Sample records for virus neutralization activity

  1. Boosting heterosubtypic neutralization antibodies in recipients of 2009 pandemic H1N1 influenza vaccine.

    PubMed

    Qiu, Chao; Huang, Yang; Wang, Qian; Tian, Di; Zhang, Wanju; Hu, Yunwen; Yuan, Zhenghong; Zhang, Xiaoyan; Xu, Jianqing

    2012-01-01

    A mass vaccination has been implemented to prevent the spread of 2009 pandemic influenza virus in China. Highly limited information is available on whether this vaccine induces cross-reactive neutralization antibodies against other subtypes of influenza viruses. We employed pseudovirus-based assays to analyze heterosubtypic neutralization responses in serum samples of 23 recipients of 2009 pandemic influenza vaccine. One dose of pandemic vaccine not only stimulated good neutralization antibodies against cognate influenza virus 2009 influenza A (H1N1), but also raised broad cross-reactive neutralization activities against seasonal H3N2 and highly pathogenic avian influenza virus H5N1 and lesser to H2N2. The cross-reactive neutralization activities were completely abolished after the removal of immunoglobin G (IgG). In contrast, H1N1 vaccination alone in influenza-naive mice elicited only vigorous homologous neutralizing activities but not cross-reactive neutralization activities. Our data suggest that the cross-reactive neutralization epitopes do exist in this vaccine and could elicit significant cross-reactive neutralizing IgG antibodies in the presence of preexisting responses. The exposure to H1N1 vaccine is likely to modify the hierarchical order of preexisting immune responses to influenza viruses. These findings provide insights into the evolution of human immunity to influenza viruses after experiencing multiple influenza virus infections and vaccinations.

  2. Antibodies against viruses: passive and active immunization

    PubMed Central

    Law, Mansun; Hangartner, Lars

    2008-01-01

    Summary of recent advances Antibodies, through passive or active immunization, play a central role in prophylaxis against many infectious agents. While neutralization is a primary function of antibodies in protection against most viruses, the relative contribution of Fc-dependent and complement-dependent antiviral activities of antibodies was found to vary between different viruses in recent studies. The multiple hit model explains how antibodies neutralize viruses and recent data on the stoichiometry of antibody neutralization suggest that the organization of viral surface proteins on viruses, in addition to virus size, influences the level of antibody occupancy required for neutralization. These new findings will improve our strategies in therapeutic antibody engineering and rational vaccine design. PMID:18577455

  3. Friend Leukemogenic Virus-neutralizing Antibody from Mouse Ascitic Fluid

    PubMed Central

    March, R. W.; Chirigos, M. A.; Hook, W. A.; Burka, B. L.

    1967-01-01

    Ascitic fluid antibody produced in C57/B1 mice immunized with Friend leukemogenic virus exhibited potent neutralizing activity. In vitro neutralization tests revealed that a mean neutralization index of 3.0 was achieved, and it was shown by sucrose gradient ultracentrifugation that this antibody resembled the 7S type. A mean yield of 6.7 ml of fluid per mouse per weekly paracentesis was obtained over an 8-week period. The ascitic fluid antibody to Friend virus was also active in vivo. Mice given antibody 3, 5, 7, and 9 days after infection with Friend virus did not develop the splenomegaly characteristic of Friend disease. PMID:16349755

  4. Transmissible gastroenteritis virus: plaques and a plaque neutralization test.

    PubMed Central

    Thomas, F C; Dulac, G C

    1976-01-01

    A plaquing system and plaque neutralization test in porcine thyroid cells were used to study different transmissible gastroenteritis isolates and hemagglutinating encephalomyelitis virus. Among transmissible gastroenteritis virus isolates, plaque size varied considerably and mixed size ranges sometimes occurred. The most recently isolated viruses produced smaller plaques than the laboratory viruses or hemagglutinating encephalomyelitis virus. All transmissible gastroenteritis virus isolates reacted in the plaque neutralization test with a transmissible gastroenteritis virus antiserum which showed no activity against hemagglutinating encephalomyelitis virus. Plaque neutralization results both from experimentally infected pigs and following a field outbreak demonstrated the reliability of this test and its greater sensitivity than the conventional tube test. Images Fig. 1. PMID:187296

  5. Antigenic Properties of the HIV Envelope on Virions in Solution

    PubMed Central

    Mengistu, Meron; Lewis, George K.; Lakowicz, Joseph R.

    2014-01-01

    The structural flexibility found in human immunodeficiency virus (HIV) envelope glycoproteins creates a complex relationship between antigenicity and sensitivity to antiviral antibodies. The study of this issue in the context of viral particles is particularly problematic as conventional virus capture approaches can perturb antigenicity profiles. Here, we employed a unique analytical system based on fluorescence correlation spectroscopy (FCS), which measures antibody-virion binding with all reactants continuously in solution. Panels of nine anti-envelope monoclonal antibodies (MAbs) and five virus types were used to connect antibody binding profiles with neutralizing activities. Anti-gp120 MAbs against the 2G12 or b12 epitope, which marks functional envelope structures, neutralized viruses expressing CCR5-tropic envelopes and exhibited efficient virion binding in solution. MAbs against CD4-induced (CD4i) epitopes considered hidden on functional envelope structures poorly bound these viruses and were not neutralizing. Anti-gp41 MAb 2F5 was neutralizing despite limited virion binding. Similar antigenicity patterns occurred on CXCR4-tropic viruses, except that anti-CD4i MAbs 17b and 19e were neutralizing despite little or no virion binding. Notably, anti-gp120 MAb PG9 and anti-gp41 MAb F240 bound to both CCR5-tropic and CXCR4-tropic viruses without exerting neutralizing activity. Differences in the virus production system altered the binding efficiencies of some antibodies but did not enhance antigenicity of aberrant gp120 structures. Of all viruses tested, only JRFL pseudoviruses showed a direct relationship between MAb binding efficiency and neutralizing potency. Collectively, these data indicate that the antigenic profiles of free HIV particles generally favor the exposure of functional over aberrant gp120 structures. However, the efficiency of virion-antibody interactions in solution inconsistently predicts neutralizing activity in vitro. PMID:24284318

  6. Evaluation of smallpox vaccines using variola neutralization.

    PubMed

    Damon, Inger K; Davidson, Whitni B; Hughes, Christine M; Olson, Victoria A; Smith, Scott K; Holman, Robert C; Frey, Sharon E; Newman, Frances; Belshe, Robert B; Yan, Lihan; Karem, Kevin

    2009-08-01

    The search for a 'third'-generation smallpox vaccine has resulted in the development and characterization of several vaccine candidates. A significant barrier to acceptance is the absence of challenge models showing induction of correlates of protective immunity against variola virus. In this light, virus neutralization provides one of few experimental methods to show specific 'in vitro' activity of vaccines against variola virus. Here, we provide characterization of the ability of a modified vaccinia virus Ankara vaccine to induce variola virus-neutralizing antibodies, and we provide comparison with the neutralization elicited by standard Dryvax vaccination.

  7. Optimization of a Plaque Neutralization Test (PNT) to identify the exposure history of Pacific Herring to viral hemorrhagic septicemia virus (VHSV)

    USGS Publications Warehouse

    Hart, Lucas; Mackenzie, Ashley; Purcell, Maureen; Thompson, Rachel L.; Hershberger, Paul

    2017-01-01

    Methods for a plaque neutralization test (PNT) were optimized for the detection and quantification of viral hemorrhagic septicemia virus (VHSV) neutralizing activity in the plasma of Pacific Herring Clupea pallasii. The PNT was complement dependent, as neutralizing activity was attenuated by heat inactivation; further, neutralizing activity was mostly restored by the addition of exogenous complement from specific-pathogen-free Pacific Herring. Optimal methods included the overnight incubation of VHSV aliquots in serial dilutions (starting at 1:16) of whole test plasma containing endogenous complement. The resulting viral titers were then enumerated using a viral plaque assay in 96-well microplates. Serum neutralizing activity was virus-specific as plasma from viral hemorrhagic septicemia (VHS) survivors demonstrated only negligible reactivity to infectious hematopoietic necrosis virus, a closely related rhabdovirus. Among Pacific Herring that survived VHSV exposure, neutralizing activity was detected in the plasma as early as 37 d postexposure and peaked at approximately 64 d postexposure. The onset of neutralizing activity was slightly delayed in fish reared at 7.4°C relative to those in warmer temperatures (9.9°C and 13.1°C); however, neutralizing activity persisted for at least 345 d postexposure in all temperature treatments. It is anticipated that this novel ability to assess VHSV neutralizing activity in Pacific Herring will enable retrospective comparisons between prior VHS infections and year-class recruitment failures. Additionally, the optimized PNT could be employed as a forecasting tool capable of identifying the potential for future VHS epizootics in wild Pacific Herring populations.

  8. Capacity of Broadly Neutralizing Antibodies to Inhibit HIV-1 Cell-Cell Transmission Is Strain- and Epitope-Dependent

    PubMed Central

    Reh, Lucia; Magnus, Carsten; Schanz, Merle; Weber, Jacqueline; Uhr, Therese; Rusert, Peter; Trkola, Alexandra

    2015-01-01

    An increasing number of broadly neutralizing antibodies (bnAbs) are considered leads for HIV-1 vaccine development and novel therapeutics. Here, we systematically explored the capacity of bnAbs to neutralize HIV-1 prior to and post-CD4 engagement and to block HIV-1 cell-cell transmission. Cell-cell spread is known to promote a highly efficient infection with HIV-1 which can inflict dramatic losses in neutralization potency compared to free virus infection. Selection of bnAbs that are capable of suppressing HIV irrespective of the transmission mode therefore needs to be considered to ascertain their in vivo activity in therapeutic use and vaccines. Employing assay systems that allow for unambiguous discrimination between free virus and cell-cell transmission to T cells, we probed a panel of 16 bnAbs for their activity against 11 viruses from subtypes A, B and C during both transmission modes. Over a wide range of bnAb-virus combinations tested, inhibitory activity against HIV-1 cell-cell transmission was strongly decreased compared to free virus transmission. Activity loss varied considerably between virus strains and was inversely associated with neutralization of free virus spread for V1V2- and V3-directed bnAbs. In rare bnAb-virus combinations, inhibition for both transmission modes was comparable but no bnAb potently blocked cell-cell transmission across all probed virus strains. Mathematical analysis indicated an increased probability of bnAb resistance mutations to arise in cell-cell rather than free virus spread, further highlighting the need to block this pathway. Importantly, the capacity to efficiently neutralize prior to CD4 engagement correlated with the inhibition efficacy against free virus but not cell-cell transmitted virus. Pre-CD4 attachment activity proved strongest amongst CD4bs bnAbs and varied substantially for V3 and V1V2 loop bnAbs in a strain-dependent manner. In summary, bnAb activity against divergent viruses varied depending on the transmission mode and differed depending on the window of action during the entry process, underscoring that powerful combinations of bnAbs are needed for in vivo application. PMID:26158270

  9. Cross-neutralization of antibodies induced by vaccination with Purified Chick Embryo Cell Vaccine (PCECV) against different Lyssavirus species.

    PubMed

    Malerczyk, Claudius; Freuling, Conrad; Gniel, Dieter; Giesen, Alexandra; Selhorst, Thomas; Müller, Thomas

    2014-01-01

    Rabies is a neglected zoonotic disease caused by viruses belonging to the genus lyssavirus. In endemic countries of Asia and Africa, where the majority of the estimated 60,000 human rabies deaths occur, it is mainly caused by the classical rabies virus (RABV) transmitted by dogs. Over the last decade new species within the genus lyssavirus have been identified. Meanwhile 15 (proposed or classified) species exist, including Australian bat lyssavirus (ABLV), European bat lyssavirus (EBLV-1 and -2), Duvenhage virus (DUVV), as well as Lagos bat virus (LBV) and Mokola virus (MOKV) and recently identified novel species like Bokeloh bat lyssavirus (BBLV), Ikoma bat lyssavirus (IKOV) or Lleida bat lyssavirus (LLBV). The majority of these lyssavirus species are found in bat reservoirs and some have caused human infection and deaths. Previous work has demonstrated that Purified Chick Embryo Cell Rabies Vaccine (PCECV) not only induces immune responses against classical RABV, but also elicits cross-neutralizing antibodies against ABLV, EBLV-1 and EBLV-2. Using the same serum samples as in our previous study, this study extension investigated cross-neutralizing activities of serum antibodies measured by rapid fluorescent focus inhibition test (RFFIT) against selected other non-classical lyssavirus species of interest, namely DUVV and BBLV, as well as MOKV and LBV. Antibodies developed after vaccination with PCECV have neutralizing capability against BBLV and DUVV in the same range as against ABLV and EBLV-1 and -2. As expected, for the phylogenetically more distant species LBV no cross-neutralizing activity was found. Interestingly, 15 of 94 serum samples (16%) with a positive neutralizing antibody titer against RABV displayed specific cross-neutralizing activity (65-fold lower than against RABV) against one specific MOKV strain (Ethiopia isolate), which was not seen against a different strain (Nigeria isolate). Cross-neutralizing activities partly correlate with the phylogenetic distance of the virus species. Cross-neutralizing activities against the species BBLV and DUVV of phylogroup 1 were demonstrated, in line with previous results of cross-neutralizing activities against ABLV and EBLV-1 and -2. Potential partial cross-neutralizing activities against more distant lyssavirus species like selected MOKV strains need further research.

  10. Photoinactivation of Latent Herpes Simplex Virus in Rabbit Kidney Cells

    PubMed Central

    Kelleher, J. J.; Varani, J.

    1976-01-01

    The photoinactivation of actively and nonactively growing herpes simplex virus by neutral red and proflavine was studied in rabbit kidney cells. Active virus growth was inhibited by both dyes under conditions which did not destroy the cells. Neutral red caused a much greater inhibition than proflavine. Neutral red also caused a reduction in the reactivation rate of latent virus when the infected cells were treated during the latent period. In the treated cultures that did reactivate virus, the average length of the latent period was increased over the control value. Proflavine treatment did not reduce the rate of reactivation of latent virus and did not increase the average latent period of the treated cultures. PMID:185948

  11. [FAB immunoglobulin fragments. I. The comparative characteristics of the serological and virus-neutralizing properties of a gamma globulin against tick-borne encephalitis and of the FAB fragments isolated from it].

    PubMed

    Barban, P S; Minaeva, V M; Pantiukhina, A N; Startseva, M G

    1976-06-01

    A comparative study was made of the serological properties and virus-neutralizing activity of antiencephalitis gamma-globulin and Fab-fragments isolated from it by gel-filtration. Horse immunoglobulins against the autumno-summer tick-borne encephalitis virus could be disintegrated with the aid of papaine to monovalent Fab-fragments which (according to the complement fixation reaction, the test of suppression of the complement fixation, and the HAIT) retained the serological activity whose level was compared with that of the serological activity of gamma-globulin. Fab-fragments possessed a marked virus-neutralizing activity. The mean value of a logarithm of the neutralization index was 2.65 +/- 0.2 for Fab-fragments and 3.74 +/- 0.38 for gamma-globulin (P less than 0.01).

  12. Evaluation of smallpox vaccines using variola neutralization

    PubMed Central

    Damon, Inger K.; Davidson, Whitni B.; Hughes, Christine M.; Olson, Victoria A.; Smith, Scott K.; Holman, Robert C.; Frey, Sharon E.; Newman, Frances; Belshe, Robert B.; Yan, Lihan; Karem, Kevin

    2009-01-01

    The search for a ‘third’-generation smallpox vaccine has resulted in the development and characterization of several vaccine candidates. A significant barrier to acceptance is the absence of challenge models showing induction of correlates of protective immunity against variola virus. In this light, virus neutralization provides one of few experimental methods to show specific ‘in vitro’ activity of vaccines against variola virus. Here, we provide characterization of the ability of a modified vaccinia virus Ankara vaccine to induce variola virus-neutralizing antibodies, and we provide comparison with the neutralization elicited by standard Dryvax vaccination. PMID:19339477

  13. Global Panel of HIV-1 Env Reference Strains for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies

    PubMed Central

    deCamp, Allan; Hraber, Peter; Bailer, Robert T.; Seaman, Michael S.; Ochsenbauer, Christina; Kappes, John; Gottardo, Raphael; Edlefsen, Paul; Self, Steve; Tang, Haili; Greene, Kelli; Gao, Hongmei; Daniell, Xiaoju; Sarzotti-Kelsoe, Marcella; Gorny, Miroslaw K.; Zolla-Pazner, Susan; LaBranche, Celia C.; Mascola, John R.; Korber, Bette T.

    2014-01-01

    ABSTRACT Standardized assessments of HIV-1 vaccine-elicited neutralizing antibody responses are complicated by the genetic and antigenic variability of the viral envelope glycoproteins (Envs). To address these issues, suitable reference strains are needed that are representative of the global epidemic. Several panels have been recommended previously, but no clear answers have been available on how many and which strains are best suited for this purpose. We used a statistical model selection method to identify a global panel of reference Env clones from among 219 Env-pseudotyped viruses assayed in TZM-bl cells with sera from 205 HIV-1-infected individuals. The Envs and sera were sampled globally from diverse geographic locations and represented all major genetic subtypes and circulating recombinant forms of the virus. Assays with a panel size of only nine viruses adequately represented the spectrum of HIV-1 serum neutralizing activity seen with the larger panel of 219 viruses. An optimal panel of nine viruses was selected and augmented with three additional viruses for greater genetic and antigenic coverage. The spectrum of HIV-1 serum neutralizing activity seen with the final 12-virus panel closely approximated the activity seen with subtype-matched viruses. Moreover, the final panel was highly sensitive for detection of many of the known broadly neutralizing antibodies. For broader assay applications, all 12 Env clones were converted to infectious molecular clones using a proviral backbone carrying a Renilla luciferase reporter gene (Env.IMC.LucR viruses). This global panel should facilitate highly standardized assessments of vaccine-elicited neutralizing antibodies across multiple HIV-1 vaccine platforms in different parts of the world. IMPORTANCE An effective HIV-1 vaccine will need to overcome the extraordinary genetic variability of the virus, where most variation occurs in the viral envelope glycoproteins that are the sole targets for neutralizing antibodies. Efforts to elicit broadly cross-reactive neutralizing antibodies that will protect against infection by most circulating strains of the virus are guided in part by in vitro assays that determine the ability of vaccine-elicited antibodies to neutralize genetically diverse HIV-1 variants. Until now, little information was available on how many and which strains of the virus are best suited for this purpose. We applied robust statistical methods to evaluate a large neutralization data set and identified a small panel of viruses that are a good representation of the global epidemic. The neutralization properties of this new panel of reference strains should facilitate the development of an effective HIV-1 vaccine. PMID:24352443

  14. Global panel of HIV-1 Env reference strains for standardized assessments of vaccine-elicited neutralizing antibodies.

    PubMed

    deCamp, Allan; Hraber, Peter; Bailer, Robert T; Seaman, Michael S; Ochsenbauer, Christina; Kappes, John; Gottardo, Raphael; Edlefsen, Paul; Self, Steve; Tang, Haili; Greene, Kelli; Gao, Hongmei; Daniell, Xiaoju; Sarzotti-Kelsoe, Marcella; Gorny, Miroslaw K; Zolla-Pazner, Susan; LaBranche, Celia C; Mascola, John R; Korber, Bette T; Montefiori, David C

    2014-03-01

    Standardized assessments of HIV-1 vaccine-elicited neutralizing antibody responses are complicated by the genetic and antigenic variability of the viral envelope glycoproteins (Envs). To address these issues, suitable reference strains are needed that are representative of the global epidemic. Several panels have been recommended previously, but no clear answers have been available on how many and which strains are best suited for this purpose. We used a statistical model selection method to identify a global panel of reference Env clones from among 219 Env-pseudotyped viruses assayed in TZM-bl cells with sera from 205 HIV-1-infected individuals. The Envs and sera were sampled globally from diverse geographic locations and represented all major genetic subtypes and circulating recombinant forms of the virus. Assays with a panel size of only nine viruses adequately represented the spectrum of HIV-1 serum neutralizing activity seen with the larger panel of 219 viruses. An optimal panel of nine viruses was selected and augmented with three additional viruses for greater genetic and antigenic coverage. The spectrum of HIV-1 serum neutralizing activity seen with the final 12-virus panel closely approximated the activity seen with subtype-matched viruses. Moreover, the final panel was highly sensitive for detection of many of the known broadly neutralizing antibodies. For broader assay applications, all 12 Env clones were converted to infectious molecular clones using a proviral backbone carrying a Renilla luciferase reporter gene (Env.IMC.LucR viruses). This global panel should facilitate highly standardized assessments of vaccine-elicited neutralizing antibodies across multiple HIV-1 vaccine platforms in different parts of the world. An effective HIV-1 vaccine will need to overcome the extraordinary genetic variability of the virus, where most variation occurs in the viral envelope glycoproteins that are the sole targets for neutralizing antibodies. Efforts to elicit broadly cross-reactive neutralizing antibodies that will protect against infection by most circulating strains of the virus are guided in part by in vitro assays that determine the ability of vaccine-elicited antibodies to neutralize genetically diverse HIV-1 variants. Until now, little information was available on how many and which strains of the virus are best suited for this purpose. We applied robust statistical methods to evaluate a large neutralization data set and identified a small panel of viruses that are a good representation of the global epidemic. The neutralization properties of this new panel of reference strains should facilitate the development of an effective HIV-1 vaccine.

  15. Neutralizing Activity of Broadly Neutralizing Anti-HIV-1 Antibodies against Clade B Clinical Isolates Produced in Peripheral Blood Mononuclear Cells.

    PubMed

    Cohen, Yehuda Z; Lorenzi, Julio C C; Seaman, Michael S; Nogueira, Lilian; Schoofs, Till; Krassnig, Lisa; Butler, Allison; Millard, Katrina; Fitzsimons, Tomas; Daniell, Xiaoju; Dizon, Juan P; Shimeliovich, Irina; Montefiori, David C; Caskey, Marina; Nussenzweig, Michel C

    2018-03-01

    Recently discovered broadly neutralizing antibodies (bNAbs) against HIV-1 demonstrate extensive breadth and potency against diverse HIV-1 strains and represent a promising approach for the treatment and prevention of HIV-1 infection. The breadth and potency of these antibodies have primarily been evaluated by using panels of HIV-1 Env-pseudotyped viruses produced in 293T cells expressing molecularly cloned Env proteins. Here we report on the ability of five bNAbs currently in clinical development to neutralize circulating primary HIV-1 isolates derived from peripheral blood mononuclear cells (PBMCs) and compare the results to those obtained with the pseudovirus panels used to characterize the bNAbs. The five bNAbs demonstrated significantly less breadth and potency against clinical isolates produced in PBMCs than against Env-pseudotyped viruses. The magnitude of this difference in neutralizing activity varied, depending on the antibody epitope. Glycan-targeting antibodies showed differences of only 3- to 4-fold, while antibody 10E8, which targets the membrane-proximal external region, showed a nearly 100-fold decrease in activity between published Env-pseudotyped virus panels and PBMC-derived primary isolates. Utilizing clonal PBMC-derived primary isolates and molecular clones, we determined that the observed discrepancy in bNAb performance is due to the increased sensitivity to neutralization exhibited by 293T-produced Env-pseudotyped viruses. We also found that while full-length molecularly cloned viruses produced in 293T cells exhibit greater sensitivity to neutralization than PBMC-derived viruses do, Env-pseudotyped viruses produced in 293T cells generally exhibit even greater sensitivity to neutralization. As the clinical development of bNAbs progresses, it will be critical to determine the relevance of each of these in vitro neutralization assays to in vivo antibody performance. IMPORTANCE Novel therapeutic and preventive strategies are needed to contain the HIV-1 epidemic. Antibodies with exceptional neutralizing activity against HIV-1 may provide several advantages to traditional HIV drugs, including an improved side-effect profile, a reduced dosing frequency, and immune enhancement. The activity of these antibodies has been established in vitro by utilizing HIV-1 Env-pseudotyped viruses derived from circulating viruses but produced in 293T cells by pairing Env proteins with a backbone vector. We tested PBMC-produced circulating viruses against five anti-HIV-1 antibodies currently in clinical development. We found that the activity of these antibodies against PBMC isolates is significantly less than that against 293T Env-pseudotyped viruses. This decline varied among the antibodies tested, with some demonstrating moderate reductions in activity and others showing an almost 100-fold reduction. As the development of these antibodies progresses, it will be critical to determine how the results of different in vitro tests correspond to performance in the clinic. Copyright © 2018 Cohen et al.

  16. Cross-neutralization of antibodies induced by vaccination with Purified Chick Embryo Cell Vaccine (PCECV) against different Lyssavirus species

    PubMed Central

    Malerczyk, Claudius; Freuling, Conrad; Gniel, Dieter; Giesen, Alexandra; Selhorst, Thomas; Müller, Thomas

    2014-01-01

    Background: Rabies is a neglected zoonotic disease caused by viruses belonging to the genus lyssavirus. In endemic countries of Asia and Africa, where the majority of the estimated 60,000 human rabies deaths occur, it is mainly caused by the classical rabies virus (RABV) transmitted by dogs. Over the last decade new species within the genus lyssavirus have been identified. Meanwhile 15 (proposed or classified) species exist, including Australian bat lyssavirus (ABLV), European bat lyssavirus (EBLV-1 and -2), Duvenhage virus (DUVV), as well as Lagos bat virus (LBV) and Mokola virus (MOKV) and recently identified novel species like Bokeloh bat lyssavirus (BBLV), Ikoma bat lyssavirus (IKOV) or Lleida bat lyssavirus (LLBV). The majority of these lyssavirus species are found in bat reservoirs and some have caused human infection and deaths. Previous work has demonstrated that Purified Chick Embryo Cell Rabies Vaccine (PCECV) not only induces immune responses against classical RABV, but also elicits cross-neutralizing antibodies against ABLV, EBLV-1 and EBLV-2. Material & Methods: Using the same serum samples as in our previous study, this study extension investigated cross-neutralizing activities of serum antibodies measured by rapid fluorescent focus inhibition test (RFFIT) against selected other non-classical lyssavirus species of interest, namely DUVV and BBLV, as well as MOKV and LBV. Results: Antibodies developed after vaccination with PCECV have neutralizing capability against BBLV and DUVV in the same range as against ABLV and EBLV-1 and -2. As expected, for the phylogenetically more distant species LBV no cross-neutralizing activity was found. Interestingly, 15 of 94 serum samples (16%) with a positive neutralizing antibody titer against RABV displayed specific cross-neutralizing activity (65-fold lower than against RABV) against one specific MOKV strain (Ethiopia isolate), which was not seen against a different strain (Nigeria isolate). Conclusion: Cross-neutralizing activities partly correlate with the phylogenetic distance of the virus species. Cross-neutralizing activities against the species BBLV and DUVV of phylogroup 1 were demonstrated, in line with previous results of cross-neutralizing activities against ABLV and EBLV-1 and -2. Potential partial cross-neutralizing activities against more distant lyssavirus species like selected MOKV strains need further research. PMID:25483634

  17. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies

    PubMed Central

    Chervyakova, Olga V.; Zaitsev, Valentin L.; Iskakov, Bulat K.; Tailakova, Elmira T.; Strochkov, Vitaliy M.; Sultankulova, Kulyaisan T.; Sandybayev, Nurlan T.; Stanbekova, Gulshan E.; Beisenov, Daniyar K.; Abduraimov, Yergali O.; Mambetaliyev, Muratbay; Sansyzbay, Abylay R.; Kovalskaya, Natalia Y.; Nemchinov, Lev. G.; Hammond, Rosemarie W.

    2016-01-01

    The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV) strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122), orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. PMID:27338444

  18. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies.

    PubMed

    Chervyakova, Olga V; Zaitsev, Valentin L; Iskakov, Bulat K; Tailakova, Elmira T; Strochkov, Vitaliy M; Sultankulova, Kulyaisan T; Sandybayev, Nurlan T; Stanbekova, Gulshan E; Beisenov, Daniyar K; Abduraimov, Yergali O; Mambetaliyev, Muratbay; Sansyzbay, Abylay R; Kovalskaya, Natalia Y; Nemchinov, Lev G; Hammond, Rosemarie W

    2016-06-07

    The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV) strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122), orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins.

  19. Respiratory Syncytial Virus (RSV): Neutralizing Antibody, a Correlate of Immune Protection.

    PubMed

    Piedra, Pedro A; Hause, Anne M; Aideyan, Letisha

    2016-01-01

    Assays that measure RSV-specific neutralizing antibody activity are very useful for evaluating vaccine candidates, performing seroprevalence studies, and detecting infection. Neutralizing antibody activity is normally measured by a plaque reduction neutralization assay or by a microneutralization assay with or without complement. These assays measure the functional capacity of serum (or other fluids) to neutralize virus infectivity in cells as compared to ELISA assays that only measure the binding capacity against an antigen. This chapter discusses important elements in standardization of the RSV-specific microneutralization assay for use in the laboratory.

  20. Canine distemper virus neutralization activity is low in human serum and it is sensitive to an amino acid substitution in the hemagglutinin protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xinsheng, E-mail: xzhang@iavi.org; Molecular and Cellular Biology Program, State University of New York, Brooklyn, NY; Wallace, Olivia L.

    Serum was analyzed from 146 healthy adult volunteers in eastern Africa to evaluate measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb) prevalence and potency. MV plaque reduction neutralization test (PRNT) results indicated that all sera were positive for MV nAbs. Furthermore, the 50% neutralizing dose (ND50) for the majority of sera corresponded to antibody titers induced by MV vaccination. CDV nAbs titers were low and generally were detected in sera with high MV nAb titers. A mutant CDV was generated that was less sensitive to neutralization by human serum. The mutant virus genome had 10 nucleotide substitutions,more » which coded for single amino acid substitutions in the fusion (F) and hemagglutinin (H) glycoproteins and two substitutions in the large polymerase (L) protein. The H substitution occurred in a conserved region involved in receptor interactions among morbilliviruses, implying that this region is a target for cross-reactive neutralizing antibodies. - Highlights: • Screened 146 serum samples for measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb). • MV nAb is prevalent in the sera. • CDV neutralizing activity is generally low or absent and when detected it is present in sera with high MV nAb titers. • A neutralization-resistant CDV mutant was isolated using human serum selection. • A mutation was identified in the receptor-binding region of CDV hemagglutinin protein that confers the neutralization resistance.« less

  1. Longitudinal Analysis of Early HIV-1-Specific Neutralizing Activity in an Elite Neutralizer and in Five Patients Who Developed Cross-Reactive Neutralizing Activity

    PubMed Central

    Euler, Zelda; van den Kerkhof, Tom L. G. M.; van Gils, Marit J.; Burger, Judith A.; Edo-Matas, Diana; Phung, Pham; Wrin, Terri

    2012-01-01

    We previously established that at 3 years postseroconversion, ∼30% of HIV-infected individuals have cross-reactive neutralizing activity (CrNA) in their sera. Here we studied the kinetics with which CrNA develops and how these relate to the development of autologous neutralizing activity as well as viral escape and diversification. For this purpose, sera from five individuals with CrNA and one elite neutralizer that were obtained at three monthly intervals in the first year after seroconversion and at multiple intervals over the disease course were tested for neutralizing activity against an established multiclade panel of six viruses. The same serum samples, as well as sera from three individuals who lacked CrNA, were tested for their neutralizing activities against autologous clonal HIV-1 variants from multiple time points covering the disease course from seroconversion onward. The elite neutralizer already had CrNA at 9.8 months postseroconversion, in contrast with the findings for the other five patients, in whom CrNA was first detected at 20 to 35 months postseroconversion and peaked around 35 months postseroconversion. In all patients, CrNA coincided with neutralizing activity against autologous viruses that were isolated <12 months postseroconversion, while viruses from later time points had already escaped autologous neutralizing activity. Also, the peak in gp160 sequence diversity coincided with the peak of CrNA titers. Individuals who lacked CrNA had lower peak autologous neutralizing titers, viral escape, and sequence diversity than individuals with CrNA. A better understanding of the underlying factors that determine the presence of CrNA or even an elite neutralizer phenotype may aid in the design of an HIV-1 vaccine. PMID:22156522

  2. Antibodies against neutralization epitopes of human cytomegalovirus gH/gL/pUL128-130-131 complex and virus spreading may correlate with virus control in vivo.

    PubMed

    Lilleri, Daniele; Kabanova, Anna; Lanzavecchia, Antonio; Gerna, Giuseppe

    2012-12-01

    Recently, human cytomegalovirus (HCMV) UL128-131 locus gene products have been found to be associated with glycoprotein H (gH) and glycoprotein L (gL) to form a pentameric glycoprotein complex gH/gL/pUL128-130-131, which is present in the virus envelope and elicits production of neutralizing antibodies. Purpose of this study was to verify whether in vitro activities of these antibodies may correlate with protection in vivo. By using potently neutralizing human monoclonal antibodies (mAbs) targeting 10 different epitopes of the pentameric complex, a competitive ELISA assay was developed, in which the pentamer bound to the solid-phase was reacted competitively with human sera and murinized human mAbs. In addition, inhibition of virus spreading (plaque formation and leukocyte transfer) by neutralizing human mAbs and sera was investigated. In the absence of any reactivity of sera from HCMV-seronegative subjects, antibodies to all 10 epitopes were detected in HCMV-seropositive individuals. During primary HCMV infection in pregnancy antibodies to some epitopes showed a trend towards an earlier appearance in mothers not transmitting the virus to the fetus as compared to transmitting mothers. In addition, the activity of neutralizing human mAbs and sera in blocking virus cell-to-cell spreading and virus transfer to leukocytes from infected endothelial cells was shown to develop during the convalescent phase of primary infection. Dissection of the neutralizing/inhibiting activities of human sera may be helpful in the study of their protective role in vivo. In particular, neutralizing antibodies to the pentamer may be a surrogate marker of protection in vivo.

  3. Cross-neutralization between three mumps viruses & mapping of haemagglutinin-neuraminidase (HN) epitopes.

    PubMed

    Vaidya, Sunil R; Dvivedi, Garima M; Jadhav, Santoshkumar M

    2016-01-01

    The reports from the countries where mumps vaccine is given as routine immunization suggest differences in mumps virus neutralizing antibody titres when tested with vaccine and wild type viruses. Such reports are unavailable from countries like India where mumps vaccine is not included in routine immunization. We, therefore, undertook this study to understand the cross-neutralization activity of Indian mumps viruses. By using commercial mumps IgG enzyme immunoassay (EIA) and a rapid focus reduction neutralization test (FRNT), a panel of serum samples was tested. The panel consisted of 14 acute and 14 convalescent serum samples collected during a mumps outbreak and 18 archived serum samples. Two wild types (genotypes C and G) and Leningrad-Zagreb vaccine strain (genotype N) were used for the challenge experiments and FRNT titres were determined and further compared. The HN protein sequence of three mumps viruses was analyzed for the presence of key epitopes. All serum samples effectively neutralized mumps virus wild types and a vaccine strain. However, significantly lower FRNT titres were noted to wild types than to vaccine strain (P<0.05). The comparison between EIA and FRNT results revealed 95.6 per cent agreement. No amino acid changes were seen in the epitopes in the Indian wild type strains. All potential N-linked glycosylation sites were observed in Indian strains. Good cross-neutralization activity was observed for three mumps virus strains, however, higher level of FRNT titres was detected for mumps virus vaccine strain compared to Indian wild type isolates.

  4. Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization.

    PubMed

    Ji, Xin; Olinger, Gene G; Aris, Sheena; Chen, Ying; Gewurz, Henry; Spear, Gregory T

    2005-09-01

    Mannose-binding lectin (MBL), a serum lectin that mediates innate immune functions including activation of the lectin complement pathway, binds to carbohydrates expressed on some viral glycoproteins. In this study, the ability of MBL to bind to virus particles pseudotyped with Ebola and Marburg envelope glycoproteins was evaluated. Virus particles bearing either Ebola (Zaire strain) or Marburg (Musoke strain) envelope glycoproteins bound at significantly higher levels to immobilized MBL compared with virus particles pseudotyped with vesicular stomatitis virus glycoprotein or with no virus glycoprotein. As observed in previous studies, Ebola-pseudotyped virus bound to cells expressing the lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin). However, pre-incubation of virus with MBL blocked DC-SIGN-mediated binding to cells, suggesting that the two lectins bind at the same or overlapping sites on the Ebola glycoprotein. Neutralization experiments showed that virus pseudotyped with Ebola or Marburg (Musoke) glycoprotein was neutralized by complement, while the Marburg (Ravn strain) glycoprotein-pseudotyped virus was less sensitive to neutralization. Neutralization was partially mediated through the lectin complement pathway, since a complement source deficient in MBL was significantly less effective at neutralizing viruses pseudotyped with filovirus glycoproteins and addition of purified MBL to the MBL-deficient complement increased neutralization. These experiments demonstrated that MBL binds to filovirus envelope glycoproteins resulting in important biological effects and suggest that MBL can interact with filoviruses during infection in humans.

  5. Comparison of Antibody-Dependent Cell-Mediated Cytotoxicity and Virus Neutralization by HIV-1 Env-Specific Monoclonal Antibodies

    PubMed Central

    von Bredow, Benjamin; Arias, Juan F.; Heyer, Lisa N.; Moldt, Brian; Le, Khoa; Robinson, James E.; Burton, Dennis R.

    2016-01-01

    ABSTRACT Although antibodies to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein have been studied extensively for their ability to block viral infectivity, little data are currently available on nonneutralizing functions of these antibodies, such as their ability to eliminate virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 Env-specific antibodies of diverse specificities, including potent broadly neutralizing and nonneutralizing antibodies, were therefore tested for ADCC against cells infected with a lab-adapted HIV-1 isolate (HIV-1NL4-3), a primary HIV-1 isolate (HIV-1JR-FL), and a simian-human immunodeficiency virus (SHIV) adapted for pathogenic infection of rhesus macaques (SHIVAD8-EO). In accordance with the sensitivity of these viruses to neutralization, HIV-1NL4-3-infected cells were considerably more sensitive to ADCC, both in terms of the number of antibodies and magnitude of responses, than cells infected with HIV-1JR-FL or SHIVAD8-EO. ADCC activity generally correlated with antibody binding to Env on the surfaces of virus-infected cells and with viral neutralization; however, neutralization was not always predictive of ADCC, as instances of ADCC in the absence of detectable neutralization, and vice versa, were observed. These results reveal incomplete overlap in the specificities of antibodies that mediate these antiviral activities and provide insights into the relationship between ADCC and neutralization important for the development of antibody-based vaccines and therapies for combating HIV-1 infection. IMPORTANCE This study provides fundamental insights into the relationship between antibody-dependent cell-mediated cytotoxicity (ADCC) and virus neutralization that may help to guide the development of antibody-based vaccines and immunotherapies for the prevention and treatment of HIV-1 infection. PMID:27122574

  6. Comparison of Antibody-Dependent Cell-Mediated Cytotoxicity and Virus Neutralization by HIV-1 Env-Specific Monoclonal Antibodies.

    PubMed

    von Bredow, Benjamin; Arias, Juan F; Heyer, Lisa N; Moldt, Brian; Le, Khoa; Robinson, James E; Zolla-Pazner, Susan; Burton, Dennis R; Evans, David T

    2016-07-01

    Although antibodies to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein have been studied extensively for their ability to block viral infectivity, little data are currently available on nonneutralizing functions of these antibodies, such as their ability to eliminate virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 Env-specific antibodies of diverse specificities, including potent broadly neutralizing and nonneutralizing antibodies, were therefore tested for ADCC against cells infected with a lab-adapted HIV-1 isolate (HIV-1NL4-3), a primary HIV-1 isolate (HIV-1JR-FL), and a simian-human immunodeficiency virus (SHIV) adapted for pathogenic infection of rhesus macaques (SHIVAD8-EO). In accordance with the sensitivity of these viruses to neutralization, HIV-1NL4-3-infected cells were considerably more sensitive to ADCC, both in terms of the number of antibodies and magnitude of responses, than cells infected with HIV-1JR-FL or SHIVAD8-EO ADCC activity generally correlated with antibody binding to Env on the surfaces of virus-infected cells and with viral neutralization; however, neutralization was not always predictive of ADCC, as instances of ADCC in the absence of detectable neutralization, and vice versa, were observed. These results reveal incomplete overlap in the specificities of antibodies that mediate these antiviral activities and provide insights into the relationship between ADCC and neutralization important for the development of antibody-based vaccines and therapies for combating HIV-1 infection. This study provides fundamental insights into the relationship between antibody-dependent cell-mediated cytotoxicity (ADCC) and virus neutralization that may help to guide the development of antibody-based vaccines and immunotherapies for the prevention and treatment of HIV-1 infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Pre-Existing Immunity with High Neutralizing Activity to 2009 Pandemic H1N1 Influenza Virus in Shanghai Population

    PubMed Central

    Chen, Zhihui; Tang, Ziwei; Xu, Qingqiang; Wang, Yue; Zhao, Ping; Qi, Zhongtian

    2013-01-01

    Pre-existing immunity is an important factor countering the pandemic potential of an emerging influenza virus strain. Thus, studying of pre-existing immunity to the 2009 pandemic H1N1 virus (2009 H1N1) will advance our understanding of the pathogenesis and epidemiology of this emerging pathogen. In the present study, sera were collected from 486 individuals in a hospital in Shanghai, China, before the 2009 H1N1 influenza pandemic. The serum anti-hemagglutinins (HA) antibody, hemagglutination inhibition (HI) antibody and neutralizing antibody against the 2009 H1N1 were assayed. Among this population, 84.2%, 14.61% and 26.5% subjects possessed anti-HA antibody, HI antibody and neutralizing antibody, respectively. Although neutralizing antibody only existed in those sera with detectable anti-HA antibody, there was no obvious correlation between the titers of anti-HA and neutralizing antibody. However, the titers of anti-HA and neutralizing antibody against seasonal H1N1 virus were highly correlated. In the same population, there was no correlation between titers of neutralizing antibody against 2009 H1N1 and seasonal H1N1. DNA immunization performed on mice demonstrated that antibodies to the HA of 2009 pandemic and seasonal H1N1 influenza viruses were strain-specific and had no cross-neutralizing activity. In addition, the predicted conserved epitope in the HA of 2009 H1N1 and recently circulating seasonal H1N1 virus, GLFGAIAGFIE, was not an immunologically valid B-cell epitope. The data in this report are valuable for advancing our understanding of 2009 H1N1 influenza virus infection. PMID:23527030

  8. Protective effects of broadly neutralizing immunoglobulin against homologous and heterologous equine infectious anemia virus infection in horses with severe combined immunodeficiency.

    PubMed

    Taylor, Sandra D; Leib, Steven R; Wu, Wuwei; Nelson, Robert; Carpenter, Susan; Mealey, Robert H

    2011-07-01

    Using the equine infectious anemia virus (EIAV) lentivirus model system, we previously demonstrated protective effects of broadly neutralizing immune plasma in young horses (foals) with severe combined immunodeficiency (SCID). However, in vivo selection of a neutralization-resistant envelope variant occurred. Here, we determined the protective effects of purified immunoglobulin with more potent broadly neutralizing activity. Overall, protection correlated with the breadth and potency of neutralizing activity in vitro. Four of five SCID foals were completely protected against homologous challenge, while partial protection occurred following heterologous challenge. These results support the inclusion of broadly neutralizing antibodies in lentivirus control strategies.

  9. Neutralization of Virus Infectivity by Antibodies: Old Problems in New Perspectives

    PubMed Central

    Klasse, P. J.

    2016-01-01

    Neutralizing antibodies (NAbs) can be both sufficient and necessary for protection against viral infections, although they sometimes act in concert with cellular immunity. Successful vaccines against viruses induce NAbs but vaccine candidates against some major viral pathogens, including HIV-1, have failed to induce potent and effective such responses. Theories of how antibodies neutralize virus infectivity have been formulated and experimentally tested since the 1930s; and controversies about the mechanistic and quantitative bases for neutralization have continually arisen. Soluble versions of native oligomeric viral proteins that mimic the functional targets of neutralizing antibodies now allow the measurement of the relevant affinities of NAbs. Thereby the neutralizing occupancies on virions can be estimated and related to the potency of the NAbs. Furthermore, the kinetics and stoichiometry of NAb binding can be compared with neutralizing efficacy. Recently, the fundamental discovery that the intracellular factor TRIM21 determines the degree of neutralization of adenovirus has provided new mechanistic and quantitative insights. Since TRIM21 resides in the cytoplasm, it would not affect the neutralization of enveloped viruses, but its range of activity against naked viruses will be important to uncover. These developments bring together the old problems of virus neutralization—mechanism, stoichiometry, kinetics, and efficacy—from surprising new angles. PMID:27099867

  10. Cross-neutralization between three mumps viruses & mapping of haemagglutinin-neuraminidase (HN) epitopes

    PubMed Central

    Vaidya, Sunil R.; Dvivedi, Garima M.; Jadhav, Santoshkumar M.

    2016-01-01

    Background & objectives: The reports from the countries where mumps vaccine is given as routine immunization suggest differences in mumps virus neutralizing antibody titres when tested with vaccine and wild type viruses. Such reports are unavailable from countries like India where mumps vaccine is not included in routine immunization. We, therefore, undertook this study to understand the cross-neutralization activity of Indian mumps viruses. Methods: By using commercial mumps IgG enzyme immunoassay (EIA) and a rapid focus reduction neutralization test (FRNT), a panel of serum samples was tested. The panel consisted of 14 acute and 14 convalescent serum samples collected during a mumps outbreak and 18 archived serum samples. Two wild types (genotypes C and G) and Leningrad-Zagreb vaccine strain (genotype N) were used for the challenge experiments and FRNT titres were determined and further compared. The HN protein sequence of three mumps viruses was analyzed for the presence of key epitopes. Results: All serum samples effectively neutralized mumps virus wild types and a vaccine strain. However, significantly lower FRNT titres were noted to wild types than to vaccine strain (P<0.05). The comparison between EIA and FRNT results revealed 95.6 per cent agreement. No amino acid changes were seen in the epitopes in the Indian wild type strains. All potential N-linked glycosylation sites were observed in Indian strains. Interpretation & conclusions: Good cross-neutralization activity was observed for three mumps virus strains, however, higher level of FRNT titres was detected for mumps virus vaccine strain compared to Indian wild type isolates. PMID:26997012

  11. Evidence of Lagos bat virus circulation among Nigerian fruit bats.

    PubMed

    Dzikwi, Asabe A; Kuzmin, Ivan I; Umoh, Jarlath U; Kwaga, Jacob K P; Ahmad, Aliyu A; Rupprecht, Charles E

    2010-01-01

    During lyssavirus surveillance, 350 brains from four species of fruit bats and one species of insectivorous bat were collected from seven locations in Northern Nigeria during May to October, 2006. Lyssavirus antigen was not detected in the brains, and isolation attempts in mice were unsuccessful. However, serologic tests demonstrated the presence of lyssavirus-neutralizing antibodies in bat sera. Of 140 sera tested, 27 (19%) neutralized Lagos bat virus, and two of these additionally neutralized Mokola virus. The positive samples originated from the straw-colored fruit bat (Eidolon helvum) and the Gambian epaulet bat (Epomophorus gambianus). No neutralizing activity was detected against other lyssaviruses including rabies, Duvenhage, and West Caucasian bat viruses.

  12. The Receptor-Binding Site of the Measles Virus Hemagglutinin Protein Itself Constitutes a Conserved Neutralizing Epitope

    PubMed Central

    Ohno, Shinji; Sakai, Kouji; Ito, Yuri; Fukuhara, Hideo; Komase, Katsuhiro; Brindley, Melinda A.; Rota, Paul A.; Plemper, Richard K.; Maenaka, Katsumi; Takeda, Makoto

    2013-01-01

    Here, we provide direct evidence that the receptor-binding site of measles virus (MV) hemagglutinin protein itself forms an effective conserved neutralizing epitope (CNE). Several receptor-interacting residues constitute the CNE. Thus, viral escape from neutralization has to be associated with loss of receptor-binding activity. Since interactions with both the signaling lymphocyte activation molecule (SLAM) and nectin4 are critical for MV pathogenesis, its escape, which results from loss of receptor-binding activity, should not occur in nature. PMID:23283964

  13. Antibody specificities associated with neutralization breadth in plasma from human immunodeficiency virus type 1 subtype C-infected blood donors.

    PubMed

    Gray, Elin S; Taylor, Natasha; Wycuff, Diane; Moore, Penny L; Tomaras, Georgia D; Wibmer, Constantinos Kurt; Puren, Adrian; DeCamp, Allan; Gilbert, Peter B; Wood, Blake; Montefiori, David C; Binley, James M; Shaw, George M; Haynes, Barton F; Mascola, John R; Morris, Lynn

    2009-09-01

    Defining the specificities of the anti-human immunodeficiency virus type 1 (HIV-1) envelope antibodies able to mediate broad heterologous neutralization will assist in identifying targets for an HIV-1 vaccine. We screened 70 plasmas from chronically HIV-1-infected individuals for neutralization breadth. Of these, 16 (23%) were found to neutralize 80% or more of the viruses tested. Anti-CD4 binding site (CD4bs) antibodies were found in almost all plasmas independent of their neutralization breadth, but they mainly mediated neutralization of the laboratory strain HxB2 with little effect on the primary virus, Du151. Adsorption with Du151 monomeric gp120 reduced neutralizing activity to some extent in most plasma samples when tested against the matched virus, although these antibodies did not always confer cross-neutralization. For one plasma, this activity was mapped to a site overlapping the CD4-induced (CD4i) epitope and CD4bs. Anti-membrane-proximal external region (MPER) (r = 0.69; P < 0.001) and anti-CD4i (r = 0.49; P < 0.001) antibody titers were found to be correlated with the neutralization breadth. These anti-MPER antibodies were not 4E10- or 2F5-like but spanned the 4E10 epitope. Furthermore, we found that anti-cardiolipin antibodies were correlated with the neutralization breadth (r = 0.67; P < 0.001) and anti-MPER antibodies (r = 0.6; P < 0.001). Our study suggests that more than one epitope on the envelope glycoprotein is involved in the cross-reactive neutralization elicited during natural HIV-1 infection, many of which are yet to be determined, and that polyreactive antibodies are possibly involved in this phenomenon.

  14. Antibody Specificities Associated with Neutralization Breadth in Plasma from Human Immunodeficiency Virus Type 1 Subtype C-Infected Blood Donors▿ †

    PubMed Central

    Gray, Elin S.; Taylor, Natasha; Wycuff, Diane; Moore, Penny L.; Tomaras, Georgia D.; Wibmer, Constantinos Kurt; Puren, Adrian; DeCamp, Allan; Gilbert, Peter B.; Wood, Blake; Montefiori, David C.; Binley, James M.; Shaw, George M.; Haynes, Barton F.; Mascola, John R.; Morris, Lynn

    2009-01-01

    Defining the specificities of the anti-human immunodeficiency virus type 1 (HIV-1) envelope antibodies able to mediate broad heterologous neutralization will assist in identifying targets for an HIV-1 vaccine. We screened 70 plasmas from chronically HIV-1-infected individuals for neutralization breadth. Of these, 16 (23%) were found to neutralize 80% or more of the viruses tested. Anti-CD4 binding site (CD4bs) antibodies were found in almost all plasmas independent of their neutralization breadth, but they mainly mediated neutralization of the laboratory strain HxB2 with little effect on the primary virus, Du151. Adsorption with Du151 monomeric gp120 reduced neutralizing activity to some extent in most plasma samples when tested against the matched virus, although these antibodies did not always confer cross-neutralization. For one plasma, this activity was mapped to a site overlapping the CD4-induced (CD4i) epitope and CD4bs. Anti-membrane-proximal external region (MPER) (r = 0.69; P < 0.001) and anti-CD4i (r = 0.49; P < 0.001) antibody titers were found to be correlated with the neutralization breadth. These anti-MPER antibodies were not 4E10- or 2F5-like but spanned the 4E10 epitope. Furthermore, we found that anti-cardiolipin antibodies were correlated with the neutralization breadth (r = 0.67; P < 0.001) and anti-MPER antibodies (r = 0.6; P < 0.001). Our study suggests that more than one epitope on the envelope glycoprotein is involved in the cross-reactive neutralization elicited during natural HIV-1 infection, many of which are yet to be determined, and that polyreactive antibodies are possibly involved in this phenomenon. PMID:19553335

  15. Panels of HIV-1 Subtype C Env Reference Strains for Standardized Neutralization Assessments

    DOE PAGES

    Hraber, Peter; Rademeyer, Cecilia; Williamson, Carolyn; ...

    2017-07-26

    In the search for effective immunologic interventions to prevent and treat HIV-1 infection, standardized reference reagents are a cost-effective way to maintain robustness and reproducibility among immunological assays. To support planned and ongoing studies where clade C predominates, here we describe three virus panels, chosen from 200 well-characterized clade C envelope (Env)-pseudotyped viruses from early infection. All 200 Envs were expressed as a single round of replication pseudoviruses and were tested to quantify neutralization titers by 16 broadly neutralizing antibodies (bnAbs) and sera from 30 subjects with chronic clade C infections. We selected large panels of 50 and 100 Envsmore » either to characterize cross-reactive breadth for sera identified as having potent neutralization activity based on initial screening or to evaluate neutralization magnitude-breadth distributions of newly isolated antibodies. We identified these panels by downselection after hierarchical clustering of bnAb neutralization titers. The resulting panels represent the diversity of neutralization profiles throughout the range of virus sensitivities identified in the original panel of 200 viruses. A small 12-Env panel was chosen to screen sera from vaccine trials or natural-infection studies for neutralization responses. We considered panels selected by previously described methods but favored a computationally informed method that enabled selection of viruses representing diverse neutralization sensitivity patterns, given that we do nota prioriknow what the neutralization-response profile of vaccine sera will be relative to that of sera from infected individuals. The resulting 12-Env panel complements existing panels. Use of standardized panels enables direct comparisons of data from different trials and study sites testing HIV-1 clade C-specific products. HIV-1 group M includes nine clades and many recombinants. Clade C is the most common lineage, responsible for roughly half of current HIV-1 infections, and is a focus for vaccine design and testing. Standard reference reagents, particularly virus panels to study neutralization by antibodies, are crucial for developing cost-effective and yet rigorous and reproducible assays against diverse examples of this variable virus. We developed clade C-specific panels for use as standardized reagents to monitor complex polyclonal sera for neutralization activity and to characterize the potency and breadth of cross-reactive neutralization by monoclonal antibodies, whether engineered or isolated from infected individuals. We chose from 200 southern African, clade C envelope-pseudotyped viruses with neutralization titers against 16 broadly neutralizing antibodies and 30 sera from chronic clade C infections. We selected panels to represent the diversity of bnAb neutralization profiles and Env neutralization sensitivities. Finally, use of standard virus panels can facilitate comparison of results across studies and sites.« less

  16. Panels of HIV-1 Subtype C Env Reference Strains for Standardized Neutralization Assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hraber, Peter; Rademeyer, Cecilia; Williamson, Carolyn

    In the search for effective immunologic interventions to prevent and treat HIV-1 infection, standardized reference reagents are a cost-effective way to maintain robustness and reproducibility among immunological assays. To support planned and ongoing studies where clade C predominates, here we describe three virus panels, chosen from 200 well-characterized clade C envelope (Env)-pseudotyped viruses from early infection. All 200 Envs were expressed as a single round of replication pseudoviruses and were tested to quantify neutralization titers by 16 broadly neutralizing antibodies (bnAbs) and sera from 30 subjects with chronic clade C infections. We selected large panels of 50 and 100 Envsmore » either to characterize cross-reactive breadth for sera identified as having potent neutralization activity based on initial screening or to evaluate neutralization magnitude-breadth distributions of newly isolated antibodies. We identified these panels by downselection after hierarchical clustering of bnAb neutralization titers. The resulting panels represent the diversity of neutralization profiles throughout the range of virus sensitivities identified in the original panel of 200 viruses. A small 12-Env panel was chosen to screen sera from vaccine trials or natural-infection studies for neutralization responses. We considered panels selected by previously described methods but favored a computationally informed method that enabled selection of viruses representing diverse neutralization sensitivity patterns, given that we do nota prioriknow what the neutralization-response profile of vaccine sera will be relative to that of sera from infected individuals. The resulting 12-Env panel complements existing panels. Use of standardized panels enables direct comparisons of data from different trials and study sites testing HIV-1 clade C-specific products. HIV-1 group M includes nine clades and many recombinants. Clade C is the most common lineage, responsible for roughly half of current HIV-1 infections, and is a focus for vaccine design and testing. Standard reference reagents, particularly virus panels to study neutralization by antibodies, are crucial for developing cost-effective and yet rigorous and reproducible assays against diverse examples of this variable virus. We developed clade C-specific panels for use as standardized reagents to monitor complex polyclonal sera for neutralization activity and to characterize the potency and breadth of cross-reactive neutralization by monoclonal antibodies, whether engineered or isolated from infected individuals. We chose from 200 southern African, clade C envelope-pseudotyped viruses with neutralization titers against 16 broadly neutralizing antibodies and 30 sera from chronic clade C infections. We selected panels to represent the diversity of bnAb neutralization profiles and Env neutralization sensitivities. Finally, use of standard virus panels can facilitate comparison of results across studies and sites.« less

  17. Study of the virulence and cross-neutralization capability of recent porcine parvovirus field isolates and vaccine viruses in experimentally infected pregnant gilts.

    PubMed

    Zeeuw, E J L; Leinecker, N; Herwig, V; Selbitz, H-J; Truyen, U

    2007-02-01

    The pathogenicity of two recent German field isolates of Porcine parvovirus (PPV-27a and PPV-143a) and two vaccine viruses [PPV-NADL-2 and PPV-IDT (MSV)], which are used for the production of inactivated vaccines, was investigated by inoculation of pregnant sows at day 40 of gestation. Post-infection sera of these sows as well as antisera prepared in rabbits by immunization with the four above-mentioned PPV isolates and with the virulent strain PPV-Challenge (Engl.) were tested for their homologous and heterologous neutralization activities. All antisera had high neutralization activity against the vaccine viruses, the PPV-Challenge (Engl.) virus and PPV-143a, but much lower activity against PPV-27a. These results suggest that PPV-27a represents a new antigenic variant or type of PPV and vaccines based on the established vaccine viruses may not be fully protective against this field isolate. PPV-27a has been characterized based on the amino acid sequences of the capsid protein as a member of a new and distinct PPV cluster (Zimmermann et al., 2006). Interestingly, the homologous neutralizing antibody titres of the sera of all three pigs and both rabbits inoculated or immunized with PPV-27a were 100- to 1000-fold lower than the heterologous titres against any of the other viruses. The low homologous neutralizing antibody titres suggest a possible, yet undefined, immune escape mechanism of this PPV isolate.

