the respective VP35s is critical for this observation. Our studies reveal functional differences in EBOV versus MARV VP35 RNA binding that result in unexpected differences in the host response to deadly viral pathogens.« less
Audet, Jonathan; Wong, Gary; Wang, Han; Lu, Guangwen; Gao, George F; Kobinger, Gary; Qiu, Xiangguo
2014-11-06
Ebola virus (EBOV) causes severe viral hemorrhagic fever in humans and non-human primates, with a case fatality rate of up to 88% in human outbreaks. Over the past 3 years, monoclonal antibody (mAb) cocktails have demonstrated high efficacy as treatments against EBOV infection. One such cocktail is ZMAb, which consists of three mouse antibodies, 1H3, 2G4, and 4G7. Here, we present the epitope binding properties of mAbs 1H3, 2G4, and 4G7. We showed that these antibodies have different variable region sequences, suggesting that the individual mAbs are not clonally related. All three antibodies were found to neutralize EBOV variant Mayinga. Additionally, 2G4 and 4G7 were shown to cross-inhibit each other in vitro and select for an escape mutation at the same position on the EBOV glycoprotein (GP), at amino acid 508. 1H3 selects an escape mutant at amino acid 273 on EBOV GP. Surface plasmon resonance studies showed that all three antibodies have dissociation constants on the order of 10(-7). In combination with previous studies evaluating the binding sites of other protective antibodies, our results suggest that antibodies targeting the GP1-GP2 interface and the glycan cap are often selected as efficacious antibodies for post-exposure interventions against EBOV.
Validation of the Filovirus Plaque Assay for Use in Preclinical Studies
Shurtleff, Amy C.; Bloomfield, Holly A.; Mort, Shannon; Orr, Steven A.; Audet, Brian; Whitaker, Thomas; Richards, Michelle J.; Bavari, Sina
2016-01-01
A plaque assay for quantitating filoviruses in virus stocks, prepared viral challenge inocula and samples from research animals has recently been fully characterized and standardized for use across multiple institutions performing Biosafety Level 4 (BSL-4) studies. After standardization studies were completed, Good Laboratory Practices (GLP)-compliant plaque assay method validation studies to demonstrate suitability for reliable and reproducible measurement of the Marburg Virus Angola (MARV) variant and Ebola Virus Kikwit (EBOV) variant commenced at the United States Army Medical Research Institute of Infectious Diseases (USAMRIID). The validation parameters tested included accuracy, precision, linearity, robustness, stability of the virus stocks and system suitability. The MARV and EBOV assays were confirmed to be accurate to ±0.5 log10 PFU/mL. Repeatability precision, intermediate precision and reproducibility precision were sufficient to return viral titers with a coefficient of variation (%CV) of ≤30%, deemed acceptable variation for a cell-based bioassay. Intraclass correlation statistical techniques for the evaluation of the assay’s precision when the same plaques were quantitated by two analysts returned values passing the acceptance criteria, indicating high agreement between analysts. The assay was shown to be accurate and specific when run on Nonhuman Primates (NHP) serum and plasma samples diluted in plaque assay medium, with negligible matrix effects. Virus stocks demonstrated stability for freeze-thaw cycles typical of normal usage during assay retests. The results demonstrated that the EBOV and MARV plaque assays are accurate, precise and robust for filovirus titration in samples associated with the performance of GLP animal model studies. PMID:27110807
Ebola Virus Binding to Tim-1 on T Lymphocytes Induces a Cytokine Storm.
Younan, Patrick; Iampietro, Mathieu; Nishida, Andrew; Ramanathan, Palaniappan; Santos, Rodrigo I; Dutta, Mukta; Lubaki, Ndongala Michel; Koup, Richard A; Katze, Michael G; Bukreyev, Alexander
2017-09-26
Ebola virus (EBOV) disease (EVD) results from an exacerbated immunological response that is highlighted by a burst in the production of inflammatory mediators known as a "cytokine storm." Previous reports have suggested that nonspecific activation of T lymphocytes may play a central role in this phenomenon. T-cell immunoglobulin and mucin domain-containing protein 1 (Tim-1) has recently been shown to interact with virion-associated phosphatidylserine to promote infection. Here, we demonstrate the central role of Tim-1 in EBOV pathogenesis, as Tim-1 -/- mice exhibited increased survival rates and reduced disease severity; surprisingly, only a limited decrease in viremia was detected. Tim-1 -/- mice exhibited a modified inflammatory response as evidenced by changes in serum cytokines and activation of T helper subsets. A series of in vitro assays based on the Tim-1 expression profile on T cells demonstrated that despite the apparent absence of detectable viral replication in T lymphocytes, EBOV directly binds to isolated T lymphocytes in a phosphatidylserine-Tim-1-dependent manner. Exposure to EBOV resulted in the rapid development of a CD4 Hi CD3 Low population, non-antigen-specific activation, and cytokine production. Transcriptome and Western blot analysis of EBOV-stimulated CD4 + T cells confirmed the induction of the Tim-1 signaling pathway. Furthermore, comparative analysis of transcriptome data and cytokine/chemokine analysis of supernatants highlight the similarities associated with EBOV-stimulated T cells and the onset of a cytokine storm. Flow cytometry revealed virtually exclusive binding and activation of central memory CD4 + T cells. These findings provide evidence for the role of Tim-1 in the induction of a cytokine storm phenomenon and the pathogenesis of EVD. IMPORTANCE Ebola virus infection is characterized by a massive release of inflammatory mediators, which has come to be known as a cytokine storm. The severity of the cytokine storm is consistently linked with fatal disease outcome. Previous findings have demonstrated that specific T-cell subsets are key contributors to the onset of a cytokine storm. In this study, we investigated the role of Tim-1, a T-cell-receptor-independent trigger of T-cell activation. We first demonstrated that Tim-1-knockout (KO) mice survive lethal Ebola virus challenge. We then used a series of in vitro assays to demonstrate that Ebola virus directly binds primary T cells in a Tim-1-phosphatidylserine-dependent manner. We noted that binding induces a cytokine storm-like phenomenon and that blocking Tim-1-phosphatidylserine interactions reduces viral binding, T-cell activation, and cytokine production. These findings highlight a previously unknown role of Tim-1 in the development of a cytokine storm and "immune paralysis." Copyright © 2017 Younan et al.
Ilinykh, Philipp A; Lubaki, Ndongala M; Widen, Steven G; Renn, Lynnsey A; Theisen, Terence C; Rabin, Ronald L; Wood, Thomas G; Bukreyev, Alexander
2015-08-01
Ebola virus (EBOV) causes a severe hemorrhagic fever with a deficient immune response, lymphopenia, and lymphocyte apoptosis. Dendritic cells (DC), which trigger the adaptive response, do not mature despite EBOV infection. We recently demonstrated that DC maturation is unblocked by disabling the innate response antagonizing domains (IRADs) in EBOV VP35 and VP24 by the mutations R312A and K142A, respectively. Here we analyzed the effects of VP35 and VP24 with the IRADs disabled on global gene expression in human DC. Human monocyte-derived DC were infected by wild-type (wt) EBOV or EBOVs carrying the mutation in VP35 (EBOV/VP35m), VP24 (EBOV/VP24m), or both (EBOV/VP35m/VP24m). Global gene expression at 8 and 24 h was analyzed by deep sequencing, and the expression of interferon (IFN) subtypes up to 5 days postinfection was analyzed by quantitative reverse transcription-PCR (qRT-PCR). wt EBOV induced a weak global gene expression response, including markers of DC maturation, cytokines, chemokines, chemokine receptors, and multiple IFNs. The VP35 mutation unblocked the expression, resulting in a dramatic increase in expression of these transcripts at 8 and 24 h. Surprisingly, DC infected with EBOV/VP24m expressed lower levels of many of these transcripts at 8 h after infection, compared to wt EBOV. In contrast, at 24 h, expression of the transcripts increased in DC infected with any of the three mutants, compared to wt EBOV. Moreover, sets of genes affected by the two mutations only partially overlapped. Pathway analysis demonstrated that the VP35 mutation unblocked pathways involved in antigen processing and presentation and IFN signaling. These data suggest that EBOV IRADs have profound effects on the host adaptive immune response through massive transcriptional downregulation of DC. This study shows that infection of DC with EBOV, but not its mutant forms with the VP35 IRAD and/or VP24 IRAD disabled, causes a global block in expression of host genes. The temporal effects of mutations disrupting the two IRADs differ, and the lists of affected genes only partially overlap such that VP35 and VP24 IRADs each have profound effects on antigen presentation by exposed DC. The global modulation of DC gene expression and the resulting lack of their maturation represent a major mechanism by which EBOV disables the T cell response and suggests that these suppressive pathways are a therapeutic target that may unleash the T cell responses during EBOV infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger.
Markosyan, Ruben M; Miao, Chunhui; Zheng, Yi-Min; Melikyan, Gregory B; Liu, Shan-Lu; Cohen, Fredric S
2016-01-01
Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge-a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry.
Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger
Zheng, Yi-Min; Melikyan, Gregory B.; Liu, Shan-Lu; Cohen, Fredric S.
2016-01-01
Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge—a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry. PMID:26730950
Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection.
Iampietro, Mathieu; Younan, Patrick; Nishida, Andrew; Dutta, Mukta; Lubaki, Ndongala Michel; Santos, Rodrigo I; Koup, Richard A; Katze, Michael G; Bukreyev, Alexander
2017-05-01
Fatal outcomes of Ebola virus (EBOV) infections are typically preceded by a 'sepsis-like' syndrome and lymphopenia despite T cells being resistant to Ebola infection. The mechanisms that lead to T lymphocytes death remain largely unknown; however, the degree of lymphopenia is highly correlative with fatalities. Here we investigated whether the addition of EBOV or its envelope glycoprotein (GP) to isolated primary human CD4+ T cells induced cell death. We observed a significant decrease in cell viability in a GP-dependent manner, which is suggestive of a direct role of GP in T cell death. Using immunoprecipitation assays and flow cytometry, we demonstrate that EBOV directly binds to CD4+ T cells through interaction of GP with TLR4. Transcriptome analysis revealed that the addition of EBOV to CD4+ T cells results in the significant upregulation of pathways associated with interferon signaling, pattern recognition receptors and intracellular activation of NFκB signaling pathway. Both transcriptome analysis and specific inhibitors allowed identification of apoptosis and necrosis as mechanisms associated with the observed T cell death following exposure to EBOV. The addition of the TLR4 inhibitor CLI-095 significantly reduced CD4+ T cell death induced by GP. EBOV stimulation of primary CD4+ T cells resulted in a significant increase in secreted TNFα; inhibition of TNFα-mediated signaling events significantly reduced T cell death while inhibitors of both necrosis and apoptosis similarly reduced EBOV-induced T cell death. Lastly, we show that stimulation with EBOV or GP augments monocyte maturation as determined by an overall increase in expression levels of markers of differentiation. Subsequently, the increased rates of cellular differentiation resulted in higher rates of infection further contributing to T cell death. These results demonstrate that GP directly subverts the host's immune response by increasing the susceptibility of monocytes to EBOV infection and triggering lymphopenia through direct and indirect mechanisms.
Marburg virus survivor immune responses are Th1 skewed with limited neutralizing antibody responses.
Stonier, Spencer W; Herbert, Andrew S; Kuehne, Ana I; Sobarzo, Ariel; Habibulin, Polina; Dahan, Chen V Abramovitch; James, Rebekah M; Egesa, Moses; Cose, Stephen; Lutwama, Julius Julian; Lobel, Leslie; Dye, John M
2017-09-04
Until recently, immune responses in filovirus survivors remained poorly understood. Early studies revealed IgM and IgG responses to infection with various filoviruses, but recent outbreaks have greatly expanded our understanding of filovirus immune responses. Immune responses in survivors of Ebola virus (EBOV) and Sudan virus (SUDV) infections have provided the most insight, with T cell responses as well as detailed antibody responses having been characterized. Immune responses to Marburg virus (MARV), however, remain almost entirely uncharacterized. We report that immune responses in MARV survivors share characteristics with EBOV and SUDV infections but have some distinct differences. MARV survivors developed multivariate CD4 + T cell responses but limited CD8 + T cell responses, more in keeping with SUDV survivors than EBOV survivors. In stark contrast to SUDV survivors, rare neutralizing antibody responses in MARV survivors diminished rapidly after the outbreak. These results warrant serious consideration for any vaccine or therapeutic that seeks to be broadly protective, as different filoviruses may require different immune responses to achieve immunity. © 2017 Stonier et al.
Ebola virus VP35 blocks stress granule assembly.
Le Sage, Valerie; Cinti, Alessandro; McCarthy, Stephen; Amorim, Raquel; Rao, Shringar; Daino, Gian Luca; Tramontano, Enzo; Branch, Donald R; Mouland, Andrew J
2017-02-01
Stress granules (SGs) are dynamic cytoplasmic aggregates of translationally silenced mRNAs that assemble in response to environmental stress. SGs appear to play an important role in antiviral innate immunity and many viruses have evolved to block or subvert SGs components for their own benefit. Here, we demonstrate that intracellular Ebola virus (EBOV) replication and transcription-competent virus like particles (trVLP) infection does not lead to SG assembly but leads to a blockade to Arsenite-induced SG assembly. Moreover we show that EBOV VP35 represses the assembly of canonical and non-canonical SGs induced by a variety of pharmacological stresses. This SG blockade requires, at least in part, the C-terminal domain of VP35. Furthermore, results from our co-immunoprecipitation studies indicate that VP35 interacts with multiple SG components, including G3BP1, eIF3 and eEF2 through a stress- and RNA-independent mechanism. These data suggest a novel function for EBOV VP35 in the repression of SG assembly. Copyright © 2016 Elsevier Inc. All rights reserved.
2008-01-01
current filovirus threats in the event of natural hemorrhagic fever outbreak or biological attack. Ebola virus (EBOV) and Marburg virus (MARV) are mem...lethal, causing severe hemorrhagic fever disease in humans and apes with high mortality rates (up to 90%). The recent description of massive gorilla...threats in the event of natural hemorrhagic fever outbreak or biological attack. 15. SUBJECT TERMS filovirus, Ebola, Marburg, adenovirus-based vaccine
Liang, Jingjing; Sagum, Cari A.; Bedford, Mark T.; Sudol, Marius; Han, Ziying
2017-01-01
Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles. PMID:28076420
Liang, Jingjing; Sagum, Cari A; Bedford, Mark T; Sidhu, Sachdev S; Sudol, Marius; Han, Ziying; Harty, Ronald N
2017-01-01
Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.
Detection of links between Ebola nucleocapsid and virulence using disorder analysis.
Goh, Gerard Kian-Meng; Dunker, A Keith; Uversky, Vladimir N
2015-08-01
The underlying reasons for the differences in the virulence of various types of Ebola virus (EBOV) remain unknown. Comparison of the percentage of disorder (PID) in nucleocapsid proteins VP30 and NP reveals high correlation between nucleocapsid PIDs and the case-fatality rates of EBOV. The higher disorder of these proteins is likely to be needed for more efficient multiplication of virus copies via more efficient viral RNA transcription and more promiscuous protein binding potential. This is important for the more efficient assistance of nucleocapsid in viral particle budding and of the assembly and mobility of viral proteins across the host membrane and within the cytoplasm. A more comprehensive knowledge of the molecular mechanisms of EBOV virulence would also lead to new and more effective strategies in vaccine development.
Qiu, Xiangguo; Fernando, Lisa; Melito, P Leno; Audet, Jonathan; Feldmann, Heinz; Kobinger, Gary; Alimonti, Judie B; Jones, Steven M
2012-01-01
Ebola virus (EBOV) causes acute hemorrhagic fever in humans and non-human primates with mortality rates up to 90%. So far there are no effective treatments available. This study evaluates the protective efficacy of 8 monoclonal antibodies (MAbs) against Ebola glycoprotein in mice and guinea pigs. Immunocompetent mice or guinea pigs were given MAbs i.p. in various doses individually or as pools of 3-4 MAbs to test their protection against a lethal challenge with mouse- or guinea pig-adapted EBOV. Each of the 8 MAbs (100 µg) protected mice from a lethal EBOV challenge when administered 1 day before or after challenge. Seven MAbs were effective 2 days post-infection (dpi), with 1 MAb demonstrating partial protection 3 dpi. In the guinea pigs each MAb showed partial protection at 1 dpi, however the mean time to death was significantly prolonged compared to the control group. Moreover, treatment with pools of 3-4 MAbs completely protected the majority of animals, while administration at 2-3 dpi achieved 50-100% protection. This data suggests that the MAbs generated are capable of protecting both animal species against lethal Ebola virus challenge. These results indicate that MAbs particularly when used as an oligoclonal set are a potential therapeutic for post-exposure treatment of EBOV infection.
Faye, Oumar; Faye, Ousmane; Soropogui, Barré; Patel, Pranav; El Wahed, Ahmed Abd; Loucoubar, Cheikh; Fall, Gamou; Kiory, Davy; Magassouba, N'Faly; Keita, Sakoba; Kondé, Mandy Kader; Diallo, Alpha Amadou; Koivogui, Lamine; Karlberg, Helen; Mirazimi, Ali; Nentwich, Oliver; Piepenburg, Olaf; Niedrig, Matthias; Weidmann, Manfred; Sall, Amadou Alpha
2015-01-01
In the absence of a vaccine or specific treatments for Ebola virus disease (EVD), early identification of cases is crucial for the control of EVD epidemics. We evaluated a new extraction kit (SpeedXtract (SE), Qiagen) on sera and swabs in combination with an improved diagnostic reverse transcription recombinase polymerase amplification assay for the detection of Ebola virus (EBOV-RT-RPA). The performance of combined extraction and detection was best for swabs. Sensitivity and specificity of the combined SE and EBOV-RT-RPA were tested in a mobile laboratory consisting of a mobile glovebox and a Diagnostics-in-a-Suitcase powered by a battery and solar panel, deployed to Matoto Conakry, Guinea as part of the reinforced surveillance strategy in April 2015 to reach the goal of zero cases. The EBOV-RT-RPA was evaluated in comparison to two real-time PCR assays. Of 928 post-mortem swabs, 120 tested positive, and the combined SE and EBOV-RT-RPA yielded a sensitivity and specificity of 100% in reference to one real-time RT-PCR assay. Another widely used real-time RT-PCR was much less sensitive than expected. Results were provided very fast within 30 to 60 min, and the field deployment of the mobile laboratory helped improve burial management and community engagement.
Molecular Determinants of Ebola Virus Virulence in Mice
Ebihara, Hideki; Takada, Ayato; Kobasa, Darwyn; Jones, Steven; Neumann, Gabriele; Theriault, Steven; Bray, Mike; Feldmann, Heinz; Kawaoka, Yoshihiro
2006-01-01
Zaire ebolavirus (ZEBOV) causes severe hemorrhagic fever in humans and nonhuman primates, with fatality rates in humans of up to 90%. The molecular basis for the extreme virulence of ZEBOV remains elusive. While adult mice resist ZEBOV infection, the Mayinga strain of the virus has been adapted to cause lethal infection in these animals. To understand the pathogenesis underlying the extreme virulence of Ebola virus (EBOV), here we identified the mutations responsible for the acquisition of the high virulence of the adapted Mayinga strain in mice, by using reverse genetics. We found that mutations in viral protein 24 and in the nucleoprotein were primarily responsible for the acquisition of high virulence. Moreover, the role of these proteins in virulence correlated with their ability to evade type I interferon-stimulated antiviral responses. These findings suggest a critical role for overcoming the interferon-induced antiviral state in the pathogenicity of EBOV and offer new insights into the pathogenesis of EBOV infection. PMID:16848640
Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013-2016 Epidemic.
Diehl, William E; Lin, Aaron E; Grubaugh, Nathan D; Carvalho, Luiz Max; Kim, Kyusik; Kyawe, Pyae Phyo; McCauley, Sean M; Donnard, Elisa; Kucukural, Alper; McDonel, Patrick; Schaffner, Stephen F; Garber, Manuel; Rambaut, Andrew; Andersen, Kristian G; Sabeti, Pardis C; Luban, Jeremy
2016-11-03
The magnitude of the 2013-2016 Ebola virus disease (EVD) epidemic enabled an unprecedented number of viral mutations to occur over successive human-to-human transmission events, increasing the probability that adaptation to the human host occurred during the outbreak. We investigated one nonsynonymous mutation, Ebola virus (EBOV) glycoprotein (GP) mutant A82V, for its effect on viral infectivity. This mutation, located at the NPC1-binding site on EBOV GP, occurred early in the 2013-2016 outbreak and rose to high frequency. We found that GP-A82V had heightened ability to infect primate cells, including human dendritic cells. The increased infectivity was restricted to cells that have primate-specific NPC1 sequences at the EBOV interface, suggesting that this mutation was indeed an adaptation to the human host. GP-A82V was associated with increased mortality, consistent with the hypothesis that the heightened intrinsic infectivity of GP-A82V contributed to disease severity during the EVD epidemic. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulherkar, Nirupama; Raaben, Matthijs; Torre, Juan Carlos de la
2011-10-25
Ebola virus (EBOV) has been reported to enter cultured cell lines via a dynamin-2-independent macropinocytic pathway or clathrin-mediated endocytosis. The route(s) of productive EBOV internalization into physiologically relevant cell types remain unexplored, and viral-host requirements for this process are incompletely understood. Here, we use electron microscopy and complementary chemical and genetic approaches to demonstrate that the viral glycoprotein, GP, induces macropinocytic uptake of viral particles into cells. GP's highly-glycosylated mucin domain is dispensable for virus-induced macropinocytosis, arguing that interactions between other sequences in GP and the host cell surface are responsible. Unexpectedly, we also found a requirement for the largemore » GTPase dynamin-2, which is proposed to be dispensable for several types of macropinocytosis. Our results provide evidence that EBOV uses an atypical dynamin-dependent macropinocytosis-like entry pathway to enter Vero cells, adherent human peripheral blood-derived monocytes, and a mouse dendritic cell line.« less
Oestereich, Lisa; Lüdtke, Anja; Wurr, Stephanie; Rieger, Toni; Muñoz-Fontela, César; Günther, Stephan
2014-05-01
Outbreaks of Ebola hemorrhagic fever in sub-Saharan Africa are associated with case fatality rates of up to 90%. Currently, neither a vaccine nor an effective antiviral treatment is available for use in humans. Here, we evaluated the efficacy of the pyrazinecarboxamide derivative T-705 (favipiravir) against Zaire Ebola virus (EBOV) in vitro and in vivo. T-705 suppressed replication of Zaire EBOV in cell culture by 4log units with an IC90 of 110μM. Mice lacking the type I interferon receptor (IFNAR(-)(/)(-)) were used as in vivo model for Zaire EBOV-induced disease. Initiation of T-705 administration at day 6 post infection induced rapid virus clearance, reduced biochemical parameters of disease severity, and prevented a lethal outcome in 100% of the animals. The findings suggest that T-705 is a candidate for treatment of Ebola hemorrhagic fever. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Ebolavirus VP35 is a multifunctional virulence factor.
Leung, Daisy W; Prins, Kathleen C; Basler, Christopher F; Amarasinghe, Gaya K
2010-01-01
Ebola virus (EBOV) is a member of the filoviridae family that causes severe hemorrhagic fever during sporadic outbreaks, and no approved treatments are currently available. The multifunctional EBOV VP35 protein facilitates immune evasion by antagonizing antiviral signaling pathways and is important for viral RNA synthesis. In order to elucidate regulatory mechanisms and to develop countermeasures, we recently solved the structures of the Zaire and Reston EBOV VP35 interferon inhibitory domain (IID) in the free form and of the Zaire EBOV VP35 IID bound to dsRNA. Together with biochemical, cell biological, and virological studies, our structural work revealed that distinct regions within EBOV VP35 IID contribute to virulence through host immune evasion and viral RNA synthesis. Here we summarize our recent structural and functional studies and discuss the potential of multifunctional Ebola VP35 as a therapeutic target.
Geisbert, Thomas W; Hensley, Lisa E; Kagan, Elliott; Yu, Erik Zhaoying; Geisbert, Joan B; Daddario-DiCaprio, Kathleen; Fritz, Elizabeth A; Jahrling, Peter B; McClintock, Kevin; Phelps, Janet R; Lee, Amy C H; Judge, Adam; Jeffs, Lloyd B; MacLachlan, Ian
2006-06-15
Ebola virus (EBOV) infection causes a frequently fatal hemorrhagic fever (HF) that is refractory to treatment with currently available antiviral therapeutics. RNA interference represents a powerful, naturally occurring biological strategy for the inhibition of gene expression and has demonstrated utility in the inhibition of viral replication. Here, we describe the development of a potential therapy for EBOV infection that is based on small interfering RNAs (siRNAs). Four siRNAs targeting the polymerase (L) gene of the Zaire species of EBOV (ZEBOV) were either complexed with polyethylenimine (PEI) or formulated in stable nucleic acid-lipid particles (SNALPs). Guinea pigs were treated with these siRNAs either before or after lethal ZEBOV challenge. Treatment of guinea pigs with a pool of the L gene-specific siRNAs delivered by PEI polyplexes reduced plasma viremia levels and partially protected the animals from death when administered shortly before the ZEBOV challenge. Evaluation of the same pool of siRNAs delivered using SNALPs proved that this system was more efficacious, as it completely protected guinea pigs against viremia and death when administered shortly after the ZEBOV challenge. Additional experiments showed that 1 of the 4 siRNAs alone could completely protect guinea pigs from a lethal ZEBOV challenge. Further development of this technology has the potential to yield effective treatments for EBOV HF as well as for diseases caused by other agents that are considered to be biological threats.
Analysis of Ebola Virus Entry Into Macrophages.
Dahlmann, Franziska; Biedenkopf, Nadine; Babler, Anne; Jahnen-Dechent, Willi; Karsten, Christina B; Gnirß, Kerstin; Schneider, Heike; Wrensch, Florian; O'Callaghan, Christopher A; Bertram, Stephanie; Herrler, Georg; Becker, Stephan; Pöhlmann, Stefan; Hofmann-Winkler, Heike
2015-10-01
Ebolaviruses constitute a public health threat, particularly in Central and Western Africa. Host cell factors required for spread of ebolaviruses may serve as targets for antiviral intervention. Lectins, TAM receptor tyrosine kinases (Tyro3, Axl, Mer), T cell immunoglobulin and mucin domain (TIM) proteins, integrins, and Niemann-Pick C1 (NPC1) have been reported to promote entry of ebolaviruses into certain cellular systems. However, the factors used by ebolaviruses to invade macrophages, major viral targets, are poorly defined. Here, we show that mannose-specific lectins, TIM-1 and Axl augment entry into certain cell lines but do not contribute to Ebola virus (EBOV)-glycoprotein (GP)-driven transduction of macrophages. In contrast, expression of Mer, integrin αV, and NPC1 was required for efficient GP-mediated transduction and EBOV infection of macrophages. These results define cellular factors hijacked by EBOV for entry into macrophages and, considering that Mer and integrin αV promote phagocytosis of apoptotic cells, support the concept that EBOV relies on apoptotic mimicry to invade target cells. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Ng, Melinda; Ndungo, Esther; Kaczmarek, Maria E; Herbert, Andrew S; Binger, Tabea; Kuehne, Ana I; Jangra, Rohit K; Hawkins, John A; Gifford, Robert J; Biswas, Rohan; Demogines, Ann; James, Rebekah M; Yu, Meng; Brummelkamp, Thijn R; Drosten, Christian; Wang, Lin-Fa; Kuhn, Jens H; Müller, Marcel A; Dye, John M; Sawyer, Sara L; Chandran, Kartik
2015-01-01
Biological factors that influence the host range and spillover of Ebola virus (EBOV) and other filoviruses remain enigmatic. While filoviruses infect diverse mammalian cell lines, we report that cells from African straw-colored fruit bats (Eidolon helvum) are refractory to EBOV infection. This could be explained by a single amino acid change in the filovirus receptor, NPC1, which greatly reduces the affinity of EBOV-NPC1 interaction. We found signatures of positive selection in bat NPC1 concentrated at the virus-receptor interface, with the strongest signal at the same residue that controls EBOV infection in Eidolon helvum cells. Our work identifies NPC1 as a genetic determinant of filovirus susceptibility in bats, and suggests that some NPC1 variations reflect host adaptations to reduce filovirus replication and virulence. A single viral mutation afforded escape from receptor control, revealing a pathway for compensatory viral evolution and a potential avenue for expansion of filovirus host range in nature. DOI: http://dx.doi.org/10.7554/eLife.11785.001 PMID:26698106
The Role of Exosomal VP40 in Ebola Virus Disease.
Pleet, Michelle L; DeMarino, Catherine; Lepene, Benjamin; Aman, M Javad; Kashanchi, Fatah
2017-04-01
Ebola virus (EBOV) can cause a devastating hemorrhagic disease, leading to death in a short period of time. After infection, the resulting EBOV disease results in high levels of circulating cytokines, endothelial dysfunction, coagulopathy, and bystander lymphocyte apoptosis in humans and nonhuman primates. The VP40 matrix protein of EBOV is essential for viral assembly and budding from the host cell. Recent data have shown that VP40 exists in the extracellular environment, including in exosomes, and exosomal VP40 can impact the viability of recipient immune cells, including myeloid and T cells, through the regulation of the RNAi and endosomal sorting complexes required for transport pathways. In this study, we discuss the latest findings of the impact of exosomal VP40 on immune cells in vitro and its potential implications for pathogenesis in vivo.
Ubiquitin Ligase WWP1 Interacts with Ebola Virus VP40 To Regulate Egress.
Han, Ziying; Sagum, Cari A; Takizawa, Fumio; Ruthel, Gordon; Berry, Corbett T; Kong, Jing; Sunyer, J Oriol; Freedman, Bruce D; Bedford, Mark T; Sidhu, Sachdev S; Sudol, Marius; Harty, Ronald N
2017-10-15
Ebola virus (EBOV) is a member of the Filoviridae family and the cause of hemorrhagic fever outbreaks. The EBOV VP40 (eVP40) matrix protein is the main driving force for virion assembly and budding. Indeed, expression of eVP40 alone in mammalian cells results in the formation and budding of virus-like particles (VLPs) which mimic the budding process and morphology of authentic, infectious EBOV. To complete the budding process, eVP40 utilizes its PPXY L-domain motif to recruit a specific subset of host proteins containing one or more modular WW domains that then function to facilitate efficient production and release of eVP40 VLPs. In this report, we identified additional host WW-domain interactors by screening for potential interactions between mammalian proteins possessing one or more WW domains and WT or PPXY mutant peptides of eVP40. We identified the HECT family E3 ubiquitin ligase WWP1 and all four of its WW domains as strong interactors with the PPXY motif of eVP40. The eVP40-WWP1 interaction was confirmed by both peptide pulldown and coimmunoprecipitation assays, which also demonstrated that modular WW domain 1 of WWP1 was most critical for binding to eVP40. Importantly, the eVP40-WWP1 interaction was found to be biologically relevant for VLP budding since (i) small interfering RNA (siRNA) knockdown of endogenous WWP1 resulted in inhibition of eVP40 VLP egress, (ii) coexpression of WWP1 and eVP40 resulted in ubiquitination of eVP40 and a subsequent increase in eVP40 VLP egress, and (iii) an enzymatically inactive mutant of WWP1 (C890A) did not ubiquitinate eVP40 or enhance eVP40 VLP egress. Last, our data show that ubiquitination of eVP40 by WWP1 enhances egress of VLPs and concomitantly decreases cellular levels of higher-molecular-weight oligomers of eVP40. In sum, these findings contribute to our fundamental understanding of the functional interplay between host E3 ligases, ubiquitination, and regulation of EBOV VP40-mediated egress. IMPORTANCE Ebola virus (EBOV) is a high-priority, emerging human pathogen that can cause severe outbreaks of hemorrhagic fever with high mortality rates. As there are currently no approved vaccines or treatments for EBOV, a better understanding of the biology and functions of EBOV-host interactions that promote or inhibit viral budding is warranted. Here, we describe a physical and functional interaction between EBOV VP40 (eVP40) and WWP1, a host E3 ubiquitin ligase that ubiquitinates VP40 and regulates VLP egress. This viral PPXY-host WW domain-mediated interaction represents a potential new target for host-oriented inhibitors of EBOV egress. Copyright © 2017 American Society for Microbiology.
Modeling of the Ebola Virus Delta Peptide Reveals a Potential Lytic Sequence Motif
Gallaher, William R.; Garry, Robert F.
2015-01-01
Filoviruses, such as Ebola and Marburg viruses, cause severe outbreaks of human infection, including the extensive epidemic of Ebola virus disease (EVD) in West Africa in 2014. In the course of examining mutations in the glycoprotein gene associated with 2014 Ebola virus (EBOV) sequences, a differential level of conservation was noted between the soluble form of glycoprotein (sGP) and the full length glycoprotein (GP), which are both encoded by the GP gene via RNA editing. In the region of the proteins encoded after the RNA editing site sGP was more conserved than the overlapping region of GP when compared to a distant outlier species, Tai Forest ebolavirus. Half of the amino acids comprising the “delta peptide”, a 40 amino acid carboxy-terminal fragment of sGP, were identical between otherwise widely divergent species. A lysine-rich amphipathic peptide motif was noted at the carboxyl terminus of delta peptide with high structural relatedness to the cytolytic peptide of the non-structural protein 4 (NSP4) of rotavirus. EBOV delta peptide is a candidate viroporin, a cationic pore-forming peptide, and may contribute to EBOV pathogenesis. PMID:25609303
Burton, J E; Easterbrook, L; Pitman, J; Anderson, D; Roddy, S; Bailey, D; Vipond, R; Bruce, C B; Roberts, A D
2017-12-01
The 2014 Ebola outbreak in West Africa required the rapid testing of clinical material for the presence of potentially high titre Ebola virus (EBOV). Safe, fast and effective methods for the inactivation of such clinical samples are required so that rapid diagnostic tests including downstream analysis by RT-qPCR or nucleotide sequencing can be carried out. One of the most commonly used guanidinium - based denaturing agents, AVL (Qiagen) has been shown to fully inactivate EBOV once ethanol is added, however this is not compatible with the use of automated nucleic acid extraction systems. Additional inactivation agents need to be identified that can be used in automated systems. A candidate inactivation agent is Triton X-100, a non-denaturing detergent that is frequently used in clinical nucleic acid extraction procedures and has previously been used for inactivation of EBOV. In this study the effect of 0.1% and 1.0% Triton X-100 (final concentration 0.08% and 0.8% respectively) alone and in combination with AVL on the viability of EBOV (10 6 TCID 50 /ml) spiked into commercially available pooled negative human serum was tested. The presence of viable EBOV in the treated samples was assessed by carrying out three serial passages of the samples in Vero E6 cells (37°C, 5% CO 2 , 1 week for each passage). At the end of each passage the cells were observed for evidence of cytopathic effect and samples were taken for rRT-PCR analysis for the presence of EBOV RNA. Before cell culture cytotoxic components of AVL and Triton X-100 were removed from the samples using size exclusion spin column technology or a hydrophobic adsorbent resin. The results of this study showed that EBOV spiked into human serum was not fully inactivated when treated with either 0.1% (v/v) Triton X-100 for 10 mins or 1.0% (v/v) Triton X-100 for 20 mins (final concentrations 0.08% and 0.8% Triton X-100 respectively). AVL alone also did not consistently provide complete inactivation. Samples treated with both AVL and 0.1% Triton X-100 for 10 or 20 mins were shown to be completely inactivated. This treatment is compatible with downstream analysis by RT-qPCR and next generation sequencing. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Ebolavirus VP35 is a multifunctional virulence factor
Leung, Daisy W; Prins, Kathleen C; Basler, Christopher F
2010-01-01
Ebola virus (EBOV) is a member of the filoviridae family that causes severe hemorrhagic fever during sporadic outbreaks, and no approved treatments are currently available. The multifunctional EBOV VP35 protein facilitates immune evasion by antagonizing antiviral signaling pathways and is important for viral RNA synthesis. In order to elucidate regulatory mechanisms and to develop countermeasures, we recently solved the structures of the Zaire and Reston EBOV VP35 interferon inhibitory domain (IID) in the free form and of the Zaire EBOV VP35 IID bound to dsRNA. Together with biochemical, cell biological and virological studies, our structural work revealed that distinct regions within EBOV VP35 IID contribute to virulence through host immune evasion and viral RNA synthesis. Here we summarize our recent structural and functional studies and discuss the potential of multifunctional Ebola VP35 as a therapeutic target. PMID:21178490
Serologic Cross-Reactivity of Human IgM and IgG Antibodies to Five Species of Ebola Virus
MacNeil, Adam; Reed, Zachary; Rollin, Pierre E.
2011-01-01
Five species of Ebola virus (EBOV) have been identified, with nucleotide differences of 30–45% between species. Four of these species have been shown to cause Ebola hemorrhagic fever (EHF) in humans and a fifth species (Reston ebolavirus) is capable of causing a similar disease in non-human primates. While examining potential serologic cross-reactivity between EBOV species is important for diagnostic assays as well as putative vaccines, the nature of cross-reactive antibodies following EBOV infection has not been thoroughly characterized. In order to examine cross-reactivity of human serologic responses to EBOV, we developed antigen preparations for all five EBOV species, and compared serologic responses by IgM capture and IgG enzyme-linked immunosorbent assay (ELISA) in groups of convalescent diagnostic sera from outbreaks in Kikwit, Democratic Republic of Congo (n = 24), Gulu, Uganda (n = 20), Bundibugyo, Uganda (n = 33), and the Philippines (n = 18), which represent outbreaks due to four different EBOV species. For groups of samples from Kikwit, Gulu, and Bundibugyo, some limited IgM cross-reactivity was noted between heterologous sera-antigen pairs, however, IgM responses were largely stronger against autologous antigen. In some instances IgG responses were higher to autologous antigen than heterologous antigen, however, in contrast to IgM responses, we observed strong cross-reactive IgG antibody responses to heterologous antigens among all sets of samples. Finally, we examined autologous IgM and IgG antibody levels, relative to time following EHF onset, and observed early peaking and declining IgM antibody levels (by 80 days) and early development and persistence of IgG antibodies among all samples, implying a consistent pattern of antibody kinetics, regardless of EBOV species. Our findings demonstrate limited cross-reactivity of IgM antibodies to EBOV, however, the stronger tendency for cross-reactive IgG antibody responses can largely circumvent limitations in the utility of heterologous antigen for diagnostic assays and may assist in the development of antibody-mediated vaccines to EBOV. PMID:21666792
Structures of protective antibodies reveal sites of vulnerability on Ebola virus.
Murin, Charles D; Fusco, Marnie L; Bornholdt, Zachary A; Qiu, Xiangguo; Olinger, Gene G; Zeitlin, Larry; Kobinger, Gary P; Ward, Andrew B; Saphire, Erica Ollmann
2014-12-02
Ebola virus (EBOV) and related filoviruses cause severe hemorrhagic fever, with up to 90% lethality, and no treatments are approved for human use. Multiple recent outbreaks of EBOV and the likelihood of future human exposure highlight the need for pre- and postexposure treatments. Monoclonal antibody (mAb) cocktails are particularly attractive candidates due to their proven postexposure efficacy in nonhuman primate models of EBOV infection. Two candidate cocktails, MB-003 and ZMAb, have been extensively evaluated in both in vitro and in vivo studies. Recently, these two therapeutics have been combined into a new cocktail named ZMapp, which showed increased efficacy and has been given compassionately to some human patients. Epitope information and mechanism of action are currently unknown for most of the component mAbs. Here we provide single-particle EM reconstructions of every mAb in the ZMapp cocktail, as well as additional antibodies from MB-003 and ZMAb. Our results illuminate key and recurring sites of vulnerability on the EBOV glycoprotein and provide a structural rationale for the efficacy of ZMapp. Interestingly, two of its components recognize overlapping epitopes and compete with each other for binding. Going forward, this work now provides a basis for strategic selection of next-generation antibody cocktails against Ebola and related viruses and a model for predicting the impact of ZMapp on potential escape mutations in ongoing or future Ebola outbreaks.
Dead or alive: animal sampling during Ebola hemorrhagic fever outbreaks in humans
Olson, Sarah H.; Reed, Patricia; Cameron, Kenneth N.; Ssebide, Benard J.; Johnson, Christine K.; Morse, Stephen S.; Karesh, William B.; Mazet, Jonna A. K.; Joly, Damien O.