  18. Serologic survey of domestic animals for zoonotic arbovirus infections in the Lacandón Forest region of Chiapas, Mexico.

    PubMed

    Ulloa, Armando; Langevin, Stanley A; Mendez-Sanchez, J D; Arredondo-Jimenez, Juan I; Raetz, Janae L; Powers, Ann M; Villarreal-Treviño, C; Gubler, Duane J; Komar, Nicholas

    2003-01-01

    A serologic survey in domestic animals (birds and mammals) was conducted in four communities located in the Lacandón Forest region of northeastern Chiapas, Mexico, during June 29 to July 1, 2001, with the objective to identify zoonotic arboviruses circulating in this area. We collected 202 serum samples from healthy domestic chickens, geese, ducks, turkeys, horses and cattle. The samples were tested by plaque-reduction neutralization test for antibodies to selected mosquito-borne flaviviruses (family Flaviviridae), including St. Louis encephalitis (SLE), Rocio (ROC), Ilheus (ILH), Bussuquara (BSQ), and West Nile (WN) viruses, and selected alphaviruses (family Togaviridae), including Western equine encephalitis (WEE), Eastern equine encephalomyelitis (EEE), and Venezuelan equine encephalitis (VEE) viruses. Neutralizing antibodies to SLE virus were detected in two (8%) of 26 turkeys, 15 (23%) of 66 cattle, and three (60%) of five horses. Antibodies to VEE virus were detected in 29 (45%) of 65 cattle. Because some of these animals were as young as 2 months old, we demonstrated recent activity of these two viruses. Sub-typing of the VEE antibody responses indicated that the etiologic agents of these infections belonged to the IE variety of VEE, which has been reported from other regions of Chiapas. WN virus-neutralizing antibodies were detected in a single cattle specimen (PRNT(90) = 1:80) that also circulated SLE virus-neutralizing antibodies (PRNT(90) = 1:20), suggesting that WN virus may have been introduced into the region. We also detected weak neutralizing activity to BSQ virus in four cattle and a chicken specimen, suggesting the presence of this or a closely related virus in Mexico. There was no evidence for transmission of the other viruses (ROC, ILH, EEE, WEE) in the study area.

  19. Recombinant sheep pox virus proteins elicit neutralizing antibodies

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to evaluate the immunogenicity and neutralizing activity of bacterially-expressed sheep pox virus (SPPV) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins from vaccinia...

  20. Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses

    PubMed Central

    Pica, Natalie; Hai, Rong; Krammer, Florian; Wang, Taia T.; Maamary, Jad; Eggink, Dirk; Tan, Gene S.; Krause, Jens C.; Moran, Thomas; Stein, Cheryl R.; Banach, David; Wrammert, Jens; Belshe, Robert B.; García-Sastre, Adolfo; Palese, Peter

    2012-01-01

    After the emergence of pandemic influenza viruses in 1957, 1968, and 2009, existing seasonal viruses were observed to be replaced in the human population by the novel pandemic strains. We have previously hypothesized that the replacement of seasonal strains was mediated, in part, by a population-scale boost in antibodies specific for conserved regions of the hemagglutinin stalk and the viral neuraminidase. Numerous recent studies have shown the role of stalk-specific antibodies in neutralization of influenza viruses; the finding that stalk antibodies can effectively neutralize virus alters the existing dogma that influenza virus neutralization is mediated solely by antibodies that react with the globular head of the viral hemagglutinin. The present study explores the possibility that stalk-specific antibodies were boosted by infection with the 2009 H1N1 pandemic virus and that those antibodies could have contributed to the disappearance of existing seasonal H1N1 influenza virus strains. To study stalk-specific antibodies, we have developed chimeric hemagglutinin constructs that enable the measurement of antibodies that bind the hemagglutinin protein and neutralize virus but do not have hemagglutination inhibition activity. Using these chimeric hemagglutinin reagents, we show that infection with the 2009 pandemic H1N1 virus elicited a boost in titer of virus-neutralizing antibodies directed against the hemagglutinin stalk. In addition, we describe assays that can be used to measure influenza virus-neutralizing antibodies that are not detected in the traditional hemagglutination inhibition assay. PMID:22308500

  1. Development and Characterization of Canine Distemper Virus Monoclonal Antibodies.

    PubMed

    Liu, Yuxiu; Hao, Liying; Li, Xiangdong; Wang, Linxiao; Zhang, Jianpo; Deng, Junhua; Tian, Kegong

    2017-06-01

    Five canine distemper virus monoclonal antibodies were developed by immunizing BALB/c mice with a traditional vaccine strain Snyder Hill. Among these monoclonal antibodies, four antibodies recognized both field and vaccine strains of canine distemper virus without neutralizing ability. One monoclonal antibody, 1A4, against hemagglutinin protein of canine distemper virus was found to react only with vaccine strain virus but not field isolates, and showed neutralizing activity to vaccine strain virus. These monoclonal antibodies could be very useful tools in the study of the pathogenesis of canine distemper virus and the development of diagnostic reagents.

  2. Antigenic properties of the envelope of influenza virus rendered soluble by surfactant-solvent systems

    PubMed Central

    Larin, N. M.; Gallimore, P. H.

    1971-01-01

    Dissociating chemical treatments employing surfactant-solvent systems were applied to purified influenza A and B viruses to obtain viral preparations possessing a significantly higher or lower haemagglutinating activity than the intact virus. All preparations, whether with high or low haemagglutinating activity, with the exception of envelope protein solubilized by Triton X-100, were significantly lacking in the ability to excite the formation of haemagglutination-inhibiting and virus-neutralizing antibodies in inoculated ferrets. In contrast to other treatments, Triton X-100 treatment of virus significantly enhanced the antigenicity of viral protein as judged by virus neutralization and haemagglutination inhibition tests. Yet the haemagglutinating activity of the envelope protein solubilized with Triton X-100 was about 1% that of the intact virus. Results suggest that the correlation assumed to exist between the haemagglutinating activity of influenza virus and its ability to excite the formation of humoral antibodies is coincidental. Another important point is that the specific antigenicity of viral protein may be lost or enhanced owing to effects, other than solubilization, by surface-active agents. PMID:5291750

  3. Dissection of the Antibody Response against Herpes Simplex Virus Glycoproteins in Naturally Infected Humans

    PubMed Central

    Huang, Zhen-Yu; Whitbeck, J. Charles; Ponce de Leon, Manuel; Lou, Huan; Wald, Anna; Krummenacher, Claude; Eisenberg, Roselyn J.; Cohen, Gary H.

    2014-01-01

    ABSTRACT Relatively little is known about the extent of the polyclonal antibody (PAb) repertoire elicited by herpes simplex virus (HSV) glycoproteins during natural infection and how these antibodies affect virus neutralization. Here, we examined IgGs from 10 HSV-seropositive individuals originally classified as high or low virus shedders. All PAbs neutralized virus to various extents. We determined which HSV entry glycoproteins these PAbs were directed against: glycoproteins gB, gD, and gC were recognized by all sera, but fewer sera reacted against gH/gL. We previously characterized multiple mouse monoclonal antibodies (MAbs) and mapped those with high neutralizing activity to the crystal structures of gD, gB, and gH/gL. We used a biosensor competition assay to determine whether there were corresponding human antibodies to those epitopes. All 10 samples had neutralizing IgGs to gD epitopes, but there were variations in which epitopes were seen in individual samples. Surprisingly, only three samples contained neutralizing IgGs to gB epitopes. To further dissect the nature of these IgGs, we developed a method to select out gD- and gB-specific IgGs from four representative sera via affinity chromatography, allowing us to determine the contribution of antibodies against each glycoprotein to the overall neutralization capacity of the serum. In two cases, gD and gB accounted for all of the neutralizing activity against HSV-2, with a modest amount of HSV-1 neutralization directed against gC. In the other two samples, the dominant response was to gD. IMPORTANCE Antibodies targeting functional epitopes on HSV entry glycoproteins mediate HSV neutralization. Virus-neutralizing epitopes have been defined and characterized using murine monoclonal antibodies. However, it is largely unknown whether these same epitopes are targeted by the humoral response to HSV infection in humans. We have shown that during natural infection, virus-neutralizing antibodies are principally directed against gD, gB, and, to a lesser extent, gC. While several key HSV-neutralizing epitopes within gD and gB are commonly targeted by human serum IgG, others fail to induce consistent responses. These data are particularly relevant to the design of future HSV vaccines. PMID:25142599

  4. Interplay of foot-and-mouth disease virus, antibodies and plasmacytoid dendritic cells: virus opsonization under non-neutralizing conditions results in enhanced interferon-alpha responses

    PubMed Central

    2012-01-01

    Foot-and-mouth disease virus (FMDV) is a highly infectious member of the Picornaviridae inducing an acute disease of cloven-hoofed species. Vaccine-induced immune protection correlates with the presence of high levels of neutralizing antibodies but also opsonising antibodies have been proposed as an important mechanism of the immune response contributing to virus clearance by macrophages and leading to the production of type-I interferon (IFN) by plasmacytoid dendritic cells (pDC). The present study demonstrates that the opsonising antibody titres mediating enhanced IFN-α responses in pDC were similar to neutralizing titres, when antigenically related viruses from the same serotype were employed. However, sera cross-reacted also with non-neutralized isolates of multiple serotypes, when tested in this assay. Both uncomplexed virus and immune complexed virus stimulated pDC via Toll-like receptor 7. An additional finding of potential importance for strain-specific differences in virulence and/or immunogenicity was that pDC activation by FMDV strongly differed between viral isolates. Altogether, our results indicate that opsonising antibodies can have a broader reactivity than neutralizing antibodies and may contribute to antiviral responses induced against antigenically distant viruses. PMID:22934974

  5. Fab MAbs specific to HA of influenza virus with H5N1 neutralizing activity selected from immunized chicken phage library.

    PubMed

    Pitaksajjakul, Pannamthip; Lekcharoensuk, Porntippa; Upragarin, Narin; Barbas, Carlos F; Ibrahim, Madiha Salah; Ikuta, Kazuyoshi; Ramasoota, Pongrama

    2010-05-14

    Hemagglutinin protein (HA) was considered to be the primary target for monoclonal antibody production. This protein not only plays an important role in viral infections, but can also be used to differentiate H5N1 virus from other influenza A viruses. Hence, for diagnostic and therapeutic applications, it is important to develop anti-HA monoclonal antibody (MAb) with high sensitivity, specificity, stability, and productivity. Nine unique Fab MAbs were generated from chimeric chicken/human Fab phage display library constructed from cDNA derived from chickens immunized with recombinant hemagglutinin protein constructed from H5N1 avian influenza virus (A/Vietnam/1203/04). The obtained Fab MAbs showed several characteristics for further optimization and development-three clones were highly specific to only H5N1 virus. This finding can be applied to the development of H5N1 diagnostic testing. Another clone showed neutralization activity that inhibited H5N1 influenza virus infection in Madin-Darby canine kidney (MDCK) cells. In addition, one clone showed strong reactivity with several of the influenza A virus subtypes tested. The conversion of this clone to whole IgG is a promising study for a cross-neutralization activity test. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  6. Vaccination with Killed but Metabolically Active E. coli Over-expressing Hemagglutinin Elicits Neutralizing Antibodies to H1N1 Swine Origin Influenza A Virus

    PubMed Central

    Liu, Pei-Feng; Wang, Yanhan; Liu, Yu-Tsueng; Huang, Chun-Ming

    2017-01-01

    There is a need for a fast and simple method for vaccine production to keep up with the pace of a rapidly spreading virus in the early phases of the influenza pandemic. The use of whole viruses produced in chicken eggs or recombinant antigens purified from various expression systems has presented considerable challenges, especially with lengthy processing times. Here, we use the killed but metabolically active (KBMA) Escherichia coli (E. coli) to harbor the hemagglutinin (HA) of swine origin influenza A (H1N1) virus (S-OIV) San Diego/01/09 (SD/H1N1-S-OIV). Intranasal vaccination of mice with KBMA E. coli SD/H1N1-S-OIV HA without adding exogenous adjuvants provoked detectable neutralizing antibodies against the virus-induced hemagglutination within three weeks. Boosting vaccination enhanced the titers of neutralizing antibodies, which can decrease viral infectivity in Madin-Darby canine kidney (MDCK) cells. The antibodies were found to specifically neutralize the SD/H1N1-S-OIV-, but not seasonal influenza viruses (H1N1 and H3N2), -induced hemagglutination. The use of KBMA E. coli as an egg-free system to produce anti-influenza vaccines makes unnecessary the rigorous purification of an antigen prior to immunization, providing an alternative modality to combat influenza virus in future outbreaks. PMID:28492063

  7. Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, John T.; Keefer, Christopher J.; Slaughter, James C.

    2014-04-15

    The role of binding kinetics in determining neutralizing potency for antiviral antibodies is poorly understood. While it is believed that increased steady-state affinity correlates positively with increased virus-neutralizing activity, the relationship between association or dissociation rate and neutralization potency is unclear. We investigated the effect of naturally-occurring antibody resistance mutations in the RSV F protein on the kinetics of binding to palivizumab. Escape from palivizumab-mediated neutralization of RSV occurred with reduced association rate (K{sub on}) for binding to RSV F protein, while alteration of dissociation rate (K{sub off}) did not significantly affect neutralizing activity. Interestingly, linkage of reduced K{sub on}more » with reduced potency mirrored the effect of increased K{sub on} found in a high-affinity enhanced potency palivizumab variant (motavizumab). These data suggest that association rate is the dominant factor driving neutralization potency for antibodies to RSV F protein antigenic site A and determines the potency of antibody somatic variants or efficiency of escape of viral glycoprotein variants. - Highlights: • The relationship of affinity to neutralization for virus antibodies is uncertain. • Palivizumab binds to RSV escape mutant fusion proteins, but with reduced affinity. • Association rate (K{sub on}) correlated well with the potency of neutralization.« less

  8. Serologic and mucosal immune response to rotavirus infection in the rabbit model.

    PubMed Central

    Conner, M E; Gilger, M A; Estes, M K; Graham, D Y

    1991-01-01

    We examined the humoral immune response to rotavirus infection in specific pathogen-free rabbits inoculated and challenged orally with rabbit Ala rotavirus (7.5 x 10(5) to 1 x 10(7) PFU). The humoral immune response in both serologic and mucosal samples was monitored by using total antibody enzyme-linked immunosorbent assays (ELISAs), isotype-specific ELISAs, and plaque reduction neutralization assays. Following a primary infection, all rabbits shed virus and serologic and mucosal antibody responses were initially detected by 1 week postinoculation. Intestinal immunoglobulin M was detected by 3 days postinoculation, and secretory immunoglobulin A was detected by 6 days postinoculation. Following challenge, rabbits were protected (no detectable virus shedding) from infection. An anamnestic immune response was observed only with mucosal neutralizing antibodies, and all serologic and mucosal immune responses persisted at high levels until at least 175 days postchallenge (204 days postinoculation). Detection of neutralization responses was influenced by the virus strain used in the neutralization assay; all inoculated rabbits developed detectable serum and intestinal neutralizing antibodies against the infecting (Ala) virus strain. Neutralization activity in both serum and mucosal samples was generally, but not exclusively, homotypic (VP7 serotype 3) after both primary and challenge inoculations with Ala virus. Heterotypic serum neutralization activity was observed with serotype 8 (9 of 12 rabbits) and 9 (12 of 12 rabbits) viruses and may be based on reactivity with the outer capsid protein VP4 or on a shared epitope in the C region of VP7. Comparisons of heterologous (serotype 3) and heterotypic neutralizing responses in mucosal and serologic samples revealed that 43% (21 of 49) of the responses were discordant. In 19 of 49 (39%) of these cases, a heterotypic serologic response was seen in the absence of a heterotypic mucosal response, but in 2 of 49 (4%) instances, a heterotypic mucosal response was seen in the absence of a concomitant serologic response. These results provide insight into factors which may affect detection of heterotypic responses. PMID:1850029

  9. Serologic evidence of Lyssavirus infections among bats, the Philippines.

    PubMed

    Arguin, Paul M; Murray-Lillibridge, Kristy; Miranda, Mary E G; Smith, Jean S; Calaor, Alan B; Rupprecht, Charles E

    2002-03-01

    Active surveillance for lyssaviruses was conducted among populations of bats in the Philippines. The presence of past or current Lyssavirus infection was determined by use of direct fluorescent antibody assays on bat brains and virus neutralization assays on bat sera. Although no bats were found to have active infection with a Lyssavirus, 22 had evidence of neutralizing antibody against the Australian bat lyssavirus (ABLV). Seropositivity was statistically associated with one species of bat, Miniopterus schreibersi. Results from the virus neutralization assays are consistent with the presence in the Philippines of a naturally occurring Lyssavirus related to ABLV.

  10. Serologic Evidence of Lyssavirus Infections among Bats, the Philippines

    PubMed Central

    Murray-Lillibridge, Kristy; Miranda, Mary E.G.; Smith, Jean S.; Calaor, Alan B.; Rupprecht, Charles E.

    2002-01-01

    Active surveillance for lyssaviruses was conducted among populations of bats in the Philippines. The presence of past or current Lyssavirus infection was determined by use of direct fluorescent antibody assays on bat brains and virus neutralization assays on bat sera. Although no bats were found to have active infection with a Lyssavirus, 22 had evidence of neutralizing antibody against the Australian bat lyssavirus (ABLV). Seropositivity was statistically associated with one species of bat, Miniopterus schreibersi. Results from the virus neutralization assays are consistent with the presence in the Philippines of a naturally occurring Lyssavirus related to ABLV. PMID:11927022

  11. [Virus strain specific serum neutralizing antibodies in children and adolescents immunized with a Russian mumps vaccine].

    PubMed

    Otrashevskaia, E V; Krasil'nikov, I V; Ignat'ev, G M

    2010-01-01

    Postvaccination immunity was studied in the children and teenagers without a history of clinical mumps infection, who had been immunized with the Leningrad-3 mumps vaccine. The level of specific lgG in ELISA and that and spectrum of their neutralizing activity against a vaccine strain and three heterologous mumps virus (MV) strains (genotypes A, C, and H) were measured. The investigation included 151 sera from the vaccinees aged 3 to 17 years, possessing the detectable specific IgG titers in ELISA and the detectable neutralizing titers against the vaccine strain. 97.4% of the vaccinees had neutralizing activity against 1-3 heterologous MV strains. A preponderance of neutralizing titers against heterologous MV strains by 1-log2 in some sera (6.5-32.5 depending on age) was most likely to suggest that the vaccinees' had been in contact with these virus strains in the past. In our investigation, a combination of positive IgG titers and neutralizing titers against the vaccine strain 2-log2 or higher provided the protection of the vaccinated children and teenagers against the symptomatic infection. There was a pronounced buster effect of the second immunization and a drop in the neutralizing activity of the sera from the vaccinated children and adolescents over time after the first and second immunization.

  12. Host DNA Synthesis-Suppressing Factor in Culture Fluid of Tissue Cultures Infected with Measles Virus

    PubMed Central

    Minagawa, Tomonori; Nakaya, Chikako; Iida, Hiroo

    1974-01-01

    Host DNA synthesis is suppressed by the culture fluid of cell cultures infected with measles virus. This activity in the culture fluid is initiated somewhat later than the growth of infectious virus. Ninety percent of host DNA synthesis in HeLa cells is inhibited by culture fluid of 3-day-old cell cultures of Vero or HeLa cells infected with measles virus. This suppressing activity is not a property of the virion, but is due to nonvirion-associated component which shows none of the activities of measles virus such as hemagglutination, hemolysis, or cell fusion nor does it have the antigenicity of measles virus as tested by complement-fixation or hemagglutination-inhibiting antibody blocking tests. Neutralization of the activity of this component is not attained with the pooled sera of convalescent measles patients. This component has molecular weights of about 45,000, 20,000, and 3,000 and appears to be a heat-stable protein. The production of host DNA suppressing factor (DSF) is blocked by cycloheximide. Neither UV-inactivated nor antiserum-neutralized measles virus produce DSF. Furthermore, such activity of nonvirion-associated component is not detected in the culture fluid of cultures infected with other RNA viruses such as poliovirus, vesicular stomatitis virus, or Sindbis virus. PMID:4207526

  13. Immunodominance and Functional Activities of Antibody Responses to Inactivated West Nile Virus and Recombinant Subunit Vaccines in Mice▿

    PubMed Central

    Zlatkovic, Juergen; Stiasny, Karin; Heinz, Franz X.

    2011-01-01

    Factors controlling the dominance of antibody responses to specific sites in viruses and/or protein antigens are ill defined but can be of great importance for the induction of potent immune responses to vaccines. West Nile virus and other related important human-pathogenic flaviviruses display the major target of neutralizing antibodies, the E protein, in an icosahedral shell at the virion surface. Potent neutralizing antibodies were shown to react with the upper surface of domain III (DIII) of this protein. Using the West Nile virus system, we conducted a study on the immunodominance and functional quality of E-specific antibody responses after immunization of mice with soluble protein E (sE) and isolated DIII in comparison to those after immunization with inactivated whole virions. With both virion and sE, the neutralizing response was dominated by DIII-specific antibodies, but the functionality of these antibodies was almost four times higher after virion immunization. Antibodies induced by the isolated DIII had an at least 15-fold lower specific neutralizing activity than those induced by the virion, and only 50% of these antibodies were able to bind to virus particles. Our results suggest that immunization with the tightly packed E in virions focuses the DIII antibody response to the externally exposed sites of this domain which are the primary targets for virus neutralization, different from sE and isolated DIII, which also display protein surfaces that are cryptic in the virion. Despite its low potency for priming, DIII was an excellent boosting antigen, suggesting novel vaccination strategies that strengthen and focus the antibody response to critical neutralizing sites in DIII. PMID:21147919

  14. Vaccine induced antibodies to the first variable loop of human immunodeficiency virus type 1 gp120, mediate antibody-dependent virus inhibition in macaques.

    PubMed

    Bialuk, Izabela; Whitney, Stephen; Andresen, Vibeke; Florese, Ruth H; Nacsa, Janos; Cecchinato, Valentina; Valeri, Valerio W; Heraud, Jean-Michel; Gordon, Shari; Parks, Robyn Washington; Montefiori, David C; Venzon, David; Demberg, Thorsten; Guroff, Marjorie Robert-; Landucci, Gary; Forthal, Donald N; Franchini, Genoveffa

    2011-12-09

    The role of antibodies directed against the hyper variable envelope region V1 of human immunodeficiency virus type 1 (HIV-1), has not been thoroughly studied. We show that a vaccine able to elicit strain-specific non-neutralizing antibodies to this region of gp120 is associated with control of highly pathogenic chimeric SHIV(89.6P) replication in rhesus macaques. The vaccinated animal that had the highest titers of antibodies to the amino terminus portion of V1, prior to challenge, had secondary antibody responses that mediated cell killing by antibody-dependent cellular cytotoxicity (ADCC), as early as 2 weeks after infection and inhibited viral replication by antibody-dependent cell-mediated virus inhibition (ADCVI), by 4 weeks after infection. There was a significant inverse correlation between virus level and binding antibody titers to the envelope protein, (R=-0.83, p=0.015), and ADCVI (R=-0.84 p=0.044). Genotyping of plasma virus demonstrated in vivo selection of three SHIV(89.6P) variants with changes in potential N-linked glycosylation sites in V1. We found a significant inverse correlation between virus levels and titers of antibodies that mediated ADCVI against all the identified V1 virus variants. A significant inverse correlation was also found between neutralizing antibody titers to SHIV(89.6) and virus levels (R=-0.72 p=0.0050). However, passive inoculation of purified immunoglobulin from animal M316, the macaque that best controlled virus, to a naïve macaque, resulted in a low serum neutralizing antibodies and low ADCVI activity that failed to protect from SHIV(89.6P) challenge. Collectively, while our data suggest that anti-envelope antibodies with neutralizing and non-neutralizing Fc(R-dependent activities may be important in the control of SHIV replication, they also demonstrate that low levels of these antibodies alone are not sufficient to protect from infection. Published by Elsevier Ltd.

  15. Vaccine Induced Antibodies to the First Variable Loop of Human Immunodeficiency Virus Type 1 gp120, Mediate Antibody-Dependent Virus Inhibition in Macaques

    PubMed Central

    Bialuk, Izabela; Whitney, Stephen; Andresen, Vibeke; Florese, Ruth H.; Nacsa, Janos; Cecchinato, Valentina; Valeri, Valerio W.; Heraud, Jean-Michel; Gordon, Shari; Parks, Robyn Washington; Montefiori, David C.; Venzon, David; Demberg, Thorsten; Guroff, Marjorie Robert; Landucci, Gary; Forthal, Donald N.; Franchini, Genoveffa

    2011-01-01

    The role of antibodies directed against the hyper variable envelope region V1 of human immunodeficiency virus type 1 (HIV-1), has not been thoroughly studied. We show that a vaccine able to elicit strain-specific non-neutralizing antibodies to this region of gp120 is associated with control of highly pathogenic chimeric SHIV89.6P replication in rhesus macaques. The vaccinated animal that had the highest titers of antibodies to the amino terminus portion of V1, prior to challenge, had secondary antibody responses that mediated cell killing by antibody-dependent cellular cytotoxicity (ADCC), as early as two weeks after infection and inhibited viral replication by antibody-dependent cell-mediated virus inhibition (ADCVI), by four weeks after infection. There was a significant inverse correlation between virus level and binding antibody titers to the envelope protein, (R = -0.83, p 0.015), and ADCVI (R = -0.84 p=0.044). Genotyping of plasma virus demonstrated in vivo selection of three SHIV89.6P variants with changes in potential N-linked glycosylation sites in V1. We found a significant inverse correlation between virus levels and titers of antibodies that mediated ADCVI against all the identified V1 virus variants. A significant inverse correlation was also found between neutralizing antibody titers to SHIV89.6 and virus levels (R = -0.72 p =0.0050). However, passive inoculation of purified immunoglobulin from animal M316, the macaque that best controlled virus, to a naïve macaque, resulted in a low serum neutralizing antibodies and low ADCVI activity that failed to protect from SHIV89.6P challenge. Collectively, while our data suggest that anti-envelope antibodies with neutralizing and non-neutralizing FcγR-dependent activities may be important in the control of SHIV replication, they also demonstrate that low levels of these antibodies alone are not sufficient to protect from infection. PMID:22037204

  16. A novel reporter system for neutralizing and enhancing antibody assay against dengue virus.

    PubMed

    Song, Ke-Yu; Zhao, Hui; Jiang, Zhen-You; Li, Xiao-Feng; Deng, Yong-Qiang; Jiang, Tao; Zhu, Shun-Ya; Shi, Pei-Yong; Zhang, Bo; Zhang, Fu-Chun; Qin, E-De; Qin, Cheng-Feng

    2014-02-18

    Dengue virus (DENV) still poses a global public health threat, and no vaccine or antiviral therapy is currently available. Antibody plays distinct roles in controlling DENV infections. Neutralizing antibody is protective against DENV infection, whereas sub-neutralizing concentration of antibody can increase DENV infection, termed antibody-dependent enhancement (ADE). Plaque-based assay represents the most widely accepted method measuring neutralizing or enhancing antibodies. In this study, a novel reporter virus-based system was developed for measuring neutralization and ADE activity. A stable Renilla luciferase reporter DENV (Luc-DENV) that can produce robust luciferase signals in BHK-21 and K562 cells were used to establish the assay and validated against traditional plaque-based assay. Luciferase value analysis using various known DENV-specific monoclonal antibodies showed good repeatability and a well linear correlation with conventional plaque-based assays. The newly developed assay was finally validated with clinical samples from infected animals and individuals. This reporter virus-based assay for neutralizing and enhancing antibody evaluation is rapid, lower cost, and high throughput, and will be helpful for laboratory detection and epidemiological investigation for DENV antibodies.

  17. Variables influencing anti-human immunodeficiency virus type 1 neutralizing human monoclonal antibody (NhMAb) production among infected Thais.

    PubMed

    Akapirat, Siriwat; Avihingsanon, Anchalee; Ananworanich, Jintanat; Schuetz, Alexandra; Ramasoota, Pongrama; Luplertlop, Natthanej; Ono, Ken-Ichiro; Ikuta, Kazuyoshi; Utachee, Piraporn; Kameoka, Masanori; Leaungwutiwong, Pornsawan

    2013-09-01

    We conducted this study to determine the clinical variables associated with the production of human immunodeficiency virus type 1 (HIV-1) circulating recombinant form (CRF) 01_AE neutralizing human monoclonal antibodies (NhMAbs) using a hybridoma technique. This cross sectional study was performed in 20 asymptomatic HIV-1-infected Thais. Peripheral blood mononuclear cells (PBMCs) were obtained from each study participant and fused with SPYMEG cells. Culture supernatant collected from growing hybridomas was tested for neutralizing activity against HIV-1 CRF01_AE Env-recombinant viruses. Fifty hybridomas expressing anti-HIV-1 NhMAbs with strong neutralizing activity against at least 1 CRF01_AE Env-recombinant virus were found. A positive association between the numbers of hybridomas produced and the CD4 counts of study participants (p = 0.019) was observed. NhMAb-producing hybridomas with strong neutralizing activity were mostly found in participans diagnosed with HIV-1 infection within the previous 1 year. The HIV-1 viral load was not significantly correlated with the numbers of either established hybridomas or clones expressing anti-HIV-1 NhMAbs with strong neutralizing activity. To our knowledge, this is the first study of NhMAb-producing hybridomas obtained from HIV-1 CRF01_AE-infected populations identified by antibody binding to HIV-1 V3 loop peptide enzyme-linked immunosorbent assay (ELISA) or TRUGENE HIV-1 Genotyping Assay (HIV-1 pol sequence). It provides important criterion to slect study participants with high CD4 counts who produce large numbers of hybridoma clones. The results are valuable for further studies related to nurtalizing antibodies production and HIV-1 vaccine development.

  18. A Novel Assay for Antibody-Dependent Cell-Mediated Cytotoxicity against HIV-1- or SIV-Infected Cells Reveals Incomplete Overlap with Antibodies Measured by Neutralization and Binding Assays

    PubMed Central

    Alpert, Michael D.; Heyer, Lisa N.; Williams, David E. J.; Harvey, Jackson D.; Greenough, Thomas; Allhorn, Maria

    2012-01-01

    The resistance of human immunodeficiency virus type 1 (HIV-1) to antibody-mediated immunity often prevents the detection of antibodies that neutralize primary isolates of HIV-1. However, conventional assays for antibody functions other than neutralization are suboptimal. Current methods for measuring the killing of virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC) are limited by the number of natural killer (NK) cells obtainable from individual donors, donor-to-donor variation, and the use of nonphysiological targets. We therefore developed an ADCC assay based on NK cell lines that express human or macaque CD16 and a CD4+ T-cell line that expresses luciferase from a Tat-inducible promoter upon HIV-1 or simian immunodeficiency virus (SIV) infection. NK cells and virus-infected targets are mixed in the presence of serial plasma dilutions, and ADCC is measured as the dose-dependent loss of luciferase activity. Using this approach, ADCC titers were measured in plasma samples from HIV-infected human donors and SIV-infected macaques. For the same plasma samples paired with the same test viruses, this assay was approximately 2 orders of magnitude more sensitive than optimized assays for neutralizing antibodies—frequently allowing the measurement of ADCC in the absence of detectable neutralization. Although ADCC correlated with other measures of Env-specific antibodies, neutralizing and gp120 binding titers did not consistently predict ADCC activity. Hence, this assay affords a sensitive method for measuring antibodies capable of directing ADCC against HIV- or SIV-infected cells expressing native conformations of the viral envelope glycoprotein and reveals incomplete overlap of the antibodies that direct ADCC and those measured in neutralization and binding assays. PMID:22933282

  19. Host DNA synthesis-suppressing factor in culture fluid of tissue cultures infected with measles virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minagawa, T.; Nakaya, C.; Iida, H.

    1974-05-01

    Host DNA synthesis is suppressed by the culture fluid of cell cultures infected with measles virus. This activity in the culture fluid is initiated somewhat later than the growth of infectious virus. Ninety percent of host DNA synthesis in HeLa cells is inhibited by culture fluid of 3-day-old cell cultures of Vero or HeLa cells infected with measles virus. This suppressing activity is not a property of the virion, but is due to nonvirion-associated componentnent which shows none of the activities of measles virus such as hemagglutination, hemolysis, or cell fusion nor does it have the antigenicity of measles virusmore » as tested by complement-fixation or hemagglutination-inhibiting antibody blocking tests. Neutralization of the activity of this component is not attained with the pooled sera of convalescent measles patients. This component has molecular weights of about 45,000, 20,000, and 3,000 and appears to be a heat-stable protein. The production of host DNA suppressing factor (DSF) is blocked by cycloheximide. Neither uv-inactivated nor antiserum-neutralized measles virus produce DSF. Furthermore, such activity of nonvirion-associated component is not detected in the culture fluid of cultures infected with other RNA viruses such as poliovirus, vesicular stomatitis virus, or Sindbis virus. (auth)« less

  20. Inhibition of HIV Virus by Neutralizing Vhh Attached to Dual Functional Liposomes Encapsulating Dapivirine.

    PubMed

    Wang, Scarlet Xiaoyan; Michiels, Johan; Ariën, Kevin K; New, Roger; Vanham, Guido; Roitt, Ivan

    2016-12-01

    Although highly active antiretroviral therapy (HAART) has greatly improved the life expectancy of HIV/AIDS patients, the treatment is not curative. It is a global challenge which fosters an urgent need to develop an effective drug or neutralizing antibody delivery approach for the prevention and treatment of this disease. Due to the low density of envelope spikes with restricted mobility present on the surface of HIV virus, which limit the antibody potency and allow virus mutation and escape from the immune system, it is important for a neutralizing antibody to form bivalent or multivalent bonds with the virus. Liposome constructs could fulfil this need due to the flexible mobility of the membrane with its attached antibodies and the capacity for drug encapsulation. In this study, we evaluated the neutralization activity of a range of liposome formulations in different sizes coated with anti-gp120 llama antibody fragments (Vhhs) conjugated via either non-covalent metal chelation or a covalent linkage. The non-covalent construct demonstrated identical binding affinity to HIV-1 envelope glycoprotein gp120 and neutralizing ability for HIV virus as free Vhh. Although covalently linked Vhh showed significant binding affinity to gp120, it unexpectedly had a lower neutralization potency. This may be due to the comparability in size of the viral and liposome particles restricting the number which can be bound to the liposome surface so involving only a fraction of the antibodies, whereas non-covalently attached antibodies dissociate from the surface after acting with gp120 and free the remainder to bind further viruses. Covalently conjugated Vhh might also trigger the cellular uptake of a liposome-virion complex. To explore the possible ability of the antibody-coated liposomes to have a further function, we encapsulated the hydrophobic antiviral drug dapivirine into both of the non-covalently and covalently conjugated liposome formulations, both of which revealed high efficacy in reducing viral replication in vitro. Thus, dual function liposomes may lead to a novel strategy for the prophylaxis of HIV/AIDS by combining the neutralizing activity of Vhh with antiviral effects of high drug concentrations.

  1. Inhibition of HIV Virus by Neutralizing Vhh Attached to Dual Functional Liposomes Encapsulating Dapivirine

    NASA Astrophysics Data System (ADS)

    Wang, Scarlet Xiaoyan; Michiels, Johan; Ariën, Kevin K.; New, Roger; Vanham, Guido; Roitt, Ivan

    2016-07-01

    Although highly active antiretroviral therapy (HAART) has greatly improved the life expectancy of HIV/AIDS patients, the treatment is not curative. It is a global challenge which fosters an urgent need to develop an effective drug or neutralizing antibody delivery approach for the prevention and treatment of this disease. Due to the low density of envelope spikes with restricted mobility present on the surface of HIV virus, which limit the antibody potency and allow virus mutation and escape from the immune system, it is important for a neutralizing antibody to form bivalent or multivalent bonds with the virus. Liposome constructs could fulfil this need due to the flexible mobility of the membrane with its attached antibodies and the capacity for drug encapsulation. In this study, we evaluated the neutralization activity of a range of liposome formulations in different sizes coated with anti-gp120 llama antibody fragments (Vhhs) conjugated via either non-covalent metal chelation or a covalent linkage. The non-covalent construct demonstrated identical binding affinity to HIV-1 envelope glycoprotein gp120 and neutralizing ability for HIV virus as free Vhh. Although covalently linked Vhh showed significant binding affinity to gp120, it unexpectedly had a lower neutralization potency. This may be due to the comparability in size of the viral and liposome particles restricting the number which can be bound to the liposome surface so involving only a fraction of the antibodies, whereas non-covalently attached antibodies dissociate from the surface after acting with gp120 and free the remainder to bind further viruses. Covalently conjugated Vhh might also trigger the cellular uptake of a liposome-virion complex. To explore the possible ability of the antibody-coated liposomes to have a further function, we encapsulated the hydrophobic antiviral drug dapivirine into both of the non-covalently and covalently conjugated liposome formulations, both of which revealed high efficacy in reducing viral replication in vitro. Thus, dual function liposomes may lead to a novel strategy for the prophylaxis of HIV/AIDS by combining the neutralizing activity of Vhh with antiviral effects of high drug concentrations.

  2. International network for comparison of HIV neutralization assays: the NeutNet report.

    PubMed

    Fenyö, Eva Maria; Heath, Alan; Dispinseri, Stefania; Holmes, Harvey; Lusso, Paolo; Zolla-Pazner, Susan; Donners, Helen; Heyndrickx, Leo; Alcami, Jose; Bongertz, Vera; Jassoy, Christian; Malnati, Mauro; Montefiori, David; Moog, Christiane; Morris, Lynn; Osmanov, Saladin; Polonis, Victoria; Sattentau, Quentin; Schuitemaker, Hanneke; Sutthent, Ruengpung; Wrin, Terri; Scarlatti, Gabriella

    2009-01-01

    Neutralizing antibody assessments play a central role in human immunodeficiency virus type-1 (HIV-1) vaccine development but it is unclear which assay, or combination of assays, will provide reliable measures of correlates of protection. To address this, an international collaboration (NeutNet) involving 18 independent participants was organized to compare different assays. Each laboratory evaluated four neutralizing reagents (TriMab, 447-52D, 4E10, sCD4) at a given range of concentrations against a panel of 11 viruses representing a wide range of genetic subtypes and phenotypes. A total of 16 different assays were compared. The assays utilized either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (virus infectivity assays, VI assays), or their Env-pseudotyped (gp160) derivatives produced in 293T cells (PSV assays) from molecular clones or uncloned virus. Target cells included PBMC and genetically-engineered cell lines in either a single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs that included extracellular or intracellular p24 antigen detection, RNA quantification and luciferase and beta-galactosidase reporter gene expression. PSV assays were generally more sensitive than VI assays, but there were important differences according to the virus and inhibitor used. For example, for TriMab, the mean IC50 was always lower in PSV than in VI assays. However, with 4E10 or sCD4 some viruses were neutralized with a lower IC50 in VI assays than in the PSV assays. Inter-laboratory concordance was slightly better for PSV than for VI assays with some viruses, but for other viruses agreement between laboratories was limited and depended on both the virus and the neutralizing reagent. The NeutNet project demonstrated clear differences in assay sensitivity that were dependent on both the neutralizing reagent and the virus. No single assay was capable of detecting the entire spectrum of neutralizing activities. Since it is not known which in vitro assay correlates with in vivo protection, a range of neutralization assays is recommended for vaccine evaluation.

  3. International Network for Comparison of HIV Neutralization Assays: The NeutNet Report

    PubMed Central

    Fenyö, Eva Maria; Heath, Alan; Dispinseri, Stefania; Holmes, Harvey; Lusso, Paolo; Zolla-Pazner, Susan; Donners, Helen; Heyndrickx, Leo; Alcami, Jose; Bongertz, Vera; Jassoy, Christian; Malnati, Mauro; Montefiori, David; Moog, Christiane; Morris, Lynn; Osmanov, Saladin; Polonis, Victoria; Sattentau, Quentin; Schuitemaker, Hanneke; Sutthent, Ruengpung; Wrin, Terri; Scarlatti, Gabriella

    2009-01-01

    Background Neutralizing antibody assessments play a central role in human immunodeficiency virus type-1 (HIV-1) vaccine development but it is unclear which assay, or combination of assays, will provide reliable measures of correlates of protection. To address this, an international collaboration (NeutNet) involving 18 independent participants was organized to compare different assays. Methods Each laboratory evaluated four neutralizing reagents (TriMab, 447-52D, 4E10, sCD4) at a given range of concentrations against a panel of 11 viruses representing a wide range of genetic subtypes and phenotypes. A total of 16 different assays were compared. The assays utilized either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (virus infectivity assays, VI assays), or their Env-pseudotyped (gp160) derivatives produced in 293T cells (PSV assays) from molecular clones or uncloned virus. Target cells included PBMC and genetically-engineered cell lines in either a single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs that included extracellular or intracellular p24 antigen detection, RNA quantification and luciferase and beta-galactosidase reporter gene expression. Findings PSV assays were generally more sensitive than VI assays, but there were important differences according to the virus and inhibitor used. For example, for TriMab, the mean IC50 was always lower in PSV than in VI assays. However, with 4E10 or sCD4 some viruses were neutralized with a lower IC50 in VI assays than in the PSV assays. Inter-laboratory concordance was slightly better for PSV than for VI assays with some viruses, but for other viruses agreement between laboratories was limited and depended on both the virus and the neutralizing reagent. Conclusions The NeutNet project demonstrated clear differences in assay sensitivity that were dependent on both the neutralizing reagent and the virus. No single assay was capable of detecting the entire spectrum of neutralizing activities. Since it is not known which in vitro assay correlates with in vivo protection, a range of neutralization assays is recommended for vaccine evaluation. PMID:19229336

  4. Proof-of-principle that a decoy virus protects oncolytic measles virus against neutralizing antibodies.

    PubMed

    Xu, Chun; Goß, Annika Verena; Dorneburg, Carmen; Debatin, Klaus-Michael; Wei, Jiwu; Beltinger, Christian

    2018-01-01

    Attenuated oncolytic measles virus (OMV) is a promising antitumor agent in early-phase clinical trials. However, pre-existing immunity against measles might be a hurdle for OMV therapy. OMV was inactivated with short-wavelength ultraviolet light (UV-C). Loss of replication and oncolytic activity of UV-inactivated OMV were confirmed by tissue culture infective dose 50 (TCID 50 ) assay using Vero cells and by flow cytometry using Jurkat cells. An enzyme-linked immunosorbent assay was performed to verify that UV-inactivated OMV remained antigenic. Different doses of UV-inactivated OMV were pre-cultured in media supplemented with measles immune serum. The mixture was transferred to Jurkat cells and active OMV was added. Active OMV-induced death of Jurkat cells was monitored by flow cytometry. UV-inactivation abrogates OMV replication while maintaining its antigenicity. UV-inactivated OMV sequesters pre-existing anti-MV antibodies in Jurkat cell culture, thereby protecting active OMV from neutralization and preserving oncolytic activity. We prove the principle that a non-replicating OMV can serve as a "decoy" for neutralizing anti-MV antibodies, thereby allowing antitumor activity of OMV.

  5. HIV-Specific Functional Antibody Responses in Breast Milk Mirror Those in Plasma and Are Primarily Mediated by IgG Antibodies ▿

    PubMed Central

    Fouda, Genevieve G.; Yates, Nicole L.; Pollara, Justin; Shen, Xiaoying; Overman, Glenn R.; Mahlokozera, Tatenda; Wilks, Andrew B.; Kang, Helen H.; Salazar-Gonzalez, Jesus F.; Salazar, Maria G.; Kalilani, Linda; Meshnick, Steve R.; Hahn, Beatrice H.; Shaw, George M.; Lovingood, Rachel V.; Denny, Thomas N.; Haynes, Barton; Letvin, Norman L.; Ferrari, Guido; Montefiori, David C.; Tomaras, Georgia D.; Permar, Sallie R.

    2011-01-01

    Despite months of mucosal virus exposure, the majority of breastfed infants born to HIV-infected mothers do not become infected, raising the possibility that immune factors in milk inhibit mucosal transmission of HIV. HIV Envelope (Env)-specific antibodies are present in the milk of HIV-infected mothers, but little is known about their virus-specific functions. In this study, HIV Env-specific antibody binding, autologous and heterologous virus neutralization, and antibody-dependent cell cytotoxicity (ADCC) responses were measured in the milk and plasma of 41 HIV-infected lactating women. Although IgA is the predominant antibody isotype in milk, HIV Env-specific IgG responses were higher in magnitude than HIV Env-specific IgA responses in milk. The concentrations of anti-HIV gp120 IgG in milk and plasma were directly correlated (r = 0.75; P < 0.0001), yet the response in milk was 2 logarithm units lower than in plasma. Similarly, heterologous virus neutralization (r = 0.39; P = 0.010) and ADCC activity (r = 0.64; P < 0.0001) in milk were directly correlated with that in the systemic compartment but were 2 log units lower in magnitude. Autologous neutralization was rarely detected in milk. Milk heterologous virus neutralization titers correlated with HIV gp120 Env-binding IgG responses but not with IgA responses (r = 0.71 and P < 0.0001, and r = 0.17 and P = 0.30). Moreover, IgGs purified from milk and plasma had equal neutralizing potencies against a tier 1 virus (r = 0.65; P < 0.0001), whereas only 1 out of 35 tested non-IgG milk fractions had detectable neutralization. These results suggest that plasma-derived IgG antibodies mediate the majority of the low-level HIV neutralization and ADCC activity in breast milk. PMID:21734046

  6. Powassan virus: vernal spread during 1965.

    PubMed

    McLean, D M; Smith, P A; Livingstone, S E; Wilson, W E; Wilson, A G

    1966-03-12

    Powassan virus was isolated from seven pools of Ixodes cookei ticks removed from groundhogs (Marmota monax) collected near North Bay, Ontario, between May and August 1965, including five pools obtained during spring. Tick pools, each comprising one to nine ticks, contained 2.0 to 5.5 log(10) TCD(50) of virus upon titration in monolayer cultures of primary swine kidney cells. Powassan virus neutralizing antibody prevalence in sera of the current season's groundhogs increased steadily from zero during May to 25% during August but remained relatively unchanged (42% to 58%) in the previous season's groundhogs, thereby confirming that active infection had occurred particularly amongst juvenile groundhogs mainly during spring 1965. Isolation of one strain of Silverwater virus from Haemaphysalis leporis-palustris ticks and detection of neutralizing antibody in three of nine snowshoe hares (Lepus americanus) confirmed the active spread of this agent during 1965.

  7. Correspondence of Neutralizing Humoral Immunity and CD4 T Cell Responses in Long Recovered Sudan Virus Survivors

    PubMed Central

    Sobarzo, Ariel; Stonier, Spencer W.; Herbert, Andrew S.; Ochayon, David E.; Kuehne, Ana I.; Eskira, Yael; Fedida-Metula, Shlomit; Tali, Neta; Lewis, Eli C.; Egesa, Moses; Cose, Stephen; Lutwama, Julius Julian; Yavelsky, Victoria; Dye, John M.; Lobel, Leslie

    2016-01-01

    Robust humoral and cellular immunity are critical for survival in humans during an ebolavirus infection. However, the interplay between these two arms of immunity is poorly understood. To address this, we examined residual immune responses in survivors of the Sudan virus (SUDV) outbreak in Gulu, Uganda (2000–2001). Cytokine and chemokine expression levels in SUDV stimulated whole blood cultures were assessed by multiplex ELISA and flow cytometry. Antibody and corresponding neutralization titers were also determined. Flow cytometry and multiplex ELISA results demonstrated significantly higher levels of cytokine and chemokine responses in survivors with serological neutralizing activity. This correspondence was not detected in survivors with serum reactivity to SUDV but without neutralization activity. This previously undefined relationship between memory CD4 T cell responses and serological neutralizing capacity in SUDV survivors is key for understanding long lasting immunity in survivors of filovirus infections. PMID:27187443

  8. Correspondence of Neutralizing Humoral Immunity and CD4 T Cell Responses in Long Recovered Sudan Virus Survivors.

    PubMed

    Sobarzo, Ariel; Stonier, Spencer W; Herbert, Andrew S; Ochayon, David E; Kuehne, Ana I; Eskira, Yael; Fedida-Metula, Shlomit; Tali, Neta; Lewis, Eli C; Egesa, Moses; Cose, Stephen; Lutwama, Julius Julian; Yavelsky, Victoria; Dye, John M; Lobel, Leslie

    2016-05-11

    Robust humoral and cellular immunity are critical for survival in humans during an ebolavirus infection. However, the interplay between these two arms of immunity is poorly understood. To address this, we examined residual immune responses in survivors of the Sudan virus (SUDV) outbreak in Gulu, Uganda (2000-2001). Cytokine and chemokine expression levels in SUDV stimulated whole blood cultures were assessed by multiplex ELISA and flow cytometry. Antibody and corresponding neutralization titers were also determined. Flow cytometry and multiplex ELISA results demonstrated significantly higher levels of cytokine and chemokine responses in survivors with serological neutralizing activity. This correspondence was not detected in survivors with serum reactivity to SUDV but without neutralization activity. This previously undefined relationship between memory CD4 T cell responses and serological neutralizing capacity in SUDV survivors is key for understanding long lasting immunity in survivors of filovirus infections.

  9. Automated image-based assay for evaluation of HIV neutralization and cell-to-cell fusion inhibition.

    PubMed

    Sheik-Khalil, Enas; Bray, Mark-Anthony; Özkaya Şahin, Gülsen; Scarlatti, Gabriella; Jansson, Marianne; Carpenter, Anne E; Fenyö, Eva Maria

    2014-08-30

    Standardized techniques to detect HIV-neutralizing antibody responses are of great importance in the search for an HIV vaccine. Here, we present a high-throughput, high-content automated plaque reduction (APR) assay based on automated microscopy and image analysis that allows evaluation of neutralization and inhibition of cell-cell fusion within the same assay. Neutralization of virus particles is measured as a reduction in the number of fluorescent plaques, and inhibition of cell-cell fusion as a reduction in plaque area. We found neutralization strength to be a significant factor in the ability of virus to form syncytia. Further, we introduce the inhibitory concentration of plaque area reduction (ICpar) as an additional measure of antiviral activity, i.e. fusion inhibition. We present an automated image based high-throughput, high-content HIV plaque reduction assay. This allows, for the first time, simultaneous evaluation of neutralization and inhibition of cell-cell fusion within the same assay, by quantifying the reduction in number of plaques and mean plaque area, respectively. Inhibition of cell-to-cell fusion requires higher quantities of inhibitory reagent than inhibition of virus neutralization.

  10. Potent neutralizing monoclonal antibodies against Ebola virus infection

    PubMed Central

    Zhang, Qi; Gui, Miao; Niu, Xuefeng; He, Shihua; Wang, Ruoke; Feng, Yupeng; Kroeker, Andrea; Zuo, Yanan; Wang, Hua; Wang, Ying; Li, Jiade; Li, Chufang; Shi, Yi; Shi, Xuanling; Gao, George F.; Xiang, Ye; Qiu, Xiangguo; Chen, Ling; Zhang, Linqi

    2016-01-01

    Ebola virus infections cause a deadly hemorrhagic disease for which no vaccines or therapeutics has received regulatory approval. Here we show isolation of three (Q206, Q314 and Q411) neutralizing monoclonal antibodies (mAbs) against the surface glycoprotein (GP) of Ebola virus identified in West Africa in 2014 through sequential immunization of Chinese rhesus macaques and antigen-specific single B cell sorting. These mAbs demonstrated potent neutralizing activities against both pseudo and live Ebola virus independent of complement. Biochemical, single particle EM, and mutagenesis analysis suggested Q206 and Q411 recognized novel epitopes in the head while Q314 targeted the glycan cap in the GP1 subunit. Q206 and Q411 appeared to influence GP binding to its receptor NPC1. Treatment with these mAbs provided partial but significant protection against disease in a mouse model of Ebola virus infection. These novel mAbs could serve as promising candidates for prophylactic and therapeutic interventions against Ebola virus infection. PMID:27181584

  11. Potent neutralizing monoclonal antibodies against Ebola virus infection.

    PubMed

    Zhang, Qi; Gui, Miao; Niu, Xuefeng; He, Shihua; Wang, Ruoke; Feng, Yupeng; Kroeker, Andrea; Zuo, Yanan; Wang, Hua; Wang, Ying; Li, Jiade; Li, Chufang; Shi, Yi; Shi, Xuanling; Gao, George F; Xiang, Ye; Qiu, Xiangguo; Chen, Ling; Zhang, Linqi

    2016-05-16

    Ebola virus infections cause a deadly hemorrhagic disease for which no vaccines or therapeutics has received regulatory approval. Here we show isolation of three (Q206, Q314 and Q411) neutralizing monoclonal antibodies (mAbs) against the surface glycoprotein (GP) of Ebola virus identified in West Africa in 2014 through sequential immunization of Chinese rhesus macaques and antigen-specific single B cell sorting. These mAbs demonstrated potent neutralizing activities against both pseudo and live Ebola virus independent of complement. Biochemical, single particle EM, and mutagenesis analysis suggested Q206 and Q411 recognized novel epitopes in the head while Q314 targeted the glycan cap in the GP1 subunit. Q206 and Q411 appeared to influence GP binding to its receptor NPC1. Treatment with these mAbs provided partial but significant protection against disease in a mouse model of Ebola virus infection. These novel mAbs could serve as promising candidates for prophylactic and therapeutic interventions against Ebola virus infection.

  12. Antibody-mediated neutralization of Ebola virus can occur by two distinct mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shedlock, Devon J., E-mail: shedlock@mail.med.upenn.ed; Bailey, Michael A., E-mail: mike.bailey@taurigroup.co; Popernack, Paul M.

    2010-06-05

    Human Ebola virus causes severe hemorrhagic fever disease with high mortality and there is no vaccine or treatment. Antibodies in survivors occur early, are sustained, and can delay infection when transferred into nonhuman primates. Monoclonal antibodies (mAbs) from survivors exhibit potent neutralizing activity in vitro and are protective in rodents. To better understand targets and mechanisms of neutralization, we investigated a panel of mAbs shown previously to react with the envelope glycoprotein (GP). While one non-neutralizing mAb recognized a GP epitope in the nonessential mucin-like domain, the rest were specific for GP1, were neutralizing, and could be further distinguished bymore » reactivity with secreted GP. We show that survivor antibodies, human KZ52 and monkey JP3K11, were specific for conformation-dependent epitopes comprising residues in GP1 and GP2 and that neutralization occurred by two distinct mechanisms; KZ52 inhibited cathepsin cleavage of GP whereas JP3K11 recognized the cleaved, fusion-active form of GP.« less

  13. Single-Chain Fv-Based Anti-HIV Proteins: Potential and Limitations

    PubMed Central

    West, Anthony P.; Galimidi, Rachel P.; Gnanapragasam, Priyanthi N. P.

    2012-01-01

    The existence of very potent, broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) offers the potential for prophylaxis against HIV-1 infection by passive immunization or gene therapy. Both routes permit the delivery of modified forms of IgGs. Smaller reagents are favored when considering ease of tissue penetration and the limited capacities of gene therapy vectors. Immunoadhesin (single-chain fragment variable [scFv]-Fc) forms of IgGs are one class of relatively small reagent that has been explored for delivery by adeno-associated virus. Here we investigated the neutralization potencies of immunoadhesins compared to those of their parent IgGs. For the antibodies VRC01, PG9, and PG16, the immunoadhesins showed modestly reduced potencies, likely reflecting reduced affinities compared to those of the parent IgG, and the VRC01 immunoadhesin formed dimers and multimers with reduced neutralization potencies. Although scFv forms of neutralizing antibodies may exhibit affinity reductions, they provide a means of building reagents with multiple activities. Attachment of the VRC01 scFv to PG16 IgG yielded a bispecific reagent whose neutralization activity combined activities from both parent antibodies. Although the neutralization activity due to each component was partially reduced, the combined reagent is attractive since fewer strains escaped neutralization. PMID:22013046

  14. Evidence of neutralizing activity against T3 coliphage in oyster Crassostrea gigas hemolymph.

    PubMed

    Bachère, E; Hervio, D; Mialhe, E; Grizel, H

    1990-01-01

    To investigate defense reactions of bivalve molluscs against viruses, experimental in vitro assays have been developed using T3 coliphage as a test virus. A native neutralizing factor in oyster Crassostrea gigas serum showed high individual variability and was enhanced significantly by repeated sampling of hemolymph from the same oysters. The responsible factor is apparently thermolabile and sensitive to EDTA treatment. Because of an inhibitory effect by the enzymatic inhibitor, phenylmethylsulphonyl fluoride (PMSF), the T3-neutralizing factor may be related to serine protease.

  15. Powassan Virus: Vernal Spread During 1965

    PubMed Central

    McLean, D. M.; Smith, Patricia A.; Livingstone, Sandra E.; Wilson, W. E.; Wilson, A. G.

    1966-01-01

    Powassan virus was isolated from seven pools of Ixodes cookei ticks removed from groundhogs (Marmota monax) collected near North Bay, Ontario, between May and August 1965, including five pools obtained during spring. Tick pools, each comprising one to nine ticks, contained 2.0 to 5.5 log10 TCD50 of virus upon titration in monolayer cultures of primary swine kidney cells. Powassan virus neutralizing antibody prevalence in sera of the current season's groundhogs increased steadily from zero during May to 25% during August but remained relatively unchanged (42% to 58%) in the previous season's groundhogs, thereby confirming that active infection had occurred particularly amongst juvenile groundhogs mainly during spring 1965. Isolation of one strain of Silverwater virus from Haemaphysalis leporis-palustris ticks and detection of neutralizing antibody in three of nine snowshoe hares (Lepus americanus) confirmed the active spread of this agent during 1965. PMID:5904925

  16. Proof-of-principle that a decoy virus protects oncolytic measles virus against neutralizing antibodies

    PubMed Central

    Dorneburg, Carmen; Debatin, Klaus-Michael; Wei, Jiwu; Beltinger, Christian

    2018-01-01

    Background Attenuated oncolytic measles virus (OMV) is a promising antitumor agent in early-phase clinical trials. However, pre-existing immunity against measles might be a hurdle for OMV therapy. Methods OMV was inactivated with short-wavelength ultraviolet light (UV-C). Loss of replication and oncolytic activity of UV-inactivated OMV were confirmed by tissue culture infective dose 50 (TCID50) assay using Vero cells and by flow cytometry using Jurkat cells. An enzyme-linked immunosorbent assay was performed to verify that UV-inactivated OMV remained antigenic. Different doses of UV-inactivated OMV were pre-cultured in media supplemented with measles immune serum. The mixture was transferred to Jurkat cells and active OMV was added. Active OMV-induced death of Jurkat cells was monitored by flow cytometry. Results UV-inactivation abrogates OMV replication while maintaining its antigenicity. UV-inactivated OMV sequesters pre-existing anti-MV antibodies in Jurkat cell culture, thereby protecting active OMV from neutralization and preserving oncolytic activity. Conclusion We prove the principle that a non-replicating OMV can serve as a “decoy” for neutralizing anti-MV antibodies, thereby allowing antitumor activity of OMV. PMID:29750140

  17. Expeditious neutralization assay for human metapneumovirus based on a recombinant virus expressing Renilla luciferase.

    PubMed

    Zhou, Min; Kitagawa, Yoshinori; Yamaguchi, Mayu; Uchiyama, Chika; Itoh, Masae; Gotoh, Bin

    2013-01-01

    Human metapneumovirus (HMPV) is a common cause of respiratory diseases in persons of all ages. Because of its slow replication and weak cytopathic effect in cultured cells, conventional neutralization assays for HMPV require around one week for completion. The purpose of this study is to establish a rapid neutralization assay based on a recombinant virus expressing Renilla luciferase (Rluc). A recombinant HMPV expressing both Rluc and green fluorescent protein (GFP) was created by reverse genetics method. Two-fold serial dilutions of human 23 sera were made in a 96-well plate and incubated with 50 pfu/well of the recombinant virus at 4°C for 1 h. The mixtures were then transferred to LLC-MK2 cells in a 96-well plate, incubated for 2 h, and replaced with trypsin-free fresh media. After incubation at 32°C for 24 h, the cells were lysed and measured for Rluc activity. The neutralization titer was defined as the reciprocal of the highest serum dilution that resulted in 50% reduction of Rluc activity. The novel assay could be completed within 24 h and eliminated the requirement of trypsin supporting multistep replication in cultured cells, as well as laborious processes including the plaque assay with immunostaining. Neutralization titers correlated well with those determined by a GFP-based assay previously developed. The neutralization assay based on Rluc activity is the fastest and the most straightforward of all previous assays, and may be available for high throughput screening of neutralizing antibodies. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Differential mechanisms of complement-mediated neutralization of the closely related paramyxoviruses simian virus 5 and mumps virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, John B.; Capraro, Gerald A.; Parks, Griffith D.

    2008-06-20

    The complement system is an important component of the innate immune response to virus infection. The role of human complement pathways in the in vitro neutralization of three closely related paramyxoviruses, Simian Virus 5 (SV5), Mumps virus (MuV) and Human Parainfluenza virus type 2 (HPIV2) was investigated. Sera from ten donors showed high levels of neutralization against HPIV2 that was largely complement-independent, whereas nine of ten donor sera were found to neutralize SV5 and MuV only in the presence of active complement pathways. SV5 and MuV neutralization proceeded through the alternative pathway of the complement cascade. Electron microscopy studies andmore » biochemical analyses showed that treatment of purified SV5 with human serum resulted in C3 deposition on virions and the formation of massive aggregates, but there was relatively little evidence of virion lysis. Treatment of MuV with human serum also resulted in C3 deposition on virions, however in contrast to SV5, MuV particles were lysed by serum complement and there was relatively little aggregation. Assays using serum depleted of complement factors showed that SV5 and MuV neutralization in vitro was absolutely dependent on complement factor C3, but was not dependent on downstream complement factors C5 or C8. Our results indicate that even though antibodies exist that recognize both SV5 and MuV, they are mostly non-neutralizing and viral inactivation in vitro occurs through the alternative pathway of complement. The implications of our work for development of paramyxovirus vectors and vaccines are discussed.« less

  19. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection.

    PubMed

    Collins, Matthew H; McGowan, Eileen; Jadi, Ramesh; Young, Ellen; Lopez, Cesar A; Baric, Ralph S; Lazear, Helen M; de Silva, Aravinda M

    2017-05-01

    Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus-specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity.

  20. In Vitro Neutralization Is Not Predictive of Prophylactic Efficacy of Broadly Neutralizing Monoclonal Antibodies CR6261 and CR9114 against Lethal H2 Influenza Virus Challenge in Mice

    PubMed Central

    Sutton, Troy C.; Lamirande, Elaine W.; Bock, Kevin W.; Moore, Ian N.; Koudstaal, Wouter; Rehman, Muniza; Weverling, Gerrit Jan; Goudsmit, Jaap

    2017-01-01

    ABSTRACT Influenza viruses of the H1N1, H2N2, and H3N2 subtypes have caused previous pandemics. H2 influenza viruses represent a pandemic threat due to continued circulation in wild birds and limited immunity in the human population. In the event of a pandemic, antiviral agents are the mainstay for treatment, but broadly neutralizing antibodies (bNAbs) may be a viable alternative for short-term prophylaxis or treatment. The hemagglutinin stem binding bNAbs CR6261 and CR9114 have been shown to protect mice from severe disease following challenge with H1N1 and H5N1 and with H1N1, H3N2, and influenza B viruses, respectively. Early studies with CR6261 and CR9114 showed weak in vitro activity against human H2 influenza viruses, but the in vivo efficacy against H2 viruses is unknown. Therefore, we evaluated these antibodies against human- and animal-origin H2 viruses A/Ann Arbor/6/1960 (H2N2) (AA60) and A/swine/MO/4296424/06 (H2N3) (Sw06). In vitro, CR6261 neutralized both H2 viruses, while CR9114 only neutralized Sw06. To evaluate prophylactic efficacy, mice were given CR6261 or CR9114 and intranasally challenged 24 h later with lethal doses of AA60 or Sw06. Both antibodies reduced mortality, weight loss, airway inflammation, and pulmonary viral load. Using engineered bNAb variants, antibody-mediated cell cytotoxicity reporter assays, and Fcγ receptor-deficient (Fcer1g−/−) mice, we show that the in vivo efficacy of CR9114 against AA60 is mediated by Fcγ receptor-dependent mechanisms. Collectively, these findings demonstrate the in vivo efficacy of CR6261 and CR9114 against H2 viruses and emphasize the need for in vivo evaluation of bNAbs. IMPORTANCE bNAbs represent a strategy to prevent or treat infection by a wide range of influenza viruses. The evaluation of these antibodies against H2 viruses is important because H2 viruses caused a pandemic in 1957 and could cross into humans again. We demonstrate that CR6261 and CR9114 are effective against infection with H2 viruses of both human and animal origin in mice, despite the finding that CR9114 did not display in vitro neutralizing activity against the human H2 virus. These findings emphasize the importance of in vivo evaluation and testing of bNAbs. PMID:29046448

  1. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Weibin; Chen, Aizhong; Miao, Yi

    Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarilymore » targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.« less

  2. Vaccine-elicited receptor-binding site antibodies neutralize two New World hemorrhagic fever arenaviruses.

    PubMed

    Clark, Lars E; Mahmutovic, Selma; Raymond, Donald D; Dilanyan, Taleen; Koma, Takaaki; Manning, John T; Shankar, Sundaresh; Levis, Silvana C; Briggiler, Ana M; Enria, Delia A; Wucherpfennig, Kai W; Paessler, Slobodan; Abraham, Jonathan

    2018-05-14

    While five arenaviruses cause human hemorrhagic fevers in the Western Hemisphere, only Junin virus (JUNV) has a vaccine. The GP1 subunit of their envelope glycoprotein binds transferrin receptor 1 (TfR1) using a surface that substantially varies in sequence among the viruses. As such, receptor-mimicking antibodies described to date are type-specific and lack the usual breadth associated with this mode of neutralization. Here we isolate, from the blood of a recipient of the live attenuated JUNV vaccine, two antibodies that cross-neutralize Machupo virus with varying efficiency. Structures of GP1-Fab complexes explain the basis for efficient cross-neutralization, which involves avoiding receptor mimicry and targeting a conserved epitope within the receptor-binding site (RBS). The viral RBS, despite its extensive sequence diversity, is therefore a target for cross-reactive antibodies with activity against New World arenaviruses of public health concern.

  3. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection

    PubMed Central

    McGowan, Eileen; Jadi, Ramesh; Young, Ellen; Lopez, Cesar A.; Baric, Ralph S.; Lazear, Helen M.

    2017-01-01

    Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus–specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity. PMID:28418292

  4. Protection of Mice from Fatal Measles Encephalitis by Vaccination with Vaccinia Virus Recombinants Encoding Either the Hemagglutinin or the Fusion Protein

    NASA Astrophysics Data System (ADS)

    Drillien, Robert; Spehner, Daniele; Kirn, Andre; Giraudon, Pascale; Buckland, Robin; Wild, Fabian; Lecocq, Jean-Pierre

    1988-02-01

    Vaccinia virus recombinants encoding the hemagglutinin or fusion protein of measles virus have been constructed. Infection of cell cultures with the recombinants led to the synthesis of authentic measles proteins as judged by their electrophoretic mobility, recognition by antibodies, glycosylation, proteolytic cleavage, and presentation on the cell surface. Mice vaccinated with a single dose of the recombinant encoding the hemagglutinin protein developed antibodies capable of both inhibiting hemagglutination activity and neutralizing measles virus, whereas animals vaccinated with the recombinant encoding the fusion protein developed measles neutralizing antibodies. Mice vaccinated with either of the recombinants resisted a normally lethal intracerebral inoculation of a cell-associated measles virus subacute sclerosing panencephalitis strain.

  5. Generation and Characterization of Monoclonal Antibodies against a Cyclic Variant of Hepatitis C Virus E2 Epitope 412-422

    PubMed Central

    Sandomenico, Annamaria; Leonardi, Antonio; Berisio, Rita; Sanguigno, Luca; Focà, Giuseppina; Focà, Annalia; Ruggiero, Alessia; Doti, Nunzianna; Muscariello, Livio; Barone, Daniela; Farina, Claudio; Owsianka, Ania; Vitagliano, Luigi

    2016-01-01

    ABSTRACT The hepatitis C virus (HCV) E2 envelope glycoprotein is crucial for virus entry into hepatocytes. A conserved region of E2 encompassing amino acids 412 to 423 (epitope I) and containing Trp420, a residue critical for virus entry, is recognized by several broadly neutralizing antibodies. Peptides embodying this epitope I sequence adopt a β-hairpin conformation when bound to neutralizing monoclonal antibodies (MAbs) AP33 and HCV1. We therefore generated new mouse MAbs that were able to bind to a cyclic peptide containing E2 residues 412 to 422 (C-epitope I) but not to the linear counterpart. These MAbs bound to purified E2 with affinities of about 50 nM, but they were unable to neutralize virus infection. Structural analysis of the complex between C-epitope I and one of our MAbs (C2) showed that the Trp420 side chain is largely buried in the combining site and that the Asn417 side chain, which is glycosylated in E2 and solvent exposed in other complexes, is slightly buried upon C2 binding. Also, the orientation of the cyclic peptide in the antibody-combining site is rotated by 180° compared to the orientations of the other complexes. All these structural features, however, do not explain the lack of neutralization activity. This is instead ascribed to the high degree of selectivity of the new MAbs for the cyclic epitope and to their inability to interact with the epitope in more flexible and extended conformations, which recent data suggest play a role in the mechanisms of neutralization escape. IMPORTANCE Hepatitis C virus (HCV) remains a major health care burden, affecting almost 3% of the global population. The conserved epitope comprising residues 412 to 423 of the viral E2 glycoprotein is a valid vaccine candidate because antibodies recognizing this region exhibit potent neutralizing activity. This epitope adopts a β-hairpin conformation when bound to neutralizing MAbs. We explored the potential of cyclic peptides mimicking this structure to elicit anti-HCV antibodies. MAbs that specifically recognize a cyclic variant of the epitope bind to soluble E2 with a lower affinity than other blocking antibodies and do not neutralize virus. The structure of the complex between one such MAb and the cyclic epitope, together with new structural data showing the linear peptide bound to neutralizing MAbs in extended conformations, suggests that the epitope displays a conformational flexibility that contributes to neutralization escape. Such features can be of major importance for the design of epitope-based anti-HCV vaccines. PMID:26819303

  6. A Single Injection of Human Neutralizing Antibody Protects against Zika Virus Infection and Microcephaly in Developing Mouse Embryos.

    PubMed

    Li, Cui; Gao, Fei; Yu, Lei; Wang, Ruoke; Jiang, Yisheng; Shi, Xuanling; Yin, Chibiao; Tang, Xiaoping; Zhang, Fuchun; Xu, Zhiheng; Zhang, Linqi

    2018-05-01

    Zika virus (ZIKV) is a mosquito-transmitted flavivirus that is generally benign in humans. However, an emergent strain of ZIKV has become widespread, causing severe pre- and post-natal neurological defects. There is now an urgent need for prophylactic and therapeutic agents. To address this, we investigated six human monoclonal antibodies with ZIKV epitope specificity and neutralizing activity in mouse models of ZIKV infection and microcephaly. A single intraperitoneal injection of these antibodies conveyed distinct levels of adult and in utero protection from ZIKV infection, which closely mirrored their respective in vitro neutralizing activities. One antibody, ZK2B10, showed the most potent neutralization activity, completely protected uninfected mice, and markedly reduced tissue pathology in infected mice. Thus, ZK2B10 is a promising candidate for the development of antibody-based interventions and informs the rational design of ZIKV vaccine. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Zika virus-like particle (VLP) based vaccine

    PubMed Central

    Boigard, Hélène; Alimova, Alexandra; Martin, George R.; Katz, Al; Gottlieb, Paul

    2017-01-01

    The newly emerged mosquito-borne Zika virus poses a major public challenge due to its ability to cause significant birth defects and neurological disorders. The impact of sexual transmission is unclear but raises further concerns about virus dissemination. No specific treatment or vaccine is currently available, thus the development of a safe and effective vaccine is paramount. Here we describe a novel strategy to assemble Zika virus-like particles (VLPs) by co-expressing the structural (CprME) and non-structural (NS2B/NS3) proteins, and demonstrate their effectiveness as vaccines. VLPs are produced in a suspension culture of mammalian cells and self-assembled into particles closely resembling Zika viruses as shown by electron microscopy studies. We tested various VLP vaccines and compared them to analogous compositions of an inactivated Zika virus (In-ZIKV) used as a reference. VLP immunizations elicited high titers of antibodies, as did the In-ZIKV controls. However, in mice the VLP vaccine stimulated significantly higher virus neutralizing antibody titers than comparable formulations of the In-ZIKV vaccine. The serum neutralizing activity elicited by the VLP vaccine was enhanced using a higher VLP dose and with the addition of an adjuvant, reaching neutralizing titers greater than those detected in the serum of a patient who recovered from a Zika infection in Brazil in 2015. Discrepancies in neutralization levels between the VLP vaccine and the In-ZIKV suggest that chemical inactivation has deleterious effects on neutralizing epitopes within the E protein. This along with the inability of a VLP vaccine to cause infection makes it a preferable candidate for vaccine development. PMID:28481898

  8. Mumps-specific cross-neutralization by MMR vaccine-induced antibodies predicts protection against mumps virus infection.

    PubMed

    Gouma, Sigrid; Ten Hulscher, Hinke I; Schurink-van 't Klooster, Tessa M; de Melker, Hester E; Boland, Greet J; Kaaijk, Patricia; van Els, Cécile A C M; Koopmans, Marion P G; van Binnendijk, Rob S

    2016-07-29

    Similar to other recent mumps genotype G outbreaks worldwide, most mumps patients during the recent mumps genotype G outbreaks in the Netherlands had received 2 doses of measles, mumps and rubella (MMR) vaccine during childhood. Here, we investigate the capacity of vaccine-induced antibodies to neutralize wild type mumps virus strains, including mumps virus genotype G. In this study, we tested 105 pre-outbreak serum samples from students who had received 2 MMR vaccine doses and who had no mumps virus infection (n=76), symptomatic mumps virus infection (n=10) or asymptomatic mumps virus infection (n=19) during the mumps outbreaks. In all samples, mumps-specific IgG concentrations were measured by multiplex immunoassay and neutralization titers were measured against the Jeryl Lynn vaccine strain and against wild type genotype G and genotype D mumps virus strains. The correlation between mumps-specific IgG concentrations and neutralization titers against Jeryl Lynn was poor, which suggests that IgG concentrations do not adequately represent immunological protection against mumps virus infection by antibody neutralization. Pre-outbreak neutralization titers in infected persons were significantly lower against genotype G than against the vaccine strain. Furthermore, antibody neutralization of wild type mumps virus genotype G and genotype D was significantly reduced in pre-outbreak samples from infected persons as compared with non-infected persons. No statistically significant difference was found for the vaccine strain. The sensitivity/specificity ratio was largest for neutralization of the genotype G strain as compared with the genotype D strain and the vaccine strain. The reduced neutralization of wild type mumps virus strains in MMR vaccinated persons prior to infection indicates that pre-outbreak mumps virus neutralization is partly strain-specific and that neutralization differs between infected and non-infected persons. Therefore, we recommend the use of wild type mumps virus neutralization assays as preferred tool for surveillance of protection against mumps virus infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A single amino-acid change in a highly conserved motif of gp41 elicits HIV-1 neutralization and protects against CD4 depletion.

    PubMed

    Petitdemange, Caroline; Achour, Abla; Dispinseri, Stefania; Malet, Isabelle; Sennepin, Alexis; Ho Tsong Fang, Raphaël; Crouzet, Joël; Marcelin, Anne-Geneviève; Calvez, Vincent; Scarlatti, Gabriella; Debré, Patrice; Vieillard, Vincent

    2013-09-01

    The induction of neutralizing antibodies against conserved regions of the human immunodeficiency virus type 1 (HIV-1) envelope protein is a major goal of vaccine strategies. We previously identified 3S, a critical conserved motif of gp41 that induces the NKp44L ligand of an activating NK receptor. In vivo, anti-3S antibodies protect against the natural killer (NK) cell-mediated CD4 depletion that occurs without efficient viral neutralization. Specific substitutions within the 3S peptide motif were prepared by directed mutagenesis. Virus production was monitored by measuring the p24 production. Neutralization assays were performed with immune-purified antibodies from immunized mice and a cohort of HIV-infected patients. Expression of NKp44L on CD4(+) T cells and degranulation assay on activating NK cells were both performed by flow cytometry. Here, we show that specific substitutions in the 3S motif reduce viral infection without affecting gp41 production, while decreasing both its capacity to induce NKp44L expression on CD4(+) T cells and its sensitivity to autologous NK cells. Generation of antibodies in mice against the W614 specific position in the 3S motif elicited a capacity to neutralize cross-clade viruses, notable in its magnitude, breadth, and durability. Antibodies against this 3S variant were also detected in sera from some HIV-1-infected patients, demonstrating both neutralization activity and protection against CD4 depletion. These findings suggest that a specific substitution in a 3S-based immunogen might allow the generation of specific antibodies, providing a foundation for a rational vaccine that combine a capacity to neutralize HIV-1 and to protect CD4(+) T cells.

  10. Role of the E2 Hypervariable Region (HVR1) in the Immunogenicity of a Recombinant Hepatitis C Virus Vaccine

    PubMed Central

    2018-01-01

    ABSTRACT Current evidence supports a protective role for virus-neutralizing antibodies in immunity against hepatitis C virus (HCV) infection. Many cross-neutralizing monoclonal antibodies have been identified. These antibodies have been shown to provide protection or to clear infection in animal models. Previous clinical trials have shown that a gpE1/gpE2 vaccine can induce antibodies that neutralize the in vitro infectivity of all the major cell culture-derived HCV (HCVcc) genotypes around the world. However, cross-neutralization appeared to favor certain genotypes, with significant but lower neutralization against others. HCV may employ epitope masking to avoid antibody-mediated neutralization. Hypervariable region 1 (HVR1) at the amino terminus of glycoprotein E2 has been shown to restrict access to many neutralizing antibodies. Consistent with this, other groups have reported that recombinant viruses lacking HVR1 are hypersensitive to neutralization. It has been proposed that gpE1/gpE2 lacking this domain could be a better vaccine antigen to induce broadly neutralizing antibodies. In this study, we examined the immunogenicity of recombinant gpE1/gpE2 lacking HVR1 (ΔHVR1). Our results indicate that wild-type (WT) and ΔHVR1 gpE1/gpE2 antigens induced antibodies targeting many well-characterized cross-genotype-neutralizing epitopes. However, while the WT gpE1/gpE2 vaccine can induce cross-genotype protection against various genotypes of HCVcc and/or HCV-pseudotyped virus (HCVpp), antisera from ΔHVR1 gpE1/gpE2-immunized animals exhibited either reduced homologous neutralization activity compared to that of the WT or heterologous neutralization activity similar to that of the WT. These data suggest that ΔHVR1 gpE1/gpE2 is not a superior vaccine antigen. Based on previously reported chimpanzee protection data using WT gpE1/gpE2 and our current findings, we are preparing a combination vaccine including wild-type recombinant gpE1/gpE2 for clinical testing in the future. IMPORTANCE An HCV vaccine is an unmet medical need. Current evidence suggests that neutralizing antibodies play an important role in virus clearance, along with cellular immune responses. Previous clinical data showed that gpE1/gpE2 can effectively induce cross-neutralizing antibodies, although they favor certain genotypes. HCV employs HVR1 within gpE2 to evade host immune control. It has been hypothesized that the removal of this domain would improve the production of cross-neutralizing antibodies. In this study, we compared the immunogenicities of WT and ΔHVR1 gpE1/gpE2 antigens as vaccine candidates. Our results indicate that the ΔHVR1 gpE1/gpE2 antigen confers no advantages in the neutralization of HCV compared with the WT antigen. Previously, we showed that this WT antigen remains the only vaccine candidate to protect chimpanzees from chronic infection, contains multiple cross-neutralizing epitopes, and is well tolerated and immunogenic in humans. The current data support the further clinical development of this vaccine antigen component. PMID:29540595

  11. Isolation of dengue virus-specific memory B cells with live virus antigen from human subjects following natural infection reveals the presence of diverse novel functional groups of antibody clones.

    PubMed

    Smith, Scott A; de Alwis, A Ruklanthi; Kose, Nurgun; Jadi, Ramesh S; de Silva, Aravinda M; Crowe, James E

    2014-11-01

    Natural dengue virus (DENV) infection in humans induces antibodies (Abs) that neutralize the serotype of infection in a potent and type-specific manner; however, most Abs generated in response to infection are serotype cross-reactive and poorly neutralizing. Such cross-reactive Abs may enhance disease during subsequent infection with a virus of a different DENV serotype. Previous screening assays for DENV-specific human B cells and antibodies, using viral and recombinant antigens, mainly led to the isolation of dominant nonneutralizing B cell clones. To improve upon our ability to recover and study rare but durable and potently neutralizing DENV-specific Abs, we isolated human DENV-specific B cells by using a primary screen of binding to live virus, followed by a secondary screen with a high-throughput, flow cytometry-based neutralization assay to identify DENV-specific B cell lines prior to generation of hybridomas. Using this strategy, we identified several new classes of serotype-specific and serotype-cross-neutralizing anti-DENV monoclonal Abs (MAbs), including ultrapotent inhibitory antibodies with neutralizing activity concentrations of <10 ng/ml. We isolated serotype-specific neutralizing Abs that target diverse regions of the E protein, including epitopes present only on the intact, fully assembled viral particle. We also isolated a number of serotype-cross-neutralizing MAbs, most of which recognized a region in E protein domain I/II containing the fusion loop. These data provide insights into targets of the protective Ab-mediated immune response to natural DENV infection, which will prove valuable in the design and testing of new experimental DENV vaccines. Dengue virus infection is one of the most common mosquito-borne diseases and occurs in most countries of the world. Infection of humans with dengue virus induces a small number of antibodies that inhibit the infecting strain but also induces a large number of antibodies that can bind but do not inhibit dengue virus strains of other serotypes. We used a focused screening strategy to discover a large number of rare potently inhibiting antibodies, and we mapped the regions on the virus that were recognized by such antibodies. Our studies revealed that humans have the potential to generate very potent antibodies directed to diverse regions of the dengue virus surface protein. These studies provide important new information about protection from dengue virus infection that will be useful in the design and testing of new experimental dengue vaccines for humans. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Isolation of Dengue Virus-Specific Memory B Cells with Live Virus Antigen from Human Subjects following Natural Infection Reveals the Presence of Diverse Novel Functional Groups of Antibody Clones

    PubMed Central

    Smith, Scott A.; de Alwis, A. Ruklanthi; Kose, Nurgun; Jadi, Ramesh S.; de Silva, Aravinda M.

    2014-01-01

    ABSTRACT Natural dengue virus (DENV) infection in humans induces antibodies (Abs) that neutralize the serotype of infection in a potent and type-specific manner; however, most Abs generated in response to infection are serotype cross-reactive and poorly neutralizing. Such cross-reactive Abs may enhance disease during subsequent infection with a virus of a different DENV serotype. Previous screening assays for DENV-specific human B cells and antibodies, using viral and recombinant antigens, mainly led to the isolation of dominant nonneutralizing B cell clones. To improve upon our ability to recover and study rare but durable and potently neutralizing DENV-specific Abs, we isolated human DENV-specific B cells by using a primary screen of binding to live virus, followed by a secondary screen with a high-throughput, flow cytometry-based neutralization assay to identify DENV-specific B cell lines prior to generation of hybridomas. Using this strategy, we identified several new classes of serotype-specific and serotype-cross-neutralizing anti-DENV monoclonal Abs (MAbs), including ultrapotent inhibitory antibodies with neutralizing activity concentrations of <10 ng/ml. We isolated serotype-specific neutralizing Abs that target diverse regions of the E protein, including epitopes present only on the intact, fully assembled viral particle. We also isolated a number of serotype-cross-neutralizing MAbs, most of which recognized a region in E protein domain I/II containing the fusion loop. These data provide insights into targets of the protective Ab-mediated immune response to natural DENV infection, which will prove valuable in the design and testing of new experimental DENV vaccines. IMPORTANCE Dengue virus infection is one of the most common mosquito-borne diseases and occurs in most countries of the world. Infection of humans with dengue virus induces a small number of antibodies that inhibit the infecting strain but also induces a large number of antibodies that can bind but do not inhibit dengue virus strains of other serotypes. We used a focused screening strategy to discover a large number of rare potently inhibiting antibodies, and we mapped the regions on the virus that were recognized by such antibodies. Our studies revealed that humans have the potential to generate very potent antibodies directed to diverse regions of the dengue virus surface protein. These studies provide important new information about protection from dengue virus infection that will be useful in the design and testing of new experimental dengue vaccines for humans. PMID:25100837

  13. Relative Contribution of Cellular Complement Inhibitors CD59, CD46, and CD55 to Parainfluenza Virus 5 Inhibition of Complement-Mediated Neutralization

    PubMed Central

    Li, Yujia; Parks, Griffith D.

    2018-01-01

    The complement system is a part of the innate immune system that viruses need to face during infections. Many viruses incorporate cellular regulators of complement activation (RCA) to block complement pathways and our prior work has shown that Parainfluenza virus 5 (PIV5) incorporates CD55 and CD46 to delay complement-mediated neutralization. In this paper, we tested the role of a third individual RCA inhibitor CD59 in PIV5 interactions with complement pathways. Using a cell line engineered to express CD59, we show that small levels of functional CD59 are associated with progeny PIV5, which is capable of blocking assembly of the C5b-C9 membrane attack complex (MAC). PIV5 containing CD59 (PIV5-CD59) showed increased resistance to complement-mediated neutralization in vitro comparing to PIV5 lacking regulators. Infection of A549 cells with PIV5 and RSV upregulated CD59 expression. TGF-beta treatment of PIV5-infected cells also increased cell surface CD59 expression and progeny virions were more resistant to complement-mediated neutralization. A comparison of individual viruses containing only CD55, CD46, or CD59 showed a potency of inhibiting complement-mediated neutralization, which followed a pattern of CD55 > CD46 > CD59. PMID:29693588

  14. Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses

    DOE PAGES

    Moody, M.  Anthony; Gao, Feng; Gurley, Thaddeus  C.; ...

    2015-09-09

    The third variable (V3) loop and the CD4 binding site (CD4bs) of the viral envelope are frequently targeted by neutralizing antibodies (nAbs) in HIV-1-infected individuals. In chronic infection, virus escape mutants repopulate the plasma and V3 and CD4bs nAbs emerge that can neutralize heterologous tier 1 easy-to-neutralize, but not tier 2 difficult-to-neutralize HIV-1 isolates. However, neutralization sensitivity of autologous plasma viruses to this type of nAb response has not been studied. We describe the development and evolution in vivo of antibodies distinguished by their target specificity for V3and CD4bs epitopes on autologous tier 2 viruses but not on heterologous tiermore » 2 viruses. A surprisingly high fraction of autologous circulating viruses was sensitive to these antibodies. These findings demonstrate a role for V3 and CD4bs antibodies in constraining the native envelope trimer in vivo to a neutralization-resistant phenotype, explaining why HIV-1 transmission generally occurs by tier 2 neutralization-resistant viruses.« less

  15. Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, M.  Anthony; Gao, Feng; Gurley, Thaddeus  C.

    The third variable (V3) loop and the CD4 binding site (CD4bs) of the viral envelope are frequently targeted by neutralizing antibodies (nAbs) in HIV-1-infected individuals. In chronic infection, virus escape mutants repopulate the plasma and V3 and CD4bs nAbs emerge that can neutralize heterologous tier 1 easy-to-neutralize, but not tier 2 difficult-to-neutralize HIV-1 isolates. However, neutralization sensitivity of autologous plasma viruses to this type of nAb response has not been studied. We describe the development and evolution in vivo of antibodies distinguished by their target specificity for V3and CD4bs epitopes on autologous tier 2 viruses but not on heterologous tiermore » 2 viruses. A surprisingly high fraction of autologous circulating viruses was sensitive to these antibodies. These findings demonstrate a role for V3 and CD4bs antibodies in constraining the native envelope trimer in vivo to a neutralization-resistant phenotype, explaining why HIV-1 transmission generally occurs by tier 2 neutralization-resistant viruses.« less

  16. Human Monoclonal Antibody 81.39a Effectively Neutralizes Emerging Influenza A Viruses of Group 1 and 2 Hemagglutinins

    PubMed Central

    Marjuki, Henju; Mishin, Vasiliy P.; Chai, Ning; Tan, Man-Wah; Newton, Elizabeth M.; Tegeris, John; Erlandson, Karl; Willis, Melissa; Jones, Joyce; Davis, Todd; Stevens, James

    2016-01-01

    ABSTRACT The pandemic threat posed by emerging zoonotic influenza A viruses necessitates development of antiviral agents effective against various antigenic subtypes. Human monoclonal antibody (hMAb) targeting the hemagglutinin (HA) stalk offers a promising approach to control influenza virus infections. Here, we investigated the ability of the hMAb 81.39a to inhibit in vitro replication of human and zoonotic viruses, representing 16 HA subtypes. The majority of viruses were effectively neutralized by 81.39a at a 50% effective concentration (EC50) of <0.01 to 4.9 μg/ml. Among group 2 HA viruses tested, a single A(H7N9) virus was not neutralized at 50 μg/ml; it contained HA2-Asp19Gly, an amino acid position previously associated with resistance to neutralization by the group 2 HA-neutralizing MAb CR8020. Notably, among group 1 HA viruses, H11-H13 and H16 subtypes were not neutralized at 50 μg/ml; they shared the substitution HA2-Asp19Asn/Ala. Conversely, H9 viruses harboring HA2-Asp19Ala were fully susceptible to neutralization. Therefore, amino acid variance at HA2-Asp19 has subtype-specific adverse effects on in vitro neutralization. Mice given a single injection (15 or 45 mg/kg of body weight) at 24 or 48 h after infection with recently emerged A(H5N2), A(H5N8), A(H6N1), or A(H7N9) viruses were protected from mortality and showed drastically reduced lung viral titers. Furthermore, 81.39a protected mice infected with A(H7N9) harboring HA2-Asp19Gly, although the antiviral effect was lessened. A(H1N1)pdm09-infected ferrets receiving a single dose (25 mg/kg) had reduced viral titers and showed less lung tissue injury, despite 24- to 72-h-delayed treatment. Taken together, this study provides experimental evidence for the therapeutic potential of 81.39a against diverse influenza A viruses. IMPORTANCE Zoonotic influenza viruses, such as A(H5N1) and A(H7N9) subtypes, have caused severe disease and deaths in humans, raising public health concerns. Development of novel anti-influenza therapeutics with a broad spectrum of activity against various subtypes is necessary to mitigate disease severity. Here, we demonstrate that the hemagglutinin (HA) stalk-targeting human monoclonal antibody 81.39a effectively neutralized the majority of influenza A viruses tested, representing 16 HA subtypes. Furthermore, delayed treatment with 81.39a significantly suppressed virus replication in the lungs, prevented dramatic body weight loss, and increased survival rates of mice infected with A(H5Nx), A(H6N1), or A(H7N9) viruses. When tested in ferrets, delayed 81.39a treatment reduced viral titers, particularly in the lower respiratory tract, and substantially alleviated disease symptoms associated with severe A(H1N1)pdm09 influenza. Collectively, our data demonstrated the effectiveness of 81.39a against both seasonal and emerging influenza A viruses. PMID:27630240

  17. A subunit vaccine against the adenovirus egg-drop syndrome using part of its fiber protein.

    PubMed

    Fingerut, E; Gutter, B; Gallili, G; Michael, A; Pitcovski, J

    2003-06-20

    In this study, the effectiveness of antibodies against the hexon, fiber or a fiber fragment of an avian adenovirus egg-drop syndrome (EDS), in neutralizing the virus was tested. The fiber protein is responsible for binding the virus to the target cell. The fiber fragment knob-s comprises the carboxy-terminal knob domain and 34 amino acids of the immediately adjacent shaft domain of the adenovirus fiber protein. The hexon, fiber capsid protein and knob-s were produced in E. coli and injected into chickens. Antibodies that were produced against the whole fiber protein showed some hemagglutination inhibition (HI) activity. Antibodies produced against the knob-s protein showed HI activity and serum neutralization (SN) activity similar to the positive control-whole virus vaccine. We assume that production of only part of the fiber enables the protein produced in E. coli to fold correctly. Antibodies produced against the hexon protein showed no SN activity. In summary, knob-s induced SN and HI antibodies against EDS virus at a rate similar to the whole virus and were significantly more efficient than the full-length fiber. The recombinant knob-s protein may be used as a vaccine against pathogenic adenovirus infections.

  18. Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection.

    PubMed

    Fernandez, Estefania; Dejnirattisai, Wanwisa; Cao, Bin; Scheaffer, Suzanne M; Supasa, Piyada; Wongwiwat, Wiyada; Esakky, Prabagaran; Drury, Andrea; Mongkolsapaya, Juthathip; Moley, Kelle H; Mysorekar, Indira U; Screaton, Gavin R; Diamond, Michael S

    2017-11-01

    The Zika virus (ZIKV) epidemic has resulted in congenital abnormalities in fetuses and neonates. Although some cross-reactive dengue virus (DENV)-specific antibodies can enhance ZIKV infection in mice, those recognizing the DENV E-dimer epitope (EDE) can neutralize ZIKV infection in cell culture. We evaluated the therapeutic activity of human monoclonal antibodies to DENV EDE for their ability to control ZIKV infection in the brains, testes, placentas, and fetuses of mice. A single dose of the EDE1-B10 antibody given 3 d after ZIKV infection protected against lethality, reduced ZIKV levels in brains and testes, and preserved sperm counts. In pregnant mice, wild-type or engineered LALA variants of EDE1-B10, which cannot engage Fcg receptors, diminished ZIKV burden in maternal and fetal tissues, and protected against fetal demise. Because neutralizing antibodies to EDE have therapeutic potential against ZIKV, in addition to their established inhibitory effects against DENV, it may be possible to develop therapies that control disease caused by both viruses.

  19. Intrasubtype B HIV-1 Superinfection Correlates with Delayed Neutralizing Antibody Response

    PubMed Central

    Landais, Elise; Caballero, Gemma; Phung, Pham; Kosakovsky Pond, Sergei L.; Poignard, Pascal; Richman, Douglas D.; Little, Susan J.; Smith, Davey M.

    2017-01-01

    ABSTRACT Understanding whether the neutralizing antibody (NAb) response impacts HIV-1 superinfection and how superinfection subsequently modulates the NAb response can help clarify correlates of protection from HIV exposures and better delineate pathways of NAb development. We examined associations between the development of NAb and the occurrence of superinfection in a well-characterized, antiretroviral therapy (ART)-naive, primary infection cohort of men who have sex with men. Deep sequencing was applied to blood plasma samples from the cohort to detect cases of superinfection. We compared the NAb activity against autologous and heterologous viruses between 10 participants with intrasubtype B superinfection and 19 monoinfected controls, matched to duration of infection and risk behavior. Three to 6 months after primary infection, individuals who would later become superinfected had significantly weaker NAb activity against tier 1 subtype B viruses (P = 0.003 for SF-162 and P = 0.017 for NL4-3) and marginally against autologous virus (P = 0.054). Lower presuperinfection NAb responses correlated with weaker gp120 binding and lower plasma total IgG titers. Soon after superinfection, the NAb response remained lower, but between 2 and 3 years after primary infection, NAb levels strengthened and reached those of controls. Superinfecting viruses were typically not susceptible to neutralization by presuperinfection plasma. These observations suggest that recently infected individuals with a delayed NAb response against primary infecting and tier 1 subtype B viruses are more susceptible to superinfection. IMPORTANCE Our findings suggest that within the first year after HIV infection, a relatively weak neutralizing antibody response against primary and subtype-specific neutralization-sensitive viruses increases susceptibility to superinfection in the face of repeated exposures. As natural infection progresses, the immune response strengthens significantly in some superinfected individuals. These findings will inform HIV vaccine design by providing testable correlates of protection from initial HIV infection. PMID:28615205

  20. Intrasubtype B HIV-1 Superinfection Correlates with Delayed Neutralizing Antibody Response.

    PubMed

    Wagner, Gabriel A; Landais, Elise; Caballero, Gemma; Phung, Pham; Kosakovsky Pond, Sergei L; Poignard, Pascal; Richman, Douglas D; Little, Susan J; Smith, Davey M

    2017-09-01

    Understanding whether the neutralizing antibody (NAb) response impacts HIV-1 superinfection and how superinfection subsequently modulates the NAb response can help clarify correlates of protection from HIV exposures and better delineate pathways of NAb development. We examined associations between the development of NAb and the occurrence of superinfection in a well-characterized, antiretroviral therapy (ART)-naive, primary infection cohort of men who have sex with men. Deep sequencing was applied to blood plasma samples from the cohort to detect cases of superinfection. We compared the NAb activity against autologous and heterologous viruses between 10 participants with intrasubtype B superinfection and 19 monoinfected controls, matched to duration of infection and risk behavior. Three to 6 months after primary infection, individuals who would later become superinfected had significantly weaker NAb activity against tier 1 subtype B viruses ( P = 0.003 for SF-162 and P = 0.017 for NL4-3) and marginally against autologous virus ( P = 0.054). Lower presuperinfection NAb responses correlated with weaker gp120 binding and lower plasma total IgG titers. Soon after superinfection, the NAb response remained lower, but between 2 and 3 years after primary infection, NAb levels strengthened and reached those of controls. Superinfecting viruses were typically not susceptible to neutralization by presuperinfection plasma. These observations suggest that recently infected individuals with a delayed NAb response against primary infecting and tier 1 subtype B viruses are more susceptible to superinfection. IMPORTANCE Our findings suggest that within the first year after HIV infection, a relatively weak neutralizing antibody response against primary and subtype-specific neutralization-sensitive viruses increases susceptibility to superinfection in the face of repeated exposures. As natural infection progresses, the immune response strengthens significantly in some superinfected individuals. These findings will inform HIV vaccine design by providing testable correlates of protection from initial HIV infection. Copyright © 2017 American Society for Microbiology.

  1. Ectromelia virus inhibitor of complement enzymes protects intracellular mature virus and infected cells from mouse complement.

    PubMed

    Moulton, Elizabeth A; Bertram, Paula; Chen, Nanhai; Buller, R Mark L; Atkinson, John P

    2010-09-01

    Poxviruses produce complement regulatory proteins to subvert the host's immune response. Similar to the human pathogen variola virus, ectromelia virus has a limited host range and provides a mouse model where the virus and the host's immune response have coevolved. We previously demonstrated that multiple components (C3, C4, and factor B) of the classical and alternative pathways are required to survive ectromelia virus infection. Complement's role in the innate and adaptive immune responses likely drove the evolution of a virus-encoded virulence factor that regulates complement activation. In this study, we characterized the ectromelia virus inhibitor of complement enzymes (EMICE). Recombinant EMICE regulated complement activation on the surface of CHO cells, and it protected complement-sensitive intracellular mature virions (IMV) from neutralization in vitro. It accomplished this by serving as a cofactor for the inactivation of C3b and C4b and by dissociating the catalytic domain of the classical pathway C3 convertase. Infected murine cells initiated synthesis of EMICE within 4 to 6 h postinoculation. The levels were sufficient in the supernatant to protect the IMV, upon release, from complement-mediated neutralization. EMICE on the surface of infected murine cells also reduced complement activation by the alternative pathway. In contrast, classical pathway activation by high-titer antibody overwhelmed EMICE's regulatory capacity. These results suggest that EMICE's role is early during infection when it counteracts the innate immune response. In summary, ectromelia virus produced EMICE within a few hours of an infection, and EMICE in turn decreased complement activation on IMV and infected cells.

  2. Structural flexibility of a conserved antigenic region in hepatitis C virus glycoprotein E2 recognized by broadly neutralizing antibodies.

    PubMed

    Meola, Annalisa; Tarr, Alexander W; England, Patrick; Meredith, Luke W; McClure, C Patrick; Foung, Steven K H; McKeating, Jane A; Ball, Jonathan K; Rey, Felix A; Krey, Thomas

    2015-02-01

    Neutralizing antibodies (NAbs) targeting glycoprotein E2 are important for the control of hepatitis C virus (HCV) infection. One conserved antigenic site (amino acids 412 to 423) is disordered in the reported E2 structure, but a synthetic peptide mimicking this site forms a β-hairpin in complex with three independent NAbs. Our structure of the same peptide in complex with NAb 3/11 demonstrates a strikingly different extended conformation. We also show that residues 412 to 423 are essential for virus entry but not for E2 folding. Together with the neutralizing capacity of the 3/11 Fab fragment, this indicates an unexpected structural flexibility within this epitope. NAbs 3/11 and AP33 (recognizing the extended and β-hairpin conformations, respectively) display similar neutralizing activities despite converse binding kinetics. Our results suggest that HCV utilizes conformational flexibility as an immune evasion strategy, contributing to the limited immunogenicity of this epitope in patients, similar to the conformational flexibility described for other enveloped and nonenveloped viruses. Approximately 180 million people worldwide are infected with hepatitis C virus (HCV), and neutralizing antibodies play an important role in controlling the replication of this major human pathogen. We show here that one of the most conserved antigenic sites within the major glycoprotein E2 (amino acids 412 to 423), which is disordered in the recently reported crystal structure of an E2 core fragment, can adopt different conformations in the context of the infectious virus particle. Recombinant Fab fragments recognizing different conformations of this antigenic site have similar neutralization activities in spite of converse kinetic binding parameters. Of note, an antibody response targeting this antigenic region is less frequent than those targeting other more immunogenic regions in E2. Our results suggest that the observed conformational flexibility in this conserved antigenic region contributes to the evasion of the humoral host immune response, facilitating chronicity and the viral spread of HCV within an infected individual. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Seroprevalence of West Nile Virus in Wild Birds in Far Eastern Russia Using a Focus Reduction Neutralization Test

    PubMed Central

    Murata, Ryo; Hashiguchi, Kazuaki; Yoshii, Kentaro; Kariwa, Hiroaki; Nakajima, Kensuke; Ivanov, Leonid I.; Leonova, Galina N.; Takashima, Ikuo

    2011-01-01

    West Nile (WN) virus has been spreading geographically to non-endemic areas in various parts of the world. However, little is known about the extent of WN virus infection in Russia. Japanese encephalitis (JE) virus, which is closely related to WN virus, is prevalent throughout East Asia. We evaluated the effectiveness of a focus reduction neutralization test in young chicks inoculated with JE and WN viruses, and conducted a survey of WN infection among wild birds in Far Eastern Russia. Following single virus infection, only neutralizing antibodies specific to the homologous virus were detected in chicks. The neutralization test was then applied to serum samples from 145 wild birds for WN and JE virus. Twenty-one samples were positive for neutralizing antibodies to WN. These results suggest that WN virus is prevalent among wild birds in the Far Eastern region of Russia. PMID:21363987

  4. Viral Epitopes and Monoclonal Antibodies: Isolation of Blocking Antibodies that Inhibit Virus Neutralization

    NASA Astrophysics Data System (ADS)

    Massey, Richard J.; Schochetman, Gerald

    1981-07-01

    The inability of pathogenic animal viruses to be completely neutralized by antibodies can lead to chronic viral infections in which infectious virus persists even in the presence of excess neutralizing antibody. A mechanism that results in this nonneutralized fraction of virus was defined by the topographical relationships of viral epitopes identified with monoclonal antibodies wherein monoclonal antibodies bind to virus and sterically block the binding of neutralizing antibodies.

  5. Presentation of peptides from Bacillus anthracis protective antigen on Tobacco Mosaic Virus as an epitope targeted anthrax vaccine.

    PubMed

    McComb, Ryan C; Ho, Chi-Lee; Bradley, Kenneth A; Grill, Laurence K; Martchenko, Mikhail

    2015-11-27

    The current anthrax vaccine requires improvements for rapidly invoking longer-lasting neutralizing antibody responses with fewer doses from a well-defined formulation. Designing antigens that target neutralizing antibody epitopes of anthrax protective antigen, a component of anthrax toxin, may offer a solution for achieving a vaccine that can induce strong and long lasting antibody responses with fewer boosters. Here we report implementation of a strategy for developing epitope focused virus nanoparticle vaccines against anthrax by using immunogenic virus particles to present peptides derived from anthrax toxin previously identified in (1) neutralizing antibody epitope mapping studies, (2) toxin crystal structure analyses to identify functional regions, and (3) toxin mutational analyses. We successfully expressed two of three peptide epitopes from anthrax toxin that, in previous reports, bound antibodies that were partially neutralizing against toxin activity, discovered cross-reactivity between vaccine constructs and toxin specific antibodies raised in goats against native toxin and showed that antibodies induced by our vaccine constructs also cross-react with native toxin. While protection against intoxication in cellular and animal studies were not as effective as in previous studies, partial toxin neutralization was observed in animals, demonstrating the feasibility of using plant-virus nanoparticles as a platform for epitope defined anthrax vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Antigenicity and Immunogenicity in HIV-1 Antibody-Based Vaccine Design

    PubMed Central

    Kong, Leopold; Sattentau, Quentin J

    2012-01-01

    Neutralizing antibodies can protect from infection by immunodeficiency viruses. However, the induction by active vaccination of antibodies that can potently neutralize a broad range of circulating virus strains is a goal not yet achieved, despite more than 2 decades of research. Here we review progress made in the field, from early empirical studies to today’s rational structure-based vaccine antigen design. We discuss the existence of broadly neutralizing antibodies, their implications for epitope discovery and recent progress made in antigen design. Finally, we consider the relationship between antigenicity and immunogenicity for B cell recognition and antibody production, a major hurdle for rational vaccine design to overcome. PMID:23227445

  7. Detection of measles, mumps and rubella viruses by immuno-colorimetric assay and its application in focus reduction neutralization tests.

    PubMed

    Vaidya, Sunil R; Kumbhar, Neelakshi S; Bhide, Vandana S

    2014-12-01

    Measles, mumps and rubella are vaccine-preventable diseases; however limited epidemiological data are available from low-income or developing countries. Thus, it is important to investigate the transmission of these viruses in different geographical regions. In this context, a cell culture-based rapid and reliable immuno-colorimetric assay (ICA) was established and its utility studied. Twenty-three measles, six mumps and six rubella virus isolates and three vaccine strains were studied. Detection by ICA was compared with plaque and RT-PCR assays. In addition, ICA was used to detect viruses in throat swabs (n = 24) collected from patients with suspected measles or mumps. Similarly, ICA was used in a focus reduction neutralization test (FRNT) and the results compared with those obtained by a commercial IgG enzyme immuno assay. Measles and mumps virus were detected 2 days post-infection in Vero or Vero-human signaling lymphocytic activation molecule cells, whereas rubella virus was detected 3 days post-infection in Vero cells. The blue stained viral foci were visible by the naked eye or through a magnifying glass. In conclusion, ICA was successfully used on 35 virus isolates, three vaccine strains and clinical specimens collected from suspected cases of measles and mumps. Furthermore, an application of ICA in a neutralization test (i.e., FRNT) was documented; this may be useful for sero-epidemiological, cross-neutralization and pre/post-vaccine studies. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  8. Quantification of Lyssavirus-Neutralizing Antibodies Using Vesicular Stomatitis Virus Pseudotype Particles.

    PubMed

    Moeschler, Sarah; Locher, Samira; Conzelmann, Karl-Klaus; Krämer, Beate; Zimmer, Gert

    2016-09-16

    Rabies is a highly fatal zoonotic disease which is primarily caused by rabies virus (RABV) although other members of the genus Lyssavirus can cause rabies as well. As yet, 14 serologically and genetically diverse lyssaviruses have been identified, mostly in bats. To assess the quality of rabies vaccines and immunoglobulin preparations, virus neutralization tests with live RABV are performed in accordance with enhanced biosafety standards. In the present work, a novel neutralization test is presented which takes advantage of a modified vesicular stomatitis virus (VSV) from which the glycoprotein G gene has been deleted and replaced by reporter genes. This single-cycle virus was trans-complemented with RABV envelope glycoprotein. Neutralization of this pseudotype virus with RABV reference serum or immune sera from vaccinated mice showed a strong correlation with the rapid fluorescent focus inhibition test (RFFIT). Importantly, pseudotype viruses containing the envelope glycoproteins of other lyssaviruses were neutralized by reference serum to a significantly lesser extent or were not neutralized at all. Taken together, a pseudotype virus system has been successfully developed which allows the safe, fast, and sensitive detection of neutralizing antibodies directed against different lyssaviruses.

  9. Prevalence of neutralizing antibodies against West Nile virus (WNV) in monkeys (Ateles geoffroyi and Alouatta pigra) and crocodiles (Crocodylus acutus and C. acutus-C. moreletti hybrids) in Mexico.

    PubMed

    Loza-Rubio, E; Rojas-Anaya, E; López-Ramírez, R Del C; Saiz, J C; Escribano-Romero, E

    2016-08-01

    West Nile virus (WNV) is a mosquito-borne neurotropic viral pathogen maintained in an enzootic cycle between mosquitoes (vectors) and birds (natural hosts) with equids, humans, and other vertebrates acting as dead-end hosts. WNV activity in Mexico has been reported in several domestic and wild fauna and in humans, and the virus has been isolated from birds, mosquitoes, and humans. However, no serological studies have been conducted in monkeys, and only two in a limited number of crocodiles (Crocodylus moreletii). Here we present data on the prevalence of neutralizing antibodies against WNV in 53 healthy wild monkeys (49 Ateles geoffroyi and four Alouatta pigra), and 80 semi-captive healthy crocodiles (60 C. acutus and 20 C. acutus-C. moreletti hybrids) sampled during 2012. None of the monkey sera neutralized WNV, whereas 55% of the crocodile sera presented neutralizing antibodies against WNV. These results can contribute to the design of surveillance programmes in Mexico.

  10. Experimental milk-borne transmission of Powassan virus in the goat.

    PubMed

    Woodall, J P; Roz, A

    1977-01-01

    A lactating goat with a 74-day-old kid was inoculated with 10(3) mouse 50% lethal dose (LD50) of Powassan virus. No ensuing viremia could be detected, but virus was secreted in the milk on postinoculation days 7 through 15, with a titer of 10(5) LD50/ml on day 12. Neutralizing antibody was found in the serum on days 22 through 36 and in the milk on day 36. The offspring was not inoculated but was allowed to continue feeding on its mother's milk. It developed neutralizing antibody by day 22. Since the kid was past the age when it could resorb antibody from the milk, its serum antibody was evidence of active infection. Neither animal showed any clinical sign of illness. A serum survey of 499 goats in New York State showed that 9 had neutralizing antibodies to Powassan virus. These immune goats came from widely scattered localities, including counties where human cases have been confirmed. The findings suggest the possibility of milk-borne transmission of Powassan virus from goat to man.

  11. Cross-Reactive and Potent Neutralizing Antibody Responses in Human Survivors of Natural Ebolavirus Infection.

    PubMed

    Flyak, Andrew I; Shen, Xiaoli; Murin, Charles D; Turner, Hannah L; David, Joshua A; Fusco, Marnie L; Lampley, Rebecca; Kose, Nurgun; Ilinykh, Philipp A; Kuzmina, Natalia; Branchizio, Andre; King, Hannah; Brown, Leland; Bryan, Christopher; Davidson, Edgar; Doranz, Benjamin J; Slaughter, James C; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G; Saphire, Erica Ollmann; Ward, Andrew B; Bukreyev, Alexander; Crowe, James E

    2016-01-28

    Recent studies have suggested that antibody-mediated protection against the Ebolaviruses may be achievable, but little is known about whether or not antibodies can confer cross-reactive protection against viruses belonging to diverse Ebolavirus species, such as Ebola virus (EBOV), Sudan virus (SUDV), and Bundibugyo virus (BDBV). We isolated a large panel of human monoclonal antibodies (mAbs) against BDBV glycoprotein (GP) using peripheral blood B cells from survivors of the 2007 BDBV outbreak in Uganda. We determined that a large proportion of mAbs with potent neutralizing activity against BDBV bind to the glycan cap and recognize diverse epitopes within this major antigenic site. We identified several glycan cap-specific mAbs that neutralized multiple ebolaviruses, including SUDV, and a cross-reactive mAb that completely protected guinea pigs from the lethal challenge with heterologous EBOV. Our results provide a roadmap to develop a single antibody-based treatment effective against multiple Ebolavirus infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. CROSS-REACTIVE AND POTENT NEUTRALIZING ANTIBODY RESPONSES IN HUMAN SURVIVORS OF NATURAL EBOLAVIRUS INFECTION

    PubMed Central

    Flyak, Andrew I.; Shen, Xiaoli; Murin, Charles D.; Turner, Hannah L.; David, Joshua A.; Fusco, Marnie L.; Lampley, Rebecca; Kose, Nurgun; Ilinykh, Philipp A.; Kuzmina, Natalia; Branchizio, Andre; King, Hannah; Brown, Leland; Bryan, Christopher; Davidson, Edgar; Doranz, Benjamin J.; Slaughter, James C.; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G.; Saphire, Erica Ollmann; Ward, Andrew B.; Bukreyev, Alexander; Crowe, James E.

    2015-01-01

    Summary Recent studies have suggested that antibody-mediated protection against the Ebolaviruses may be achievable, but little is known about whether or not antibodies can confer cross-reactive protection against viruses belonging to diverse Ebolavirus species, such as Ebola virus (EBOV), Sudan virus (SUDV) and Bundibugyo virus (BDBV). We isolated a large panel of human monoclonal antibodies (mAbs) against BDBV glycoprotein (GP) using peripheral blood B cells from survivors of the 2007 BDBV outbreak in Uganda. We determined that a large proportion of mAbs with potent neutralizing activity against BDBV bind to the glycan cap and recognize diverse epitopes within this major antigenic site. We identified several glycan cap-specific mAbs that neutralized multiple ebolaviruses including SUDV, and a cross-reactive mAb that completely protected guinea pigs from the lethal challenge with heterologous EBOV. Our results provide a roadmap to develop a single antibody-based treatment effective against multiple Ebolavirus infections. PMID:26806128

  13. Neutralization Escape Variants of Human Immunodeficiency Virus Type 1 Are Transmitted from Mother to Infant

    PubMed Central

    Wu, Xueling; Parast, Adam B.; Richardson, Barbra A.; Nduati, Ruth; John-Stewart, Grace; Mbori-Ngacha, Dorothy; Rainwater, Stephanie M. J.; Overbaugh, Julie

    2006-01-01

    Maternal passive immunity typically plays a critical role in protecting infants from new infections; however, the specific contribution of neutralizing antibodies in limiting mother-to-child transmission of human immunodeficiency virus type 1 is unclear. By examining cloned envelope variants from 12 transmission pairs, we found that vertically transmitted variants were more resistant to neutralization by maternal plasma than were maternal viral variants near the time of transmission. The vertically transmitted envelope variants were poorly neutralized by monoclonal antibodies biz, 2G12, 2F5, and 4E10 individually or in combination. Despite the fact that the infant viruses were among the most neutralization resistant in the mother, they had relatively few glycosylation sites. Moreover, the transmitted variants elicited de novo neutralizing antibodies in the infants, indicating that they were not inherently difficult to neutralize. The neutralization resistance of vertically transmitted viruses is in contrast to the relative neutralization sensitivity of viruses sexually transmitted within discordant couples, suggesting that the antigenic properties of viruses that are favored for transmission may differ depending upon mode of transmission. PMID:16378985

  14. Emergence of viruses resistant to neutralization by V3-specific antibodies in experimental human immunodeficiency virus type 1 IIIB infection of chimpanzees.