2012-01-01
There are currently no widely accepted animal surveillance guidelines for human Ebola hemorrhagic fever (EHF) outbreak investigations to identify potential sources of Ebolavirus (EBOV) spillover into humans and other animals. Animal field surveillance during and following an outbreak has several purposes, from helping identify the specific animal source of a human case to guiding control activities by describing the spatial and temporal distribution of wild circulating EBOV, informing public health efforts, and contributing to broader EHF research questions. Since 1976, researchers have sampled over 10,000 individual vertebrates from areas associated with human EHF outbreaks and tested for EBOV or antibodies. Using field surveillance data associated with EHF outbreaks, this review provides guidance on animal sampling for resource-limited outbreak situations, target species, and in some cases which diagnostics should be prioritized to rapidly assess the presence of EBOV in animal reservoirs. In brief, EBOV detection was 32.7% (18/55) for carcasses (animals found dead) and 0.2% (13/5309) for live captured animals. Our review indicates that for the purposes of identifying potential sources of transmission from animals to humans and isolating suspected virus in an animal in outbreak situations, (1) surveillance of free-ranging non-human primate mortality and morbidity should be a priority, (2) any wildlife morbidity or mortality events should be investigated and may hold the most promise for locating virus or viral genome sequences, (3) surveillance of some bat species is worthwhile to isolate and detect evidence of exposure, and (4) morbidity, mortality, and serology studies of domestic animals should prioritize dogs and pigs and include testing for virus and previous exposure. PMID:22558004
Minimal In Vivo Efficacy of Iminosugars in a Lethal Ebola Virus Guinea Pig Model
Dowall, Stuart D.; Taylor, Irene; Rule, Antony; Alonzi, Dominic S.; Sayce, Andrew C.; Wright, Edward; Bentley, Emma M.; Thom, Ruth; Hall, Graham; Dwek, Raymond A.; Hewson, Roger; Zitzmann, Nicole
2016-01-01
The antiviral properties of iminosugars have been reported previously in vitro and in small animal models against Ebola virus (EBOV); however, their effects have not been tested in larger animal models such as guinea pigs. We tested the iminosugars N-butyl-deoxynojirimycin (NB-DNJ) and N-(9-methoxynonyl)-1deoxynojirimycin (MON-DNJ) for safety in uninfected animals, and for antiviral efficacy in animals infected with a lethal dose of guinea pig adapted EBOV. 1850 mg/kg/day NB-DNJ and 120 mg/kg/day MON-DNJ administered intravenously, three times daily, caused no adverse effects and were well tolerated. A pilot study treating infected animals three times within an 8 hour period was promising with 1 of 4 infected NB-DNJ treated animals surviving and the remaining three showing improved clinical signs. MON-DNJ showed no protective effects when EBOV-infected guinea pigs were treated. On histopathological examination, animals treated with NB-DNJ had reduced lesion severity in liver and spleen. However, a second study, in which NB-DNJ was administered at equally-spaced 8 hour intervals, could not confirm drug-associated benefits. Neither was any antiviral effect of iminosugars detected in an EBOV glycoprotein pseudotyped virus assay. Overall, this study provides evidence that NB-DNJ and MON-DNJ do not protect guinea pigs from a lethal EBOV-infection at the dose levels and regimens tested. However, the one surviving animal and signs of improvements in three animals of the NB-DNJ treated cohort could indicate that NB-DNJ at these levels may have a marginal beneficial effect. Future work could be focused on the development of more potent iminosugars. PMID:27880800
Human immune system mouse models of Ebola virus infection.
Spengler, Jessica R; Prescott, Joseph; Feldmann, Heinz; Spiropoulou, Christina F
2017-08-01
Human immune system (HIS) mice, immunodeficient mice engrafted with human cells (with or without donor-matched tissue), offer a unique opportunity to study pathogens that cause disease predominantly or exclusively in humans. Several HIS mouse models have recently been used to study Ebola virus (EBOV) infection and disease. The results of these studies are encouraging and support further development and use of these models in Ebola research. HIS mice provide a small animal model to study EBOV isolates, investigate early viral interactions with human immune cells, screen vaccines and therapeutics that modulate the immune system, and investigate sequelae in survivors. Here we review existing models, discuss their use in pathogenesis studies and therapeutic screening, and highlight considerations for study design and analysis. Finally, we point out caveats to current models, and recommend future efforts for modeling EBOV infection in HIS mice. Published by Elsevier B.V.
Comparative Analysis of Host Cell Entry of Ebola Virus From Sierra Leone, 2014, and Zaire, 1976.
Hofmann-Winkler, Heike; Gnirß, Kerstin; Wrensch, Florian; Pöhlmann, Stefan
2015-10-01
The ongoing Ebola virus (EBOV) disease (EVD) epidemic in Western Africa is the largest EVD outbreak recorded to date and requires the rapid development and deployment of antiviral measures. The viral glycoprotein (GP) facilitates host cell entry and, jointly with cellular interaction partners, constitutes a potential target for antiviral intervention. However, it is unknown whether the GPs of the currently and previously circulating EBOVs use the same mechanisms for cellular entry and are thus susceptible to inhibition by the same antivirals and cellular defenses. Here, we show that the GPs of the EBOVs circulating in 1976 and 2014 transduce the same spectrum of target cells, use the same cellular factors for host cell entry, and are comparably susceptible to blockade by antiviral interferon-induced transmembrane proteins and neutralizing antibody KZ52. Thus, the viruses responsible for the ongoing EVD epidemic should be fully susceptible to established antiviral strategies targeting GP and cellular entry factors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Kumar, Anoop
2016-01-01
Ebola virus (EBOV) arise attention for their impressive lethality by the poor immune response and high inflammatory reaction in the patients. It causes a severe hemorrhagic fever with case fatality rates of up to 90%. The mechanism underlying this lethal outcome is poorly understood. In 2014, a major outbreak of Ebola virus spread amongst several African countries, including Leone, Sierra, and Guinea. Although infections only occur frequently in Central Africa, but the virus has the potential to spread globally. Presently, there is no vaccine or treatment is available to counteract Ebola virus infections due to poor understanding of its interaction with the immune system. Accumulating evidence indicates that the virus actively alters both innate and adaptive immune responses and triggers harmful inflammatory responses. In the literature, some reports have shown that alteration of immune signaling pathways could be due to the ability of EBOV to interfere with dendritic cells (DCs), which link innate and adaptive immune responses. On the other hand, some reports have demonstrated that EBOV, VP35 proteins act as interferon antagonists. So, how the Ebola virus altered the innate and adaptive immune response signaling pathways is still an open question for the researcher to be explored. Thus, in this review, I try to summarize the mechanisms of the alteration of innate and adaptive immune response signaling pathways by Ebola virus which will be helpful for designing effective drugs or vaccines against this lethal infection. Further, potential targets, current treatment and novel therapeutic approaches have also been discussed.
Ebola virus disease in the Democratic Republic of Congo.
Maganga, Gaël D; Kapetshi, Jimmy; Berthet, Nicolas; Kebela Ilunga, Benoît; Kabange, Felix; Mbala Kingebeni, Placide; Mondonge, Vital; Muyembe, Jean-Jacques T; Bertherat, Eric; Briand, Sylvie; Cabore, Joseph; Epelboin, Alain; Formenty, Pierre; Kobinger, Gary; González-Angulo, Licé; Labouba, Ingrid; Manuguerra, Jean-Claude; Okwo-Bele, Jean-Marie; Dye, Christopher; Leroy, Eric M
2014-11-27
The seventh reported outbreak of Ebola virus disease (EVD) in the equatorial African country of the Democratic Republic of Congo (DRC) began on July 26, 2014, as another large EVD epidemic continued to spread in West Africa. Simultaneous reports of EVD in equatorial and West Africa raised the question of whether the two outbreaks were linked. We obtained data from patients in the DRC, using the standard World Health Organization clinical-investigation form for viral hemorrhagic fevers. Patients were classified as having suspected, probable, or confirmed EVD or a non-EVD illness. Blood samples were obtained for polymerase-chain-reaction-based diagnosis, viral isolation, sequencing, and phylogenetic analysis. The outbreak began in Inkanamongo village in the vicinity of Boende town in Équateur province and has been confined to that province. A total of 69 suspected, probable, or confirmed cases were reported between July 26 and October 7, 2014, including 8 cases among health care workers, with 49 deaths. As of October 7, there have been approximately six generations of cases of EVD since the outbreak began. The reported weekly case incidence peaked in the weeks of August 17 and 24 and has since fallen sharply. Genome sequencing revealed Ebola virus (EBOV, Zaire species) as the cause of this outbreak. A coding-complete genome sequence of EBOV that was isolated during this outbreak showed 99.2% identity with the most closely related variant from the 1995 outbreak in Kikwit in the DRC and 96.8% identity to EBOV variants that are currently circulating in West Africa. The current EVD outbreak in the DRC has clinical and epidemiologic characteristics that are similar to those of previous EVD outbreaks in equatorial Africa. The causal agent is a local EBOV variant, and this outbreak has a zoonotic origin different from that in the 2014 epidemic in West Africa. (Funded by the Centre International de Recherches Médicales de Franceville and others.).
Mechanism of human antibody-mediated neutralization of Marburg virus.
Flyak, Andrew I; Ilinykh, Philipp A; Murin, Charles D; Garron, Tania; Shen, Xiaoli; Fusco, Marnie L; Hashiguchi, Takao; Bornholdt, Zachary A; Slaughter, James C; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G; Ward, Andrew B; Saphire, Erica Ollmann; Bukreyev, Alexander; Crowe, James E
2015-02-26
The mechanisms by which neutralizing antibodies inhibit Marburg virus (MARV) are not known. We isolated a panel of neutralizing antibodies from a human MARV survivor that bind to MARV glycoprotein (GP) and compete for binding to a single major antigenic site. Remarkably, several of the antibodies also bind to Ebola virus (EBOV) GP. Single-particle EM structures of antibody-GP complexes reveal that all of the neutralizing antibodies bind to MARV GP at or near the predicted region of the receptor-binding site. The presence of the glycan cap or mucin-like domain blocks binding of neutralizing antibodies to EBOV GP, but not to MARV GP. The data suggest that MARV-neutralizing antibodies inhibit virus by binding to infectious virions at the exposed MARV receptor-binding site, revealing a mechanism of filovirus inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.
Long-Term Survival of an Urban Fruit Bat Seropositive for Ebola and Lagos Bat Viruses
Hayman, David T. S.; Emmerich, Petra; Yu, Meng; Wang, Lin-Fa; Suu-Ire, Richard; Fooks, Anthony R.; Cunningham, Andrew A.; Wood, James L. N.
2010-01-01
Ebolaviruses (EBOV) (family Filoviridae) cause viral hemorrhagic fevers in humans and non-human primates when they spill over from their wildlife reservoir hosts with case fatality rates of up to 90%. Fruit bats may act as reservoirs of the Filoviridae. The migratory fruit bat, Eidolon helvum, is common across sub-Saharan Africa and lives in large colonies, often situated in cities. We screened sera from 262 E. helvum using indirect fluorescent tests for antibodies against EBOV subtype Zaire. We detected a seropositive bat from Accra, Ghana, and confirmed this using western blot analysis. The bat was also seropositive for Lagos bat virus, a Lyssavirus, by virus neutralization test. The bat was fitted with a radio transmitter and was last detected in Accra 13 months after release post-sampling, demonstrating long-term survival. Antibodies to filoviruses have not been previously demonstrated in E. helvum. Radio-telemetry data demonstrates long-term survival of an individual bat following exposure to viruses of families that can be highly pathogenic to other mammal species. Because E. helvum typically lives in large urban colonies and is a source of bushmeat in some regions, further studies should determine if this species forms a reservoir for EBOV from which spillover infections into the human population may occur. PMID:20694141
Long-term survival of an urban fruit bat seropositive for Ebola and Lagos bat viruses.
Hayman, David T S; Emmerich, Petra; Yu, Meng; Wang, Lin-Fa; Suu-Ire, Richard; Fooks, Anthony R; Cunningham, Andrew A; Wood, James L N
2010-08-04
Ebolaviruses (EBOV) (family Filoviridae) cause viral hemorrhagic fevers in humans and non-human primates when they spill over from their wildlife reservoir hosts with case fatality rates of up to 90%. Fruit bats may act as reservoirs of the Filoviridae. The migratory fruit bat, Eidolon helvum, is common across sub-Saharan Africa and lives in large colonies, often situated in cities. We screened sera from 262 E. helvum using indirect fluorescent tests for antibodies against EBOV subtype Zaire. We detected a seropositive bat from Accra, Ghana, and confirmed this using western blot analysis. The bat was also seropositive for Lagos bat virus, a Lyssavirus, by virus neutralization test. The bat was fitted with a radio transmitter and was last detected in Accra 13 months after release post-sampling, demonstrating long-term survival. Antibodies to filoviruses have not been previously demonstrated in E. helvum. Radio-telemetry data demonstrates long-term survival of an individual bat following exposure to viruses of families that can be highly pathogenic to other mammal species. Because E. helvum typically lives in large urban colonies and is a source of bushmeat in some regions, further studies should determine if this species forms a reservoir for EBOV from which spillover infections into the human population may occur.
Ibeh, Neke; Nshogozabahizi, Jean Claude; Aris-Brosou, Stéphane
2016-06-01
Throughout the last 3 decades, Ebola virus (EBOV) outbreaks have been confined to isolated areas within Central Africa; however, the 2014 variant reached unprecedented transmission and mortality rates. While the outbreak was still under way, it was reported that the variant leading up to this outbreak evolved faster than previous EBOV variants, but evidence for diversifying selection was undetermined. Here, we test this selection hypothesis and show that while previous EBOV outbreaks were preceded by bursts of diversification, evidence for site-specific diversifying selection during the emergence of the 2014 EBOV clade is weak. However, we show strong evidence supporting an interplay between selection and correlated evolution (epistasis), particularly in the mucin-like domain (MLD) of the EBOV glycoprotein. By reconstructing ancestral structures of the MLD, we further propose a structural mechanism explaining how the substitutions that accumulated between 1918 and 1969 distorted the MLD, while more recent epistatic substitutions restored part of the structure, with the most recent substitution being adaptive. We suggest that it is this complex interplay between weak selection, epistasis, and structural constraints that has shaped the evolution of the 2014 EBOV variant. The role that selection plays in the emergence of viral epidemics remains debated, particularly in the context of the 2014 EBOV outbreak. Most critically, should such evidence exist, it is generally unclear how this relates to function and increased virulence. Here, we show that the viral lineage leading up to the 2014 outbreak underwent a complex interplay between selection and correlated evolution (epistasis) in a protein region that is critical for immune evasion. We then reconstructed the three-dimensional structure of this domain and showed that the initial mutations in this lineage deformed the structure, while subsequent mutations restored part of the structure. Along this mutational path, the first and last mutations were adaptive, while the intervening ones were epistatic. Altogether, we provide a mechanistic model that explains how selection and epistasis acted on the structural constraints that materialized during the 2014 EBOV outbreak. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Pathogenesis of Ebola Hemorrhagic Fever in Cynomolgus Macaques
Geisbert, Thomas W.; Hensley, Lisa E.; Larsen, Tom; Young, Howard A.; Reed, Douglas S.; Geisbert, Joan B.; Scott, Dana P.; Kagan, Elliott; Jahrling, Peter B.; Davis, Kelly J.
2003-01-01
Ebola virus (EBOV) infection causes a severe and fatal hemorrhagic disease that in many ways appears to be similar in humans and nonhuman primates; however, little is known about the development of EBOV hemorrhagic fever. In the present study, 21 cynomolgus monkeys were experimentally infected with EBOV and examined sequentially over a 6-day period to investigate the pathological events of EBOV infection that lead to death. Importantly, dendritic cells in lymphoid tissues were identified as early and sustained targets of EBOV, implicating their important role in the immunosuppression characteristic of EBOV infections. Bystander lymphocyte apoptosis, previously described in end-stage tissues, occurred early in the disease-course in intravascular and extravascular locations. Of note, apoptosis and loss of NK cells was a prominent finding, suggesting the importance of innate immunity in determining the fate of the host. Analysis of peripheral blood mononuclear cell gene expression showed temporal increases in tumor necrosis factor-related apoptosis-inducing ligand and Fas transcripts, revealing a possible mechanism for the observed bystander apoptosis, while up-regulation of NAIP and cIAP2 mRNA suggest that EBOV has evolved additional mechanisms to resist host defenses by inducing protective transcripts in cells that it infects. The sequence of pathogenetic events identified in this study should provide new targets for rational prophylactic and chemotherapeutic interventions. PMID:14633608
Shantha, Jessica G; Mattia, John G; Goba, Augustine; Barnes, Kayla G; Ebrahim, Faiqa K; Kraft, Colleen S; Hayek, Brent R; Hartnett, Jessica N; Shaffer, Jeffrey G; Schieffelin, John S; Sandi, John D; Momoh, Mambu; Jalloh, Simbirie; Grant, Donald S; Dierberg, Kerry; Chang, Joyce; Mishra, Sharmistha; Chan, Adrienne K; Fowler, Rob; O'Dempsey, Tim; Kaluma, Erick; Hendricks, Taylor; Reiners, Roger; Reiners, Melanie; Gess, Lowell A; ONeill, Kwame; Kamara, Sarian; Wurie, Alie; Mansaray, Mohamed; Acharya, Nisha R; Liu, William J; Bavari, Sina; Palacios, Gustavo; Teshome, Moges; Crozier, Ian; Farmer, Paul E; Uyeki, Timothy M; Bausch, Daniel G; Garry, Robert F; Vandy, Matthew J; Yeh, Steven
2018-04-01
Ebola virus disease (EVD) survivors are at risk for uveitis during convalescence. Vision loss has been observed following uveitis due to cataracts. Since Ebola virus (EBOV) may persist in the ocular fluid of EVD survivors for an unknown duration, there are questions about the safety and feasibility of vision restorative cataract surgery in EVD survivors. We conducted a cross-sectional study of EVD survivors anticipating cataract surgery and patients with active uveitis to evaluate EBOV RNA persistence in ocular fluid, as well as vision outcomes post cataract surgery. Patients with aqueous humor that tested negative for EBOV RNA were eligible to proceed with manual small incision cataract surgery (MSICS). We screened 137 EVD survivors from June 2016 - August 2017 for enrolment. We enrolled 50 EVD survivors; 46 with visually significant cataract, 1 with a subluxated lens, 2 with active uveitis and 1 with a blind painful eye due to uveitis. The median age was 24.0years (IQR 17-35) and 35 patients (70%) were female. The median logMAR visual acuity (VA) was 3.0 (Snellen VA Hand motions; Interquartile Range, IQR: 1.2-3.0, Snellen VA 20/320 - Hand motions). All patients tested negative for EBOV RNA by RT-PCR in aqueous humor/vitreous fluid and conjunctiva at a median of 19months (IQR 18-20) from EVD diagnosis in Phase 1 of ocular fluid sampling and 34months (IQR 32-36) from EVD diagnosis in Phase 2 of ocular fluid sampling. Thirty-four patients underwent MSICS, with a preoperative median VA improvement from hand motions to 20/30 at three-month postoperative follow-up (P<0.001). EBOV persistence by RT-PCR was not identified in ocular fluid or conjunctivae of fifty EVD survivors with ocular disease. Cataract surgery can be performed safely with vision restorative outcomes in patients who test negative for EBOV RNA in ocular fluid specimens. These findings impact the thousands of West African EVD survivors at-risk for ocular complications who may also require eye surgery during EVD convalescence. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Molecular mechanisms of Ebola pathogenesis.
Rivera, Andrea; Messaoudi, Ilhem
2016-11-01
Ebola viruses (EBOVs) and Marburg viruses (MARVs) are among the deadliest human viruses, as highlighted by the recent and widespread Ebola virus outbreak in West Africa, which was the largest and longest epidemic of Ebola virus disease (EVD) in history, resulting in significant loss of life and disruptions across multiple continents. Although the number of cases has nearly reached its nadir, a recent cluster of 5 cases in Guinea on March 17, 2016, has extended the enhanced surveillance period to June 15, 2016. New, enhanced 90-d surveillance windows replaced the 42-d surveillance window to ensure the rapid detection of new cases that may arise from a missed transmission chain, reintroduction from an animal reservoir, or more important, reemergence of the virus that has persisted in an EVD survivor. In this review, we summarize our current understanding of EBOV pathogenesis, describe vaccine and therapeutic candidates in clinical trials, and discuss mechanisms of viral persistence and long-term health sequelae for EVD survivors. © Society for Leukocyte Biology.
Ilinykh, Philipp A; Tigabu, Bersabeh; Ivanov, Andrey; Ammosova, Tatiana; Obukhov, Yuri; Garron, Tania; Kumari, Namita; Kovalskyy, Dmytro; Platonov, Maxim O; Naumchik, Vasiliy S; Freiberg, Alexander N; Nekhai, Sergei; Bukreyev, Alexander
2014-08-15
The filovirus Ebola (EBOV) causes the most severe hemorrhagic fever known. The EBOV RNA-dependent polymerase complex includes a filovirus-specific VP30, which is critical for the transcriptional but not replication activity of EBOV polymerase; to support transcription, VP30 must be in a dephosphorylated form. Here we show that EBOV VP30 is phosphorylated not only at the N-terminal serine clusters identified previously but also at the threonine residues at positions 143 and 146. We also show that host cell protein phosphatase 1 (PP1) controls VP30 dephosphorylation because expression of a PP1-binding peptide cdNIPP1 increased VP30 phosphorylation. Moreover, targeting PP1 mRNA by shRNA resulted in the overexpression of SIPP1, a cytoplasm-shuttling regulatory subunit of PP1, and increased EBOV transcription, suggesting that cytoplasmic accumulation of PP1 induces EBOV transcription. Furthermore, we developed a small molecule compound, 1E7-03, that targeted a non-catalytic site of PP1 and increased VP30 dephosphorylation. The compound inhibited the transcription but increased replication of the viral genome and completely suppressed replication of EBOV in cultured cells. Finally, mutations of Thr(143) and Thr(146) of VP30 significantly inhibited EBOV transcription and strongly induced VP30 phosphorylation in the N-terminal Ser residues 29-46, suggesting a novel mechanism of regulation of VP30 phosphorylation. Our findings suggest that targeting PP1 with small molecules is a feasible approach to achieve dysregulation of the EBOV polymerase activity. This novel approach may be used for the development of antivirals against EBOV and other filovirus species. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Immune evasion in ebolavirus infections.
Audet, Jonathan; Kobinger, Gary P
2015-02-01
Ebola virus (EBOV) infects humans as well as several animal species. It can lead to a highly lethal disease, with mortality rates approaching 90% in primates. Recent advances have deepened our understanding of how this virus is able to prevent the development of protective immune responses. The EBOV genome encodes eight proteins, four of which were shown to interact with the host in ways that counteract the immune response. The viral protein 35 (VP35) is capable of capping dsRNA and interacts with IRF7 to prevent detection of the virus by immune cells. The main role of the soluble glycoprotein (sGP) is still unclear, but it is capable of subverting the anti-GP1,2 antibody response. The GP1,2 protein has shown anti-tetherin activity and the ability to hide cell-surface proteins. Finally, VP24 interferes with the production of interferons (IFNs) and with IFN signaling in infected cells. Taken together, these data point to extensive adaptation of EBOV to evade the immune system of dead end hosts. While our understanding of the interactions between the human and viral proteins increases, details of those interactions in other hosts remain largely unclear and represent a gap in our knowledge.
McGowan, Catherine R.; Dicks, Steve; Baguelin, Marc; Mabey, David; Kumar, Alex; Tedder, Richard
2017-01-01
Background Healthcare and other front-line workers are at particular risk of infection with Ebola virus (EBOV). Despite the large-scale deployment of international responders, few cases of Ebola virus disease have been diagnosed in this group. Since asymptomatic or pauci-symptomatic infection has been described, it is plausible that infections have occurred in healthcare workers but have escaped being diagnosed. We aimed to assess the prevalence of asymptomatic or pauci-symptomatic infection, and of exposure events, among returned responders to the West African Ebola epidemic 2014–2016. Methods and findings We used snowball sampling to identify responders who had returned to the UK or Ireland, and used an online consent and questionnaire to determine their exposure to EBOV and their experience of illness. Oral fluid collection devices were sent and returned by post, and samples were tested using an EBOV IgG capture assay that detects IgG to Ebola glycoprotein. Blood was collected from returnees with reactive samples for further testing. Unexposed UK controls were also recruited. In all, 300 individuals consented, of whom 268 (89.3%) returned an oral fluid sample (OFS). The majority had worked in Sierra Leone in clinical, laboratory, research, and other roles. Fifty-three UK controls consented and provided samples using the same method. Of the returnees, 47 (17.5%) reported that they had had a possible EBOV exposure. Based on their free-text descriptions, using a published risk assessment method, we classified 43 (16%) as having had incidents with risk of Ebola transmission, including five intermediate-risk and one high-risk exposure. Of the returnees, 57 (21%) reported a febrile or diarrhoeal illness in West Africa or within 1 mo of return, of whom 40 (70%) were not tested at the time for EBOV infection. Of the 268 OFSs, 266 were unreactive. Two returnees, who did not experience an illness in West Africa or on return, had OFSs that were reactive on the EBOV IgG capture assay, with similar results on plasma. One individual had no further positive test results; the other had a positive result on a double-antigen bridging assay but not on a competitive assay or on an indirect EBOV IgG ELISA. All 53 controls had non-reactive OFSs. While the participants were not a random sample of returnees, the number participating was high. Conclusions This is the first study, to our knowledge, of the prevalence of EBOV infection in international responders. More than 99% had clear negative results. Sera from two individuals had discordant results on the different assays; both were negative on the competitive assay, suggesting that prior infection was unlikely. The finding that a significant proportion experienced “near miss” exposure events, and that most of those who experienced symptoms did not get tested for EBOV at the time, suggests a need to review and standardise protocols for the management of possible exposure to EBOV, and for the management of illness, across organisations that deploy staff to outbreaks. PMID:28510604
Pathogenesis of Ebola Hemorrhagic Fever in Cynomolgus Macaques
2003-12-01
Pathogenesis of Ebola Hemorrhagic Fever in Cynomolgus Macaques Evidence that Dendritic Cells Are Early and Sustained Targets of Infection Thomas W...is known about the development of EBOV hemorrhagic fever . In the present study, 21 cynomol- gus monkeys were experimentally infected with EBOV and...Am J Pathol 2003, 163:2347–2370) Among viruses causing hemorrhagic fever (HF), and among emerging infectious diseases with global impact in general
Fabozzi, Giulia; Nabel, Christopher S; Dolan, Michael A; Sullivan, Nancy J
2011-03-01
Cellular RNA interference (RNAi) provides a natural response against viral infection, but some viruses have evolved mechanisms to antagonize this form of antiviral immunity. To determine whether Ebolavirus (EBOV) counters RNAi by encoding suppressors of RNA silencing (SRSs), we screened all EBOV proteins using an RNAi assay initiated by exogenously delivered small interfering RNAs (siRNAs) against either an EBOV or a reporter gene. In addition to viral protein 35 (VP35), we found that VP30 and VP40 independently act as SRSs. Here, we present the molecular mechanisms of VP30 and VP35. VP30 interacts with Dicer independently of siRNA and with one Dicer partner, TRBP, only in the presence of siRNA. VP35 directly interacts with Dicer partners TRBP and PACT in an siRNA-independent fashion and in the absence of effects on interferon (IFN). Taken together, our findings elucidate a new mechanism of RNAi suppression that extends beyond the role of SRSs in double-stranded RNA (dsRNA) binding and IFN antagonism. The presence of three suppressors highlights the relevance of host RNAi-dependent antiviral immunity in EBOV infection and illustrates the importance of RNAi in shaping the evolution of RNA viruses.
Gustin, Jean K; Bai, Ying; Moses, Ashlee V; Douglas, Janet L
2015-10-01
BST2/tetherin is an innate immune molecule with the unique ability to restrict the egress of human immunodeficiency virus (HIV) and other enveloped viruses, including Ebola virus (EBOV). Coincident with this discovery was the finding that the HIV Vpu protein down-regulates BST2 from the cell surface, thereby promoting viral release. Evidence suggests that the EBOV envelope glycoprotein (GP) also counteracts BST2, although the mechanism is unclear. We find that total levels of BST2 remain unchanged in the presence of GP, whereas surface BST2 is significantly reduced. GP is known to sterically mask surface receptors via its mucin domain. Our evaluation of mutant GP molecules indicate that masking of BST2 by GP is probably responsible for the apparent surface BST2 down-regulation; however, this masking does not explain the observed virus-like particle egress enhancement. We discovered that VP40 coimmunoprecipitates and colocalizes with BST2 in the absence but not in the presence of GP. These results suggest that GP may overcome the BST2 restriction by blocking an interaction between VP40 and BST2. Furthermore, we have observed that GP may enhance BST2 incorporation into virus-like particles. Understanding this novel EBOV immune evasion strategy will provide valuable insights into the pathogenicity of this deadly pathogen. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Evasion of interferon responses by Ebola and Marburg viruses.
Basler, Christopher F; Amarasinghe, Gaya K
2009-09-01
The filoviruses, Ebola virus (EBOV) and Marburg virus (MARV), cause frequently lethal viral hemorrhagic fever. These infections induce potent cytokine production, yet these host responses fail to prevent systemic virus replication. Consistent with this, filoviruses have been found to encode proteins VP35 and VP24 that block host interferon (IFN)-alpha/beta production and inhibit signaling downstream of the IFN-alpha/beta and the IFN-gamma receptors, respectively. VP35, which is a component of the viral nucleocapsid complex and plays an essential role in viral RNA synthesis, acts as a pseudosubstrate for the cellular kinases IKK-epsilon and TBK-1, which phosphorylate and activate interferon regulatory factor 3 (IRF-3) and interferon regulatory factor 7 (IRF-7). VP35 also promotes SUMOylation of IRF-7, repressing IFN gene transcription. In addition, VP35 is a dsRNA-binding protein, and mutations that disrupt dsRNA binding impair VP35 IFN-antagonist activity while leaving its RNA replication functions intact. The phenotypes of recombinant EBOV bearing mutant VP35s unable to inhibit IFN-alpha/beta demonstrate that VP35 IFN-antagonist activity is critical for full virulence of these lethal pathogens. The structure of the VP35 dsRNA-binding domain, which has recently become available, is expected to provide insight into how VP35 IFN-antagonist and dsRNA-binding functions are related. The EBOV VP24 protein inhibits IFN signaling through an interaction with select host cell karyopherin-alpha proteins, preventing the nuclear import of otherwise activated STAT1. It remains to be determined to what extent VP24 may also modulate the nuclear import of other host cell factors and to what extent this may influence the outcome of infection. Notably, the Marburg virus VP24 protein does not detectably block STAT1 nuclear import, and, unlike EBOV, MARV infection inhibits STAT1 and STAT2 phosphorylation. Thus, despite their similarities, there are fundamental differences by which these deadly viruses counteract the IFN system. It will be of interest to determine how these differences influence pathogenesis.
Yen, Judy Y; Garamszegi, Sara; Geisbert, Joan B; Rubins, Kathleen H; Geisbert, Thomas W; Honko, Anna; Xia, Yu; Connor, John H; Hensley, Lisa E
2011-11-01
The mechanisms of Ebola (EBOV) pathogenesis are only partially understood, but the dysregulation of normal host immune responses (including destruction of lymphocytes, increases in circulating cytokine levels, and development of coagulation abnormalities) is thought to play a major role. Accumulating evidence suggests that much of the observed pathology is not the direct result of virus-induced structural damage but rather is due to the release of soluble immune mediators from EBOV-infected cells. It is therefore essential to understand how the candidate therapeutic may be interrupting the disease process and/or targeting the infectious agent. To identify genetic signatures that are correlates of protection, we used a DNA microarray-based approach to compare the host genome-wide responses of EBOV-infected nonhuman primates (NHPs) responding to candidate therapeutics. We observed that, although the overall circulating immune response was similar in the presence and absence of coagulation inhibitors, surviving NHPs clustered together. Noticeable differences in coagulation-associated genes appeared to correlate with survival, which revealed a subset of distinctly differentially expressed genes, including chemokine ligand 8 (CCL8/MCP-2), that may provide possible targets for early-stage diagnostics or future therapeutics. These analyses will assist us in understanding the pathogenic mechanisms of EBOV infection and in identifying improved therapeutic strategies.
Geisbert, Thomas W; Hensley, Lisa E; Larsen, Tom; Young, Howard A; Reed, Douglas S; Geisbert, Joan B; Scott, Dana P; Kagan, Elliott; Jahrling, Peter B; Davis, Kelly J
2003-12-01
Ebola virus (EBOV) infection causes a severe and fatal hemorrhagic disease that in many ways appears to be similar in humans and nonhuman primates; however, little is known about the development of EBOV hemorrhagic fever. In the present study, 21 cynomolgus monkeys were experimentally infected with EBOV and examined sequentially over a 6-day period to investigate the pathological events of EBOV infection that lead to death. Importantly, dendritic cells in lymphoid tissues were identified as early and sustained targets of EBOV, implicating their important role in the immunosuppression characteristic of EBOV infections. Bystander lymphocyte apoptosis, previously described in end-stage tissues, occurred early in the disease-course in intravascular and extravascular locations. Of note, apoptosis and loss of NK cells was a prominent finding, suggesting the importance of innate immunity in determining the fate of the host. Analysis of peripheral blood mononuclear cell gene expression showed temporal increases in tumor necrosis factor-related apoptosis-inducing ligand and Fas transcripts, revealing a possible mechanism for the observed bystander apoptosis, while up-regulation of NAIP and cIAP2 mRNA suggest that EBOV has evolved additional mechanisms to resist host defenses by inducing protective transcripts in cells that it infects. The sequence of pathogenetic events identified in this study should provide new targets for rational prophylactic and chemotherapeutic interventions.
The natural compound silvestrol is a potent inhibitor of Ebola virus replication.
Biedenkopf, Nadine; Lange-Grünweller, Kerstin; Schulte, Falk W; Weißer, Aileen; Müller, Christin; Becker, Dirk; Becker, Stephan; Hartmann, Roland K; Grünweller, Arnold
2017-01-01
The DEAD-box RNA helicase eIF4A, which is part of the heterotrimeric translation initiation complex in eukaryotes, is an important novel drug target in cancer research because its helicase activity is required to unwind extended and highly structured 5'-UTRs of several proto-oncogenes. Silvestrol, a natural compound isolated from the plant Aglaia foveolata, is a highly efficient, non-toxic and specific inhibitor of eIF4A. Importantly, 5'-capped viral mRNAs often contain structured 5'-UTRs as well, which may suggest a dependence on eIF4A for their translation by the host protein synthesis machinery. In view of the recent Ebola virus (EBOV) outbreak in West Africa, the identification of potent antiviral compounds is urgently required. Since Ebola mRNAs are 5'-capped and harbor RNA secondary structures in their extended 5'-UTRs, we initiated a BSL4 study to analyze silvestrol in EBOV-infected Huh-7 cells and in primary human macrophages for its antiviral activity. We observed that silvestrol inhibits EBOV infection at low nanomolar concentrations, as inferred from large reductions of viral titers. This correlated with an almost complete disappearance of EBOV proteins, comparable in effect to the translational shutdown of expression of the proto-oncoprotein PIM1, a cellular kinase known to be affected by silvestrol. Effective silvestrol concentrations were non-toxic in the tested cell systems. Thus, silvestrol appears to be a promising first-line drug for the treatment of acute EBOV and possibly other viral infections. Copyright © 2016 Elsevier B.V. All rights reserved.
Recent advances in the development of vaccines for Ebola virus disease.
Ohimain, Elijah Ige
2016-01-04
Ebola virus is one of the most dangerous microorganisms in the world causing hemorrhagic fevers in humans and non-human primates. Ebola virus (EBOV) is a zoonotic infection, which emerges and re-emerges in human populations. The 2014 outbreak was caused by the Zaire strain, which has a kill rate of up to 90%, though 40% was recorded in the current outbreak. The 2014 outbreak is larger than all 20 outbreaks that have occurred since 1976, when the virus was first discovered. It is the first time that the virus was sustained in urban centers and spread beyond Africa into Europe and USA. Thus far, over 22,000 cases have been reported with about 50% mortality in one year. There are currently no approved therapeutics and preventive vaccines against Ebola virus disease (EVD). Responding to the devastating effe1cts of the 2014 outbreak and the potential risk of global spread, has spurred research for the development of therapeutics and vaccines. This review is therefore aimed at presenting the progress of vaccine development. Results showed that conventional inactivated vaccines produced from EBOV by heat, formalin or gamma irradiation appear to be ineffective. However, novel vaccines production techniques have emerged leading to the production of candidate vaccines that have been demonstrated to be effective in preclinical trials using small animal and non-human primates (NHP) models. Some of the promising vaccines have undergone phase 1 clinical trials, which demonstrated their safety and immunogenicity. Many of the candidate vaccines are vector based such as Vesicular Stomatitis Virus (VSV), Rabies Virus (RABV), Adenovirus (Ad), Modified Vaccinia Ankara (MVA), Cytomegalovirus (CMV), human parainfluenza virus type 3 (HPIV3) and Venezuelan Equine Encephalitis Virus (VEEV). Other platforms include virus like particle (VLP), DNA and subunit vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.
Single-dose attenuated Vesiculovax vaccines protect primates against Ebola Makona virus.
Mire, Chad E; Matassov, Demetrius; Geisbert, Joan B; Latham, Theresa E; Agans, Krystle N; Xu, Rong; Ota-Setlik, Ayuko; Egan, Michael A; Fenton, Karla A; Clarke, David K; Eldridge, John H; Geisbert, Thomas W
2015-04-30
The family Filoviridae contains three genera, Ebolavirus (EBOV), Marburg virus, and Cuevavirus. Some members of the EBOV genus, including Zaire ebolavirus (ZEBOV), can cause lethal haemorrhagic fever in humans. During 2014 an unprecedented ZEBOV outbreak occurred in West Africa and is still ongoing, resulting in over 10,000 deaths, and causing global concern of uncontrolled disease. To meet this challenge a rapid-acting vaccine is needed. Many vaccine approaches have shown promise in being able to protect nonhuman primates against ZEBOV. In response to the current ZEBOV outbreak several of these vaccines have been fast tracked for human use. However, it is not known whether any of these vaccines can provide protection against the new outbreak Makona strain of ZEBOV. One of these approaches is a first-generation recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing the ZEBOV glycoprotein (GP) (rVSV/ZEBOV). To address safety concerns associated with this vector, we developed two candidate, further-attenuated rVSV/ZEBOV vaccines. Both attenuated vaccines produced an approximately tenfold lower vaccine-associated viraemia compared to the first-generation vaccine and both provided complete, single-dose protection of macaques from lethal challenge with the Makona outbreak strain of ZEBOV.
Reduced evolutionary rate in reemerged Ebola virus transmission chains.
Blackley, David J; Wiley, Michael R; Ladner, Jason T; Fallah, Mosoka; Lo, Terrence; Gilbert, Merle L; Gregory, Christopher; D'ambrozio, Jonathan; Coulter, Stewart; Mate, Suzanne; Balogun, Zephaniah; Kugelman, Jeffrey; Nwachukwu, William; Prieto, Karla; Yeiah, Adolphus; Amegashie, Fred; Kearney, Brian; Wisniewski, Meagan; Saindon, John; Schroth, Gary; Fakoli, Lawrence; Diclaro, Joseph W; Kuhn, Jens H; Hensley, Lisa E; Jahrling, Peter B; Ströher, Ute; Nichol, Stuart T; Massaquoi, Moses; Kateh, Francis; Clement, Peter; Gasasira, Alex; Bolay, Fatorma; Monroe, Stephan S; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Scott Laney, A; Nyenswah, Tolbert; Christie, Athalia; Palacios, Gustavo
2016-04-01
On 29 June 2015, Liberia's respite from Ebola virus disease (EVD) was interrupted for the second time by a renewed outbreak ("flare-up") of seven confirmed cases. We demonstrate that, similar to the March 2015 flare-up associated with sexual transmission, this new flare-up was a reemergence of a Liberian transmission chain originating from a persistently infected source rather than a reintroduction from a reservoir or a neighboring country with active transmission. Although distinct, Ebola virus (EBOV) genomes from both flare-ups exhibit significantly low genetic divergence, indicating a reduced rate of EBOV evolution during persistent infection. Using this rate of change as a signature, we identified two additional EVD clusters that possibly arose from persistently infected sources. These findings highlight the risk of EVD flare-ups even after an outbreak is declared over.
Reduced evolutionary rate in reemerged Ebola virus transmission chains
Blackley, David J.; Wiley, Michael R.; Ladner, Jason T.; Fallah, Mosoka; Lo, Terrence; Gilbert, Merle L.; Gregory, Christopher; D’ambrozio, Jonathan; Coulter, Stewart; Mate, Suzanne; Balogun, Zephaniah; Kugelman, Jeffrey; Nwachukwu, William; Prieto, Karla; Yeiah, Adolphus; Amegashie, Fred; Kearney, Brian; Wisniewski, Meagan; Saindon, John; Schroth, Gary; Fakoli, Lawrence; Diclaro, Joseph W.; Kuhn, Jens H.; Hensley, Lisa E.; Jahrling, Peter B.; Ströher, Ute; Nichol, Stuart T.; Massaquoi, Moses; Kateh, Francis; Clement, Peter; Gasasira, Alex; Bolay, Fatorma; Monroe, Stephan S.; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Scott Laney, A.; Nyenswah, Tolbert; Christie, Athalia; Palacios, Gustavo
2016-01-01
On 29 June 2015, Liberia’s respite from Ebola virus disease (EVD) was interrupted for the second time by a renewed outbreak (“flare-up”) of seven confirmed cases. We demonstrate that, similar to the March 2015 flare-up associated with sexual transmission, this new flare-up was a reemergence of a Liberian transmission chain originating from a persistently infected source rather than a reintroduction from a reservoir or a neighboring country with active transmission. Although distinct, Ebola virus (EBOV) genomes from both flare-ups exhibit significantly low genetic divergence, indicating a reduced rate of EBOV evolution during persistent infection. Using this rate of change as a signature, we identified two additional EVD clusters that possibly arose from persistently infected sources. These findings highlight the risk of EVD flare-ups even after an outbreak is declared over. PMID:27386513
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papaneri, Amy B.; Wirblich, Christoph; Cann, Jennifer A.