    PubMed Central

    Nara, P L; Smit, L; Dunlop, N; Hatch, W; Merges, M; Waters, D; Kelliher, J; Gallo, R C; Fischinger, P J; Goudsmit, J

    1990-01-01

    Emergence in two chimpanzees of human immunodeficiency virus type 1 (HIV-1) IIIB variants resistant to neutralization by the preexisting antibody is described. Viruses isolated from the HIV-1 IIIB gp120-vaccinated and -challenged animal were more resistant to neutralization by the chimpanzee's own serum than viruses isolated from the naive infected animal, indicating immune pressure as the selective mechanism. However, all reisolated viruses were 16- to 256-fold more neutralization resistant than the inoculum virus to antibodies binding to the third variable domain (V3) of the HIV-1 external envelope. Early chimpanzee serum samples that neutralized the inoculum strain but not the reisolated viruses were found to bind an HIV-1 IIIB common nonapeptide (IQRGPGRAF) derived from the gp120 isolate-specific V3 domain shown to induce isolate-specific neutralization in other animals. Amplification of the V3 coding sequence by polymerase chain reaction and subsequent sequence analysis of the neutralization-resistant variants obtained from in vivo-infected animals indicated that early resistance to neutralization by an HIV-1 IIIB monoclonal antibody (0.5 beta) was conferred by changes outside the direct binding site for the selective neutralizing antibody. The reisolated neutralization-resistant isolates consisted of the lower-replication-competent virus subpopulations of the HIV-1 IIIB stock, as confirmed by biological and sequence analyses. In vitro passage of the HIV-1 IIIB stock through chimpanzee and human peripheral blood mononuclear cell cultures void of HIV-specific antibody resulted in homogenic amplification of the more-replication-competent subpopulation preexisting in the original viral stock, suggesting a role for the immune system in suppressing the more-replication-competent viruses. Images PMID:2370681

  15. The impact of antigenic drift of influenza A virus on human herd immunity: Sero-epidemiological study of H1N1 in healthy Thai population in 2009.

    PubMed

    Kanai, Yuta; Boonsathorn, Naphatsawan; Chittaganpitch, Malinee; Bai, Guirong; Li, Yonggang; Kase, Tetsuo; Takahashi, Kazuo; Okuno, Yoshinobu; Jampangern, Wipawee; Ikuta, Kazuyoshi; Sawanpanyalert, Pathom

    2010-07-26

    To examine the effect of the antigenic drift of H1N1 influenza viruses on herd immunity, neutralization antibodies from 744 sera from Thai healthy volunteers in 2008-2009, who had not been vaccinated for at least the last 5 years, were investigated by microneutralization (MN) and hemagglutination inhibition (HI) assays. Significantly higher MN titers were observed for the H1N1 Thai isolate in 2006 than in 2008. The results indicate that the antigenically drifted virus effectively escaped herd immunity. Since the low neutralization activity of herd immunity against drifted viruses is an important factor for viruses to spread efficiently, continuous sero-epidemiological study is required for public health. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. ViroSpot microneutralization assay for antigenic characterization of human influenza viruses.

    PubMed

    van Baalen, Carel A; Jeeninga, Rienk E; Penders, Germaine H W M; van Gent, Brenda; van Beek, Ruud; Koopmans, Marion P G; Rimmelzwaan, Guus F

    2017-01-03

    The hemagglutination inhibition (HI) assay has been used for the antigenic characterization of influenza viruses for decades. However, the majority of recent seasonal influenza A viruses of the H3N2 subtype has lost the capacity to agglutinate erythrocytes of various species. The hemagglutination (HA) activity of other A(H3N2) strains is generally sensitive to the action of the neuraminidase inhibitor oseltamivir, which indicates that the neuraminidase and not the hemagglutinin is responsible for the HA activity. These findings complicate the antigenic characterization and selection of A(H3N2) vaccine strains, calling for alternative antigenic characterization assays. Here we describe the development and use of the ViroSpot microneutralization (MN) assay as a reliable and robust alternative for the HI assay. Serum neutralization of influenza A(H3N2) reference virus strains and epidemic isolates was determined by automated readout of immunostained cell monolayers, in a format designed to minimize the influence of infectious virus doses on serum neutralization titers. Neutralization of infection was largely independent from rates of viral replication and cell-to-cell transmission, facilitating the comparison of different virus isolates. Other advantages of the ViroSpot MN assay include its relative insensitivity to variation in test dose of infectious virus, automated capture and analyses of residual infection patterns, and compatibility with standardized large scale analyses. Using this assay, a number of epidemic influenza A(H3N2) strains that failed to agglutinate erythrocytes, were readily characterized antigenically. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Nuclear MxA proteins form a complex with influenza virus NP and inhibit the transcription of the engineered influenza virus genome

    PubMed Central

    Turan, Kadir; Mibayashi, Masaki; Sugiyama, Kenji; Saito, Shoko; Numajiri, Akiko; Nagata, Kyosuke

    2004-01-01

    Mx proteins belong to the dynamin superfamily of high molecular weight GTPases and interfere with multiplication of a wide variety of viruses. Earlier studies show that nuclear mouse Mx1 and human MxA designed to be localized in the nucleus inhibit the transcription step of the influenza virus genome. Here we set a transient influenza virus transcription system using luciferase as a reporter gene and cells expressing the three RNA polymerase subunits, PB1, PB2 and PA, and NP. We used this reporter assay system and nuclear-localized MxA proteins to get clues for elucidating the anti-influenza virus activity of MxA. Nuclear-localized VP16-MxA and MxA-TAg NLS strongly interfered with the influenza virus transcription. Over-expression of PB2 led to a slight resumption of the transcription inhibition by nuclear MxA, whereas over-expression of PB1 and PA did not affect the MxA activity. Of interest is that the inhibitory activity of the nuclear MxA was markedly neutralized by over-expression of NP. An NP devoid of its C-terminal region, but containing the N-terminal RNA binding domain, also neutralized the VP16-MxA activity in a dose-dependent manner, whereas an NP lacking the N-terminal region did not affect the VP16-MxA activity. Further, not only VP16-MxA but also the wild-type MxA was found to interact with NP in influenza virus-infected cells. This indicates that the nuclear MxA suppresses the influenza virus transcription by interacting with not only PB2 but also NP. PMID:14752052

  18. Serum virus neutralization assay for detection and quantitation of serum neutralizing antibodies to influenza A virus in swine

    USDA-ARS?s Scientific Manuscript database

    The serum virus neutralization (SVN) assay is a serological test to detect the presence and magnitude of functional systemic antibodies that prevent infectivity of a virus. The SVN assay is a highly sensitive and specific test that may be applied to influenza A viruses (IAV) in swine to measure the ...

  19. Quantification of Lyssavirus-Neutralizing Antibodies Using Vesicular Stomatitis Virus Pseudotype Particles

    PubMed Central

    Moeschler, Sarah; Locher, Samira; Conzelmann, Karl-Klaus; Krämer, Beate; Zimmer, Gert

    2016-01-01

    Rabies is a highly fatal zoonotic disease which is primarily caused by rabies virus (RABV) although other members of the genus Lyssavirus can cause rabies as well. As yet, 14 serologically and genetically diverse lyssaviruses have been identified, mostly in bats. To assess the quality of rabies vaccines and immunoglobulin preparations, virus neutralization tests with live RABV are performed in accordance with enhanced biosafety standards. In the present work, a novel neutralization test is presented which takes advantage of a modified vesicular stomatitis virus (VSV) from which the glycoprotein G gene has been deleted and replaced by reporter genes. This single-cycle virus was trans-complemented with RABV envelope glycoprotein. Neutralization of this pseudotype virus with RABV reference serum or immune sera from vaccinated mice showed a strong correlation with the rapid fluorescent focus inhibition test (RFFIT). Importantly, pseudotype viruses containing the envelope glycoproteins of other lyssaviruses were neutralized by reference serum to a significantly lesser extent or were not neutralized at all. Taken together, a pseudotype virus system has been successfully developed which allows the safe, fast, and sensitive detection of neutralizing antibodies directed against different lyssaviruses. PMID:27649230

  20. Neutralizing antibody fails to impact the course of Ebola virus infection in monkeys.

    PubMed

    Oswald, Wendelien B; Geisbert, Thomas W; Davis, Kelly J; Geisbert, Joan B; Sullivan, Nancy J; Jahrling, Peter B; Parren, Paul W H I; Burton, Dennis R

    2007-01-01

    Prophylaxis with high doses of neutralizing antibody typically offers protection against challenge with viruses producing acute infections. In this study, we have investigated the ability of the neutralizing human monoclonal antibody, KZ52, to protect against Ebola virus in rhesus macaques. This antibody was previously shown to fully protect guinea pigs from infection. Four rhesus macaques were given 50 mg/kg of neutralizing human monoclonal antibody KZ52 intravenously 1 d before challenge with 1,000 plaque-forming units of Ebola virus, followed by a second dose of 50 mg/kg antibody 4 d after challenge. A control animal was exposed to virus in the absence of antibody treatment. Passive transfer of the neutralizing human monoclonal antibody not only failed to protect macaques against challenge with Ebola virus but also had a minimal effect on the explosive viral replication following infection. We show that the inability of antibody to impact infection was not due to neutralization escape. It appears that Ebola virus has a mechanism of infection propagation in vivo in macaques that is uniquely insensitive even to high concentrations of neutralizing antibody.

  1. Exploration of (hetero)aryl derived thienylchalcones for antiviral and anticancer activities.

    PubMed

    Patil, Vikrant; Patil, Siddappa A; Patil, Renukadevi; Bugarin, Alejandro; Beaman, Kenneth; Patil, Shivaputra A

    2018-05-23

    Search for new antiviral and anticancer agents are essential because of the emergence of drug resistance in recent years. In continuation of our efforts in identifying the new small molecule antiviral and anticancer agents, we identified chalcones as potent antiviral and anticancer agents. With the aim of identifying the broad acting antiviral and anticancer agents, we discovered substituted aryl/heteroaryl derived thienyl chalcones as antiviral and anticancer agents. A focused set of thienyl chalcone derivaties II-VI was screened for selected viruses Hepatitis B virus (HBV), Herpes simplex virus 1 (HSV-1), Human cytomegalovirus (HCMV), Dengue virus 2 (DENV2), Influenza A (H1N1) virus, MERS coronavirus, Poliovirus 1 (PV 1), Rift Valley fever (RVF), Tacaribe virus (TCRV), Venezuelan equine encephalitis virus (VEE) and Zika virus (ZIKV) using the National Institute of Allergy and Infectious Diseases (NIAID)'s Division of Microbiology and Infectious Diseases (DMID) antiviral screening program. Additionally, a cyclopropylquinoline derivative IV has been screened for 60 human cancer cell lines using the Development Therapeutics Program (DTP) of NCI. All thienyl chalcone derivatives II-VI displayed moderate to excellent antiviral activity towards several viruses tested. Compounds V and VI were turned out be active compounds towards human cytomegalovirus for both normal strain (AD169) as well as resistant isolate (GDGr K17). Particularly, cyano derivative V showed very high potency (EC50: <0.05 µM) towards AD169 strain of HCMV compared to standard drug Ganciclovir (EC50: 0.12 µM). Additionally, it showed moderate activity in the secondary assay (AD169; EC50: 2.30 µM). The cyclopropylquinoline derivative IV displayed high potency towards Rift Valley fever virus (RVFV) and Tacaribe virus (TCRV). The cyclopropylquinoline derivative IV is nearly 28 times more potent in our initial in vitro visual assay (EC50: 0.39 μg/ml) and nearly 17 times more potent in neutral red assay (EC50: 0.71 μg/ml) compared to the standard drug Ribavirin (EC50: 11 μg/ml; visual assay and EC50: 12 μg/ml; neutral red assay). It is nearly 12 times more potent in our initial in vitro visual assay (EC50: >1 μg/ml) and nearly 8 times more potent in neutral red assay (EC50: >1.3 μg/ml) compared to the standard drug Ribavirin (EC50: 12 μg/ml; visual assay and EC50: 9.9 μg/ml; neutral red assay) towards Tacaribe virus (TCRV). Additionally, cyclopropylquinoline derivative IV has shown strong growth inhibitory activity towards three major cancer (colon, breast, and leukemia) cell lines and moderate growth inhibition shown towards other cancer cell lines screened. Compounds V and VI were demonstrated viral inhibition towards Human cytomegalovirus, whereas cyclopropylquinoline derivative IV towards Rift Valley fever virus and Tacaribe virus. Additionally, cyclopropylquinoline derivative IV has displayed very good cytotoxicity against colon, breast and leukemia cell lines in vitro. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Inhibitory Effect of Individual or Combinations of Broadly Neutralizing Antibodies and Antiviral Reagents against Cell-Free and Cell-to-Cell HIV-1 Transmission

    PubMed Central

    Kolodkin-Gal, Dror; Eslamizar, Leila; Owuor, Joshua O.; Mazzola, Emanuele; Gonzalez, Ana M.; Korioth-Schmitz, Birgit; Gelman, Rebecca S.; Montefiori, David C.; Haynes, Barton F.; Schmitz, Joern E.

    2015-01-01

    ABSTRACT To date, most therapeutic and vaccine candidates for human immunodeficiency virus type 1 (HIV-1) are evaluated preclinically for efficacy against cell-free viral challenges. However, cell-associated HIV-1 is suggested to be a major contributor to sexual transmission by mucosal routes. To determine if neutralizing antibodies or inhibitors block cell-free and cell-associated virus transmission of diverse HIV-1 strains with different efficiencies, we tested 12 different antibodies and five inhibitors against four green fluorescent protein (GFP)-labeled HIV-1 envelope (Env) variants from transmitted/founder (T/F) or chronic infection isolates. We evaluated antibody/inhibitor-mediated virus neutralization using either TZM-bl target cells, in which infectivity was determined by virus-driven luciferase expression, or A3R5 lymphoblastoid target cells, in which infectivity was evaluated by GFP expression. In both the TZM-bl and A3R5 assays, cell-free virus or infected CD4+ lymphocytes were used as targets for neutralization. We further hypothesized that the combined use of specific neutralizing antibodies targeting HIV-1 Env would more effectively prevent cell-associated virus transmission than the use of individual antibodies. The tested antibody combinations included two gp120-directed antibodies, VRC01 and PG9, or VRC01 with the gp41-directed antibody 10E8. Our results demonstrated that cell-associated virus was less sensitive to neutralizing antibodies and inhibitors, particularly using the A3R5 neutralization assay, and the potencies of these neutralizing agents differed among Env variants. A combination of different neutralizing antibodies that target specific sites on gp120 led to a significant reduction in cell-associated virus transmission. These assays will help identify ideal combinations of broadly neutralizing antibodies to use for passive preventive antibody administration and further characterize targets for the most effective neutralizing antibodies/inhibitors. IMPORTANCE Prevention of the transmission of human immunodeficiency virus type 1 (HIV-1) remains a prominent goal of HIV research. The relative contribution of HIV-1 within an infected cell versus cell-free HIV-1 to virus transmission remains debated. It has been suggested that cell-associated virus is more efficient at transmitting HIV-1 and more difficult to neutralize than cell-free virus. Several broadly neutralizing antibodies and retroviral inhibitors are currently being studied as potential therapies against HIV-1 transmission. The present study demonstrates a decrease in neutralizing antibody and inhibitor efficiencies against cell-associated compared to cell-free HIV-1 transmission among different strains of HIV-1. We also observed a significant reduction in virus transmission using a combination of two different neutralizing antibodies that target specific sites on the outermost region of HIV-1, the virus envelope. Therefore, our findings support the use of antibody combinations against both cell-free and cell-associated virus in future candidate therapy regimens. PMID:25995259

  3. Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses.

    PubMed

    Moody, M Anthony; Gao, Feng; Gurley, Thaddeus C; Amos, Joshua D; Kumar, Amit; Hora, Bhavna; Marshall, Dawn J; Whitesides, John F; Xia, Shi-Mao; Parks, Robert; Lloyd, Krissey E; Hwang, Kwan-Ki; Lu, Xiaozhi; Bonsignori, Mattia; Finzi, Andrés; Vandergrift, Nathan A; Alam, S Munir; Ferrari, Guido; Shen, Xiaoying; Tomaras, Georgia D; Kamanga, Gift; Cohen, Myron S; Sam, Noel E; Kapiga, Saidi; Gray, Elin S; Tumba, Nancy L; Morris, Lynn; Zolla-Pazner, Susan; Gorny, Miroslaw K; Mascola, John R; Hahn, Beatrice H; Shaw, George M; Sodroski, Joseph G; Liao, Hua-Xin; Montefiori, David C; Hraber, Peter T; Korber, Bette T; Haynes, Barton F

    2015-09-09

    The third variable (V3) loop and the CD4 binding site (CD4bs) of the HIV-1 envelope are frequently targeted by neutralizing antibodies (nAbs) in infected individuals. In chronic infection, HIV-1 escape mutants repopulate the plasma, and V3 and CD4bs nAbs emerge that can neutralize heterologous tier 1 easy-to-neutralize but not tier 2 difficult-to-neutralize HIV-1 isolates. However, neutralization sensitivity of autologous plasma viruses to this type of nAb response has not been studied. We describe the development and evolution in vivo of antibodies distinguished by their target specificity for V3 and CD4bs epitopes on autologous tier 2 viruses but not on heterologous tier 2 viruses. A surprisingly high fraction of autologous circulating viruses was sensitive to these antibodies. These findings demonstrate a role for V3 and CD4bs antibodies in constraining the native envelope trimer in vivo to a neutralization-resistant phenotype, explaining why HIV-1 transmission generally occurs by tier 2 neutralization-resistant viruses. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witkowski, Peter T.; Charite Universitaetsmedizin, CCM, Institut fuer Virologie, Helmut Ruska Haus, Chariteplatz 1, 10117 Berlin; Schuenadel, Livia, E-mail: SchuenadelL@rki.de

    Research highlights: {yields} Real-time data acquisition by RT-CES requires low operative effort. {yields} Time to result is reduced by using RT-CES instead of conventional methods. {yields} RT-CES enables quantification of virus titers in unknown samples. {yields} RT-CES is a useful tool for high-throughput characterization of antiviral agents. {yields} An RT-CES-based virus neutralization test was established. -- Abstract: Impedance-based biosensing known as real-time cell electronic sensing (RT-CES) belongs to an emerging technology for analyzing the status of cells in vitro. In the present study protocols were developed for an RT-CES-based system (xCELLigence{sup TM}, Roche Applied Science, ACEA Biosciences Inc.) to supplementmore » conventional techniques in pox virology. First, proliferation of cells susceptible to orthopoxviruses was monitored. For virus titration cells were infected with vaccinia virus and cell status, represented by the dimensionless impedance-based cell index (CI), was monitored. A virus-dose dependent decrease in electrical impedance could be shown. Calculation of calibration curves at a suitable CI covering a dynamic range of 4 log enabled the quantification of virus titers in unknown samples. Similarly, antiviral effects could be determined as shown for anti-poxviral agents ST-246 and Cidofovir. Published values for the in vitro concentration that inhibited virus replication by 50% (IC{sub 50}) could be confirmed while cytotoxicity in effective concentrations was excluded in long-term incubation experiments. Finally, an RT-CES-based virus neutralization test was established. Various poxvirus-specific antibodies were examined for their neutralizing activity and a calculation mode for the neutralizing antibody titer was introduced. In summary, the presented RT-CES-based methods outmatch end-point assays by observing the cell population throughout the entire experiment while workload and time to result are reduced.« less

  5. Role of Microvesicles in the Spread of Herpes Simplex Virus 1 in Oligodendrocytic Cells.

    PubMed

    Bello-Morales, Raquel; Praena, Beatriz; de la Nuez, Carmen; Rejas, María Teresa; Guerra, Milagros; Galán-Ganga, Marcos; Izquierdo, Manuel; Calvo, Víctor; Krummenacher, Claude; López-Guerrero, José Antonio

    2018-05-15

    Herpes simplex virus 1 (HSV-1) is a neurotropic pathogen that can infect many types of cells and establishes latent infections in the neurons of sensory ganglia. In some cases, the virus spreads into the central nervous system, causing encephalitis or meningitis. Cells infected with several different types of viruses may secrete microvesicles (MVs) containing viral proteins and RNAs. In some instances, extracellular microvesicles harboring infectious virus have been found. Here we describe the features of shedding microvesicles released by the human oligodendroglial HOG cell line infected with HSV-1 and their participation in the viral cycle. Using transmission electron microscopy, we detected for the first time microvesicles containing HSV-1 virions. Interestingly, the Chinese hamster ovary (CHO) cell line, which is resistant to infection by free HSV-1 virions, was susceptible to HSV-1 infection after being exposed to virus-containing microvesicles. Therefore, our results indicate for the first time that MVs released by infected cells contain virions, are endocytosed by naive cells, and lead to a productive infection. Furthermore, infection of CHO cells was not completely neutralized when virus-containing microvesicles were preincubated with neutralizing anti-HSV-1 antibodies. The lack of complete neutralization and the ability of MVs to infect nectin-1/HVEM-negative CHO-K1 cells suggest a novel way for HSV-1 to spread to and enter target cells. Taken together, our results suggest that HSV-1 could spread through microvesicles to expand its tropism and that microvesicles could shield the virus from neutralizing antibodies as a possible mechanism to escape the host immune response. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a neurotropic pathogen that can infect many types of cells and establishes latent infections in neurons. Extracellular vesicles are a heterogeneous group of membrane vesicles secreted by most cell types. Microvesicles, which are extracellular vesicles which derive from the shedding of the plasma membrane, isolated from the supernatant of HSV-1-infected HOG cells were analyzed to find out whether they were involved in the viral cycle. The importance of our investigation lies in the detection, for the first time, of microvesicles containing HSV-1 virions. In addition, virus-containing microvesicles were endocytosed into CHO-K1 cells and were able to actively infect these otherwise nonpermissive cells. Finally, the infection of CHO cells with these virus-containing microvesicles was not completely neutralized by anti-HSV-1 antibodies, suggesting that these extracellular vesicles might shield the virus from neutralizing antibodies as a possible mechanism of immune evasion. Copyright © 2018 Bello-Morales et al.

  6. Characterization of the Neutralizing Antibody Response in a Case of Genetically Linked HIV Superinfection.

    PubMed

    Ssemwanga, Deogratius; Doria-Rose, Nicole A; Redd, Andrew D; Shiakolas, Andrea R; Longosz, Andrew F; Nsubuga, Rebecca N; Mayanja, Billy N; Asiki, Gershim; Seeley, Janet; Kamali, Anatoli; Ransier, Amy; Darko, Samuel; Walker, Michael P; Bruno, Daniel; Martens, Craig; Douek, Daniel; Porcella, Stephen F; Quinn, Thomas C; Mascola, John R; Kaleebu, Pontiano

    2018-04-23

    This report describes the identification of a genetically confirmed linked heterosexual human immunodeficiency virus (HIV) superinfection (HIV-SI) in a woman with chronic HIV infection who acquired a second strain of the virus from her husband. Serum neutralizing antibody (NAb) responses against their homologous and heterologous viruses, including the superinfecting strain, in the woman and her husband were examined before and after onset of HIV-SI. The woman displayed a moderately potent and broad anti-HIV NAb response prior to superinfection but did not possess NAb activity against the superinfecting strain. This case highlights the unique potential of linked HIV-SI studies to examine natural protection from HIV infection.

  7. Unique spectrum of activity of 9-[(1,3-dihydroxy-2-propoxy)methyl]-guanine against herpesviruses in vitro and its mode of action against herpes simplex virus type 1.

    PubMed Central

    Cheng, Y C; Huang, E S; Lin, J C; Mar, E C; Pagano, J S; Dutschman, G E; Grill, S P

    1983-01-01

    A guanosine analog, 9-[(1,3-dihydroxy-2-propoxy)methyl]guanine (DHPG), was found to inhibit herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2, cytomegalovirus, and Epstein-Barr virus replication by greater than 50% at concentrations that do not inhibit cell growth in culture. The potency of the drug against all of these viruses is greater than that of 9-[(2-hydroxyethoxy)methyl]guanine (acyclovir). DHPG was active against HSV-1 growth during the early phase of virus replication and had no activity when added at a later time after infection. Its antiviral activity was irreversible. Thymidine partially neutralized its action. The anti-HSV-1 activity of DHPG was dependent on the induction and the properties of virus-induced thymidine kinase. Virus variants that induced altered virus thymidine kinase and became resistant to acyclovir were still as sensitive to DHPG as the parental virus. DHPG is active against five different HSV variants with induced altered DNA polymerase and resistance to acyclovir. PMID:6302704

  8. A single, continuous metric to define tiered serum neutralization potency against HIV

    DOE PAGES

    Hraber, Peter Thomas; Korber, Bette Tina Marie; Wagh, Kshitij; ...

    2018-01-19

    HIV-1 Envelope (Env) variants are grouped into tiers by their neutralization-sensitivity phenotype. This helped to recognize that tier 1 neutralization responses can be elicited readily, but do not protect against new infections. Tier 3 viruses are the least sensitive to neutralization. Because most circulating viruses are tier 2, vaccines that elicit neutralization responses against them are needed. While tier classification is widely used for viruses, a way to rate serum or antibody neutralization responses in comparable terms is needed. Logistic regression of neutralization outcomes summarizes serum or antibody potency on a continuous, tier-like scale. It also tests significance of themore » neutralization score, to indicate cases where serum response does not depend on virus tiers. The method can standardize results from different virus panels, and could lead to high-throughput assays, which evaluate a single serum dilution, rather than a dilution series, for more efficient use of limited resources to screen samples from vaccinees.« less

  9. A single, continuous metric to define tiered serum neutralization potency against HIV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hraber, Peter Thomas; Korber, Bette Tina Marie; Wagh, Kshitij

    HIV-1 Envelope (Env) variants are grouped into tiers by their neutralization-sensitivity phenotype. This helped to recognize that tier 1 neutralization responses can be elicited readily, but do not protect against new infections. Tier 3 viruses are the least sensitive to neutralization. Because most circulating viruses are tier 2, vaccines that elicit neutralization responses against them are needed. While tier classification is widely used for viruses, a way to rate serum or antibody neutralization responses in comparable terms is needed. Logistic regression of neutralization outcomes summarizes serum or antibody potency on a continuous, tier-like scale. It also tests significance of themore » neutralization score, to indicate cases where serum response does not depend on virus tiers. The method can standardize results from different virus panels, and could lead to high-throughput assays, which evaluate a single serum dilution, rather than a dilution series, for more efficient use of limited resources to screen samples from vaccinees.« less

  10. Recombinant TNF-binding protein from variola virus as a novel potential TNF antagonist.

    PubMed

    Gileva, I P; Nepomnyashchikh, T S; Ryazankin, I A; Shchelkunov, S N

    2009-12-01

    Gel-filtration chromatographic separation of the lysate of Sf21 insect cells infected with recombinant baculovirus BVi67 containing the gene for TNF-binding protein (CrmB) of variola virus (VARV) revealed that hTNF-cytotoxicity neutralization activity is associated with a fraction corresponding mainly to high molecular weight proteins (above 500 kDa) and less with fractions corresponding to proteins of 270 or 90 kDa. The recombinant VARV-CrmB protein has been purified by affinity chromatography. Difference in the experimentally determined and estimated (according to amino acid composition) VARV-CrmB molecular weight is due to glycosylation of the recombinant protein expressed in the insect cells. VARV-CrmB neutralizes in vitro the cytotoxic effect of hTNF and hLTalpha, and its TNF-neutralizing activity is two to three orders of magnitude higher compared to the analogous effects of type I and II soluble TNF receptors, comparable with the activity of mAb MAK195, and somewhat lower than the effect of the commercial drug Remicade.

  11. Generation of Monoclonal Antibodies against Dengue Virus Type 4 and Identification of Enhancing Epitopes on Envelope Protein.

    PubMed

    Tang, Chung-Tao; Liao, Mei-Ying; Chiu, Chien-Yu; Shen, Wen-Fan; Chiu, Chiung-Yi; Cheng, Ping-Chang; Chang, Gwong-Jen J; Wu, Han-Chung

    2015-01-01

    The four serotypes of dengue virus (DENV1-4) pose a serious threat to global health. Cross-reactive and non-neutralizing antibodies enhance viral infection, thereby exacerbating the disease via antibody-dependent enhancement (ADE). Studying the epitopes targeted by these enhancing antibodies would improve the immune responses against DENV infection. In order to investigate the roles of antibodies in the pathogenesis of dengue, we generated a panel of 16 new monoclonal antibodies (mAbs) against DENV4. Using plaque reduction neutralization test (PRNT), we examined the neutralizing activity of these mAbs. Furthermore, we used the in vitro and in vivo ADE assay to evaluate the enhancement of DENV infection by mAbs. The results indicate that the cross-reactive and poorly neutralizing mAbs, DD11-4 and DD18-5, strongly enhance DENV1-4 infection of K562 cells and increase mortality in AG129 mice. The epitope residues of these enhancing mAbs were identified using virus-like particle (VLP) mutants. W212 and E26 are the epitope residues of DD11-4 and DD18-5, respectively. In conclusion, we generated and characterized 16 new mAbs against DENV4. DD11-4 and D18-5 possessed non-neutralizing activities and enhanced viral infection. Moreover, we identified the epitope residues of enhancing mAbs on envelope protein. These results may provide useful information for development of safe dengue vaccine.

  12. Identification of a conserved neutralizing linear B-cell epitope in the VP1 proteins of duck hepatitis A virus type 1 and 3.

    PubMed

    Zhang, Ruihua; Zhou, Guomei; Xin, Yinghao; Chen, Junhao; Lin, Shaoli; Tian, Ye; Xie, Zhijing; Jiang, Shijin

    2015-11-18

    Duck virus hepatitis (DVH), mainly caused by duck hepatitis A virus (DHAV), is a severe disease threaten to duck industry and has worldwide distribution. As the major structural protein, the VP1 protein of DHAV is able to induce neutralizing antibody in ducks. In this study, a monoclonal antibody (mAb) 4F8 against the intact DHAV-1 particles was used to identify the possible epitope in the three serotypes of DHAV. The mAb 4F8 had weak neutralizing activities to both DHAV-1 and DHAV-3, and reacted with the conserved linear B-cell epitopes of (75)GEIILT(80) in DHAV-1 VP1 and (75)GEVILT(80) in DHAV-3 VP1 protein, respectively, while not with DHAV-2 VP1. This was the first report about identification of the common conserved neutralizing linear B-cell epitope of DHAV-1 and DHAV-3, which will facilitate understanding of the antigenic structure of VP1 and the serologic diagnosis of DHAV infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies

    PubMed Central

    McCoy, Laura E.; Falkowska, Emilia; Doores, Katie J.; Le, Khoa; Sok, Devin; van Gils, Marit J.; Euler, Zelda; Burger, Judith A.; Seaman, Michael S.; Sanders, Rogier W.; Schuitemaker, Hanneke; Poignard, Pascal; Wrin, Terri; Burton, Dennis R.

    2015-01-01

    The broadly neutralizing HIV monoclonal antibodies (bnMAbs) PG9, PG16, PGT151, and PGT152 have been shown earlier to occasionally display an unusual virus neutralization profile with a non-sigmoidal slope and a plateau at <100% neutralization. In the current study, we were interested in determining the extent of non-sigmoidal slopes and plateaus at <100% for HIV bnMAbs more generally. Using both a 278 panel of pseudoviruses in a CD4 T-cell (U87.CCR5.CXCR4) assay and a panel of 117 viruses in the TZM-bl assay, we found that bnMAbs targeting many neutralizing epitopes of the spike had neutralization profiles for at least one virus that plateaued at <90%. Across both panels the bnMAbs targeting the V2 apex of Env and gp41 were most likely to show neutralization curves that plateaued <100%. Conversely, bnMAbs targeting the high-mannose patch epitopes were less likely to show such behavior. Two CD4 binding site (CD4bs) Abs also showed this behavior relatively infrequently. The phenomenon of incomplete neutralization was also observed in a large peripheral blood mononuclear cells (PBMC)-grown molecular virus clone panel derived from patient viral swarms. In addition, five bnMAbs were compared against an 18-virus panel of molecular clones produced in 293T cells and PBMCs and assayed in TZM-bl cells. Examples of plateaus <90% were seen with both types of virus production with no consistent patterns observed. In conclusion, incomplete neutralization and non-sigmoidal neutralization curves are possible for all HIV bnMAbs against a wide range of viruses produced and assayed in both cell lines and primary cells with implications for the use of antibodies in therapy and as tools for vaccine design. PMID:26267277

  14. Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies.

    PubMed

    McCoy, Laura E; Falkowska, Emilia; Doores, Katie J; Le, Khoa; Sok, Devin; van Gils, Marit J; Euler, Zelda; Burger, Judith A; Seaman, Michael S; Sanders, Rogier W; Schuitemaker, Hanneke; Poignard, Pascal; Wrin, Terri; Burton, Dennis R

    2015-08-01

    The broadly neutralizing HIV monoclonal antibodies (bnMAbs) PG9, PG16, PGT151, and PGT152 have been shown earlier to occasionally display an unusual virus neutralization profile with a non-sigmoidal slope and a plateau at <100% neutralization. In the current study, we were interested in determining the extent of non-sigmoidal slopes and plateaus at <100% for HIV bnMAbs more generally. Using both a 278 panel of pseudoviruses in a CD4 T-cell (U87.CCR5.CXCR4) assay and a panel of 117 viruses in the TZM-bl assay, we found that bnMAbs targeting many neutralizing epitopes of the spike had neutralization profiles for at least one virus that plateaued at <90%. Across both panels the bnMAbs targeting the V2 apex of Env and gp41 were most likely to show neutralization curves that plateaued <100%. Conversely, bnMAbs targeting the high-mannose patch epitopes were less likely to show such behavior. Two CD4 binding site (CD4bs) Abs also showed this behavior relatively infrequently. The phenomenon of incomplete neutralization was also observed in a large peripheral blood mononuclear cells (PBMC)-grown molecular virus clone panel derived from patient viral swarms. In addition, five bnMAbs were compared against an 18-virus panel of molecular clones produced in 293T cells and PBMCs and assayed in TZM-bl cells. Examples of plateaus <90% were seen with both types of virus production with no consistent patterns observed. In conclusion, incomplete neutralization and non-sigmoidal neutralization curves are possible for all HIV bnMAbs against a wide range of viruses produced and assayed in both cell lines and primary cells with implications for the use of antibodies in therapy and as tools for vaccine design.

  15. Achieving Potent Autologous Neutralizing Antibody Responses against Tier 2 HIV-1 Viruses by Strategic Selection of Envelope Immunogens.

    PubMed

    Hessell, Ann J; Malherbe, Delphine C; Pissani, Franco; McBurney, Sean; Krebs, Shelly J; Gomes, Michelle; Pandey, Shilpi; Sutton, William F; Burwitz, Benjamin J; Gray, Matthew; Robins, Harlan; Park, Byung S; Sacha, Jonah B; LaBranche, Celia C; Fuller, Deborah H; Montefiori, David C; Stamatatos, Leonidas; Sather, D Noah; Haigwood, Nancy L

    2016-04-01

    Advancement in immunogen selection and vaccine design that will rapidly elicit a protective Ab response is considered critical for HIV vaccine protective efficacy. Vaccine-elicited Ab responses must therefore have the capacity to prevent infection by neutralization-resistant phenotypes of transmitted/founder (T/F) viruses that establish infection in humans. Most vaccine candidates to date have been ineffective at generating Abs that neutralize T/F or early variants. In this study, we report that coimmunizing rhesus macaques with HIV-1 gp160 DNA and gp140 trimeric protein selected from native envelope gene sequences (envs) induced neutralizing Abs against Tier 2 autologous viruses expressing cognate envelope (Env). The Env immunogens were selected from envs emerging during the earliest stages of neutralization breadth developing within the first 2 years of infection in two clade B-infected human subjects. Moreover, the IgG responses in macaques emulated the targeting to specific regions of Env known to be associated with autologous and heterologous neutralizing Abs developed within the human subjects. Furthermore, we measured increasing affinity of macaque polyclonal IgG responses over the course of the immunization regimen that correlated with Tier 1 neutralization. In addition, we report firm correlations between Tier 2 autologous neutralization and Tier 1 heterologous neutralization, as well as overall TZM-bl breadth scores. Additionally, the activation of Env-specific follicular helper CD4 T cells in lymphocytes isolated from inguinal lymph nodes of vaccinated macaques correlated with Tier 2 autologous neutralization. These results demonstrate the potential for native Env derived from subjects at the time of neutralization broadening as effective HIV vaccine elements. Copyright © 2016 by The American Association of Immunologists, Inc.

  16. Virucidal activity of two Iodophors to salmonid viruses

    USGS Publications Warehouse

    Amend, Donald F.; Pietsch, John P.

    1972-01-01

    Wescodyne® and Betadine®, organic iodine complexes, were compared in vitro for virucidal activity against infectious hematopoietic necrosis (IHN), infectious pancreatic necrosis (IPN), and viral hemorrhagic septicemia (VHS) viruses. Both iodophors were about equally effective on all three viruses. Each iodophor completely destroyed IHN virus within 30 sec at 12 ppm iodine, and was not affected by water hardness. Virucidal activity, however, was reduced at pH levels above 8.0 and in the presence of organic matter. Wescodyne was also compared with seven disinfectants commonly used in fish hatcheries, for virucidal properties against IHN virus. Wescodyne and chlorine were the only disinfectants to completely destroy the virus. Either Wescodyne or Betadine would effectively destroy the salmonid viruses at less than 25 ppm iodine within 5 min in solutions near neutrality.

  17. ACTIVE IMMUNIZATION AGAINST POLIOMYELITIS IN MONKEYS.

    PubMed

    Brodie, M; Goldbloom, A

    1931-05-31

    1. A combination of poliomyelitis virus and specific human serum is effective for the production of active immunity. 2. For each gram of active virus given intradermally as an emulsion, 6 cc. of human immune serum, injected subcutaneously, was required in our experiments to protect a monkey from paralysis. Some degree of active immunity was induced. 3. Immunity, without symptom of the disease, was secured when the serum was given at the time of inoculation, or within 3 days preceding or following inoculation of the virus. 4. For the production of immunity, virus, preceded by serum administration, is probably less effective than when it is given simultaneously with, or before, the injection of serum. 5. The virus neutralization test is more sensitive than the direct intracerebral test for determining the production of immunity.

  18. Structural Basis of Differential Neutralization of DENV-1 Genotypes by an Antibody that Recognizes a Cryptic Epitope

    PubMed Central

    Austin, S. Kyle; Dowd, Kimberly A.; Shrestha, Bimmi; Nelson, Christopher A.; Edeling, Melissa A.; Johnson, Syd; Pierson, Theodore C.; Diamond, Michael S.; Fremont, Daved H.

    2012-01-01

    We previously developed a panel of neutralizing monoclonal antibodies against Dengue virus (DENV)-1, of which few exhibited inhibitory activity against all DENV-1 genotypes. This finding is consistent with reports observing variable neutralization of different DENV strains and genotypes using serum from individuals that experienced natural infection or immunization. Herein, we describe the crystal structures of DENV1-E111 bound to a novel CC′ loop epitope on domain III (DIII) of the E protein from two different DENV-1 genotypes. Docking of our structure onto the available cryo-electron microscopy models of DENV virions revealed that the DENV1-E111 epitope was inaccessible, suggesting that this antibody recognizes an uncharacterized virus conformation. While the affinity of binding between DENV1-E111 and DIII varied by genotype, we observed limited correlation with inhibitory activity. Instead, our results support the conclusion that potent neutralization depends on genotype-dependent exposure of the CC′ loop epitope. These findings establish new structural complexity of the DENV virion, which may be relevant for the choice of DENV strain for induction or analysis of neutralizing antibodies in the context of vaccine development. PMID:23055922

  19. Generation of a recombinant West Nile virus stably expressing the Gaussia luciferase for neutralization assay.

    PubMed

    Zhang, Pan-Tao; Shan, Chao; Li, Xiao-Dan; Liu, Si-Qing; Deng, Cheng-Lin; Ye, Han-Qing; Shang, Bao-Di; Shi, Pei-Yong; Lv, Ming; Shen, Bei-Fen; Qin, Cheng-Feng; Zhang, Bo

    2016-01-04

    West Nile virus (WNV) is a neurotropic human pathogen that has caused increasing infected cases over recent years. There is currently no licensed vaccine or effective drug for prevention and treatment of WNV infection in humans. To facilitate antiviral drug discovery and neutralizing antibody detection, a WNV cDNA clone containing a luciferase reporter gene was constructed through incorporating Gaussia luciferase (Gluc) gene within the capsid-coding region of WNV genome. Transfection of BHK-21 cells with the cDNA clone-derived RNA generated luciferase reporter WNV (WNV-Gluc) and the stable WNV-Gluc with high titers (>10(7)PFU/ml) was obtained through plaque purification. Luciferase activity was used to effectively quantify the viral production of WNV-Gluc. Using the reporter virus WNV-Gluc, we developed a luciferase based assay in a 12-well format for evaluating neutralizing antibodies. The reporter virus could be a powerful tool for epidemiological investigation of WNV, vaccine evaluation, antiviral drug screening, and the study of WNV replication and pathogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus.

    PubMed

    Giang, Erick; Dorner, Marcus; Prentoe, Jannick C; Dreux, Marlène; Evans, Matthew J; Bukh, Jens; Rice, Charles M; Ploss, Alexander; Burton, Dennis R; Law, Mansun

    2012-04-17

    Hepatitis C virus (HCV) infects ∼2% of the world's population. It is estimated that there are more than 500,000 new infections annually in Egypt, the country with the highest HCV prevalence. An effective vaccine would help control this expanding global health burden. HCV is highly variable, and an effective vaccine should target conserved T- and B-cell epitopes of the virus. Conserved B-cell epitopes overlapping the CD81 receptor-binding site (CD81bs) on the E2 viral envelope glycoprotein have been reported previously and provide promising vaccine targets. In this study, we isolated 73 human mAbs recognizing five distinct antigenic regions on the virus envelope glycoprotein complex E1E2 from an HCV-immune phage-display antibody library by using an exhaustive-panning strategy. Many of these mAbs were broadly neutralizing. In particular, the mAb AR4A, recognizing a discontinuous epitope outside the CD81bs on the E1E2 complex, has an exceptionally broad neutralizing activity toward diverse HCV genotypes and protects against heterologous HCV challenge in a small animal model. The mAb panel will be useful for the design and development of vaccine candidates to elicit broadly neutralizing antibodies to HCV.

  1. Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia

    NASA Astrophysics Data System (ADS)

    Shingai, Masashi; Nishimura, Yoshiaki; Klein, Florian; Mouquet, Hugo; Donau, Olivia K.; Plishka, Ronald; Buckler-White, Alicia; Seaman, Michael; Piatak, Michael; Lifson, Jeffrey D.; Dimitrov, Dimiter; Nussenzweig, Michel C.; Martin, Malcolm A.

    2013-11-01

    Neutralizing antibodies can confer immunity to primate lentiviruses by blocking infection in macaque models of AIDS. However, earlier studies of anti-human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies administered to infected individuals or humanized mice reported poor control of virus replication and the rapid emergence of resistant variants. A new generation of anti-HIV-1 monoclonal antibodies, possessing extraordinary potency and breadth of neutralizing activity, has recently been isolated from infected individuals. These neutralizing antibodies target different regions of the HIV-1 envelope glycoprotein including the CD4-binding site, glycans located in the V1/V2, V3 and V4 regions, and the membrane proximal external region of gp41 (refs 9, 10, 11, 12, 13, 14). Here we have examined two of the new antibodies, directed to the CD4-binding site and the V3 region (3BNC117 and 10-1074, respectively), for their ability to block infection and suppress viraemia in macaques infected with the R5 tropic simian-human immunodeficiency virus (SHIV)-AD8, which emulates many of the pathogenic and immunogenic properties of HIV-1 during infections of rhesus macaques. Either antibody alone can potently block virus acquisition. When administered individually to recently infected macaques, the 10-1074 antibody caused a rapid decline in virus load to undetectable levels for 4-7days, followed by virus rebound during which neutralization-resistant variants became detectable. When administered together, a single treatment rapidly suppressed plasma viraemia for 3-5weeks in some long-term chronically SHIV-infected animals with low CD4+ T-cell levels. A second cycle of anti-HIV-1 monoclonal antibody therapy, administered to two previously treated animals, successfully controlled virus rebound. These results indicate that immunotherapy or a combination of immunotherapy plus conventional antiretroviral drugs might be useful as a treatment for chronically HIV-1-infected individuals experiencing immune dysfunction.

  2. Dissection of epitope-specific mechanisms of neutralization of influenza virus by intact IgG and Fab fragments.

    PubMed

    Williams, James A; Gui, Long; Hom, Nancy; Mileant, Alexander; Lee, Kelly K

    2017-12-20

    The neutralizing antibody (nAb) response against the influenza virus's hemagglutinin (HA) fusion glycoprotein is important for preventing viral infection, but we lack a comprehensive understanding of the mechanisms by which these antibodies act. Here we investigated the effect of nAb binding and the role of IgG bivalency on inhibition of HA function for nAbs targeting distinct HA epitopes. HC19 targets the receptor-binding pocket at HA's distal end, while FI6v3 binds primarily to the HA2 fusion subunit towards the base of the stalk. Surprisingly, HC19 inhibited HA's ability to induce lipid mixing by preventing structural rearrangement of HA under fusion activating conditions. These results suggest that nAbs such as HC19 not only act by blocking receptor binding, but also inhibit key late-stage HA conformational changes required for fusion. Intact HC19 IgG was also shown to crosslink separate virus particles, burying large proportions of HA within aggregates where they are blocked from interacting with target membranes; Fabs yielded no such aggregation and displayed weaker neutralization than IgG, emphasizing the impact of bivalency on the ability to neutralize virus. In contrast, the stem-targeting nAb FI6v3 did not aggregate particles. The Fab was significantly less effective than IgG in preventing both membrane disruption and fusion. We infer that inter-spike crosslinking within a given particle by FI6v3 IgG may be critical to its potent neutralization, as no significant neutralization occurred with Fabs. These results demonstrate that IgG bivalency enhances HA inhibition through functionally important modes not evident in pared down Fab-soluble HA structures. IMPORTANCE The influenza virus's hemagglutinin (HA) fusion glycoprotein mediates entry into target cells and is the primary antigenic target of neutralizing antibodies (nAbs). Our current structural understanding of mechanisms of Ab-mediated neutralization largely relies on high resolution characterization of antigen binding fragments (Fab) in complex with soluble, isolated antigen constructs by cryo-EM single particle reconstruction or X-ray crystallography. Interactions between full-length IgG and whole virions have not been well-characterized, and a gap remains in our understanding of how intact Abs neutralize virus and prevent infection. Using structural and biophysical approaches, we observed that Ab-mediated inhibition of HA function and neutralization of virus infectivity occurs by multiple coexisting mechanisms and is largely dependent on the specific epitope that is targeted and is highly dependent on the bivalent nature of IgG molecules. Copyright © 2017 American Society for Microbiology.

  3. Characterization and Implementation of a Diverse Simian Immunodeficiency Virus SIVsm Envelope Panel in the Assessment of Neutralizing Antibody Breadth Elicited in Rhesus Macaques by Multimodal Vaccines Expressing the SIVmac239 Envelope

    PubMed Central

    Kilgore, Katie M.; Murphy, Megan K.; Burton, Samantha L.; Wetzel, Katherine S.; Smith, S. Abigail; Xiao, Peng; Reddy, Sharmila; Francella, Nicholas; Sodora, Donald L.; Silvestri, Guido; Cole, Kelly S.; Villinger, Francois; Robinson, James E.; Pulendran, Bali; Hunter, Eric; Collman, Ronald G.; Amara, Rama R.

    2015-01-01

    ABSTRACT Antibodies that can neutralize diverse viral strains are likely to be an important component of a protective human immunodeficiency virus type 1 (HIV-1) vaccine. To this end, preclinical simian immunodeficiency virus (SIV)-based nonhuman primate immunization regimens have been designed to evaluate and enhance antibody-mediated protection. However, these trials often rely on a limited selection of SIV strains with extreme neutralization phenotypes to assess vaccine-elicited antibody activity. To mirror the viral panels used to assess HIV-1 antibody breadth, we created and characterized a novel panel of 14 genetically and phenotypically diverse SIVsm envelope (Env) glycoproteins. To assess the utility of this panel, we characterized the neutralizing activity elicited by four SIVmac239 envelope-expressing DNA/modified vaccinia virus Ankara vector- and protein-based vaccination regimens that included the immunomodulatory adjuvants granulocyte-macrophage colony-stimulating factor, Toll-like receptor (TLR) ligands, and CD40 ligand. The SIVsm Env panel exhibited a spectrum of neutralization sensitivity to SIV-infected plasma pools and monoclonal antibodies, allowing categorization into three tiers. Pooled sera from 91 rhesus macaques immunized in the four trials consistently neutralized only the highly sensitive tier 1a SIVsm Envs, regardless of the immunization regimen. The inability of vaccine-mediated antibodies to neutralize the moderately resistant tier 1b and tier 2 SIVsm Envs defined here suggests that those antibodies were directed toward epitopes that are not accessible on most SIVsm Envs. To achieve a broader and more effective neutralization profile in preclinical vaccine studies that is relevant to known features of HIV-1 neutralization, more emphasis should be placed on optimizing the Env immunogen, as the neutralization profile achieved by the addition of adjuvants does not appear to supersede the neutralizing antibody profile determined by the immunogen. IMPORTANCE Many in the HIV/AIDS vaccine field believe that the ability to elicit broadly neutralizing antibodies capable of blocking genetically diverse HIV-1 variants is a critical component of a protective vaccine. Various SIV-based nonhuman primate vaccine studies have investigated ways to improve antibody-mediated protection against a heterologous SIV challenge, including administering adjuvants that might stimulate a greater neutralization breadth. Using a novel SIV neutralization panel and samples from four rhesus macaque vaccine trials designed for cross comparison, we show that different regimens expressing the same SIV envelope immunogen consistently elicit antibodies that neutralize only the very sensitive tier 1a SIV variants. The results argue that the neutralizing antibody profile elicited by a vaccine is primarily determined by the envelope immunogen and is not substantially broadened by including adjuvants, resulting in the conclusion that the envelope immunogen itself should be the primary consideration in efforts to elicit antibodies with greater neutralization breadth. PMID:26018167

  4. Development of a High-Content Orthopoxvirus Infectivity and Neutralization Assays

    PubMed Central

    Gates, Irina; Olson, Victoria; Smith, Scott; Patel, Nishi; Damon, Inger; Karem, Kevin

    2015-01-01

    Currently, a number of assays measure Orthopoxvirus neutralization with serum from individuals, vaccinated against smallpox. In addition to the traditional plaque reduction neutralization test (PRNT), newer higher throughput assays are based on neutralization of recombinant vaccinia virus, expressing reporter genes such as β-galactosidase or green fluorescent protein. These methods could not be used to evaluate neutralization of variola virus, since genetic manipulations of this virus are prohibited by international agreements. Currently, PRNT is the assay of choice to measure neutralization of variola virus. However, PRNT assays are time consuming, labor intensive, and require considerable volume of serum sample for testing. Here, we describe the development of a high-throughput, cell-based imaging assay that can be used to measure neutralization, and characterize replication kinetics of various Orthopoxviruses, including variola, vaccinia, monkeypox, and cowpox. PMID:26426117

  5. Analysis of variola and vaccinia virus neutralization assays for smallpox vaccines.

    PubMed

    Hughes, Christine M; Newman, Frances K; Davidson, Whitni B; Olson, Victoria A; Smith, Scott K; Holman, Robert C; Yan, Lihan; Frey, Sharon E; Belshe, Robert B; Karem, Kevin L; Damon, Inger K

    2012-07-01

    Possible smallpox reemergence drives research for third-generation vaccines that effectively neutralize variola virus. A comparison of neutralization assays using different substrates, variola and vaccinia (Dryvax and modified vaccinia Ankara [MVA]), showed significantly different 90% neutralization titers; Dryvax underestimated while MVA overestimated variola neutralization. Third-generation vaccines may rely upon neutralization as a correlate of protection.

  6. Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds

    PubMed Central

    Madani, Navid; Princiotto, Amy M.; Easterhoff, David; Bradley, Todd; Luo, Kan; Williams, Wilton B.; Liao, Hua-Xin; Moody, M. Anthony; Phad, Ganesh E.; Vázquez Bernat, Néstor; Melillo, Bruno; Santra, Sampa; Smith, Amos B.; Karlsson Hedestam, Gunilla B.; Haynes, Barton

    2016-01-01

    ABSTRACT The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. IMPORTANCE Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus-sensitizing microbicide is combined with a vaccine. PMID:26962221

  7. High degree of correlation between Ebola virus BSL-4 neutralization assays and pseudotyped VSV BSL-2 fluorescence reduction neutralization test.

    PubMed

    Konduru, Krishnamurthy; Shurtleff, Amy C; Bavari, Sina; Kaplan, Gerardo

    2018-04-01

    Ebola virus (EBOV), classified as a category A agent by the CDC and NIH, requires BSL-4 containment and induces high morbidity and mortality in humans. The 2013-2015 epidemic in West Africa underscored the urgent need to develop vaccines and therapeutics to prevent and treat EBOV disease. Neutralization assays are needed to evaluate the efficacy of EBOV vaccines and antibody therapies. Pseudotyped viruses based on nonpathogenic or attenuated vectors reduce the risks involved in the evaluation of neutralizing antibodies against highly pathogenic viruses. Selectable markers, fluorescent proteins, and luciferase have been introduced into pseudotyped viruses for detection and quantitation purposes. The current study describes the development of a BSL-2 fluorescence reduction neutralization test (FRNT) using a recombinant vesicular stomatitis virus (VSV) in which the VSV-G envelope gene was replaced with the EBOV glycoprotein (GP) and green fluorescent protein (GFP) genes (rVSV-EBOVgp-GFP). Cells infected with rVSV-EBOVgp-GFP express GFP. Anti-GP neutralizing monoclonal and polyclonal antibodies blocked rVSV-EBOVgp-GFP infection preventing or reducing GFP fluorescence. The high degree of correlation between the EBOV BSL-2 FRNT and the BSL-4 plaque reduction neutralization test (PRNT), the accepted standard of EBOV neutralization tests, supports the use of the EBOV BSL-2 FRNT to evaluate neutralizing antibodies in clinical trials. Published by Elsevier B.V.

  8. Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160DELTAV1V2 is strongly immunogenic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerbois, Mathilde; Moris, Arnaud; Combredet, Chantal

    Although a live attenuated HIV vaccine is not currently considered for safety reasons, a strategy inducing both T cells and neutralizing antibodies to native assembled HIV-1 particles expressed by a replicating virus might mimic the advantageous characteristics of live attenuated vaccine. To this aim, we generated a live attenuated recombinant measles vaccine expressing HIV-1 Gag virus-like particles (VLPs) covered with gp160DELTAV1V2 Env protein. The measles-HIV virus replicated efficiently in cell culture and induced the intense budding of HIV particles covered with Env. In mice sensitive to MV infection, this recombinant vaccine stimulated high levels of cellular and humoral immunity tomore » both MV and HIV with neutralizing activity. The measles-HIV virus infected human professional antigen-presenting cells, such as dendritic cells and B cells, and induced efficient presentation of HIV-1 epitopes and subsequent activation of human HIV-1 Gag-specific T cell clones. This candidate vaccine will be next tested in non-human primates. As a pediatric vaccine, it might protect children and adolescents simultaneously from measles and HIV.« less

  9. Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity

    DOE PAGES

    Long, Feng; Fong, Rachel H.; Austin, Stephen K.; ...

    2015-10-26

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes severe acute and chronic disease in humans. Although highly inhibitory murine and human monoclonal antibodies (mAbs) have been generated, the structural basis of their neutralizing activity remains poorly characterized. In this paper, we determined the cryo-EM structures of chikungunya virus-like particles complexed with antibody fragments (Fab) of two highly protective human mAbs, 4J21 and 5M16, that block virus fusion with host membranes. Both mAbs bind primarily to sites within the A and B domains, as well as to the B domain’s β-ribbon connector of the viral glycoprotein E2. The footprints ofmore » these antibodies on the viral surface were consistent with results from loss-of-binding studies using an alanine scanning mutagenesis-based epitope mapping approach. The Fab fragments stabilized the position of the B domain relative to the virus, particularly for the complex with 5M16. Finally, this finding is consistent with a mechanism of neutralization in which anti-CHIKV mAbs that bridge the A and B domains impede movement of the B domain away from the underlying fusion loop on the E1 glycoprotein and therefore block the requisite pH-dependent fusion of viral and host membranes.« less

  10. A novel, colorimetric neutralization assay for measuring antibodies to influenza viruses.

    PubMed

    Lehtoranta, Liisa; Villberg, Anja; Santanen, Riitta; Ziegler, Thedi

    2009-08-01

    A colorimetric cell proliferation assay for measuring neutralizing antibodies to influenza viruses in human sera is described. Following a 90-min incubation, the serum-virus mixture was transferred to Madin-Darby canine kidney cells cultured in 96-well plates. After further incubation for three days, a tetrazolium salt was added to the wells. Cellular mitochondrial dehydrogenases cleave the tetrazolium salt to formazan, and the resulting color change is read by a spectrophotometer. The absorbance values correlate directly to the number of viable cells in the assay well and thus also to the neutralizing activity of influenza-specific antibodies present in the serum. With the few hands-on manipulations required, this assay allows simultaneous testing of a considerable number of sera, offers opportunities for automation, and is suitable for use under biosafety level-3 conditions. The test was used to study the antibody response after the administration of seasonal, inactivated, trivalent influenza vaccine. Antibody titers determined by the neutralization test in pre- and post-vaccination serum pairs were compared with those obtained by the hemagglutination inhibition assay. The neutralization test yielded higher pre- and post-vaccination titers and a larger number of significant increases in post-vaccination antibody titer than the hemagglutination inhibition test. This new test format could serve as a valuable laboratory tool for influenza vaccine studies.