We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RV{Delta}G-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RV{Delta}G-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RV{Delta}G-GP in the brain bymore » quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RV{Delta}G-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.« less
Mehedi, Masfique; Hoenen, Thomas; Robertson, Shelly; Ricklefs, Stacy; Dolan, Michael A; Taylor, Travis; Falzarano, Darryl; Ebihara, Hideki; Porcella, Stephen F; Feldmann, Heinz
2013-01-01
Ebolavirus (EBOV), the causative agent of a severe hemorrhagic fever and a biosafety level 4 pathogen, increases its genome coding capacity by producing multiple transcripts encoding for structural and nonstructural glycoproteins from a single gene. This is achieved through RNA editing, during which non-template adenosine residues are incorporated into the EBOV mRNAs at an editing site encoding for 7 adenosine residues. However, the mechanism of EBOV RNA editing is currently not understood. In this study, we report for the first time that minigenomes containing the glycoprotein gene editing site can undergo RNA editing, thereby eliminating the requirement for a biosafety level 4 laboratory to study EBOV RNA editing. Using a newly developed dual-reporter minigenome, we have characterized the mechanism of EBOV RNA editing, and have identified cis-acting sequences that are required for editing, located between 9 nt upstream and 9 nt downstream of the editing site. Moreover, we show that a secondary structure in the upstream cis-acting sequence plays an important role in RNA editing. EBOV RNA editing is glycoprotein gene-specific, as a stretch encoding for 7 adenosine residues located in the viral polymerase gene did not serve as an editing site, most likely due to an absence of the necessary cis-acting sequences. Finally, the EBOV protein VP30 was identified as a trans-acting factor for RNA editing, constituting a novel function for this protein. Overall, our results provide novel insights into the RNA editing mechanism of EBOV, further understanding of which might result in novel intervention strategies against this viral pathogen.
Schudt, Gordian; Dolnik, Olga; Kolesnikova, Larissa; Biedenkopf, Nadine; Herwig, Astrid; Becker, Stephan
2015-10-01
Transport of ebolavirus (EBOV) nucleocapsids from perinuclear viral inclusions, where they are formed, to the site of budding at the plasma membrane represents an obligatory step of virus assembly. Until now, no live-cell studies on EBOV nucleocapsid transport have been performed, and participation of host cellular factors in this process, as well as the trajectories and speed of nucleocapsid transport, remain unknown. Live-cell imaging of EBOV-infected cells treated with different inhibitors of cellular cytoskeleton was used for the identification of cellular proteins involved in the nucleocapsid transport. EBOV nucleocapsids were visualized by expression of green fluorescent protein (GFP)-labeled nucleocapsid viral protein 30 (VP30) in EBOV-infected cells. Incorporation of the fusion protein VP30-GFP into EBOV nucleocapsids was confirmed by Western blot and indirect immunofluorescence analyses. Importantly, VP30-GFP fluorescence was readily detectable in the densely packed nucleocapsids inside perinuclear viral inclusions and in the dispersed rod-like nucleocapsids located outside of viral inclusions. Live-cell imaging of EBOV-infected cells revealed exit of single nucleocapsids from the viral inclusions and their intricate transport within the cytoplasm before budding at the plasma membrane. Nucleocapsid transport was arrested upon depolymerization of actin filaments (F-actin) and inhibition of the actin-nucleating Arp2/3 complex, and it was not altered upon depolymerization of microtubules or inhibition of N-WASP. Actin comet tails were often detected at the rear end of nucleocapsids. Marginally located nucleocapsids entered filopodia, moved inside, and budded from the tip of these thin cellular protrusions. Live-cell imaging of EBOV-infected cells revealed actin-dependent long-distance transport of EBOV nucleocapsids before budding at the cell surface. These findings provide useful insights into EBOV assembly and have potential application in the development of antivirals. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Brudner, Matthew; Karpel, Marshall; Lear, Calli; Chen, Li; Yantosca, L Michael; Scully, Corinne; Sarraju, Ashish; Sokolovska, Anna; Zariffard, M Reza; Eisen, Damon P; Mungall, Bruce A; Kotton, Darrell N; Omari, Amel; Huang, I-Chueh; Farzan, Michael; Takahashi, Kazue; Stuart, Lynda; Stahl, Gregory L; Ezekowitz, Alan B; Spear, Gregory T; Olinger, Gene G; Schmidt, Emmett V; Michelow, Ian C
2013-01-01
Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active infections. Our findings confirm our hypothesis that the pressure of infectious diseases may have contributed in part to evolutionary selection of MBL mutant haplotypes.
Lear, Calli; Chen, Li; Yantosca, L. Michael; Scully, Corinne; Sarraju, Ashish; Sokolovska, Anna; Zariffard, M. Reza; Eisen, Damon P.; Mungall, Bruce A.; Kotton, Darrell N.; Omari, Amel; Huang, I-Chueh; Farzan, Michael; Takahashi, Kazue; Stuart, Lynda; Stahl, Gregory L.; Ezekowitz, Alan B.; Spear, Gregory T.; Olinger, Gene G.; Schmidt, Emmett V.; Michelow, Ian C.
2013-01-01
Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active infections. Our findings confirm our hypothesis that the pressure of infectious diseases may have contributed in part to evolutionary selection of MBL mutant haplotypes. PMID:23573288
Toremifene interacts with and destabilizes the Ebola virus glycoprotein.
Zhao, Yuguang; Ren, Jingshan; Harlos, Karl; Jones, Daniel M; Zeltina, Antra; Bowden, Thomas A; Padilla-Parra, Sergi; Fry, Elizabeth E; Stuart, David I
2016-07-07
Ebola viruses (EBOVs) are responsible for repeated outbreaks of fatal infections, including the recent deadly epidemic in West Africa. There are currently no approved therapeutic drugs or vaccines for the disease. EBOV has a membrane envelope decorated by trimers of a glycoprotein (GP, cleaved by furin to form GP1 and GP2 subunits), which is solely responsible for host cell attachment, endosomal entry and membrane fusion. GP is thus a primary target for the development of antiviral drugs. Here we report the first, to our knowledge, unliganded structure of EBOV GP, and high-resolution complexes of GP with the anticancer drug toremifene and the painkiller ibuprofen. The high-resolution apo structure gives a more complete and accurate picture of the molecule, and allows conformational changes introduced by antibody and receptor binding to be deciphered. Unexpectedly, both toremifene and ibuprofen bind in a cavity between the attachment (GP1) and fusion (GP2) subunits at the entrance to a large tunnel that links with equivalent tunnels from the other monomers of the trimer at the three-fold axis. Protein–drug interactions with both GP1 and GP2 are predominately hydrophobic. Residues lining the binding site are highly conserved among filoviruses except Marburg virus (MARV), suggesting that MARV may not bind these drugs. Thermal shift assays show up to a 14 °C decrease in the protein melting temperature after toremifene binding, while ibuprofen has only a marginal effect and is a less potent inhibitor. These results suggest that inhibitor binding destabilizes GP and triggers premature release of GP2, thereby preventing fusion between the viral and endosome membranes. Thus, these complex structures reveal the mechanism of inhibition and may guide the development of more powerful anti-EBOV drugs.
The Final (Oral Ebola) Vaccine Trial on Captive Chimpanzees?
Walsh, Peter D.; Kurup, Drishya; Hasselschwert, Dana L.; Wirblich, Christoph; Goetzmann, Jason E.; Schnell, Matthias J.
2017-01-01
Could new oral vaccine technologies protect endangered wildlife against a rising tide of infectious disease? We used captive chimpanzees to test oral delivery of a rabies virus (RABV) vectored vaccine against Ebola virus (EBOV), a major threat to wild chimpanzees and gorillas. EBOV GP and RABV GP-specific antibody titers increased exponentially during the trial, with rates of increase for six orally vaccinated chimpanzees very similar to four intramuscularly vaccinated controls. Chimpanzee sera also showed robust neutralizing activity against RABV and pseudo-typed EBOV. Vaccination did not induce serious health complications. Blood chemistry, hematologic, and body mass correlates of psychological stress suggested that, although sedation induced acute stress, experimental housing conditions did not induce traumatic levels of chronic stress. Acute behavioral and physiological responses to sedation were strongly correlated with immune responses to vaccination. These results suggest that oral vaccination holds great promise as a tool for the conservation of apes and other endangered tropical wildlife. They also imply that vaccine and drug trials on other captive species need to better account for the effects of stress on immune response. PMID:28277549
Gong, Xin; Qian, Hongwu; Zhou, Xinhui; Wu, Jianping; Wan, Tao; Cao, Pingping; Huang, Weiyun; Zhao, Xin; Wang, Xudong; Wang, Peiyi; Shi, Yi; Gao, George F; Zhou, Qiang; Yan, Nieng
2016-06-02
Niemann-Pick disease type C (NPC) is associated with mutations in NPC1 and NPC2, whose gene products are key players in the endosomal/lysosomal egress of low-density lipoprotein-derived cholesterol. NPC1 is also the intracellular receptor for Ebola virus (EBOV). Here, we present a 4.4 Å structure of full-length human NPC1 and a low-resolution reconstruction of NPC1 in complex with the cleaved glycoprotein (GPcl) of EBOV, both determined by single-particle electron cryomicroscopy. NPC1 contains 13 transmembrane segments (TMs) and three distinct lumenal domains A (also designated NTD), C, and I. TMs 2-13 exhibit a typical resistance-nodulation-cell division fold, among which TMs 3-7 constitute the sterol-sensing domain conserved in several proteins involved in cholesterol metabolism and signaling. A trimeric EBOV-GPcl binds to one NPC1 monomer through the domain C. Our structural and biochemical characterizations provide an important framework for mechanistic understanding of NPC1-mediated intracellular cholesterol trafficking and Ebola virus infection. Copyright © 2016 Elsevier Inc. All rights reserved.
Lee, Jinwoo; Nyenhuis, David A; Nelson, Elizabeth A; Cafiso, David S; White, Judith M; Tamm, Lukas K
2017-09-19
Ebolavirus (EBOV), an enveloped filamentous RNA virus causing severe hemorrhagic fever, enters cells by macropinocytosis and membrane fusion in a late endosomal compartment. Fusion is mediated by the EBOV envelope glycoprotein GP, which consists of subunits GP1 and GP2. GP1 binds to cellular receptors, including Niemann-Pick C1 (NPC1) protein, and GP2 is responsible for low pH-induced membrane fusion. Proteolytic cleavage and NPC1 binding at endosomal pH lead to conformational rearrangements of GP2 that include exposing the hydrophobic fusion loop (FL) for insertion into the cellular target membrane and forming a six-helix bundle structure. Although major portions of the GP2 structure have been solved in pre- and postfusion states and although current models place the transmembrane (TM) and FL domains of GP2 in close proximity at critical steps of membrane fusion, their structures in membrane environments, and especially interactions between them, have not yet been characterized. Here, we present the structure of the membrane proximal external region (MPER) connected to the TM domain: i.e., the missing parts of the EBOV GP2 structure. The structure, solved by solution NMR and EPR spectroscopy in membrane-mimetic environments, consists of a helix-turn-helix architecture that is independent of pH. Moreover, the MPER region is shown to interact in the membrane interface with the previously determined structure of the EBOV FL through several critical aromatic residues. Mutation of aromatic and neighboring residues in both binding partners decreases fusion and viral entry, highlighting the functional importance of the MPER/TM-FL interaction in EBOV entry and fusion.
2007-08-28
the family Filoviridae. The EBOV genus consists of four distinct species: Ivory Coast Ebola virus, Reston Ebola virus, Sudan Ebola virus, and Zaire...S, Liu CL, Belcher CE, Botstein D, Staudt LM, Brown PO, Relman DA: Stereotyped and specific gene expression programs in human innate immune responses
A nonreplicating subunit vaccine protects mice against lethal Ebola virus challenge
Phoolcharoen, Waranyoo; Dye, John M.; Kilbourne, Jacquelyn; Piensook, Khanrat; Pratt, William D.; Arntzen, Charles J.; Chen, Qiang; Mason, Hugh S.; Herbst-Kralovetz, Melissa M.
2011-01-01
Ebola hemorrhagic fever is an acute and often deadly disease caused by Ebola virus (EBOV). The possible intentional use of this virus against human populations has led to design of vaccines that could be incorporated into a national stockpile for biological threat reduction. We have evaluated the immunogenicity and efficacy of an EBOV vaccine candidate in which the viral surface glycoprotein is biomanufactured as a fusion to a monoclonal antibody that recognizes an epitope in glycoprotein, resulting in the production of Ebola immune complexes (EICs). Although antigen–antibody immune complexes are known to be efficiently processed and presented to immune effector cells, we found that codelivery of the EIC with Toll-like receptor agonists elicited a more robust antibody response in mice than did EIC alone. Among the compounds tested, polyinosinic:polycytidylic acid (PIC, a Toll-like receptor 3 agonist) was highly effective as an adjuvant agent. After vaccinating mice with EIC plus PIC, 80% of the animals were protected against a lethal challenge with live EBOV (30,000 LD50 of mouse adapted virus). Surviving animals showed a mixed Th1/Th2 response to the antigen, suggesting this may be important for protection. Survival after vaccination with EIC plus PIC was statistically equivalent to that achieved with an alternative viral vector vaccine candidate reported in the literature. Because nonreplicating subunit vaccines offer the possibility of formulation for cost-effective, long-term storage in biothreat reduction repositories, EIC is an attractive option for public health defense measures. PMID:22143779
Sarwar, Uzma N.; Sitar, Sandra; Ledgerwood, Julie E.
2010-01-01
Recent case reports of viral hemorrhagic fever in Europe and the United States have raised concerns about the possibility for increased importation of filoviruses to non-endemic areas. This emerging threat is concerning because of the increase in global air travel and the rise of tourism in central and eastern Africa and the greater dispersion of military troops to areas of infectious disease outbreaks. Marburg viruses (MARV) and Ebola viruses (EBOV) have been associated with outbreaks of severe hemorrhagic fever involving high mortality (25 – 90% case fatality rates). First recognized in 1967 and 1976 respectively, subtypes of MARV and EBOV are the only known viruses of the Filoviridae family, and are among the world’s most virulent pathogens. This article focuses on information relevant for health care practitioners in travel medicine to include, the epidemiology and clinical features of filovirus infection and efforts toward development of a filovirus vaccine. PMID:21208830
Conformational plasticity of the Ebola virus matrix protein.
Radzimanowski, Jens; Effantin, Gregory; Weissenhorn, Winfried
2014-11-01
Filoviruses are the causative agents of a severe and often fatal hemorrhagic fever with repeated outbreaks in Africa. They are negative sense single stranded enveloped viruses that can cross species barriers from its natural host bats to primates including humans. The small size of the genome poses limits to viral adaption, which may be partially overcome by conformational plasticity. Here we review the different conformational states of the Ebola virus (EBOV) matrix protein VP40 that range from monomers, to dimers, hexamers, and RNA-bound octamers. This conformational plasticity that is required for the viral life cycle poses a unique opportunity for development of VP40 specific drugs. Furthermore, we compare the structure to homologous matrix protein structures from Paramyxoviruses and Bornaviruses and we predict that they do not only share the fold but also the conformational flexibility of EBOV VP40. © 2014 The Protein Society.
Crystal Structure of the Marburg Virus VP35 Oligomerization Domain.
Bruhn, Jessica F; Kirchdoerfer, Robert N; Urata, Sarah M; Li, Sheng; Tickle, Ian J; Bricogne, Gérard; Saphire, Erica Ollmann
2017-01-15
Marburg virus (MARV) is a highly pathogenic filovirus that is classified in a genus distinct from that of Ebola virus (EBOV) (genera Marburgvirus and Ebolavirus, respectively). Both viruses produce a multifunctional protein termed VP35, which acts as a polymerase cofactor, a viral protein chaperone, and an antagonist of the innate immune response. VP35 contains a central oligomerization domain with a predicted coiled-coil motif. This domain has been shown to be essential for RNA polymerase function. Here we present crystal structures of the MARV VP35 oligomerization domain. These structures and accompanying biophysical characterization suggest that MARV VP35 is a trimer. In contrast, EBOV VP35 is likely a tetramer in solution. Differences in the oligomeric state of this protein may explain mechanistic differences in replication and immune evasion observed for MARV and EBOV. Marburg virus can cause severe disease, with up to 90% human lethality. Its genome is concise, only producing seven proteins. One of the proteins, VP35, is essential for replication of the viral genome and for evasion of host immune responses. VP35 oligomerizes (self-assembles) in order to function, yet the structure by which it assembles has not been visualized. Here we present two crystal structures of this oligomerization domain. In both structures, three copies of VP35 twist about each other to form a coiled coil. This trimeric assembly is in contrast to tetrameric predictions for VP35 of Ebola virus and to known structures of homologous proteins in the measles, mumps, and Nipah viruses. Distinct oligomeric states of the Marburg and Ebola virus VP35 proteins may explain differences between them in polymerase function and immune evasion. These findings may provide a more accurate understanding of the mechanisms governing VP35's functions and inform the design of therapeutics. Copyright © 2017 American Society for Microbiology.
Mulangu, Sabue; Alfonso, Vivian H; Hoff, Nicole A; Doshi, Reena H; Mulembakani, Prime; Kisalu, Neville K; Okitolonda-Wemakoy, Emile; Kebela, Benoit Ilunga; Marcus, Hadar; Shiloach, Joseph; Phue, Je-Nie; Wright, Linda L; Muyembe-Tamfum, Jean-Jacques; Sullivan, Nancy J; Rimoin, Anne W
2018-01-30
Previous studies suggest that cases of Ebola virus disease (EVD) may go unreported because they are asymptomatic or unrecognized, but evidence is limited by study designs and sample size. A large population-based survey was conducted (n = 3415) to assess animal exposures and behaviors associated with Ebolavirus antibody prevalence in rural Kasai Oriental province of the Democratic Republic of Congo (DRC). Fourteen villages were randomly selected and all healthy individuals ≥1 year of age were eligible. Overall, 11% of subjects tested positive for Zaire Ebolavirus (EBOV) immunoglobulin G antibodies. Odds of seropositivity were higher for study participants older than 15 years of age and for males. Those residing in Kole (closer to the outbreak site) tested positive at a rate 1.6× higher than Lomela, with seropositivity peaking at a site located between Kole and Lomela. Multivariate analyses of behaviors and animal exposures showed that visits to the forest or hunting and exposure to rodents or duikers predicted a higher likelihood of EBOV seropositivity. These results provide serologic evidence of Ebolavirus exposure in a population residing in non-EBOV outbreak locations in the DRC and define statistically significant activities and animal exposures that associate with EBOV seropositivity. © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America.
Laboratory diagnosis of Ebola hemorrhagic fever during an outbreak in Yambio, Sudan, 2004.
Onyango, Clayton O; Opoka, Martin L; Ksiazek, Thomas G; Formenty, Pierre; Ahmed, Abdullahi; Tukei, Peter M; Sang, Rosemary C; Ofula, Victor O; Konongoi, Samson L; Coldren, Rodney L; Grein, Thomas; Legros, Dominique; Bell, Mike; De Cock, Kevin M; Bellini, William J; Towner, Jonathan S; Nichol, Stuart T; Rollin, Pierre E
2007-11-15
Between the months of April and June 2004, an Ebola hemorrhagic fever (EHF) outbreak was reported in Yambio county, southern Sudan. Blood samples were collected from a total of 36 patients with suspected EHF and were tested by enzyme-linked immunosorbent assay (ELISA) for immunoglobulin G and M antibodies, antigen ELISA, and reverse-transcription polymerase chain reaction (PCR) of a segment of the Ebolavirus (EBOV) polymerase gene. A total of 13 patients were confirmed to be infected with EBOV. In addition, 4 fatal cases were classified as probable cases, because no samples were collected. Another 12 patients were confirmed to have acute measles infection during the same period that EBOV was circulating. Genetic analysis of PCR-positive samples indicated that the virus was similar to but distinct from Sudan EBOV Maleo 1979. In response, case management, social mobilization, and follow-up of contacts were set up as means of surveillance. The outbreak was declared to be over on 7 August 2004.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Gai; Nash, Peter J.; Johnson, Britney
The 2014 Ebola outbreak in West Africa, the largest outbreak on record, highlighted the need for novel approaches to therapeutics targeting Ebola virus (EBOV). Within the EBOV replication complex, the interaction between polymerase cofactor, viral protein 35 (VP35), and nucleoprotein (NP) is critical for viral RNA synthesis. We recently identified a peptide at the N-terminus of VP35 (termed NPBP) that is sufficient for interaction with NP and suppresses EBOV replication, suggesting that the NPBP binding pocket can serve as a potential drug target. Here we describe the development and validation of a sensitive high-throughput screen (HTS) using a fluorescence polarizationmore » assay. Initial hits from this HTS include the FDA-approved compound tolcapone, whose potency against EBOV infection was validated in a nonfluorescent secondary assay. High conservation of the NP–VP35 interface among filoviruses suggests that this assay has the capacity to identify pan-filoviral inhibitors for development as antivirals.« less
Wang, Qin; Zhou, Wei-Min; Zhang, Yong; Wang, Huan-Yu; Du, Hai-Jun; Nie, Kai; Song, Jing-Dong; Xiao, Kang; Lei, Wen-Wen; Guo, Jian-Qiang; Wei, He-Jiang; Cai, Kun; Wang, Yan-Hai; Wu, Jiang; Kamara, Gerard; Kamara, Idrissa; Wei, Qiang; Liang, Mi-Fang; Wu, Gui-Zhen; Dong, Xiao-Ping
2016-06-23
The outbreak of Ebola virus disease (EVD) in West Africa between 2014 and 2015 was the largest EDV epidemic since the identification of Ebola virus (EBOV) in 1976, and the countries most strongly affected were Sierra Leone, Guinea, and Liberia. The Sierra Leone-China Friendship Biological Safety Laboratory (SLE-CHN Biosafety Lab), a fixed Biosafety Level 3 laboratory in the capital city of Sierra Leone, was established by the Chinese government and has been active in EBOV detection since 11 March 2015. Complete management and program documents were created for the SLE-CHN Biosafety Lab, and it was divided into four zones (the green, yellow, brown, and red zones) based on the risk assessment. Different types of safe and appropriate personnel protection equipment (PPE) are used in different zones of the laboratory, and it fully meets the Biosafety Level 3 laboratory standards of the World Health Organization. Good preparedness, comprehensive risk assessment and operation documents, appropriate PPE, effective monitoring and intensive training, together with well-designed and reasonable laboratory sectioning are essential for guaranteeing biosafety.
Advanced Development of Antiviral Prophylactics and Therapeutics (ADAPT) - Research Area 10
2014-11-17
various Prosetta compounds against Rift Valley Fever Virus (RVFV), Lassa virus (LASV) and Marburg virus (MARV), respectively. Activity is demonstrated as...USAMRIID for in vitro efficacy testing against various hemorrhagic fever viruses, including Ebola (EBOV), Marburg (MARV), Lassa (LASV), Rift Valley...unless so designated by other documentation. 14. ABSTRACT The pmpose of the proposed work is to continue the promising anti-hemonhagic fever vims (HFV
Hensley, Lisa E; Young, Howard A; Jahrling, Peter B; Geisbert, Thomas W
2002-03-01
Ebola virus (EBOV) infections are characterized by dysregulation of normal host immune responses. Insight into the mechanism came from recent studies in nonhuman primates, which showed that EBOV infects cells of the mononuclear phagocyte system (MPS), resulting in apoptosis of bystander lymphocytes. In this study, we evaluated serum levels of cytokines/chemokines in EBOV-infected nonhuman primates, as possible correlates of this bystander apoptosis. Increased levels of interferon (IFN)-alpha, IFN-beta, interleukin (IL)-6, IL-18, MIP-1alpha, and MIP-1beta were observed in all EBOV-infected monkeys, indicating the occurrence of a strong proinflammatory response. To investigate the mechanism(s) involved in lymphoid apoptosis, soluble Fas (sFas) and nitrate accumulation were measured. sFas was detected in 4/9 animals, while, elevations of nitrate accumulation occurred in 3/3 animals. To further evaluate the potential role of these factors in the observed bystander apoptosis and intact animals, in vitro cultures were prepared of adherent human monocytes/macrophages (PHM), and monocytes differentiated into immature dendritic cells (DC). These cultures were infected with EBOV and analyzed for cytokine/chemokine induction and expression of apoptosis-related genes. In addition, the in vitro EBOV infection of peripheral blood mononuclear cells (PBMC) resulted in strong cytokine/chemokine induction, a marked increase in lactate dehydrogenase (LDH) activity, and an increase in the number of apoptotic lymphocytes examined by electron microscopy. Increased levels of sFAS were detected in PHM cultures, although, <10% of the cells were positive by immunohistochemistry. In contrast, >90% of EBOV-infected PHM were positive for tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) by immunohistochemistry, RNA analysis, and flow cytometry. Inactivated EBOV also effected increased TRAIL expression in PHM, suggesting that the TNF receptor superfamily may be involved in apoptosis of the host lymphoid cells, and that induction may occur independent of viral replication. In further studies with infected PHM, expression of MHC II was remarkably suppressed after 6 days, an additional correlate of immunological dysregulation. In conclusion, our findings suggest that infection of mononuclear phagocytes is critical, triggering a cascade of events involving cytokines/chemokines and oxygen free radicals. It is the consequence of these events rather than direct viral infection that results in much of the observed pathology. Identification of cytokine/chemokine, nitric oxide, and reactive oxygen species involvement in the observed filoviral pathogenesis may lend insight into the rational design of therapeutic countermeasures of filoviral pathogenesis.
Mirza, Muhammad Usman; Ikram, Nazia
2016-10-26
The Ebola virus (EBOV) has been recognised for nearly 40 years, with the most recent EBOV outbreak being in West Africa, where it created a humanitarian crisis. Mortalities reported up to 30 March 2016 totalled 11,307. However, up until now, EBOV drugs have been far from achieving regulatory (FDA) approval. It is therefore essential to identify parent compounds that have the potential to be developed into effective drugs. Studies on Ebola viral proteins have shown that some can elicit an immunological response in mice, and these are now considered essential components of a vaccine designed to protect against Ebola haemorrhagic fever. The current study focuses on chemoinformatic approaches to identify virtual hits against Ebola viral proteins (VP35 and VP40), including protein binding site prediction, drug-likeness, pharmacokinetic and pharmacodynamic properties, metabolic site prediction, and molecular docking. Retrospective validation was performed using a database of non-active compounds, and early enrichment of EBOV actives at different false positive rates was calculated. Homology modelling and subsequent superimposition of binding site residues on other strains of EBOV were carried out to check residual conformations, and hence to confirm the efficacy of potential compounds. As a mechanism for artefactual inhibition of proteins through non-specific compounds, virtual hits were assessed for their aggregator potential compared with previously reported aggregators. These systematic studies have indicated that a few compounds may be effective inhibitors of EBOV replication and therefore might have the potential to be developed as anti-EBOV drugs after subsequent testing and validation in experiments in vivo.
Antiviral effect of ranpirnase against Ebola virus.
Hodge, Thomas; Draper, Ken; Brasel, Trevor; Freiberg, Alexander; Squiquera, Luis; Sidransky, David; Sulley, Jamie; Taxman, Debra J
2016-08-01
The recent epidemic of Ebola has intensified the need for the development of novel antiviral therapeutics that prolong and improve survival against deadly viral diseases. We sought to determine whether ranpirnase, an endoribonuclease from Rana pipiens with a demonstrated human safety profile in phase III oncology trials, can reduce titers of Ebola virus (EBOV) in infected cells, protect mice against mouse-adapted EBOV challenge, and reduce virus levels in infected mice. Our results demonstrate that 0.50 μg/ml ranpirnase is potently effective at reducing EBOV Zaire Kikwit infection in cultured Vero E6 cells (Selectivity Index 47.8-70.2). In a prophylactic study, a single intravenous dose of 0.1 mg/kg ranpirnase protected 70% of mice from progressive infection. Additionally, in a post-exposure prophylactic study, 100% of female mice survived infection after intraperitoneal administration of 0.1 mg/kg ranpirnase for ten days beginning 1 h post challenge. Most of the male counterparts were sacrificed due to weight loss by Study Day 8 or 9; however, the Clinical Activity/Behavior scores of these mice remained low and no significant microscopic pathologies could be detected in the kidneys, livers or spleens. Furthermore, live virus could not be detected in the sera of ranpirnase-treated mice by Study Day 8 or in the kidneys, livers or spleens by Study Day 12, and viral RNA levels declined exponentially by Study Day 12. Because ranpirnase is exceptionally stable and has a long track record of safe intravenous administration to humans, this drug provides a promising new candidate for clinical consideration in the treatment of Ebola virus disease alone or in combination with other therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.
Dolnik, Olga; Volchkova, Valentina A; Escudero-Perez, Beatriz; Lawrence, Philip; Klenk, Hans-Dieter; Volchkov, Viktor E
2015-10-01
The surface glycoprotein (GP) is responsible for Ebola virus (EBOV) attachment and membrane fusion during virus entry. Surface expression of highly glycosylated GP causes marked cytotoxicity via masking of a wide range of cellular surface molecules, including integrins. Considerable amounts of surface GP are shed from virus-infected cells in a soluble truncated form by tumor necrosis factor α-converting enzyme. In this study, the role of GP shedding was investigated using a reverse genetics approach by comparing recombinant viruses possessing amino acid substitutions at the GP shedding site. Virus with an L635V substitution showed a substantial decrease in shedding, whereas a D637V substitution resulted in a striking increase in the release of shed GP. Variations in shedding efficacy correlated with observed differences in the amounts of shed GP in the medium, GP present in virus-infected cells, and GP present on virions. An increase in shedding appeared to be associated with a reduction in viral cytotoxicity, and, vice versa, the virus that shed less was more cytotoxic. An increase in shedding also resulted in a reduction in viral infectivity, whereas a decrease in shedding efficacy enhanced viral growth characteristics in vitro. Differences in shedding efficacy and, as a result, differences in the amount of mature GP available for incorporation into budding virions did not equate to differences in overall release of viral particles. Likewise, data suggest that the resulting differences in the amount of mature GP on the cell surface led to variations in the GP content of released particles and, as a consequence, in infectivity. In conclusion, fine-tuning of the levels of EBOV GP expressed at the surface of virus-infected cells via GP shedding plays an important role in EBOV replication by orchestrating the balance between optimal virion GP content and cytotoxicity caused by GP. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Rapid detection of EBOLA VP40 in microchip immunofiltration assay
NASA Astrophysics Data System (ADS)
Miethe, Peter; Gary, Dominik; Hlawatsch, Nadine; Gad, Anne-Marie
2015-05-01
In the spring of 2014, the Ebola virus (EBOV) strain Zaire caused a dramatic outbreak in several regions of West Africa. The RT-PCR and antigen capture diagnostic proved to be effective for detecting EBOV in blood and serum. In this paper, we present data of a rapid antigen capture test for the detection of VP40. The test was performed in a microfluidic chip for immunofiltration analysis. The chip integrates all necessary assay components. The analytical sensitivity of the rapid test was 8 ng/ml for recombinant VP40. In serum and whole blood samples spiked with virus culture material, the detection limit was 2.2 x 102 PFU/ml. The performance data of the rapid test (15 min) are comparable to that of the VP40 laboratory ELISA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Toni M.; Edwards, Megan R.; Diederichs, Audrey
ABSTRACT Zaire ebolavirus(EBOV),Bundibugyo ebolavirus(BDBV), andReston ebolavirus(RESTV) belong to the same genus but exhibit different virulence properties. VP24 protein, a structural protein present in all family members, blocks interferon (IFN) signaling and likely contributes to virulence. Inhibition of IFN signaling by EBOV VP24 (eVP24) involves its interaction with the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear transporters. Here, we evaluated eVP24, BDBV VP24 (bVP24), and RESTV VP24 (rVP24) interactions with three NPI-1 subfamily KPNAs (KPNA1, KPNA5, and KPNA6). Using purified proteins, we demonstrated that each VP24 binds to each of the three NPI-1 KPNAs. bVP24, however, exhibited approximately 10-fold-lower KPNA bindingmore » affinity than either eVP24 or rVP24. Cell-based assays also indicate that bVP24 exhibits decreased KPNA interaction, decreased suppression of IFN induced gene expression, and a decreased half-life in transfected cells compared to eVP24 or rVP24. Amino acid sequence alignments between bVP24 and eVP24 also identified residues within and surrounding the previously defined eVP24-KPNA5 binding interface that decrease eVP24-KPNA affinity or bVP24-KPNA affinity. VP24 mutations that lead to reduced KPNA binding affinity also decrease IFN inhibition and shorten VP24 half-lives. These data identify novel functional differences in VP24-KPNA interaction and reveal a novel impact of the VP24-KPNA interaction on VP24 stability. IMPORTANCEThe interaction of Ebola virus (EBOV) VP24 protein with host karyopherin alpha (KPNA) proteins blocks type I interferon (IFN) signaling, which is a central component of the host innate immune response to viral infection. Here, we quantitatively compared the interactions of VP24 proteins from EBOV and two members of theEbolavirusgenus, Bundibugyo virus (BDBV) and Reston virus (RESTV). The data reveal lower binding affinity of the BDBV VP24 (bVP24) for KPNAs and demonstrate that the interaction with KPNA modulates inhibition of IFN signaling and VP24 stability. The effect of KPNA interaction on VP24 stability is a novel functional consequence of this virus-host interaction, and the differences identified between viral species may contribute to differences in pathogenesis.« less
Schwarz, Toni M; Edwards, Megan R; Diederichs, Audrey; Alinger, Joshua B; Leung, Daisy W; Amarasinghe, Gaya K; Basler, Christopher F
2017-02-15
Zaire ebolavirus (EBOV), Bundibugyo ebolavirus (BDBV), and Reston ebolavirus (RESTV) belong to the same genus but exhibit different virulence properties. VP24 protein, a structural protein present in all family members, blocks interferon (IFN) signaling and likely contributes to virulence. Inhibition of IFN signaling by EBOV VP24 (eVP24) involves its interaction with the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear transporters. Here, we evaluated eVP24, BDBV VP24 (bVP24), and RESTV VP24 (rVP24) interactions with three NPI-1 subfamily KPNAs (KPNA1, KPNA5, and KPNA6). Using purified proteins, we demonstrated that each VP24 binds to each of the three NPI-1 KPNAs. bVP24, however, exhibited approximately 10-fold-lower KPNA binding affinity than either eVP24 or rVP24. Cell-based assays also indicate that bVP24 exhibits decreased KPNA interaction, decreased suppression of IFN induced gene expression, and a decreased half-life in transfected cells compared to eVP24 or rVP24. Amino acid sequence alignments between bVP24 and eVP24 also identified residues within and surrounding the previously defined eVP24-KPNA5 binding interface that decrease eVP24-KPNA affinity or bVP24-KPNA affinity. VP24 mutations that lead to reduced KPNA binding affinity also decrease IFN inhibition and shorten VP24 half-lives. These data identify novel functional differences in VP24-KPNA interaction and reveal a novel impact of the VP24-KPNA interaction on VP24 stability. The interaction of Ebola virus (EBOV) VP24 protein with host karyopherin alpha (KPNA) proteins blocks type I interferon (IFN) signaling, which is a central component of the host innate immune response to viral infection. Here, we quantitatively compared the interactions of VP24 proteins from EBOV and two members of the Ebolavirus genus, Bundibugyo virus (BDBV) and Reston virus (RESTV). The data reveal lower binding affinity of the BDBV VP24 (bVP24) for KPNAs and demonstrate that the interaction with KPNA modulates inhibition of IFN signaling and VP24 stability. The effect of KPNA interaction on VP24 stability is a novel functional consequence of this virus-host interaction, and the differences identified between viral species may contribute to differences in pathogenesis. Copyright © 2017 American Society for Microbiology.
Reidentification of Ebola Virus E718 and ME as Ebola Virus/H.sapiens-tc/COD/1976/Yambuku-Ecran.
Kuhn, Jens H; Lofts, Loreen L; Kugelman, Jeffrey R; Smither, Sophie J; Lever, Mark S; van der Groen, Guido; Johnson, Karl M; Radoshitzky, Sheli R; Bavari, Sina; Jahrling, Peter B; Towner, Jonathan S; Nichol, Stuart T; Palacios, Gustavo
2014-11-20
Ebola virus (EBOV) was discovered in 1976 around Yambuku, Zaire. A lack of nomenclature standards resulted in a variety of designations for each isolate, leading to confusion in the literature and databases. We sequenced the genome of isolate E718/ME/Ecran and unified the various designations under Ebola virus/H.sapiens-tc/COD/1976/Yambuku-Ecran. Copyright © 2014 Kuhn et al.
Ebola Virus Disease Candidate Vaccines Under Evaluation in Clinical Trials
2016-06-02
studies in HPIV-3-immune guinea pigs with EBOV GP1,2-expressing HPIV-3 have suggested that while pre-existing immunity to the vector suppressed... guinea pigs and nonhuman primates against infection with multiple Marburg viruses. Expert Rev Vaccines, 7(4), 417-429 (2008). 98. Warfield KL...Swenson DL, Negley DL et al. Marburg virus-like particles protect guinea pigs from lethal Marburg virus infection. Vaccine, 22(25-26), 3495-3502 (2004
Chiramel, Abhilash I; Dougherty, Jonathan D; Nair, Vinod; Robertson, Shelly J; Best, Sonja M
2016-10-15
Selective autophagy of the endoplasmic reticulum (termed ER-phagy) is controlled by members of the FAM134 reticulon protein family. Here we used mouse embryonic fibroblasts from mice deficient in FAM134B to examine the role of the ER in replication of historic (Mayinga) or contemporary (Makona GCO7) strains of Ebola virus (EBOV). Loss of FAM134B resulted in 1-2 log 10 higher production of infectious EBOV, which was associated with increased production of viral proteins GP and VP40 and greater accumulation of nucleocaspid lattices. In addition, only 10% of wild-type cells contained detectable nucleoprotein, whereas knockout of FAM134B resulted in 80% of cells positive for nucleoprotein. Together, these data suggest that FAM134B-dependent ER-phagy is an important limiting event in EBOV replication in mouse cells and may have implications for further development of antiviral therapeutics and murine models of infection. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Comprehensive functional analysis of N-linked glycans on Ebola virus GP1.
Lennemann, Nicholas J; Rhein, Bethany A; Ndungo, Esther; Chandran, Kartik; Qiu, Xiangguo; Maury, Wendy
2014-01-28
Ebola virus (EBOV) entry requires the virion surface-associated glycoprotein (GP) that is composed of a trimer of heterodimers (GP1/GP2). The GP1 subunit contains two heavily glycosylated domains, the glycan cap and the mucin-like domain (MLD). The glycan cap contains only N-linked glycans, whereas the MLD contains both N- and O-linked glycans. Site-directed mutagenesis was performed on EBOV GP1 to systematically disrupt N-linked glycan sites to gain an understanding of their role in GP structure and function. All 15 N-glycosylation sites of EBOV GP1 could be removed without compromising the expression of GP. The loss of these 15 glycosylation sites significantly enhanced pseudovirion transduction in Vero cells, which correlated with an increase in protease sensitivity. Interestingly, exposing the receptor-binding domain (RBD) by removing the glycan shield did not allow interaction with the endosomal receptor, NPC1, indicating that the glycan cap/MLD domains mask RBD residues required for binding. The effects of the loss of GP1 N-linked glycans on Ca(2+)-dependent (C-type) lectin (CLEC)-dependent transduction were complex, and the effect was unique for each of the CLECs tested. Surprisingly, EBOV entry into murine peritoneal macrophages was independent of GP1 N-glycans, suggesting that CLEC-GP1 N-glycan interactions are not required for entry into this important primary cell. Finally, the removal of all GP1 N-glycans outside the MLD enhanced antiserum and antibody sensitivity. In total, our results provide evidence that the conserved N-linked glycans on the EBOV GP1 core protect GP from antibody neutralization despite the negative impact the glycans have on viral entry efficiency. Filovirus outbreaks occur sporadically throughout central Africa, causing high fatality rates among the general public and health care workers. These unpredictable hemorrhagic fever outbreaks are caused by multiple species of Ebola viruses, as well as Marburg virus. While filovirus vaccines and therapeutics are being developed, there are no licensed products. The sole viral envelope glycoprotein, which is a principal immunogenic target, contains a heavy shield of glycans surrounding the conserved receptor-binding domain. We find that disruption of this shield through targeted mutagenesis leads to an increase in cell entry, protease sensitivity, and antiserum/antibody sensitivity but is not sufficient to allow virion binding to the intracellular receptor NPC1. Therefore, our studies provide evidence that filoviruses maintain glycoprotein glycosylation to protect against proteases and antibody neutralization at the expense of efficient entry. Our results unveil interesting insights into the unique entry process of filoviruses and potential immune evasion tactics of the virus.