  11. Antibodies to the A27 protein of vaccinia virus neutralize and protect against infection but represent a minor component of Dryvax vaccine--induced immunity.

    PubMed

    He, Yong; Manischewitz, Jody; Meseda, Clement A; Merchlinsky, Michael; Vassell, Russell A; Sirota, Lev; Berkower, Ira; Golding, Hana; Weiss, Carol D

    2007-10-01

    The smallpox vaccine Dryvax, which consists of replication-competent vaccinia virus, elicits antibodies that play a major role in protection. Several vaccinia proteins generate neutralizing antibodies, but their importance for protection is unknown. We investigated the potency of antibodies to the A27 protein of the mature virion in neutralization and protection experiments and the contributions of A27 antibodies to Dryvax-induced immunity. Using a recombinant A27 protein (rA27), we confirmed that A27 contains neutralizing determinants and that vaccinia immune globulin (VIG) derived from Dryvax recipients contains reactivity to A27. However, VIG neutralization was not significantly reduced when A27 antibodies were removed, and antibodies elicited by an rA27 enhanced the protection conferred by VIG in passive transfer experiments. These findings demonstrate that A27 antibodies do not represent the major fraction of neutralizing activity in VIG and suggest that immunity may be augmented by vaccines and immune globulins that include strong antibody responses to A27.

  12. A Japanese Encephalitis Virus Peptide Present on Johnson Grass Mosaic Virus-Like Particles Induces Virus-Neutralizing Antibodies and Protects Mice against Lethal Challenge

    PubMed Central

    Saini, Manisha; Vrati, Sudhanshu

    2003-01-01

    Protection against Japanese encephalitis virus (JEV) is antibody dependent, and neutralizing antibodies alone are sufficient to impart protection. Thus, we are aiming to develop a peptide-based vaccine against JEV by identifying JEV peptide sequences that could induce virus-neutralizing antibodies. Previously, we have synthesized large amounts of Johnson grass mosaic virus (JGMV) coat protein (CP) in Escherichia coli and have shown that it autoassembled to form virus-like particles (VLPs). The envelope (E) protein of JEV contains the virus-neutralization epitopes. Four peptides from different locations within JEV E protein were chosen, and these were fused to JGMV CP by recombinant DNA methods. The fusion protein autoassembled to form VLPs that could be purified by sucrose gradient centrifugation. Immunization of mice with the recombinant VLPs containing JEV peptide sequences induced anti-peptide and anti-JEV antibodies. A 27-amino-acid peptide containing amino acids 373 to 399 from JEV E protein, present on JGMV VLPs, induced virus-neutralizing antibodies. Importantly, these antibodies were obtained without the use of an adjuvant. The immunized mice showed significant protection against a lethal JEV challenge. PMID:12610124

  13. The significance for epidemiological studies anti-measles antibody detection examined by enzyme immunoassay (EIA) and plaque reduction neutralization test (PRNT).

    PubMed

    Siennicka, Joanna; Częścik, Agnieszka; Trzcińska, Agnieszka

    2014-01-01

    The paper discusses the role of anti-measles antibodies for protection and significance for epidemiological studies determination of antibodies by different serological methods. The comparison of anti-measles virus antibodies levels measured by enzyme immunoassay (EIA) and Plaque Reduction Neutralization Test (PRNT) was described. It was found that the 200 mIU/ml of anti-measles activity measured by PRNT (level protection against symp- tomatic disease) is equivalent of 636 mIU/ml measured by EIA (Enzygnost®Anti-Measles Virus/IgG, Simens).

  14. Non-neutralizing antibodies induced by seasonal influenza vaccine prevent, not exacerbate A(H1N1)pdm09 disease

    PubMed Central

    Kim, Jin Hyang; Reber, Adrian J.; Kumar, Amrita; Ramos, Patricia; Sica, Gabriel; Music, Nedzad; Guo, Zhu; Mishina, Margarita; Stevens, James; York, Ian A.; Jacob, Joshy; Sambhara, Suryaprakash

    2016-01-01

    The association of seasonal trivalent influenza vaccine (TIV) with increased infection by 2009 pandemic H1N1 (A(H1N1)pdm09) virus, initially observed in Canada, has elicited numerous investigations on the possibility of vaccine-associated enhanced disease, but the potential mechanisms remain largely unresolved. Here, we investigated if prior immunization with TIV enhanced disease upon A(H1N1)pdm09 infection in mice. We found that A(H1N1)pdm09 infection in TIV-immunized mice did not enhance the disease, as measured by morbidity and mortality. Instead, TIV-immunized mice cleared A(H1N1)pdm09 virus and recovered at an accelerated rate compared to control mice. Prior TIV immunization was associated with potent inflammatory mediators and virus-specific CD8 T cell activation, but efficient immune regulation, partially mediated by IL-10R-signaling, prevented enhanced disease. Furthermore, in contrast to suggested pathological roles, pre-existing non-neutralizing antibodies (NNAbs) were not associated with enhanced virus replication, but rather with promoted antigen presentation through FcR-bearing cells that led to potent activation of virus-specific CD8 T cells. These findings provide new insights into interactions between pre-existing immunity and pandemic viruses. PMID:27849030

  15. Non-neutralizing antibodies induced by seasonal influenza vaccine prevent, not exacerbate A(H1N1)pdm09 disease.

    PubMed

    Kim, Jin Hyang; Reber, Adrian J; Kumar, Amrita; Ramos, Patricia; Sica, Gabriel; Music, Nedzad; Guo, Zhu; Mishina, Margarita; Stevens, James; York, Ian A; Jacob, Joshy; Sambhara, Suryaprakash

    2016-11-16

    The association of seasonal trivalent influenza vaccine (TIV) with increased infection by 2009 pandemic H1N1 (A(H1N1)pdm09) virus, initially observed in Canada, has elicited numerous investigations on the possibility of vaccine-associated enhanced disease, but the potential mechanisms remain largely unresolved. Here, we investigated if prior immunization with TIV enhanced disease upon A(H1N1)pdm09 infection in mice. We found that A(H1N1)pdm09 infection in TIV-immunized mice did not enhance the disease, as measured by morbidity and mortality. Instead, TIV-immunized mice cleared A(H1N1)pdm09 virus and recovered at an accelerated rate compared to control mice. Prior TIV immunization was associated with potent inflammatory mediators and virus-specific CD8 T cell activation, but efficient immune regulation, partially mediated by IL-10R-signaling, prevented enhanced disease. Furthermore, in contrast to suggested pathological roles, pre-existing non-neutralizing antibodies (NNAbs) were not associated with enhanced virus replication, but rather with promoted antigen presentation through FcR-bearing cells that led to potent activation of virus-specific CD8 T cells. These findings provide new insights into interactions between pre-existing immunity and pandemic viruses.

  16. Dengue-1 Virus Envelope Glycoprotein Gene Expressed in Recombinant Baculovirus Elicits Virus-Neutralizing Antibody in Mice and Protects them from Virus Challenge

    DTIC Science & Technology

    1991-01-01

    8217 terminus of E. When the recombinant virus was grown in Spodoptera frugiperda cells. about I mg of E antigen was made per 10’ cells. Recombinant E antigen...assay with DEN-I virus coprotein gene and its expression in Spodoptera hyperimmune mouse ascitic fluid. This heat-in- frugiperda cells activated...immunization, S. frugiperda cells infected with tion with BstNI (cuts at nucleotides 801 and recombinant baculovirus were pelleted. lysed by 2150). The

  17. Dengue-Immune Humans Have Higher Levels of Complement-Independent Enhancing Antibody than Complement-Dependent Neutralizing Antibody.

    PubMed

    Yamanaka, Atsushi; Konishi, Eiji

    2017-09-25

    Dengue is the most important arboviral disease worldwide. We previously reported that most inhabitants of dengue-endemic countries who are naturally immune to the disease have infection-enhancing antibodies whose in vitro activity does not decrease in the presence of complement (complement-independent enhancing antibodies, or CiEAb). Here, we compared levels of CiEAb and complement-dependent neutralizing antibodies (CdNAb) in dengue-immune humans. A typical antibody dose-response pattern obtained in our assay system to measure the balance between neutralizing and enhancing antibodies showed both neutralizing and enhancing activities depending on serum dilution factor. The addition of complement to the assay system increased the activity of neutralizing antibodies at lower dilutions, indicating the presence of CdNAb. In contrast, similar dose-response curves were obtained with and without complement at higher dilutions, indicating higher levels of CiEAb than CdNAb. For experimental support for the higher CiEAb levels, a cocktail of mouse monoclonal antibodies against dengue virus type 1 was prepared. The antibody dose-response curves obtained in this assay, with or without complement, were similar to those obtained with human serum samples when a high proportion of D1-V-3H12 (an antibody exhibiting only enhancing activity and thus a model for CiEAb) was used in the cocktail. This study revealed higher-level induction of CiEAb than CdNAb in humans naturally infected with dengue viruses.

  18. 9 CFR 113.35 - Detection of viricidal activity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... with each virus fraction for which it is to be used as a diluent. If the vaccine to be rehydrated contains more than one virus fraction, the test shall be conducted with each fraction after neutralization of the other fraction(s), and/or dilution of the vaccine beyond the titer range of the other fraction...

  19. Infant transmitted/founder HIV-1 viruses from peripartum transmission are neutralization resistant to paired maternal plasma

    PubMed Central

    Kumar, Amit; Smith, Claire E. P.; Giorgi, Elena E.; Martinez, David R.; Yusim, Karina; Stamper, Lisa; McGuire, Erin; Montefiori, David C.

    2018-01-01

    Despite extensive genetic diversity of HIV-1 in chronic infection, a single or few maternal virus variants become the founders of an infant’s infection. These transmitted/founder (T/F) variants are of particular interest, as a maternal or infant HIV vaccine should raise envelope (Env) specific IgG responses capable of blocking this group of viruses. However, the maternal or infant factors that contribute to selection of infant T/F viruses are not well understood. In this study, we amplified HIV-1 env genes by single genome amplification from 16 mother-infant transmitting pairs from the U.S. pre-antiretroviral era Women Infant Transmission Study (WITS). Infant T/F and representative maternal non-transmitted Env variants from plasma were identified and used to generate pseudoviruses for paired maternal plasma neutralization sensitivity analysis. Eighteen out of 21 (85%) infant T/F Env pseudoviruses were neutralization resistant to paired maternal plasma. Yet, all infant T/F viruses were neutralization sensitive to a panel of HIV-1 broadly neutralizing antibodies and variably sensitive to heterologous plasma neutralizing antibodies. Also, these infant T/F pseudoviruses were overall more neutralization resistant to paired maternal plasma in comparison to pseudoviruses from maternal non-transmitted variants (p = 0.012). Altogether, our findings suggest that autologous neutralization of circulating viruses by maternal plasma antibodies select for neutralization-resistant viruses that initiate peripartum transmission, raising the speculation that enhancement of this response at the end of pregnancy could further reduce infant HIV-1 infection risk. PMID:29672607

  20. Broad-spectrum neutralization of avian influenza viruses by sialylated human milk oligosaccharides: in vivo assessment of 3'-sialyllactose against H9N2 in chickens.

    PubMed

    Pandey, Ramesh Prasad; Kim, Dae Hee; Woo, Jinsuk; Song, Jaeyoung; Jang, Sang Ho; Kim, Joon Bae; Cheong, Kwang Myun; Oh, Jin Sik; Sohng, Jae Kyung

    2018-02-07

    Two sialylated human milk oligosaccharides (SHMOs) 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL) were accessed for their possible antiviral activity against six different subtypes of thirteen avian influenza (AI) viruses in vitro. 3'-SL exhibited promising antiviral activity against almost all subtypes of tested AI viruses in hemagglutination inhibition assay, whereas 6'-SL showed activity against few selected H1N1, H1N2, and H3N2 subtype strains. 3'-SL has minimum inhibitory concentration values of 15.62 mM or less in more than half of the viruses examined. 3'-SL also showed effective inactivation of H9N2 Korea isolate (A/Chicken/Korea/MS96/1996) at 12.5 mM concentration in Madin Darby Canine Kidney (MDCK) cell line. Thus, 3'-SL was further studied for in vivo study against H9N2 virus in pathogen free chicken experiment models. In vivo study exhibited improved clinical symptoms on H9N2 infected chickens when treated with 3'-SL. Moreover, treating chickens with 3'-SL resulted in complete elimination of H9N2 viruses within 24 h of virus infection (0.8 HAU of H9N2). Indirect ELISA assay confirmed complete wash-out of H9N2 viruses from the colon after neutralization by 3'-SL without entering the blood stream. These in vivo results open up possible applications of 3'-SL for the prevention of AI virus infections in birds by a simple cleansing mechanism.

  1. Correlation of BK Virus Neutralizing Serostatus With the Incidence of BK Viremia in Kidney Transplant Recipients.

    PubMed

    Abend, Johanna R; Changala, Marguerite; Sathe, Atul; Casey, Fergal; Kistler, Amy; Chandran, Sindhu; Howard, Abigail; Wojciechowski, David

    2017-06-01

    BK virus (BKV)-associated nephropathy is the second leading cause of graft loss in kidney transplant recipients. Due to the high prevalence of persistent infection with BKV in the general population, it is possible that either the transplant recipient or donor may act as the source of virus resulting in viruria and viremia. Although several studies suggest a correlation between donor-recipient serostatus and the development of BK viremia, specific risk factors for BKV-related complications in the transplant setting remain to be established. We retrospectively determined the pretransplant BKV neutralizing serostatus of 116 donors (D)-recipient (R) pairs using infectious BKV neutralization assays with representatives from the 4 major viral serotypes. The neutralizing serostatus of donors and recipients was then correlated with the incidence of BK viremia during the first year posttransplantation. There were no significant differences in baseline demographics or transplant data among the 4 neutralizing serostatus groups, with the exception of calculated panel-reactive antibody which was lowest in the D+/R- group. Recipients of kidneys from donors with significant serum neutralizing activity (D+) had elevated risk for BK viremia, regardless of recipient serostatus (D+ versus D-: odd ratio, 5.0; 95% confidence interval, 1.9-12.7]; P = 0.0008). Furthermore, donor-recipient pairs with D+/R- neutralizing serostatus had the greatest risk for BK viremia (odds ratio, 4.9; 95% confidence interval, 1.7-14.6; P = 0.004). Donor neutralizing serostatus correlates significantly with incidence of posttransplant BK viremia. Determination of donor-recipient neutralizing serostatus may be useful in assessing the risk of BKV infection in kidney transplant recipients.

  2. Mortality of captive whooping cranes caused by eastern equine encephalitis virus.

    PubMed

    Dein, F J; Carpenter, J W; Clark, G G; Montali, R J; Crabbs, C L; Tsai, T F; Docherty, D E

    1986-11-01

    Of 39 captive whooping cranes (Grus americana), 7 died during a 7-week period (Sept 17 through Nov 4, 1984) at the Patuxent Wildlife Research Center, Laurel, Md. Before their deaths, 4 cranes did not develop clinical signs, whereas the other 3 cranes were lethargic and ataxic, with high aspartate transaminase, gamma-glutamyl transferase, and lactic acid dehydrogenase activities, and high uric acid concentrations. Necropsies indicated that the birds had ascites, intestinal mucosal discoloration, fat depletion, hepatomegaly, splenomegaly, and visceral gout. Microscopically, extensive necrosis and inflammation were seen in many visceral organs; the CNS was not affected. Eastern equine encephalitis (EEE) virus was isolated from specimens of the livers, kidneys, lungs, brains, and intestines of 4 of the 7 birds that died, and EEE virus-neutralizing antibody was detected in 14 (44%) of the 32 surviving birds. Other infectious or toxic agents were not found. Morbidity or mortality was not detected in 240 sandhill cranes (Grus canadensis) interspersed among the whooping cranes; however, 13 of the 32 sandhill cranes evaluated had EEE virus-neutralizing antibody. Of the 41 wild birds evaluated in the area, 3 (4%) had EEE virus-neutralizing antibody. Immature Culiseta melanura (the most probable mosquito vector) were found in scattered foci 5 km from the research center.

  3. Mortality of captive whooping cranes caused by eastern equine encephalitis virus

    USGS Publications Warehouse

    Dein, F.J.; Carpenter, J.W.; Clark, G.G.; Montali, R.J.; Crabbs, C.L.; Tsai, T.F.; Docherty, D.E.

    1986-01-01

    Of 39 captive whooping cranes (Grus americana), 7 died during a 7-week period (Sept 17 through Nov 4, 1984) at the Patuxent Wildlife Research Center, Laurel, Md. Before their deaths, 4 cranes did not develop clinical signs, whereas the other 3 cranes were lethargic and ataxic, with high aspartate transaminase, gamma-glutamyl transferase, and lactic acid dehydrogenase activities, and high uric acid concentrations. Necropsies indicated that the birds had ascites, intestinal mucosal discoloration, fat depletion, hepatomegaly, splenomegaly, and visceral gout. Microscopically, extensive necrosis and inflammation were seen in many visceral organs; the CNS was not affected. Eastern equine encephalitis (EEE) virus was isolated from specimens of the livers, kidneys, lungs, brains, and intestines of 4 of the 7 birds that died, and EEE virus-neutralizing antibody was detected in 14 (44%) of the 32 surviving birds. Other infectious or toxic agents were not found. Morbidity or mortality was not detected in 240 sandhill cranes (Grus canadensis) interspersed among the whooping cranes; however, 13 of the 32 sandhill cranes evaluated had EEE virus-neutralizing antibody. Of the 41 wild birds evaluated in the area, 3 (4%) had EEE virus-neutralizing antibody. Immature Culiseta melanura (the most probable mosquito vector) were found in scattered foci 5 km from the research center.

  4. Conserved stem fragment from H3 influenza hemagglutinin elicits cross-clade neutralizing antibodies through stalk-targeted blocking of conformational change during membrane fusion.

    PubMed

    Gong, Xin; Yin, He; Shi, Yuhua; Guan, Shanshan; He, Xiaoqiu; Yang, Lan; Yu, Yongjiao; Kuai, Ziyu; Jiang, Chunlai; Kong, Wei; Wang, Song; Shan, Yaming

    2016-04-01

    Currently available influenza vaccines typically fail to elicit/boost broadly neutralizing antibodies due to the mutability of virus sequences and conformational changes during protective immunity, thereby limiting their efficacy. This problem needs to be addressed by further understanding the mechanisms of neutralization and finding the desired neutralizing site during membrane fusion. This study specifically focused on viruses of the H3N2 subtype, which have persisted as a principal source of influenza-related morbidity and mortality in humans since the 1968 influenza pandemic. Through sequence alignment and epitope prediction, a series of highly conserved stem fragments (spanning 47 years) were found and coupled to the Keyhole Limpet Hemocyanin (KLH) protein. By application of a combinatorial display library and crystal structure modeling, a stem fragment immunogen, located at the turning point of the HA neck undergoing conformational change during membrane fusion with both B- and T-cell epitopes, was identified. After synthesis of the optimal stem fragment using a multiple antigen peptide (MAP) system, strong humoral immune responses and cross-clade neutralizing activities against strains from the H3 subtype of group 2 influenza viruses after animal immunizations were observed. By detection of nuclear protein immunofluorescence with acid bypass treatment, antisera raised against MAP4 immunogens of the stem fragment showed the potential to inhibit the conformational change of HA in stem-targeted virus neutralization. The identification of this conserved stem fragment provides great potential for exploitation of this site of vulnerability in therapeutic and vaccine design. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  5. Crimean-Congo Hemorrhagic Fever Virus Subunit Vaccines Induce High Levels of Neutralizing Antibodies But No Protection in STAT1 Knockout Mice.

    PubMed

    Kortekaas, Jeroen; Vloet, Rianka P M; McAuley, Alexander J; Shen, Xiaoli; Bosch, Berend Jan; de Vries, Laura; Moormann, Rob J M; Bente, Dennis A

    2015-12-01

    Crimean-Congo hemorrhagic fever virus is a tick-borne bunyavirus of the Nairovirus genus that causes hemorrhagic fever in humans with high case fatality. Here, we report the development of subunit vaccines and their efficacy in signal transducer and activator of transcription 1 (STAT1) knockout mice. Ectodomains of the structural glycoproteins Gn and Gc were produced using a Drosophila insect cell-based expression system. A single vaccination of STAT129 mice with adjuvanted Gn or Gc ectodomains induced neutralizing antibody responses, which were boosted by a second vaccination. Despite these antibody responses, mice were not protected from a CCHFV challenge infection. These results suggest that neutralizing antibodies against CCHFV do not correlate with protection of STAT1 knockout mice.

  6. A constant threat for HIV: Fc-engineering to enhance broadly neutralizing antibody activity for immunotherapy of the acquired immunodeficiency syndrome.

    PubMed

    Nimmerjahn, Falk

    2015-08-01

    Passive immunotherapy with polyclonal or hyperimmune serum immunoglobulin G (IgG) preparations provides an efficient means of protecting immunocompromised patients from microbial infections. More recently, the use of passive immunotherapy to prevent or to treat established infections with the human immunodeficiency virus (HIV) has gained much attention, due to promising preclinical data obtained in monkey and humanized mouse in vivo model systems, demonstrating that the transfer of HIV-specific antibodies can not only prevent HIV infection, but also diminish virus load during chronic infection. Furthermore, an array of broadly neutralizing HIV-specific antibodies has become available and the importance of the IgG constant region as a critical modulator of broadly neutralizing activity has been demonstrated. The aim of this review is to summarize the most recent findings with regard to the molecular and cellular mechanisms responsible for antibody-mediated clearance of HIV infection, and to discuss how this may help to improve HIV therapy via optimizing Fcγ-receptor-dependent activities of HIV-specific antibodies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Mechanism of human antibody-mediated neutralization of Marburg virus.

    PubMed

    Flyak, Andrew I; Ilinykh, Philipp A; Murin, Charles D; Garron, Tania; Shen, Xiaoli; Fusco, Marnie L; Hashiguchi, Takao; Bornholdt, Zachary A; Slaughter, James C; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G; Ward, Andrew B; Saphire, Erica Ollmann; Bukreyev, Alexander; Crowe, James E

    2015-02-26

    The mechanisms by which neutralizing antibodies inhibit Marburg virus (MARV) are not known. We isolated a panel of neutralizing antibodies from a human MARV survivor that bind to MARV glycoprotein (GP) and compete for binding to a single major antigenic site. Remarkably, several of the antibodies also bind to Ebola virus (EBOV) GP. Single-particle EM structures of antibody-GP complexes reveal that all of the neutralizing antibodies bind to MARV GP at or near the predicted region of the receptor-binding site. The presence of the glycan cap or mucin-like domain blocks binding of neutralizing antibodies to EBOV GP, but not to MARV GP. The data suggest that MARV-neutralizing antibodies inhibit virus by binding to infectious virions at the exposed MARV receptor-binding site, revealing a mechanism of filovirus inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Dynamics of HIV neutralization by a microbicide formulation layer: biophysical fundamentals and transport theory.

    PubMed

    Geonnotti, Anthony R; Katz, David F

    2006-09-15

    Topical microbicides are an emerging HIV/AIDS prevention modality. Microbicide biofunctionality requires creation of a chemical-physical barrier against HIV transmission. Barrier effectiveness derives from properties of the active compound and its delivery system, but little is known about how these properties translate into microbicide functionality. We developed a mathematical model simulating biologically relevant transport and HIV-neutralization processes occurring when semen-borne virus interacts with a microbicide delivery vehicle coating epithelium. The model enables analysis of how vehicle-related variables, and anti-HIV compound characteristics, affect microbicide performance. Results suggest HIV neutralization is achievable with postcoital coating thicknesses approximately 100 mum. Increased microbicide concentration and potency hasten viral neutralization and diminish penetration of infectious virus through the coating layer. Durable vehicle structures that restrict viral diffusion could provide significant protection. Our findings demonstrate the need to pair potent active ingredients with well-engineered formulation vehicles, and highlight the importance of the dosage form in microbicide effectiveness. Microbicide formulations can function not only as drug delivery vehicles, but also as physical barriers to viral penetration. Total viral neutralization with 100-mum-thin coating layers supports future microbicide use against HIV transmission. This model can be used as a tool to analyze diverse factors that govern microbicide functionality.

  9. Autologous neutralizing antibody to human immunodeficiency virus-1 and replication-competent virus recovered from CD4+ T-cell reservoirs in pediatric HIV-1-infected patients on HAART.

    PubMed

    Ching, Natascha; Nielsen-Saines, Karin A; Deville, Jaime G; Wei, Lian S; Garratty, Eileen; Bryson, Yvonne J

    2010-05-01

    A patient's ability to produce autologous neutralizing antibody (ANAB) to current and past HIV isolates correlates with reduced disease progression and protects against maternal-fetal transmission. Little is known about the effects of prolonged viral suppression on the ANAB response in pediatric HIV-infected patients receiving HAART because the virus is hard to isolate, except by special methods. We therefore assessed ANAB to pre-HAART PBMC virus isolates and post-HAART replication-competent virus (RCV) isolates recovered from latent CD4(+) T-cell reservoirs in perinatally HIV-infected children by using a PBMC-based assay and 90% neutralization titers. We studied two infants and three children before and after HAART. At the time of RCV isolation (n = 4), plasma HIV RNA was <50 copies/ml. At baseline, four of five children had detectable ANAB titers to concurrent pre-HAART virus isolates. Although ANAB was detected in all subjects at several time points despite prolonged HAART and undetectable viremia, the response was variable. ANAB titers to concurrent post-HAART RCV and earlier pre-HAART plasma were present in 3 children suggesting prior exposure to this virus. Post-HAART RCV isolates had reduced replication kinetics in vitro compared to pre-HAART viruses. The presence of ANAB over time suggests that low levels of viral replication may still be ongoing despite HAART. The observation of baseline ANAB activity with earlier plasma against a later RCV suggests that the "latent" reservoir may be established early in life before HAART.

  10. Isolation of a High Affinity Neutralizing Monoclonal Antibody against 2009 Pandemic H1N1 Virus That Binds at the ‘Sa’ Antigenic Site

    PubMed Central

    Mishra, Arpita; Yeolekar, Leena; Dhere, Rajeev; Kapre, Subhash; Varadarajan, Raghavan; Gupta, Satish Kumar

    2013-01-01

    Influenza virus evades host immunity through antigenic drift and shift, and continues to circulate in the human population causing periodic outbreaks including the recent 2009 pandemic. A large segment of the population was potentially susceptible to this novel strain of virus. Historically, monoclonal antibodies (MAbs) have been fundamental tools for diagnosis and epitope mapping of influenza viruses and their importance as an alternate treatment option is also being realized. The current study describes isolation of a high affinity (K D = 2.1±0.4 pM) murine MAb, MA2077 that binds specifically to the hemagglutinin (HA) surface glycoprotein of the pandemic virus. The antibody neutralized the 2009 pandemic H1N1 virus in an in vitro microneutralization assay (IC50 = 0.08 µg/ml). MA2077 also showed hemagglutination inhibition activity (HI titre of 0.50 µg/ml) against the pandemic virus. In a competition ELISA, MA2077 competed with the binding site of the human MAb, 2D1 (isolated from a survivor of the 1918 Spanish flu pandemic) on pandemic H1N1 HA. Epitope mapping studies using yeast cell-surface display of a stable HA1 fragment, wherein ‘Sa’ and ‘Sb’ sites were independently mutated, localized the binding site of MA2077 within the ‘Sa’ antigenic site. These studies will facilitate our understanding of antigen antibody interaction in the context of neutralization of the pandemic influenza virus. PMID:23383214

  11. Prevalence and titers of yellow fever virus neutralizing antibodies in previously vaccinated adults.

    PubMed

    Miyaji, Karina Takesaki; Avelino-Silva, Vivian Iida; Simões, Marisol; Freire, Marcos da Silva; Medeiros, Carlos Roberto de; Braga, Patrícia Emilia; Neves, Maria Angélica Acalá; Lopes, Marta Heloisa; Kallas, Esper Georges; Sartori, Ana Marli Christovam

    2017-04-03

    The World Health Organization (WHO) recommends one single dose of the Yellow Fever (YF) vaccine based on studies of antibody persistency in healthy adults. We assessed the prevalence and titers of YF virus neutralizing antibodies in previously vaccinated persons aged  60 years, in comparison to younger adults. We also evaluated the correlation between antibody titers and the time since vaccination among participants who received one vaccine dose, and the seropositivity among participants vaccinated prior to or within the past 10 years. previously vaccinated healthy persons aged  18 years were included. YF virus neutralizing antibody titers were determined by means of the 50% Plaque Reduction Neutralization Test. 46 persons aged  60 years and 48 persons aged 18 to 59 years were enrolled. There was no significant difference in the prevalence of YF virus neutralizing antibodies between the two groups (p = 0.263). However, titers were significantly lower in the elderly (p = 0.022). There was no correlation between YF virus neutralizing antibody titers and the time since vaccination. There was no significant difference in seropositivity among participants vaccinated prior to or within the past 10 years. the clinical relevance of the observed difference in YF virus neutralizing antibody titers between the two groups is not clear.

  12. Characterization of humoral responses to soluble trimeric HIV gp140 from a clade A Ugandan field isolate

    PubMed Central

    2013-01-01

    Trimeric soluble forms of HIV gp140 envelope glycoproteins represent one of the closest molecular structures compared to native spikes present on intact virus particles. Trimeric soluble gp140 have been generated by several groups and such molecules have been shown to induce antibodies with neutralizing activity against homologous and heterologous viruses. In the present study, we generated a recombinant trimeric soluble gp140, derived from a previously identified Ugandan A-clade HIV field isolate (gp14094UG018). Antibodies elicited in immunized rabbits show a broad binding pattern to HIV envelopes of different clades. An epitope mapping analysis reveals that, on average, the binding is mostly focused on the C1, C2, V3, V5 and C5 regions. Immune sera show neutralization activity to Tier 1 isolates of different clades, demonstrating cross clade neutralizing activity which needs to be further broadened by possible structural modifications of the clade A gp14094UG018. Our results provide a rationale for the design and evaluation of immunogens and the clade A gp14094UG018 shows promising characteristics for potential involvement in an effective HIV vaccine with broad activity. PMID:23835244

  13. Characterization of humoral responses to soluble trimeric HIV gp140 from a clade A Ugandan field isolate.

    PubMed

    Visciano, Maria Luisa; Tagliamonte, Maria; Stewart-Jones, Guillaume; Heyndrickx, Leo; Vanham, Guido; Jansson, Marianne; Fomsgaard, Anders; Grevstad, Berit; Ramaswamy, Meghna; Buonaguro, Franco M; Tornesello, Maria Lina; Biswas, Priscilla; Scarlatti, Gabriella; Buonaguro, Luigi

    2013-07-08

    Trimeric soluble forms of HIV gp140 envelope glycoproteins represent one of the closest molecular structures compared to native spikes present on intact virus particles. Trimeric soluble gp140 have been generated by several groups and such molecules have been shown to induce antibodies with neutralizing activity against homologous and heterologous viruses. In the present study, we generated a recombinant trimeric soluble gp140, derived from a previously identified Ugandan A-clade HIV field isolate (gp14094UG018). Antibodies elicited in immunized rabbits show a broad binding pattern to HIV envelopes of different clades. An epitope mapping analysis reveals that, on average, the binding is mostly focused on the C1, C2, V3, V5 and C5 regions. Immune sera show neutralization activity to Tier 1 isolates of different clades, demonstrating cross clade neutralizing activity which needs to be further broadened by possible structural modifications of the clade A gp14094UG018. Our results provide a rationale for the design and evaluation of immunogens and the clade A gp14094UG018 shows promising characteristics for potential involvement in an effective HIV vaccine with broad activity.

  14. Mutation in West Nile Virus Structural Protein prM during Human Infection.

    PubMed

    Lustig, Yaniv; Lanciotti, Robert S; Hindiyeh, Musa; Keller, Nathan; Milo, Ron; Mayan, Shlomo; Mendelson, Ella

    2016-09-01

    A mutation leading to substitution of a key amino acid in the prM protein of West Nile virus (WNV) occurred during persistent infection of an immunocompetent patient. WNV RNA persisted in the patient's urine and serum in the presence of low-level neutralizing antibodies. This case demonstrates active replication of WNV during persistent infection.

  15. HIV-1 Cross-Reactive Primary Virus Neutralizing Antibody Response Elicited by Immunization in Nonhuman Primates

    PubMed Central

    Wang, Yimeng; O'Dell, Sijy; Turner, Hannah L.; Chiang, Chi-I; Lei, Lin; Guenaga, Javier; Wilson, Richard; Martinez-Murillo, Paola; Doria-Rose, Nicole; Ward, Andrew B.; Mascola, John R.; Wyatt, Richard T.; Karlsson Hedestam, Gunilla B.

    2017-01-01

    ABSTRACT Elicitation of broadly neutralizing antibody (bNAb) responses is a major goal for the development of an HIV-1 vaccine. Current HIV-1 envelope glycoprotein (Env) vaccine candidates elicit predominantly tier 1 and/or autologous tier 2 virus neutralizing antibody (NAb) responses, as well as weak and/or sporadic cross-reactive tier 2 virus NAb responses with unknown specificity. To delineate the specificity of vaccine-elicited cross-reactive tier 2 virus NAb responses, we performed single memory B cell sorting from the peripheral blood of a rhesus macaque immunized with YU2gp140-F trimers in adjuvant, using JR-FL SOSIP.664, a native Env trimer mimetic, as a sorting probe to isolate monoclonal Abs (MAbs). We found striking genetic and functional convergence of the SOSIP-sorted Ig repertoire, with predominant VH4 or VH5 gene family usage and Env V3 specificity. Of these vaccine-elicited V3-specific MAbs, nearly 20% (6/33) displayed cross-reactive tier 2 virus neutralization, which recapitulated the serum neutralization capacity. Substantial similarities in binding specificity, neutralization breadth and potency, and sequence/structural homology were observed between selected macaque cross-reactive V3 NAbs elicited by vaccination and prototypic V3 NAbs derived from natural infections in humans, highlighting the convergence of this subset of primate V3-specific B cell repertories. Our study demonstrated that cross-reactive primary virus neutralizing B cell lineages could be elicited by vaccination as detected using a standardized panel of tier 2 viruses. Whether these lineages could be expanded to acquire increased breadth and potency of neutralization merits further investigation. IMPORTANCE Elicitation of antibody responses capable of neutralizing diverse HIV-1 primary virus isolates (designated broadly neutralizing antibodies [bNAbs]) remains a high priority for the vaccine field. bNAb responses were so far observed only in response to natural infection within a subset of individuals. To achieve this goal, an improved understanding of vaccine-elicited responses, including at the monoclonal Ab level, is essential. Here, we isolated and characterized a panel of vaccine-elicited cross-reactive neutralizing MAbs targeting the Env V3 loop that moderately neutralized several primary viruses and recapitulated the serum neutralizing antibody response. Striking similarities between the cross-reactive V3 NAbs elicited by vaccination in macaques and natural infections in humans illustrate commonalities between the vaccine- and infection-induced responses to V3 and support the feasibility of exploring the V3 epitope as a HIV-1 vaccine target in nonhuman primates. PMID:28835491

  16. Characterization of Epitope-Specific Anti-Respiratory Syncytial Virus (Anti-RSV) Antibody Responses after Natural Infection and after Vaccination with Formalin-Inactivated RSV

    PubMed Central

    Luytjes, Willem; Leenhouts, Kees; Rottier, Peter J. M.; van Kuppeveld, Frank J. M.; Haijema, Bert Jan

    2016-01-01

    ABSTRACT Antibodies against the fusion (F) protein of respiratory syncytial virus (RSV) play an important role in the protective immune response to this important respiratory virus. Little is known, however, about antibody levels against multiple F-specific epitopes induced by infection or after vaccination against RSV, while this is important to guide the evaluation of (novel) vaccines. In this study, we analyzed antibody levels against RSV proteins and F-specific epitopes in human sera and in sera of vaccinated and experimentally infected cotton rats and the correlation thereof with virus neutralization. Analysis of human sera revealed substantial diversity in antibody levels against F-, G (attachment)-, and F-specific epitopes between individuals. The highest correlation with virus neutralization was observed for antibodies recognizing prefusion-specific antigenic site Ø. Nevertheless, our results indicate that high levels of antibodies targeting other parts of the F protein can also mediate a potent antiviral antibody response. In agreement, sera of experimentally infected cotton rats contained high neutralizing activity despite lacking antigenic site Ø-specific antibodies. Strikingly, vaccination with formalin-inactivated RSV (FI-RSV) exclusively resulted in the induction of poorly neutralizing antibodies against postfusion-specific antigenic site I, although antigenic sites I, II, and IV were efficiently displayed in FI-RSV. The apparent immunodominance of antigenic site I in FI-RSV likely explains the low levels of neutralizing antibodies upon vaccination and challenge and may play a role in the vaccination-induced enhancement of disease observed with such preparations. IMPORTANCE RSV is an importance cause of hospitalization of infants. The development of a vaccine against RSV has been hampered by the disastrous results obtained with FI-RSV vaccine preparations in the 1960s that resulted in vaccination-induced enhancement of disease. To get a better understanding of the antibody repertoire induced after infection or after vaccination against RSV, we investigated antibody levels against fusion (F) protein, attachment (G) protein, and F-specific epitopes in human and animal sera. The results indicate the importance of prefusion-specific antigenic site Ø antibodies as well as of antibodies targeting other epitopes in virus neutralization. However, vaccination of cotton rats with FI-RSV specifically resulted in the induction of weakly neutralizing, antigenic site I-specific antibodies, which may play a role in the enhancement of disease observed after vaccination with such preparations. PMID:27099320

  17. Lipid and fatty acid analysis of the Plodia interpunctella granulosis virus (PiGV) envelope

    NASA Technical Reports Server (NTRS)

    Shastri-Bhalla, K.; Funk, C. J.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Virus envelope was isolated from Plodia interpunctella granulosis virus, produced in early fourth-instar larvae. Both polar and neutral lipids were analyzed by two-dimensional thin-layer chromatography. Fatty acid composition of various individual neutral and polar lipids was determined by gas-liquid chromatography. The major components of envelope neutral lipid were diacylglycerols. Palmitic acid and stearic acid were the major saturated fatty acids in both polar and neutral lipids. Whereas palmitoleic acid was the major unsaturated fatty acids in neutral lipids, oleic acid was the major unsaturated fatty acid in the polar lipids.

  18. The impact of vaccination on the breadth and magnitude of the antibody response to influenza A viruses in HIV-infected individuals.

    PubMed

    Kohler, Ines; Kouyos, Roger; Bianchi, Matteo; Grube, Christina; Wyrzucki, Arkadiusz; Günthard, Huldrych F; Hangartner, Lars

    2015-09-10

    HIV-positive individuals have lower antibody titers to influenza viruses than HIV-negative individuals, and the benefits of the annual vaccinations are controversially discussed. Also, there is no information about the breadth of the antibody response in HIV-infected individuals. The binding and neutralizing antibody titers to various human and nonhuman influenza A virus strain were determined in sera from 146 HIV-infected volunteers: They were compared with those found in 305 randomly selected HIV-negative donors, and put in relation to HIV-specific parameters. Univariable and multivariable regression was used to identify HIV-specific parameters associated with the measured binding and neutralizing activity. Enzyme-linked immunosorbent assays and in-vitro neutralization assays were used to determine the binding and neutralizing antibodiy titers to homo and heterosubtypic influenza A subtypes. We found that both homo and heterosubtypic antibody titers are lower in HIV-positive individuals. Vaccination promoted higher binding and neutralizing antibody titers to human but not to nonhuman isolates. HIV-induced immune damage (high viral load, low CD4 T-cell counts, and long untreated disease progression) is associated with impaired homosubtypic responses, but can have beneficial effects on the development of heterosubtypic antibodies, and an improved ratio of binding to neutralizing antibody titers to homosubtypic isolates. Our results indicate that repetitive vaccinations in HIV-positive individuals enhance antibody titers to human isolates. Interestingly, development of antibody titers to conserved heterosubtypic epitopes paradoxically appeared to profit from HIV-induced immune damage, as did the ratio of binding to neutralizing antibodies.

  19. Variation of the Specificity of the Human Antibody Responses after Tick-Borne Encephalitis Virus Infection and Vaccination

    PubMed Central

    Jarmer, Johanna; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Vratskikh, Oksana; Strauß, Judith; Aberle, Judith H.; Chmelik, Vaclav; Kundi, Michael; Stiasny, Karin

    2014-01-01

    ABSTRACT Tick-borne encephalitis (TBE) virus is an important human-pathogenic flavivirus endemic in large parts of Europe and Central and Eastern Asia. Neutralizing antibodies specific for the viral envelope protein E are believed to mediate long-lasting protection after natural infection and vaccination. To study the specificity and individual variation of human antibody responses, we developed immunoassays with recombinant antigens representing viral surface protein domains and domain combinations. These allowed us to dissect and quantify antibody populations of different fine specificities in sera of TBE patients and vaccinees. Postinfection and postvaccination sera both displayed strong individual variation of antibody titers as well as the relative proportions of antibodies to different domains of E, indicating that the immunodominance patterns observed were strongly influenced by individual-specific factors. The contributions of these antibody populations to virus neutralization were quantified by serum depletion analyses and revealed a significantly biased pattern. Antibodies to domain III, in contrast to what was found in mouse immunization studies with TBE and other flaviviruses, did not play any role in the human neutralizing antibody response, which was dominated by antibodies to domains I and II. Importantly, most of the neutralizing activity could be depleted from sera by a dimeric soluble form of the E protein, which is the building block of the icosahedral herringbone-like shell of flaviviruses, suggesting that antibodies to more complex quaternary epitopes involving residues from adjacent dimers play only a minor role in the total response to natural infection and vaccination in humans. IMPORTANCE Tick-borne encephalitis (TBE) virus is a close relative of yellow fever, dengue, Japanese encephalitis, and West Nile viruses and distributed in large parts of Europe and Central and Eastern Asia. Antibodies to the viral envelope protein E prevent viral attachment and entry into cells and thus mediate virus neutralization and protection from disease. However, the fine specificity and individual variation of neutralizing antibody responses are currently not known. We have therefore developed new in vitro assays for dissecting the antibody populations present in blood serum and determining their contribution to virus neutralization. In our analysis of human postinfection and postvaccination sera, we found an extensive variation of the antibody populations present in sera, indicating substantial influences of individual-specific factors that control the specificity of the antibody response. Our study provides new insights into the immune response to an important human pathogen that is of relevance for the design of novel vaccines. PMID:25253341

  20. Variation of the specificity of the human antibody responses after tick-borne encephalitis virus infection and vaccination.

    PubMed

    Jarmer, Johanna; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Vratskikh, Oksana; Strauß, Judith; Aberle, Judith H; Chmelik, Vaclav; Kundi, Michael; Stiasny, Karin; Heinz, Franz X

    2014-12-01

    Tick-borne encephalitis (TBE) virus is an important human-pathogenic flavivirus endemic in large parts of Europe and Central and Eastern Asia. Neutralizing antibodies specific for the viral envelope protein E are believed to mediate long-lasting protection after natural infection and vaccination. To study the specificity and individual variation of human antibody responses, we developed immunoassays with recombinant antigens representing viral surface protein domains and domain combinations. These allowed us to dissect and quantify antibody populations of different fine specificities in sera of TBE patients and vaccinees. Postinfection and postvaccination sera both displayed strong individual variation of antibody titers as well as the relative proportions of antibodies to different domains of E, indicating that the immunodominance patterns observed were strongly influenced by individual-specific factors. The contributions of these antibody populations to virus neutralization were quantified by serum depletion analyses and revealed a significantly biased pattern. Antibodies to domain III, in contrast to what was found in mouse immunization studies with TBE and other flaviviruses, did not play any role in the human neutralizing antibody response, which was dominated by antibodies to domains I and II. Importantly, most of the neutralizing activity could be depleted from sera by a dimeric soluble form of the E protein, which is the building block of the icosahedral herringbone-like shell of flaviviruses, suggesting that antibodies to more complex quaternary epitopes involving residues from adjacent dimers play only a minor role in the total response to natural infection and vaccination in humans. Tick-borne encephalitis (TBE) virus is a close relative of yellow fever, dengue, Japanese encephalitis, and West Nile viruses and distributed in large parts of Europe and Central and Eastern Asia. Antibodies to the viral envelope protein E prevent viral attachment and entry into cells and thus mediate virus neutralization and protection from disease. However, the fine specificity and individual variation of neutralizing antibody responses are currently not known. We have therefore developed new in vitro assays for dissecting the antibody populations present in blood serum and determining their contribution to virus neutralization. In our analysis of human postinfection and postvaccination sera, we found an extensive variation of the antibody populations present in sera, indicating substantial influences of individual-specific factors that control the specificity of the antibody response. Our study provides new insights into the immune response to an important human pathogen that is of relevance for the design of novel vaccines. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Analysis of ovine colostrum to detect antibody against progressive pneumonia virus.

    PubMed Central

    Taylor, T B; Banowetz, G M; Schipper, I A; Gabrielson, D A

    1982-01-01

    Immunoglobulins were isolated and purified from the colostrum and serum of progressive pneumonia virus infected sheep and also from non-infected control sheep. Four classes of immunoglobulins were isolated from sheep colostrum (IgG1, IgG2, IgA and Ig10s). Three classes of immunoglobulins were isolated from sheep serum (IgG1, IgG2 and IgM). Low levels of virus neutralizing activity were demonstrated only in the whole serum and purified serum IgG1 preparations. No complement fixing activity was detected in any of the antibody preparations from colostrum. PMID:6284323

  2. Phage display antibodies against ectromelia virus that neutralize variola virus: Selection and implementation for p35 neutralizing epitope mapping.

    PubMed

    Khlusevich, Yana; Matveev, Andrey; Baykov, Ivan; Bulychev, Leonid; Bormotov, Nikolai; Ilyichev, Ivan; Shevelev, Georgiy; Morozova, Vera; Pyshnyi, Dmitrii; Tikunova, Nina

    2018-04-01

    In this study, five phage display antibodies (pdAbs) against ectromelia virus (ECTV) were selected from vaccinia virus (VACV)-immune phage-display library of human single chain variable fragments (scFv). ELISA demonstrated that selected pdAbs could recognize ECTV, VACV, and cowpox virus (CPXV). Atomic force microscopy visualized binding of the pdAbs to VACV. Three of the selected pdAbs neutralized variola virus (VARV) in the plaque reduction neutralization test. Western blot analysis of ECTV, VARV, VACV, and CPXV proteins indicated that neutralizing pdAbs bound orthopoxvirus 35 kDa proteins, which are encoded by the open reading frames orthologous to the ORF H3L in VACV. The fully human antibody fh1A was constructed on the base of the VH and VL domains of pdAb, which demonstrated a dose-dependent inhibition of plaque formation after infection with VARV, VACV, and CPXV. To determine the p35 region responsible for binding to neutralizing pdAbs, a panel of truncated p35 proteins was designed and expressed in Escherichia coli cells, and a minimal p35 fragment recognized by selected neutralizing pdAbs was identified. In addition, peptide phage-display combinatorial libraries were applied to localize the epitope. The obtained data indicated that the epitope responsible for recognition by the neutralizing pdAbs is discontinuous and amino acid residues located within two p35 regions, 15-19 aa and 232-237 aa, are involved in binding with neutralizing anti-p35 antibodies. Copyright © 2018. Published by Elsevier B.V.

  3. Immunocyte Response to Experimental Mumps Virus Infection in Rhesus Monkeys

    PubMed Central

    Genco, R. J.; Flanagan, T. D.; Emmings, F. G.

    1973-01-01

    Nineteen rhesus monkeys were inoculated with mumps virus by retrograde ductal instillation into the parotid gland. Evidence of infection was obtained in all instances. Virus was isolated from buccal swabbings and parotid biopsies for 1 week after inoculation. A vigorous serum-neutralizing antibody response occurred within 3 weeks, and there was marked monocytic infiltration of the parotid stroma. The monocytic infiltrate comprised as much as 60% of the total gland volume 1 week after infection. The predominant inflammatory cells were non-immunoglobulin-containing mononuclear cells resembling lymphocytes. Plasma cells containing immunoglobulin G (IgG), IgA, IgM, and IgE increased in numbers in the gland after infection, the greatest increase occurring in IgG-containing cells. Neutralizing antibodies and interferon were found in extracts prepared from the infected glands. Neutralizing activity was highest in samples taken 3 weeks after infection but was detectable in samples taken as soon as 36 to 48 h after infection. Interferon activity was detected in significant amounts 36 to 48 h after infection. Challenge of previously infected animals resulted in an increase in the monocytic infiltrate as well as an increase in numbers of immunoglobulin-containing plasma cells. However, reinfection did not occur as evidenced by the inability to culture shed virus after challenge. This model should be useful for in vivo study of biochemical mediators which evoke inflammatory cell infiltration and which may be significant both in protection and in tissue damage. PMID:4202659

  4. Healthy individuals' immune response to the Bulgarian Crimean-Congo hemorrhagic fever virus vaccine.

    PubMed

    Mousavi-Jazi, Mehrdad; Karlberg, Helen; Papa, Anna; Christova, Iva; Mirazimi, Ali

    2012-09-28

    Crimean-Congo hemorrhagic fever virus (CCHFV) poses a great threat to public health due to its high mortality and transmission rate and wide geographical distribution. There is currently no specific antiviral therapy for CCHF. This study provides the first in-depth analysis of the cellular and humoral immune response in healthy individuals following injection of inactivated Bulgarian vaccine, the only CCHFV vaccine available at present. Vaccinated individuals developed robust, anti-CCHFV-specific T-cell activity as measured by IFN-γ ELISpot assay. The frequency of IFN-γ secreting T-cells was 10-fold higher in individuals after vaccination with four doses than after one single dose. High levels of CCHFV antibodies were observed following the first dose, but repeated doses were required to achieve antibodies with neutralizing activity against CCHFV. However, the neutralizing activity in these groups was low. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Gene Delivery of Activated Factor VII Using Alternative Adeno-Associated Virus Serotype Improves Hemostasis in Hemophiliac Mice with FVIII Inhibitors and Adeno-Associated Virus Neutralizing Antibodies.

    PubMed

    Sun, Junjiang; Hua, Baolai; Chen, Xiaojing; Samulski, Richard J; Li, Chengwen

    2017-08-01

    While therapeutic expression of coagulation factors from adeno-associated virus (AAV) vectors has been successfully achieved in patients with hemophilia, neutralizing antibodies to the vector and inhibitory antibodies to the transgene severely limit efficacy. Indeed, approximately 40% of mice transduced with human factor VIII using the AAV8 serotype developed inhibitory antibodies to factor VIII (FVIII inhibitor), as well as extremely high titers (≥1:500) of neutralizing antibodies to AAV8. To correct hemophilia in these mice, AAV9, a serotype with low in vitro cross-reactivity (≤1:5) to anti-AAV8, was used to deliver mouse-activated factor VII (mFVIIa). It was found that within 6 weeks of systemic administration of 2 × 10 13 particles/kg of AAV9/mFVIIa, hemophiliac mice with FVIII inhibitors and neutralizing antibodies (NAb) to AAV8 achieved hemostasis comparable to that in wild-type mice, as measured by rotational thromboelastometry. A level of 737 ng/mL mFVIIa was achieved after AAV9/mFVIIa adminstration compared to around 150 ng/mL without vector treatment, and concomitantly prothrombin time was shortened. Tissues collected after intra-articular hemorrhage from FVIII-deficient mice and mice with FVIII inhibitors were scored 4.7 and 5.5, respectively, on a scale of 0-10, indicating significant pathological damage. However, transduction with AAV9/mFVIIa decreased pathology scores to 3.6 and eliminated hemosiderin iron deposition in the synovium in most mice. Collectively, these results suggest that application of alternative serotypes of AAV vector to deliver bypassing reagents has the potential to correct hemophilia and prevent hemoarthrosis, even in the presence of FVIII inhibitor and neutralizing antibodies to AAV.

  6. Ebola Virus Neutralizing Antibodies Detectable in Survivors of theYambuku, Zaire Outbreak 40 Years after Infection.

    PubMed

    Rimoin, Anne W; Lu, Kai; Bramble, Matthew S; Steffen, Imke; Doshi, Reena H; Hoff, Nicole A; Mukadi, Patrick; Nicholson, Bradly P; Alfonso, Vivian H; Olinger, Gerrard; Sinai, Cyrus; Yamamoto, Lauren K; Ramirez, Christina M; Okitolonda Wemakoy, Emile; Kebela Illunga, Benoit; Pettitt, James; Logue, James; Bennett, Richard S; Jahrling, Peter; Heymann, David L; Piot, Peter; Muyembe-Tamfum, Jean Jacques; Hensley, Lisa E; Simmons, Graham

    2018-01-04

    The first reported outbreak of Ebola virus disease occurred in 1976 in Yambuku, Democratic Republic of Congo. Antibody responses in survivors 11 years after infection have been documented. However, this report is the first characterization of anti-Ebola virus antibody persistence and neutralization capacity 40 years after infection. Using ELISAs we measured survivor's immunological response to Ebola virus Zaire (EBOV) glycoprotein and nucleoprotein, and assessed VP40 reactivity. Neutralization of EBOV was measured using a pseudovirus approach and plaque reduction neutralization test with live EBOV. Some survivors from the original EBOV outbreak still harbor antibodies against all 3 measures. Interestingly, a subset of these survivors' serum antibodies could still neutralize live virus 40 years postinitial infection. These data provide the longest documentation of both anti-Ebola serological response and neutralization capacity within any survivor cohort, extending the known duration of response from 11 years postinfection to at least 40 years after symptomatic infection. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  7. Neutralizing antibodies against flaviviruses, Babanki virus, and Rift Valley fever virus in Ugandan bats.

    PubMed

    Kading, Rebekah C; Kityo, Robert M; Mossel, Eric C; Borland, Erin M; Nakayiki, Teddie; Nalikka, Betty; Nyakarahuka, Luke; Ledermann, Jeremy P; Panella, Nicholas A; Gilbert, Amy T; Crabtree, Mary B; Peterhans, Julian Kerbis; Towner, Jonathan S; Amman, Brian R; Sealy, Tara K; Nichol, Stuart T; Powers, Ann M; Lutwama, Julius J; Miller, Barry R

    2018-01-01

    Introduction: A number of arboviruses have previously been isolated from naturally-infected East African bats, however the role of bats in arbovirus maintenance is poorly understood. The aim of this study was to investigate the exposure history of Ugandan bats to a panel of arboviruses. Materials and methods: Insectivorous and fruit bats were captured from multiple locations throughout Uganda during 2009 and 2011-2013. All serum samples were tested for neutralizing antibodies against West Nile virus (WNV), yellow fever virus (YFV), dengue 2 virus (DENV-2), Zika virus (ZIKV), Babanki virus (BBKV), and Rift Valley fever virus (RVFV) by plaque reduction neutralization test (PRNT). Sera from up to 626 bats were screened for antibodies against each virus. Results and Discussion:  Key findings include the presence of neutralizing antibodies against RVFV in 5/52 (9.6%) of little epauletted fruit bats ( Epomophorus labiatus ) captured from Kawuku and 3/54 (5.6%) Egyptian rousette bats from Kasokero cave. Antibodies reactive to flaviviruses were widespread across bat taxa and sampling locations. Conclusion: The data presented demonstrate the widespread exposure of bats in Uganda to arboviruses, and highlight particular virus-bat associations that warrant further investigation.

  8. A Cell Line-Based Neutralization Assay for Primary Human Immunodeficiency Virus Type 1 Isolates That Use either the CCR5 or the CXCR4 Coreceptor

    PubMed Central

    Trkola, Alexandra; Matthews, Jamie; Gordon, Cynthia; Ketas, Tom; Moore, John P.

    1999-01-01

    We describe here a cell line-based assay for the evaluation of human immunodeficiency virus type 1 (HIV-1) neutralization. The assay is based on CEM.NKR cells, transfected to express the HIV-1 coreceptor CCR5 to supplement the endogenous expression of CD4 and the CXCR4 coreceptor. The resulting CEM.NKR-CCR5 cells efficiently replicate primary HIV-1 isolates of both R5 and X4 phenotypes. A comparison of the CEM.NKR-CCR5 cells with mitogen-activated peripheral blood mononuclear cells (PBMC) in neutralization assays with sera from HIV-1-infected individuals or specific anti-HIV-1 monoclonal antibodies shows that the sensitivity of HIV-1 neutralization is similar in the two cell types. The CEM.NKR-CCR5 cell assay, however, is more convenient to perform and eliminates the donor-to-donor variation in HIV-1 replication efficiency, which is one of the principal drawbacks of the PBMC-based neutralization assay. We suggest that this new assay is suitable for the general measurement of HIV-1 neutralization by antibodies. PMID:10516002

  9. Synergy between the classical and alternative pathways of complement is essential for conferring effective protection against the pandemic influenza A(H1N1) 2009 virus infection

    PubMed Central

    Rattan, Ajitanuj; Pawar, Shailesh D.; Nawadkar, Renuka; Kulkarni, Neeraja

    2017-01-01

    The pandemic influenza A(H1N1) 2009 virus caused significant morbidity and mortality worldwide thus necessitating the need to understand the host factors that influence its control. Previously, the complement system has been shown to provide protection during the seasonal influenza virus infection, however, the role of individual complement pathways is not yet clear. Here, we have dissected the role of intact complement as well as of its individual activation pathways during the pandemic influenza virus infection using mouse strains deficient in various complement components. We show that the virus infection in C3-/- mice results in increased viral load and 100% mortality, which can be reversed by adoptive transfer of naïve wild-type (WT) splenocytes, purified splenic B cells, or passive transfer of immune sera from WT, but not C3-/- mice. Blocking of C3a and/or C5a receptor signaling in WT mice using receptor antagonists and use of C3aR-/- and C5aR-/- mice showed significant mortality after blocking/ablation of C3aR, with little or no effect after blocking/ablation of C5aR. Intriguingly, deficiency of C4 and FB in mice resulted in only partial mortality (24%-32%) suggesting a necessary cross-talk between the classical/lectin and alternative pathways for providing effective protection. In vitro virus neutralization experiments performed to probe the cross-talk between the various pathways indicated that activation of the classical and alternative pathways in concert, owing to coating of viral surface by antibodies, is needed for its efficient neutralization. Examination of the virus-specific complement-binding antibodies in virus positive subjects showed that their levels vary among individuals. Together these results indicate that cooperation between the classical and alternative pathways not only result in efficient direct neutralization of the pandemic influenza virus, but also lead to the optimum generation of C3a, which when sensed by the immune cells along with the antigen culminates in generation of effective protective immune responses. PMID:28301559

  10. Genotype I of Japanese Encephalitis Virus Virus-like Particles Elicit Sterilizing Immunity against Genotype I and III Viral Challenge in Swine.