The multiple roles of sGP in Ebola pathogenesis.
de La Vega, Marc-Antoine; Wong, Gary; Kobinger, Gary P; Qiu, Xiangguo
2015-02-01
Ebola causes severe hemorrhagic fever in humans and nonhuman primates, and there are currently no approved therapeutic countermeasures. The virulence of Ebola virus (EBOV) may be partially attributed to the secreted glycoprotein (sGP), which is the main product transcribed from its GP gene. sGP is secreted from infected cells and can be readily detected in the serum of EBOV-infected hosts. This review summarizes the multiple roles that sGP may play during infection and highlights the implications for the future design of vaccines and treatments.
The Multiple Roles of sGP in Ebola Pathogenesis
de La Vega, Marc-Antoine; Wong, Gary; Kobinger, Gary P.
2015-01-01
Abstract Ebola causes severe hemorrhagic fever in humans and nonhuman primates, and there are currently no approved therapeutic countermeasures. The virulence of Ebola virus (EBOV) may be partially attributed to the secreted glycoprotein (sGP), which is the main product transcribed from its GP gene. sGP is secreted from infected cells and can be readily detected in the serum of EBOV-infected hosts. This review summarizes the multiple roles that sGP may play during infection and highlights the implications for the future design of vaccines and treatments. PMID:25354393
Lappala, Anna; Nishima, Wataru; Miner, Jacob; Fenimore, Paul; Fischer, Will; Hraber, Peter; Zhang, Ming; McMahon, Benjamin; Tung, Chang-Shung
2018-05-10
Membrane fusion proteins are responsible for viral entry into host cells—a crucial first step in viral infection. These proteins undergo large conformational changes from pre-fusion to fusion-initiation structures, and, despite differences in viral genomes and disease etiology, many fusion proteins are arranged as trimers. Structural information for both pre-fusion and fusion-initiation states is critical for understanding virus neutralization by the host immune system. In the case of Ebola virus glycoprotein (EBOV GP) and Zika virus envelope protein (ZIKV E), pre-fusion state structures have been identified experimentally, but only partial structures of fusion-initiation states have been described. While the fusion-initiation structure is in an energetically unfavorable state that is difficult to solve experimentally, the existing structural information combined with computational approaches enabled the modeling of fusion-initiation state structures of both proteins. These structural models provide an improved understanding of four different neutralizing antibodies in the prevention of viral host entry.
Whitmer, Shannon L M; Albariño, César; Shepard, Samuel S; Dudas, Gytis; Sheth, Mili; Brown, Shelley C; Cannon, Deborah; Erickson, Bobbie R; Gibbons, Aridth; Schuh, Amy; Sealy, Tara; Ervin, Elizabeth; Frace, Mike; Uyeki, Timothy M; Nichol, Stuart T; Ströher, Ute
2016-10-15
Several patients with Ebola virus disease (EVD) managed in the United States have received ZMapp monoclonal antibodies, TKM-Ebola small interfering RNA, brincidofovir, and/or convalescent plasma as investigational therapeutics. To investigate whether treatment selected for Ebola virus (EBOV) mutations conferring resistance, viral sequencing was performed on RNA extracted from clinical blood specimens from patients with EVD following treatment, and putative viral targets were analyzed. We observed no major or minor EBOV mutations within regions targeted by therapeutics. This small subset of patients and clinical specimens suggests that evolution of resistance is not a direct consequence of antiviral treatment. As EVD antiviral treatments are introduced into wider use, it is essential that continuous viral full-genome surveillance is performed, to monitor for the emergence of escape mutations. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Guito, Jonathan C; Albariño, César G; Chakrabarti, Ayan K; Towner, Jonathan S
2017-01-15
Filoviruses are highly lethal in humans and nonhuman primates, likely due to potent antagonism of host interferon (IFN) responses early in infection. Filoviral protein VP35 is implicated as the major IFN induction antagonist, while Ebola virus (EBOV) VP24 or Marburg virus (MARV) VP40 are known to block downstream IFN signaling. Despite progress elucidating EBOV and MARV antagonist function, those for most other filoviruses, including Reston (RESTV), Sudan (SUDV), Taï Forest (TAFV), Bundibugyo (BDBV) and Ravn (RAVV) viruses, remain largely neglected. Thus, using standardized vectors and reporter assays, we characterized activities by each IFN antagonist from all known ebolavirus and marburgvirus species side-by-side. We uncover noncanonical suppression of IFN induction by ebolavirus VP24, differing potencies by MARV and RAVV proteins, and intriguingly, weaker antagonism by VP24 of RESTV. These underlying molecular explanations for differential virulence in humans could guide future investigations of more-neglected filoviruses as well as treatment and vaccine studies. Published by Elsevier Inc.
Ebola: translational science considerations.
Chiappelli, Francesco; Bakhordarian, Andre; Thames, April D; Du, Angela M; Jan, Allison L; Nahcivan, Melissa; Nguyen, Mia T; Sama, Nateli; Manfrini, Ercolano; Piva, Francesco; Rocha, Rafael Malagoli; Maida, Carl A
2015-01-16
We are currently in the midst of the most aggressive and fulminating outbreak of Ebola-related disease, commonly referred to as "Ebola", ever recorded. In less than a year, the Ebola virus (EBOV, Zaire ebolavirus species) has infected over 10,000 people, indiscriminately of gender or age, with a fatality rate of about 50%. Whereas at its onset this Ebola outbreak was limited to three countries in West Africa (Guinea, where it was first reported in late March 2014, Liberia, where it has been most rampant in its capital city, Monrovia and other metropolitan cities, and Sierra Leone), cases were later reported in Nigeria, Mali and Senegal, as well as in Western Europe (i.e., Madrid, Spain) and the US (i.e., Dallas, Texas; New York City) by late October 2014. World and US health agencies declared that the current Ebola virus disease (EVD) outbreak has a strong likelihood of growing exponentially across the world before an effective vaccine, treatment or cure can be developed, tested, validated and distributed widely. In the meantime, the spread of the disease may rapidly evolve from an epidemics to a full-blown pandemic. The scientific and healthcare communities actively research and define an emerging kaleidoscope of knowledge about critical translational research parameters, including the virology of EBOV, the molecular biomarkers of the pathological manifestations of EVD, putative central nervous system involvement in EVD, and the cellular immune surveillance to EBOV, patient-centered anthropological and societal parameters of EVD, as well as translational effectiveness about novel putative patient-targeted vaccine and pharmaceutical interventions, which hold strong promise, if not hope, to curb this and future Ebola outbreaks. This work reviews and discusses the principal known facts about EBOV and EVD, and certain among the most interesting ongoing or future avenues of research in the field, including vaccination programs for the wild animal vectors of the virus and the disease from global translational science perspective.
Kuhn, Jens H.; Bao, Yiming; Bavari, Sina; Becker, Stephan; Bradfute, Steven; Brister, J. Rodney; Bukreyev, Alexander A.; Caì, Yíngyún; Chandran, Kartik; Davey, Robert A.; Dolnik, Olga; Dye, John M.; Enterlein, Sven; Gonzalez, Jean-Paul; Formenty, Pierre; Freiberg, Alexander N.; Hensley, Lisa E.; Honko, Anna N.; Ignatyev, Georgy M.; Jahrling, Peter B.; Johnson, Karl M.; Klenk, Hans-Dieter; Kobinger, Gary; Lackemeyer, Matthew G.; Leroy, Eric M.; Lever, Mark S.; Lofts, Loreen L.; Mühlberger, Elke; Netesov, Sergey V.; Olinger, Gene G.; Palacios, Gustavo; Patterson, Jean L.; Paweska, Janusz T.; Pitt, Louise; Radoshitzky, Sheli R.; Ryabchikova, Elena I.; Saphire, Erica Ollmann; Shestopalov, Aleksandr M.; Smither, Sophie J.; Sullivan, Nancy J.; Swanepoel, Robert; Takada, Ayato; Towner, Jonathan S.; van der Groen, Guido; Volchkov, Viktor E.; Wahl-Jensen, Victoria; Warren, Travis K.; Warfield, Kelly L.; Weidmann, Manfred; Nichol, Stuart T.
2013-01-01
The International Committee on Taxonomy of Viruses (ICTV) organizes the classification of viruses into taxa, but is not responsible for the nomenclature for taxa members. International experts groups, such as the ICTV Study Groups, recommend the classification and naming of viruses and their strains, variants, and isolates. The ICTV Filoviridae Study Group has recently introduced an updated classification and nomenclature for filoviruses. Subsequently, and together with numerous other filovirus experts, a consistent nomenclature for their natural genetic variants and isolates was developed that aims at simplifying the retrieval of sequence data from electronic databases. This is a first important step toward a viral genome annotation standard as sought by the US National Center for Biotechnology Information (NCBI). Here, this work is extended to include filoviruses obtained in the laboratory by artificial selection through passage in laboratory hosts. The previously developed template for natural filovirus genetic variant naming (
Backs against the Wall: Novel and Existing Strategies Used during the 2014-2015 Ebola Virus Outbreak
Wong, Gary
2015-01-01
SUMMARY The 2014-2015 outbreak of Ebola virus (EBOV), originating from Guinea, is now responsible for the infection of >20,000 people in 9 countries. Whereas past filovirus outbreaks in sub-Saharan Africa have been rapidly brought under control with comparably few cases, this outbreak has been particularly resistant to containment efforts. Both the general population and primary health care workers have been affected by this outbreak, with hundreds of doctors and nurses being infected in the line of duty. In the absence of approved therapeutics, several caregivers have turned to investigational new drugs as well as experimental therapies in an effort to save lives. This review aims to summarize the candidates currently under consideration for postexposure use in infected patients during the largest EBOV outbreak in history. PMID:25972518
Immune Memory to Sudan Virus: Comparison between Two Separate Disease Outbreaks
Sobarzo, Ariel; Eskira, Yael; Herbert, Andrew S.; Kuehne, Ana I.; Stonier, Spencer W.; Ochayon, David E.; Fedida-Metula, Shlomit; Balinandi, Steven; Kislev, Yaara; Tali, Neta; Lewis, Eli C.; Lutwama, Julius Julian; Dye, John M.; Yavelsky, Victoria; Lobel, Leslie
2015-01-01
Recovery from ebolavirus infection in humans is associated with the development of both cell-mediated and humoral immune responses. According to recent studies, individuals that did not survive infection with ebolaviruses appear to have lacked a robust adaptive immune response and the expression of several early innate response markers. However, a comprehensive protective immune profile has yet to be described. Here, we examine cellular memory immune responses among survivors of two separate Ebolavirus outbreaks (EVDs) due to Sudan virus (SUDV) infection in Uganda—Gulu 2000–2001 and Kibaale 2012. Freshly collected blood samples were stimulated with inactivated SUDV, as well as with recombinant SUDV or Ebola virus (EBOV) GP (GP1–649). In addition, ELISA and plaque reduction neutralization assays were performed to determine anti-SUDV IgG titers and neutralization capacity. Cytokine expression was measured in whole blood cultures in response to SUDV and SUDV GP stimulation in both survivor pools, demonstrating recall responses that indicate immune memory. Cytokine responses between groups were similar but had distinct differences. Neutralizing, SUDV-specific IgG activity against irradiated SUDV and SUDV recombinant proteins were detected in both survivor cohorts. Furthermore, humoral and cell-mediated crossreactivity to EBOV and EBOV recombinant GP1–649 was observed in both cohorts. In conclusion, immune responses in both groups of survivors demonstrate persistent recognition of relevant antigens, albeit larger cohorts are required in order to reach greater statistical significance. The differing cytokine responses between Gulu and Kibaale outbreak survivors suggests that each outbreak may not yield identical memory responses and promotes the merits of studying the immune responses among outbreaks of the same virus. Finally, our demonstration of cross-reactive immune recognition suggests that there is potential for developing cross-protective vaccines for ebolaviruses. PMID:25569078
Immune memory to Sudan virus: comparison between two separate disease outbreaks.
Sobarzo, Ariel; Eskira, Yael; Herbert, Andrew S; Kuehne, Ana I; Stonier, Spencer W; Ochayon, David E; Fedida-Metula, Shlomit; Balinandi, Steven; Kislev, Yaara; Tali, Neta; Lewis, Eli C; Lutwama, Julius Julian; Dye, John M; Yavelsky, Victoria; Lobel, Leslie
2015-01-06
Recovery from ebolavirus infection in humans is associated with the development of both cell-mediated and humoral immune responses. According to recent studies, individuals that did not survive infection with ebolaviruses appear to have lacked a robust adaptive immune response and the expression of several early innate response markers. However, a comprehensive protective immune profile has yet to be described. Here, we examine cellular memory immune responses among survivors of two separate Ebolavirus outbreaks (EVDs) due to Sudan virus (SUDV) infection in Uganda-Gulu 2000-2001 and Kibaale 2012. Freshly collected blood samples were stimulated with inactivated SUDV, as well as with recombinant SUDV or Ebola virus (EBOV) GP (GP1-649). In addition, ELISA and plaque reduction neutralization assays were performed to determine anti-SUDV IgG titers and neutralization capacity. Cytokine expression was measured in whole blood cultures in response to SUDV and SUDV GP stimulation in both survivor pools, demonstrating recall responses that indicate immune memory. Cytokine responses between groups were similar but had distinct differences. Neutralizing, SUDV-specific IgG activity against irradiated SUDV and SUDV recombinant proteins were detected in both survivor cohorts. Furthermore, humoral and cell-mediated crossreactivity to EBOV and EBOV recombinant GP1-649 was observed in both cohorts. In conclusion, immune responses in both groups of survivors demonstrate persistent recognition of relevant antigens, albeit larger cohorts are required in order to reach greater statistical significance. The differing cytokine responses between Gulu and Kibaale outbreak survivors suggests that each outbreak may not yield identical memory responses and promotes the merits of studying the immune responses among outbreaks of the same virus. Finally, our demonstration of cross-reactive immune recognition suggests that there is potential for developing cross-protective vaccines for ebolaviruses.
Anti-Ebola therapies based on monoclonal antibodies: current state and challenges ahead.
González-González, Everardo; Alvarez, Mario Moisés; Márquez-Ipiña, Alan Roberto; Trujillo-de Santiago, Grissel; Rodríguez-Martínez, Luis Mario; Annabi, Nasim; Khademhosseini, Ali
2017-02-01
The 2014 Ebola outbreak, the largest recorded, took us largely unprepared, with no available vaccine or specific treatment. In this context, the World Health Organization declared that the humanitarian use of experimental therapies against Ebola Virus (EBOV) is ethical. In particular, an experimental treatment consisting of a cocktail of three monoclonal antibodies (mAbs) produced in tobacco plants and specifically directed to the EBOV glycoprotein (GP) was tested in humans, apparently with good results. Several mAbs with high affinity to the GP have been described. This review discusses our current knowledge on this topic. Particular emphasis is devoted to those mAbs that have been assayed in animal models or humans as possible therapies against Ebola. Engineering aspects and challenges for the production of anti-Ebola mAbs are also briefly discussed; current platforms for the design and production of full-length mAbs are cumbersome and costly.
Kozak, Robert; He, Shihua; Kroeker, Andrea; de La Vega, Marc-Antoine; Audet, Jonathan; Wong, Gary; Urfano, Chantel; Antonation, Kym; Embury-Hyatt, Carissa; Kobinger, Gary P; Qiu, Xiangguo
2016-10-15
Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is crucial to evaluating vaccines and therapies and potentially understanding transmission. To address this, we demonstrated that ferrets are susceptible models to BDBV infection as well as to Ebola virus infection and that no virus adaptation is required. Moreover, these animals develop a disease that is similar to that seen in humans and nonhuman primates. We believe that this will improve the ability to study BDBV and provide a platform to test vaccines and therapeutics. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Kozak, Robert; He, Shihua; Kroeker, Andrea; de La Vega, Marc-Antoine; Audet, Jonathan; Wong, Gary; Urfano, Chantel; Antonation, Kym; Embury-Hyatt, Carissa; Kobinger, Gary P.
2016-01-01
ABSTRACT Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales. To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. IMPORTANCE The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is crucial to evaluating vaccines and therapies and potentially understanding transmission. To address this, we demonstrated that ferrets are susceptible models to BDBV infection as well as to Ebola virus infection and that no virus adaptation is required. Moreover, these animals develop a disease that is similar to that seen in humans and nonhuman primates. We believe that this will improve the ability to study BDBV and provide a platform to test vaccines and therapeutics. PMID:27489269
Vaccines against 'the other' Ebolavirus species.
Kozak, Robert A; Kobinger, Gary P
2016-09-01
The Ebolavirus genus includes five member species, all of which pose a threat to global public health. These viruses cause fatal hemorrhagic fever in humans and nonhuman primates, and are considered category A pathogens due to the risk of their use as a bioweapon. The potential for an outbreak, either as a result of a natural emergence, deliberate release, or imported case underscores the need for protective vaccines. Recent progress in advancing vaccines for use against the strain of Zaire ebolavirus (EBOV) responsible for the West African Ebola outbreak offers reasons for optimism against EBOV, and demonstrates that protection against other Ebolavirus species is achievable.
Selective AAK1 and GAK Inhibitors for Combating Dengue and Other Emerging Viral Infections
2017-10-01
accomplishments. This year, USAMRIID has tested nine candidate inhibitors. Inhibitors were evaluated for their impact on in vitro viability prior to...evaluation of inhibitory capacity against Ebola virus (EBOV), Marburg virus (MARV) and/or chikungunya virus (CHIKV). For viability assessment, compounds...were applied to cells at a range of doses, and a commercially available kit was used to measure ATP content as a marker of viability . Only
Vesicular stomatitis virus-based vaccines protect nonhuman primates against Bundibugyo ebolavirus.
Mire, Chad E; Geisbert, Joan B; Marzi, Andrea; Agans, Krystle N; Feldmann, Heinz; Geisbert, Thomas W
2013-01-01
Ebola virus (EBOV) causes severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs). Currently, there are no licensed vaccines or therapeutics for human use. Recombinant vesicular stomatitis virus (rVSV)-based vaccine vectors, which encode an EBOV glycoprotein in place of the VSV glycoprotein, have shown 100% efficacy against homologous Sudan ebolavirus (SEBOV) or Zaire ebolavirus (ZEBOV) challenge in NHPs. In addition, a single injection of a blend of three rVSV vectors completely protected NHPs against challenge with SEBOV, ZEBOV, the former Côte d'Ivoire ebolavirus, and Marburg virus. However, recent studies suggest that complete protection against the newly discovered Bundibugyo ebolavirus (BEBOV) using several different heterologous filovirus vaccines is more difficult and presents a new challenge. As BEBOV caused nearly 50% mortality in a recent outbreak any filovirus vaccine advanced for human use must be able to protect against this new species. Here, we evaluated several different strategies against BEBOV using rVSV-based vaccines. Groups of cynomolgus macaques were vaccinated with a single injection of a homologous BEBOV vaccine, a single injection of a blended heterologous vaccine (SEBOV/ZEBOV), or a prime-boost using heterologous SEBOV and ZEBOV vectors. Animals were challenged with BEBOV 29-36 days after initial vaccination. Macaques vaccinated with the homologous BEBOV vaccine or the prime-boost showed no overt signs of illness and survived challenge. In contrast, animals vaccinated with the heterologous blended vaccine and unvaccinated control animals developed severe clinical symptoms consistent with BEBOV infection with 2 of 3 animals in each group succumbing. These data show that complete protection against BEBOV will likely require incorporation of BEBOV glycoprotein into the vaccine or employment of a prime-boost regimen. Fortunately, our results demonstrate that heterologous rVSV-based filovirus vaccine vectors employed in the prime-boost approach can provide protection against BEBOV using an abbreviated regimen, which may have utility in outbreak settings.
Mohamadzadeh, Mansour; Coberley, Sadie S; Olinger, Gene G; Kalina, Warren V; Ruthel, Gordon; Fuller, Claudette L; Swenson, Dana L; Pratt, William D; Kuhns, Douglas B; Schmaljohn, Alan L
2006-07-01
Marburg virus (MARV) and Ebola virus (EBOV), members of the viral family Filoviridae, cause fatal hemorrhagic fevers in humans and nonhuman primates. High viral burden is coincident with inadequate adaptive immune responses and robust inflammatory responses, and virus-mediated dysregulation of early host defenses has been proposed. Recently, a novel class of innate receptors called the triggering receptors expressed in myeloid cells (TREM) has been discovered and shown to play an important role in innate inflammatory responses and sepsis. Here, we report that MARV and EBOV activate TREM-1 on human neutrophils, resulting in DAP12 phosphorylation, TREM-1 shedding, mobilization of intracellular calcium, secretion of proinflammatory cytokines, and phenotypic changes. A peptide specific to TREM-1 diminished the release of tumor necrosis factor alpha by filovirus-activated human neutrophils in vitro, and a soluble recombinant TREM-1 competitively inhibited the loss of cell surface TREM-1 that otherwise occurred on neutrophils exposed to filoviruses. These data imply direct activation of TREM-1 by filoviruses and also indicate that neutrophils may play a prominent role in the immune and inflammatory responses to filovirus infections.
Unique human immune signature of Ebola virus disease in Guinea
Ruibal, Paula; Oestereich, Lisa; Lüdtke, Anja; Becker-Ziaja, Beate; Wozniak, David M.; Kerber, Romy; Korva, Miša; Cabeza-Cabrerizo, Mar; Bore, Joseph A.; Koundouno, Fara Raymond; Duraffour, Sophie; Weller, Romy; Thorenz, Anja; Cimini, Eleonora; Viola, Domenico; Agrati, Chiara; Repits, Johanna; Afrough, Babak; Cowley, Lauren A; Ngabo, Didier; Hinzmann, Julia; Mertens, Marc; Vitoriano, Inês; Logue, Christopher H.; Boettcher, Jan Peter; Pallasch, Elisa; Sachse, Andreas; Bah, Amadou; Nitzsche, Katja; Kuisma, Eeva; Michel, Janine; Holm, Tobias; Zekeng, Elsa-Gayle; García-Dorival, Isabel; Wölfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Strecker, Thomas; Di Caro, Antonino; Avšič-Županc, Tatjana; Kurth, Andreas; Meschi, Silvia; Mély, Stephane; Newman, Edmund; Bocquin, Anne; Kis, Zoltan; Kelterbaum, Anne; Molkenthin, Peter; Carletti, Fabrizio; Portmann, Jasmine; Wolff, Svenja; Castilletti, Concetta; Schudt, Gordian; Fizet, Alexandra; Ottowell, Lisa J.; Herker, Eva; Jacobs, Thomas; Kretschmer, Birte; Severi, Ettore; Ouedraogo, Nobila; Lago, Mar; Negredo, Anabel; Franco, Leticia; Anda, Pedro; Schmiedel, Stefan; Kreuels, Benno; Wichmann, Dominic; Addo, Marylyn M.; Lohse, Ansgar W.; De Clerck, Hilde; Nanclares, Carolina; Jonckheere, Sylvie; Van Herp, Michel; Sprecher, Armand; Xiaojiang, Gao; Carrington, Mary; Miranda, Osvaldo; Castro, Carlos M.; Gabriel, Martin; Drury, Patrick; Formenty, Pierre; Diallo, Boubacar; Koivogui, Lamine; Magassouba, N’Faly; Carroll, Miles W.; Günther, Stephan; Muñoz-Fontela, César
2016-01-01
Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD1. In particular, very little is known about human immune responses to Ebola virus (EBOV)2,3. Here, we have for the first time evaluated the physiology of the human T cell immune response in EVD patients at the time of admission at the Ebola Treatment Center (ETC) in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we have identified an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by high percentage of CD4 and CD8 T cells expressing the inhibitory molecules cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death-1 (PD-1), which was correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation despite comparable overall T cell activation. Concommittant with virus clearance, survivors mounted a robust EBOV-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology. PMID:27147028
Structural basis for Marburg virus VP35-mediated immune evasion mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanan, Parameshwaran; Edwards, Megan R.; Shabman, Reed S.
2013-07-22
Filoviruses, marburgvirus (MARV) and ebolavirus (EBOV), are causative agents of highly lethal hemorrhagic fever in humans. MARV and EBOV share a common genome organization but show important differences in replication complex formation, cell entry, host tropism, transcriptional regulation, and immune evasion. Multifunctional filoviral viral protein (VP) 35 proteins inhibit innate immune responses. Recent studies suggest double-stranded (ds)RNA sequestration is a potential mechanism that allows EBOV VP35 to antagonize retinoic-acid inducible gene-I (RIG-I) like receptors (RLRs) that are activated by viral pathogen–associated molecular patterns (PAMPs), such as double-strandedness and dsRNA blunt ends. Here, we show that MARV VP35 can inhibit IFNmore » production at multiple steps in the signaling pathways downstream of RLRs. The crystal structure of MARV VP35 IID in complex with 18-bp dsRNA reveals that despite the similar protein fold as EBOV VP35 IID, MARV VP35 IID interacts with the dsRNA backbone and not with blunt ends. Functional studies show that MARV VP35 can inhibit dsRNA-dependent RLR activation and interferon (IFN) regulatory factor 3 (IRF3) phosphorylation by IFN kinases TRAF family member-associated NFkb activator (TANK) binding kinase-1 (TBK-1) and IFN kB kinase e (IKKe) in cell-based studies. We also show that MARV VP35 can only inhibit RIG-I and melanoma differentiation associated gene 5 (MDA5) activation by double strandedness of RNA PAMPs (coating backbone) but is unable to inhibit activation of RLRs by dsRNA blunt ends (end capping). In contrast, EBOV VP35 can inhibit activation by both PAMPs. Insights on differential PAMP recognition and inhibition of IFN induction by a similar filoviral VP35 fold, as shown here, reveal the structural and functional plasticity of a highly conserved virulence factor.« less
Protected to death: systematic exclusion of pregnant women from Ebola virus disease trials.
Gomes, Melba F; de la Fuente-Núñez, Vânia; Saxena, Abha; Kuesel, Annette C
2017-12-14
For 30 years, women have sought equal opportunity to be included in trials so that drugs are equitably studied in women as well as men; regulatory guidelines have changed accordingly. Pregnant women, however, continue to be excluded from trials for non-obstetric conditions, though they have been included for trials of life-threatening diseases because prospects for maternal survival outweighed potential fetal risks. Ebola virus disease is a life-threatening infection without approved treatments or vaccines. Previous Ebola virus (EBOV) outbreak data showed 89-93% maternal and 100% fetal/neonatal mortality. Early in the 2013-2016 EBOV epidemic, an expert panel pointed to these high mortality rates and the need to prioritize and preferentially allocate unregistered interventions in favor of pregnant women (and children). Despite these recommendations and multiple ethics committee requests for their inclusion on grounds of justice, equity, and medical need, pregnant women were excluded from all drug and vaccine trials in the affected countries, either without justification or on grounds of potential fetal harm. An opportunity to offer pregnant women the same access to potentially life-saving interventions as others, and to obtain data to inform their future use, was lost. Once again, pregnant women were denied autonomy and their right to decide. We recommend that, without clear justification for exclusion, pregnant women are included in clinical trials for EBOV and other life-threatening conditions, with lay language on risks and benefits in information documents, so that pregnant women can make their own decision to participate. Their automatic exclusion from trials for other conditions should be questioned.
Huang, I-Chueh; Bailey, Charles C.; Weyer, Jessica L.; Radoshitzky, Sheli R.; Becker, Michelle M.; Chiang, Jessica J.; Brass, Abraham L.; Ahmed, Asim A.; Chi, Xiaoli; Dong, Lian; Longobardi, Lindsay E.; Boltz, Dutch; Kuhn, Jens H.; Elledge, Stephen J.; Bavari, Sina; Denison, Mark R.; Choe, Hyeryun; Farzan, Michael
2011-01-01
Interferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2, and 3) are recently identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV) hemagglutinin (HA) protein. Here we show that IFITM proteins restricted infection mediated by the entry glycoproteins (GP1,2) of Marburg and Ebola filoviruses (MARV, EBOV). Consistent with these observations, interferon-β specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV. We observed distinct patterns of IFITM-mediated restriction: compared with IAV, the entry processes of MARV and EBOV were less restricted by IFITM3, but more restricted by IFITM1. Moreover, murine Ifitm5 and 6 did not restrict IAV, but efficiently inhibited filovirus entry. We further demonstrate that replication of infectious SARS coronavirus (SARS-CoV) and entry mediated by the SARS-CoV spike (S) protein are restricted by IFITM proteins. The profile of IFITM-mediated restriction of SARS-CoV was more similar to that of filoviruses than to IAV. Trypsin treatment of receptor-associated SARS-CoV pseudovirions, which bypasses their dependence on lysosomal cathepsin L, also bypassed IFITM-mediated restriction. However, IFITM proteins did not reduce cellular cathepsin activity or limit access of virions to acidic intracellular compartments. Our data indicate that IFITM-mediated restriction is localized to a late stage in the endocytic pathway. They further show that IFITM proteins differentially restrict the entry of a broad range of enveloped viruses, and modulate cellular tropism independently of viral receptor expression. PMID:21253575
Nishimura, Hidekazu; Yamaya, Mutsuo
2015-09-01
Ebola virus disease (EVD) has been a great concern worldwide because of its high mortality. EVD usually manifests with fever, diarrhea and vomiting, as well as disseminated intravascular coagulation (DIC). To date, there is neither a licensed Ebola vaccine nor a promising therapeutic agent, although clinical trials are ongoing. For replication inside the cell, Ebola virus (EBOV) must undergo the proteolytic processing of its surface glycoprotein in the endosome by proteases including cathepsin B (CatB), followed by the fusion of the viral membrane and host endosome. Thus, the proteases have been considered as potential targets for drugs against EVD. However, no protease inhibitor has been presented as effective clinical drug against it. A synthetic serine protease inhibitor, nafamostat mesilate (NM), reduced the release of CatB from the rat pancreas. Furthermore, it has anticoagulant activities, such as inhibition of the factor VIIa complex, and has been used for treating DIC in Japan. Thus, NM could be considered as a drug candidate for the treatment of DIC induced by EBOV infection, as well as for the possible CatB-related antiviral action. Moreover, the drug has a history of large-scale production and clinical use, and the issues of safety and logistics might have been cleared. We advocate in vitro and in vivo experiments using active EBOV to examine the activities of NM against the infection and the DIC induced by the infection. In addition, we suggest trials for comparison among anti-DIC drugs including the NM in EVD patients, in parallel with the experiments.
Dedkov, V G; Magassouba, N' F; Safonova, M V; Deviatkin, A A; Dolgova, A S; Pyankov, O V; Sergeev, A A; Utkin, D V; Odinokov, G N; Safronov, V A; Agafonov, A P; Maleev, V V; Shipulin, G A
2016-02-01
In early February 2014, an outbreak of the Ebola virus disease caused by Zaire ebolavirus (EBOV) occurred in Guinea; cases were also recorded in other West African countries with a combined population of approximately 25 million. A rapid, sensitive and inexpensive method for detecting EBOV is needed to effectively control such outbreak. Here, we report a real-time reverse-transcription PCR assay for Z. ebolavirus detection used by the Specialized Anti-epidemic Team of the Russian Federation during the Ebola virus disease prevention mission in the Republic of Guinea. The analytical sensitivity of the assay is 5 × 10(2) viral particles per ml, and high specificity is demonstrated using representative sampling of viral, bacterial and human nucleic acids. This assay can be applied successfully for detecting the West African strains of Z. ebolavirus as well as on strains isolated in the Democratic Republic of the Congo in 2014. Copyright © 2015 Elsevier B.V. All rights reserved.
Can Ebola virus evolve to be less virulent in humans?
Sofonea, M T; Aldakak, L; Boullosa, L F V V; Alizon, S
2018-03-01
Understanding Ebola virus (EBOV) virulence evolution not only is timely but also raises specific questions because it causes one of the most virulent human infections and it is capable of transmission after the death of its host. Using a compartmental epidemiological model that captures three transmission routes (by regular contact, via dead bodies and by sexual contact), we infer the evolutionary dynamics of case fatality ratio on the scale of an outbreak and in the long term. Our major finding is that the virus's specific life cycle imposes selection for high levels of virulence and that this pattern is robust to parameter variations in biological ranges. In addition to shedding a new light on the ultimate causes of EBOV's high virulence, these results generate testable predictions and contribute to informing public health policies. In particular, burial management stands out as the most appropriate intervention since it decreases the R0 of the epidemics, while imposing selection for less virulent strains. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Dynamic phosphorylation of Ebola virus VP30 in NP-induced inclusion bodies.
Lier, Clemens; Becker, Stephan; Biedenkopf, Nadine
2017-12-01
Zaire Ebolavirus (EBOV) causes a severe feverish disease with high case fatality rates. Transcription of EBOV is dependent on the activity of the nucleocapsid protein VP30 which represents an essential viral transcription factor. Activity of VP30 is regulated via phosphorylation at six N-terminal serine residues. Recent data demonstrated that dynamic phosphorylation and dephosphorylation of serine residue 29 is essential for transcriptional support activity of VP30. To analyze the spatio/temporal dynamics of VP30 phosphorylation, we generated a peptide antibody recognizing specifically VP30 phosphorylated at serine 29. Using this antibody we could demonstrate that (i) the majority of VP30 molecules in EBOV-infected cells is dephosphorylated at the crucial position serine 29, (ii) both, VP30 phosphorylation and dephosphorylation take place in viral inclusion bodies that are induced by the nucleoprotein NP and (iii) NP influences the phosphorylation state of VP30. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usami, Katsuaki; Matsuno, Keita; Igarashi, Manabu
2011-04-01
Highlights: {yields} Ebola virus infection is mediated by binding to and fusion with the target cells. {yields} Structural feature of the viral glycoprotein determines the infectivity. {yields} Surface C-type lectin, MGL, of macrophages and dendritic cells mediate the infection. {yields} GP2, one of glycoprotein subunits, plays an essential role in MGL-mediated infection. {yields} There is a critical amino acid residue involved in high infectivity. -- Abstract: Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses,more » i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502-527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.« less
Boisen, Matthew L.; Schieffelin, John S.; Goba, Augustine; Oottamasathien, Darin; Jones, Abigail B.; Shaffer, Jeffrey G.; Hastie, Kathryn M.; Hartnett, Jessica N.; Momoh, Mambu; Fullah, Mohammed; Gabiki, Michael; Safa, Sidiki; Zandonatti, Michelle; Fusco, Marnie; Bornholdt, Zach; Abelson, Dafna; Gire, Stephen K.; Andersen, Kristian G.; Tariyal, Ridhi; Stremlau, Mathew; Cross, Robert W.; Geisbert, Joan B.; Pitts, Kelly R.; Geisbert, Thomas W.; Kulakoski, Peter; Wilson, Russell B.; Henderson, Lee; Sabeti, Pardis C.; Grant, Donald S.; Garry, Robert F.; Saphire, Erica O.; Khan, Sheik Humarr
2015-01-01
Abstract Lassa fever (LF) is a severe viral hemorrhagic fever caused by Lassa virus (LASV). The LF program at the Kenema Government Hospital (KGH) in Eastern Sierra Leone currently provides diagnostic services and clinical care for more than 500 suspected LF cases per year. Nearly two-thirds of suspected LF patients presenting to the LF Ward test negative for either LASV antigen or anti-LASV immunoglobulin M (IgM), and therefore are considered to have a non-Lassa febrile illness (NLFI). The NLFI patients in this study were generally severely ill, which accounts for their high case fatality rate of 36%. The current studies were aimed at determining possible causes of severe febrile illnesses in non-LF cases presenting to the KGH, including possible involvement of filoviruses. A seroprevalence survey employing commercial enzyme-linked immunosorbent assay tests revealed significant IgM and IgG reactivity against dengue virus, chikungunya virus, West Nile virus (WNV), Leptospira, and typhus. A polymerase chain reaction–based survey using sera from subjects with acute LF, evidence of prior LASV exposure, or NLFI revealed widespread infection with Plasmodium falciparum malaria in febrile patients. WNV RNA was detected in a subset of patients, and a 419 nt amplicon specific to filoviral L segment RNA was detected at low levels in a single patient. However, 22% of the patients presenting at the KGH between 2011 and 2014 who were included in this survey registered anti-Ebola virus (EBOV) IgG or IgM, suggesting prior exposure to this agent. The 2014 Ebola virus disease (EVD) outbreak is already the deadliest and most widely dispersed outbreak of its kind on record. Serological evidence reported here for possible human exposure to filoviruses in Sierra Leone prior to the current EVD outbreak supports genetic analysis that EBOV may have been present in West Africa for some time prior to the 2014 outbreak. PMID:25531344
Ebola Preparedness: Diagnosis Improvement Using Rapid Approaches for Proficiency Testing
Lau, Katherine A.; Theis, Torsten; Gray, Joanna
2016-01-01
ABSTRACT The unprecedented 2015 Ebolavirus (EBOV) outbreak in West Africa was declared a public health emergency, making diagnosis and quality of testing a global issue. The accuracy of laboratory diagnostic capacity for EBOV was assessed in 2014 to 2016 using a proficiency testing (PT) strategy developed by the Royal College of Pathologists of Australasia Quality Assurance Programs (RCPAQAP) in Biosecurity. Following a literature search, EBOV-specific gene targets were ranked according to the frequency of their use in published methods. The most commonly used gene regions (nucleoprotein [NP], glycoprotein [GP], and RNA-dependent RNA polymerase [L]) were selected for the design of in vitro RNA transcripts to be included in the simulated EBOV specimens used for EBOV detection with PCR-based assays. Specimens were tested for stability and found to be stable on long-term storage (1 year) at −80°C and on shorter-term storage in lyophilized form (1 week at ambient temperature and a subsequent week at −80°C). These specimens were used in three EBOV PTs offered from April 2014 to March 2016. In the first and third PTs, all laboratories (3/3 and 9/9, respectively) correctly identified specimens containing EBOV RNA transcripts, while in the second PT, all but one laboratory (5/6) correctly confirmed the presence of EBOV. The EBOV PT panel was useful for ensuring the competency of laboratories in detecting EBOV in the absence of readily available clinical samples. The simulated EBOV specimen was safe, stable, and reliable and can be used in lyophilized form for future EBOV PT programs, allowing simplicity of transport. PMID:27974537
Olszanecki, Rafał; Gawlik, Grzegorz
2014-01-01
The 2014 outbreak clearly showed that Ebola viruses (EBOV) remain a substantial threat for public health. The mainstay of management of patients with Ebola disease is isolation of patients and use of strict barrier nursing procedures; the present treatment strategies are mainly symptomatic and supportive (fluid resuscitation, antypyretics, antidiarrheal drugs). Currently, there is no approved therapy for Ebola hemorrhagic fever (EHF), however several advanced treatment options were tested in animal models (on non-human primates or rodents). They include use of both symptomatic (e.g. use of tissue factor inhibitors - rhNAPc2, rhAPC - to abolish coagulopathy) and specific antiviral approaches: e.g. monoclonal anti EBOV antibodies (ZMapp, MB-003), phosphorodiamidate morpholino oligomers (PMOs), liposomes containing siRNA (LNP-siRNA:TKM-Ebola) and small molecule inhibitors (e.g. BCX4430, favipiravir). The scope of this article is to briefly review the most promising therapeutics for EHF, based on the data coming from rare clinical reports, studies on animals and results from in vitro models.
Ng, Melinda; Ndungo, Esther; Jangra, Rohit K.; Cai, Yingyun; Postnikova, Elena; Radoshitzky, Sheli R.; Dye, John M.; de Arellano, Eva Ramírez; Negredo, Ana; Palacios, Gustavo; Kuhn, Jens H.; Chandran, Kartik
2014-01-01
Lloviu virus (LLOV), a phylogenetically divergent filovirus, is the proposed etiologic agent of die-offs of Schreiber’s long-fingered bats (Miniopterus schreibersii) in western Europe. Studies of LLOV remain limited because the infectious agent has not yet been isolated. Here, we generated a recombinant vesicular stomatitis virus expressing the LLOV spike glycoprotein (GP) and used it to show that LLOV GP resembles other filovirus GP proteins in structure and function. LLOV GP must be cleaved by endosomal cysteine proteases during entry, but is much more protease-sensitive than EBOV GP. The EBOV/MARV receptor, Niemann Pick C1 (NPC1), is also required for LLOV entry, and its second luminal domain is recognized with high affinity by a cleaved form of LLOV GP, suggesting that receptor binding would not impose a barrier to LLOV infection of humans and non-human primates. The use of NPC1 as an intracellular entry receptor may be a universal property of filoviruses. PMID:25310500
Olabode, Abayomi S; Jiang, Xiaowei; Robertson, David L; Lovell, Simon C
2015-08-01
The 2014 epidemic of Ebola virus disease (EVD) has had a devastating impact in West Africa. Sequencing of ebolavirus (EBOV) from infected individuals has revealed extensive genetic variation, leading to speculation that the virus may be adapting to humans, accounting for the scale of the 2014 outbreak. We computationally analyze the variation associated with all EVD outbreaks, and find none of the amino acid replacements lead to identifiable functional changes. These changes have minimal effect on protein structure, being neither stabilizing nor destabilizing, are not found in regions of the proteins associated with known functions and tend to cluster in poorly constrained regions of proteins, specifically intrinsically disordered regions. We find no evidence that the difference between the current and previous outbreaks is due to evolutionary changes associated with transmission to humans. Instead, epidemiological factors are likely to be responsible for the unprecedented spread of EVD. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Ebolavirus Evolution: Past and Present.
de La Vega, Marc-Antoine; Stein, Derek; Kobinger, Gary P
2015-01-01
The past year has marked the most devastating Ebola outbreak the world has ever witnessed, with over 28,000 cases and over 11,000 deaths. Ebola virus (EBOV) has now been around for almost 50 years. In this review, we discuss past and present outbreaks of EBOV and how those variants evolved over time. We explore and discuss selective pressures that drive the evolution of different Ebola variants, and how they may modify the efficacy of therapeutic treatments and vaccines currently being developed. Finally, given the unprecedented size and spread of the outbreak, as well as the extended period of replication in human hosts, specific attention is given to the 2014-2015 West African outbreak variant (Makona).
Ebolavirus Evolution: Past and Present
de La Vega, Marc-Antoine; Stein, Derek; Kobinger, Gary P
2015-01-01
The past year has marked the most devastating Ebola outbreak the world has ever witnessed, with over 28,000 cases and over 11,000 deaths. Ebola virus (EBOV) has now been around for almost 50 years. In this review, we discuss past and present outbreaks of EBOV and how those variants evolved over time. We explore and discuss selective pressures that drive the evolution of different Ebola variants, and how they may modify the efficacy of therapeutic treatments and vaccines currently being developed. Finally, given the unprecedented size and spread of the outbreak, as well as the extended period of replication in human hosts, specific attention is given to the 2014–2015 West African outbreak variant (Makona). PMID:26562671
The Drug Targets and Antiviral Molecules for Treatment of Ebola Virus Infection.
Wu, Wenjiao; Liu, Shuwen
2017-01-01
Ebola virus (EBOV) is a highly pathogenic virus causing severe hemorrhagic fever with a high case fatality rate of 50% - 90% in humans. Without an approved vaccine or treatments, Ebola outbreak management has been limited to palliative care and barrier methods to prevent transmission. These approaches, however, have yet to end the 2014 outbreak of Ebola after its prolonged presence in West Africa. As with the increase of outbreaks, a significant effort has been made to develop promising countermeasures for the prevention and treatment of Ebola virus infection. In this review, development of therapeutics and potential inhibitors for Ebola virus infection will be discussed.
An Outbreak of Ebola Virus Disease in the Lassa Fever Zone
Goba, Augustine; Khan, S. Humarr; Fonnie, Mbalu; Fullah, Mohamed; Moigboi, Alex; Kovoma, Alice; Sinnah, Vandi; Yoko, Nancy; Rogers, Hawa; Safai, Siddiki; Momoh, Mambu; Koroma, Veronica; Kamara, Fatima K.; Konowu, Edwin; Yillah, Mohamed; French, Issa; Mustapha, Ibraham; Kanneh, Franklyn; Foday, Momoh; McCarthy, Helena; Kallon, Tiangay; Kallon, Mustupha; Naiebu, Jenneh; Sellu, Josephine; Jalloh, Abdul A.; Gbakie, Michael; Kanneh, Lansana; Massaly, James L. B.; Kargbo, David; Kargbo, Brima; Vandi, Mohamed; Gbetuwa, Momoh; Gevao, Sahr M.; Sandi, John D.; Jalloh, Simbirie C.; Grant, Donald S.; Blyden, Sylvia O.; Crozier, Ian; Schieffelin, John S.; McLellan, Susan L.; Jacob, Shevin T.; Boisen, Matt L.; Hartnett, Jessica N.; Cross, Robert W.; Branco, Luis M.; Andersen, Kristian G.; Yozwiak, Nathan L.; Gire, Stephen K.; Tariyal, Ridhi; Park, Daniel J.; Haislip, Allyson M.; Bishop, Christopher M.; Melnik, Lilia I.; Gallaher, William R.; Wimley, William C.; He, Jing; Shaffer, Jeffrey G.; Sullivan, Brian M.; Grillo, Sonia; Oman, Scott; Garry, Courtney E.; Edwards, Donna R.; McCormick, Stephanie J.; Elliott, Deborah H.; Rouelle, Julie A.; Kannadka, Chandrika B.; Reyna, Ashley A.; Bradley, Benjamin T.; Yu, Haini; Yenni, Rachael E.; Hastie, Kathryn M.; Geisbert, Joan B.; Kulakosky, Peter C.; Wilson, Russell B.; Oldstone, Michael B. A.; Pitts, Kelly R.; Henderson, Lee A.; Robinson, James E.; Geisbert, Thomas W.; Saphire, Erica Ollmann; Happi, Christian T.; Asogun, Danny A.; Sabeti, Pardis C.; Garry, Robert F.
2016-01-01
Background. Kenema Government Hospital (KGH) has developed an advanced clinical and laboratory research capacity to manage the threat of Lassa fever, a viral hemorrhagic fever (VHF). The 2013–2016 Ebola virus (EBOV) disease (EVD) outbreak is the first to have occurred in an area close to a facility with established clinical and laboratory capacity for study of VHFs. Methods. Because of its proximity to the epicenter of the EVD outbreak, which began in Guinea in March 2014, the KGH Lassa fever Team mobilized to establish EBOV surveillance and diagnostic capabilities. Results. Augustine Goba, director of the KGH Lassa laboratory, diagnosed the first documented case of EVD in Sierra Leone, on 25 May 2014. Thereafter, KGH received and cared for numbers of patients with EVD that quickly overwhelmed the capacity for safe management. Numerous healthcare workers contracted and lost their lives to EVD. The vast majority of subsequent EVD cases in West Africa can be traced back to a single transmission chain that includes this first diagnosed case. Conclusions. Responding to the challenges of confronting 2 hemorrhagic fever viruses will require continued investments in the development of countermeasures (vaccines, therapeutic agents, and diagnostic assays), infrastructure, and human resources. PMID:27402779
Ebola Preparedness: Diagnosis Improvement Using Rapid Approaches for Proficiency Testing.
Lau, Katherine A; Theis, Torsten; Gray, Joanna; Rawlinson, William D
2017-03-01
The unprecedented 2015 Ebolavirus (EBOV) outbreak in West Africa was declared a public health emergency, making diagnosis and quality of testing a global issue. The accuracy of laboratory diagnostic capacity for EBOV was assessed in 2014 to 2016 using a proficiency testing (PT) strategy developed by the Royal College of Pathologists of Australasia Quality Assurance Programs (RCPAQAP) in Biosecurity. Following a literature search, EBOV-specific gene targets were ranked according to the frequency of their use in published methods. The most commonly used gene regions (nucleoprotein [NP], glycoprotein [GP], and RNA-dependent RNA polymerase [L]) were selected for the design of in vitro RNA transcripts to be included in the simulated EBOV specimens used for EBOV detection with PCR-based assays. Specimens were tested for stability and found to be stable on long-term storage (1 year) at -80°C and on shorter-term storage in lyophilized form (1 week at ambient temperature and a subsequent week at -80°C). These specimens were used in three EBOV PTs offered from April 2014 to March 2016. In the first and third PTs, all laboratories (3/3 and 9/9, respectively) correctly identified specimens containing EBOV RNA transcripts, while in the second PT, all but one laboratory (5/6) correctly confirmed the presence of EBOV. The EBOV PT panel was useful for ensuring the competency of laboratories in detecting EBOV in the absence of readily available clinical samples. The simulated EBOV specimen was safe, stable, and reliable and can be used in lyophilized form for future EBOV PT programs, allowing simplicity of transport. Copyright © 2017 American Society for Microbiology.
Ebola Virus Epidemiology and Evolution in Nigeria
2016-10-04
the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of 10 Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012...cases, and full-4 length Ebola virus (EBOV) genome sequences for 12 of the 20. The detailed contact data permits 5 nearly complete reconstruction of...two methods highlights the strengths of each, and the importance 16 of both contact tracing and genomic sequencing during an outbreak. 17 18
Vernet, Marie-Astrid; Reynard, Stéphanie; Fizet, Alexandra; Schaeffer, Justine; Pannetier, Delphine; Rives, Max; Georges, Nadia; Garcia-Bonnet, Nathalie; Sylla, Aboubacar I.; Grovogui, Péma; Kerherve, Jean-Yves; Savio, Christophe; Savio-Coste, Sylvie; de Séverac, Marie-Laure; Linares, Sandrine; Harouna, Souley; Abdoul, Bing M’Lebing; Petitjean, Frederic; Samake, Nenefing; Kinda, Moumouni; Koundouno, Fara Roger; Mateo, Mathieu; Lecine, Patrick; Page, Audrey; Tchamdja, Tang Maleki; Schoenhals, Matthieu; Barbe, Solenne; Simon, Bernard; Tran-Minh, Tuan; L’Hériteau, François
2017-01-01
BACKGROUND. The pathogenesis of Ebola virus (EBOV) disease (EVD) is poorly characterized. The establishment of well-equipped diagnostic laboratories close to Ebola treatment centers (ETCs) has made it possible to obtain relevant virological and biological data during the course of EVD and to assess their association with the clinical course and different outcomes of the disease. METHODS. We were responsible for diagnosing EBOV infection in patients admitted to two ETCs in forested areas of Guinea. The pattern of clinical signs was recorded, and an etiological diagnosis was established by RT-PCR for EBOV infection or a rapid test for malaria and typhoid fever. Biochemical analyses were also performed. RESULTS. We handled samples from 168 patients between November 29, 2014, and January 31, 2015; 97 patients were found to be infected with EBOV, with Plasmodium falciparum coinfection in 18%. Overall mortality for EVD cases was 58%, rising to 86% if P. falciparum was also present. Viral load was higher in fatal cases of EVD than in survivors, and fatal cases were associated with higher aspartate aminotransferase (AST) and alanine aminotransferase (ALT), C-reactive protein (CRP), and IL-6 levels. Furthermore, regardless of outcome, EVD was characterized by higher creatine kinase (CPK), amylase, and creatinine levels than in febrile patients without EVD, with higher blood urea nitrogen (BUN) levels in fatal cases of EVD only. CONCLUSION. These findings suggest that a high viral load at admission is a marker of poor EVD prognosis. In addition, high AST, ALT, CRP, and IL-6 levels are associated with a fatal outcome of EVD. Damage to the liver and other tissues, with massive rhabdomyolysis and, probably, acute pancreatitis, is associated with EVD and correlated with disease severity. Finally, biochemical analyses provide substantial added value at ETCs, making it possible to improve supportive rehydration and symptomatic care for patients. FUNDING. The French Ministry of Foreign Affairs, the Agence Française de Développement, and Institut Pasteur. PMID:28352651
Vernet, Marie-Astrid; Reynard, Stéphanie; Fizet, Alexandra; Schaeffer, Justine; Pannetier, Delphine; Guedj, Jeremie; Rives, Max; Georges, Nadia; Garcia-Bonnet, Nathalie; Sylla, Aboubacar I; Grovogui, Péma; Kerherve, Jean-Yves; Savio, Christophe; Savio-Coste, Sylvie; de Séverac, Marie-Laure; Zloczewski, Philippe; Linares, Sandrine; Harouna, Souley; Abdoul, Bing M'Lebing; Petitjean, Frederic; Samake, Nenefing; Shepherd, Susan; Kinda, Moumouni; Koundouno, Fara Roger; Joxe, Ludovic; Mateo, Mathieu; Lecine, Patrick; Page, Audrey; Tchamdja, Tang Maleki; Schoenhals, Matthieu; Barbe, Solenne; Simon, Bernard; Tran-Minh, Tuan; Longuet, Christophe; L'Hériteau, François; Baize, Sylvain
2017-03-23
BACKGROUND. The pathogenesis of Ebola virus (EBOV) disease (EVD) is poorly characterized. The establishment of well-equipped diagnostic laboratories close to Ebola treatment centers (ETCs) has made it possible to obtain relevant virological and biological data during the course of EVD and to assess their association with the clinical course and different outcomes of the disease. METHODS. We were responsible for diagnosing EBOV infection in patients admitted to two ETCs in forested areas of Guinea. The pattern of clinical signs was recorded, and an etiological diagnosis was established by RT-PCR for EBOV infection or a rapid test for malaria and typhoid fever. Biochemical analyses were also performed. RESULTS. We handled samples from 168 patients between November 29, 2014, and January 31, 2015; 97 patients were found to be infected with EBOV, with Plasmodium falciparum coinfection in 18%. Overall mortality for EVD cases was 58%, rising to 86% if P . falciparum was also present. Viral load was higher in fatal cases of EVD than in survivors, and fatal cases were associated with higher aspartate aminotransferase (AST) and alanine aminotransferase (ALT), C-reactive protein (CRP), and IL-6 levels. Furthermore, regardless of outcome, EVD was characterized by higher creatine kinase (CPK), amylase, and creatinine levels than in febrile patients without EVD, with higher blood urea nitrogen (BUN) levels in fatal cases of EVD only. CONCLUSION. These findings suggest that a high viral load at admission is a marker of poor EVD prognosis. In addition, high AST, ALT, CRP, and IL-6 levels are associated with a fatal outcome of EVD. Damage to the liver and other tissues, with massive rhabdomyolysis and, probably, acute pancreatitis, is associated with EVD and correlated with disease severity. Finally, biochemical analyses provide substantial added value at ETCs, making it possible to improve supportive rehydration and symptomatic care for patients. FUNDING. The French Ministry of Foreign Affairs, the Agence Française de Développement, and Institut Pasteur.
2017-04-06
recognized by mAb 6D8 when assayed by immunofluourescent antibody staining of transfected cells (Figure 5A). As expected, ELISA of cell culture... ELISA using whole EBOV antigen. Mep1 elicited no detectable antibody response after two vaccinations and only a low response after three...vaccinations. Mep2 elicited a detectable response after two vaccinations with a rise in ELISA antibody titer after three vaccinations (Figure 5C
Defining Key Entry Events for Crimean-Congo Hemorrhagic Fever Virus in Mammalian Cells
2012-08-10
illness with severe fever, headache, nausea, diarrhea, muscle aches, photophobia, and other non-specific flu -like symptoms [3, 5, 32]. Soon after the...with 10% fetal bovine serum (FBS)(ThermoScientific/Hyclone, Logan, UT). HEK 293T (ATCC# HB-8065), HepG2 (ATCC# CRL-11268), chicken embryo related...USAMRIID collection), and Ebola Zaire virus expressing eGFP (EBOV- eGFP)(USAMRIID collection) [166]. The CCHFV seed was propagated in chicken embryo
The lipid moiety of brincidofovir is required for in vitro antiviral activity against Ebola virus.
McMullan, Laura K; Flint, Mike; Dyall, Julie; Albariño, César; Olinger, Gene G; Foster, Scott; Sethna, Phiroze; Hensley, Lisa E; Nichol, Stuart T; Lanier, E Randall; Spiropoulou, Christina F
2016-01-01
Brincidofovir (BCV) is the 3-hexadecyloxy-1-propanol (HDP) lipid conjugate of the acyclic nucleoside phosphonate cidofovir (CDV). BCV has established broad-spectrum activity against double-stranded DNA (dsDNA) viruses; however, its activity against RNA viruses has been less thoroughly evaluated. Here, we report that BCV inhibited infection of Ebola virus in multiple human cell lines. Unlike the mechanism of action for BCV against cytomegalovirus and other dsDNA viruses, phosphorylation of CDV to the diphosphate form appeared unnecessary. Instead, antiviral activity required the lipid moiety and in vitro activity against EBOV was observed for several HDP-nucleotide conjugates. Copyright © 2015. Published by Elsevier B.V.
Human monoclonal antibodies as candidate therapeutics against emerging viruses and HIV-1.
Zhu, Zhongyu; Prabakaran, Ponraj; Chen, Weizao; Broder, Christopher C; Gong, Rui; Dimitrov, Dimiter S
2013-04-01
More than 40 monoclonal antibodies (mAbs) have been approved for a number of disease indications with only one of these (Synagis) - for a viral disease, and not for therapy but for prevention. However, in the last decade novel potent mAbs have been discovered and characterized with potential as therapeutics against viruses of major importance for public health and biosecurity including Hendra virus (HeV), Nipah virus (NiV), severe acute respiratory syndrome coronavirus (SARS-CoV), Ebola virus (EBOV), West Nile virus (WNV), influenza virus (IFV) and human immunodeficiency virus type 1 (HIV-1). Here, we review such mAbs with an emphasis on antibodies of human origin, and highlight recent results as well as technologies and mechanisms related to their potential as therapeutics.
2003-01-01
polyclonal antibody (data not shown). Because the GP1 proteins of the two recombinants should be processed identically, we expect that they will have the...monoclonal antibodies to EBOV GP. J.L. Mellquist-Riemenschneider et al. / Virus Research 92 (2003) 187/193 189 known to have limited capability to process ...and oligosaccharides containing sialic acid, respectively. The ZEBOV virion GP did not react with Galantus nivalis agglutinin (GNA), indicating the
Genome-wide analysis of codon usage bias in Ebolavirus.
Cristina, Juan; Moreno, Pilar; Moratorio, Gonzalo; Musto, Héctor
2015-01-22
Ebola virus (EBOV) is a member of the family Filoviridae and its genome consists of a 19-kb, single-stranded, negative sense RNA. EBOV is subdivided into five distinct species with different pathogenicities, being Zaire ebolavirus (ZEBOV) the most lethal species. The interplay of codon usage among viruses and their hosts is expected to affect overall viral survival, fitness, evasion from host's immune system and evolution. In the present study, we performed comprehensive analyses of codon usage and composition of ZEBOV. Effective number of codons (ENC) indicates that the overall codon usage among ZEBOV strains is slightly biased. Different codon preferences in ZEBOV genes in relation to codon usage of human genes were found. Highly preferred codons are all A-ending triplets, which strongly suggests that mutational bias is a main force shaping codon usage in ZEBOV. Dinucleotide composition also plays a role in the overall pattern of ZEBOV codon usage. ZEBOV does not seem to use the most abundant tRNAs present in the human cells for most of their preferred codons. Copyright © 2014 Elsevier B.V. All rights reserved.
Early Identification and Prevention of the Spread of Ebola - United States.
Van Beneden, Chris A; Pietz, Harald; Kirkcaldy, Robert D; Koonin, Lisa M; Uyeki, Timothy M; Oster, Alexandra M; Levy, Deborah A; Glover, Maleeka; Arduino, Matthew J; Merlin, Toby L; Kuhar, David T; Kosmos, Christine; Bell, Beth P
2016-07-08
In response to the 2014-2016 Ebola virus disease (Ebola) epidemic in West Africa, CDC prepared for the potential introduction of Ebola into the United States. The immediate goals were to rapidly identify and isolate any cases of Ebola, prevent transmission, and promote timely treatment of affected patients. CDC's technical expertise and the collaboration of multiple partners in state, local, and municipal public health departments; health care facilities; emergency medical services; and U.S. government agencies were essential to the domestic preparedness and response to the Ebola epidemic and relied on longstanding partnerships. CDC established a comprehensive response that included two new strategies: 1) active monitoring of travelers arriving from countries affected by Ebola and other persons at risk for Ebola and 2) a tiered system of hospital facility preparedness that enabled prioritization of training. CDC rapidly deployed a diagnostic assay for Ebola virus (EBOV) to public health laboratories. Guidance was developed to assist in evaluation of patients possibly infected with EBOV, for appropriate infection control, to support emergency responders, and for handling of infectious waste. CDC rapid response teams were formed to provide assistance within 24 hours to a health care facility managing a patient with Ebola. As a result of the collaborations to rapidly identify, isolate, and manage Ebola patients and the extensive preparations to prevent spread of EBOV, the United States is now better prepared to address the next global infectious disease threat.The activities summarized in this report would not have been possible without collaboration with many U.S. and international partners (http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/partners.html).
Basharat, Zarrin; Yasmin, Azra
2015-08-01
Ebola is a highly pathogenic enveloped virus responsible for deadly outbreaks of severe hemorrhagic fever. It enters human cells by binding a multifunctional cholesterol transporter Niemann-Pick C1 (NPC1) protein. Post translational modification (PTM) information for NPC1 is crucial to understand Ebola virus (EBOV) entry and action due to changes in phosphorylation or glycosylation at the binding site. It is difficult and costly to experimentally assess this type of interaction, so in silico strategy was employed. Identification of phosphorylation sites, including conserved residues that could be possible targets for 21 predicted kinases was followed by interplay study between phosphorylation and O-β-GlcNAc modification of NPC1. Results revealed that only 4 out of 48 predicted phosphosites exhibited O-β-GlcNAc activity. Predicted outcomes were integrated with residue conservation and 3D structural information. Three Yin Yang sites were located in the α-helix regions and were conserved in studied vertebrate and mammalian species. Only one modification site S425 was found in β-turn region located near the N-terminus of NPC1 and was found to differ in pig, mouse, cobra and humans. The predictions suggest that Yin Yang sites may not be important for virus attachment to NPC1, whereas phosphosite 473 may be important for binding and hence entry of Ebola virus. This information could be useful in addressing further experimental studies and therapeutic strategies targeting PTM events in EBOV entry. Copyright © 2015 Elsevier B.V. All rights reserved.
Distinct lineages of Ebola virus in Guinea during the 2014 West African epidemic.
Simon-Loriere, Etienne; Faye, Ousmane; Faye, Oumar; Koivogui, Lamine; Magassouba, Nfaly; Keita, Sakoba; Thiberge, Jean-Michel; Diancourt, Laure; Bouchier, Christiane; Vandenbogaert, Matthias; Caro, Valérie; Fall, Gamou; Buchmann, Jan P; Matranga, Christan B; Sabeti, Pardis C; Manuguerra, Jean-Claude; Holmes, Edward C; Sall, Amadou A
2015-08-06
An epidemic of Ebola virus disease of unprecedented scale has been ongoing for more than a year in West Africa. As of 29 April 2015, there have been 26,277 reported total cases (of which 14,895 have been laboratory confirmed) resulting in 10,899 deaths. The source of the outbreak was traced to the prefecture of Guéckédou in the forested region of southeastern Guinea. The virus later spread to the capital, Conakry, and to the neighbouring countries of Sierra Leone, Liberia, Nigeria, Senegal and Mali. In March 2014, when the first cases were detected in Conakry, the Institut Pasteur of Dakar, Senegal, deployed a mobile laboratory in Donka hospital to provide diagnostic services to the greater Conakry urban area and other regions of Guinea. Through this process we sampled 85 Ebola viruses (EBOV) from patients infected from July to November 2014, and report their full genome sequences here. Phylogenetic analysis reveals the sustained transmission of three distinct viral lineages co-circulating in Guinea, including the urban setting of Conakry and its surroundings. One lineage is unique to Guinea and closely related to the earliest sampled viruses of the epidemic. A second lineage contains viruses probably reintroduced from neighbouring Sierra Leone on multiple occasions, while a third lineage later spread from Guinea to Mali. Each lineage is defined by multiple mutations, including non-synonymous changes in the virion protein 35 (VP35), glycoprotein (GP) and RNA-dependent RNA polymerase (L) proteins. The viral GP is characterized by a glycosylation site modification and mutations in the mucin-like domain that could modify the outer shape of the virion. These data illustrate the ongoing ability of EBOV to develop lineage-specific and potentially phenotypically important variation.
Lehrer, Axel T; Wong, Teri-Ann S; Lieberman, Michael M; Humphreys, Tom; Clements, David E; Bakken, Russell R; Hart, Mary Kate; Pratt, William D; Dye, John M
2018-05-24
Infections with filoviruses in humans are highly virulent, causing hemorrhagic fevers which result in up to 90% mortality. In addition to natural infections, the ability to use these viruses as bioterrorist weapons is of significant concern. Currently, there are no licensed vaccines or therapeutics available to combat these infections. The pathogenesis of disease involves the dysregulation of the host's immune system, which results in impairment of the innate and adaptive immune responses, with subsequent development of lymphopenia, thrombocytopenia, hemorrhage, and death. Questions remain with regard to the few survivors of infection, who manage to mount an effective adaptive immune response. These questions concern the humoral and cellular components of this response, and whether such a response can be elicited by an appropriate prophylactic vaccine. The data reported herein describe the production and evaluation of a recombinant subunit Ebola virus vaccine candidate consisting of insect cell expressed Zaire ebolavirus (EBOV) surface glycoprotein (GP) and the matrix proteins VP24 and VP40. The recombinant subunit proteins are shown to be highly immunogenic in mice, yielding both humoral and cellular responses, as well as highly efficacious, providing up to 100% protection against a lethal challenge with live virus. These results demonstrate proof of concept for such a recombinant non-replicating vaccine candidate in the mouse model of EBOV which helps to elucidate immune correlates of protection and warrants further development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Crystal Structure of the Marburg Virus VP35 Oligomerization Domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruhn, Jessica F.; Kirchdoerfer, Robert N.; Urata, Sarah M.
ABSTRACT Marburg virus (MARV) is a highly pathogenic filovirus that is classified in a genus distinct from that of Ebola virus (EBOV) (generaMarburgvirusandEbolavirus, respectively). Both viruses produce a multifunctional protein termed VP35, which acts as a polymerase cofactor, a viral protein chaperone, and an antagonist of the innate immune response. VP35 contains a central oligomerization domain with a predicted coiled-coil motif. This domain has been shown to be essential for RNA polymerase function. Here we present crystal structures of the MARV VP35 oligomerization domain. These structures and accompanying biophysical characterization suggest that MARV VP35 is a trimer. In contrast, EBOVmore » VP35 is likely a tetramer in solution. Differences in the oligomeric state of this protein may explain mechanistic differences in replication and immune evasion observed for MARV and EBOV. IMPORTANCEMarburg virus can cause severe disease, with up to 90% human lethality. Its genome is concise, only producing seven proteins. One of the proteins, VP35, is essential for replication of the viral genome and for evasion of host immune responses. VP35 oligomerizes (self-assembles) in order to function, yet the structure by which it assembles has not been visualized. Here we present two crystal structures of this oligomerization domain. In both structures, three copies of VP35 twist about each other to form a coiled coil. This trimeric assembly is in contrast to tetrameric predictions for VP35 of Ebola virus and to known structures of homologous proteins in the measles, mumps, and Nipah viruses. Distinct oligomeric states of the Marburg and Ebola virus VP35 proteins may explain differences between them in polymerase function and immune evasion. These findings may provide a more accurate understanding of the mechanisms governing VP35's functions and inform the design of therapeutics.« less
Structure of the Ebola VP35 interferon inhibitory domain.
Leung, Daisy W; Ginder, Nathaniel D; Fulton, D Bruce; Nix, Jay; Basler, Christopher F; Honzatko, Richard B; Amarasinghe, Gaya K
2009-01-13
Ebola viruses (EBOVs) cause rare but highly fatal outbreaks of viral hemorrhagic fever in humans, and approved treatments for these infections are currently lacking. The Ebola VP35 protein is multifunctional, acting as a component of the viral RNA polymerase complex, a viral assembly factor, and an inhibitor of host interferon (IFN) production. Mutation of select basic residues within the C-terminal half of VP35 abrogates its dsRNA-binding activity, impairs VP35-mediated IFN antagonism, and attenuates EBOV growth in vitro and in vivo. Because VP35 contributes to viral escape from host innate immunity and is required for EBOV virulence, understanding the structural basis for VP35 dsRNA binding, which correlates with suppression of IFN activity, is of high importance. Here, we report the structure of the C-terminal VP35 IFN inhibitory domain (IID) solved to a resolution of 1.4 A and show that VP35 IID forms a unique fold. In the structure, we identify 2 basic residue clusters, one of which is important for dsRNA binding. The dsRNA binding cluster is centered on Arg-312, a highly conserved residue required for IFN inhibition. Mutation of residues within this cluster significantly changes the surface electrostatic potential and diminishes dsRNA binding activity. The high-resolution structure and the identification of the conserved dsRNA binding residue cluster provide opportunities for antiviral therapeutic design. Our results suggest a structure-based model for dsRNA-mediated innate immune antagonism by Ebola VP35 and other similarly constructed viral antagonists.
An Outbreak of Ebola Virus Disease in the Lassa Fever Zone.
Goba, Augustine; Khan, S Humarr; Fonnie, Mbalu; Fullah, Mohamed; Moigboi, Alex; Kovoma, Alice; Sinnah, Vandi; Yoko, Nancy; Rogers, Hawa; Safai, Siddiki; Momoh, Mambu; Koroma, Veronica; Kamara, Fatima K; Konowu, Edwin; Yillah, Mohamed; French, Issa; Mustapha, Ibraham; Kanneh, Franklyn; Foday, Momoh; McCarthy, Helena; Kallon, Tiangay; Kallon, Mustupha; Naiebu, Jenneh; Sellu, Josephine; Jalloh, Abdul A; Gbakie, Michael; Kanneh, Lansana; Massaly, James L B; Kargbo, David; Kargbo, Brima; Vandi, Mohamed; Gbetuwa, Momoh; Gevao, Sahr M; Sandi, John D; Jalloh, Simbirie C; Grant, Donald S; Blyden, Sylvia O; Crozier, Ian; Schieffelin, John S; McLellan, Susan L; Jacob, Shevin T; Boisen, Matt L; Hartnett, Jessica N; Cross, Robert W; Branco, Luis M; Andersen, Kristian G; Yozwiak, Nathan L; Gire, Stephen K; Tariyal, Ridhi; Park, Daniel J; Haislip, Allyson M; Bishop, Christopher M; Melnik, Lilia I; Gallaher, William R; Wimley, William C; He, Jing; Shaffer, Jeffrey G; Sullivan, Brian M; Grillo, Sonia; Oman, Scott; Garry, Courtney E; Edwards, Donna R; McCormick, Stephanie J; Elliott, Deborah H; Rouelle, Julie A; Kannadka, Chandrika B; Reyna, Ashley A; Bradley, Benjamin T; Yu, Haini; Yenni, Rachael E; Hastie, Kathryn M; Geisbert, Joan B; Kulakosky, Peter C; Wilson, Russell B; Oldstone, Michael B A; Pitts, Kelly R; Henderson, Lee A; Robinson, James E; Geisbert, Thomas W; Saphire, Erica Ollmann; Happi, Christian T; Asogun, Danny A; Sabeti, Pardis C; Garry, Robert F
2016-10-15
Kenema Government Hospital (KGH) has developed an advanced clinical and laboratory research capacity to manage the threat of Lassa fever, a viral hemorrhagic fever (VHF). The 2013-2016 Ebola virus (EBOV) disease (EVD) outbreak is the first to have occurred in an area close to a facility with established clinical and laboratory capacity for study of VHFs. Because of its proximity to the epicenter of the EVD outbreak, which began in Guinea in March 2014, the KGH Lassa fever Team mobilized to establish EBOV surveillance and diagnostic capabilities. Augustine Goba, director of the KGH Lassa laboratory, diagnosed the first documented case of EVD in Sierra Leone, on 25 May 2014. Thereafter, KGH received and cared for numbers of patients with EVD that quickly overwhelmed the capacity for safe management. Numerous healthcare workers contracted and lost their lives to EVD. The vast majority of subsequent EVD cases in West Africa can be traced back to a single transmission chain that includes this first diagnosed case. Responding to the challenges of confronting 2 hemorrhagic fever viruses will require continued investments in the development of countermeasures (vaccines, therapeutic agents, and diagnostic assays), infrastructure, and human resources. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Marzi, Andrea; Yoshida, Reiko; Miyamoto, Hiroko; Ishijima, Mari; Suzuki, Yasuhiko; Higuchi, Megumi; Matsuyama, Yukie; Igarashi, Manabu; Nakayama, Eri; Kuroda, Makoto; Saijo, Masayuki; Feldmann, Friederike; Brining, Douglas; Feldmann, Heinz; Takada, Ayato
2012-01-01
Ebola virus (EBOV) is the causative agent of severe hemorrhagic fever in primates, with human case fatality rates up to 90%. Today, there is neither a licensed vaccine nor a treatment available for Ebola hemorrhagic fever (EHF). Single monoclonal antibodies (MAbs) specific for Zaire ebolavirus (ZEBOV) have been successfully used in passive immunization experiments in rodent models, but have failed to protect nonhuman primates from lethal disease. In this study, we used two clones of human-mouse chimeric MAbs (ch133 and ch226) with strong neutralizing activity against ZEBOV and evaluated their protective potential in a rhesus macaque model of EHF. Reduced viral loads and partial protection were observed in animals given MAbs ch133 and ch226 combined intravenously at 24 hours before and 24 and 72 hours after challenge. MAbs circulated in the blood of a surviving animal until virus-induced IgG responses were detected. In contrast, serum MAb concentrations decreased to undetectable levels at terminal stages of disease in animals that succumbed to infection, indicating substantial consumption of these antibodies due to virus replication. Accordingly, the rapid decrease of serum MAbs was clearly associated with increased viremia in non-survivors. Our results indicate that EBOV neutralizing antibodies, particularly in combination with other therapeutic strategies, might be beneficial in reducing viral loads and prolonging disease progression during EHF.
Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection
Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R
2016-01-01
Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells. PMID:27031961
Zeitlin, Larry; Pettitt, James; Scully, Corinne; Bohorova, Natasha; Kim, Do; Pauly, Michael; Hiatt, Andrew; Ngo, Long; Steinkellner, Herta; Whaley, Kevin J; Olinger, Gene G
2011-12-20
No countermeasures currently exist for the prevention or treatment of the severe sequelae of Filovirus (such as Ebola virus; EBOV) infection. To overcome this limitation in our biodefense preparedness, we have designed monoclonal antibodies (mAbs) which could be used in humans as immunoprotectants for EBOV, starting with a murine mAb (13F6) that recognizes the heavily glycosylated mucin-like domain of the virion-attached glycoprotein (GP). Point mutations were introduced into the variable region of the murine mAb to remove predicted human T-cell epitopes, and the variable regions joined to human constant regions to generate a mAb (h-13F6) appropriate for development for human use. We have evaluated the efficacy of three variants of h-13F6 carrying different glycosylation patterns in a lethal mouse EBOV challenge model. The pattern of glycosylation of the various mAbs was found to correlate to level of protection, with aglycosylated h-13F6 providing the least potent efficacy (ED(50) = 33 μg). A version with typical heterogenous mammalian glycoforms (ED(50) = 11 μg) had similar potency to the original murine mAb. However, h-13F6 carrying complex N-glycosylation lacking core fucose exhibited superior potency (ED(50) = 3 μg). Binding studies using Fcγ receptors revealed enhanced binding of nonfucosylated h-13F6 to mouse and human FcγRIII. Together the results indicate the presence of Fc N-glycans enhances the protective efficacy of h-13F6, and that mAbs manufactured with uniform glycosylation and a higher potency glycoform offer promise as biodefense therapeutics.
Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection.
Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R
2016-03-31
Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells.
Immune Response to Marburg Virus Angola Infection in Nonhuman Primates.
Fernando, Lisa; Qiu, Xiangguo; Melito, P Leno; Williams, Kinola J N; Feldmann, Friederike; Feldmann, Heinz; Jones, Steven M; Alimonti, Judie B
2015-10-01
The 2005 outbreak of Marburg virus (MARV) infection in Angola was the most lethal MARV infection outbreak in history, with a case-fatality rate (90%) similar to that for Zaire ebolavirus (EBOV) infection. However, very little is known about the pathogenicity of MARV Angola, as few studies have been conducted to date. Therefore, the immune response was examined in MARV Angola-infected nonhuman primates. Cynomolgus macaques were infected with MARV Angola and monitored for survival. The effect of MARV Angola on the immune system was examined by immunophenotyping whole-blood and by analyzing cytokine and chemokine levels in plasma and spleen specimens, using flow cytometry. The prominent clinical findings were rapid onset of disease and death (mean time after infection, 6.7 days), fever, depression, anorexia, petechial rash, and lymphopenia. Specifically, T, B, and natural killer cells were severely depleted in the blood by day 6. The typical cytokine storm was present, with levels of interferon γ, tumor necrosis factor, interleukin 6, and CCL2 rising in the blood early during infection. MARV Angola displayed the same virulence and disease pathology as EBOV. MARV Angola appears to cause a more rapid onset and severe outcome of infection than other MARV strains. © Crown copyright 2015.
Ebola virus infection induces irregular dendritic cell gene expression.
Melanson, Vanessa R; Kalina, Warren V; Williams, Priscilla
2015-02-01
Filoviruses subvert the human immune system in part by infecting and replicating in dendritic cells (DCs). Using gene arrays, a phenotypic profile of filovirus infection in human monocyte-derived DCs was assessed. Monocytes from human donors were cultured in GM-CSF and IL-4 and were infected with Ebola virus Kikwit variant for up to 48 h. Extracted DC RNA was analyzed on SuperArray's Dendritic and Antigen Presenting Cell Oligo GEArray and compared to uninfected controls. Infected DCs exhibited increased expression of cytokine, chemokine, antiviral, and anti-apoptotic genes not seen in uninfected controls. Significant increases of intracellular antiviral and MHC I and II genes were also noted in EBOV-infected DCs. However, infected DCs failed to show any significant difference in co-stimulatory T-cell gene expression from uninfected DCs. Moreover, several chemokine genes were activated, but there was sparse expression of chemokine receptors that enabled activated DCs to home to lymph nodes. Overall, statistically significant expression of several intracellular antiviral genes was noted, which may limit viral load but fails to stop replication. EBOV gene expression profiling is of vital importance in understanding pathogenesis and devising novel therapeutic treatments such as small-molecule inhibitors.
[Research Progress on Antiviral Activity of Interferon-induced Transmembrane Proteins].
Chen, Yongkun; Zhu, Wenfei; Shu, Yuelong
2016-03-01
Interferon-induced Transmembrane Proteins (IFITMs) were identified through small interference RNA (siRNA) screening method in 1980s. The antiviral properties of the IFITMs were firstly discovered in 1996. Recently, its antiviral effect and mechanism have become a research hotspot. Many studies have shown that IFITM can inhibit the replication of multiple pathogenic viruses, including influenza A virus (IAV), Human Immunodeficiency Virus (HIV-1), hepatitis C virus (HCV), Ebola virus (EBOV), West Nile virus and so on. IFITMs inhibit the replication of virus in the early stage of the viral life cycle, which occurred before the release of viral genomes into the cytosol. Recent studies indicate that IFITM proteins could block viral replication by mediate viral membrane fusion. However, the mechanism is still under investigation. Here we review the discovery and characterization of the IFITM proteins, elucidate their antiviral activities and the potential mechanisms.
Ebola VP40 in Exosomes Can Cause Immune Cell Dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pleet, Michelle L.; Mathiesen, Allison; DeMarino, Catherine
Ebola virus (EBOV) is an enveloped, ssRNA virus from the family Filoviridae capable of causing severe hemorrhagic fever with up to 80–90% mortality rates. The most recent outbreak of EBOV in West Africa starting in 2014 resulted in over 11,300 deaths; however, long-lasting persistence and recurrence in survivors has been documented, potentially leading to further transmission of the virus. We have previously shown that exosomes from cells infected with HIV-1, HTLV-1 and Rift Valley Fever virus are able to transfer viral proteins and non-coding RNAs to naïve recipient cells, resulting in an altered cellular activity. In the current manuscript, wemore » examined the effect of Ebola structural proteins VP40, GP, NP and VLPs on recipient immune cells, as well as the effect of exosomes containing these proteins on naïve immune cells. We found that VP40-transfected cells packaged VP40 into exosomes, and that these exosomes were capable of inducing apoptosis in recipient immune cells. In addition, we show that presence of VP40 within parental cells or in exosomes delivered to naïve cells could result in the regulation of RNAi machinery including Dicer, Drosha, and Ago 1, which may play a role in the induction of cell death in recipient immune cells. Exosome biogenesis was regulated by VP40 in transfected cells by increasing levels of ESCRT-II proteins EAP20 and EAP45, and exosomal marker proteins CD63 and Alix. VP40 was phosphorylated by Cdk2/Cyclin complexes at Serine 233 which could be reversed with r-Roscovitine treatment. The level of VP40-containing exosomes could also be regulated by treated cells with FDA-approved Oxytetracycline. Additionally, we utilized novel nanoparticles to safely capture VP40 and other viral proteins from Ebola VLPs spiked into human samples using SDS/reducing agents, thus minimizing the need for BSL-4 conditions for most downstream assays. Collectively, our data indicates that VP40 packaged into exosomes may be responsible for the deregulation and eventual destruction of the T-cell and myeloid arms of the immune system (bystander lymphocyte apoptosis), allowing the virus to replicate to high titers in the immunocompromised host. Moreover, our results suggest that the use of drugs such as Oxytetracycline to modulate the levels of exosomes exiting EBOV-infected cells may be able to prevent the devastation of the adaptive immune system and allow for an improved rate of survival.« less
Ebola VP40 in Exosomes Can Cause Immune Cell Dysfunction
Pleet, Michelle L.; Mathiesen, Allison; DeMarino, Catherine; ...