    PubMed

    Fan, Yi-Chin; Chen, Jo-Mei; Lin, Jen-Wei; Chen, Yi-Ying; Wu, Guan-Hong; Su, Kuan-Hsuan; Chiou, Ming-Tang; Wu, Shang-Rung; Yin, Ji-Hang; Liao, Jiunn-Wang; Chang, Gwong-Jen J; Chiou, Shyan-Song

    2018-05-10

    Swine are a critical amplifying host involved in human Japanese encephalitis (JE) outbreaks. Cross-genotypic immunogenicity and sterile protection are important for the current genotype III (GIII) virus-derived vaccines in swine, especially now that emerging genotype I (GI) JE virus (JEV) has replaced GIII virus as the dominant strain. Herein, we aimed to develop a system to generate GI JEV virus-like particles (VLPs) and evaluate the immunogenicity and protection of the GI vaccine candidate in mice and specific pathogen-free swine. A CHO-heparan sulfate-deficient (CHO-HS(-)) cell clone, named 51-10 clone, stably expressing GI-JEV VLP was selected and continually secreted GI VLPs without signs of cell fusion. 51-10 VLPs formed a homogeneously empty-particle morphology and exhibited similar antigenic activity as GI virus. GI VLP-immunized mice showed balanced cross-neutralizing antibody titers against GI to GIV viruses (50% focus-reduction micro-neutralization assay titers 71 to 240) as well as potent protection against GI or GIII virus infection. GI VLP-immunized swine challenged with GI or GIII viruses showed no fever, viremia, or viral RNA in tonsils, lymph nodes, and brains as compared with phosphate buffered saline-immunized swine. We thus conclude GI VLPs can provide sterile protection against GI and GIII viruses in swine.

  11. Vaccinia virus-free rescue of fluorescent replication-defective vesicular stomatitis virus and pseudotyping with Puumala virus glycoproteins for use in neutralization tests.

    PubMed

    Paneth Iheozor-Ejiofor, Rommel; Levanov, Lev; Hepojoki, Jussi; Strandin, Tomas; Lundkvist, Åke; Plyusnin, Alexander; Vapalahti, Olli

    2016-05-01

    Puumala virus (PUUV) grows slowly in cell culture. To study antigenic properties of PUUV, an amenable method for their expression would be beneficial. To achieve this, a replication-defective recombinant vesicular stomatitis virus, rVSVΔG*EGFP, was rescued using BSRT7/5 and encephalomyocarditis virus (EMCV) internal ribosomal entry site (IRES)-enabled rescue plasmids. Using these particles, pseudotypes bearing PUUV Sotkamo strain glycoproteins were produced, with titres in the range 105-108, and were used in pseudotype focus reduction neutralization tests (pFRNTs) with neutralizing monoclonal antibodies and patient sera. The results were compared with those from orthodox focus reduction neutralization tests (oFRNTs) using native PUUV with the same samples and showed a strong positive correlation (rs = 0.82) between the methods. While developing the system we identified three amino acids which were mutated in the Vero E6 cell culture adapted PUUV prototype Sotkamo strain sequence, and changing these residues was critical for expression and neutralizing antibody binding of PUUV glycoproteins.

  12. Comparison of Antiviral Activity between IgA and IgG Specific to Influenza Virus Hemagglutinin: Increased Potential of IgA for Heterosubtypic Immunity

    PubMed Central

    Yokoyama, Ayaka; Miyamoto, Hiroko; Kajihara, Masahiro; Maruyama, Junki; Nao, Naganori; Manzoor, Rashid; Takada, Ayato

    2014-01-01

    Both IgA and IgG antibodies are known to play important roles in protection against influenza virus infection. While IgG is the major isotype induced systemically, IgA is predominant in mucosal tissues, including the upper respiratory tract. Although IgA antibodies are believed to have unique advantages in mucosal immunity, information on direct comparisons of the in vitro antiviral activities of IgA and IgG antibodies recognizing the same epitope is limited. In this study, we demonstrate differences in antiviral activities between these isotypes using monoclonal IgA and IgG antibodies obtained from hybridomas of the same origin. Polymeric IgA-producing hybridoma cells were successfully subcloned from those originally producing monoclonal antibody S139/1, a hemaggulutinin (HA)-specific IgG that was generated against an influenza A virus strain of the H3 subtype but had cross-neutralizing activities against the H1, H2, H13, and H16 subtypes. These monoclonal S139/1 IgA and IgG antibodies were assumed to recognize the same epitope and thus used to compare their antiviral activities. We found that both S139/1 IgA and IgG antibodies strongly bound to the homologous H3 virus in an enzyme-linked immunosorbent assay, and there were no significant differences in their hemagglutination-inhibiting and neutralizing activities against the H3 virus. In contrast, S139/1 IgA showed remarkably higher cross-binding to and antiviral activities against H1, H2, and H13 viruses than S139/1 IgG. It was also noted that S139/1 IgA, but not IgG, drastically suppressed the extracellular release of the viruses from infected cells. Electron microscopy revealed that S139/1 IgA deposited newly produced viral particles on the cell surface, most likely by tethering the particles. These results suggest that anti-HA IgA has greater potential to prevent influenza A virus infection than IgG antibodies, likely due to increased avidity conferred by its multivalency, and that this advantage may be particularly important for heterosubtypic immunity. PMID:24465606

  13. Development of a Humanized Monoclonal Antibody with Therapeutic Potential against West Nile Virus

    PubMed Central

    Oliphant, Theodore; Engle, Michael; Nybakken, Grant E.; Doane, Chris; Johnson, Syd; Huang, Ling; Gorlatov, Sergey; Mehlhop, Erin; Marri, Anantha; Chung, Kyung Min; Ebel, Gregory D.; Kramer, Laura D.; Fremont, Daved H.; Diamond, Michael S.

    2006-01-01

    Neutralization of West Nile virus (WNV) in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Using random mutagenesis and yeast surface display, we defined individual contact residues of 14 newly generated mAbs against domain III of the WNV E protein. MAbs that strongly neutralized WNV localized to a surface patch on the lateral face of domain III. Convalescent antibodies from human patients who had recovered from WNV infection also detected this epitope. One mAb, E16, neutralized 10 different strains in vitro, and demonstrated therapeutic efficacy in mice, even when administered as a single dose 5 d after infection. A humanized version of E16 was generated that retained antigen specificity, avidity, and neutralizing activity. In post-exposure therapeutic trials in mice, a single dose of humanized E16 protected mice against WNV-induced mortality, and thus, may be a viable treatment option against WNV infection in humans. PMID:15852016

  14. Enzyme-linked immunosorbent assay compared with neutralization tests for evaluation of live mumps vaccines.

    PubMed Central

    Sakata, H; Hishiyama, M; Sugiura, A

    1984-01-01

    Mumps-specific antibody levels before and after vaccination with live mumps vaccines were determined by enzyme-linked immunosorbent assay (ELISA) and neutralization tests. A correlation was found between neutralization titers and optical density in ELISA. However, postvaccination sera from some vaccinees who failed to seroconvert by neutralization contained significant levels of mumps-specific antibody detectable by ELISA. In some of these serum specimens, the antibody directed to the F polypeptide of mumps virus was predominant. Most sera positive in ELISA neutralized mumps virus upon the addition of fresh guinea pig serum to the virus-serum mixture. Images PMID:6361060

  15. Heterogeneity in Neutralization Sensitivities of Viruses Comprising the Simian Immunodeficiency Virus SIVsmE660 Isolate and Vaccine Challenge Stock

    PubMed Central

    Lopker, Michael; Easlick, Juliet; Sterrett, Sarah; Decker, Julie M.; Barbian, Hannah; Learn, Gerald; Keele, Brandon F.; Robinson, James E.; Li, Hui; Hahn, Beatrice H.; Shaw, George M.

    2013-01-01

    The sooty mangabey-derived simian immunodeficiency virus (SIV) strain E660 (SIVsmE660) is a genetically heterogeneous, pathogenic isolate that is commonly used as a vaccine challenge strain in the nonhuman primate (NHP) model of human immunodeficiency virus type 1 (HIV-1) infection. Though it is often employed to assess antibody-based vaccine strategies, its sensitivity to antibody-mediated neutralization has not been well characterized. Here, we utilize single-genome sequencing and infectivity assays to analyze the neutralization sensitivity of the uncloned SIVsmE660 isolate, individual viruses comprising the isolate, and transmitted/founder (T/F) viruses arising from low-dose mucosal inoculation of macaques with the isolate. We found that the SIVsmE660 isolate overall was highly sensitive to neutralization by SIV-infected macaque plasma samples (50% inhibitory concentration [IC50] < 10−5) and monoclonal antibodies targeting V3 (IC50 < 0.01 μg/ml), CD4-induced (IC50 < 0.1 μg/ml), CD4 binding site (IC50 ∼ 1 μg/ml), and V4 (IC50, ∼5 μg/ml) epitopes. In comparison, SIVmac251 and SIVmac239 were highly resistant to neutralization by these same antibodies. Differences in neutralization sensitivity between SIVsmE660 and SIVmac251/239 were not dependent on the cell type in which virus was produced or tested. These findings indicate that in comparison to SIVmac251/239 and primary HIV-1 viruses, SIVsmE660 generally exhibits substantially less masking of antigenically conserved Env epitopes. Interestingly, we identified a minor population of viruses (∼10%) in both the SIVsmE660 isolate and T/F viruses arising from it that were substantially more resistant (>1,000-fold) to antibody neutralization and another fraction (∼20%) that was intermediate in neutralization resistance. These findings may explain the variable natural history and variable protection afforded by heterologous Env-based vaccines in rhesus macaques challenged by high-dose versus low-dose SIVsmE660 inoculation regimens. PMID:23468494

  16. In vivo emergence of HIV-1 highly sensitive to neutralizing antibodies.

    PubMed

    Aasa-Chapman, Marlén M I; Cheney, Kelly M; Hué, Stéphane; Forsman, Anna; O'Farrell, Stephen; Pellegrino, Pierre; Williams, Ian; McKnight, Áine

    2011-01-01

    The rapid and continual viral escape from neutralizing antibodies is well documented in HIV-1 infection. Here we report in vivo emergence of viruses with heightened sensitivity to neutralizing antibodies, sometimes paralleling the development of neutralization escape. Sequential viral envs were amplified from seven HIV-1 infected men monitored from seroconversion up to 5 years after infection. Env-recombinant infectious molecular clones were generated and tested for coreceptor use, macrophage tropism and neutralization sensitivity to homologous and heterologous serum, soluble CD4 and monoclonal antibodies IgG1b12, 2G12 and 17b. We found that HIV-1 evolves sensitivity to contemporaneous neutralizing antibodies during infection. Neutralization sensitive viruses grow out even when potent autologous neutralizing antibodies are present in patient serum. Increased sensitivity to neutralization was associated with susceptibility of the CD4 binding site or epitopes induced after CD4 binding, and mediated by complex envelope determinants including V3 and V4 residues. The development of neutralization sensitive viruses occurred without clinical progression, coreceptor switch or change in tropism for primary macrophages. We propose that an interplay of selective forces for greater virus replication efficiency without the need to resist neutralizing antibodies in a compartment protected from immune surveillance may explain the temporal course described here for the in vivo emergence of HIV-1 isolates with high sensitivity to neutralizing antibodies.

  17. Antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralizes a heterologous wild-type mumps virus associated with a large outbreak.

    PubMed

    Rubin, Steven A; Qi, Li; Audet, Susette A; Sullivan, Bradley; Carbone, Kathryn M; Bellini, William J; Rota, Paul A; Sirota, Lev; Beeler, Judy

    2008-08-15

    Recent mumps outbreaks in older vaccinated populations were caused primarily by genotype G viruses, which are phylogenetically distinct from the genotype A vaccine strains used in the countries affected by the outbreaks. This finding suggests that genotype A vaccine strains could have reduced efficacy against heterologous mumps viruses. The remote history of vaccination also suggests that waning immunity could have contributed to susceptibility. To examine these issues, we obtained consecutive serum samples from children at different intervals after vaccination and assayed the ability of these samples to neutralize the genotype A Jeryl Lynn mumps virus vaccine strain and a genotype G wild-type virus obtained during the mumps outbreak that occurred in the United States in 2006. Although the geometric mean neutralizing antibody titers against the genotype G virus were approximately one-half the titers measured against the vaccine strain, and although titers to both viruses decreased with time after vaccination, antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralized the outbreak-associated virus at all time points tested.

  18. Immunogenic Subviral Particles Displaying Domain III of Dengue 2 Envelope Protein Vectored by Measles Virus

    PubMed Central

    Harahap-Carrillo, Indira S.; Ceballos-Olvera, Ivonne; Reyes-del Valle, Jorge

    2015-01-01

    Vaccines against dengue virus (DV) are commercially nonexistent. A subunit vaccination strategy may be of value, especially if a safe viral vector acts as biologically active adjuvant. In this paper, we focus on an immunoglobulin-like, independently folded domain III (DIII) from DV 2 envelope protein (E), which contains epitopes that elicits highly specific neutralizing antibodies. We modified the hepatitis B small surface antigen (HBsAg, S) in order to display DV 2 DIII on a virus-like particle (VLP), thus generating the hybrid antigen DIII-S. Two varieties of measles virus (MV) vectors were developed to express DIII-S. The first expresses the hybrid antigen from an additional transcription unit (ATU) and the second additionally expresses HBsAg from a separate ATU. We found that this second MV vectoring the hybrid VLPs displaying DIII-S on an unmodified HBsAg scaffold were immunogenic in MV-susceptible mice (HuCD46Ge-IFNarko), eliciting robust neutralizing responses (averages) against MV (1:1280 NT90), hepatitis B virus (787 mIU/mL), and DV2 (1:160 NT50) in all of the tested animals. Conversely, the MV vector expressing only DIII-S induced immunity against MV alone. In summary, DV2 neutralizing responses can be generated by displaying E DIII on a scaffold of HBsAg-based VLPs, vectored by MV. PMID:26350592

  19. Natural exposure of horses to mosquito-borne flaviviruses in south-east Queensland, Australia.

    PubMed

    Prow, Natalie A; Tan, Cindy S E; Wang, Wenqi; Hobson-Peters, Jody; Kidd, Lisa; Barton, Anita; Wright, John; Hall, Roy A; Bielefeldt-Ohmann, Helle

    2013-09-17

    In 2011 an unprecedented epidemic of equine encephalitis occurred in south-eastern (SE) Australia following heavy rainfall and severe flooding in the preceding 2-4 months. Less than 6% of the documented cases occurred in Queensland, prompting the question of pre-existing immunity in Queensland horses. A small-scale serological survey was conducted on horses residing in one of the severely flood-affected areas of SE-Queensland. Using a flavivirus-specific blocking-ELISA we found that 63% (39/62) of horses older than 3 years were positive for flavivirus antibodies, and of these 18% (7/38) had neutralizing antibodies to Murray Valley encephalitis virus (MVEV), Kunjin virus (WNV(KUN)) and/or Alfuy virus (ALFV). The remainder had serum-neutralizing antibodies to viruses in the Kokobera virus (KOKV) complex or antibodies to unknown/untested flaviviruses. Amongst eight yearlings one presented with clinical MVEV-encephalomyelitis, while another, clinically normal, had MVEV-neutralizing antibodies. The remaining six yearlings were flavivirus antibody negative. Of 19 foals born between August and November 2011 all were flavivirus antibody negative in January 2012. This suggests that horses in the area acquire over time active immunity to a range of flaviviruses. Nevertheless, the relatively infrequent seropositivity to MVEV, WNV(KUN) and ALFV (15%) suggests that factors other than pre-existing immunity may have contributed to the low incidence of arboviral disease in SE-Queensland horses during the 2011 epidemic.

  20. A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system.

    PubMed

    Zhang, Li; Li, Qianqian; Liu, Qiang; Huang, Weijin; Nie, Jianhui; Wang, Youchun

    2017-08-03

    Marburg virus (MARV) can cause lethal hemorrhagic fever in humans. Handling of MARV is restricted to high-containment biosafety level 4 (BSL-4) facilities, which greatly impedes research into this virus. In this study, a high titer of MARV pseudovirus was generated through optimization of the HIV backbone vectors, the ratio of backbone vector to MARV glycoprotein expression vector, and the transfection reagents. An in vitro neutralization assay and an in vivo bioluminescent imaging mouse model for MARV were developed based on the pseudovirus. Protective serum against MARV was successfully induced in guinea pigs, which showed high neutralization activity in vitro and could also protect Balb/c mice from MARV pseudovirus infection in vivo. This system could be a convenient tool to enable the evaluation of vaccines and therapeutic drugs against MARV in non-BSL-4 laboratories.

  1. Replication Competent Molecular Clones of HIV-1 Expressing Renilla Luciferase Facilitate the Analysis of Antibody Inhibition in PBMC

    PubMed Central

    Edmonds, Tara G.; Ding, Haitao; Yuan, Xing; Wei, Qing; Smith, Kendra S.; Conway, Joan A.; Wieczorek, Lindsay; Brown, Bruce; Polonis, Victoria; West, John T.; Montefiori, David C.; Kappes, John C.; Ochsenbauer, Christina

    2010-01-01

    Effective vaccine development for human immunodeficiency virus type 1 (HIV-1) will require assays that ascertain the capacity of vaccine immunogens to elicit neutralizing antibodies (NAb) to diverse HIV-1 strains. To facilitate NAb assessment in peripheral blood mononuclear cell (PBMC)-based assays, we developed an assay-adaptable platform based on a Renilla luciferase (LucR) expressing HIV-1 proviral backbone. LucR was inserted into pNL4-3 DNA, preserving all viral open reading frames. The proviral genome was engineered to facilitate expression of diverse HIV-1 env sequences, allowing analysis in an isogenic background. The resulting Env-IMC-LucR viruses are infectious, and LucR is stably expressed over multiple replications in PBMC. HIV-1 neutralization, targeting TZM-bl cells, was highly correlative comparing virus (LucR) and cell (firefly luciferase) readouts. In PBMC, NAb activity can be analyzed either within a single or multiple cycles of replication. These results represent advancement toward a standardizable PBMC-based neutralization assay for assessing HIV-1 vaccine immunogen efficacy. PMID:20863545

  2. Replication competent molecular clones of HIV-1 expressing Renilla luciferase facilitate the analysis of antibody inhibition in PBMC.

    PubMed

    Edmonds, Tara G; Ding, Haitao; Yuan, Xing; Wei, Qing; Smith, Kendra S; Conway, Joan A; Wieczorek, Lindsay; Brown, Bruce; Polonis, Victoria; West, John T; Montefiori, David C; Kappes, John C; Ochsenbauer, Christina

    2010-12-05

    Effective vaccine development for human immunodeficiency virus type 1 (HIV-1) will require assays that ascertain the capacity of vaccine immunogens to elicit neutralizing antibodies (NAb) to diverse HIV-1 strains. To facilitate NAb assessment in peripheral blood mononuclear cell (PBMC)-based assays, we developed an assay-adaptable platform based on a Renilla luciferase (LucR) expressing HIV-1 proviral backbone. LucR was inserted into pNL4-3 DNA, preserving all viral open reading frames. The proviral genome was engineered to facilitate expression of diverse HIV-1 env sequences, allowing analysis in an isogenic background. The resulting Env-IMC-LucR viruses are infectious, and LucR is stably expressed over multiple replications in PBMC. HIV-1 neutralization, targeting TZM-bl cells, was highly correlative comparing virus (LucR) and cell (firefly luciferase) readouts. In PBMC, NAb activity can be analyzed either within a single or multiple cycles of replication. These results represent advancement toward a standardizable PBMC-based neutralization assay for assessing HIV-1 vaccine immunogen efficacy. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Lagos bat virus transmission in an Eidolon helvum bat colony, Ghana.

    PubMed

    Freuling, Conrad M; Binger, Tabea; Beer, Martin; Adu-Sarkodie, Yaw; Schatz, Juliane; Fischer, Melina; Hanke, Dennis; Hoffmann, Bernd; Höper, Dirk; Mettenleiter, Thomas C; Oppong, Samual K; Drosten, Christian; Müller, Thomas

    2015-12-02

    A brain sample of a straw-coloured fruit bat (Eidolon helvum) from Ghana without evident signs of disease tested positive by generic Lyssavirus RT-PCR and direct antigen staining. Sequence analysis confirmed the presence of a Lagos bat virus belonging to phylogenetic lineage A. Virus neutralization tests using the isolate with sera from the same group of bats yielded neutralizing antibodies in 74% of 567 animals. No cross-neutralization was observed against a different Lagos bat virus (lineage B). Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Latency of Herpes Simplex Virus in Absence of Neutralizing Antibody: Model for Reactivation

    NASA Astrophysics Data System (ADS)

    Sekizawa, Tsuyoshi; Openshaw, Harry; Wohlenberg, Charles; Notkins, Abner Louis

    1980-11-01

    Mice inoculated with herpes simplex virus (type 1) by the lip or corneal route and then passively immunized with rabbit antibody to herpes simplex virus developed a latent infection in the trigeminal ganglia within 96 hours. Neutralizing antibody to herpes simplex virus was cleared from the circulation and could not be detected in most of these mice after 2 months. Examination of ganglia from the antibody-negative mice revealed latent virus in over 90 percent of the animals, indicating that serum neutralizing antibody is not necessary to maintain the latent state. When the lips or corneas of these mice were traumatized, viral reactivation occurred in up to 90 percent of the mice, as demonstrated by the appearance of neutralizing antibody. This study provides a model for identifying factors that trigger viral reactivation.

  5. Utility of Japanese encephalitis virus subgenomic replicon-based single-round infectious particles as antigens in neutralization tests for Zika virus and three other flaviviruses.

    PubMed

    Yamanaka, Atsushi; Moi, Meng Ling; Takasaki, Tomohiko; Kurane, Ichiro; Matsuda, Mami; Suzuki, Ryosuke; Konishi, Eiji

    2017-05-01

    The introduction of a foreign virus into an area may cause an outbreak, as with the Zika virus (ZIKV) outbreak in the Americas. Preparedness for handling a viral outbreak involves the development of tests for the serodiagnosis of foreign virus infections. We previously established a gene-based technology to generate some flaviviral antigens useful for functional antibody assays. The technology utilizes a Japanese encephalitis virus subgenomic replicon to generate single-round infectious particles (SRIPs) that possess designed surface antigens. In the present study, we successfully expanded the capacity of SRIPs to four human-pathogenic mosquito-borne flaviviruses that could potentially be introduced from endemic to non-endemic countries: ZIKV, Sepik virus, Wesselsbron virus, and Usutu virus. Flavivirus-crossreactive monoclonal antibodies dose-dependently neutralized these SRIPs. ZIKV-SRIPs also produced antibody-dose-dependent neutralization curves equivalent to those shown by authentic ZIKV particles using sera from a Zika fever patient. The faithful expression of designed surface antigens on SRIPs will allow their use in neutralization tests to diagnose foreign flaviviral infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Leopold; Giang, Erick; Robbins, Justin B.

    Hepatitis C virus (HCV) infects more than 2% of the global population and is a leading cause of liver cirrhosis, hepatocellular carcinoma, and end-stage liver diseases. Circulating HCV is genetically diverse, and therefore a broadly effective vaccine must target conserved T- and B-cell epitopes of the virus. Human mAb HCV1 has broad neutralizing activity against HCV isolates from at least four major genotypes and protects in the chimpanzee model from primary HCV challenge. The antibody targets a conserved antigenic site (residues 412-423) on the virus E2 envelope glycoprotein. Two crystal structures of HCV1 Fab in complex with an epitope peptidemore » at 1.8-{angstrom} resolution reveal that the epitope is a {beta}-hairpin displaying a hydrophilic face and a hydrophobic face on opposing sides of the hairpin. The antibody predominantly interacts with E2 residues Leu{sup 413} and Trp{sup 420} on the hydrophobic face of the epitope, thus providing an explanation for how HCV isolates bearing mutations at Asn{sup 415} on the same binding face escape neutralization by this antibody. The results provide structural information for a neutralizing epitope on the HCV E2 glycoprotein and should help guide rational design of HCV immunogens to elicit similar broadly neutralizing antibodies through vaccination.« less

  7. Passive immunization of macaques with polyclonal anti-SHIV IgG against a heterologous tier 2 SHIV: outcome depends on IgG dose

    PubMed Central

    2014-01-01

    Background A key goal for HIV-1 envelope immunogen design is the induction of cross-reactive neutralizing antibodies (nAbs). As AIDS vaccine recipients will not be exposed to strains exactly matching any immunogens due to multiple HIV-1 quasispecies circulating in the human population worldwide, heterologous SHIV challenges are essential for realistic vaccine efficacy testing in primates. We assessed whether polyclonal IgG, isolated from rhesus monkeys (RMs) with high-titer nAbs (termed SHIVIG), could protect RMs against the R5-tropic tier-2 SHIV-2873Nip, which was heterologous to the viruses or HIV-1 envelopes that had elicited SHIVIG. Results SHIVIG demonstrated binding to HIV Gag, Tat, and Env of different clades and competed with the broadly neutralizing antibodies b12, VRC01, 4E10, and 17b. SHIVIG neutralized tier 1 and tier 2 viruses, including SHIV-2873Nip. NK-cell depletion decreased the neutralizing activity of SHIVIG 20-fold in PBMC assays. Although SHIVIG neutralized SHIV-2873Nip in vitro, this polyclonal IgG preparation failed to prevent acquisition after repeated intrarectal low-dose virus challenges, but at a dose of 400 mg/kg, it significantly lowered peak viremia (P = 0.001). Unexpectedly, single-genome analysis revealed a higher number of transmitted variants at the low dose of 25 mg/kg, implying increased acquisition at low SHIVIG levels. In vitro, SHIVIG demonstrated complement-mediated Ab-dependent enhancement of infection (C’-ADE) at concentrations similar to those observed in plasmas of RMs treated with 25 mg/kg of SHIVIG. Conclusion Our primate model data suggest a dual role for polyclonal anti-HIV-1 Abs depending on plasma levels upon virus encounter. PMID:24444350

  8. Passive immunization of macaques with polyclonal anti-SHIV IgG against a heterologous tier 2 SHIV: outcome depends on IgG dose.

    PubMed

    Sholukh, Anton M; Byrareddy, Siddappa N; Shanmuganathan, Vivekanandan; Hemashettar, Girish; Lakhashe, Samir K; Rasmussen, Robert A; Watkins, Jennifer D; Vyas, Hemant K; Thorat, Swati; Brandstoetter, Tania; Mukhtar, Muhammad M; Yoon, John K; Novembre, Francis J; Villinger, Francois; Landucci, Gary; Forthal, Donald N; Ratcliffe, Sarah; Tuero, Iskra; Robert-Guroff, Marjorie; Polonis, Victoria R; Bilska, Miroslawa; Montefiori, David C; Johnson, Welkin E; Ertl, Hildegund C; Ruprecht, Ruth M

    2014-01-20

    A key goal for HIV-1 envelope immunogen design is the induction of cross-reactive neutralizing antibodies (nAbs). As AIDS vaccine recipients will not be exposed to strains exactly matching any immunogens due to multiple HIV-1 quasispecies circulating in the human population worldwide, heterologous SHIV challenges are essential for realistic vaccine efficacy testing in primates. We assessed whether polyclonal IgG, isolated from rhesus monkeys (RMs) with high-titer nAbs (termed SHIVIG), could protect RMs against the R5-tropic tier-2 SHIV-2873Nip, which was heterologous to the viruses or HIV-1 envelopes that had elicited SHIVIG. SHIVIG demonstrated binding to HIV Gag, Tat, and Env of different clades and competed with the broadly neutralizing antibodies b12, VRC01, 4E10, and 17b. SHIVIG neutralized tier 1 and tier 2 viruses, including SHIV-2873Nip. NK-cell depletion decreased the neutralizing activity of SHIVIG 20-fold in PBMC assays. Although SHIVIG neutralized SHIV-2873Nip in vitro, this polyclonal IgG preparation failed to prevent acquisition after repeated intrarectal low-dose virus challenges, but at a dose of 400 mg/kg, it significantly lowered peak viremia (P = 0.001). Unexpectedly, single-genome analysis revealed a higher number of transmitted variants at the low dose of 25 mg/kg, implying increased acquisition at low SHIVIG levels. In vitro, SHIVIG demonstrated complement-mediated Ab-dependent enhancement of infection (C'-ADE) at concentrations similar to those observed in plasmas of RMs treated with 25 mg/kg of SHIVIG. Our primate model data suggest a dual role for polyclonal anti-HIV-1 Abs depending on plasma levels upon virus encounter.

  9. Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses.

    PubMed

    Holtsberg, Frederick W; Shulenin, Sergey; Vu, Hong; Howell, Katie A; Patel, Sonal J; Gunn, Bronwyn; Karim, Marcus; Lai, Jonathan R; Frei, Julia C; Nyakatura, Elisabeth K; Zeitlin, Larry; Douglas, Robin; Fusco, Marnie L; Froude, Jeffrey W; Saphire, Erica Ollmann; Herbert, Andrew S; Wirchnianski, Ariel S; Lear-Rooney, Calli M; Alter, Galit; Dye, John M; Glass, Pamela J; Warfield, Kelly L; Aman, M Javad

    2016-01-01

    The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes. Multiple pan-ebolavirus antibodies were identified that react to the Ebola, Sudan, Bundibugyo, and Reston viruses. A pan-filovirus antibody that was reactive to the receptor binding regions of all filovirus glycoproteins was also identified. Significant postexposure efficacy of several MAbs, including a novel antibody cocktail, was demonstrated. For the first time, we report cross-neutralization and in vivo protection against two highly divergent filovirus species, i.e., Ebola virus and Sudan virus, with a single antibody. Competition studies indicate that this antibody targets a previously unrecognized conserved neutralizing epitope that involves the glycan cap. Mechanistic studies indicated that, besides neutralization, innate immune cell effector functions may play a role in the antiviral activity of the antibodies. Our findings further suggest critical novel epitopes that can be utilized to design effective cocktails for broad protection against multiple filovirus species. Filoviruses represent a major public health threat in Africa and an emerging global concern. Largely driven by the U.S. biodefense funding programs and reinforced by the 2014 outbreaks, current immunotherapeutics are primarily focused on a single filovirus species called Ebola virus (EBOV) (formerly Zaire Ebola virus). However, other filoviruses including Sudan, Bundibugyo, and Marburg viruses have caused human outbreaks with mortality rates as high as 90%. Thus, cross-protective immunotherapeutics are urgently needed. Here, we describe monoclonal antibodies with cross-reactivity to several filoviruses, including the first report of a cross-neutralizing antibody that exhibits protection against Ebola virus and Sudan virus in mice. Our results further describe a novel combination of antibodies with enhanced protective efficacy. These results form a basis for further development of effective immunotherapeutics against filoviruses for human use. Understanding the cross-protective epitopes are also important for rational design of pan-ebolavirus and pan-filovirus vaccines. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Cross-Neutralization between Human and African Bat Mumps Viruses.

    PubMed

    Katoh, Hiroshi; Kubota, Toru; Ihara, Toshiaki; Maeda, Ken; Takeda, Makoto; Kidokoro, Minoru

    2016-04-01

    Recently, a new paramyxovirus closely related to human mumps virus (MuV) was detected in bats. We generated recombinant MuVs carrying either or both of the fusion and hemagglutinin-neuraminidase bat virus glycoproteins. These viruses showed replication kinetics similar to human MuV in cultured cells and were neutralized efficiently by serum from healthy humans.

  11. Fine Mapping of Murine Antibody Responses to Immunization with a Novel Soluble Form of Hepatitis C Virus Envelope Glycoprotein Complex

    PubMed Central

    Ruwona, Tinashe B.; Giang, Erick; Nieusma, Travis

    2014-01-01

    ABSTRACT The hepatitis C virus (HCV) envelope glycoprotein E1E2 complex is a candidate vaccine antigen. Previous immunization studies of E1E2 have yielded various results on its ability to induce virus-neutralizing antibodies in animal models and humans. The murine model has become a vital tool for HCV research owing to the development of humanized mice susceptible to HCV infection. In this study, we investigated the antibody responses of mice immunized with E1E2 and a novel soluble form of E1E2 (sE1E2) by a DNA prime and protein boost strategy. The results showed that sE1E2 elicited higher antibody titers and a greater breadth of reactivity than the wild-type cell-associated E1E2. However, immune sera elicited by either immunogen were only weakly neutralizing. In order to understand the contrasting results of binding and serum neutralizing activities, epitopes targeted by the polyclonal antibody responses were mapped and monoclonal antibodies (MAbs) were generated. The results showed that the majority of serum antibodies were directed to the E1 region 211 to 250 and the E2 regions 421 to 469, 512 to 539, 568 to 609, and 638 to 651, instead of the well-known immunodominant E2 hypervariable region 1 (HVR1). Unexpectedly, in MAb analysis, ∼12% of MAbs isolated were specific to the conserved E2 antigenic site 412 to 423, and 85% of them cross-neutralized multiple HCV isolates. The epitopes recognized by these MAbs are similar but distinct from the previously reported HCV1 and AP33 broadly neutralizing epitopes. In conclusion, E1E2 can prime B cells specific to conserved neutralizing epitopes, but the levels of serum neutralizing antibodies elicited are insufficient for effective virus neutralization. The sE1E2 constructs described in this study can be a useful template for rational antigen engineering. IMPORTANCE Hepatitis C virus infects 2 to 3% of the world's population and is a leading cause of liver failures and the need for liver transplantation. The virus envelope glycoprotein complex E1E2 produced by detergent extraction of cells overexpressing the protein was evaluated in a phase I clinical trial but failed to induce neutralizing antibodies in most subjects. In this study, we designed a novel form of E1E2 which is secreted from cells and is soluble and compared it to wild-type E1E2 by DNA immunization of mice. The results showed that this new E1E2 is more immunogenic than wild-type E1E2. Detailed mapping of the antibody responses revealed that antibodies to the conserved E2 antigenic site 412 to 423 were elicited but the serum concentrations were too low to neutralize the virus effectively. This soluble E1E2 provides a new reagent for studying HCV and for rational vaccine design. PMID:24965471

  12. Novel polyvalent live vaccine against varicella-zoster and mumps virus infections.

    PubMed

    Matsuura, Masaaki; Somboonthum, Pranee; Murakami, Kouki; Ota, Megumi; Shoji, Masaki; Kawabata, Kenji; Mizuguchi, Hiroyuki; Gomi, Yasuyuki; Yamanishi, Koichi; Mori, Yasuko

    2013-10-01

    The varicella-zoster virus (VZV) Oka vaccine strain (vOka) is a highly immunogenic and safe live vaccine that has long been used worldwide. Because its genome is large, making it suitable for inserting foreign genes, vOka is considered a candidate vector for novel polyvalent vaccines. Previously, a recombinant vOka, rvOka-HN, that expresses mumps virus (MuV) hemagglutinin-neuraminidase (HN) was generated by the present team. rvOka-HN induces production of neutralizing antibodies against MuV in guinea pigs. MuV also expresses fusion (F) protein, which is important for inducing neutralizing antibodies, in its viral envelope. To induce a more robust immune response against MuV than that obtained with rvOka-HN, here an rvOka expressing both HN and F (rvOka-HN-F) was generated. However, co-expression of HN and F caused the infected cells to form syncytia, which reduced virus titers. To reduce the amount of cell fusion, an rvOka expressing HN and a mutant F, F(S195Y) were generated. Almost no syncytia formed among the rvOka-HN-F(S195Y)-infected cells and the growth of rvOka-HN-F(S195Y) was similar to that of the original vOka clone. Moreover, replacement of serine 195 with tyrosine had no effect on the immunogenicity of F in mice and guinea pigs. Although obvious augmentation of neutralizing antibody production was not observed after adding F protein to vOka-HN, the anti-F antibodies did have neutralizing activity. These data suggest that F protein contributes to induction of immune protection against MuV. Therefore this recombinant virus is a promising candidate vaccine for polyvalent protection against both VZV and MuV. © 2013 The Societies and Wiley Publishing Asia Pty Ltd.

  13. Differentiation of Strains of Infectious Bovine Rhinotracheitis Virus by Neutralization Kinetics with Late 19S Rabbit Antibodies

    PubMed Central

    Potgieter, Leon N. D.; Maré, C. John

    1974-01-01

    Two vaccine, two respiratory (infectious bovine rhinotracheitis [IBR]), and two genital (infectious pustular vulvovaginitis [IPV]) strains of infectious bovine rhinotracheitis virus were compared by neutralization kinetics using late 19S antibody (AB). The two vaccine strains were indistinguishable from one another, but were neutralized far more rapidly than the other four strains when either anti-IBR or anti-IPV 19S AB was used. The two IPV strains were indistinguishable from one another, but were neutralized significantly more rapidly than the two IBR strains when anti-IBR 19S AB was used. The 2 IBR strains were neutralized at a similar rate with the latter globulin preparation. Almost identical results were obtained with anti-IPV 19S AB, except that one IPV strain was neutralized at a rate similar to the IBR strains. However, when early and late rabbit 7S AB were used, IBR strains could not be distinguished from IPV strains by neutralization kinetics. Preliminary experiments indicated that both early and late 19S rabbit antibodies neutralized the homologous strain more rapidly than the heterologous strain, but the difference was more noticeable with late 19S AB. It was also determined that neutralization of IBR-IPV virus by specific early and late 19S rabbit AB and early 7S rabbit AB was markedly enhanced by guinea pig complement. Neutralization of this virus by late 7S AB, however, was only slightly enhanced by complement. These results suggest that vaccine strains of IBR-IPV virus may be distinguished by neutralization kinetics with late 19S rabbit AB, and that genital and respiratory strains may possibly also be distinguishable with some 19S AB preparations. Images PMID:4372173

  14. Repertoire of epitopes recognized by serum IgG from humans vaccinated with herpes simplex virus 2 glycoprotein D.

    PubMed

    Whitbeck, J Charles; Huang, Zhen-Yu; Cairns, Tina M; Gallagher, John R; Lou, Huan; Ponce-de-Leon, Manuel; Belshe, Robert B; Eisenberg, Roselyn J; Cohen, Gary H

    2014-07-01

    The results of a clinical trial of a subunit vaccine against genital herpes were recently reported (R. B. Belshe, P. A. Leone, D. I. Bernstein, A. Wald, M. J. Levin, J. T. Stapleton, I. Gorfinkel, R. L. Morrow, M. G. Ewell, A. Stokes-Riner, G. Dubin, T. C. Heineman, J. M. Schulte, C. D. Deal, N. Engl. J. Med. 366: 34-43, 2012, doi:10.1056/NEJMoa1103151). The vaccine consisted of a soluble form of herpes simplex virus 2 (HSV-2) glycoprotein D (gD2) with adjuvant. The goal of the current study was to examine the composition of the humoral response to gD2 within a selected subset of vaccinated individuals. Serum samples from 30 vaccine recipients were selected based upon relative enzyme-linked immunosorbent assay (ELISA) titers against gD2; 10 samples had high titers, 10 had medium titers, and the remaining 10 had low ELISA titers. We employed a novel, biosensor-based monoclonal antibody (MAb)-blocking assay to determine whether gD2 vaccination elicited IgG responses against epitopes overlapping those of well-characterized MAbs. Importantly, IgGs from the majority of gD2-immunized subjects competed for gD binding with four antigenically distinct virus-neutralizing MAbs (MC2, MC5, MC23, and DL11). Screening of patient IgGs against overlapping peptides spanning the gD2 ectodomain revealed that about half of the samples contained antibodies against linear epitopes within the N and C termini of gD2. We found that the virus-neutralizing abilities of the 10 most potent samples correlated with overall gD-binding activity and to an even greater extent with the combined content of IgGs against the epitopes of MAbs MC2, MC5, MC23, and DL11. This suggests that optimal virus-neutralizing activity is achieved by strong and balanced responses to the four major discontinuous neutralizing epitopes of gD2. Importance: Several herpes simplex virus 2 (HSV-2) subunit vaccine studies have been conducted in human subjects using a recombinant form of HSV-2 glycoprotein D (gD2). Although several distinct, well-characterized virus-neutralizing epitopes on gD2 are targeted by murine monoclonal antibodies, it is not known whether the same epitopes are targeted by the humoral response to gD2 in humans. We have developed a novel, biosensor-based competition assay to directly address this important question. Using this approach, we identified epitopes that elicit strong humoral responses in humans, as well as other epitopes that elicit much weaker responses. These data provide new insight into the human response to known neutralizing gD2 epitopes and reveal characteristics of this response that may guide future vaccine development. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Repertoire of Epitopes Recognized by Serum IgG from Humans Vaccinated with Herpes Simplex Virus 2 Glycoprotein D

    PubMed Central

    Huang, Zhen-Yu; Cairns, Tina M.; Gallagher, John R.; Lou, Huan; Ponce-de-Leon, Manuel; Belshe, Robert B.; Eisenberg, Roselyn J.; Cohen, Gary H.

    2014-01-01

    ABSTRACT The results of a clinical trial of a subunit vaccine against genital herpes were recently reported (R. B. Belshe, P. A. Leone, D. I. Bernstein, A. Wald, M. J. Levin, J. T. Stapleton, I. Gorfinkel, R. L. Morrow, M. G. Ewell, A. Stokes-Riner, G. Dubin, T. C. Heineman, J. M. Schulte, C. D. Deal, N. Engl. J. Med. 366:34–43, 2012, doi:10.1056/NEJMoa1103151). The vaccine consisted of a soluble form of herpes simplex virus 2 (HSV-2) glycoprotein D (gD2) with adjuvant. The goal of the current study was to examine the composition of the humoral response to gD2 within a selected subset of vaccinated individuals. Serum samples from 30 vaccine recipients were selected based upon relative enzyme-linked immunosorbent assay (ELISA) titers against gD2; 10 samples had high titers, 10 had medium titers, and the remaining 10 had low ELISA titers. We employed a novel, biosensor-based monoclonal antibody (MAb)-blocking assay to determine whether gD2 vaccination elicited IgG responses against epitopes overlapping those of well-characterized MAbs. Importantly, IgGs from the majority of gD2-immunized subjects competed for gD binding with four antigenically distinct virus-neutralizing MAbs (MC2, MC5, MC23, and DL11). Screening of patient IgGs against overlapping peptides spanning the gD2 ectodomain revealed that about half of the samples contained antibodies against linear epitopes within the N and C termini of gD2. We found that the virus-neutralizing abilities of the 10 most potent samples correlated with overall gD-binding activity and to an even greater extent with the combined content of IgGs against the epitopes of MAbs MC2, MC5, MC23, and DL11. This suggests that optimal virus-neutralizing activity is achieved by strong and balanced responses to the four major discontinuous neutralizing epitopes of gD2. IMPORTANCE Several herpes simplex virus 2 (HSV-2) subunit vaccine studies have been conducted in human subjects using a recombinant form of HSV-2 glycoprotein D (gD2). Although several distinct, well-characterized virus-neutralizing epitopes on gD2 are targeted by murine monoclonal antibodies, it is not known whether the same epitopes are targeted by the humoral response to gD2 in humans. We have developed a novel, biosensor-based competition assay to directly address this important question. Using this approach, we identified epitopes that elicit strong humoral responses in humans, as well as other epitopes that elicit much weaker responses. These data provide new insight into the human response to known neutralizing gD2 epitopes and reveal characteristics of this response that may guide future vaccine development. PMID:24789783

  16. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies.

    PubMed

    Kashyap, Arun K; Steel, John; Oner, Ahmet F; Dillon, Michael A; Swale, Ryann E; Wall, Katherine M; Perry, Kimberly J; Faynboym, Aleksandr; Ilhan, Mahmut; Horowitz, Michael; Horowitz, Lawrence; Palese, Peter; Bhatt, Ramesh R; Lerner, Richard A

    2008-04-22

    The widespread incidence of H5N1 influenza viruses in bird populations poses risks to human health. Although the virus has not yet adapted for facile transmission between humans, it can cause severe disease and often death. Here we report the generation of combinatorial antibody libraries from the bone marrow of five survivors of the recent H5N1 avian influenza outbreak in Turkey. To date, these libraries have yielded >300 unique antibodies against H5N1 viral antigens. Among these antibodies, we have identified several broadly reactive neutralizing antibodies that could be used for passive immunization against H5N1 virus or as guides for vaccine design. The large number of antibodies obtained from these survivors provide a detailed immunochemical analysis of individual human solutions to virus neutralization in the setting of an actual virulent influenza outbreak. Remarkably, three of these antibodies neutralized both H1 and H5 subtype influenza viruses.

  17. Flavivirus-induced antibody cross-reactivity

    PubMed Central

    Mansfield, Karen L.; Horton, Daniel L.; Johnson, Nicholas; Li, Li; Barrett, Alan D. T.; Smith, Derek J.; Galbraith, Sareen E.; Solomon, Tom

    2011-01-01

    Dengue viruses (DENV) cause countless human deaths each year, whilst West Nile virus (WNV) has re-emerged as an important human pathogen. There are currently no WNV or DENV vaccines licensed for human use, yet vaccines exist against other flaviviruses. To investigate flavivirus cross-reactivity, sera from a human cohort with a history of vaccination against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV) and yellow fever virus (YFV) were tested for antibodies by plaque reduction neutralization test. Neutralization of louping ill virus (LIV) occurred, but no significant neutralization of Murray Valley encephalitis virus was observed. Sera from some individuals vaccinated against TBEV and JEV neutralized WNV, which was enhanced by YFV vaccination in some recipients. Similarly, some individuals neutralized DENV-2, but this was not significantly influenced by YFV vaccination. Antigenic cartography techniques were used to generate a geometric illustration of the neutralization titres of selected sera against WNV, TBEV, JEV, LIV, YFV and DENV-2. This demonstrated the individual variation in antibody responses. Most sera had detectable titres against LIV and some had titres against WNV and DENV-2. Generally, LIV titres were similar to titres against TBEV, confirming the close antigenic relationship between TBEV and LIV. JEV was also antigenically closer to TBEV than WNV, using these sera. The use of sera from individuals vaccinated against multiple pathogens is unique relative to previous applications of antigenic cartography techniques. It is evident from these data that notable differences exist between amino acid sequence identity and mapped antigenic relationships within the family Flaviviridae. PMID:21900425

  18. Flavivirus-induced antibody cross-reactivity.

    PubMed

    Mansfield, Karen L; Horton, Daniel L; Johnson, Nicholas; Li, Li; Barrett, Alan D T; Smith, Derek J; Galbraith, Sareen E; Solomon, Tom; Fooks, Anthony R

    2011-12-01

    Dengue viruses (DENV) cause countless human deaths each year, whilst West Nile virus (WNV) has re-emerged as an important human pathogen. There are currently no WNV or DENV vaccines licensed for human use, yet vaccines exist against other flaviviruses. To investigate flavivirus cross-reactivity, sera from a human cohort with a history of vaccination against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV) and yellow fever virus (YFV) were tested for antibodies by plaque reduction neutralization test. Neutralization of louping ill virus (LIV) occurred, but no significant neutralization of Murray Valley encephalitis virus was observed. Sera from some individuals vaccinated against TBEV and JEV neutralized WNV, which was enhanced by YFV vaccination in some recipients. Similarly, some individuals neutralized DENV-2, but this was not significantly influenced by YFV vaccination. Antigenic cartography techniques were used to generate a geometric illustration of the neutralization titres of selected sera against WNV, TBEV, JEV, LIV, YFV and DENV-2. This demonstrated the individual variation in antibody responses. Most sera had detectable titres against LIV and some had titres against WNV and DENV-2. Generally, LIV titres were similar to titres against TBEV, confirming the close antigenic relationship between TBEV and LIV. JEV was also antigenically closer to TBEV than WNV, using these sera. The use of sera from individuals vaccinated against multiple pathogens is unique relative to previous applications of antigenic cartography techniques. It is evident from these data that notable differences exist between amino acid sequence identity and mapped antigenic relationships within the family Flaviviridae.

  19. Differences in Glycoprotein Complex Receptor Binding Site Accessibility Prompt Poor Cross-Reactivity of Neutralizing Antibodies between Closely Related Arenaviruses

    PubMed Central

    Brouillette, Rachel B.; Phillips, Elisabeth K.; Ayithan, Natarajan

    2017-01-01

    ABSTRACT The glycoprotein complex (GPC) of arenaviruses, composed of stable signal peptide, GP1, and GP2, is the only antigen correlated with antibody-mediated neutralization. However, despite strong cross-reactivity of convalescent antisera between related arenavirus species, weak or no cross-neutralization occurs. Two closely related clade B viruses, Machupo virus (MACV) and Junín virus (JUNV), have nearly identical overall GPC architecture and share a host receptor, transferrin receptor 1 (TfR1). Given structural and functional similarities of the GP1 receptor binding site (RBS) of these viruses and the recent demonstration that the RBS is an important target for neutralizing antibodies, it is not clear how these viruses avoid cross-neutralization. To address this, MACV/JUNV chimeric GPCs were assessed for interaction with a group of α-JUNV GPC monoclonal antibodies (MAbs) and mouse antisera against JUNV or MACV GPC. All six MAbs targeted GP1, with those that neutralized JUNV GPC-pseudovirions competing with each other for RBS binding. However, these MAbs were unable to bind to a chimeric GPC composed of JUNV GP1 containing a small disulfide bonded loop (loop 10) unique to MACV GPC, suggesting that this loop may block MAbs interaction with the GP1 RBS. Consistent with this loop causing interference, mouse anti-JUNV GPC antisera that solely neutralized pseudovirions bearing autologous GP1 provided enhanced neutralization of MACV GPC when this loop was removed. Our studies provide evidence that loop 10, which is unique to MACV GP1, is an important impediment to binding of neutralizing antibodies and contributes to the poor cross-neutralization of α-JUNV antisera against MACV. IMPORTANCE Multiple New World arenaviruses can cause severe disease in humans, and some geographic overlap exists among these viruses. A vaccine that protects against a broad range of New World arenaviruses is desirable for purposes of simplicity, cost, and broad protection against multiple National Institute of Allergy and Infectious Disease-assigned category A priority pathogens. In this study, we sought to better understand how closely related arenaviruses elude cross-species neutralization by investigating the structural bases of antibody binding and avoidance. In our studies, we found that neutralizing antibodies against two New World arenaviruses, Machupo virus (MACV) and Junín virus (JUNV), bound to the envelope glycoprotein 1 (GP1) with JUNV monoclonal antibodies targeting the receptor binding site (RBS). We further show that altered structures surrounding the RBS pocket in MACV GP1 impede access of JUNV-elicited antibodies. PMID:28100617

  20. Differences in Glycoprotein Complex Receptor Binding Site Accessibility Prompt Poor Cross-Reactivity of Neutralizing Antibodies between Closely Related Arenaviruses.

    PubMed

    Brouillette, Rachel B; Phillips, Elisabeth K; Ayithan, Natarajan; Maury, Wendy

    2017-04-01

    The glycoprotein complex (GPC) of arenaviruses, composed of stable signal peptide, GP1, and GP2, is the only antigen correlated with antibody-mediated neutralization. However, despite strong cross-reactivity of convalescent antisera between related arenavirus species, weak or no cross-neutralization occurs. Two closely related clade B viruses, Machupo virus (MACV) and Junín virus (JUNV), have nearly identical overall GPC architecture and share a host receptor, transferrin receptor 1 (TfR1). Given structural and functional similarities of the GP1 receptor binding site (RBS) of these viruses and the recent demonstration that the RBS is an important target for neutralizing antibodies, it is not clear how these viruses avoid cross-neutralization. To address this, MACV/JUNV chimeric GPCs were assessed for interaction with a group of α-JUNV GPC monoclonal antibodies (MAbs) and mouse antisera against JUNV or MACV GPC. All six MAbs targeted GP1, with those that neutralized JUNV GPC-pseudovirions competing with each other for RBS binding. However, these MAbs were unable to bind to a chimeric GPC composed of JUNV GP1 containing a small disulfide bonded loop (loop 10) unique to MACV GPC, suggesting that this loop may block MAbs interaction with the GP1 RBS. Consistent with this loop causing interference, mouse anti-JUNV GPC antisera that solely neutralized pseudovirions bearing autologous GP1 provided enhanced neutralization of MACV GPC when this loop was removed. Our studies provide evidence that loop 10, which is unique to MACV GP1, is an important impediment to binding of neutralizing antibodies and contributes to the poor cross-neutralization of α-JUNV antisera against MACV. IMPORTANCE Multiple New World arenaviruses can cause severe disease in humans, and some geographic overlap exists among these viruses. A vaccine that protects against a broad range of New World arenaviruses is desirable for purposes of simplicity, cost, and broad protection against multiple National Institute of Allergy and Infectious Disease-assigned category A priority pathogens. In this study, we sought to better understand how closely related arenaviruses elude cross-species neutralization by investigating the structural bases of antibody binding and avoidance. In our studies, we found that neutralizing antibodies against two New World arenaviruses, Machupo virus (MACV) and Junín virus (JUNV), bound to the envelope glycoprotein 1 (GP1) with JUNV monoclonal antibodies targeting the receptor binding site (RBS). We further show that altered structures surrounding the RBS pocket in MACV GP1 impede access of JUNV-elicited antibodies. Copyright © 2017 American Society for Microbiology.

  1. Chimeric Filoviruses for Identification and Characterization of Monoclonal Antibodies.

    PubMed

    Ilinykh, Philipp A; Shen, Xiaoli; Flyak, Andrew I; Kuzmina, Natalia; Ksiazek, Thomas G; Crowe, James E; Bukreyev, Alexander

    2016-04-01

    Recent experiments suggest that some glycoprotein (GP)-specific monoclonal antibodies (MAbs) can protect experimental animals against the filovirus Ebola virus (EBOV). There is a need for isolation of MAbs capable of neutralizing multiple filoviruses. Antibody neutralization assays for filoviruses frequently use surrogate systems such as the rhabdovirus vesicular stomatitis Indiana virus (VSV), lentiviruses or gammaretroviruses with their envelope proteins replaced with EBOV GP or pseudotyped with EBOV GP. It is optimal for both screening and in-depth characterization of newly identified neutralizing MAbs to generate recombinant filoviruses that express a reporter fluorescent protein in order to more easily monitor and quantify the infection. Our study showed that unlike neutralization-sensitive chimeric VSV, authentic filoviruses are highly resistant to neutralization by MAbs. We used reverse genetics techniques to replace EBOV GP with its counterpart from the heterologous filoviruses Bundibugyo virus (BDBV), Sudan virus, and even Marburg virus and Lloviu virus, which belong to the heterologous genera in the filovirus family. This work resulted in generation of multiple chimeric filoviruses, demonstrating the ability of filoviruses to tolerate swapping of the envelope protein. The sensitivity of chimeric filoviruses to neutralizing MAbs was similar to that of authentic biologically derived filoviruses with the same GP. Moreover, disabling the expression of the secreted GP (sGP) resulted in an increased susceptibility of an engineered virus to the BDBV52 MAb isolated from a BDBV survivor, suggesting a role for sGP in evasion of antibody neutralization in the context of a human filovirus infection. The study demonstrated that chimeric rhabdoviruses in which G protein is replaced with filovirus GP, widely used as surrogate targets for characterization of filovirus neutralizing antibodies, do not accurately predict the ability of antibodies to neutralize authentic filoviruses, which appeared to be resistant to neutralization. However, a recombinant EBOV expressing a fluorescent protein tolerated swapping of GP with counterparts from heterologous filoviruses, allowing high-throughput screening of B cell lines to isolate MAbs of any filovirus specificity. Human MAb BDBV52, which was isolated from a survivor of BDBV infection, was capable of partially neutralizing a chimeric EBOV carrying BDBV GP in which expression of sGP was disabled. In contrast, the parental virus expressing sGP was resistant to the MAb. Thus, the ability of filoviruses to tolerate swapping of GP can be used for identification of neutralizing MAbs specific to any filovirus and for the characterization of MAb specificity and mechanism of action. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Chimeric Filoviruses for Identification and Characterization of Monoclonal Antibodies

    PubMed Central

    Ilinykh, Philipp A.; Shen, Xiaoli; Flyak, Andrew I.; Kuzmina, Natalia; Ksiazek, Thomas G.; Crowe, James E.