2016-11-07
Ebola virus (EBOV) is an enveloped, ssRNA virus from the family Filoviridae capable of causing severe hemorrhagic fever with up to 80–90% mortality rates. The most recent outbreak of EBOV in West Africa starting in 2014 resulted in over 11,300 deaths; however, long-lasting persistence and recurrence in survivors has been documented, potentially leading to further transmission of the virus. We have previously shown that exosomes from cells infected with HIV-1, HTLV-1 and Rift Valley Fever virus are able to transfer viral proteins and non-coding RNAs to naïve recipient cells, resulting in an altered cellular activity. In the current manuscript, wemore » examined the effect of Ebola structural proteins VP40, GP, NP and VLPs on recipient immune cells, as well as the effect of exosomes containing these proteins on naïve immune cells. We found that VP40-transfected cells packaged VP40 into exosomes, and that these exosomes were capable of inducing apoptosis in recipient immune cells. In addition, we show that presence of VP40 within parental cells or in exosomes delivered to naïve cells could result in the regulation of RNAi machinery including Dicer, Drosha, and Ago 1, which may play a role in the induction of cell death in recipient immune cells. Exosome biogenesis was regulated by VP40 in transfected cells by increasing levels of ESCRT-II proteins EAP20 and EAP45, and exosomal marker proteins CD63 and Alix. VP40 was phosphorylated by Cdk2/Cyclin complexes at Serine 233 which could be reversed with r-Roscovitine treatment. The level of VP40-containing exosomes could also be regulated by treated cells with FDA-approved Oxytetracycline. Additionally, we utilized novel nanoparticles to safely capture VP40 and other viral proteins from Ebola VLPs spiked into human samples using SDS/reducing agents, thus minimizing the need for BSL-4 conditions for most downstream assays. Collectively, our data indicates that VP40 packaged into exosomes may be responsible for the deregulation and eventual destruction of the T-cell and myeloid arms of the immune system (bystander lymphocyte apoptosis), allowing the virus to replicate to high titers in the immunocompromised host. Moreover, our results suggest that the use of drugs such as Oxytetracycline to modulate the levels of exosomes exiting EBOV-infected cells may be able to prevent the devastation of the adaptive immune system and allow for an improved rate of survival.« less
Ebola VP40 in Exosomes Can Cause Immune Cell Dysfunction.
Pleet, Michelle L; Mathiesen, Allison; DeMarino, Catherine; Akpamagbo, Yao A; Barclay, Robert A; Schwab, Angela; Iordanskiy, Sergey; Sampey, Gavin C; Lepene, Benjamin; Nekhai, Sergei; Aman, M J; Kashanchi, Fatah
2016-01-01
Ebola virus (EBOV) is an enveloped, ssRNA virus from the family Filoviridae capable of causing severe hemorrhagic fever with up to 80-90% mortality rates. The most recent outbreak of EBOV in West Africa starting in 2014 resulted in over 11,300 deaths; however, long-lasting persistence and recurrence in survivors has been documented, potentially leading to further transmission of the virus. We have previously shown that exosomes from cells infected with HIV-1, HTLV-1 and Rift Valley Fever virus are able to transfer viral proteins and non-coding RNAs to naïve recipient cells, resulting in an altered cellular activity. In the current manuscript, we examined the effect of Ebola structural proteins VP40, GP, NP and VLPs on recipient immune cells, as well as the effect of exosomes containing these proteins on naïve immune cells. We found that VP40-transfected cells packaged VP40 into exosomes, and that these exosomes were capable of inducing apoptosis in recipient immune cells. Additionally, we show that presence of VP40 within parental cells or in exosomes delivered to naïve cells could result in the regulation of RNAi machinery including Dicer, Drosha, and Ago 1, which may play a role in the induction of cell death in recipient immune cells. Exosome biogenesis was regulated by VP40 in transfected cells by increasing levels of ESCRT-II proteins EAP20 and EAP45, and exosomal marker proteins CD63 and Alix. VP40 was phosphorylated by Cdk2/Cyclin complexes at Serine 233 which could be reversed with r-Roscovitine treatment. The level of VP40-containing exosomes could also be regulated by treated cells with FDA-approved Oxytetracycline. Additionally, we utilized novel nanoparticles to safely capture VP40 and other viral proteins from Ebola VLPs spiked into human samples using SDS/reducing agents, thus minimizing the need for BSL-4 conditions for most downstream assays. Collectively, our data indicates that VP40 packaged into exosomes may be responsible for the deregulation and eventual destruction of the T-cell and myeloid arms of the immune system (bystander lymphocyte apoptosis), allowing the virus to replicate to high titers in the immunocompromised host. Moreover, our results suggest that the use of drugs such as Oxytetracycline to modulate the levels of exosomes exiting EBOV-infected cells may be able to prevent the devastation of the adaptive immune system and allow for an improved rate of survival.
Clinical presentations and outcomes of patients with Ebola virus disease in Freetown, Sierra Leone.
Ji, Ying-Jie; Duan, Xue-Zhang; Gao, Xu-Dong; Li, Lei; Li, Chen; Ji, Dong; Li, Wen-Gang; Wang, Li-Fu; Meng, Yu-Hua; Yang, Xiao; Ling, Bin-Fang; Song, Xue-Ai; Gu, Mei-Lei; Jiang, Tao; Koroma, She-Ku M; Bangalie, James; Duan, Hui-Juan
2016-11-03
Clinical and laboratory data were collected and analysed from patients with Ebola virus disease (EVD) in Jui Government Hospital in Freetown, Sierra Leone, where patients with EVD were received and/or treated from October 1, 2014 to March 21, 2015 during the West Africa EVD outbreak. The study admitted 285 patients with confirmed EVD and followed them up till the endpoint (recovery or death). EVD was confirmed by quantitative RT-PCR assays detecting blood Ebola virus (EBOV). Among the 285 lab-confirmed EVD cases in Jui Government Hospital, 146 recovered and 139 died, with an overall survival rate of 51.23 %. Patients under the age of 6 years had a lower survival rate (37.50 %). Most non-survivors (79.86 %) died within 7 days after admission and the mean hospitalization time for non-survivors was 5.56 ± 6.11 days. More than half survivors (63.69 %) turned blood EBOV negative within 3 weeks after admission and the mean hospitalization time for survivors was 20.38 ± 7.58 days. High blood viral load (≥10 6 copies/ml) was found to be predictive of the non-survival outcome as indicated by the Receiver Operating Characteristic (ROC) curve analysis. The probability of patients' survival was less than 15 % when blood viral load was greater than 10 6 copies/ml. Multivariate analyses showed that blood viral load (P = 0.005), confusion (P = 0.010), abdominal pain (P = 0.003), conjunctivitis (P = 0.035), and vomiting (P = 0.004) were factors independently associated with the outcomes of EVD patients. Most death occurred within 1 week after admission, and patients at the age of 6 or younger had a lower survival rate. Most surviving patients turned blood EBOV negative within 1-4 weeks after admission. Factors such as high blood viral load, confusion, abdominal pain, vomiting and conjunctivitis were associated with poor prognosis for EVD patients.
Anti-Ebola therapies based on monoclonal antibodies: Current state and challenges ahead
González-González, E; Alvarez, MM; Márquez-Ipiña, AR; Santiago, G Trujillo-de; Rodríguez-Martínez, LM; Annabi, N; Khademhosseini, A
2017-01-01
The 2014 Ebola outbreak, the largest recorded, took us largely unprepared, with no available vaccine or specific treatment. In this context, the World Health Organization (WHO) declared that the humanitarian use of experimental therapies against Ebola Virus (EBOV) is ethical. In particular, an experimental treatment consisting of a cocktail of three monoclonal antibodies (mAbs) produced in tobacco plants and specifically directed to the Ebola virus glycoprotein (GP) was tested in humans, apparently with good results. Several mAbs with high affinity to the GP have been described. This review discusses our current knowledge on this topic. Particular emphasis is devoted to those mAbs that have been assayed in animal models or humans as possible therapies against Ebola. Engineering aspects and challenges for the production of anti-Ebola mAbs are also briefly discussed; current platforms for the design and production of full-length mAbs are cumbersome and costly. PMID:26611830
Quinoxaline-based inhibitors of Ebola and Marburg VP40 egress.
Loughran, H Marie; Han, Ziying; Wrobel, Jay E; Decker, Sarah E; Ruthel, Gordon; Freedman, Bruce D; Harty, Ronald N; Reitz, Allen B
2016-08-01
We prepared a series of quinoxalin-2-mercapto-acetyl-urea analogs and evaluated them for their ability to inhibit viral egress in our Marburg and Ebola VP40 VLP budding assays in HEK293T cells. We also evaluated selected compounds in our bimolecular complementation assay (BiMC) to detect and visualize a Marburg mVP40-Nedd4 interaction in live mammalian cells. Antiviral activity was assessed for selected compounds using a live recombinant vesicular stomatitis virus (VSV) (M40 virus) that expresses the EBOV VP40 PPxY L-domain. Finally selected compounds were evaluated in several ADME assays to have an early assessment of their drug properties. Our compounds had low nM potency in these assays (e.g., compounds 21, 24, 26, 39), and had good human liver microsome stability, as well as little or no inhibition of P450 3A4. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ebola vaccines in clinical trial: The promising candidates
Wang, Yuxiao; Li, Jingxin; Hu, Yuemei; Liang, Qi; Wei, Mingwei; Zhu, Fengcai
2017-01-01
ABSTRACT Ebola virus disease (EVD) has become a great threat to humans across the world in recent years. The 2014 Ebola epidemic in West Africa caused numerous deaths and attracted worldwide attentions. Since no specific drugs and treatments against EVD was available, vaccination was considered as the most promising and effective method of controlling this epidemic. So far, 7 vaccine candidates had been developed and evaluated through clinical trials. Among them, the recombinant vesicular stomatitis virus-based vaccine (rVSV-EBOV) is the most promising candidate, which demonstrated a significant protection against EVD in phase III clinical trial. However, several concerns were still associated with the Ebola vaccine candidates, including the safety profile in some particular populations, the immunization schedule for emergency vaccination, and the persistence of the protection. We retrospectively reviewed the current development of Ebola vaccines and discussed issues and challenges remaining to be investigated in the future. PMID:27764560
Marburg Virus Glycoprotein GP2: pH-Dependent Stability of the Ectodomain α-Helical Bundle†
Harrison, Joseph S.; Koellhoffer, Jayne F.; Chandran, Kartik; Lai, Jonathan R.
2012-01-01
Marburg virus (MARV) and Ebola virus (EBOV) constitute the family Filoviridae of enveloped viruses (filoviruses) that cause severe hemorrhagic fever. Infection by MARV is required for fusion between the host cell and viral membranes, a process that is mediated by the two subunits of the envelope glycoprotein GP1 (surface subunit) and GP2 (transmembrane subunit). Upon viral attachment and uptake, it is believed that the MARV viral fusion machinery is triggered by host factors and environmental conditions found in the endosome. Next, conformational rearrangements in the GP2 ectodomain result in the formation of a highly stable six-helix bundle; this refolding event provides the energetic driving force for membrane fusion. Both GP1 and GP2 from EBOV have been extensively studied, but there is little information available for the MARV glycoproteins. Here we have expressed two variants of the MARV GP2 ectodomain in Escherichia coli and analyzed their biophysical properties. Circular dichroism indicates that the MARV GP2 ectodomain adopts an α-helical conformation, and one variant sediments as a trimer by equilibrium analytical ultracentrifugation. Denaturation studies indicate the α-helical structure is highly stable at pH 5.3 (unfolding energy, ΔGunf H2O, of 33.4 ± 2.5 kcal/mol and melting temperature, Tm, of 75.3 ± 2.1 °C for one variant). Furthermore, we found the α-helical stability to be strongly dependent on pH with higher stability under lower pH conditions (Tm values ranging from ~92 °C at pH 4.0 to ~38 °C at pH 8.0). Mutational analysis suggests two glutamic acid residues (E579 and E580) are partially responsible for this pH-dependent behavior. Based on these results, we hypothesize that pH-dependent folding stability of the MARV GP2 ectodomain provides a mechanism to control conformational preferences such that the six-helix bundle ‘post-fusion’ state is preferred under conditions of appropriately matured endosomes. PMID:22369502
A simulation investigation on interaction mechanism between Ebola nucleoprotein and VP35 peptide.
Ding, Jing-Na; Zhang, Yan-Jun; Zhong, Hui; Ao, Cheng-Cheng; Han, Ju-Guang
2018-03-01
Ebola viruses (EBOV) will induce acute hemorrhagic fever, which is fatal to humans and nonhuman primates. The combination of EBOV VP35 peptide with nucleoprotein N-terminal (NPNTD) is proposed based on static crystal structures in recent studies, but VP35 binding mechanism and conformational dynamics are still unclear. This investigation, using Molecular Dynamic (MD) simulation and Molecular Mechanics Generalized Born Surface Area (MM-GB/SA) energy calculation, more convincingly proves the greater roles of the protein binding mechanisms than do hints from the static crystal structure observations. Conformational analysis of the systems demonstrate that combination with VP35 may lead to the conformational transition of NPNTD from "open" to "closed" state. According to the analyses of binding free energies and their decomposition, VP35 residue R37 plays a crucial role in wild type as well as mutant systems. Mutations of I29 and L33 to aspartate as well as M34 to proline affect binding affinity mainly through influencing electrostatic interaction, which is closely related to H-bonds formation. In addition, mutations mainly affect β-hairpin and loop regions, among which, M34P may have the greatest influence to the binding. This study may provide specific binding mechanisms between VP35 peptide and NPNTD, especially some important residues concerning binding.
Intracellular Crosslinking of Filoviral Nucleoproteins with Xintrabodies Restricts Viral Packaging
Darling, Tamarand Lee; Sherwood, Laura Jo; Hayhurst, Andrew
2017-01-01
Viruses assemble large macromolecular repeat structures that become part of the infectious particles or virions. Ribonucleocapsids (RNCs) of negative strand RNA viruses are a prime example where repetition of nucleoprotein (NP) along the genome creates a core polymeric helical scaffold that accommodates other nucleocapsid proteins including viral polymerase. The RNCs are transported through the cytosol for packaging into virions through association with viral matrix proteins at cell membranes. We hypothesized that RNC would be ideal targets for crosslinkers engineered to promote aberrant protein–protein interactions, thereby blocking their orderly transport and packaging. Previously, we had generated single-domain antibodies (sdAbs) against Filoviruses that have all targeted highly conserved C-terminal regions of NP known to be repetitively exposed along the length of the RNCs of Marburgvirus (MARV) and Ebolavirus (EBOV). Our crosslinker design consisted of dimeric sdAb expressed intracellularly, which we call Xintrabodies (X- for crosslinking). Electron microscopy of purified NP polymers incubated with purified sdAb constructs showed NP aggregation occurred in a genus-specific manner with dimeric and not monomeric sdAb. A virus-like particle (VLP) assay was used for initial evaluation where we found that dimeric sdAb inhibited NP incorporation into VP40-based VLPs whereas monomeric sdAb did not. Inhibition of NP packaging was genus specific. Confocal microscopy revealed dimeric sdAb was diffuse when expressed alone but focused on pools of NP when the two were coexpressed, while monomeric sdAb showed ambivalent partition. Infection of stable Vero cell lines expressing dimeric sdAb specific for either MARV or EBOV NP resulted in smaller plaques and reduced progeny of cognate virus relative to wild-type Vero cells. Though the impact was marginal at later time-points, the collective data suggest that viral replication can be reduced by crosslinking intracellular NP using relatively small amounts of dimeric sdAb to restrict NP packaging. The stoichiometry and ease of application of the approach would likely benefit from transitioning away from intracellular expression of crosslinking sdAb to exogenous delivery of antibody. By retuning sdAb specificity, the approach of crosslinking highly conserved regions of assembly critical proteins may well be applicable to inhibiting replication processes of a broad spectrum of viruses. PMID:29021793
Detection of Zaire ebolavirus in swine: Assay development and optimization.
Pickering, B S; Collignon, B; Smith, G; Marszal, P; Kobinger, G; Weingartl, H M
2018-02-01
Ebolaviruses (family Filoviridae, order Mononegavirales) cause often fatal, haemorrhagic fever in primates including humans. Pigs have been identified as a species susceptible to Reston ebolavirus (RESTV) infection, with indicated transmission to humans in the Philippines; however, their role during Ebola outbreaks in Africa needs to be clarified. To perform surveillance studies, detection of ebolavirus requires a prerequisite validation of viral RNA and antibody detection methods in swine samples. These diagnostic tests also need to be suitable for deployment to low-level containment laboratories. In this study, we developed a set of tests for detection of antibodies against Zaire ebolavirus (EBOV) in swine. Recombinant EBOV nucleoprotein was produced using a baculovirus expression system for indirect ELISA development. Evaluation of this assay was performed using laboratory and field samples, achieving a diagnostic specificity of 99%. Importantly, the indirect ELISA was able to detect antibodies to EBOV at 7 dpi, 3 days earlier than virus neutralization tests (VNT). The format of the VNT in this work was modified to a microtitre plaque reduction neutralization assay (miPRNT) complemented with immunostaining to provide a more rapid and highly specific assay. Finally, a confirmatory immunoblot assay was generated to supplement the indirect ELISA results. © 2017 Her Majesty the Queen in Right of Canada Reproduced with the permission of the Minister of Health and Agriculture, Canadian Food Inspection Agency.
Antiviral therapeutics for the treatment of Ebola virus infection.
Cardile, Anthony P; Downey, Lydia G; Wiseman, Perry D; Warren, Travis K; Bavari, Sina
2016-10-01
There have been significant developments in Ebola virus therapeutics. While the efficacy of several products was evaluated in the recent West Africa outbreak, a licensed treatment for EBOV disease remains elusive. Factors that negatively impacted the execution of clinical trials included an overall lack of world readiness to conduct clinical trials in an outbreak setting, ethical concerns limiting implementation of the randomized controlled trials in an outbreak setting, and a decline in case numbers by the time resources were mobilized to conduct clinical trials. We summarize relevant therapeutics that underwent clinical trials during the West Africa outbreak and highlight promising candidates under advanced development. Published by Elsevier Ltd.
2016-03-20
8U EBOV/Yam-May populations converted to 7U populations 101 in guinea pigs [10]. These changes may be related to selective advantages linked to the... guinea pigs or nonhuman primates [25]. 104 However, the observations described above indicate that there may be selective advantages 105 associated with...culture and 20 infection of guinea pigs . J Infect Dis. 2011;204 Suppl 3:S941-6. Epub 2011/10/19. doi: 21 10.1093/infdis/jir321. PubMed PMID: 21987773. 22
Clinical illness and outcomes in patients with Ebola in Sierra Leone.
Schieffelin, John S; Shaffer, Jeffrey G; Goba, Augustine; Gbakie, Michael; Gire, Stephen K; Colubri, Andres; Sealfon, Rachel S G; Kanneh, Lansana; Moigboi, Alex; Momoh, Mambu; Fullah, Mohammed; Moses, Lina M; Brown, Bethany L; Andersen, Kristian G; Winnicki, Sarah; Schaffner, Stephen F; Park, Daniel J; Yozwiak, Nathan L; Jiang, Pan-Pan; Kargbo, David; Jalloh, Simbirie; Fonnie, Mbalu; Sinnah, Vandi; French, Issa; Kovoma, Alice; Kamara, Fatima K; Tucker, Veronica; Konuwa, Edwin; Sellu, Josephine; Mustapha, Ibrahim; Foday, Momoh; Yillah, Mohamed; Kanneh, Franklyn; Saffa, Sidiki; Massally, James L B; Boisen, Matt L; Branco, Luis M; Vandi, Mohamed A; Grant, Donald S; Happi, Christian; Gevao, Sahr M; Fletcher, Thomas E; Fowler, Robert A; Bausch, Daniel G; Sabeti, Pardis C; Khan, S Humarr; Garry, Robert F
2014-11-27
Limited clinical and laboratory data are available on patients with Ebola virus disease (EVD). The Kenema Government Hospital in Sierra Leone, which had an existing infrastructure for research regarding viral hemorrhagic fever, has received and cared for patients with EVD since the beginning of the outbreak in Sierra Leone in May 2014. We reviewed available epidemiologic, clinical, and laboratory records of patients in whom EVD was diagnosed between May 25 and June 18, 2014. We used quantitative reverse-transcriptase-polymerase-chain-reaction assays to assess the load of Ebola virus (EBOV, Zaire species) in a subgroup of patients. Of 106 patients in whom EVD was diagnosed, 87 had a known outcome, and 44 had detailed clinical information available. The incubation period was estimated to be 6 to 12 days, and the case fatality rate was 74%. Common findings at presentation included fever (in 89% of the patients), headache (in 80%), weakness (in 66%), dizziness (in 60%), diarrhea (in 51%), abdominal pain (in 40%), and vomiting (in 34%). Clinical and laboratory factors at presentation that were associated with a fatal outcome included fever, weakness, dizziness, diarrhea, and elevated levels of blood urea nitrogen, aspartate aminotransferase, and creatinine. Exploratory analyses indicated that patients under the age of 21 years had a lower case fatality rate than those over the age of 45 years (57% vs. 94%, P=0.03), and patients presenting with fewer than 100,000 EBOV copies per milliliter had a lower case fatality rate than those with 10 million EBOV copies per milliliter or more (33% vs. 94%, P=0.003). Bleeding occurred in only 1 patient. The incubation period and case fatality rate among patients with EVD in Sierra Leone are similar to those observed elsewhere in the 2014 outbreak and in previous outbreaks. Although bleeding was an infrequent finding, diarrhea and other gastrointestinal manifestations were common. (Funded by the National Institutes of Health and others.).
NASA Astrophysics Data System (ADS)
Andriani, Tri; Irawan, Mohammad Isa
2017-08-01
Ebola Virus Disease (EVD) is a disease caused by a virus of the genus Ebolavirus (EBOV), family Filoviridae. Ebola virus is classifed into five types, namely Zaire ebolavirus (ZEBOV), Sudan ebolavirus (SEBOV), Bundibugyo ebolavirus (BEBOV), Tai Forest ebolavirus also known as Cote d'Ivoire ebolavirus (CIEBOV), and Reston ebolavirus (REBOV). Identification of kinship types of Ebola virus can be performed using phylogenetic trees. In this study, the phylogenetic tree constructed by UPGMA method in which there are Multiple Alignment using Progressive Method. The results concluded that the phylogenetic tree formation kinship ebola virus types that kind of Tai Forest ebolavirus close to Bundibugyo ebolavirus but the layout state ebola epidemic spread far apart. The genetic distance for this type of Bundibugyo ebolavirus with Tai Forest ebolavirus is 0.3725. Type Tai Forest ebolavirus similar to Bundibugyo ebolavirus not inuenced by the proximity of the area ebola epidemic spread.
VP35 Knockdown Inhibits Ebola Virus Amplification and Protects Against Lethal Infection in Mice
2006-03-01
Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702-50112; and AVI BioPharma Inc., Corvallis, Oregon3 Received 29 June...target nucleotides within the EBOV genome or antigenome (Table 1). All PMO were synthesized and purified by AVI BioPharma Inc. (Cor- vallis, OR), as...technical assistance. We are also grateful to the Chemistry Department at AVI BioPharma Inc. for expert synthesis, purification, and analysis of all PMO
Nguyen, Thi Huyen Tram; Anglaret, Xavier; Madelain, Vincent; Taburet, Anne-Marie; Baize, Sylvain; Pastorino, Boris; Rodallec, Anne; Piorkowski, Géraldine; Conde, Mamoudou N.; Bore, Joseph Akoi; Carbonnelle, Caroline; Jacquot, Frédéric; Raoul, Hervé; Malvy, Denis; Mentré, France
2017-01-01
Background In 2014–2015, we assessed favipiravir tolerance and efficacy in patients with Ebola virus (EBOV) disease (EVD) in Guinea (JIKI trial). Because the drug had never been used before for this indication and that high concentrations of the drugs were needed to achieve antiviral efficacy against EBOV, a pharmacokinetic model had been used to propose relevant dosing regimen. Here we report the favipiravir plasma concentrations that were achieved in participants in the JIKI trial and put them in perspective with the model-based targeted concentrations. Methods and findings Pre-dose drug concentrations were collected at Day-2 and Day-4 of treatment in 66 patients of the JIKI trial and compared to those predicted by the model taking into account patient’s individual characteristics. At Day-2, the observed concentrations were slightly lower than the model predictions adjusted for patient’s characteristics (median value of 46.1 versus 54.3 μg/mL for observed and predicted concentrations, respectively, p = 0.012). However, the concentrations dropped at Day-4, which was not anticipated by the model (median values of 25.9 and 64.4 μg/mL for observed and predicted concentrations, respectively, p<10−6). There was no significant relationship between favipiravir concentrations and EBOV viral kinetics or mortality. Conclusions Favipiravir plasma concentrations in the JIKI trial failed to achieve the target exposure defined before the trial. Furthermore, the drug concentration experienced an unanticipated drop between Day-2 and Day-4. The origin of this drop could be due to severe sepsis conditions and/or to intrinsic properties of favipiravir metabolism. Dose-ranging studies should be performed in healthy volunteers to assess the concentrations and the tolerance that could be achieved with high doses. Trial registration ClinicalTrials.gov NCT02329054 PMID:28231247
Lüdtke, Anja; Ruibal, Paula; Becker-Ziaja, Beate; Rottstegge, Monika; Wozniak, David M; Cabeza-Cabrerizo, Mar; Thorenz, Anja; Weller, Romy; Kerber, Romy; Idoyaga, Juliana; Magassouba, N'Faly; Gabriel, Martin; Günther, Stephan; Oestereich, Lisa; Muñoz-Fontela, César
2016-10-15
A number of previous studies have identified antigen-presenting cells (APCs) as key targets of Ebola virus (EBOV), but the role of APCs in human Ebola virus disease (EVD) is not known. We have evaluated the phenotype and kinetics of monocytes, neutrophils, and dendritic cells (DCs) in peripheral blood of patients for whom EVD was diagnosed by the European Mobile Laboratory in Guinea. Acute EVD was characterized by reduced levels of circulating nonclassical CD16 + monocytes with a poor activation profile. In survivors, CD16 + monocytes were activated during recovery, coincident with viral clearance, suggesting an important role of this cell subset in EVD pathophysiology. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Efficacy of Tilorone Dihydrochloride against Ebola Virus Infection.
Ekins, Sean; Lingerfelt, Mary A; Comer, Jason E; Freiberg, Alexander N; Mirsalis, Jon C; O'Loughlin, Kathleen; Harutyunyan, Anush; McFarlane, Claire; Green, Carol E; Madrid, Peter B
2018-02-01
Tilorone dihydrochloride (tilorone) is a small-molecule, orally bioavailable drug that is used clinically as an antiviral outside the United States. A machine-learning model trained on anti-Ebola virus (EBOV) screening data previously identified tilorone as a potent in vitro EBOV inhibitor, making it a candidate for the treatment of Ebola virus disease (EVD). In the present study, a series of in vitro ADMET (absorption, distribution, metabolism, excretion, toxicity) assays demonstrated the drug has excellent solubility, high Caco-2 permeability, was not a P-glycoprotein substrate, and had no inhibitory activity against five human CYP450 enzymes (3A4, 2D6, 2C19, 2C9, and 1A2). Tilorone was shown to have 52% human plasma protein binding with excellent plasma stability and a mouse liver microsome half-life of 48 min. Dose range-finding studies in mice demonstrated a maximum tolerated single dose of 100 mg/kg of body weight. A pharmacokinetics study in mice at 2- and 10-mg/kg dose levels showed that the drug is rapidly absorbed, has dose-dependent increases in maximum concentration of unbound drug in plasma and areas under the concentration-time curve, and has a half-life of approximately 18 h in both males and females, although the exposure was ∼2.5-fold higher in male mice. Tilorone doses of 25 and 50 mg/kg proved efficacious in protecting 90% of mice from a lethal challenge with mouse-adapted with once-daily intraperitoneal (i.p.) dosing for 8 days. A subsequent study showed that 30 mg/kg/day of tilorone given i.p. starting 2 or 24 h postchallenge and continuing through day 7 postinfection was fully protective, indicating promising activity for the treatment of EVD. Copyright © 2018 American Society for Microbiology.
Del Vecchio, Kathryn; Frick, Cary T; Gc, Jeevan B; Oda, Shun-Ichiro; Gerstman, Bernard S; Saphire, Erica Ollmann; Chapagain, Prem P; Stahelin, Robert V
2018-03-02
Ebola virus (EBOV) is a filamentous lipid-enveloped virus that causes hemorrhagic fever with a high fatality rate. Viral protein 40 (VP40) is the major EBOV matrix protein and regulates viral budding from the plasma membrane. VP40 is a transformer/morpheein that can structurally rearrange its native homodimer into either a hexameric filament that facilitates viral budding or an RNA-binding octameric ring that regulates viral transcription. VP40 associates with plasma-membrane lipids such as phosphatidylserine (PS), and this association is critical to budding from the host cell. However, it is poorly understood how different VP40 structures interact with PS, what essential residues are involved in this association, and whether VP40 has true selectivity for PS among different glycerophospholipid headgroups. In this study, we used lipid-binding assays, MD simulations, and cellular imaging to investigate the molecular basis of VP40-PS interactions and to determine whether different VP40 structures ( i.e. monomer, dimer, and octamer) can interact with PS-containing membranes. Results from quantitative analysis indicated that VP40 associates with PS vesicles via a cationic patch in the C-terminal domain (Lys 224, 225 and Lys 274, 275 ). Substitutions of these residues with alanine reduced PS-vesicle binding by >40-fold and abrogated VP40 localization to the plasma membrane. Dimeric VP40 had 2-fold greater affinity for PS-containing membranes than the monomer, whereas binding of the VP40 octameric ring was reduced by nearly 10-fold. Taken together, these results suggest the different VP40 structures known to form in the viral life cycle harbor different affinities for PS-containing membranes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Zhu, Yali; Cherukuri, Nil Celebi; Jackel, Jamie N; Wu, Zetang; Crary, Monica; Buckley, Kenneth J; Bisaro, David M; Parris, Deborah S
2012-03-01
Ebola virus (EBOV) causes a lethal hemorrhagic fever for which there is no approved effective treatment or prevention strategy. EBOV VP35 is a virulence factor that blocks innate antiviral host responses, including the induction of and response to alpha/beta interferon. VP35 is also an RNA silencing suppressor (RSS). By inhibiting microRNA-directed silencing, mammalian virus RSSs have the capacity to alter the cellular environment to benefit replication. A reporter gene containing specific microRNA target sequences was used to demonstrate that prior expression of wild-type VP35 was able to block establishment of microRNA silencing in mammalian cells. In addition, wild-type VP35 C-terminal domain (CTD) protein fusions were shown to bind small interfering RNA (siRNA). Analysis of mutant proteins demonstrated that reporter activity in RSS assays did not correlate with their ability to antagonize double-stranded RNA (dsRNA)-activated protein kinase R (PKR) or bind siRNA. The results suggest that enhanced reporter activity in the presence of VP35 is a composite of nonspecific translational enhancement and silencing suppression. Moreover, most of the specific RSS activity in mammalian cells is RNA binding independent, consistent with VP35's proposed role in sequestering one or more silencing complex proteins. To examine RSS activity in a system without interferon, VP35 was tested in well-characterized plant silencing suppression assays. VP35 was shown to possess potent plant RSS activity, and the activities of mutant proteins correlated strongly, but not exclusively, with RNA binding ability. The results suggest the importance of VP35-protein interactions in blocking silencing in a system (mammalian) that cannot amplify dsRNA.
A Single Residue in Ebola Virus Receptor NPC1 Influences Cellular Host Range in Reptiles
2016-09-07
Bats are thought to be important reservoirs 63 for filoviruses; however, conclusive evidence in favor of this hypothesis has been obtained only...in the second luminal domain of 87 NPC1, domain C, is under positive selection in bats , and controls susceptibility of bat cells to 88 EBOV...278 We recently demonstrated that the residue 502 in NPC1 was under positive selection in 279 bats , and was responsible for the reduced
2008-01-01
siRNA delivery method in his animal model, it remains to be studied whether this general pproach is safe in humans. Often cited as an advantage of siRNAs...way studying the intravenous delivery f ASO drug candidates targeting Bcl-2 (Genasense®, Genta) nd c-myc (Resten-NG®, AVI BioPharma), while completed... studies have been published investigating MOs as a treatment for EBOV infection, with both showing fficacy in animal models. PMOs were designed to
Genetic factors of Ebola virus virulence in guinea pigs.
Subbotina, Ekaterina; Dadaeva, Alexandra; Kachko, Alla; Chepurnov, Alexander
2010-10-01
Zaire ebolavirus (ZEBOV) causes severe hemorrhagic fever in primates, whereas in guinea pigs it induces a nonlethal infection with a mild fever and subsequent recovery. We performed 7 selective passages in guinea pigs resulted in obtaining of guinea pig-adapted strain (GPA-P7) strain. By the 7th passage, the infection with EBOV induced a lethal disease in animals accompanied by the characteristic hematological changes: leukocytosis (primarily due to neutrophilia) as well as pronounced deficiencies in platelets, lymphocytes, monocytes and significant decrease of blood neutrophils phagocytic capacity. Increasing of virulence correlated with appearance of several nucleotide substitutions: in the genes NP, A2166G (N566S), VP24, U10784C (L147P), G10557A (M71I), G10805U (R154L), and L, G12286A (V236I). It has been theoretically calculated that the mutations associated with an increase in EBOV virulence can confer characteristic secondary structure on the proteins NP (C-terminal region) and full-sized VP24. (c) 2010 Elsevier B.V. All rights reserved.
Balmith, Marissa; Soliman, Mahmoud E S
2017-02-28
The first account of the dynamic features of the loop region of VP40 of the Ebola virus (EboV) using accelerated molecular dynamics (aMD) simulations is reported herein. Due to its major role in the Ebola life cycle, VP40 is considered a promising therapeutic target. The available experimental data on the N-terminal domain (NTD) loop indicates that mutations K127A, T129A and N130A demonstrate an unrecognized role for NTD-plasma membrane (PM) interaction for efficient VP40-PM localization, oligomerization, matrix assembly and egress. Despite experimental results, the molecular description of VP40 and the information it can provide still remain vague. Therefore, to gain further molecular insight into the effect of mutations on the loop region of VP40 and its effects on the overall protein conformation and VP40 dimerization, aMD simulations and post-dynamic analyses were employed for wildtype (WT) and mutant systems. The results showed significant variations in the presence of mutations as per RMSF, RMSD, R g , PCA and distance calculations in comparison to the WT. These results could provide researchers with insight with regards to the conformational aspects concerning VP40 and its close relation to the experimental data. We believe that the results presented in this study will ultimately provide a useful understanding of the structural landscape of the loop region of VP40, which would contribute towards the discovery of novel EboV inhibitors.
Structural Basis for Marburg Virus Neutralization by a Cross-Reactive Human Antibody
Hashiguchi, Takao; Fusco, Marnie L.; Bornholdt, Zachary A.; ...
2015-02-26
The filoviruses, including Marburg and Ebola, express a single glycoprotein on their surface, termed GP, which is responsible for attachment and entry of target cells. Filovirus GPs differ by up to 70% in protein sequence, and no antibodies are yet described that cross-react among them. Here, we present the 3.6 Å crystal structure of Marburg virus GP in complex with a cross-reactive antibody from a human survivor, and a lower resolution structure of the antibody bound to Ebola virus GP. The antibody, MR78, recognizes a GP1 epitope conserved across the filovirus family, which likely represents the binding site of theirmore » NPC1 receptor. Indeed, MR78 blocks binding of the essential NPC1 domain C. We find that these structures and additional small-angle X-ray scattering of mucin-containing MARV and EBOV GPs suggest why such antibodies were not previously elicited in studies of Ebola virus, and provide critical templates for development of immunotherapeutics and inhibitors of entry.« less
Structural basis for Marburg virus neutralization by a cross-reactive human antibody.
Hashiguchi, Takao; Fusco, Marnie L; Bornholdt, Zachary A; Lee, Jeffrey E; Flyak, Andrew I; Matsuoka, Rei; Kohda, Daisuke; Yanagi, Yusuke; Hammel, Michal; Crowe, James E; Saphire, Erica Ollmann
2015-02-26
The filoviruses, including Marburg and Ebola, express a single glycoprotein on their surface, termed GP, which is responsible for attachment and entry of target cells. Filovirus GPs differ by up to 70% in protein sequence, and no antibodies are yet described that cross-react among them. Here, we present the 3.6 Å crystal structure of Marburg virus GP in complex with a cross-reactive antibody from a human survivor, and a lower resolution structure of the antibody bound to Ebola virus GP. The antibody, MR78, recognizes a GP1 epitope conserved across the filovirus family, which likely represents the binding site of their NPC1 receptor. Indeed, MR78 blocks binding of the essential NPC1 domain C. These structures and additional small-angle X-ray scattering of mucin-containing MARV and EBOV GPs suggest why such antibodies were not previously elicited in studies of Ebola virus, and provide critical templates for development of immunotherapeutics and inhibitors of entry. Copyright © 2015 Elsevier Inc. All rights reserved.
2016-06-14
characterize FVM04 binding to EBOV GP, FVM04 Fab in complex with GP∆Muc was analyzed by negative stain electron microscopy. The binding location of...FVM04 revealed an epitope consistent with the crest region residues derived by mutagenesis studies. The class averages suggest that only one FVM04 Fab ...binds to each GP trimer (Figure 3A-B). It is likely that the binding orientation and proximity to the threefold axis precludes additional FVM04 Fabs
Establishment and characterization of a lethal mouse model for the Angola strain of Marburg virus.
Qiu, Xiangguo; Wong, Gary; Audet, Jonathan; Cutts, Todd; Niu, Yulian; Booth, Stephanie; Kobinger, Gary P
2014-11-01
Infections with Marburg virus (MARV) and Ebola virus (EBOV) cause severe hemorrhagic fever in humans and nonhuman primates (NHPs) with fatality rates up to 90%. A number of experimental vaccine and treatment platforms have previously been shown to be protective against EBOV infection. However, the rate of development for prophylactics and therapeutics against MARV has been lower in comparison, possibly because a small-animal model is not widely available. Here we report the development of a mouse model for studying the pathogenesis of MARV Angola (MARV/Ang), the most virulent strain of MARV. Infection with the wild-type virus does not cause disease in mice, but the adapted virus (MARV/Ang-MA) recovered from liver homogenates after 24 serial passages in severe combined immunodeficient (SCID) mice caused severe disease when administered intranasally (i.n.) or intraperitoneally (i.p.). The median lethal dose (LD50) was determined to be 0.015 50% TCID50 (tissue culture infective dose) of MARV/Ang-MA in SCID mice, and i.p. infection at a dose of 1,000× LD50 resulted in death between 6 and 8 days postinfection in SCID mice. Similar results were obtained with immunocompetent BALB/c and C57BL/6 mice challenged i.p. with 2,000× LD50 of MARV/Ang-MA. Virological and pathological analyses of MARV/Ang-MA-infected BALB/c mice revealed that the associated pathology was reminiscent of observations made in NHPs with MARV/Ang. MARV/Ang-MA-infected mice showed most of the clinical hallmarks observed with Marburg hemorrhagic fever, including lymphopenia, thrombocytopenia, marked liver damage, and uncontrolled viremia. Virus titers reached 10(8) TCID50/ml in the blood and between 10(6) and 10(10) TCID50/g tissue in the intestines, kidney, lungs, brain, spleen, and liver. This model provides an important tool to screen candidate vaccines and therapeutics against MARV infections. The Angola strain of Marburg virus (MARV/Ang) was responsible for the largest outbreak ever documented for Marburg viruses. With a 90% fatality rate, it is similar to Ebola virus, which makes it one of the most lethal viruses known to humans. There are currently no approved interventions for Marburg virus, in part because a small-animal model that is vulnerable to MARV/Ang infection is not available to screen and test potential vaccines and therapeutics in a quick and economical manner. To address this need, we have adapted MARV/Ang so that it causes illness in mice resulting in death. The signs of disease in these mice are reminiscent of wild-type MARV/Ang infections in humans and nonhuman primates. We believe that this will be of help in accelerating the development of life-saving measures against Marburg virus infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Real-time, portable genome sequencing for Ebola surveillance
Bore, Joseph Akoi; Koundouno, Raymond; Dudas, Gytis; Mikhail, Amy; Ouédraogo, Nobila; Afrough, Babak; Bah, Amadou; Baum, Jonathan HJ; Becker-Ziaja, Beate; Boettcher, Jan-Peter; Cabeza-Cabrerizo, Mar; Camino-Sanchez, Alvaro; Carter, Lisa L.; Doerrbecker, Juiliane; Enkirch, Theresa; Dorival, Isabel Graciela García; Hetzelt, Nicole; Hinzmann, Julia; Holm, Tobias; Kafetzopoulou, Liana Eleni; Koropogui, Michel; Kosgey, Abigail; Kuisma, Eeva; Logue, Christopher H; Mazzarelli, Antonio; Meisel, Sarah; Mertens, Marc; Michel, Janine; Ngabo, Didier; Nitzsche, Katja; Pallash, Elisa; Patrono, Livia Victoria; Portmann, Jasmine; Repits, Johanna Gabriella; Rickett, Natasha Yasmin; Sachse, Andrea; Singethan, Katrin; Vitoriano, Inês; Yemanaberhan, Rahel L; Zekeng, Elsa G; Trina, Racine; Bello, Alexander; Sall, Amadou Alpha; Faye, Ousmane; Faye, Oumar; Magassouba, N’Faly; Williams, Cecelia V.; Amburgey, Victoria; Winona, Linda; Davis, Emily; Gerlach, Jon; Washington, Franck; Monteil, Vanessa; Jourdain, Marine; Bererd, Marion; Camara, Alimou; Somlare, Hermann; Camara, Abdoulaye; Gerard, Marianne; Bado, Guillaume; Baillet, Bernard; Delaune, Déborah; Nebie, Koumpingnin Yacouba; Diarra, Abdoulaye; Savane, Yacouba; Pallawo, Raymond Bernard; Gutierrez, Giovanna Jaramillo; Milhano, Natacha; Roger, Isabelle; Williams, Christopher J; Yattara, Facinet; Lewandowski, Kuiama; Taylor, Jamie; Rachwal, Philip; Turner, Daniel; Pollakis, Georgios; Hiscox, Julian A.; Matthews, David A.; O’Shea, Matthew K.; Johnston, Andrew McD; Wilson, Duncan; Hutley, Emma; Smit, Erasmus; Di Caro, Antonino; Woelfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Gabriel, Martin; Weller, Simon A.; Koivogui, Lamine; Diallo, Boubacar; Keita, Sakoba; Rambaut, Andrew; Formenty, Pierre; Gunther, Stephan; Carroll, Miles W.
2016-01-01
The Ebola virus disease (EVD) epidemic in West Africa is the largest on record, responsible for >28,599 cases and >11,299 deaths 1. Genome sequencing in viral outbreaks is desirable in order to characterize the infectious agent to determine its evolutionary rate, signatures of host adaptation, identification and monitoring of diagnostic targets and responses to vaccines and treatments. The Ebola virus genome (EBOV) substitution rate in the Makona strain has been estimated at between 0.87 × 10−3 to 1.42 × 10−3 mutations per site per year. This is equivalent to 16 to 27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic 2-7. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought-after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions 8. Genomic surveillance during the epidemic has been sporadic due to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities 9. In order to address this problem, we devised a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. Here we present sequence data and analysis of 142 Ebola virus (EBOV) samples collected during the period March to October 2015. We were able to generate results in less than 24 hours after receiving an Ebola positive sample, with the sequencing process taking as little as 15-60 minutes. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks. PMID:26840485
Cashman, Kathleen A; Wilkinson, Eric R; Wollen, Suzanne E; Shamblin, Joshua D; Zelko, Justine M; Bearss, Jeremy J; Zeng, Xiankun; Broderick, Kate E; Schmaljohn, Connie S
2017-12-02
We previously developed optimized DNA vaccines against both Lassa fever and Ebola hemorrhagic fever viruses and demonstrated that they were protective individually in guinea pig and nonhuman primate models. In this study, we vaccinated groups of strain 13 guinea pigs two times, four weeks apart with 50 µg of each DNA vaccine or a mock vaccine at discrete sites by intradermal electroporation. Five weeks following the second vaccinations, guinea pigs were exposed to lethal doses of Lassa virus, Ebola virus, or a combination of both viruses simultaneously. None of the vaccinated guinea pigs, regardless of challenge virus and including the coinfected group, displayed weight loss, fever or other disease signs, and all survived to the study endpoint. All of the mock-vaccinated guinea pigs that were infected with Lassa virus, and all but one of the EBOV-infected mock-vaccinated guinea pigs succumbed. In order to determine if the dual-agent vaccination strategy could protect against both viruses if exposures were temporally separated, we held the surviving vaccinates in BSL-4 for approximately 120 days to perform a cross-challenge experiment in which guinea pigs originally infected with Lassa virus received a lethal dose of Ebola virus and those originally infected with Ebola virus were infected with a lethal dose of Lassa virus. All guinea pigs remained healthy and survived to the study endpoint. This study clearly demonstrates that DNA vaccines against Lassa and Ebola viruses can elicit protective immunity against both individual virus exposures as well as in a mixed-infection environment.
Cashman, Kathleen A.; Wilkinson, Eric R.; Wollen, Suzanne E.; Shamblin, Joshua D.; Zelko, Justine M.; Bearss, Jeremy J.; Zeng, Xiankun; Broderick, Kate E.; Schmaljohn, Connie S.
2017-01-01
ABSTRACT We previously developed optimized DNA vaccines against both Lassa fever and Ebola hemorrhagic fever viruses and demonstrated that they were protective individually in guinea pig and nonhuman primate models. In this study, we vaccinated groups of strain 13 guinea pigs two times, four weeks apart with 50 µg of each DNA vaccine or a mock vaccine at discrete sites by intradermal electroporation. Five weeks following the second vaccinations, guinea pigs were exposed to lethal doses of Lassa virus, Ebola virus, or a combination of both viruses simultaneously. None of the vaccinated guinea pigs, regardless of challenge virus and including the coinfected group, displayed weight loss, fever or other disease signs, and all survived to the study endpoint. All of the mock-vaccinated guinea pigs that were infected with Lassa virus, and all but one of the EBOV-infected mock-vaccinated guinea pigs succumbed. In order to determine if the dual-agent vaccination strategy could protect against both viruses if exposures were temporally separated, we held the surviving vaccinates in BSL-4 for approximately 120 days to perform a cross-challenge experiment in which guinea pigs originally infected with Lassa virus received a lethal dose of Ebola virus and those originally infected with Ebola virus were infected with a lethal dose of Lassa virus. All guinea pigs remained healthy and survived to the study endpoint. This study clearly demonstrates that DNA vaccines against Lassa and Ebola viruses can elicit protective immunity against both individual virus exposures as well as in a mixed-infection environment. PMID:29135337
Real-time, portable genome sequencing for Ebola surveillance.
Quick, Joshua; Loman, Nicholas J; Duraffour, Sophie; Simpson, Jared T; Severi, Ettore; Cowley, Lauren; Bore, Joseph Akoi; Koundouno, Raymond; Dudas, Gytis; Mikhail, Amy; Ouédraogo, Nobila; Afrough, Babak; Bah, Amadou; Baum, Jonathan Hj; Becker-Ziaja, Beate; Boettcher, Jan-Peter; Cabeza-Cabrerizo, Mar; Camino-Sanchez, Alvaro; Carter, Lisa L; Doerrbecker, Juiliane; Enkirch, Theresa; Dorival, Isabel Graciela García; Hetzelt, Nicole; Hinzmann, Julia; Holm, Tobias; Kafetzopoulou, Liana Eleni; Koropogui, Michel; Kosgey, Abigail; Kuisma, Eeva; Logue, Christopher H; Mazzarelli, Antonio; Meisel, Sarah; Mertens, Marc; Michel, Janine; Ngabo, Didier; Nitzsche, Katja; Pallash, Elisa; Patrono, Livia Victoria; Portmann, Jasmine; Repits, Johanna Gabriella; Rickett, Natasha Yasmin; Sachse, Andrea; Singethan, Katrin; Vitoriano, Inês; Yemanaberhan, Rahel L; Zekeng, Elsa G; Trina, Racine; Bello, Alexander; Sall, Amadou Alpha; Faye, Ousmane; Faye, Oumar; Magassouba, N'Faly; Williams, Cecelia V; Amburgey, Victoria; Winona, Linda; Davis, Emily; Gerlach, Jon; Washington, Franck; Monteil, Vanessa; Jourdain, Marine; Bererd, Marion; Camara, Alimou; Somlare, Hermann; Camara, Abdoulaye; Gerard, Marianne; Bado, Guillaume; Baillet, Bernard; Delaune, Déborah; Nebie, Koumpingnin Yacouba; Diarra, Abdoulaye; Savane, Yacouba; Pallawo, Raymond Bernard; Gutierrez, Giovanna Jaramillo; Milhano, Natacha; Roger, Isabelle; Williams, Christopher J; Yattara, Facinet; Lewandowski, Kuiama; Taylor, Jamie; Rachwal, Philip; Turner, Daniel; Pollakis, Georgios; Hiscox, Julian A; Matthews, David A; O'Shea, Matthew K; Johnston, Andrew McD; Wilson, Duncan; Hutley, Emma; Smit, Erasmus; Di Caro, Antonino; Woelfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Gabriel, Martin; Weller, Simon A; Koivogui, Lamine; Diallo, Boubacar; Keita, Sakoba; Rambaut, Andrew; Formenty, Pierre; Gunther, Stephan; Carroll, Miles W
2016-02-11
The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 × 10(-3) and 1.42 × 10(-3) mutations per site per year. This is equivalent to 16-27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15-60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.
EBOV Protection Is Supported by T Cell-Dependent Humoral Responses But Is Not Requisite for Survival
2016-06-03
EBOV protection is supported by T cell- dependent humoral responses but is not requisite for survival. 1 Christopher L. Cooper, Karen A. Martins...platforms of a requisite role for antibody-5 dependent protection and extensive efforts in development of antibody therapy against lethal EBOV 6... dependent 12 mechanisms. We show that Hiltonol both augmented and sustained eVLP-mediated GC B cell formation 13 and increased antigen-specific B cell
Zinzula, Luca; Esposito, Francesca; Pala, Daniela; Tramontano, Enzo
2012-03-01
The Ebola viruses (EBOVs) VP35 protein is a multifunctional major virulence factor involved in EBOVs replication and evasion of the host immune system. EBOV VP35 is an essential component of the viral RNA polymerase, it is a key participant of the nucleocapsid assembly and it inhibits the innate immune response by antagonizing RIG-I like receptors through its dsRNA binding function and, hence, by suppressing the host type I interferon (IFN) production. Insights into the VP35 dsRNA recognition have been recently revealed by structural and functional analysis performed on its C-terminus protein. We report the biochemical characterization of the Zaire ebolavirus (ZEBOV) full-length recombinant VP35 (rVP35)-dsRNA binding function. We established a novel in vitro magnetic dsRNA binding pull down assay, determined the rVP35 optimal dsRNA binding parameters, measured the rVP35 equilibrium dissociation constant for heterologous in vitro transcribed dsRNA of different length and short synthetic dsRNA of 8bp, and validated the assay for compound screening by assessing the inhibitory ability of auryntricarboxylic acid (IC(50) value of 50μg/mL). Furthermore, we compared the dsRNA binding properties of full length wt rVP35 with those of R305A, K309A and R312A rVP35 mutants, which were previously reported to be defective in dsRNA binding-mediated IFN inhibition, showing that the latter have measurably increased K(d) values for dsRNA binding and modified migration patterns in mobility shift assays with respect to wt rVP35. Overall, these results provide the first characterization of the full-length wt and mutants VP35-dsRNA binding functions. Copyright © 2012 Elsevier B.V. All rights reserved.
Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry.
Henß, Lisa; Beck, Simon; Weidner, Tatjana; Biedenkopf, Nadine; Sliva, Katja; Weber, Christopher; Becker, Stephan; Schnierle, Barbara S
2016-08-31
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes high fever, rash, and recurrent arthritis in humans. It has efficiently adapted to Aedes albopictus, which also inhabits temperate regions and currently causes large outbreaks in the Caribbean and Latin America. Ebola virus (EBOV) is a member of the filovirus family. It causes the Ebola virus disease (EDV), formerly known as Ebola hemorrhagic fever in humans and has a mortality rate of up to 70 %. The last outbreak in Western Africa was the largest in history and has caused approximately 25,000 cases and 10,000 deaths. For both viral infections no specific treatment or licensed vaccine is currently available. The bis-hexasulfonated naphthylurea, suramin, is used as a treatment for trypanosome-caused African river blindness. As a competitive inhibitor of heparin, suramin has been described to have anti-viral activity. We tested the activity of suramin during CHIKV or Ebola virus infection, using CHIKV and Ebola envelope glycoprotein pseudotyped lentiviral vectors and wild-type CHIKV and Ebola virus. Suramin efficiently inhibited CHIKV and Ebola envelope-mediated gene transfer while vesicular stomatitis virus G protein pseudotyped vectors were only marginally affected. In addition, suramin was able to inhibit wild-type CHIKV and Ebola virus replication in vitro. Inhibition occurred at early time points during CHIKV infection. Suramin, also known as Germanin or Bayer-205, is a market-authorized drug, however shows significant side effects, which probably prevents its use as a CHIKV drug, but due to the high lethality of Ebola virus infections, suramin might be valuable against Ebola infections.
Biophysical characterization and conformational stability of Ebola and Marburg virus-like particles.
Hu, Lei; Trefethen, Jared M; Zeng, Yuhong; Yee, Luisa; Ohtake, Satoshi; Lechuga-Ballesteros, David; Warfield, Kelly L; Aman, M Javad; Shulenin, Sergey; Unfer, Robert; Enterlein, Sven G; Truong-Le, Vu; Volkin, David B; Joshi, Sangeeta B; Middaugh, C Russell
2011-12-01
The filoviruses, Ebola virus and Marburg virus, cause severe hemorrhagic fever with up to 90% human mortality. Virus-like particles of EBOV (eVLPs) and MARV (mVLPs) are attractive vaccine candidates. For the development of stable vaccines, the conformational stability of these two enveloped VLPs produced in insect cells was characterized by various spectroscopic techniques over a wide pH and temperature range. Temperature-induced aggregation of the VLPs at various pH values was monitored by light scattering. Temperature/pH empirical phase diagrams (EPDs) of the two VLPs were constructed to summarize the large volume of data generated. The EPDs show that both VLPs lose their conformational integrity above about 50°C-60°C, depending on solution pH. The VLPs were maximally thermal stable in solution at pH 7-8, with a significant reduction in stability at pH 5 and 6. They were much less stable in solution at pH 3-4 due to increased susceptibility of the VLPs to aggregation. The characterization data and conformational stability profiles from these studies provide a basis for selection of optimized solution conditions for further vaccine formulation and long-term stability studies of eVLPs and mVLPs. Copyright © 2011 Wiley-Liss, Inc.
Protective Role of Cytotoxic T Lymphocytes in Filovirus Hemorrhagic Fever
Warfield, Kelly Lyn; Olinger, Gene Garrard
2011-01-01
Infection with many emerging viruses, such as the hemorrhagic fever disease caused by the filoviruses, Marburg (MARV), and Ebola virus (EBOV), leaves the host with a short timeframe in which to mouse a protective immune response. In lethal cases, uncontrolled viral replication and virus-induced immune dysregulation are too severe to overcome, and mortality is generally associated with a lack of notable immune responses. Vaccination studies in animals have demonstrated an association of IgG and neutralizing antibody responses against the protective glycoprotein antigen with survival from lethal challenge. More recently, studies in animal models of filovirus hemorrhagic fever have established that induction of a strong filovirus-specific cytotoxic T lymphocyte (CTL) response can facilitate complete viral clearance. In this review, we describe assays used to discover CTL responses after vaccination or live filovirus infection in both animal models and human clinical trials. Unfortunately, little data regarding CTL responses have been collected from infected human survivors, primarily due to the low frequency of disease and the inability to perform these studies in the field. Advancements in assays and technologies may allow these studies to occur during future outbreaks. PMID:22253531
Stanley, Daphne A; Honko, Anna N; Asiedu, Clement; Trefry, John C; Lau-Kilby, Annie W; Johnson, Joshua C; Hensley, Lisa; Ammendola, Virginia; Abbate, Adele; Grazioli, Fabiana; Foulds, Kathryn E; Cheng, Cheng; Wang, Lingshu; Donaldson, Mitzi M; Colloca, Stefano; Folgori, Antonella; Roederer, Mario; Nabel, Gary J; Mascola, John; Nicosia, Alfredo; Cortese, Riccardo; Koup, Richard A; Sullivan, Nancy J
2014-10-01
Ebolavirus disease causes high mortality, and the current outbreak has spread unabated through West Africa. Human adenovirus type 5 vectors (rAd5) encoding ebolavirus glycoprotein (GP) generate protective immunity against acute lethal Zaire ebolavirus (EBOV) challenge in macaques, but fail to protect animals immune to Ad5, suggesting natural Ad5 exposure may limit vaccine efficacy in humans. Here we show that a chimpanzee-derived replication-defective adenovirus (ChAd) vaccine also rapidly induced uniform protection against acute lethal EBOV challenge in macaques. Because protection waned over several months, we boosted ChAd3 with modified vaccinia Ankara (MVA) and generated, for the first time, durable protection against lethal EBOV challenge.
Kuhn, Jens H.; Becker, Stephan; Ebihara, Hideki; Geisbert, Thomas W.; Johnson, Karl M.; Kawaoka, Yoshihiro; Lipkin, W. Ian; Negredo, Ana I.; Netesov, Sergey V.; Nichol, Stuart T.; Palacios, Gustavo; Peters, Clarence J.; Tenorio, Antonio; Volchkov, Viktor E.; Jahrling, Peter B.
2011-01-01
The taxonomy of the family Filoviridae (marburgviruses and ebolaviruses) has changed several times since the discovery of its members, resulting in a plethora of species and virus names and abbreviations. The current taxonomy has only been partially accepted by most laboratory virologists. Confusion likely arose for several reasons: species names that consist of several words or which (should) contain diacritical marks, the current orthographic identity of species and virus names, and the similar pronunciation of several virus abbreviations in the absence of guidance for the correct use of vernacular names. To rectify this problem, we suggest (1) to retain the current species names Reston ebolavirus, Sudan ebolavirus, and Zaire ebolavirus, but to replace the name Cote d'Ivoire ebolavirus [sic] with Taï Forest ebolavirus and Lake Victoria marburgvirus with Marburg marburgvirus; (2) to revert the virus names of the type marburgviruses and ebolaviruses to those used for decades in the field (Marburg virus instead of Lake Victoria marburgvirus and Ebola virus instead of Zaire ebolavirus); (3) to introduce names for the remaining viruses reminiscent of jargon used by laboratory virologists but nevertheless different from species names (Reston virus, Sudan virus, Taï Forest virus), and (4) to introduce distinct abbreviations for the individual viruses (RESTV for Reston virus, SUDV for Sudan virus, and TAFV for Taï Forest virus), while retaining that for Marburg virus (MARV) and reintroducing that used over decades for Ebola virus (EBOV). Paying tribute to developments in the field, we propose (a) to create a new ebolavirus species (Bundibugyo ebolavirus) for one member virus (Bundibugyo virus, BDBV); (b) to assign a second virus to the species Marburg marburgvirus (Ravn virus, RAVV) for better reflection of now available high-resolution phylogeny; and (c) to create a new tentative genus (Cuevavirus) with one tentative species (Lloviu cuevavirus) for the recently discovered Lloviu virus (LLOV). Furthermore, we explain the etymological derivation of individual names, their pronunciation, and their correct use, and we elaborate on demarcation criteria for each taxon and virus. PMID:21046175
Kuhn, Jens H; Becker, Stephan; Ebihara, Hideki; Geisbert, Thomas W; Johnson, Karl M; Kawaoka, Yoshihiro; Lipkin, W Ian; Negredo, Ana I; Netesov, Sergey V; Nichol, Stuart T; Palacios, Gustavo; Peters, Clarence J; Tenorio, Antonio; Volchkov, Viktor E; Jahrling, Peter B
2010-12-01
The taxonomy of the family Filoviridae (marburgviruses and ebolaviruses) has changed several times since the discovery of its members, resulting in a plethora of species and virus names and abbreviations. The current taxonomy has only been partially accepted by most laboratory virologists. Confusion likely arose for several reasons: species names that consist of several words or which (should) contain diacritical marks, the current orthographic identity of species and virus names, and the similar pronunciation of several virus abbreviations in the absence of guidance for the correct use of vernacular names. To rectify this problem, we suggest (1) to retain the current species names Reston ebolavirus, Sudan ebolavirus, and Zaire ebolavirus, but to replace the name Cote d'Ivoire ebolavirus [sic] with Taï Forest ebolavirus and Lake Victoria marburgvirus with Marburg marburgvirus; (2) to revert the virus names of the type marburgviruses and ebolaviruses to those used for decades in the field (Marburg virus instead of Lake Victoria marburgvirus and Ebola virus instead of Zaire ebolavirus); (3) to introduce names for the remaining viruses reminiscent of jargon used by laboratory virologists but nevertheless different from species names (Reston virus, Sudan virus, Taï Forest virus), and (4) to introduce distinct abbreviations for the individual viruses (RESTV for Reston virus, SUDV for Sudan virus, and TAFV for Taï Forest virus), while retaining that for Marburg virus (MARV) and reintroducing that used over decades for Ebola virus (EBOV). Paying tribute to developments in the field, we propose (a) to create a new ebolavirus species (Bundibugyo ebolavirus) for one member virus (Bundibugyo virus, BDBV); (b) to assign a second virus to the species Marburg marburgvirus (Ravn virus, RAVV) for better reflection of now available high-resolution phylogeny; and (c) to create a new tentative genus (Cuevavirus) with one tentative species (Lloviu cuevavirus) for the recently discovered Lloviu virus (LLOV). Furthermore, we explain the etymological derivation of individual names, their pronunciation, and their correct use, and we elaborate on demarcation criteria for each taxon and virus.
Understanding Ebola: the 2014 epidemic.
Kaner, Jolie; Schaack, Sarah
2016-09-13
Near the end of 2013, an outbreak of Zaire ebolavirus (EBOV) began in Guinea, subsequently spreading to neighboring Liberia and Sierra Leone. As this epidemic grew, important public health questions emerged about how and why this outbreak was so different from previous episodes. This review provides a synthetic synopsis of the 2014-15 outbreak, with the aim of understanding its unprecedented spread. We present a summary of the history of previous epidemics, describe the structure and genetics of the ebolavirus, and review our current understanding of viral vectors and the latest treatment practices. We conclude with an analysis of the public health challenges epidemic responders faced and some of the lessons that could be applied to future outbreaks of Ebola or other viruses.
Characterizing Functional Domains for TIM-Mediated Enveloped Virus Entry
Moller-Tank, Sven; Albritton, Lorraine M.; Rennert, Paul D.
2014-01-01
ABSTRACT T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members were recently identified as phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance entry of Ebola virus (EBOV) and other viruses by binding PtdSer on the viral envelope, concentrating virus on the cell surface, and promoting subsequent internalization. The PtdSer-binding activity of the immunoglobulin-like variable (IgV) domain is essential for both virus binding and internalization by TIM-1. However, TIM-3, whose IgV domain also binds PtdSer, does not effectively enhance virus entry, indicating that other domains of TIM proteins are functionally important. Here, we investigate the domains supporting enhancement of enveloped virus entry, thereby defining the features necessary for a functional PVEER. Using a variety of chimeras and deletion mutants, we found that in addition to a functional PtdSer-binding domain PVEERs require a stalk domain of sufficient length, containing sequences that promote an extended structure. Neither the cytoplasmic nor the transmembrane domain of TIM-1 is essential for enhancing virus entry, provided the protein is still plasma membrane bound. Based on these defined characteristics, we generated a mimic lacking TIM sequences and composed of annexin V, the mucin-like domain of α-dystroglycan, and a glycophosphatidylinositol anchor that functioned as a PVEER to enhance transduction of virions displaying Ebola, Chikungunya, Ross River, or Sindbis virus glycoproteins. This identification of the key features necessary for PtdSer-mediated enhancement of virus entry provides a basis for more effective recognition of unknown PVEERs. IMPORTANCE T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members are recently identified phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance virus entry by binding the phospholipid, PtdSer, present on the viral membrane. While it is known that the PtdSer binding is essential for the PVEER function of TIM-1, TIM-3 shares this binding activity but does not enhance virus entry. No comprehensive studies have been done to characterize the other domains of TIM-1. In this study, using a variety of chimeric proteins and deletion mutants, we define the features necessary for a functional PVEER. With these features in mind, we generated a TIM-1 mimic using functionally similar domains from other proteins. This mimic, like TIM-1, effectively enhanced transduction. These studies provide insight into the key features necessary for PVEERs and will allow for more effective identification of unknown PVEERs. PMID:24696470
TIM-family proteins inhibit HIV-1 release
Li, Minghua; Ablan, Sherimay D.; Miao, Chunhui; Zheng, Yi-Min; Fuller, Matthew S.; Rennert, Paul D.; Maury, Wendy; Johnson, Marc C.; Freed, Eric O.; Liu, Shan-Lu
2014-01-01
Accumulating evidence indicates that T-cell immunoglobulin (Ig) and mucin domain (TIM) proteins play critical roles in viral infections. Herein, we report that the TIM-family proteins strongly inhibit HIV-1 release, resulting in diminished viral production and replication. Expression of TIM-1 causes HIV-1 Gag and mature viral particles to accumulate on the plasma membrane. Mutation of the phosphatidylserine (PS) binding sites of TIM-1 abolishes its ability to block HIV-1 release. TIM-1, but to a much lesser extent PS-binding deficient mutants, induces PS flipping onto the cell surface; TIM-1 is also found to be incorporated into HIV-1 virions. Importantly, TIM-1 inhibits HIV-1 replication in CD4-positive Jurkat cells, despite its capability of up-regulating CD4 and promoting HIV-1 entry. In addition to TIM-1, TIM-3 and TIM-4 also block the release of HIV-1, as well as that of murine leukemia virus (MLV) and Ebola virus (EBOV); knockdown of TIM-3 in differentiated monocyte-derived macrophages (MDMs) enhances HIV-1 production. The inhibitory effects of TIM-family proteins on virus release are extended to other PS receptors, such as Axl and RAGE. Overall, our study uncovers a novel ability of TIM-family proteins to block the release of HIV-1 and other viruses by interaction with virion- and cell-associated PS. Our work provides new insights into a virus-cell interaction that is mediated by TIMs and PS receptors. PMID:25136083
Generation and characterization of protective antibodies to Marburg virus.
Froude, Jeffrey W; Pelat, Thibaut; Miethe, Sebastian; Zak, Samantha E; Wec, Anna Z; Chandran, Kartik; Brannan, Jennifer Mary; Bakken, Russell R; Hust, Michael; Thullier, Philippe; Dye, John M
Marburg virus (MARV) and Ebola virus (EBOV) have been a source of epidemics and outbreaks for several decades. We present here the generation and characterization of the first protective antibodies specific for wild-type MARV. Non-human primates (NHP), cynomolgus macaques, were immunized with viral-replicon particles expressing the glycoproteins (GP) of MARV (Ci67 isolate). An antibody fragment (single-chain variable fragment, scFv) phage display library was built after four immunogen injections, and screened against the GP 1-649 of MARV. Sequencing of 192 selected clones identified 18 clones with distinct V H and V L sequences. Four of these recombinant antibodies (R4A1, R4B11, R4G2, and R3F6) were produced in the scFv-Fc format for in vivo studies. Mice that were challenged with wild-type Marburg virus (Ci67 isolate) receiving 100 µg of scFv-Fc on days -1, 1 and 3 demonstrated protective efficacies ranging from 75-100%. The amino-acid sequences of the scFv-Fcs are similar to those of their human germline counterparts, sharing an identity ranging between 68 and 100% to human germline immunoglobulin. These results demonstrate for the first time that recombinant antibodies offer protection against wild-type MARV, and suggest they may be promising candidates for further therapeutic development especially due to their human homology.
Deciphering Dynamics of Recent Epidemic Spread and Outbreak in West Africa: The Case of Ebola Virus
NASA Astrophysics Data System (ADS)
Upadhyay, Ranjit Kumar; Roy, Parimita
Recently, the 2014 Ebola virus (EBOV) outbreak in West Africa was the largest outbreak to date. In this paper, an attempt has been made for modeling the virus dynamics using an SEIR model to better understand and characterize the transmission trajectories of the Ebola outbreak. We compare the simulated results with the most recent reported data of Ebola infected cases in the three most affected countries Guinea, Liberia and Sierra Leone. The epidemic model exhibits two equilibria, namely, the disease-free and unique endemic equilibria. Existence and local stability of these equilibria are explored. Using central manifold theory, it is established that the transcritical bifurcation occurs when basic reproduction number passes through unity. The proposed Ebola epidemic model provides an estimate to the potential number of future cases. The model indicates that the disease will decline after peaking if multisectorial and multinational efforts to control the spread of infection are maintained. Possible implication of the results for disease eradication and its control are discussed which suggests that proper control strategies like: (i) transmission precautions, (ii) isolation and care of infectious Ebola patients, (iii) safe burial, (iv) contact tracing with follow-up and quarantine, and (v) early diagnosis are needed to stop the recurrent outbreak.
Molecular basis for ebolavirus VP35 suppression of human dendritic cell maturation.
Yen, Benjamin; Mulder, Lubbertus C F; Martinez, Osvaldo; Basler, Christopher F
2014-11-01
Zaire ebolavirus (EBOV) VP35 is a double-stranded RNA (dsRNA)-binding protein that inhibits RIG-I signaling and alpha/beta interferon (IFN-α/β) responses by both dsRNA-binding-dependent and -independent mechanisms. VP35 also suppresses dendritic cell (DC) maturation. Here, we define the pathways and mechanisms through which VP35 impairs DC maturation. Wild-type VP35 (VP35-WT) and two well-characterized VP35 mutants (F239A and R322A) that independently ablate dsRNA binding and RIG-I inhibition were delivered to primary human monocyte-derived DCs (MDDCs) using a lentivirus-based expression system. VP35-WT suppressed not only IFN-α/β but also proinflammatory responses following stimulation of MDDCs with activators of RIG-I-like receptor (RLR) signaling, including RIG-I activators such as Sendai virus (SeV) or 5'-triphosphate RNA, or MDA5 activators such as encephalomyocarditis virus (EMCV) or poly(I · C). The F239A and R322A mutants exhibited greatly reduced suppression of IFN-α/β and proinflammatory cytokine production following treatment of DCs with RLR agonists. VP35-WT also blocked the upregulation of DC maturation markers and the stimulation of allogeneic T cell responses upon SeV infection, whereas the mutants did not. In contrast to the RLR activators, VP35-WT and the VP35 mutants impaired IFN-β production induced by Toll-like receptor 3 (TLR3) or TLR4 agonists but failed to inhibit proinflammatory cytokine production induced by TLR2, TLR3, or TLR4 agonists. Furthermore, VP35 did not prevent lipopolysaccharide (LPS)-induced upregulation of surface markers of MDDC maturation and did not prevent LPS-triggered allogeneic T cell stimulation. Therefore, VP35 is a general antagonist of DC responses to RLR activation. However, TLR agonists can circumvent many of the inhibitory effects of VP35. Therefore, it may be possible to counteract EBOV immune evasion by using treatments that bypass the VP35-imposed block to DC maturation. The VP35 protein, which is an inhibitor of RIG-I signaling and alpha/beta interferon (IFN-α/β) responses, has been implicated as an EBOV-encoded factor that contributes to suppression of dendritic cell (DC) function. We used wild-type VP35 and previously characterized VP35 mutants to clarify VP35-DC interactions. Our data demonstrate that VP35 is a general inhibitor of RIG-I-like receptor (RLR) signaling that blocks not only RIG-I- but also MDA5-mediated induction of IFN-α/β responses. Furthermore, in DCs, VP35 also impairs the RLR-mediated induction of proinflammatory cytokine production, upregulation of costimulatory markers, and activation of T cells. These inhibitory activities require VP35 dsRNA-binding activity, an activity previously correlated to VP35 RIG-I inhibitory function. In contrast, while VP35 can inhibit IFN-α/β production induced by TLR3 or TLR4 agonists, this occurs in a dsRNA-independent fashion, and VP35 does not inhibit TLR-mediated expression of proinflammatory cytokines. These data suggest strategies to overcome VP35 inhibition of DC function. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Johnson, Britney; Li, Jing; Adhikari, Jagat; Edwards, Megan R; Zhang, Hao; Schwarz, Toni; Leung, Daisy W; Basler, Christopher F; Gross, Michael L; Amarasinghe, Gaya K
2016-08-28
Marburg virus (MARV), a member of the Filoviridae family that also includes Ebola virus (EBOV), causes lethal hemorrhagic fever with case fatality rates that have exceeded 50% in some outbreaks. Within an infected cell, there are numerous host-viral interactions that contribute to the outcome of infection. Recent studies identified MARV protein 24 (mVP24) as a modulator of the host antioxidative responses, but the molecular mechanism remains unclear. Using a combination of biochemical and mass spectrometry studies, we show that mVP24 is a dimer in solution that directly binds to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) to regulate nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This interaction between Keap1 and mVP24 occurs through the Kelch interaction loop (K-Loop) of mVP24 leading to upregulation of antioxidant response element transcription, which is distinct from other Kelch binders that regulate Nrf2 activity. N-terminal truncations disrupt mVP24 dimerization, allowing monomeric mVP24 to bind Kelch with higher affinity and stimulate higher antioxidative stress response element (ARE) reporter activity. Mass spectrometry-based mapping of the interface revealed overlapping binding sites on Kelch for mVP24 and the Nrf2 proteins. Substitution of conserved cysteines, C209 and C210, to alanine in the mVP24 K-Loop abrogates Kelch binding and ARE activation. Our studies identify a shift in the monomer-dimer equilibrium of MARV VP24, driven by its interaction with Keap1 Kelch domain, as a critical determinant that modulates host responses to pathogenic Marburg viral infections. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dimerization Controls Marburg Virus VP24-dependent Modulation of Host Antioxidative Stress Responses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Britney; Li, Jing; Adhikari, Jagat
Marburg virus (MARV), a member of the Filoviridae family that also includes Ebola virus (EBOV), causes lethal hemorrhagic fever with case fatality rates that have exceeded 50% in some outbreaks. Within an infected cell, there are numerous host-viral interactions that contribute to the outcome of infection. Recent studies identified MARV protein 24 (mVP24) as a modulator of the host antioxidative responses, but the molecular mechanism remains unclear. Using a combination of biochemical and mass spectrometry studies, we show that mVP24 is a dimer in solution that directly binds to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) to regulatemore » nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This interaction between Keap1 and mVP24 occurs through the Kelch interaction loop (K-Loop) of mVP24 leading to upregulation of antioxidant response element transcription, which is distinct from other Kelch binders that regulate Nrf2 activity. N-terminal truncations disrupt mVP24 dimerization, allowing monomeric mVP24 to bind Kelch with higher affinity and stimulate higher antioxidative stress response element (ARE) reporter activity. Mass spectrometry-based mapping of the interface revealed overlapping binding sites on Kelch for mVP24 and the Nrf2 proteins. Substitution of conserved cysteines, C209 and C210, to alanine in the mVP24 K-Loop abrogates Kelch binding and ARE activation. Our studies identify a shift in the monomer-dimer equilibrium of MARV VP24, driven by its interaction with Keap1 Kelch domain, as a critical determinant that modulates host responses to pathogenic Marburg viral infections.« less
The Ebola virus glycoprotein contributes to but is not sufficient for virulence in vivo.
Groseth, Allison; Marzi, Andrea; Hoenen, Thomas; Herwig, Astrid; Gardner, Don; Becker, Stephan; Ebihara, Hideki; Feldmann, Heinz
2012-01-01
Among the Ebola viruses most species cause severe hemorrhagic fever in humans; however, Reston ebolavirus (REBOV) has not been associated with human disease despite numerous documented infections. While the molecular basis for this difference remains unclear, in vitro evidence has suggested a role for the glycoprotein (GP) as a major filovirus pathogenicity factor, but direct evidence for such a role in the context of virus infection has been notably lacking. In order to assess the role of GP in EBOV virulence, we have developed a novel reverse genetics system for REBOV, which we report here. Together with a previously published full-length clone for Zaire ebolavirus (ZEBOV), this provides a unique possibility to directly investigate the role of an entire filovirus protein in pathogenesis. To this end we have generated recombinant ZEBOV (rZEBOV) and REBOV (rREBOV), as well as chimeric viruses in which the glycoproteins from these two virus species have been exchanged (rZEBOV-RGP and rREBOV-ZGP). All of these viruses could be rescued and the chimeras replicated with kinetics similar to their parent virus in tissue culture, indicating that the exchange of GP in these chimeric viruses is well tolerated. However, in a mouse model of infection rZEBOV-RGP demonstrated markedly decreased lethality and prolonged time to death when compared to rZEBOV, confirming that GP does indeed contribute to the full expression of virulence by ZEBOV. In contrast, rREBOV-ZGP did not show any signs of virulence, and was in fact slightly attenuated compared to rREBOV, demonstrating that GP alone is not sufficient to confer a lethal phenotype or exacerbate disease in this model. Thus, while these findings provide direct evidence that GP contributes to filovirus virulence in vivo, they also clearly indicate that other factors are needed for the acquisition of full virulence.
The Ebola Virus Glycoprotein Contributes to but Is Not Sufficient for Virulence In Vivo
Groseth, Allison; Marzi, Andrea; Hoenen, Thomas; Herwig, Astrid; Gardner, Don; Becker, Stephan; Ebihara, Hideki; Feldmann, Heinz
2012-01-01
Among the Ebola viruses most species cause severe hemorrhagic fever in humans; however, Reston ebolavirus (REBOV) has not been associated with human disease despite numerous documented infections. While the molecular basis for this difference remains unclear, in vitro evidence has suggested a role for the glycoprotein (GP) as a major filovirus pathogenicity factor, but direct evidence for such a role in the context of virus infection has been notably lacking. In order to assess the role of GP in EBOV virulence, we have developed a novel reverse genetics system for REBOV, which we report here. Together with a previously published full-length clone for Zaire ebolavirus (ZEBOV), this provides a unique possibility to directly investigate the role of an entire filovirus protein in pathogenesis. To this end we have generated recombinant ZEBOV (rZEBOV) and REBOV (rREBOV), as well as chimeric viruses in which the glycoproteins from these two virus species have been exchanged (rZEBOV-RGP and rREBOV-ZGP). All of these viruses could be rescued and the chimeras replicated with kinetics similar to their parent virus in tissue culture, indicating that the exchange of GP in these chimeric viruses is well tolerated. However, in a mouse model of infection rZEBOV-RGP demonstrated markedly decreased lethality and prolonged time to death when compared to rZEBOV, confirming that GP does indeed contribute to the full expression of virulence by ZEBOV. In contrast, rREBOV-ZGP did not show any signs of virulence, and was in fact slightly attenuated compared to rREBOV, demonstrating that GP alone is not sufficient to confer a lethal phenotype or exacerbate disease in this model. Thus, while these findings provide direct evidence that GP contributes to filovirus virulence in vivo, they also clearly indicate that other factors are needed for the acquisition of full virulence. PMID:22876185
Mapping HLA-A2, -A3 and -B7 supertype-restricted T-cell epitopes in the ebolavirus proteome.
Lim, Wan Ching; Khan, Asif M
2018-01-19
Ebolavirus (EBOV) is responsible for one of the most fatal diseases encountered by mankind. Cellular T-cell responses have been implicated to be important in providing protection against the virus. Antigenic variation can result in viral escape from immune recognition. Mapping targets of immune responses among the sequence of viral proteins is, thus, an important first step towards understanding the immune responses to viral variants and can aid in the identification of vaccine targets. Herein, we performed a large-scale, proteome-wide mapping and diversity analyses of putative HLA supertype-restricted T-cell epitopes of Zaire ebolavirus (ZEBOV), the most pathogenic species among the EBOV family. All publicly available ZEBOV sequences (14,098) for each of the nine viral proteins were retrieved, removed of irrelevant and duplicate sequences, and aligned. The overall proteome diversity of the non-redundant sequences was studied by use of Shannon's entropy. The sequences were predicted, by use of the NetCTLpan server, for HLA-A2, -A3, and -B7 supertype-restricted epitopes, which are relevant to African and other ethnicities and provide for large (~86%) population coverage. The predicted epitopes were mapped to the alignment of each protein for analyses of antigenic sequence diversity and relevance to structure and function. The putative epitopes were validated by comparison with experimentally confirmed epitopes. ZEBOV proteome was generally conserved, with an average entropy of 0.16. The 185 HLA supertype-restricted T-cell epitopes predicted (82 (A2), 37 (A3) and 66 (B7)) mapped to 125 alignment positions and covered ~24% of the proteome length. Many of the epitopes showed a propensity to co-localize at select positions of the alignment. Thirty (30) of the mapped positions were completely conserved and may be attractive for vaccine design. The remaining (95) positions had one or more epitopes, with or without non-epitope variants. A significant number (24) of the putative epitopes matched reported experimentally validated HLA ligands/T-cell epitopes of A2, A3 and/or B7 supertype representative allele restrictions. The epitopes generally corresponded to functional motifs/domains and there was no correlation to localization on the protein 3D structure. These data and the epitope map provide important insights into the interaction between EBOV and the host immune system.