    2016-01-01

    ABSTRACT Recent experiments suggest that some glycoprotein (GP)-specific monoclonal antibodies (MAbs) can protect experimental animals against the filovirus Ebola virus (EBOV). There is a need for isolation of MAbs capable of neutralizing multiple filoviruses. Antibody neutralization assays for filoviruses frequently use surrogate systems such as the rhabdovirus vesicular stomatitis Indiana virus (VSV), lentiviruses or gammaretroviruses with their envelope proteins replaced with EBOV GP or pseudotyped with EBOV GP. It is optimal for both screening and in-depth characterization of newly identified neutralizing MAbs to generate recombinant filoviruses that express a reporter fluorescent protein in order to more easily monitor and quantify the infection. Our study showed that unlike neutralization-sensitive chimeric VSV, authentic filoviruses are highly resistant to neutralization by MAbs. We used reverse genetics techniques to replace EBOV GP with its counterpart from the heterologous filoviruses Bundibugyo virus (BDBV), Sudan virus, and even Marburg virus and Lloviu virus, which belong to the heterologous genera in the filovirus family. This work resulted in generation of multiple chimeric filoviruses, demonstrating the ability of filoviruses to tolerate swapping of the envelope protein. The sensitivity of chimeric filoviruses to neutralizing MAbs was similar to that of authentic biologically derived filoviruses with the same GP. Moreover, disabling the expression of the secreted GP (sGP) resulted in an increased susceptibility of an engineered virus to the BDBV52 MAb isolated from a BDBV survivor, suggesting a role for sGP in evasion of antibody neutralization in the context of a human filovirus infection. IMPORTANCE The study demonstrated that chimeric rhabdoviruses in which G protein is replaced with filovirus GP, widely used as surrogate targets for characterization of filovirus neutralizing antibodies, do not accurately predict the ability of antibodies to neutralize authentic filoviruses, which appeared to be resistant to neutralization. However, a recombinant EBOV expressing a fluorescent protein tolerated swapping of GP with counterparts from heterologous filoviruses, allowing high-throughput screening of B cell lines to isolate MAbs of any filovirus specificity. Human MAb BDBV52, which was isolated from a survivor of BDBV infection, was capable of partially neutralizing a chimeric EBOV carrying BDBV GP in which expression of sGP was disabled. In contrast, the parental virus expressing sGP was resistant to the MAb. Thus, the ability of filoviruses to tolerate swapping of GP can be used for identification of neutralizing MAbs specific to any filovirus and for the characterization of MAb specificity and mechanism of action. PMID:26819310

  3. West Nile virus--neutralizing antibodies in humans in Greece.

    PubMed

    Papa, Anna; Perperidou, Parthena; Tzouli, Anisa; Castilletti, Concetta

    2010-10-01

    Serum samples collected during March-May 2007 from 392 residents of Imathia prefecture, Northern Greece, were tested by indirect immunofluorescence assay and enzyme-linked immunosorbent assay for IgG antibodies against West Nile virus (WNV). Microneutralization assay was applied in six positive samples. Four (4/392, 1.02%) were found positive for WNV-neutralizing antibodies. None of the positive individuals had a history of travel in endemic area or flavivirus vaccination, suggesting that WNV, or an antigenically related flavivirus, circulates in an endemic sylvatic cycle, at least locally, in rural areas in Greece. Human, animal, and vector surveillance systems have to be implemented to provide an early detection of WNV activity in Greece.

  4. [Rational method of obtaining sera with a high titre of virus-neutralizing antibodies. Report 2].

    PubMed

    Kravchenko, A T; Omel'chenko, T N; Tsetlin, E M

    1978-02-01

    In addition to report I (ZHMEI, 1977, No. 1) a study was made of 9 more schemes of rabbit immunization with the poliomyelitis virus, type I, for the purpose of obtaining the neutralizing sera of high titre. Vitamins A and C were used in the experiments in the capacity of the activators of the organism reaction; Freund's adjuvant of different make was tested; different reimmunization periods and different amounts of the adjuvant were administered. Titration of rabbit sera in the process of immunization and reimmunization showed immunization into the lymph nodes with the subsequent single reimmunization in one month to be the most effective and economical method of obtaining high effective sera.

  5. Computationally Optimized Broadly Reactive Hemagglutinin Elicits Hemagglutination Inhibition Antibodies against a Panel of H3N2 Influenza Virus Cocirculating Variants

    PubMed Central

    Wong, Terianne M.; Allen, James D.; Bebin-Blackwell, Anne-Gaelle; Carter, Donald M.; Alefantis, Timothy; DiNapoli, Joshua; Kleanthous, Harold

    2017-01-01

    ABSTRACT Each influenza season, a set of wild-type viruses, representing one H1N1, one H3N2, and one to two influenza B isolates, are selected for inclusion in the annual seasonal influenza vaccine. In order to develop broadly reactive subtype-specific influenza vaccines, a methodology called computationally optimized broadly reactive antigens (COBRA) was used to design novel hemagglutinin (HA) vaccine immunogens. COBRA technology was effectively used to design HA immunogens that elicited antibodies that neutralized H5N1 and H1N1 isolates. In this report, the development and characterization of 17 prototype H3N2 COBRA HA proteins were screened in mice and ferrets for the elicitation of antibodies with HA inhibition (HAI) activity against human seasonal H3N2 viruses that were isolated over the last 48 years. The most effective COBRA HA vaccine regimens elicited antibodies with broader HAI activity against a panel of H3N2 viruses than wild-type H3 HA vaccines. The top leading COBRA HA candidates were tested against cocirculating variants. These variants were not efficiently detected by antibodies elicited by the wild-type HA from viruses selected as the vaccine candidates. The T-11 COBRA HA vaccine elicited antibodies with HAI and neutralization activity against all cocirculating variants from 2004 to 2007. This is the first report demonstrating broader breadth of vaccine-induced antibodies against cocirculating H3N2 strains compared to the wild-type HA antigens that were represented in commercial influenza vaccines. IMPORTANCE There is a need for an improved influenza vaccine that elicits immune responses that recognize a broader number of influenza virus strains to prevent infection and transmission. Using the COBRA approach, a set of vaccines against influenza viruses in the H3N2 subtype was tested for the ability to elicit antibodies that neutralize virus infection against not only historical vaccine strains of H3N2 but also a set of cocirculating variants that circulated between 2004 and 2007. Three of the H3N2 COBRA vaccines recognized all of the cocirculating strains during this era, but the chosen wild-type vaccine strains were not able to elicit antibodies with HAI activity against these cocirculating strains. Therefore, the COBRA vaccines have the ability to elicit protective antibodies against not only the dominant vaccine strains but also minor circulating strains that can evolve into the dominant vaccine strains in the future. PMID:28978710

  6. Hemagglutinin-specific neutralization of subacute sclerosing panencephalitis viruses

    PubMed Central

    Muller, Claude P.; Russell, Stephen J.

    2018-01-01

    Subacute sclerosing panencephalitis (SSPE) is a progressive, lethal complication of measles caused by particular mutants of measles virus (MeV) that persist in the brain despite high levels of neutralizing antibodies. We addressed the hypothesis that antigenic drift is involved in the pathogenetic mechanism of SSPE by analyzing antigenic alterations in the MeV envelope hemagglutinin protein (MeV-H) found in patients with SSPE in relation to major circulating MeV genotypes. To this aim, we obtained cDNA for the MeV-H gene from tissue taken at brain autopsy from 3 deceased persons with SSPE who had short (3–4 months, SMa79), average (3.5 years, SMa84), and long (18 years, SMa94) disease courses. Recombinant MeVs with a substituted MeV-H gene were generated by a reverse genetic system. Virus neutralization assays with a panel of anti-MeV-H murine monoclonal antibodies (mAbs) or vaccine-immunized mouse anti-MeV-H polyclonal sera were performed to determine the antigenic relatedness. Functional and receptor-binding analysis of the SSPE MeV-H showed activity in a SLAM/nectin-4–dependent manner. Similar to our panel of wild-type viruses, our SSPE viruses showed an altered antigenic profile. Genotypes A, G3, and F (SSPE case SMa79) were the exception, with an intact antigenic structure. Genotypes D7 and F (SSPE SMa79) showed enhanced neutralization by mAbs targeting antigenic site IIa. Genotypes H1 and the recently reported D4.2 were the most antigenically altered genotypes. Epitope mapping of neutralizing mAbs BH015 and BH130 reveal a new antigenic site on MeV-H, which we designated Φ for its intermediate position between previously defined antigenic sites Ia and Ib. We conclude that SSPE-causing viruses show similar antigenic properties to currently circulating MeV genotypes. The absence of a direct correlation between antigenic changes and predisposition of a certain genotype to cause SSPE does not lend support to the proposed antigenic drift as a pathogenetic mechanism in SSPE. PMID:29466428

  7. Hemagglutinin-specific neutralization of subacute sclerosing panencephalitis viruses.

    PubMed

    Muñoz-Alía, Miguel Ángel; Muller, Claude P; Russell, Stephen J

    2018-01-01

    Subacute sclerosing panencephalitis (SSPE) is a progressive, lethal complication of measles caused by particular mutants of measles virus (MeV) that persist in the brain despite high levels of neutralizing antibodies. We addressed the hypothesis that antigenic drift is involved in the pathogenetic mechanism of SSPE by analyzing antigenic alterations in the MeV envelope hemagglutinin protein (MeV-H) found in patients with SSPE in relation to major circulating MeV genotypes. To this aim, we obtained cDNA for the MeV-H gene from tissue taken at brain autopsy from 3 deceased persons with SSPE who had short (3-4 months, SMa79), average (3.5 years, SMa84), and long (18 years, SMa94) disease courses. Recombinant MeVs with a substituted MeV-H gene were generated by a reverse genetic system. Virus neutralization assays with a panel of anti-MeV-H murine monoclonal antibodies (mAbs) or vaccine-immunized mouse anti-MeV-H polyclonal sera were performed to determine the antigenic relatedness. Functional and receptor-binding analysis of the SSPE MeV-H showed activity in a SLAM/nectin-4-dependent manner. Similar to our panel of wild-type viruses, our SSPE viruses showed an altered antigenic profile. Genotypes A, G3, and F (SSPE case SMa79) were the exception, with an intact antigenic structure. Genotypes D7 and F (SSPE SMa79) showed enhanced neutralization by mAbs targeting antigenic site IIa. Genotypes H1 and the recently reported D4.2 were the most antigenically altered genotypes. Epitope mapping of neutralizing mAbs BH015 and BH130 reveal a new antigenic site on MeV-H, which we designated Φ for its intermediate position between previously defined antigenic sites Ia and Ib. We conclude that SSPE-causing viruses show similar antigenic properties to currently circulating MeV genotypes. The absence of a direct correlation between antigenic changes and predisposition of a certain genotype to cause SSPE does not lend support to the proposed antigenic drift as a pathogenetic mechanism in SSPE.

  8. Immunological aspects of circulating DNA.

    PubMed

    Anker, Philippe; Stroun, Maurice

    2006-09-01

    Nude mice were injected with DNA released by T lymphocytes previously exposed to inactivated herpes symplex type 1 or polio viruses. The serum of these mice was tested for its neutralizing activity. Injected nude mice synthesized antiherpetic or antipolio antibodies, depending on the antigen used to sensitize the T lymphocytes. Mice injected with DNA released by human T cells produced antibodies carrying human allotypes as they could be neutralized by antiallotype sera. However, mice that were injected with DNA released by antigen-stimulated murine T lymphocytes produced antiviral antibodies, which were not neutralized by anti-human allotype sera.

  9. Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses.

    PubMed

    Chen, Ping; Hübner, Wolfgang; Spinelli, Matthew A; Chen, Benjamin K

    2007-11-01

    Cell-free human immunodeficiency virus type 1 (HIV-1) can initiate infections, but contact between infected and uninfected T cells can enhance viral spread through intercellular structures called virological synapses (VS). The relative contribution of VS to cell-free viral transfer has not been carefully measured. Using an ultrasensitive, fluorescent virus transfer assay, we estimate that when VS between HIV-expressing Jurkat T cells and primary CD4(+) T cells are formed, cell-associated transfer of virus is 18,000-fold more efficient than uptake of cell-free virus. Furthermore, in contrast to cell-free virus uptake, the VS deposits virus rapidly into focal, trypsin-resistant compartments in target T cells. This massive virus internalization requires Env-CD4 receptor interactions but is resistant to inhibition by patient-derived neutralizing antisera that inhibit homologous cell-free virus. Deleting the Env cytoplasmic tail does not abrogate VS-mediated transfer, but it renders the VS sensitive to neutralizing antibodies, suggesting that the tail limits exposure of VS-neutralizing epitopes on the surface of infected cells. Dynamic live imaging of the VS reveals that HIV-expressing cells are polarized and make sustained, Env-dependent contacts with target cells through uropod-like structures. The polarized T-cell morphology, Env-CD4 coordinated adhesion, and viral transfer from HIV-infected to uninfected cells suggest that VS allows HIV-1 to evade antibody neutralization and to disseminate efficiently. Future studies will discern to what extent this massive viral transfer contributes to productive infection or viral dissemination through the migration of virus-carrying T cells.

  10. Fluorescence Adherence Inhibition Assay: A Novel Functional Assessment of Blocking Virus Attachment by Vaccine-Induced Antibodies

    PubMed Central

    Asati, Atul; Kachurina, Olga; Karol, Alex; Dhir, Vipra; Nguyen, Michael; Parkhill, Robert; Kouiavskaia, Diana; Chumakov, Konstantin; Warren, William; Kachurin, Anatoly

    2016-01-01

    Neutralizing antibodies induced by vaccination or natural infection play a critically important role in protection against the viral diseases. In general, neutralization of the viral infection occurs via two major pathways: pre- and post-attachment modes, the first being the most important for such infections as influenza and polio, the latter being significant for filoviruses. Neutralizing capacity of antibodies is typically evaluated by virus neutralization assays that assess reduction of viral infectivity to the target cells in the presence of functional antibodies. Plaque reduction neutralization test, microneutralization and immunofluorescent assays are often used as gold standard virus neutralization assays. However, these methods are associated with several important prerequisites such as use of live virus requiring safety precautions, tedious evaluation procedure and long assessment time. Hence, there is a need for a robust, inexpensive high throughput functional assay that can be performed rapidly using inactivated virus, without extensive safety precautions. Herein, we report a novel high throughput Fluorescence Adherence Inhibition assay (fADI) using inactivated virus labeled with fluorescent secondary antibodies virus and Vero cells or erythrocytes as targets. It requires only few hours to assess pre-attachment neutralizing capacity of donor sera. fADI assay was tested successfully on donors immunized with polio, yellow fever and influenza vaccines. To further simplify and improve the throughput of the assay, we have developed a mathematical approach for calculating the 50% titers from a single sample dilution, without the need to analyze multi-point titration curves. Assessment of pre- and post-vaccination human sera from subjects immunized with IPOL®, YF-VAX® and 2013–2014 Fluzone® vaccines demonstrated high efficiency of the assay. The results correlated very well with microneutralization assay performed independently by the FDA Center of Biologics Evaluation and Research, with plaque reduction neutralization test performed by Focus Diagnostics, and with hemaglutination inhibition assay performed in-house at Sanofi Pasteur. Taken together, fADI assay appears to be a useful high throughput functional immunoassay for assessment of antibody-related neutralization of the viral infections for which pre-attachment neutralization pathway is predominant, such as polio, influenza, yellow fever and dengue. PMID:26863313

  11. The broadly neutralizing anti-human immunodeficiency virus type 1 4E10 monoclonal antibody is better adapted to membrane-bound epitope recognition and blocking than 2F5.

    PubMed

    Huarte, Nerea; Lorizate, Maier; Maeso, Rubén; Kunert, Renate; Arranz, Rocio; Valpuesta, José M; Nieva, José L

    2008-09-01

    The broadly neutralizing 2F5 and 4E10 monoclonal antibodies (MAbs) recognize epitopes within the membrane-proximal external region (MPER) that connects the human immunodeficiency virus type 1 (HIV-1) envelope gp41 ectodomain with the transmembrane anchor. By adopting different conformations that stably insert into the virion external membrane interface, such as helical structures, a conserved aromatic-rich sequence within the MPER is thought to participate in HIV-1-cell fusion. Recent experimental evidence suggests that the neutralizing activity of 2F5 and 4E10 might correlate with the MAbs' capacity to recognize epitopes inserted into the viral membrane, thereby impairing MPER fusogenic activity. To gain new insights into the molecular mechanism underlying viral neutralization by these antibodies, we have compared the capacities of 2F5 and 4E10 to block the membrane-disorganizing activity of MPER peptides inserted into the surface bilayer of solution-diffusing unilamellar vesicles. Both MAbs inhibited leakage of vesicular aqueous contents (membrane permeabilization) and intervesicular lipid mixing (membrane fusion) promoted by MPER-derived peptides. Thus, our data support the idea that antibody binding to a membrane-inserted epitope may interfere with the function of the MPER during gp41-induced fusion. Antibody insertion into a cholesterol-containing, uncharged virion-like membrane is mediated by specific epitope recognition, and moreover, partitioning-coupled folding into a helix reduces the efficiency of 2F5 MAb binding to its epitope in the membrane. We conclude that the capacity to interfere with the membrane activity of conserved MPER sequences is best correlated with the broad neutralization of the 4E10 MAb.

  12. Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin.

    PubMed Central

    Panicali, D; Davis, S W; Weinberg, R L; Paoletti, E

    1983-01-01

    Recombinant vaccinia viruses containing the cloned hemagglutinin (HA) gene from influenza virus were constructed. The biological activity of these poxvirus vectors was demonstrated both in vitro and in vivo. Expression of HA in cells infected with recombinant vaccinia was detected by using specific anti-HA antiserum and 125I-labeled protein A, showing that HA synthesized under the regulation of vaccinia virus was antigenic. Immunization of rabbits with these recombinant poxviruses resulted in the production of antibodies reactive with authentic influenza HA as detected by radioimmunoassay, by inhibition of HA erythrocyte agglutination, and by neutralization of influenza virus infectivity. The production of antibodies directed against influenza HA suggested that the HA gene expressed in vaccinia is immunogenic. These data indicate the potential of genetically engineered poxviruses for use as generic live vaccine vehicles that have both human and veterinary applications. Images PMID:6310573

  13. Cooperativity Between CD8+ T Cells, Non-Neutralizing Antibodies, and Alveolar Macrophages Is Important for Heterosubtypic Influenza Virus Immunity

    PubMed Central

    Laidlaw, Brian J.; Decman, Vilma; Ali, Mohammed-Alkhatim A.; Abt, Michael C.; Wolf, Amaya I.; Monticelli, Laurel A.; Mozdzanowska, Krystyna; Angelosanto, Jill M.; Artis, David; Erikson, Jan; Wherry, E. John

    2013-01-01

    Seasonal epidemics of influenza virus result in ∼36,000 deaths annually in the United States. Current vaccines against influenza virus elicit an antibody response specific for the envelope glycoproteins. However, high mutation rates result in the emergence of new viral serotypes, which elude neutralization by preexisting antibodies. T lymphocytes have been reported to be capable of mediating heterosubtypic protection through recognition of internal, more conserved, influenza virus proteins. Here, we demonstrate using a recombinant influenza virus expressing the LCMV GP33-41 epitope that influenza virus-specific CD8+ T cells and virus-specific non-neutralizing antibodies each are relatively ineffective at conferring heterosubtypic protective immunity alone. However, when combined virus-specific CD8 T cells and non-neutralizing antibodies cooperatively elicit robust protective immunity. This synergistic improvement in protective immunity is dependent, at least in part, on alveolar macrophages and/or other lung phagocytes. Overall, our studies suggest that an influenza vaccine capable of eliciting both CD8+ T cells and antibodies specific for highly conserved influenza proteins may be able to provide heterosubtypic protection in humans, and act as the basis for a potential “universal” vaccine. PMID:23516357

  14. Effect of the Deletion of Genes Encoding Proteins of the Extracellular Virion Form of Vaccinia Virus on Vaccine Immunogenicity and Protective Effectiveness in the Mouse Model

    PubMed Central

    Meseda, Clement A.; Campbell, Joseph; Kumar, Arunima; Garcia, Alonzo D.; Merchlinsky, Michael; Weir, Jerry P.

    2013-01-01

    Antibodies to both infectious forms of vaccinia virus, the mature virion (MV) and the enveloped virion (EV), as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model. PMID:23785523

  15. Serologic Evidence of Jamestown Canyon and Keystone Virus Infection in Vertebrates of the Delmarva Peninsula

    DTIC Science & Technology

    1982-01-01

    as a potential tailed deer neutralized both JC and KEY viruses , amplifying host of this virus . Sika deer, and cot- Evidence based on PRN.,, titers...Bunyaviridae, Cali- fornia serogroup). Neutralizing (N) antibody to JC virus was most prevalent in white-tailed deer, sika deer, cottontail rabbits and... viruses also was found in raccoons, horses and humans. JC and/or KEY virus N antibodies were not demonstrable in sera of several other species of

  16. Neutralizing Antibody Fails to Impact the Course of Ebola Virus Infection in Monkeys

    DTIC Science & Technology

    2007-01-19

    endothelial cells. Am J Pathol 163: 2371–2382. 16. Geisbert TW, Hensley LE , Jahrling PB, Larsen T, Geisbert JB, et al. (2003) Treatment of Ebola virus...Hernandez HJ, Thomas WD Jr, et al. (2005) Development and characterization of a severe acute respiratory syndrome-associated coronavirus -neutralizing human...Citation: Oswald WB, Geisbert TW, Davis KJ, Geisbert JB, Sullivan NJ, et al. (2007) Neutralizing antibody fails to impact the course of Ebola virus

  17. A Role for Small Antibody Fragments to Bind and Neutralize HIV | Center for Cancer Research

    Cancer.gov

    The surface of the Human Immunodeficiency Virus (HIV) is studded with numerous copies of the glycoprotein Env. Each Env spike is composed of three copies of the proteins gp41, which sits in the viral membrane, and gp120, which rests on top of each gp41 molecule. Env is essential for HIV-mediated infection because the binding of gp120 to the T cell surface receptor CD4 initiates a conformational change in Env exposing the fusion peptide, which inserts into the T cell membrane and helps fuse the T cell and virus together. This makes Env an attractive target for designing therapeutic inhibitory antibodies. However, the complexities of the HIV surface proteins and the tight association of the virus and T cell during infection have hampered the identification of full-length antibodies with effective HIV neutralizing activity.

  18. [The clinico-laboratory characteristics of cases of diseases connected with viruses of the California encephalitis complex in the inhabitants of Moscow].

    PubMed

    Kolobukhina, L V; L'vov, D K; Butenko, A M; Kuznetsov, A A; Galkina, I V

    1989-10-01

    To study the role of viruses of the California encephalitis virus complex (the family Bunyaviridae) in infectious pathology, 187 fever patients admitted to the Clinical Infectious Hospital in May-September 1986 were examined. In 10 of these patients the neutralization test revealed the presence of diagnostically significant changes in neutralizing antibodies (neutralization indices), which was indicative of the role played by Tahyna virus or other related viruses belonging to the California encephalitis virus complex in the etiology of the diseases. The analysis of the clinical picture showed that in all patients the disease took an acute course in its initial stage, starting with shivering and characterized by high fever, headache, pronounced toxicosis, the possibility of the formation of intracerebral hypertension and pneumonia.

  19. Immunising with the transmembrane envelope proteins of different retroviruses including HIV-1

    PubMed Central

    Denner, Joachim

    2013-01-01

    The induction of neutralizing antibodies is a promising way to prevent retrovirus infections. Neutralizing antibodies are mainly directed against the envelope proteins, which consist of two molecules, the surface envelope (SU) protein and the transmembrane envelope (TM) protein. Antibodies broadly neutralizing the human immunodeficiencvy virus-1 (HIV-1) and binding to the TM protein gp41 of the virus have been isolated from infected individuals. Their epitopes are located in the membrane proximal external region (MPER). Since there are difficulties to induce such neutralizing antibodies as basis for an effective AIDS vaccine, we performed a comparative analysis immunising with the TM proteins of different viruses from the family Retroviridae. Both subfamilies, the Orthoretrovirinae and the Spumaretrovirinae were included. In this study, the TM proteins of three gammaretroviruses including (1) the porcine endogenous retrovirus (PERV), (2) the Koala retrovirus (KoRV), (3) the feline leukemia virus (FeLV), of two lentiviruses, HIV-1, HIV-2, and of two spumaviruses, the feline foamy virus (FFV) and the primate foamy virus (PFV) were used for immunisation. Whereas in all immunisation studies binding antibodies were induced, neutralizing antibodies were only found in the case of the gammaretroviruses. The induced antibodies were directed against the MPER and the fusion peptide proximal region (FPPR) of their TM proteins; however only the antibodies against the MPER were neutralizing. Most importantly, the epitopes in the MPER were localized in the same position as the epitopes of the antibodies broadly neutralizing HIV-1 in the TM protein gp41 of HIV-1, indicating that the MPER is an effective target for the neutralization of retroviruses. PMID:23249763

  20. A Bivalent, Chimeric Rabies Virus Expressing Simian Immunodeficiency Virus Envelope Induces Multifunctional Antibody Responses.

    PubMed

    Dunkel, Amber; Shen, Shixue; LaBranche, Celia C; Montefiori, David; McGettigan, James P

    2015-11-01

    We previously showed that a matrix (M) gene-deleted rabies virus (RABV)-based vaccine (RABV-ΔM) is highly immunogenic and induces potent B cell responses in the context of RABV infection. We speculated that RABV-ΔM expressing HIV proteins would also induce potent B cell responses against HIV antigens. As a prerequisite to future studies in nonhuman primates, we completed immunogenicity studies in mice to confirm the ability of RABV-ΔM to induce polyfunctional B cell responses in the context of HIV. To that end, the envelope protein from the mac239 strain of SIV (SIVmac239Env) was cloned into RABV-ΔM, resulting in RABV-ΔM-Env. Infectious virus was recovered following standard methods and propagated on baby hamster kidney cells stably expressing RABV M [>10(7) focus forming units (ffu)/ml]. Western blot analysis of cell lysates or of purified virions confirmed Env expression on the surface of infected cells and within virus particles, respectively. Positive neutralization activity against a neutralization-sensitive SIV strain and to a lesser extent against a neutralization-resistant SIV strain was detected in mice after a single intramuscular inoculation with RABV-ΔM-Env. The quality, but not quantity, of the antibody response was enhanced via boosting with recombinant gp130 or RABV-ΔM-Env as measured by an increase in antibody avidity and a skewing toward a Th1-type antibody response. We also show that an intradermal inoculation induces higher antibodies than an intramuscular or intranasal inoculation. An intradermal inoculation of RABV-ΔM-Env followed by a boost inoculation with recombinant gp130 produced anti-SIV antibodies with neutralizing and nonneutralizing antibody (nNAb) effector functions. Together, RABV-ΔM-Env induces B cells to secrete antibodies against SIV with the potential to clear both "free" and cell-associated virus. Strategies capable of eliciting both NAbs as well as nNAbs might help to improve the efficacy of HIV-1 vaccines.

  1. Optimized Replicating Renilla Luciferase Reporter HIV-1 Utilizing Novel Internal Ribosome Entry Site Elements for Native Nef Expression and Function.

    PubMed

    Alberti, Michael O; Jones, Jennifer J; Miglietta, Riccardo; Ding, Haitao; Bakshi, Rakesh K; Edmonds, Tara G; Kappes, John C; Ochsenbauer, Christina

    2015-12-01

    We previously developed replication-competent reporter HIV-1 (referred to herein as LucR.T2A reporter viruses), utilizing a "ribosome skipping" T2A peptide strategy to link Renilla luciferase (LucR) with Nef expression. The demonstrated utility for HIV-1 vaccine and transmission study applications included measurement of neutralizing antibody (NAb) activity in vaccine sera, improved cell-mediated virus inhibition assays, such as T cell-mediated virus inhibition and antibody-dependent cell-mediated cytotoxicity (ADCC) assays, and humanized mouse models. Herein, we extend our prior work and introduce reporter virus technology for applications that require fully functional Nef. We demonstrate that in CD4(+) T cells productively infected with LucR.T2A reporter viruses, T2A peptide-driven Nef expression and function, such as down-regulation of surface CD4 and MHC-I, were impaired. We overcame this limitation of LucR.T2A reporter viruses and achieved physiological Nef expression and function by engineering novel LucR reporter HIV-1 comprising 11 different internal ribosome entry site (IRES) elements chosen for size and relative activity. A range of Nef expression was observed in 293T cells transfected with the different LucR.IRES reporter virus constructs. Iteratively, we identified IRES reporter genomes that expressed Nef closest to physiological levels and produced virus with infectivity, titers, and replication kinetics similar to nonreporter viruses. Our results demonstrated that LucR reporter activity was stable over multiple replication cycles in peripheral blood mononuclear cells (PBMCs). Furthermore, we analyzed Nef functionality, i.e., down-modulation of MHC-I and CD4, following infection of T cell lines and PBMCs. Unlike LucR.T2A reporter virus, one of the redesigned LucR.IRES reporter viruses [containing the modified encephalomyocarditis virus (EMCV) 6ATR IRES element, "6ATRi"] demonstrated Nef expression and function similar to parental "nonreporter" virus. In a previously validated (nef-independent) T cell-based NAb neutralization assay, LucR.6ATRi reporter virus performed indistinguishably from LucR.T2A reporter virus. In summary, reporter viruses comprising the "6ATRi" element promise to augment HIV-1 vaccine and transmission research approaches requiring a sensitive reporter readout combined with wild-type Nef function.

  2. Optimized Replicating Renilla Luciferase Reporter HIV-1 Utilizing Novel Internal Ribosome Entry Site Elements for Native Nef Expression and Function

    PubMed Central

    Alberti, Michael O.; Jones, Jennifer J.; Miglietta, Riccardo; Ding, Haitao; Bakshi, Rakesh K.; Edmonds, Tara G.; Kappes, John C.

    2015-01-01

    Abstract We previously developed replication-competent reporter HIV-1 (referred to herein as LucR.T2A reporter viruses), utilizing a “ribosome skipping” T2A peptide strategy to link Renilla luciferase (LucR) with Nef expression. The demonstrated utility for HIV-1 vaccine and transmission study applications included measurement of neutralizing antibody (NAb) activity in vaccine sera, improved cell-mediated virus inhibition assays, such as T cell-mediated virus inhibition and antibody-dependent cell-mediated cytotoxicity (ADCC) assays, and humanized mouse models. Herein, we extend our prior work and introduce reporter virus technology for applications that require fully functional Nef. We demonstrate that in CD4+ T cells productively infected with LucR.T2A reporter viruses, T2A peptide-driven Nef expression and function, such as down-regulation of surface CD4 and MHC-I, were impaired. We overcame this limitation of LucR.T2A reporter viruses and achieved physiological Nef expression and function by engineering novel LucR reporter HIV-1 comprising 11 different internal ribosome entry site (IRES) elements chosen for size and relative activity. A range of Nef expression was observed in 293T cells transfected with the different LucR.IRES reporter virus constructs. Iteratively, we identified IRES reporter genomes that expressed Nef closest to physiological levels and produced virus with infectivity, titers, and replication kinetics similar to nonreporter viruses. Our results demonstrated that LucR reporter activity was stable over multiple replication cycles in peripheral blood mononuclear cells (PBMCs). Furthermore, we analyzed Nef functionality, i.e., down-modulation of MHC-I and CD4, following infection of T cell lines and PBMCs. Unlike LucR.T2A reporter virus, one of the redesigned LucR.IRES reporter viruses [containing the modified encephalomyocarditis virus (EMCV) 6ATR IRES element, “6ATRi”] demonstrated Nef expression and function similar to parental “nonreporter” virus. In a previously validated (nef-independent) T cell-based NAb neutralization assay, LucR.6ATRi reporter virus performed indistinguishably from LucR.T2A reporter virus. In summary, reporter viruses comprising the “6ATRi” element promise to augment HIV-1 vaccine and transmission research approaches requiring a sensitive reporter readout combined with wild-type Nef function. PMID:26101895

  3. Correlation of cytotoxic activity in lungs to recovery of normal and gamma-irradiated cotton rats from respiratory syncytial virus infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, C.S.; Wyde, P.R.; Knight, V.

    1983-10-01

    Cotton rats (Sigmodon hispidus) that were exposed to 300, 600, or 900 rads of gamma irradiation and inoculated intranasally 2 days later with respiratory syncytial virus (RSV) exhibited prolonged virus shedding and delayed humoral and cytotoxic immune responses compared with comparably inoculated nonirradiated control rats. In nonirradiated animals and in animals exposed to 300 and 600 rads, levels of virus declined and then disappeared from the lungs during the period in which cytotoxic activity was maximal in the lungs of these animals. In contrast, in the group of cotton rats exposed to 900 rads of irradiation, local cytotoxic activity remainedmore » low throughout the 11-day observation period, and virus was not eliminated from the lungs. Although virus-neutralizing antibodies in serum and lavage fluids from these animals may have been involved, correlation of antibody concentrations with virus clearance from lungs was not as evident. These data suggest that cytotoxic effector cells have a positive role in eliminating RSV from the lungs of unprimed cotton rats.« less

  4. Clover-Tagged Porcine Reproductive and Respiratory Syndrome Virus Infectious Clones for Rapid Detection of Virus Neutralizing Antibodies.

    PubMed

    Huang, Baicheng; Xiao, Xia; Xue, Biyun; Zhou, En-Min

    2018-06-24

    Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is a widespread disease that affects domestic pigs of all ages. Accurate and rapid detection of PRRSV specific neutralizing antibodies levels in a pig herd is beneficial for the evaluation of the herd's immunity to combat the specific viral infection. However, the current methods for viral detection, including fluorescent focus neutralization (FFN) and cytopathic effect (CPE) reduction neutralizing assays, are subjective and time-consuming. Therefore, a Clover-tagged PRRSV virus neutralization assay were developed that instrumentally measures the fluorescence signal of Clover stably expressing by a PRRSV infectious clone for at least 10 passages. Herein, the results showed that the proposed Clover-tagged PRRSV neutralization assay is reliable using instrumental measurements of the fluorescence signal of Clover and allows for rapid detection of neutralizing antibodies against PRRSV. The assay was evaluated by testing swine sera from experimental and field samples, and comparisons were made with the traditional FFN and CPE reduction assays. These results suggest that the Clover-tagged PRRSV infectious clone offers a fast and reliable testing method for neutralizing antibodies and could permit high-throughput screening of new antiviral agents. Copyright © 2018. Published by Elsevier B.V.

  5. Mapping the Human Memory B Cell and Serum Neutralizing Antibody Responses to Dengue Virus Serotype 4 Infection and Vaccination

    PubMed Central

    Nivarthi, Usha K.; Kose, Nurgun; Sapparapu, Gopal; Widman, Douglas; Gallichotte, Emily; Pfaff, Jennifer M.; Doranz, Benjamin J.; Weiskopf, Daniela; Sette, Alessandro; Durbin, Anna P.; Whitehead, Steve S.; Baric, Ralph

    2016-01-01

    ABSTRACT The four dengue virus (DENV) serotypes are mosquito-borne flaviviruses responsible for dengue fever and dengue hemorrhagic fever. People exposed to DENV develop antibodies (Abs) that strongly neutralize the serotype responsible for infection. Historically, infection with DENV serotype 4 (DENV4) has been less common and less studied than infections with the other three serotypes. However, DENV4 has been responsible for recent large and sustained epidemics in Asia and Latin America. The neutralizing antibody responses and the epitopes targeted against DENV4 have not been characterized in human infection. In this study, we mapped and characterized epitopes on DENV4 recognized by neutralizing antibodies in people previously exposed to DENV4 infections or to a live attenuated DENV4 vaccine. To study the fine specificity of DENV4 neutralizing human antibodies, B cells from two people exposed to DENV4 were immortalized and screened to identify DENV-specific clones. Two human monoclonal antibodies (MAbs) that neutralized DENV4 were isolated, and their epitopes were finely mapped using recombinant viruses and alanine scan mutation array techniques. Both antibodies bound to quaternary structure epitopes near the hinge region between envelope protein domain I (EDI) and EDII. In parallel, to characterize the serum neutralizing antibody responses, convalescence-phase serum samples from people previously exposed to primary DENV4 natural infections or a monovalent DENV4 vaccine were analyzed. Natural infection and vaccination also induced serum-neutralizing antibodies that targeted similar epitope domains at the EDI/II hinge region. These studies defined a target of neutralizing antigenic site on DENV4 targeted by human antibodies following natural infection or vaccination. IMPORTANCE The four serotypes of dengue virus are the causative agents of dengue fever and dengue hemorrhagic fever. People exposed to primary DENV infections develop long-term neutralizing antibody responses, but these principally recognize only the infecting serotype. An effective vaccine against dengue should elicit long-lasting protective antibody responses to all four serotypes simultaneously. We and others have defined antigenic sites on the envelope (E) protein of viruses of dengue virus serotypes 1, 2, and 3 targeted by human neutralizing antibodies. The epitopes on DENV4 E protein targeted by the human neutralizing antibodies and the mechanisms of serotype 4 neutralization are poorly understood. Here, we report the properties of human antibodies that neutralize dengue virus serotype 4. People exposed to serotype 4 infections or a live attenuated serotype 4 vaccine developed neutralizing antibodies that bound to similar sites on the viral E protein. These studies have provided a foundation for developing and evaluating DENV4 vaccines. PMID:28031369

  6. Isolation of thogoto virus (Orthomyxoviridae) from the banded mongoose, Mongos mungo (Herpestidae), in Uganda.

    PubMed

    Ogen-Odoi, A; Miller, B R; Happ, C M; Maupin, G O; Burkot, T R

    1999-03-01

    Small wild vertebrates were trapped during an investigation into possible vertebrate reservoirs of o'nyong-nyong (ONN) fever virus in Uganda in 1997. Antibody neutralization test results and virus isolation attempts were negative for ONN virus, confirming the work of earlier investigators, who also failed to find evidence for a nonhuman ONN virus reservoir. In the course of these ONN virus studies, Thogoto virus was isolated from one of eight banded mongooses (Mongos mungo). This is the first isolation of Thogoto virus from a wild vertebrate. Neutralizing antibodies to Thogoto virus were also found in two of the other mongooses.

  7. Novel rabies virus-neutralizing epitope recognized by human monoclonal antibody: fine mapping and escape mutant analysis.

    PubMed

    Marissen, Wilfred E; Kramer, R Arjen; Rice, Amy; Weldon, William C; Niezgoda, Michael; Faber, Milosz; Slootstra, Jerry W; Meloen, Rob H; Clijsters-van der Horst, Marieke; Visser, Therese J; Jongeneelen, Mandy; Thijsse, Sandra; Throsby, Mark; de Kruif, John; Rupprecht, Charles E; Dietzschold, Bernhard; Goudsmit, Jaap; Bakker, Alexander B H

    2005-04-01

    Anti-rabies virus immunoglobulin combined with rabies vaccine protects humans from lethal rabies infections. For cost and safety reasons, replacement of the human or equine polyclonal immunoglobulin is advocated, and the use of rabies virus-specific monoclonal antibodies (MAbs) is recommended. We produced two previously described potent rabies virus-neutralizing human MAbs, CR57 and CRJB, in human PER.C6 cells. The two MAbs competed for binding to rabies virus glycoprotein. Using CR57 and a set of 15-mer overlapping peptides covering the glycoprotein ectodomain, a neutralization domain was identified between amino acids (aa) 218 and 240. The minimal binding region was identified as KLCGVL (aa 226 to 231), with key residues K-CGV- identified by alanine replacement scanning. The critical binding region of this novel nonconformational rabies virus epitope is highly conserved within rabies viruses of genotype 1. Subsequently, we generated six rabies virus variants escaping neutralization by CR57 and six variants escaping CRJB. The CR57 escape mutants were only partially covered by CRJB, and all CRJB-resistant variants completely escaped neutralization by CR57. Without exception, the CR57-resistant variants showed a mutation at key residues within the defined minimal binding region, while the CRJB escape viruses showed a single mutation distant from the CR57 epitope (N182D) combined with mutations in the CR57 epitope. The competition between CR57 and CRJB, the in vitro escape profile, and the apparent overlap between the recognized epitopes argues against including both CR57 and CRJB in a MAb cocktail aimed at replacing classical immunoglobulin preparations.

  8. The Neutralizing Linear Epitope of Human Herpesvirus 6A Glycoprotein B Does Not Affect Virus Infectivity.

    PubMed

    Wakata, Aika; Kanemoto, Satoshi; Tang, Huamin; Kawabata, Akiko; Nishimura, Mitsuhiro; Jasirwan, Chyntia; Mahmoud, Nora Fahmy; Mori, Yasuko

    2018-03-01

    Human herpesvirus 6A (HHV-6A) glycoprotein B (gB) is a glycoprotein consisting of 830 amino acids and is essential for the growth of the virus. Previously, we reported that a neutralizing monoclonal antibody (MAb) called 87-y-13 specifically reacts with HHV-6A gB, and we identified its epitope residue at asparagine (Asn) 347 on gB. In this study, we examined whether the epitope recognized by the neutralizing MAb is essential for HHV-6A infection. We constructed HHV-6A bacterial artificial chromosome (BAC) genomes harboring substitutions at Asn347, namely, HHV-6A BACgB(N347K) and HHV-6A BACgB(N347A). These mutant viruses could be reconstituted and propagated in the same manner as the wild type and their revertants, and MAb 87-y-13 could not inhibit infection by either mutant. In a cell-cell fusion assay, Asn at position 347 on gB was found to be nonessential for cell-cell fusion. In addition, in building an HHV-6A gB homology model, we found that the epitope of the neutralizing MAb is located on domain II of gB and is accessible to solvents. These results indicate that Asn at position 347, the linear epitope of the neutralizing MAb, does not affect HHV-6A infectivity. IMPORTANCE Glycoprotein B (gB) is one of the most conserved glycoproteins among all herpesviruses and is a key factor for virus entry. Therefore, antibodies targeted to gB may neutralize virus entry. Human herpesvirus 6A (HHV-6A) encodes gB, which is translated to a protein of about 830 amino acids (aa). Using a monoclonal antibody (MAb) for HHV-6A gB, which has a neutralizing linear epitope, we analyzed the role of its epitope residue, N347, in HHV-6A infectivity. Interestingly, this gB linear epitope residue, N347, was not essential for HHV-6A growth. By constructing a homology model of HHV-6A gB, we found that N347 was located in the region corresponding to domain II. Therefore, with regard to its neutralizing activity against HHV-6A infection, the epitope on gB might be exposed to solvents, suggesting that it might be a target of the immune system. Copyright © 2018 American Society for Microbiology.

  9. Persistent infection of macaques with simian-human immunodeficiency viruses.

    PubMed Central

    Li, J T; Halloran, M; Lord, C I; Watson, A; Ranchalis, J; Fung, M; Letvin, N L; Sodroski, J G

    1995-01-01

    Chimeric simian-human immunodeficiency viruses (SHIV) containing the human immunodeficiency virus type 1 (HIV-1) tat, rev, env, and, in some cases, vpu genes were inoculated into eight cynomolgus monkeys. Viruses could be consistently recovered from the CD8-depleted peripheral blood lymphocytes of all eight animals for at least 2 months. After this time, virus isolation varied among the animals, with viruses continuing to be isolated from some animals beyond 600 days after inoculation. The level of viral RNA in plasma during acute infection and the frequency of virus isolation after the initial 2-month period were higher for the Vpu-positive viruses. All of the animals remained clinically healthy, and the absolute numbers of CD4-positive lymphocytes were stable. Antibodies capable of neutralizing HIV-1 were generated at high titers in animals exhibiting the greatest consistency of virus isolation. Strain-specific HIV-1-neutralizing antibodies were initially elicited, and then more broadly neutralizing antibodies were elicited. env sequences from two viruses isolated more than a year after infection were analyzed. In the Vpu-negative SHIV, for which virus loads were lower, a small amount of env variation, which did not correspond to that found in natural HIV-1 variants, was observed. By contrast, in the Vpu-positive virus, which was consistently isolated from the host animal, extensive variation of the envelope glycoproteins in the defined variable gp120 regions was observed. Escape from neutralization by CD4 binding site monoclonal antibodies was observed for the viruses with the latter envelope glycoproteins, and the mechanism of escape appears to involve decreased binding of the antibody to the monomeric gp120 glycoproteins. The consistency with which SHIV infection of cynomolgus monkeys is initiated and the similarities in the neutralizing antibody response to SHIV and HIV-1 support the utility of this model system for the study of HIV-1 prophylaxis. PMID:7474126

  10. THE USE OF ADJUVANTS IN STUDIES ON INFLUENZA IMMUNIZATION

    PubMed Central

    Salk, Jonas E.; Laurent, Angela M.

    1952-01-01

    Untoward reactions at the site of inoculation were not observed in monkeys vaccinated with influenza virus incorporated in a water-in-oil emulsion without acid-fast bacilli. Studies were then made to measure some of the dimensions of antigenicity of these emulsions to evaluate the extent of the immunologic adjuvant effect. This included measurements of height and persistence of the antibody response to inoculation and measurements of the extent to which the vaccine could be diluted and still induce antibody formation; i.e., antigenic extinction. In addition, comparisons were made of the rates of development of hemagglutination-inhibiting, virus-neutralizing, and complement-fixing antibody activities to determine the relationship among these three properties of the serum of immunized animals. It was found that levels of antibody many fold higher were induced by the virus-adjuvant mixtures as compared with virus in an aqueous menstruum, and that the level of antibody induced was related to the quantity of antigen incorporated in the emulsion. The stock vaccine when emulsified could be diluted 100,000-fold and was still active in antibody formation whereas a 100-fold dilution of the antigen without emulsification was essentially ineffective. Equivalent quantities of virus in 0.1 ml. or 1.0 ml. of emulsion induced antibody responses that were indistinguishable with respect to level or persistence. In comparing the course of antibody development it was found that hemagglutination-inhibiting, virus-neutralizing, and complement-fixing antibodies develop at different rates; careful analysis of the data derived from the present study together with other observations warrant the conclusion that these antibody activities are not present in constant proportion and are independent of one another. The implications of this observation and of the others mentioned above are discussed. PMID:14927797

  11. Antigenic Drift Defines a New D4 Subgenotype of Measles Virus.

    PubMed

    Muñoz-Alía, Miguel Ángel; Muller, Claude P; Russell, Stephen J

    2017-06-01

    The measles virus hemagglutinin (MeV-H) protein is the main target of protective neutralizing antibodies. Using a panel of monoclonal antibodies (MAbs) that recognize known major antigenic sites in MeV-H, we identified a D4 genotype variant that escapes neutralization by MAbs targeting the neutralizing epitope (NE) antigenic site. By site-directed mutagenesis, L249P was identified as the critical mutation disrupting the NE in this genotype D4 variant. Forty-two available D4 genotype gene sequences were subsequently analyzed and divided into 2 groups according to the presence or absence of the L249P MeV-H mutation. Further analysis of the MeV-N gene sequences of these 2 groups confirmed that they represent clearly definable, sequence-divergent D4 subgenotypes, which we named subgenotypes D4.1 and D4.2. The subgenotype D4.1 MeVs were isolated predominantly in Kenya and Ethiopia, whereas the MAb-resistant subgenotype D4.2 MeVs were isolated predominantly in France and Great Britain, countries with higher vaccine coverage rates. Interestingly, D4.2 subgenotype viruses showed a trend toward diminished susceptibility to neutralization by human sera pooled from approximately 60 to 80 North American donors. Escape from MAb neutralization may be a powerful epidemiological surveillance tool to monitor the evolution of new MeV subgenotypes. IMPORTANCE Measles virus is a paradigmatic RNA virus, as the antigenic composition of the vaccination has not needed to be updated since its discovery. The vaccine confers protection by inducing neutralizing antibodies that interfere with the function of the hemagglutinin protein. Viral strains are indistinguishable serologically, although characteristic nucleotide sequences differentiate 24 genotypes. In this work, we describe a distant evolutionary branch within genotype D4. Designated subgenotype D4.2, this virus is distinguishable by neutralization with vaccine-induced monoclonal antibodies that target the neutralizing epitope (NE). The subgenotype D4.2 viruses have a higher predominance in countries with intermediary levels of vaccine coverage. Our studies demonstrate that subgenotype D4.2 lacks epitopes associated with half of the known antigenic sites, which significantly impacts our understanding of measles virus evolution. Copyright © 2017 American Society for Microbiology.

  12. Antigenic Drift Defines a New D4 Subgenotype of Measles Virus

    PubMed Central

    Muller, Claude P.

    2017-01-01

    ABSTRACT The measles virus hemagglutinin (MeV-H) protein is the main target of protective neutralizing antibodies. Using a panel of monoclonal antibodies (MAbs) that recognize known major antigenic sites in MeV-H, we identified a D4 genotype variant that escapes neutralization by MAbs targeting the neutralizing epitope (NE) antigenic site. By site-directed mutagenesis, L249P was identified as the critical mutation disrupting the NE in this genotype D4 variant. Forty-two available D4 genotype gene sequences were subsequently analyzed and divided into 2 groups according to the presence or absence of the L249P MeV-H mutation. Further analysis of the MeV-N gene sequences of these 2 groups confirmed that they represent clearly definable, sequence-divergent D4 subgenotypes, which we named subgenotypes D4.1 and D4.2. The subgenotype D4.1 MeVs were isolated predominantly in Kenya and Ethiopia, whereas the MAb-resistant subgenotype D4.2 MeVs were isolated predominantly in France and Great Britain, countries with higher vaccine coverage rates. Interestingly, D4.2 subgenotype viruses showed a trend toward diminished susceptibility to neutralization by human sera pooled from approximately 60 to 80 North American donors. Escape from MAb neutralization may be a powerful epidemiological surveillance tool to monitor the evolution of new MeV subgenotypes. IMPORTANCE Measles virus is a paradigmatic RNA virus, as the antigenic composition of the vaccination has not needed to be updated since its discovery. The vaccine confers protection by inducing neutralizing antibodies that interfere with the function of the hemagglutinin protein. Viral strains are indistinguishable serologically, although characteristic nucleotide sequences differentiate 24 genotypes. In this work, we describe a distant evolutionary branch within genotype D4. Designated subgenotype D4.2, this virus is distinguishable by neutralization with vaccine-induced monoclonal antibodies that target the neutralizing epitope (NE). The subgenotype D4.2 viruses have a higher predominance in countries with intermediary levels of vaccine coverage. Our studies demonstrate that subgenotype D4.2 lacks epitopes associated with half of the known antigenic sites, which significantly impacts our understanding of measles virus evolution. PMID:28356529

  13. Mechanism of protection from primary bovine viral diarrhea virus infection. I. The effects of dexamethasone.

    PubMed Central

    Shope, R E; Muscoplat, C C; Chen, A W; Johnson, D W

    1976-01-01

    A series of investigations was designed to study the role of cellular immunity and passive antibody in protecting neonatal calves from primary bovine viral diarrhea virus infection. Administration of corticosteroids (dexamethasone) in doses capable of suppressing cellular immunity markedly potentiated systemic bovine viral diarrhea virus infection in calves which lacked bovine viral diarrhea passive neutralizing antibody. Immunosuppressed calves did not form neutralizing antibody to bovine viral diarrhea virus and developed a fatal viremia. Calves with high levels of passive bovine viral diarrhea neutralizing antibodies were protected from the effect of corticosteroids. The results suggest an essential role for humoral passive antibody, but not for cellular immunity, in protection from primary systemic bovine viral diarrhea virus infection in calves. PMID:187303

  14. Determination of the Human Antibody Response to the Neutralization Epitopes Encompassing Amino Acids 313–327 and 432–443 of Hepatitis C Virus E1E2 Glycoproteins

    PubMed Central

    Liu, Ruyu; Rao, Huiying; Wang, Jianghua; Xie, Xingwang; Jiang, Dong; Pan, Xiaoben; Zhao, Ping; Zhang, Henghui; Wei, Lai

    2013-01-01

    It has been reported that monoclonal antibodies (MAbs) to the E1E2 glycoproteins may have the potential to prevent hepatitis C virus (HCV) infection. The protective epitopes targeted by these MAbs have been mapped to the regionsencompassing amino acids 313–327 and 432–443. In this study, we synthesized these two peptides and tested the reactivity of serum samples from 336 patients, 210 of whichwere from Chronic Hepatitis C (CHC) patients infected with diverse HCV genotypes.The remaining 126 samples were isolated from patients who had spontaneously clearedHCV infection.In the chronic HCV-infected group (CHC group), the prevalence of human serum antibodies reactive to epitopes 313–327 and 432–443was 24.29%(51 of 210) and4.76%(10 of 210),respectively. In thespontaneousclearance group (SC group),the prevalence was 0.79%(1 of 126) and 12.70%(16 of 126), respectively.The positive serum samples that contained antibodies reactive to epitope 313–327 neutralizedHCV pseudoparticles (HCVpp) bearing the envelope glycoproteins of genotypes 1a or 1b and/or 4, but genotypes 2a, 3a, 5 and 6 were not neutralized. The neutralizing activity of these serum samples could not be inhibited by peptide 313–327. Six samples (SC17, SC38, SC86, SC92, CHC75 and CHC198) containing antibodies reactive to epitope 432–443 had cross-genotype neutralizing activities. Theneutralizing activityof SC38, SC86, SC92 and CHC75waspartiallyinhibited by peptide 432–443. However,the neutralizing activity of sample SC17 for genotype 4HCVpp and sample CHC198 for genotype 1b HCVppwere notinhibited by the peptide.This study identifies the neutralizing ability of endogenous anti-HCV antibodies and warrants the exploration of antibodies reactive to epitope432–443as sources for future antibody therapies. PMID:23826163

  15. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yang; Sasaki, Tadahiro; JST/JICA, Science and Technology Research Partnership for Sustainable Development

    Highlights: • Influenza infection can elicit heterosubtypic antibodies to group 1 influenza virus. • Three human monoclonal antibodies were generated from an H1N1-infected patient. • The antibodies predominantly recognized α-helical stem of viral hemagglutinin (HA). • The antibodies inhibited HA structural activation during the fusion process. • The antibodies are potential candidates for future antibody therapy to influenza. - Abstract: Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize amore » diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses.« less

  16. Antibodies Targeting Novel Neutralizing Epitopes of Hepatitis C Virus Glycoprotein Preclude Genotype 2 Virus Infection

    PubMed Central

    Rao, Huiying; Jiang, Dong; Wang, Jianghua; Xie, Xingwang; Wei, Lai

    2015-01-01

    Currently, there is no effective vaccine to prevent hepatitis C virus (HCV) infection, partly due to our insufficient understanding of the virus glycoprotein immunology. Most neutralizing antibodies (nAbs) were identified using glycoprotein immunogens, such as recombinant E1E2, HCV pseudoparticles or cell culture derived HCV. However, the fact that in the HCV acute infection phase, only a small proportion of patients are self-resolved accompanied with the emergence of nAbs, indicates the limited immunogenicity of glycoprotein itself to induce effective antibodies against a highly evolved virus. Secondly, in previous reports, the immunogen sequence was mostly the genotype of the 1a H77 strain. Rarely, other genotypes/subtypes have been studied, although theoretically one genotype/subtype immunogen is able to induce cross-genotype neutralizing antibodies. To overcome these drawbacks and find potential novel neutralizing epitopes, 57 overlapping peptides encompassing the full-length glycoprotein E1E2 of subtype 1b were synthesized to immunize BALB/c mice, and the neutralizing reactive of the induced antisera against HCVpp genotypes 1–6 was determined. We defined a domain comprising amino acids (aa) 192–221, 232–251, 262–281 and 292–331 of E1, and 421–543, 564–583, 594–618 and 634–673 of E2, as the neutralizing regions of HCV glycoprotein. Peptides PUHI26 (aa 444–463) and PUHI45 (aa 604–618)-induced antisera displayed the most potent broad neutralizing reactive. Two monoclonal antibodies recognizing the PUHI26 and PUHI45 epitopes efficiently precluded genotype 2 viral (HCVcc JFH and J6 strains) infection, but they did not neutralize other genotypes. Our study mapped a neutralizing epitope region of HCV glycoprotein using a novel immunization strategy, and identified two monoclonal antibodies effective in preventing genotype 2 virus infection. PMID:26406225

  17. Recognition of the different structural forms of the capsid protein determines the outcome following infection with porcine circovirus type 2.

    PubMed

    Trible, Benjamin R; Suddith, Andrew W; Kerrigan, Maureen A; Cino-Ozuna, Ada G; Hesse, Richard A; Rowland, Raymond R R

    2012-12-01

    Porcine circovirus type 2 (PCV2) capsid protein (CP) is the only protein necessary for the formation of the virion capsid, and recombinant CP spontaneously forms virus-like particles (VLPs). Located within a single CP subunit is an immunodominant epitope consisting of residues 169 to 180 [CP(169-180)], which is exposed on the surface of the subunit, but, in the structural context of the VLP, the epitope is buried and inaccessible to antibody. High levels of anti-CP(169-180) activity are associated with porcine circovirus-associated disease (PCVAD). The purpose of this study was to investigate the role of the immune response to monomer CP in the development of PCVAD. The approach was to immunize pigs with CP monomer, followed by challenge with PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV). To maintain the CP immunogen as a stable monomer, CP(43-233) was fused to ubiquitin (Ub-CP). Size exclusion chromatography showed that Ub-CP was present as a single 33-kDa protein. Pigs immunized with Ub-CP developed a strong antibody response to PCV2, including antibodies against CP(169-180). However, only low levels of virus neutralizing activity were detected, and viremia levels were similar to those of nonimmunized pigs. As a positive control, immunization with baculovirus-expressed CP (Bac-CP) resulted in high levels of virus neutralizing activity, small amounts of anti-CP(169-180) activity, and the absence of viremia in pigs following virus challenge. The data support the role of CP(169-180) as an immunological decoy and illustrate the importance of the structural form of the CP immunogen in determining the outcome following infection.