Deglycosylated Filovirus Glycoproteins as Effective Vaccine Immunogens
2015-11-01
pre-fusion 119 EBOV GP1,2 ΔTM structure ( PDB ID: 3CSY) that lacks the MLD was performed as previously 120 described (22, 23). Briefly, the published... structure lacks four NGS in GP1 due to disordered 121 regions missing from the structure (N204 and N296) or mutations that promoted crystallization...122 (N40 and N228) (20, 21). The EBOV GP sequence was submitted to the PHYRE2 protein fold 123 recognition server (16), which provided a structure
Balmith, Marissa; Soliman, Mahmoud E S
2017-03-01
The first account of the dynamic features of the loop region of VP40 of the Ebola virus was studied using accelerated molecular dynamics simulations and reported herein. Among the proteins of the Ebola virus, the matrix protein (VP40) plays a significant role in the virus lifecycle thereby making it a promising therapeutic target. Of interest is the newly elucidated N-terminal domain loop region of VP40 comprising residues K127, T129, and N130 which when mutated to alanine have demonstrated an unrecognized role for N-terminal domain-plasma membrane interaction for efficient VP40-plasma membrane localization, oligomerization, matrix assembly, and egress. The molecular understanding of the conformational features of VP40 in complex with a known inhibitor still remains elusive. Using accelerated molecular dynamics approaches, we conducted a comparative study on VP40 apo and bound systems to understand the conformational features of VP40 at the molecular level and to determine the effect of inhibitor binding with the aid of a number of post-dynamic analytical tools. Significant features were seen in the presence of an inhibitor as per molecular mechanics/generalized born surface area binding free energy calculations. Results revealed that inhibitor binding to VP40 reduces the flexibility and mobility of the protein as supported by root mean square fluctuation and root mean square deviation calculations. The study revealed a characteristic "twisting" motion and coiling of the loop region of VP40 accompanied by conformational changes in the dimer interface upon inhibitor binding. We believe that results presented in this study will ultimately provide useful insight into the binding landscape of VP40 which could assist researchers in the discovery of potent Ebola virus inhibitors for anti-Ebola therapies.
Dilley, Kari A; Voorhies, Alexander A; Luthra, Priya; Puri, Vinita; Stockwell, Timothy B; Lorenzi, Hernan; Basler, Christopher F; Shabman, Reed S
2017-01-01
Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV), and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA) or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI) RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV). Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR) activation.
Voorhies, Alexander A.; Luthra, Priya; Puri, Vinita; Stockwell, Timothy B.; Lorenzi, Hernan; Basler, Christopher F.; Shabman, Reed S.
2017-01-01
Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV), and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA) or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI) RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV). Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR) activation. PMID:28636653
A small nonhuman primate model for filovirus-induced disease.
Carrion, Ricardo; Ro, Youngtae; Hoosien, Kareema; Ticer, Anysha; Brasky, Kathy; de la Garza, Melissa; Mansfield, Keith; Patterson, Jean L
2011-11-25
Ebolavirus and Marburgvirus are members of the filovirus family and induce a fatal hemorrhagic disease in humans and nonhuman primates with 90% case fatality. To develop a small nonhuman primate model for filovirus disease, common marmosets (Callithrix jacchus) were intramuscularly inoculated with wild type Marburgvirus Musoke or Ebolavirus Zaire. The infection resulted in a systemic fatal disease with clinical and morphological features closely resembling human infection. Animals experienced weight loss, fever, high virus titers in tissue, thrombocytopenia, neutrophilia, high liver transaminases and phosphatases and disseminated intravascular coagulation. Evidence of a severe disseminated viral infection characterized principally by multifocal to coalescing hepatic necrosis was seen in EBOV animals. MARV-infected animals displayed only moderate fibrin deposition in the spleen. Lymphoid necrosis and lymphocytic depletion observed in spleen. These findings provide support for the use of the common marmoset as a small nonhuman primate model for filovirus induced hemorrhagic fever. Copyright © 2011 Elsevier Inc. All rights reserved.
Holtsberg, Frederick W; Shulenin, Sergey; Vu, Hong; Howell, Katie A; Patel, Sonal J; Gunn, Bronwyn; Karim, Marcus; Lai, Jonathan R; Frei, Julia C; Nyakatura, Elisabeth K; Zeitlin, Larry; Douglas, Robin; Fusco, Marnie L; Froude, Jeffrey W; Saphire, Erica Ollmann; Herbert, Andrew S; Wirchnianski, Ariel S; Lear-Rooney, Calli M; Alter, Galit; Dye, John M; Glass, Pamela J; Warfield, Kelly L; Aman, M Javad
2016-01-01
The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes. Multiple pan-ebolavirus antibodies were identified that react to the Ebola, Sudan, Bundibugyo, and Reston viruses. A pan-filovirus antibody that was reactive to the receptor binding regions of all filovirus glycoproteins was also identified. Significant postexposure efficacy of several MAbs, including a novel antibody cocktail, was demonstrated. For the first time, we report cross-neutralization and in vivo protection against two highly divergent filovirus species, i.e., Ebola virus and Sudan virus, with a single antibody. Competition studies indicate that this antibody targets a previously unrecognized conserved neutralizing epitope that involves the glycan cap. Mechanistic studies indicated that, besides neutralization, innate immune cell effector functions may play a role in the antiviral activity of the antibodies. Our findings further suggest critical novel epitopes that can be utilized to design effective cocktails for broad protection against multiple filovirus species. Filoviruses represent a major public health threat in Africa and an emerging global concern. Largely driven by the U.S. biodefense funding programs and reinforced by the 2014 outbreaks, current immunotherapeutics are primarily focused on a single filovirus species called Ebola virus (EBOV) (formerly Zaire Ebola virus). However, other filoviruses including Sudan, Bundibugyo, and Marburg viruses have caused human outbreaks with mortality rates as high as 90%. Thus, cross-protective immunotherapeutics are urgently needed. Here, we describe monoclonal antibodies with cross-reactivity to several filoviruses, including the first report of a cross-neutralizing antibody that exhibits protection against Ebola virus and Sudan virus in mice. Our results further describe a novel combination of antibodies with enhanced protective efficacy. These results form a basis for further development of effective immunotherapeutics against filoviruses for human use. Understanding the cross-protective epitopes are also important for rational design of pan-ebolavirus and pan-filovirus vaccines. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Filovirus Research: The Need for an Integrated Approach in Time and Space
NASA Technical Reports Server (NTRS)
Pinzon, Jorge E.
2010-01-01
The episodic appearance of Ebola virus (EBOV) and Marburg virus (MARV) across central Africa over the last 15 years not only underscores the importance of filoviruses as uniquely virulent agents to both human and wildlife communities but also implies a very complex transmission scenario that must be understood if we are to prevent or mitigate filovirus outbreaks in the future. Efforts of a global network of scientists and healthcare workers have expanded our knowledge of filoviruses to meet the growing threat of Ebola and Marburg hemorrhagic fevers in Africa. In recent decades, several newly emerging diseases have resulted in major threats to both affected communities and global public health. Viruses from wildlife hosts in particular, have exhibited a capability for cross-species transmission (CST), and have caused high-impact diseases in humans Such as Ebola and Marburg hemorrhagic fevers, Nipah and severe acute respiratory syndrome (SAILS). It has been estimated that about 60.3% (Jones et al. 2008) of human infectious diseases are of animal origin (zoonoses) and even some important viral diseases that are traditionally considered of human origin, for example measles and smallpox, may very well have their prehistoric origins in wildlife (Wolfe et al 2007). It maybe logical and prudent therefore, to anticipate that there are other, new filoviruses out there that will cross into humans at some point in time. If we anticipate that these will happen and wish to be prepared for and mitigate this potential, then an understanding of filoviruses as a biologic system in the environment will be essential to that process. We will need to know how the ecological dynamic of CST interacts with a 'new' viruse's evolutionary factors to overcome environmental, demographic and host-specific barriers to transmission and infectivity to humans.
Lewis, Suzanna M.; Lansley, Amber; Fraser, Sara; Shieber, Clare; Shah, Sonal; Semper, Amanda; Bailey, Daniel; Busuttil, Jason; Evans, Liz; Carroll, Miles W.; Silman, Nigel J.; Brooks, Tim; Shallcross, Jane A.
2017-01-01
As part of the UK response to the 2013–2016 Ebola virus disease (EVD) epidemic in West Africa, Public Health England (PHE) were tasked with establishing three field Ebola virus (EBOV) diagnostic laboratories in Sierra Leone by the UK Department for International Development (DFID). These provided diagnostic support to the Ebola Treatment Centre (ETC) facilities located in Kerry Town, Makeni and Port Loko. The Novel and Dangerous Pathogens (NADP) Training group at PHE, Porton Down, designed and implemented a pre-deployment Ebola diagnostic laboratory training programme for UK volunteer scientists being deployed to the PHE EVD laboratories. Here, we describe the training, workflow and capabilities of these field laboratories for use in response to disease epidemics and in epidemiological surveillance. We discuss the training outcomes, the laboratory outputs, lessons learned and the legacy value of the support provided. We hope this information will assist in the recruitment and training of staff for future responses and in the design and implementation of rapid deployment diagnostic field laboratories for future outbreaks of high consequence pathogens. This article is part of the themed issue ‘The 2013–2016 West African Ebola epidemic: data, decision-making and disease control’. PMID:28396470
Shah, Kavit; Bentley, Emma; Tyler, Adam; Richards, Kevin S. R.; Wright, Edward; Easterbrook, Linda; Lee, Diane; Cleaver, Claire; Usher, Louise; Burton, Jane E.; Pitman, James K.; Bruce, Christine B.; Edge, David; Lee, Martin; Nazareth, Nelson; Norwood, David A.
2017-01-01
The West African Ebola virus outbreak underlined the importance of delivering mass diagnostic capability outside the clinical or primary care setting in effectively containing public health emergencies caused by infectious disease. Yet, to date, there is no solution for reliably deploying at the point of need the gold standard diagnostic method, real time quantitative reverse transcription polymerase chain reaction (RT-qPCR), in a laboratory infrastructure-free manner. In this proof of principle work, we demonstrate direct performance of RT-qPCR on fresh blood using far-red fluorophores to resolve fluorogenic signal inhibition and controlled, rapid freeze/thawing to achieve viral genome extraction in a single reaction chamber assay. The resulting process is entirely free of manual or automated sample pre-processing, requires no microfluidics or magnetic/mechanical sample handling and thus utilizes low cost consumables. This enables a fast, laboratory infrastructure-free, minimal risk and simple standard operating procedure suited to frontline, field use. Developing this novel approach on recombinant bacteriophage and recombinant human immunodeficiency virus (HIV; Lentivirus), we demonstrate clinical utility in symptomatic EBOV patient screening using live, infectious Filoviruses and surrogate patient samples. Moreover, we evidence assay co-linearity independent of viral particle structure that may enable viral load quantification through pre-calibration, with no loss of specificity across an 8 log-linear maximum dynamic range. The resulting quantitative rapid identification (QuRapID) molecular diagnostic platform, openly accessible for assay development, meets the requirements of resource-limited countries and provides a fast response solution for mass public health screening against emerging biosecurity threats. PMID:29163915
Curcumin and Natural Derivatives Inhibit Ebola Viral Proteins: An In silico Approach
Baikerikar, Shruti
2017-01-01
Background: Ebola viral disease is a severe and mostly fatal disease in humans caused by Ebola virus. This virus belongs to family Filoviridae and is a single-stranded negative-sense virus. There is no single treatment for this disease which puts forth the need to identify new therapy to control and treat this fatal condition. Curcumin, one of the bioactives of turmeric, has proven antiviral property. Objective: The current study evaluates the inhibitory activity of curcumin, bisdemethoxycurcumin, demethoxycurcumin, and tetrahydrocurcumin against Zaire Ebola viral proteins (VPs). Materials and Methods: Molecular simulation of the Ebola VPs followed by docking studies with ligands comprising curcumin and related compounds was performed. Results: The highest binding activity for VP40 is −6.3 kcal/mol, VP35 is −8.3 kcal/mol, VP30 is −8.0 kcal/mol, VP24 is −7.7 kcal/mol, glycoprotein is −7.1 kcal/mol, and nucleoprotein is 6.8 kcal/mol. Conclusion: Bisdemethoxycurcumin shows better binding affinity than curcumin for most VPs. Metabolite tetrahydrocurcumin also shows binding affinity comparable to curcumin. These results indicate that curcumin, curcuminoids, and metabolite tetrahydrocurcumin can be potential lead compounds for developing a new therapy for Ebola viral disease. SUMMARY Curcumin, bisdemethoxycurcumin, and demethoxycurcumin are active constituents of turmeric. Tetrahydrocurcumin is the major metabolite of curcumin formed in the body after consumption and absorption of curcuminoidsCurcuminoids have proven antiviral activityBisdemethoxycurcumin showed maximum inhibition of Ebola viral proteins (VPs) among the curcuminoids in the docking procedure with a docking score as high as −8.3 kcal/molTetrahydrocurcumin showed inhibitory activity against Ebola VPs close to that of curcumin’s inhibitory action. Abbreviations Used: EBOV: Ebola virus, GP: Glycoprotein, NP: Nucleoprotein, NPT: Isothermal-isobaric Ensemble, amount of substance (N), pressure (P) and temperature (T) conserved, NVE: Canonical ensemble, amount of substance (N), volume (V) and temperature (T) conserved, VP: Viral protein. PMID:29333037
Kalra, Sarathi; Kelkar, Dhanashree; Galwankar, Sagar C.; Papadimos, Thomas J.; Stawicki, Stanislaw P.; Arquilla, Bonnie; Hoey, Brian A.; Sharpe, Richard P.; Sabol, Donna; Jahre, Jeffrey A.
2014-01-01
First reported in remote villages of Africa in the 1970s, the Ebolavirus was originally believed to be transmitted to people from wild animals. Ebolavirus (EBOV) causes a severe, frequently fatal hemorrhagic syndrome in humans. Each outbreak of the Ebolavirus over the last three decades has perpetuated fear and economic turmoil among the local and regional populations in Africa. Until now it has been considered a tragic malady confined largely to the isolated regions of the African continent, but it is no longer so. The frequency of outbreaks has increased since the 1970s. The 2014 Ebola outbreak in Western Africa has been the most severe in history and was declared a public health emergency by the World Health Organization. Given the widespread use of modern transportation and global travel, the EBOV is now a risk to the entire Global Village, with intercontinental transmission only an airplane flight away. Clinically, symptoms typically appear after an incubation period of approximately 11 days. A flu-like syndrome can progress to full hemorrhagic fever with multiorgan failure, and frequently, death. Diagnosis is confirmed by detection of viral antigens or Ribonucleic acid (RNA) in the blood or other body fluids. Although historically the mortality of this infection exceeded 80%, modern medicine and public health measures have been able to lower this figure and reduce the impact of EBOV on individuals and communities. The treatment involves early, aggressive supportive care with rehydration. Core interventions, including contact tracing, preventive initiatives, active surveillance, effective isolation and quarantine procedures, and timely response to patients, are essential for a successful outbreak control. These measures, combined with public health education, point-of-care diagnostics, promising new vaccine and pharmaceutical efforts, and coordinated efforts of the international community, give new hope to the Global effort to eliminate Ebola as a public health threat. Here we present a review of EBOV infection in an effort to further educate medical and political communities on what the Ebolavirus disease entails, and what efforts are recommended to treat, isolate, and eventually eliminate it. PMID:25538455
Kalra, Sarathi; Kelkar, Dhanashree; Galwankar, Sagar C; Papadimos, Thomas J; Stawicki, Stanislaw P; Arquilla, Bonnie; Hoey, Brian A; Sharpe, Richard P; Sabol, Donna; Jahre, Jeffrey A
2014-10-01
First reported in remote villages of Africa in the 1970s, the Ebolavirus was originally believed to be transmitted to people from wild animals. Ebolavirus (EBOV) causes a severe, frequently fatal hemorrhagic syndrome in humans. Each outbreak of the Ebolavirus over the last three decades has perpetuated fear and economic turmoil among the local and regional populations in Africa. Until now it has been considered a tragic malady confined largely to the isolated regions of the African continent, but it is no longer so. The frequency of outbreaks has increased since the 1970s. The 2014 Ebola outbreak in Western Africa has been the most severe in history and was declared a public health emergency by the World Health Organization. Given the widespread use of modern transportation and global travel, the EBOV is now a risk to the entire Global Village, with intercontinental transmission only an airplane flight away. Clinically, symptoms typically appear after an incubation period of approximately 11 days. A flu-like syndrome can progress to full hemorrhagic fever with multiorgan failure, and frequently, death. Diagnosis is confirmed by detection of viral antigens or Ribonucleic acid (RNA) in the blood or other body fluids. Although historically the mortality of this infection exceeded 80%, modern medicine and public health measures have been able to lower this figure and reduce the impact of EBOV on individuals and communities. The treatment involves early, aggressive supportive care with rehydration. Core interventions, including contact tracing, preventive initiatives, active surveillance, effective isolation and quarantine procedures, and timely response to patients, are essential for a successful outbreak control. These measures, combined with public health education, point-of-care diagnostics, promising new vaccine and pharmaceutical efforts, and coordinated efforts of the international community, give new hope to the Global effort to eliminate Ebola as a public health threat. Here we present a review of EBOV infection in an effort to further educate medical and political communities on what the Ebolavirus disease entails, and what efforts are recommended to treat, isolate, and eventually eliminate it.
Structures of Ebola virus GP and sGP in complex with therapeutic antibodies.
Pallesen, Jesper; Murin, Charles D; de Val, Natalia; Cottrell, Christopher A; Hastie, Kathryn M; Turner, Hannah L; Fusco, Marnie L; Flyak, Andrew I; Zeitlin, Larry; Crowe, James E; Andersen, Kristian G; Saphire, Erica Ollmann; Ward, Andrew B
2016-08-08
The Ebola virus (EBOV) GP gene encodes two glycoproteins. The major product is a soluble, dimeric glycoprotein (sGP) that is secreted abundantly. Despite the abundance of sGP during infection, little is known regarding its structure or functional role. A minor product, resulting from transcriptional editing, is the transmembrane-anchored, trimeric viral surface glycoprotein (GP). GP mediates attachment to and entry into host cells, and is the intended target of antibody therapeutics. Because large portions of sequence are shared between GP and sGP, it has been hypothesized that sGP may potentially subvert the immune response or may contribute to pathogenicity. In this study, we present cryo-electron microscopy structures of GP and sGP in complex with GP-specific and GP/sGP cross-reactive antibodies undergoing human clinical trials. The structure of the sGP dimer presented here, in complex with both an sGP-specific antibody and a GP/sGP cross-reactive antibody, permits us to unambiguously assign the oligomeric arrangement of sGP and compare its structure and epitope presentation to those of GP. We also provide biophysical evaluation of naturally occurring GP/sGP mutations that fall within the footprints identified by our high-resolution structures. Taken together, our data provide a detailed and more complete picture of the accessible Ebolavirus glycoprotein landscape and a structural basis to evaluate patient and vaccine antibody responses towards differently structured products of the GP gene.
2017-03-31
GP proteins from EBOV, BDBV, and SUDV by ELISA . We found that 72% of the mAbs were also able to recognize BDBV GP, whereas only 11% demonstrated...349 mAbs reacted with all three ebolavirus glycoproteins by ELISA (Figure S1B). Within this subset, 16 mAbs belonged to the glycan cap epitope group...Miller et al., 2012; Wang et al., 2016), we first examined the capacity of the GP base-binding NAbs to inhibit it in a competitive ELISA (Figure 5A
Hoffmann, Markus; González Hernández, Mariana; Berger, Elisabeth; Marzi, Andrea; Pöhlmann, Stefan
2016-01-01
Ebola and marburgviruses, members of the family Filoviridae, can cause severe hemorrhagic fever in humans. The ongoing Ebola virus (EBOV) disease epidemic in Western Africa claimed more than 11,300 lives and was associated with secondary cases outside Africa, demonstrating that filoviruses pose a global health threat. Bats constitute an important natural reservoir of filoviruses, including viruses of the recently identified Cuevavirus genus within the Filoviridae family. However, the interactions of filoviruses with bat cells are incompletely understood. Here, we investigated whether filoviruses employ different strategies to enter human and bat cells. For this, we examined host cell entry driven by glycoproteins (GP) from all filovirus species into cell lines of human and fruit bat origin. We show that all GPs were able to mediate entry into human and most fruit bat cell lines with roughly comparable efficiency. In contrast, the efficiency of entry into the cell line EidNi/41 derived from a straw-colored fruit bat varied markedly between the GPs of different filovirus species. Furthermore, inhibition studies demonstrated that filoviruses employ the same host cell factors for entry into human, non-human primate and fruit bat cell lines, including cysteine proteases, two pore channels and NPC1 (Niemann-Pick C1 molecule). Finally, processing of GP by furin and the presence of the mucin-like domain in GP were dispensable for entry into both human and bat cell lines. Collectively, these results show that filoviruses rely on the same host cell factors for entry into human and fruit bat cells, although the efficiency of the usage of these factors might differ between filovirus species.
Hoffmann, Markus; González Hernández, Mariana; Berger, Elisabeth; Marzi, Andrea; Pöhlmann, Stefan
2016-01-01
Ebola and marburgviruses, members of the family Filoviridae, can cause severe hemorrhagic fever in humans. The ongoing Ebola virus (EBOV) disease epidemic in Western Africa claimed more than 11,300 lives and was associated with secondary cases outside Africa, demonstrating that filoviruses pose a global health threat. Bats constitute an important natural reservoir of filoviruses, including viruses of the recently identified Cuevavirus genus within the Filoviridae family. However, the interactions of filoviruses with bat cells are incompletely understood. Here, we investigated whether filoviruses employ different strategies to enter human and bat cells. For this, we examined host cell entry driven by glycoproteins (GP) from all filovirus species into cell lines of human and fruit bat origin. We show that all GPs were able to mediate entry into human and most fruit bat cell lines with roughly comparable efficiency. In contrast, the efficiency of entry into the cell line EidNi/41 derived from a straw-colored fruit bat varied markedly between the GPs of different filovirus species. Furthermore, inhibition studies demonstrated that filoviruses employ the same host cell factors for entry into human, non-human primate and fruit bat cell lines, including cysteine proteases, two pore channels and NPC1 (Niemann-Pick C1 molecule). Finally, processing of GP by furin and the presence of the mucin-like domain in GP were dispensable for entry into both human and bat cell lines. Collectively, these results show that filoviruses rely on the same host cell factors for entry into human and fruit bat cells, although the efficiency of the usage of these factors might differ between filovirus species. PMID:26901159
Viral immune surveillance: Toward a TH17/TH9 gate to the central nervous system.
Barkhordarian, Andre; Thames, April D; Du, Angela M; Jan, Allison L; Nahcivan, Melissa; Nguyen, Mia T; Sama, Nateli; Chiappelli, Francesco
2015-01-01
Viral cellular immune surveillance is a dynamic and fluid system that is driven by finely regulated cellular processes including cytokines and other factors locally in the microenvironment and systemically throughout the body. It is questionable as to what extent the central nervous system (CNS) is an immune-privileged organ protected by the blood-brain barrier (BBB). Recent evidence suggests converging pathways through which viral infection, and its associated immune surveillance processes, may alter the integrity of the blood-brain barrier, and lead to inflammation, swelling of the brain parenchyma and associated neurological syndromes. Here, we expand upon the recent "gateway theory", by which viral infection and other immune activation states may disrupt the specialized tight junctions of the BBB endothelium making it permeable to immune cells and factors. The model we outline here builds upon the proposition that this process may actually be initiated by cytokines of the IL-17 family, and recognizing the intimate balance between TH17 and TH9 cytokine profiles systemically. We argue that immune surveillance events, in response to viruses such as the Human Immunodeficiency Virus (HIV), cause a TH17/TH9 induced gateway through blood brain barrier, and thus lead to characteristic neuroimmune pathology. It is possible and even probable that the novel TH17/TH9 induced gateway, which we describe here, opens as a consequence of any state of immune activation and sustained chronic inflammation, whether associated with viral infection or any other cause of peripheral or central neuroinflammation. This view could lead to new, timely and critical patient-centered therapies for patients with neuroimmune pathologies across a variety of etiologies. BBB - blood brain barrier, BDV - Borna disease virus, CARD - caspase activation and recruitment domains, CD - clusters of differentiation, CNS - central nervous system, DAMP - damage-associated molecular patterns, DENV - Dengue virus, EBOV - Ebola virus, ESCRT - endosomal sorting complex required for transport-I, HepC - Hepatitis C virus, HIV - human immunodeficiency virus, IFN - interferon, ILn - interleukin-n, IRF-n - interferon regulatory factor-n, MAVS - mitochondrial antiviral-signaling, MBGV - Marburg virus, M-CSF - macrophage colony-stimulating factor, MCP-1 - monocyte chemotactic protein 1 (aka CCL2), MHC - major histocompatibility complex, MIP-α β - macrophage inflammatory protein-1 α β (aka CCL3 & CCL4), MIF - macrophage migration inhibitory factor, NVE - Nipah virus encephalitis, NK - natural killer cell, NLR - NLR, NOD - like receptor, NOD - nucleotide oligomerization domain, PAMP - pathogen-associated molecular patterns, PtdIns - phosphoinositides, PV - Poliovirus, RIG-I - retinoic acid-inducible gene I, RIP - Receptor-interacting protein (RIP) kinase, RLR - RIG-I-like receptor, sICAM1 - soluble intracellular adhesion molecule 1, STAT-3 - signal tranducer and activator of transcription-3, sVCAM1 - soluble vascular cell adhesion molecule 1, TANK - TRAF family member-associated NF- . B activator, TBK1 - TANK-binding kinase 1, TLR - Toll-like receptor, TNF - tumor necrosis factor, TNFR - TNF receptor, TNFRSF21 - tumor necrosis factor receptor superfamily member 21, TRADD TNFR-SF1A - associated via death domain, TRAF TNFR - associated factor, Tregs - regulatory T cellsubpopulation (CD4/8+CD25+FoxP3+), VHF - viral hemorrhagic fever.
Pathogenesis of Ebola Hemorrhagic Fever in Primate Models In Vivo and In Vitro
2003-01-01
from the Philippine Islands (Jahrling et al., 1990). Hundreds of monkeys were infected (with high mortality) in this episode, but no human cases...reported that EBOV sGP binds to human neutrophils and inhibits early neutrophil activation . This study concluded that sGP diminished innate immunity...necrosis or apoptosis. However, viral infections can also exert changes in vascular endothelia indirectly, for example, by infecting and activating
Biannual birth pulses allow filoviruses to persist in bat populations
Hayman, David T. S.
2015-01-01
Filoviruses Ebolavirus (EBOV) and Marburgvirus (MARV) cause haemorrhagic fevers with high mortality rates, posing significant threats to public health. To understand transmission into human populations, filovirus dynamics within reservoir host populations must be understood. Studies have directly linked filoviruses to bats, but the mechanisms allowing viral persistence within bat populations are poorly understood. Theory suggests seasonal birthing may decrease the probability of pathogen persistence within populations, but data suggest MARV may persist within colonies of seasonally breeding Egyptian fruit bats, Rousettus aegyptiacus. I synthesize available filovirus and bat data in a stochastic compartmental model to explore fundamental questions relating to filovirus ecology: can filoviruses persist within isolated bat colonies; do critical community sizes exist; and how do host–pathogen relationships affect spillover transmission potential? Synchronous annual breeding and shorter incubation periods did not allow filovirus persistence, whereas bi-annual breeding and longer incubation periods, such as reported for Egyptian fruit bats and EBOV in experimental studies, allowed persistence in colony sizes often found in nature. Serological data support the findings, with bats from species with two annual birth pulses more likely to be seropositive (odds ratio (OR) 4.4, 95% confidence interval (CI) 2.5–8.7) than those with one, suggesting that biannual birthing is necessary for filovirus persistence. PMID:25673678
Broad Neutralization of Ebolaviruses via a Fusion Loop Epitope Elicited by Immunization
2017-03-31
overnight. After incubation with blocking buffer (BB, 2% non- fat milk , 5% FBS in PBS), the WT or mutant supernatant in five-fold serial dilution in BB was...replication competent rVSV pseudotyped with filovirus GP, which also expressed the reporter protein GFP (rVSV-GP-GFP) (Miller et al., 2012). CA45 potently...for proper protein folding and expression. The epitope mapping identified EBOV GP residues R64 within the N-terminus of GP1 in addition to Y517
Candidate mosaic proteins for a pan-filoviral cytotoxic T-Cell lymphocyte vaccine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenimore, Paul W; Fischer, William M; Kuiken, Carla
The extremely high fatality rates of many filovirus (FILV) strains the recurrent but rarely identified origin of human epidemics, the only partly identified viral reservoirs and the continuing non-human primate epizootics in Africa make a broadly-protective filovirus vaccine highly desirable. Cytotoxic T-cells (CTL) have been shown to be protective in mice, guinea pigs and non-human primates. In murine models the cytotoxic T-cell epitopes that are protective against Ebola virus have been mapped and in non-human primates CTL-mediated protection between viral strains (John Dye: specify) has been demonstrated using two filoviral proteins, nucleoprotein (NP) and glycoprotein (GP). These immunological results suggestmore » that the CTL avenue of immunity deserves consideration for a vaccine. The poorly-understood viral reservoirs means that it is difficult to predict what strains are likely to cause epidemics. Thus, there is a premium on developing a pan-filoviral vaccine. The genetic diversity of FILV is large, roughly the same scale as human immunodeficiency virus (HIV). This presents a serious challenge for the vaccine designer because a traditional vaccine aspiring to pan-filoviral coverage is likely to require the inclusion of many antigenic reagents. A recent method for optimizing cytotoxic T-cell lymphocyte epitope coverage with mosaic antigens was successful in improving potential CTL epitope coverage against HIV and may be useful in the context of very different viruses, such as the filoviruses discussed here. Mosaic proteins are recombinants composed of fragments of wild-type proteins joined at locations resulting in exclusively natural k-mers, 9 {le} k {le} 15, and having approximately the same length as the wild-type proteins. The use of mosaic antigens is motivated by three conjectures: (1) optimizing a mosaic protein to maximize coverage of k-mers found in a set of reference proteins will give better odds of including broadly-protective CTL epitopes in a vaccine than is possible with a wild-type protein, (2) reducing the number of low-prevalence k-mers minimizes the likelihood of undesirable immunodominance, and (3) excluding exogenous k-mers will result in mosaic proteins whose processing for presentation is close to what occurs with wild-type proteins. The first and second applications of the mosaic method were to HIV and Hepatitis C Virus (HCV). HIV is the virus with the largest number of known sequences, and consequently a plethora of information for the CTL vaccine designer to incorporate into their mosaics. Experience with HIV and HCV mosaics supports the validity of the three conjectures above. The available FILV sequences are probably closer to the minimum amount of information needed to make a meaningful mosaic vaccine candidate. There were 532 protein sequences in the National Institutes of Health GenPept database in November 2007 when our reference set was downloaded. These sequences come from both Ebola and Marburg viruses (EBOV and MARV), representing transcripts of all 7 genes. The coverage of viral diversity by the 7 genes is variable, with genes 1 (nucleoprotein, NP), 4 (glycoprotein, GP; soluble glycoprotein, sGP) and 7 (polymerase, L) giving the best coverage. Broadly-protective vaccine candidates for diverse viruses, such as HIV or Hepatitis C virus (HCV) have required pools of antigens. FILV is similar in this regard. While we have designed CTL mosaic proteins using all 7 types of filoviral proteins, only NP, GP and L proteins are reported here. If it were important to include other proteins in a mosaic CTL vaccine, additional sequences would be required to cover the space of known viral diversity.« less
Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections.
Geisbert, Thomas W; Feldmann, Heinz
2011-11-01
The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with a high mortality rate in humans and nonhuman primates. Among the most-promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV) that expresses a single filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). Importantly, a single injection of blended rVSV-based filovirus vaccines was shown to completely protect nonhuman primates against Marburg virus and 3 different species of Ebola virus. These rVSV-based vaccines have also shown utility when administered as a postexposure treatment against filovirus infections, and a rVSV-based Ebola virus vaccine was recently used to treat a potential laboratory exposure. Here, we review the history of rVSV-based vaccines and pivotal animal studies showing their utility in combating Ebola and Marburg virus infections.
Recombinant Vesicular Stomatitis Virus–Based Vaccines Against Ebola and Marburg Virus Infections
Feldmann, Heinz
2011-01-01
The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with a high mortality rate in humans and nonhuman primates. Among the most-promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV) that expresses a single filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). Importantly, a single injection of blended rVSV-based filovirus vaccines was shown to completely protect nonhuman primates against Marburg virus and 3 different species of Ebola virus. These rVSV-based vaccines have also shown utility when administered as a postexposure treatment against filovirus infections, and a rVSV-based Ebola virus vaccine was recently used to treat a potential laboratory exposure. Here, we review the history of rVSV-based vaccines and pivotal animal studies showing their utility in combating Ebola and Marburg virus infections. PMID:21987744
Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects
2010-01-01
Background Lassa hemorrhagic fever (LHF) is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. With a high rate of infection that may lead to morbidity and mortality, understanding how the virus interacts with the host's immune system is of great importance for generating vaccines and therapeutics. Previous work by our group identified a soluble isoform of the Lassa virus (LASV) GP1 (sGP1) in vitro resulting from the expression of the glycoprotein complex (GPC) gene [1,2]. Though no work has directly been done to demonstrate the function of this soluble isoform in arenaviral infections, evidence points to immunomodulatory effects against the host's immune system mediated by a secreted glycoprotein component in filoviruses, another class of hemorrhagic fever-causing viruses. A significant fraction of shed glycoprotein isoforms during viral infection and biogenesis may attenuate the host's inflammatory response, thereby enhancing viral replication and tissue damage. Such shed glycoprotein mediated effects were previously reported for Ebola virus (EBOV), a filovirus that also causes hemorrhagic fever with nearly 90% fatality rates [3-5]. The identification of an analogous phenomenon in vivo could establish a new correlate of LHF infection leading to the development of sensitive diagnostics targeting the earliest molecular events of the disease. Additionally, the reversal of potentially untoward immunomodulatory functions mediated by sGP1 could potentiate the development of novel therapeutic intervention. To this end, we investigated the presence of sGP1 in the serum of suspected LASV patients admitted to the Kenema Government Hospital (KGH) Lassa Fever Ward (LFW), in Kenema, Sierra Leone that tested positive for viral antigen or displayed classical signs of Lassa fever. Results It is reasonable to expect that a narrow window exists for detection of sGP1 as the sole protein shed during early arenaviral biogenesis. This phenomenon was clearly distinguishable from virion-associated GP1 only prior to the emergence of de novo viral particles. Despite this restricted time frame, in 2/46 suspected cases in two studies performed in late 2009 and early 2010, soluble glycoprotein component shedding was identified. Differential detection of viral antigens GP1, GP2, and NP by western blot yielded five different scenarios: whole LASV virions (GP1, GP2, NP; i.e. active viremia), different combinations of these three proteins, sGP1 only, NP only, and absence of all three proteins. Four additional samples showed inconclusive evidence for sGP1 shedding due to lack of detection of GP2 and NP by western blot; however, a sensitive LASV NP antigen capture ELISA generated marginally positive signals Conclusions During a narrow window following active infection with LASV, soluble GP1 can be detected in patient sera. This phenomenon parallels other VHF infection profiles, with the actual role of a soluble viral glycoprotein component in vivo remaining largely speculative. The expenditure of energy and cellular resources toward secretion of a critical protein during viral biogenesis without apparent specific function requires further investigation. Future studies will be aimed at systematically identifying the role of LASV sGP1 in the infection process and outcome in vitro and in vivo. PMID:21062490
Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects.
Branco, Luis M; Grove, Jessica N; Moses, Lina M; Goba, Augustine; Fullah, Mohammed; Momoh, Mambu; Schoepp, Randal J; Bausch, Daniel G; Garry, Robert F
2010-11-09
Lassa hemorrhagic fever (LHF) is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. With a high rate of infection that may lead to morbidity and mortality, understanding how the virus interacts with the host's immune system is of great importance for generating vaccines and therapeutics. Previous work by our group identified a soluble isoform of the Lassa virus (LASV) GP1 (sGP1) in vitro resulting from the expression of the glycoprotein complex (GPC) gene [1, 2]. Though no work has directly been done to demonstrate the function of this soluble isoform in arenaviral infections, evidence points to immunomodulatory effects against the host's immune system mediated by a secreted glycoprotein component in filoviruses, another class of hemorrhagic fever-causing viruses. A significant fraction of shed glycoprotein isoforms during viral infection and biogenesis may attenuate the host's inflammatory response, thereby enhancing viral replication and tissue damage. Such shed glycoprotein mediated effects were previously reported for Ebola virus (EBOV), a filovirus that also causes hemorrhagic fever with nearly 90 percent fatality rates [3 - 5]. The identification of an analogous phenomenon in vivo could establish a new correlate of LHF infection leading to the development of sensitive diagnostics targeting the earliest molecular events of the disease. Additionally, the reversal of potentially untoward immunomodulatory functions mediated by sGP1 could potentiate the development of novel therapeutic intervention. To this end, we investigated the presence of sGP1 in the serum of suspected LASV patients admitted to the Kenema Government Hospital (KGH) Lassa Fever Ward (LFW), in Kenema, Sierra Leone that tested positive for viral antigen or displayed classical signs of Lassa fever. It is reasonable to expect that a narrow window exists for detection of sGP1 as the sole protein shed during early arenaviral biogenesis. This phenomenon was clearly distinguishable from virion-associated GP1 only prior to the emergence of de novo viral particles. Despite this restricted time frame, in 2/46 suspected cases in two studies performed in late 2009 and early 2010, soluble glycoprotein component shedding was identified. Differential detection of viral antigens GP1, GP2, and NP by western blot yielded five different scenarios: whole LASV virions (GP1, GP2, NP; i.e. active viremia), different combinations of these three proteins, sGP1 only, NP only, and absence of all three proteins. Four additional samples showed inconclusive evidence for sGP1 shedding due to lack of detection of GP2 and NP in western blot; however, a sensitive LASV NP antigen capture ELISA generated marginally positive signals. During a narrow window following active infection with LASV, soluble GP1 can be detected in patient sera. This phenomenon parallels other VHF infection profiles, with the actual role of a soluble viral glycoprotein component in vivo remaining largely speculative. The expenditure of energy and cellular resources toward secretion of a critical protein during viral biogenesis without apparent specific function requires further investigation. Future studies will be aimed at systematically identifying the role of LASV sGP1 in the infection process and outcome in vitro and in vivo.
1982-04-22
pbenomena An the Wather Conditions kMry ebove also onply for the categories heeded -% OF UN V=? PM10 and -% OF ONS W=! OWS 20 TMIW shov the pereatage of...OF WIND V DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 27 FT HuJil4IrA/l ifaY ALF A7 MAR-7f STATION SamIO Name vEas MONT* ALL WATHER ~fnnn-nflf...U. GLOAL CLIMATOLOGY SRANCH USAFETAC PSYCHROMETRIC SUMMARY j,~ AIR wATHER SERVICE/MAC 72273C FT ,UACHUCAILIBBY AAF AZ 61-?0 WA0
Viruses, Artificial Viruses and Virus-Based Structures for Biomedical Applications.
van Rijn, Patrick; Schirhagl, Romana
2016-06-01
Nanobiomaterials such as virus particles and artificial virus particles offer tremendous opportunities to develop new biomedical applications such as drug- or gene-delivery, imaging and sensing but also improve understanding of biological mechanisms. Recent advances within the field of virus-based systems give insights in how to mimic viral structures and virus assembly processes as well as understanding biodistribution, cell/tissue targeting, controlled and triggered disassembly or release and circulation times. All these factors are of high importance for virus-based functional systems. This review illustrates advances in mimicking and enhancing or controlling these aspects to a high degree toward delivery and imaging applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of virus-based nanomaterials for medicine, biotechnology, and energy
Wen, Amy M.; Steinmetz, Nicole F.
2016-01-01
Virus-based nanomaterials are versatile materials that naturally self-assemble and have relevance for a broad range of applications including medicine, biotechnology, and energy. This review provides an overview of recent developments in “chemical virology.” Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials. PMID:27152673
What motivates use of community-based human immunodeficiency virus testing in rural South Africa?
Upadhya, Devesh; Moll, Anthony P; Brooks, Ralph P; Friedland, Gerald; Shenoi, Sheela V
2016-01-01
Despite substantial progress in implementing human immunodeficiency virus testing, challenges remain in achieving widespread uptake particularly in rural resource-limited settings. We sought to understand motivations for human immunodeficiency virus testing in a community-based human immunodeficiency virus testing programme in rural South Africa. We conducted a questionnaire survey in participants undergoing voluntary human immunodeficiency virus testing within an ongoing community-based integrated human immunodeficiency virus/TB intensive case finding programme at congregate rural settings. Participants responded to a six-item non-mutually exclusive motivations survey which included the topics of feeling ill, recent HV exposure, risky lifestyle, illness in a family member, and pregnancy. Among 2068 respondents completing the survey, 1393 (67.4%) were women, median age was 40 years (IQR 19–56), and 1235 (59.7%) were first time testers. Among all testers, 142 (6.9%) were human immunodeficiency virus-positive with median CD4 count 346 (IQR 218–542). Community-based testing for human immunodeficiency virus is acceptable and meets the needs of community members in rural South Africa. Motivations for human immunodeficiency virus testing at the community level are complex and differ according to gender, age, site of community testing, and human immunodeficiency virus status. These differences can be utilised to improve the focus and yield of community-based human immunodeficiency virus screening. PMID:26134323