  18. Unusual Features of Vaccinia Virus Extracellular Virion Form Neutralization Resistance Revealed in Human Antibody Responses to the Smallpox Vaccine

    PubMed Central

    Benhnia, Mohammed Rafii-El-Idrissi; Maybeno, Matthew; Blum, David; Aguilar-Sino, Rowena; Matho, Michael; Meng, Xiangzhi; Head, Steven; Felgner, Philip L.; Zajonc, Dirk M.; Koriazova, Lilia; Kato, Shinichiro; Burton, Dennis R.; Xiang, Yan; Crowe, James E.; Peters, Bjoern

    2013-01-01

    The extracellular virion form (EV) of vaccinia virus (VACV) is essential for viral pathogenesis and is difficult to neutralize with antibodies. Why this is the case and how the smallpox vaccine overcomes this challenge remain incompletely understood. We previously showed that high concentrations of anti-B5 antibodies are insufficient to directly neutralize EV (M. R. Benhnia, et al., J. Virol. 83:1201–1215, 2009). This allowed for at least two possible interpretations: covering the EV surface is insufficient for neutralization, or there are insufficient copies of B5 to allow anti-B5 IgG to cover the whole surface of EV and another viral receptor protein remains active. We endeavored to test these possibilities, focusing on the antibody responses elicited by immunization against smallpox. We tested whether human monoclonal antibodies (MAbs) against the three major EV antigens, B5, A33, and A56, could individually or together neutralize EV. While anti-B5 or anti-A33 (but not anti-A56) MAbs of appropriate isotypes were capable of neutralizing EV in the presence of complement, a mixture of anti-B5, anti-A33, and anti-A56 MAbs was incapable of directly neutralizing EV, even at high concentrations. This remained true when neutralizing the IHD-J strain, which lacks a functional version of the fourth and final known EV surface protein, A34. These immunological data are consistent with the possibility that viral proteins may not be the active component of the EV surface for target cell binding and infectivity. We conclude that the protection afforded by the smallpox vaccine anti-EV response is predominantly mediated not by direct neutralization but by isotype-dependent effector functions, such as complement recruitment for antibodies targeting B5 and A33. PMID:23152530

  19. Host Immune Response to Influenza A Virus Infection.

    PubMed

    Chen, Xiaoyong; Liu, Shasha; Goraya, Mohsan Ullah; Maarouf, Mohamed; Huang, Shile; Chen, Ji-Long

    2018-01-01

    Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.

  20. VP1 amino acid residue 145 of enterovirus 71 is a key residue for its receptor attachment and resistance to neutralizing antibody during cynomolgus monkey infection.

    PubMed

    Fujii, Ken; Sudaka, Yui; Takashino, Ayako; Kobayashi, Kyousuke; Kataoka, Chikako; Suzuki, Tadaki; Iwata-Yoshikawa, Naoko; Kotani, Osamu; Ami, Yasushi; Shimizu, Hiroyuki; Nagata, Noriyo; Mizuta, Katsumi; Matsuzaki, Yoko; Koike, Satoshi

    2018-05-30

    Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and sometimes causes severe or fatal neurological complications. The amino acid at VP1-145 determines virological characteristics of EV71. Viruses with glutamic acid (E) at VP1-145 (VP1-145E) are virulent in neonatal mice and transgenic mice expressing human scavenger receptor B2, whereas those with glutamine (Q) or glycine (G) are not. However, the contribution of this variation to pathogenesis in humans is not fully understood. We compared the virulence of VP1-145E and VP1-145G viruses of Isehara and C7/Osaka backgrounds in cynomolgus monkeys. VP1-145E, but not VP1-145G, viruses induced neurological symptoms. VP1-145E viruses were frequently detected in the tissues of infected monkeys. VP1-145G viruses were detected less frequently and disappeared quickly. Instead, mutants that had a G to E mutation at VP1-145 emerged, suggesting that VP1-145E viruses have a replication advantage in the monkeys. This is consistent with our hypothesis proposed in the accompanying paper that the VP1-145G virus is attenuated due to its adsorption by heparan sulfate. Monkeys infected with both viruses produced neutralizing antibodies before the onset of the disease. Interestingly, VP1-145E viruses were more resistant to neutralizing antibodies than VP1-145G viruses in vitro A small amount of neutralizing antibody raised in the early phase of infection may not be sufficient to block the dissemination of VP1-145E viruses. The different resistance of the VP1-145 variants to neutralizing antibodies may be one of the reasons for the difference in virulence. IMPORTANCE The contribution of VP1-145 variants in humans is not fully understood. In some reports, VP1-145G/Q viruses were more frequently isolated from severely affected than from mildly affected patients, suggesting that VP1-145G/Q viruses are more virulent. In the accompanying paper, we showed that VP1-145E viruses are more virulent than VP1-145G viruses in human SCARB2 transgenic mice. Heparan sulfate acts as a decoy to specifically trap the VP1-145G viruses and leads to abortive infection. Here, we demonstrated that VP1-145G was attenuated in cynomolgus monkeys, suggesting that this hypothesis is also true in a non-human primate model. VP1-145E viruses, but not VP1-145G viruses, were highly resistant to neutralizing antibodies. We propose the difference in resistance against neutralizing antibodies as another mechanism of EV71 virulence. In summary, VP1-145 contributes to virulence determination by controlling attachment receptor usage and antibody sensitivity. Copyright © 2018 American Society for Microbiology.

  1. Neutralizing Antibodies in Sera from Macaques Immunized with Attenuated Simian Immunodeficiency Virus

    PubMed Central

    Langlois, Alphonse J.; Desrosiers, Ronald C.; Lewis, Mark G.; KewalRamani, Vineet N.; Littman, Dan R.; Zhou, Ji Ying; Manson, Kelledy; Wyand, Michael S.; Bolognesi, Dani P.; Montefiori, David C.

    1998-01-01

    Infection with attenuated simian immunodeficiency virus (SIV) in rhesus macaques has been shown to raise antibodies capable of neutralizing an animal challenge stock of primary SIVmac251 in CEMx174 cells that correlate with resistance to infection after experimental challenge with this virulent virus (M. S. Wyand, K. H. Manson, M. Garcia-Moll, D. C. Montefiori, and R. C. Desrosiers, J. Virol. 70:3724–3733, 1996). Here we show that these neutralizing antibodies are not detected in human and rhesus peripheral blood mononuclear cells (PBMC). In addition, neutralization of primary SIVmac251 in human and rhesus PBMC was rarely detected with plasma samples from a similar group of animals that had been infected either with SIVmac239Δnef for 1.5 years or with SIVmac239Δ3 for 3.2 years, although low-level neutralization was detected in CEMx174 cells. Potent neutralization was detected in CEMx174 cells when the latter plasma samples were assessed with laboratory-adapted SIVmac251. In contrast to primary SIVmac251, laboratory-adapted SIVmac251 did not replicate in human and rhesus PBMC despite its ability to utilize CCR5, Bonzo/STRL33, and BOB/gpr15 as coreceptors for virus entry. These results illustrate the importance of virus passage history and the choice of indicator cells for making assessments of neutralizing antibodies to lentiviruses such as SIV. They also demonstrate that primary SIVmac251 is less sensitive to neutralization in human and rhesus PBMC than it is in established cell lines. Results obtained in PBMC did not support a role for neutralizing antibodies as a mechanism of protection in animals immunized with attenuated SIV and challenged with primary SIVmac251. PMID:9658152

  2. Kinetics of Epstein-Barr Virus (EBV) Neutralizing and Virus-Specific Antibodies after Primary Infection with EBV

    PubMed Central

    Bu, Wei; Hayes, Gregory M.; Liu, Hui; Gemmell, Lorraine; Schmeling, David O.; Radecki, Pierce; Aguilar, Fiona; Burbelo, Peter D.; Woo, Jennifer; Balfour, Henry H.

    2016-01-01

    Prospective studies of antibodies to multiple Epstein-Barr virus (EBV) proteins and EBV neutralizing antibodies in the same individuals before, during, and after primary EBV infection have not been reported. We studied antibody responses to EBV in college students who acquired primary EBV infection during prospective surveillance and correlated the kinetics of antibody response with the severity of disease. Neutralizing antibodies and enzyme-linked immunosorbent assay (ELISA) antibodies to gp350, the major target of neutralizing antibody, reached peak levels at medians of 179 and 333 days after the onset of symptoms of infectious mononucleosis, respectively. No clear correlation was found between the severity of the symptoms of infectious mononucleosis and the peak levels of antibody to individual viral proteins or to neutralizing antibody. In summary, we found that titers of neutralizing antibody and antibodies to multiple EBV proteins increase over many months after primary infection with EBV. PMID:26888186

  3. The Structural Immunology of Antibody Protection against West Nile Virus

    PubMed Central

    Diamond, Michael S.; Pierson, Theodore C.; Fremont, Daved H.

    2009-01-01

    Summary Recent investigations of the interaction between the West Nile virus (WNV) envelope protein (E) and monoclonal antibodies (mAbs) have elucidated fundamental insights into the molecular mechanisms of neutralization. Structural studies have defined an epitope on the lateral ridge of domain III (DIII-lr) of the WNV E protein that is recognized by antibodies with the strongest neutralizing activity in vitro and in vivo. Antibodies that bind this epitope are highly potent because they efficiently block at a post-entry step of viral infection with relatively low virion occupancy requirements. In this review, we will discuss the structural, molecular, and immunologic basis for antibody-mediated protection against WNV, and its implications for novel therapeutic or vaccine strategies. PMID:18837784

  4. Development and characterization of novel chimeric monoclonal antibodies for broad spectrum neutralization of rabies virus.

    PubMed

    Kim, Pan Kyeom; Keum, Sun Ju; Osinubi, Modupe O V; Franka, Richard; Shin, Ji Young; Park, Sang Tae; Kim, Man Su; Park, Mi Jung; Lee, Soo Young; Carson, William; Greenberg, Lauren; Yu, Pengcheng; Tao, Xiaoyan; Lihua, Wang; Tang, Qing; Liang, Guodong; Shampur, Madhusdana; Rupprecht, Charles E; Chang, Shin Jae

    2017-01-01

    Current post-exposure prophylaxis for rabies virus infection has several limitations in terms of supply, cost, safety, and efficacy. Attempts to replace human or equine rabies immune globulins (HRIG or ERIG) have been made by several companies and institutes. We developed potent monoclonal antibodies to neutralize a broad spectrum of rabies viruses by screening hybridomas received from the U.S. Centers for Disease Control and Prevention (CDC). Two kinds of chimeric human antibodies (chimeric #7 and #17) were constructed by cloning the variable regions from selected hybridomas and the constant region of a human antibody. Two antibodies were bound to antigenic site III and I/IV, respectively, and were able to neutralize 51 field isolates of rabies virus that were isolated at different times and places such as Asia, Africa, North America, South America, and Australia. These two antibodies neutralize rabies viruses with high efficacy in an in vivo test using Syrian hamster and mouse models and show low risk for adverse immunogenicity.

  5. Engineering of a recombinant trivalent single-chain variable fragment antibody directed against rabies virus glycoprotein G with improved neutralizing potency.

    PubMed

    Turki, Imène; Hammami, Akil; Kharmachi, Habib; Mousli, Mohamed

    2014-02-01

    Human and equine rabies immunoglobulins are currently available for passive immunization against rabies. However, these are hampered by the limited supply and some drawbacks. Advances in antibody engineering have led to overcome issues of clinical applications and to improve the protective efficacy. In the present study, we report the generation of a trivalent single-chain Fv (scFv50AD1-Fd), that recognizes the rabies virus glycoprotein, genetically fused to the trimerization domain of the bacteriophage T4 fibritin, termed 'foldon' (Fd). scFv50AD1-Fd was expressed as soluble recombinant protein in bacterial periplasmic space and purified through affinity chromatography. The molecular integrity and stability were analyzed by polyacrylamide gradient-gel electrophoresis, size-exclusion chromatography and incubation in human sera. The antigen-binding properties of the trimeric scFv were analyzed by direct and competitive-ELISA. Its apparent affinity constant was estimated at 1.4 ± 0.25 × 10(9)M(-1) and was 75-fold higher than its monovalent scFv (1.9 ± 0.68 × 10(7)M(-1)). The scFv50AD1-Fd neutralized rabies virus in a standard in vitro and in vivo neutralization assay. We showed a high neutralization activity up to 75-fold compared with monovalent format and the WHO standard serum. The gain in avidity resulting from multivalency along with an improved biological activity makes the trivalent scFv50AD1-Fd construct an important reagent for rabies protection. The antibody engineering approach presented here may serve as a strategy for designing a new generation of anti-rabies for passive immunotherapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus

    PubMed Central

    Liao, Hua-Xin; Lynch, Rebecca; Zhou, Tongqing; Gao, Feng; Alam, S. Munir; Boyd, Scott D.; Fire, Andrew Z.; Roskin, Krishna M.; Schramm, Chaim A.; Zhang, Zhenhai; Zhu, Jiang; Shapiro, Lawrence; Mullikin, James C.; Gnanakaran, S.; Hraber, Peter; Wiehe, Kevin; Kelsoe, Garnett; Yang, Guang; Xia, Shi-Mao; Montefiori, David C.; Parks, Robert; Lloyd, Krissey E.; Scearce, Richard M.; Soderberg, Kelly A.; Cohen, Myron; Kaminga, Gift; Louder, Mark K.; Tran, Lillan M.; Chen, Yue; Cai, Fangping; Chen, Sheri; Moquin, Stephanie; Du, Xiulian; Joyce, Gordon M.; Srivatsan, Sanjay; Zhang, Baoshan; Zheng, Anqi; Shaw, George M.; Hahn, Beatrice H.; Kepler, Thomas B.; Korber, Bette T.M.; Kwong, Peter D.; Mascola, John R.; Haynes, Barton F.

    2013-01-01

    Current HIV-1 vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in ~20% of HIV-1-infected individuals, and details of their generation could provide a roadmap for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from time of infection. The mature antibody, CH103, neutralized ~55% of HIV-1 isolates, and its co-crystal structure with gp120 revealed a novel loop-based mechanism of CD4-binding site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the CH103-lineage unmutated common ancestor avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data elucidate the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies and provide insights into strategies to elicit similar antibodies via vaccination. PMID:23552890

  7. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection

    PubMed Central

    Malinge, Pauline; Magistrelli, Giovanni; Fischer, Nicolas; Sahin, Mehmet; Bergthaler, Andreas; Igonet, Sebastien; ter Meulen, Jan; Rigo, Dorothée; Meda, Paolo; Rabah, Nadia; Coutard, Bruno; Bowden, Thomas A.; Lambert, Paul-Henri; Siegrist, Claire-Anne; Pinschewer, Daniel D.

    2015-01-01

    Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein’s globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy. PMID:26587982

  8. Cross-reactivity between avian influenza A (H7N9) virus and divergent H7 subtypic- and heterosubtypic influenza A viruses

    PubMed Central

    Guo, Li; Wang, Dayan; Zhou, Hongli; Wu, Chao; Gao, Xin; Xiao, Yan; Ren, Lili; Paranhos-Baccalà, Gláucia; Shu, Yuelong; Jin, Qi; Wang, Jianwei

    2016-01-01

    The number of human avian H7N9 influenza infections has been increasing in China. Understanding their antigenic and serologic relationships is crucial for developing diagnostic tools and vaccines. Here, we evaluated the cross-reactivities and neutralizing activities among H7 subtype influenza viruses and between H7N9 and heterosubtype influenza A viruses. We found strong cross-reactivities between H7N9 and divergent H7 subtypic viruses, including H7N2, H7N3, and H7N7. Antisera against H7N2, H7N3, and H7N7 could also effectively neutralize two distinct H7N9 strains. Two-way cross-reactivities exist within group 2, including H3 and H4, whereas one-way cross-reactivities were found across other groups, including H1, H10, H9, and H13. Our data indicate that the hemaglutinins from divergent H7 subtypes may facilitate the development of vaccines for distinct H7N9 infections. Moreover, serologic diagnoses for H7N9 infections need to consider possible interference from the cross-reactivity of H7N9 with other subtype influenza viruses. PMID:26907865

  9. Cross-reactivity between avian influenza A (H7N9) virus and divergent H7 subtypic- and heterosubtypic influenza A viruses.

    PubMed

    Guo, Li; Wang, Dayan; Zhou, Hongli; Wu, Chao; Gao, Xin; Xiao, Yan; Ren, Lili; Paranhos-Baccalà, Gláucia; Shu, Yuelong; Jin, Qi; Wang, Jianwei

    2016-02-24

    The number of human avian H7N9 influenza infections has been increasing in China. Understanding their antigenic and serologic relationships is crucial for developing diagnostic tools and vaccines. Here, we evaluated the cross-reactivities and neutralizing activities among H7 subtype influenza viruses and between H7N9 and heterosubtype influenza A viruses. We found strong cross-reactivities between H7N9 and divergent H7 subtypic viruses, including H7N2, H7N3, and H7N7. Antisera against H7N2, H7N3, and H7N7 could also effectively neutralize two distinct H7N9 strains. Two-way cross-reactivities exist within group 2, including H3 and H4, whereas one-way cross-reactivities were found across other groups, including H1, H10, H9, and H13. Our data indicate that the hemaglutinins from divergent H7 subtypes may facilitate the development of vaccines for distinct H7N9 infections. Moreover, serologic diagnoses for H7N9 infections need to consider possible interference from the cross-reactivity of H7N9 with other subtype influenza viruses.

  10. Prevention of poxvirus infection by tetrapyrroles

    PubMed Central

    Chen-Collins, Avril RM; Dixon, Dabney W; Vzorov, Andrei N; Marzilli, Luigi G; Compans, Richard W

    2003-01-01

    Background Prevention of poxvirus infection is a topic of great current interest. We report inhibition of vaccinia virus in cell culture by porphyrins and phthalocyanines. Most previous work on the inhibition of viruses with tetrapyrroles has involved photodynamic mechanisms. The current study, however, investigates light-independent inhibition activity. Methods The Western Reserve (WR) and International Health Department-J (IHD-J) strains of vaccinia virus were used. Virucidal and antiviral activities as well as the cytotoxicity of test compounds were determined. Results Examples of active compounds include zinc protoporphyrin, copper hematoporphyrin, meso(2,6-dihydroxyphenyl)porphyrin, the sulfonated tetra-1-naphthyl and tetra-1-anthracenylporphyrins, selected sulfonated derivatives of halogenated tetraphenyl porphyrins and the copper chelate of tetrasulfonated phthalocyanine. EC50 values for the most active compounds are as low as 0.05 µg/mL (40 nM). One of the most active compounds was the neutral meso(2,6-dihydroxyphenyl)porphyrin, indicating that the compounds do not have to be negatively charged to be active. Conclusions Porphyrins and phthalocyanines have been found to be potent inhibitors of infection by vaccinia virus in cell culture. These tetrapyrroles were found to be active against two different virus strains, and against both enveloped and non-enveloped forms of the virus, indicating that these compounds may be broadly effective in their ability to inhibit poxvirus infection. PMID:12773208

  11. Immunogenicity of ORFV-based vectors expressing the rabies virus glycoprotein in livestock species.

    PubMed

    Martins, Mathias; Joshi, Lok R; Rodrigues, Fernando S; Anziliero, Deniz; Frandoloso, Rafael; Kutish, Gerald F; Rock, Daniel L; Weiblen, Rudi; Flores, Eduardo F; Diel, Diego G

    2017-11-01

    The parapoxvirus Orf virus (ORFV) encodes several immunomodulatory proteins (IMPs) that modulate host-innate and pro-inflammatory responses and has been proposed as a vaccine delivery vector for use in animal species. Here we describe the construction and characterization of two recombinant ORFV vectors expressing the rabies virus (RABV) glycoprotein (G). The RABV-G gene was inserted in the ORFV024 or ORFV121 gene loci, which encode for IMPs that are unique to parapoxviruses and inhibit activation of the NF-κB signaling pathway. The immunogenicity of the resultant recombinant viruses (ORFV ∆024 RABV-G or ORFV ∆121 RABV-G, respectively) was evaluated in pigs and cattle. Immunization of the target species with ORFV ∆024 RABV-G and ORFV ∆121 RABV-G elicited robust neutralizing antibody responses against RABV. Notably, neutralizing antibody titers induced in ORFV ∆121 RABV-G-immunized pigs and cattle were significantly higher than those detected in ORFV ∆024 RABV-G-immunized animals, indicating a higher immunogenicity of ORFV Δ121 -based vectors in these animal species. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Postnatally-transmitted HIV-1 Envelope variants have similar neutralization-sensitivity and function to that of nontransmitted breast milk variants

    PubMed Central

    2013-01-01

    Background Breastfeeding is a leading cause of infant HIV-1 infection in the developing world, yet only a minority of infants exposed to HIV-1 via breastfeeding become infected. As a genetic bottleneck severely restricts the number of postnatally-transmitted variants, genetic or phenotypic properties of the virus Envelope (Env) could be important for the establishment of infant infection. We examined the efficiency of virologic functions required for initiation of infection in the gastrointestinal tract and the neutralization sensitivity of HIV-1 Env variants isolated from milk of three postnatally-transmitting mothers (n=13 viruses), five clinically-matched nontransmitting mothers (n=16 viruses), and seven postnatally-infected infants (n = 7 postnatally-transmitted/founder (T/F) viruses). Results There was no difference in the efficiency of epithelial cell interactions between Env virus variants from the breast milk of transmitting and nontransmitting mothers. Moreover, there was similar efficiency of DC-mediated trans-infection, CCR5-usage, target cell fusion, and infectivity between HIV-1 Env-pseudoviruses from nontransmitting mothers and postnatal T/F viruses. Milk Env-pseudoviruses were generally sensitive to neutralization by autologous maternal plasma and resistant to breast milk neutralization. Infant T/F Env-pseudoviruses were equally sensitive to neutralization by broadly-neutralizing monoclonal and polyclonal antibodies as compared to nontransmitted breast milk Env variants. Conclusion Postnatally-T/F Env variants do not appear to possess a superior ability to interact with and cross a mucosal barrier or an exceptional resistance to neutralization that define their capability to initiate infection across the infant gastrointestinal tract in the setting of preexisting maternal antibodies. PMID:23305422

  13. HIV-1 Neutralization Profile and Plant-Based Recombinant Expression of Actinohivin, an Env Glycan-Specific Lectin Devoid of T-Cell Mitogenic Activity

    PubMed Central

    Matoba, Nobuyuki; Husk, Adam S.; Barnett, Brian W.; Pickel, Michelle M.; Arntzen, Charles J.; Montefiori, David C.; Takahashi, Atsushi; Tanno, Kazunobu; Omura, Satoshi; Cao, Huyen; Mooney, Jason P.; Hanson, Carl V.; Tanaka, Haruo

    2010-01-01

    The development of a topical microbicide blocking the sexual transmission of HIV-1 is urgently needed to control the global HIV/AIDS pandemic. The actinomycete-derived lectin actinohivin (AH) is highly specific to a cluster of high-mannose-type glycans uniquely found on the viral envelope (Env). Here, we evaluated AH's candidacy toward a microbicide in terms of in vitro anti-HIV-1 activity, potential side effects, and recombinant producibility. Two validated assay systems based on human peripheral blood mononuclear cell (hPBMC) infection with primary isolates and TZM-bl cell infection with Env-pseudotyped viruses were employed to characterize AH's anti-HIV-1 activity. In hPMBCs, AH exhibited nanomolar neutralizing activity against primary viruses with diverse cellular tropisms, but did not cause mitogenicity or cytotoxicity that are often associated with other anti-HIV lectins. In the TZM-bl-based assay, AH showed broad anti-HIV-1 activity against clinically-relevant, mucosally transmitting strains of clades B and C. By contrast, clade A viruses showed strong resistance to AH. Correlation analysis suggested that HIV-1′s AH susceptibility is significantly linked to the N-glycans at the Env C2 and V4 regions. For recombinant (r)AH expression, we evaluated a tobacco mosaic virus-based system in Nicotiana benthamiana plants as a means to facilitate molecular engineering and cost-effective mass production. Biochemical analysis and an Env-mediated syncytium formation assay demonstrated high-level expression of functional rAH within six days. Taken together, our study revealed AH's cross-clade anti-HIV-1 activity, apparent lack of side effects common to lectins, and robust producibility using plant biotechnology. These findings justify further efforts to develop rAH toward a candidate HIV-1 microbicide. PMID:20559567

  14. Development of Neutralization Assay Using an eGFP Chikungunya Virus.

    PubMed

    Deng, Cheng-Lin; Liu, Si-Qing; Zhou, Dong-Gen; Xu, Lin-Lin; Li, Xiao-Dan; Zhang, Pan-Tao; Li, Peng-Hui; Ye, Han-Qing; Wei, Hong-Ping; Yuan, Zhi-Ming; Qin, Cheng-Feng; Zhang, Bo

    2016-06-28

    Chikungunya virus (CHIKV), a member of the Alphavirus genus, is an important human emerging/re-emerging pathogen. Currently, there are no effective antiviral drugs or vaccines against CHIKV infection. Herein, we construct an infectious clone of CHIKV and an eGFP reporter CHIKV (eGFP-CHIKV) with an isolated strain (assigned to Asian lineage) from CHIKV-infected patients. The eGFP-CHIKV reporter virus allows for direct visualization of viral replication through the levels of eGFP expression. Using a known CHIKV inhibitor, ribavirin, we confirmed that the eGFP-CHIKV reporter virus could be used to identify inhibitors against CHIKV. Importantly, we developed a novel and reliable eGFP-CHIKV reporter virus-based neutralization assay that could be used for rapid screening neutralizing antibodies against CHIKV.

  15. Functional Transplant of a Dengue Virus Serotype 3 (DENV3)-Specific Human Monoclonal Antibody Epitope into DENV1.

    PubMed

    Messer, William B; Yount, Boyd L; Royal, Scott R; de Alwis, Ruklanthi; Widman, Douglas G; Smith, Scott A; Crowe, James E; Pfaff, Jennifer M; Kahle, Kristen M; Doranz, Benjamin J; Ibarra, Kristie D; Harris, Eva; de Silva, Aravinda M; Baric, Ralph S

    2016-05-15

    The four dengue virus (DENV) serotypes, DENV1 through 4, are endemic throughout tropical and subtropical regions of the world. While first infection confers long-term protective immunity against viruses of the infecting serotype, a second infection with virus of a different serotype carries a greater risk of severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. Recent studies demonstrate that humans exposed to DENV infections develop neutralizing antibodies that bind to quaternary epitopes formed by the viral envelope (E) protein dimers or higher-order assemblies required for the formation of the icosahedral viral envelope. Here we show that the quaternary epitope target of the human DENV3-specific neutralizing monoclonal antibody (MAb) 5J7 can be partially transplanted into a DENV1 strain by changing the core residues of the epitope contained within a single monomeric E molecule. MAb 5J7 neutralized the recombinant DENV1/3 strain in cell culture and was protective in a mouse model of infection with the DENV1/3 strain. However, the 5J7 epitope was only partially recreated by transplantation of the core residues because MAb 5J7 bound and neutralized wild-type (WT) DENV3 better than the DENV1/3 recombinant. Our studies demonstrate that it is possible to transplant a large number of discontinuous residues between DENV serotypes and partially recreate a complex antibody epitope, while retaining virus viability. Further refinement of this approach may lead to new tools for measuring epitope-specific antibody responses and new vaccine platforms. Dengue virus is the most important mosquito-borne pathogen of humans worldwide, with approximately one-half the world's population living in regions where dengue is endemic. Dengue immunity following infection is robust and thought to be conferred by antibodies raised against the infecting virus. However, the specific viral components that these antibodies recognize and how they neutralize the virus have been incompletely described. Here we map a region on dengue virus serotype 3 recognized by the human neutralizing antibody 5J7 and then test the functional significance of this region by transplanting it into a serotype 1 virus. Our studies demonstrate a region on dengue virus necessary for 5J7 binding and neutralization. Our work also demonstrates the technical feasibility of engineering dengue viruses to display targets of protective antibodies. This technology can be used to develop new dengue vaccines and diagnostic assays. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Antigenic profile of African horse sickness virus serotype 4 VP5 and identification of a neutralizing epitope shared with bluetongue virus and epizootic hemorrhagic disease virus.

    PubMed

    Martínez-Torrecuadrada, J L; Langeveld, J P; Venteo, A; Sanz, A; Dalsgaard, K; Hamilton, W D; Meloen, R H; Casal, J I

    1999-05-10

    African horse sickness virus (AHSV) causes a fatal disease in horses. The virus capsid is composed of a double protein layer, the outermost of which is formed by two proteins: VP2 and VP5. VP2 is known to determine the serotype of the virus and to contain the neutralizing epitopes. The biological function of VP5, the other component of the capsid, is unknown. In this report, AHSV VP5, expressed in insect cells alone or together with VP2, was able to induce AHSV-specific neutralizing antibodies. Moreover, two VP5-specific monoclonal antibodies (MAbs) that were able to neutralize the virus in a plaque reduction assay were generated. To dissect the antigenic structure of AHSV VP5, the protein was cloned in Escherichia coli using the pET3 system. The immunoreactivity of both MAbs, and horse and rabbit polyclonal antisera, with 17 overlapping fragments from VP5 was analyzed. The most immunodominant region was found in the N-terminal 330 residues of VP5, defining two antigenic regions, I (residues 151-200) and II (residues 83-120). The epitopes were further defined by PEPSCAN analysis with 12mer peptides, which determined eight antigenic sites in the N-terminal half of the molecule. Neutralizing epitopes were defined at positions 85-92 (PDPLSPGE) for MAb 10AE12 and at 179-185 (EEDLRTR) for MAb 10AC6. Epitope 10AE12 is highly conserved between the different orbiviruses. MAb 10AE12 was able to recognize bluetongue virus VP5 and epizootic hemorrhagic disease virus VP5 by several techniques. These data will be especially useful for vaccine development and diagnostic purposes. Copyright 1999 Academic Press.

  17. Novel Rabies Virus-Neutralizing Epitope Recognized by Human Monoclonal Antibody: Fine Mapping and Escape Mutant Analysis†

    PubMed Central

    Marissen, Wilfred E.; Kramer, R. Arjen; Rice, Amy; Weldon, William C.; Niezgoda, Michael; Faber, Milosz; Slootstra, Jerry W.; Meloen, Rob H.; Clijsters-van der Horst, Marieke; Visser, Therese J.; Jongeneelen, Mandy; Thijsse, Sandra; Throsby, Mark; de Kruif, John; Rupprecht, Charles E.; Dietzschold, Bernhard; Goudsmit, Jaap; Bakker, Alexander B. H.

    2005-01-01

    Anti-rabies virus immunoglobulin combined with rabies vaccine protects humans from lethal rabies infections. For cost and safety reasons, replacement of the human or equine polyclonal immunoglobulin is advocated, and the use of rabies virus-specific monoclonal antibodies (MAbs) is recommended. We produced two previously described potent rabies virus-neutralizing human MAbs, CR57 and CRJB, in human PER.C6 cells. The two MAbs competed for binding to rabies virus glycoprotein. Using CR57 and a set of 15-mer overlapping peptides covering the glycoprotein ectodomain, a neutralization domain was identified between amino acids (aa) 218 and 240. The minimal binding region was identified as KLCGVL (aa 226 to 231), with key residues K-CGV- identified by alanine replacement scanning. The critical binding region of this novel nonconformational rabies virus epitope is highly conserved within rabies viruses of genotype 1. Subsequently, we generated six rabies virus variants escaping neutralization by CR57 and six variants escaping CRJB. The CR57 escape mutants were only partially covered by CRJB, and all CRJB-resistant variants completely escaped neutralization by CR57. Without exception, the CR57-resistant variants showed a mutation at key residues within the defined minimal binding region, while the CRJB escape viruses showed a single mutation distant from the CR57 epitope (N182D) combined with mutations in the CR57 epitope. The competition between CR57 and CRJB, the in vitro escape profile, and the apparent overlap between the recognized epitopes argues against including both CR57 and CRJB in a MAb cocktail aimed at replacing classical immunoglobulin preparations. PMID:15795253

  18. Analysis by plaque reduction neutralization assay of intertypic rotaviruses suggests that gene reassortment occurs in vivo.

    PubMed Central

    Hoshino, Y; Sereno, M M; Midthun, K; Flores, J; Chanock, R M; Kapikian, A Z

    1987-01-01

    The SB-1A rotavirus recovered from a diarrheic piglet in the United States is a naturally occurring intertypic rotavirus. When studied by reciprocal neutralization tests, the SB-1A virus was similar, if not identical, to the porcine Gottfried virus (serotype 4) and the porcine OSU virus (serotype 5). Analysis of reassortant viruses prepared from the SB-1A virus and the serotype 2 human DS-1 virus revealed that the antigenic specificity of the outer capsid protein VP3 of SB-1A was shared with the OSU virus, while the antigenic specificity of another outer capsid protein, VP7, of SB-1A appeared to be shared with the Gottfried virus. This suggests that SB-1A is a naturally occurring reassortant rotavirus between OSU-like and Gottfried-like porcine rotaviruses. In addition, using a genetic approach, we found evidence that the fourth gene was responsible for the predominantly one-way cross-neutralizing reactivity between canine rotavirus strain CU-1 (serotype 3) and porcine rotavirus strains SB-1A (serotypes 4 and 5) and OSU (serotype 5). Assignment of hemagglutination function to the fourth genome segment of porcine rotaviruses SB-1A and OSU and canine rotavirus CU-1 confirmed a similar previous gene assignment established for certain rotaviruses. Analysis of single gene 4 substitution reassortants confirmed our previous finding that VP3 was as potent in stimulating neutralizing antibodies as VP7. The observations confirm the need for a binary system of rotavirus classification and nomenclature similar to that used for the influenza A viruses; in such a system the neutralization specificity of both VP3 and VP7 would be indicated. Images PMID:2434522

  19. Seroprevalence of bovine viral diarrhea virus neutralizing antibodies in finisher hogs in Ontario swine herds and targeted diagnostic testing of 2 suspect herds

    PubMed Central

    O’Sullivan, Terri; Friendship, Robert; Carman, Susy; Pearl, David L.; McEwen, Beverly; Dewey, Catherine

    2011-01-01

    A pilot study was initiated to determine the seroprevalence of bovine viral diarrhea virus (BVDV) neutralizing antibodies in finisher hogs in Ontario swine herds, including 2 swine herds with clinical syndromes suspicious of BVDV. No herds were positive for BVDV antibodies by virus neutralization. The 2 swine herds with clinical disease suggestive of pestivirus infection were also negative for antibodies to BVDV in indirect fluorescent antibody assays. Prevalence of BVDV in Ontario swine farms is negligible. PMID:22654141

  20. Replication of Beta- and Gammaretroviruses Is Restricted in I/LnJ Mice via the Same Genetic Mechanism▿

    PubMed Central

    Case, Laure K.; Petell, Lydia; Yurkovetskiy, Leonid; Purdy, Alexandra; Savage, Katherine J.; Golovkina, Tatyana V.

    2008-01-01

    Mice of the I/LnJ inbred strain are unique in their ability to mount a robust and sustained humoral immune response capable of neutralizing infection with a betaretrovirus, mouse mammary tumor virus (MMTV). Virus-neutralizing antibodies (Abs) coat MMTV virions secreted by infected cells, preventing virus spread and hence the formation of mammary tumors. To investigate whether I/LnJ mice resist infection with other retroviruses besides MMTV, the animals were infected with murine leukemia virus (MuLV), a gammaretrovirus. MuLV-infected I/LnJ mice produced virus-neutralizing Abs that block virus transmission and virally induced disease. Generation of virus-neutralizing Abs required gamma interferon but was independent of interleukin-12. This unique mechanism of retrovirus resistance is governed by a single recessive gene, virus infectivity controller 1 (vic1), mapped to chromosome 17. In addition to controlling the antivirus humoral immune response, vic1 is also required for an antiviral cytotoxic response. Both types of responses were maintained in mice of the susceptible genetic background but congenic for the I/LnJ vic1 locus. Although the vic1-mediated resistance to MuLV resembles the mechanism of retroviral recovery controlled by the resistance to Friend virus 3 (rfv3) gene, the rfv3 gene has been mapped to chromosome 15 and confers resistance to MuLV but not to MMTV. Thus, we have identified a unique virus resistance mechanism that controls immunity against two distinct retroviruses. PMID:18057254

  1. Complement-Mediated Neutralization of Canine Distemper Virus In Vitro: Cross-Reaction between Vaccine Onderstepoort and Field KDK-1 Strains with Different Hemagglutinin Gene Characteristics

    PubMed Central

    Mochizuki, Masami; Motoyoshi, Megumi; Maeda, Ken; Kai, Kazunari

    2002-01-01

    The properties of neutralization of antigens of canine distemper virus Onderstepoort and a recent field isolate, KDK-1, were investigated with strain-specific dog sera. A conventional neutralization assay indicated antigenic dissimilarity between the strains; however, when guinea pig complement was included in the reaction mixture, the strains were neutralized with not only the homologous but also the heterologous antibodies. PMID:12093697

  2. A human monoclonal antibody derived from a vaccinated volunteer recognizes heterosubtypically a novel epitope on the hemagglutinin globular head of H1 and H9 influenza A viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boonsathorn, Naphatsawan; Panthong, Sumolrat; Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development

    Highlights: • A human monoclonal antibody against influenza virus was produced from a volunteer. • The antibody was generated from the PBMCs of the volunteer using the fusion method. • The antibody neutralized heterosubtypically group 1 influenza A viruses (H1 and H9). • The antibody targeted a novel epitope in globular head region of the hemagglutinin. • Sequences of the identified epitope are highly conserved among H1 and H9 subtypes. - Abstract: Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutininmore » (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses.« less

  3. Divergent Requirement of Fc-Fcγ Receptor Interactions for In Vivo Protection against Influenza Viruses by Two Pan-H5 Hemagglutinin Antibodies

    PubMed Central

    Wang, Shuangshuang; Ren, Huanhuan; Jiang, Wenbo; Chen, Honglin; Hu, Hongxing; Chen, Zhiwei

    2017-01-01

    ABSTRACT Recent studies have shown that Fc-Fcγ receptor (FcγR) interactions are required for in vivo protection against influenza viruses by broadly reactive anti-hemagglutinin (HA) stem, but not virus strain-specific, anti-receptor binding site (RBS), antibodies (Abs). Since only a few Abs recognizing epitopes in the head region but outside the RBS have been tested against single-challenge virus strains, it remains unknown whether Fc-FcγR interactions are required for in vivo protection by Abs recognizing epitopes outside the RBS and whether the requirement is virus strain specific or epitope specific. In the present study, we therefore investigated the requirements for in vivo protection using two pan-H5 Abs, 65C6 and 100F4. We generated chimeric Abs, 65C6/IgG2a and 100F4/IgG2a, which preferentially engage activating FcγRs, and isogenic forms, 65C6/D265A and 100F4/D265A, which do not bind FcγR. Virus neutralizing activity, binding, antibody-dependent cellular cytotoxicity (ADCC), and in vivo protection of these Abs were compared using three H5 strains, A/Shenzhen/406H/2006 (SZ06), A/chicken/Shanxi/2/2006 (SX06), and A/chicken/Netherlands/14015526/2014 (NE14). We found that all four chimeric Abs bound and neutralized the SZ06 and NE14 strains but poorly inhibited the SX06 strain. 65C6/IgG2a and 100F4/IgG2a, but not 65C6/D265A and 100F4/D265A, mediated ADCC against target cells expressing HA derived from all three virus strains. Interestingly, both 65C6/IgG2a and 65C6/D265A demonstrated comparable protection against all three virus strains in vivo; however, 100F4/IgG2a, but not 100F4/D265A, showed in vivo protection. Thus, we conclude that Fc-FcγR interactions are required for in vivo protection by 100F4, but not by 65C6, and therefore, protection is not virus strain specific but epitope specific. IMPORTANCE Abs play an important role in immune protection against influenza virus infection. Fc-FcγR interactions are required for in vivo protection by broadly neutralizing antistem, but not by virus strain-specific, anti-receptor binding site (RBS), Abs. Whether such interactions are necessary for protection by Abs that recognize epitopes outside RBS is not fully understood. In the present study, we investigated in vivo protection mechanisms against three H5 strains by two pan-H5 Abs, 65C6 and 100F4. We show that although these two Abs have similar neutralizing, binding, and ADCC activities against all three H5 strains in vitro, they have divergent requirements for Fc-FcγR interactions to protect against the three H5 strains in vivo. The Fc-FcγR interactions are required for in vivo protection by 100F4, but not by 65C6. Thus, we conclude that Fc-FcγR interactions for in vivo protection by pan-H5 Abs is not strain specific, but epitope specific. PMID:28331095

  4. Divergent Requirement of Fc-Fcγ Receptor Interactions for In Vivo Protection against Influenza Viruses by Two Pan-H5 Hemagglutinin Antibodies.

    PubMed

    Wang, Shuangshuang; Ren, Huanhuan; Jiang, Wenbo; Chen, Honglin; Hu, Hongxing; Chen, Zhiwei; Zhou, Paul

    2017-06-01

    Recent studies have shown that Fc-Fcγ receptor (FcγR) interactions are required for in vivo protection against influenza viruses by broadly reactive anti-hemagglutinin (HA) stem, but not virus strain-specific, anti-receptor binding site (RBS), antibodies (Abs). Since only a few Abs recognizing epitopes in the head region but outside the RBS have been tested against single-challenge virus strains, it remains unknown whether Fc-FcγR interactions are required for in vivo protection by Abs recognizing epitopes outside the RBS and whether the requirement is virus strain specific or epitope specific. In the present study, we therefore investigated the requirements for in vivo protection using two pan-H5 Abs, 65C6 and 100F4. We generated chimeric Abs, 65C6/IgG2a and 100F4/IgG2a, which preferentially engage activating FcγRs, and isogenic forms, 65C6/D265A and 100F4/D265A, which do not bind FcγR. Virus neutralizing activity, binding, antibody-dependent cellular cytotoxicity (ADCC), and in vivo protection of these Abs were compared using three H5 strains, A/Shenzhen/406H/2006 (SZ06), A/chicken/Shanxi/2/2006 (SX06), and A/chicken/Netherlands/14015526/2014 (NE14). We found that all four chimeric Abs bound and neutralized the SZ06 and NE14 strains but poorly inhibited the SX06 strain. 65C6/IgG2a and 100F4/IgG2a, but not 65C6/D265A and 100F4/D265A, mediated ADCC against target cells expressing HA derived from all three virus strains. Interestingly, both 65C6/IgG2a and 65C6/D265A demonstrated comparable protection against all three virus strains in vivo ; however, 100F4/IgG2a, but not 100F4/D265A, showed in vivo protection. Thus, we conclude that Fc-FcγR interactions are required for in vivo protection by 100F4, but not by 65C6, and therefore, protection is not virus strain specific but epitope specific. IMPORTANCE Abs play an important role in immune protection against influenza virus infection. Fc-FcγR interactions are required for in vivo protection by broadly neutralizing antistem, but not by virus strain-specific, anti-receptor binding site (RBS), Abs. Whether such interactions are necessary for protection by Abs that recognize epitopes outside RBS is not fully understood. In the present study, we investigated in vivo protection mechanisms against three H5 strains by two pan-H5 Abs, 65C6 and 100F4. We show that although these two Abs have similar neutralizing, binding, and ADCC activities against all three H5 strains in vitro , they have divergent requirements for Fc-FcγR interactions to protect against the three H5 strains in vivo The Fc-FcγR interactions are required for in vivo protection by 100F4, but not by 65C6. Thus, we conclude that Fc-FcγR interactions for in vivo protection by pan-H5 Abs is not strain specific, but epitope specific. Copyright © 2017 American Society for Microbiology.

  5. Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy

    PubMed Central

    Kim, Se Mi; Kim, Young-Il; Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-il; Si, Young-Jae; Lee, In-Won; Song, Min-Suk

    2017-01-01

    ABSTRACT In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5 avian influenza viruses. IMPORTANCE Current influenza virus killed vaccines predominantly induce antihemagglutinin (anti-HA) antibodies that are commonly strain specific in that the antibodies have potent neutralizing activity against homologous strains but do not cross-react with HAs of other influenza virus subtypes. In contrast, the HA2 stalk domain is relatively well conserved among subtypes, and recently, broadly neutralizing antibodies against this domain have been isolated. Therefore, in light of the need for a vaccine strain that applies the DIVA strategy utilizing an HI assay and induces broad cross-protection against H5N1 and H9N2 viruses, we generated a novel chimeric H9/H5N1 virus that expresses the entire HA1 portion from the H9N2 virus and the HA2 region of the heterosubtypic H5N8 virus. The chimeric H9/H5N2 recombinant vaccine protected immunized hosts against lethal challenge with H9N2 and HPAI H5N1 viruses with significantly attenuated virus shedding in immunized hosts. Therefore, this chimeric vaccine is suitable as a DIVA vaccine against H5 avian influenza viruses. PMID:28077631

  6. Naturally selected hepatitis C virus polymorphisms confer broad neutralizing antibody resistance.

    PubMed

    Bailey, Justin R; Wasilewski, Lisa N; Snider, Anna E; El-Diwany, Ramy; Osburn, William O; Keck, Zhenyong; Foung, Steven K H; Ray, Stuart C

    2015-01-01

    For hepatitis C virus (HCV) and other highly variable viruses, broadly neutralizing mAbs are an important guide for vaccine development. The development of resistance to anti-HCV mAbs is poorly understood, in part due to a lack of neutralization testing against diverse, representative panels of HCV variants. Here, we developed a neutralization panel expressing diverse, naturally occurring HCV envelopes (E1E2s) and used this panel to characterize neutralizing breadth and resistance mechanisms of 18 previously described broadly neutralizing anti-HCV human mAbs. The observed mAb resistance could not be attributed to polymorphisms in E1E2 at known mAb-binding residues. Additionally, hierarchical clustering analysis of neutralization resistance patterns revealed relationships between mAbs that were not predicted by prior epitope mapping, identifying 3 distinct neutralization clusters. Using this clustering analysis and envelope sequence data, we identified polymorphisms in E2 that confer resistance to multiple broadly neutralizing mAbs. These polymorphisms, which are not at mAb contact residues, also conferred resistance to neutralization by plasma from HCV-infected subjects. Together, our method of neutralization clustering with sequence analysis reveals that polymorphisms at noncontact residues may be a major immune evasion mechanism for HCV, facilitating viral persistence and presenting a challenge for HCV vaccine development.

  7. Antibody neutralization of retargeted measles viruses

    PubMed Central

    Lech, Patrycja J.; Pappoe, Roland; Nakamura, Takafumi; Tobin, Gregory J.; Nara, Peter L.; Russell, Stephen J.

    2014-01-01

    The measles virus (MV) vaccine lineage is a promising oncolytic but prior exposure to the measles vaccine or wild-type MV strains limits treatment utility due to the presence of anti-measles antibodies. MV entry can be redirected by displaying a polypeptide ligand on the Hemagglutinin (H) C-terminus. We hypothesized that retargeted MV would escape neutralization by monoclonal antibodies (mAbs) recognizing the H receptor-binding surface and be less susceptible to neutralization by human antisera. Using chimeric H proteins, with and without mutations that ablate MV receptor binding, we show that retargeted MVs escape mAbs that target the H receptor-binding surface by virtue of mutations that ablate infection via SLAM and CD46. However, C-terminally displayed domains do not mediate virus entry in the presence of human antibodies that bind to the underlying H domain. In conclusion, utility of retargeted oncolytic measles viruses does not extend to evasion of human serum neutralization. PMID:24725950

  8. Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys.

    PubMed

    Barouch, Dan H; Liu, Jinyan; Li, Hualin; Maxfield, Lori F; Abbink, Peter; Lynch, Diana M; Iampietro, M Justin; SanMiguel, Adam; Seaman, Michael S; Ferrari, Guido; Forthal, Donald N; Ourmanov, Ilnour; Hirsch, Vanessa M; Carville, Angela; Mansfield, Keith G; Stablein, Donald; Pau, Maria G; Schuitemaker, Hanneke; Sadoff, Jerald C; Billings, Erik A; Rao, Mangala; Robb, Merlin L; Kim, Jerome H; Marovich, Mary A; Goudsmit, Jaap; Michael, Nelson L

    2012-01-04

    Preclinical studies of human immunodeficiency virus type 1 (HIV-1) vaccine candidates have typically shown post-infection virological control, but protection against acquisition of infection has previously only been reported against neutralization-sensitive virus challenges. Here we demonstrate vaccine protection against acquisition of fully heterologous, neutralization-resistant simian immunodeficiency virus (SIV) challenges in rhesus monkeys. Adenovirus/poxvirus and adenovirus/adenovirus-vector-based vaccines expressing SIV(SME543) Gag, Pol and Env antigens resulted in an 80% or greater reduction in the per-exposure probability of infection against repetitive, intrarectal SIV(MAC251) challenges in rhesus monkeys. Protection against acquisition of infection showed distinct immunological correlates compared with post-infection virological control and required the inclusion of Env in the vaccine regimen. These data demonstrate the proof-of-concept that optimized HIV-1 vaccine candidates can block acquisition of stringent, heterologous, neutralization-resistant virus challenges in rhesus monkeys.

  9. Dengue Virus Activates Polyreactive, Natural IgG B Cells after Primary and Secondary Infection

    PubMed Central

    Toh, Ying Xiu; Flamand, Marie; Devi, Shamala; Koh, Mickey B.; Hibberd, Martin L.; Ooi, Eng Eong; Low, Jenny G.; Leo, Yee Sin; Gu, Feng; Fink, Katja

    2011-01-01

    Background Dengue virus is transmitted by mosquitoes and has four serotypes. Cross-protection to other serotypes lasting for a few months is observed following infection with one serotype. There is evidence that low-affinity T and/or B cells from primary infections contribute to the severe syndromes often associated with secondary dengue infections. such pronounced immune-mediated enhancement suggests a dengue-specific pattern of immune cell activation. This study investigates the acute and early convalescent B cell response leading to the generation of cross-reactive and neutralizing antibodies following dengue infection. Methodology/Principal Findings We assayed blood samples taken from dengue patients with primary or secondary infection during acute disease and convalescence and compared them to samples from patients presenting with non-dengue related fever. Dengue induced massive early plasmablast formation, which correlated with the appearance of polyclonal, cross-reactive IgG for both primary and secondary infection. Surprisingly, the contribution of IgG to the neutralizing titer 4–7 days after fever onset was more than 50% even after primary infection. Conclusions/Significance Poly-reactive and virus serotype cross-reactive IgG are an important component of the innate response in humans during both primary and secondary dengue infection, and “innate specificities” seem to constitute part of the adaptive response in dengue. While of potential importance for protection during secondary infection, cross-reactive B cells will also compete with highly neutralizing B cells and possibly interfere with their development. PMID:22216280

  10. Heterogeneity of envelope molecules expressed on primary human immunodeficiency virus type 1 particles as probed by the binding of neutralizing and nonneutralizing antibodies.

    PubMed

    Poignard, Pascal; Moulard, Maxime; Golez, Edwin; Vivona, Veronique; Franti, Michael; Venturini, Sara; Wang, Meng; Parren, Paul W H I; Burton, Dennis R

    2003-01-01

    Virion capture assays, in which immobilized antibodies (Abs) capture virus particles, have been used to suggest that nonneutralizing Abs bind effectively to human immunodeficiency virus type 1 (HIV-1) primary viruses. Here, we show that virion capture assays, under conditions commonly reported in the literature, give a poor indication of epitope expression on the surface of infectious primary HIV-1. First, estimation of primary HIV-1 capture by p24 measurements shows a very poor correlation with an estimation based on infectivity measurements. Second, virion capture appears to require relatively low Ab affinity for the virion, as shown by the ability of a monoclonal Ab to capture a wild-type and a neutralization escape variant virus equally well. Nevertheless, in a more interpretable competition format, it is shown that nonneutralizing anti-CD4 binding site (CD4bs) Abs compete with a neutralizing anti-CD4bs Ab (b12) for virus capture, suggesting that the nonneutralizing anti-CD4bs Abs are able to bind to the envelope species that is involved in virion capture in these experiments. However, the nonneutralizing anti-CD4bs Abs do not inhibit neutralization by b12 even at considerable excess. This suggests that the nonneutralizing Abs are unable to bind effectively to the envelope species required for virus infectivity. The results were obtained for three different primary virus envelopes. The explanation that we favor is that infectious HIV-1 primary virions can express two forms of gp120, an accessible nonfunctional form and a functional form with limited access. Binding to the nonfunctional form, which needs only to be present at relatively low density on the virion, permits capture but does not lead to neutralization. The expression of a nonfunctional but accessible form of gp120 on virions may contribute to the general failure of HIV-1 infection to elicit cross-neutralizing Abs and may represent a significant problem for vaccines based on viruses or virus-like particles.

  11. Exosomes Mediate Intercellular Transmission of Porcine Reproductive and Respiratory Syndrome Virus.

    PubMed

    Wang, Ting; Fang, Liurong; Zhao, Fuwei; Wang, Dang; Xiao, Shaobo

    2018-02-15

    Exosomes are small membrane-enclosed vesicles produced by various cells and actively released into the extracellular space. They participate in intercellular communication and transfer of biologically active proteins, lipids, and nucleic acids. Accumulating evidence suggests that exosomes derived from cells infected by some viruses selectively encapsulate viral proteins, genetic materials, or even virions to mediate cell-to-cell communication and/or virus transmission. Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has been devastating the global swine industry since the late 1980s. Recent studies have shown that major proteins secreted from PRRSV-infected cells are exosomal proteins and that the serum-derived exosomes from PRRSV-infected pigs contain viral proteins. However, the role of exosomes in PRRSV infection remains unclear. In this study, purified exosomes isolated from PRRSV-infected cells were shown with reverse transcription-PCR and mass spectrometry to contain viral genomic RNA and partial viral proteins. Furthermore, exosomes from PRRSV-infected cells established productive infection in both PRRSV-susceptible and -nonsusceptible cells. More importantly, exosome-mediated infection was not completely blocked by PRRSV-specific neutralizing antibodies. In summary, this study demonstrated that exosomes can mediate PRRSV transmission and are even resistant to antibody neutralization, identifying a potential immune evasion mechanism utilized by PRRSV. IMPORTANCE Exosomes have recently been characterized as bioactive vesicles that function to promote intercellular communication. The exosomes from virally infected cells containing altered compositions confer numerous novel functionalities. A study of the secretome of cells infected with PRRSV indicated that the exosomal pathway is strongly activated by PRRSV infection. Here, we demonstrate that PRRSV can utilize host exosomes to infect naive healthy cells. Furthermore, exosome-mediated viral transmission is largely resistant to PRRSV-specific neutralizing antibodies. Our study provides novel insights into an alternative mechanism of PRRSV transmission that can compromise the host's anti-PRRSV immune response. Copyright © 2018 American Society for Microbiology.

  12. Evaluation of Pneumonia Virus of Mice as a Possible Human Pathogen

    PubMed Central

    Brock, Linda G.; Karron, Ruth A.; Krempl, Christine D.; Collins, Peter L.

    2012-01-01

    Pneumonia virus of mice (PVM), a relative of human respiratory syncytial virus (RSV), causes respiratory disease in mice. There is serologic evidence suggesting widespread exposure of humans to PVM. To investigate replication in primates, African green monkeys (AGM) and rhesus macaques (n = 4) were inoculated with PVM by the respiratory route. Virus was shed intermittently at low levels by a subset of animals, suggesting poor permissiveness. PVM efficiently replicated in cultured human cells and inhibited the type I interferon (IFN) response in these cells. This suggests that poor replication in nonhuman primates was not due to a general nonpermissiveness of primate cells or poor control of the IFN response. Seroprevalence in humans was examined by screening sera from 30 adults and 17 young children for PVM-neutralizing activity. Sera from a single child (6%) and 40% of adults had low neutralizing activity against PVM, which could be consistent with increasing incidence of exposure following early childhood. There was no cross-reaction of human or AGM sera between RSV and PVM and no cross-protection in the mouse model. In native Western blots, human sera reacted with RSV but not PVM proteins under conditions in which AGM immune sera reacted strongly. Serum reactivity was further evaluated by flow cytometry using unfixed Vero cells infected with PVM or RSV expressing green fluorescent protein (GFP) as a measure of viral gene expression. The reactivity of human sera against RSV-infected cells correlated with GFP expression, whereas reactivity against PVM-infected cells was low and uncorrelated with GFP expression. Thus, PVM specificity was not evident. Our results indicate that the PVM-neutralizing activity of human sera is not due to RSV- or PVM-specific antibodies but may be due to low-affinity, polyreactive natural antibodies of the IgG subclass. The absence of PVM-specific antibodies and restriction in nonhuman primates makes PVM unlikely to be a human pathogen. PMID:22438539

  13. Glycans Flanking the Hypervariable Connecting Peptide between the A and B Strands of the V1/V2 Domain of HIV-1 gp120 Confer Resistance to Antibodies That Neutralize CRF01_AE Viruses

    PubMed Central

    O’Rourke, Sara M.; Sutthent, Ruengpung; Phung, Pham; Mesa, Kathryn A.; Frigon, Normand L.; To, Briana; Horthongkham, Navin; Limoli, Kay; Wrin, Terri; Berman, Phillip W.

    2015-01-01

    Understanding the molecular determinants of sensitivity and resistance to neutralizing antibodies is critical for the development of vaccines designed to prevent HIV infection. In this study, we used a genetic approach to characterize naturally occurring polymorphisms in the HIV envelope protein that conferred neutralization sensitivity or resistance. Libraries of closely related envelope genes, derived from virus quasi-species, were constructed from individuals infected with CRF01_AE viruses. The libraries were screened with plasma containing broadly neutralizing antibodies, and neutralization sensitive and resistant variants were selected for sequence analysis. In vitro mutagenesis allowed us to identify single amino acid changes in three individuals that conferred resistance to neutralization by these antibodies. All three mutations created N-linked glycosylation sites (two at N136 and one at N149) proximal to the hypervariable connecting peptide between the C-terminus of the A strand and the N-terminus of the B strand in the four-stranded V1/V2 domain β-sheet structure. Although N136 has previously been implicated in the binding of broadly neutralizing monoclonal antibodies, this glycosylation site appears to inhibit the binding of neutralizing antibodies in plasma from HIV-1 infected subjects. Previous studies have reported that the length of the V1/V2 domain in transmitted founder viruses is shorter and possesses fewer glycosylation sites compared to viruses isolated from chronic infections. Our results suggest that vaccine immunogens based on recombinant envelope proteins from clade CRF01_AE viruses might be improved by inclusion of envelope proteins that lack these glycosylation sites. This strategy might improve the efficacy of the vaccines used in the partially successful RV144 HIV vaccine trial, where the two CRF01_AE immunogens (derived from the A244 and TH023 isolates) both possessed glycosylation sites at N136 and N149. PMID:25793890

  14. Characterization of neutralizing epitopes of varicella-zoster virus glycoprotein H.

    PubMed

    Akahori, Yasushi; Suzuki, Kazuhiro; Daikoku, Tohru; Iwai, Masae; Yoshida, Yoshihiro; Asano, Yoshizo; Kurosawa, Yoshikazu; Shiraki, Kimiyasu

    2009-02-01

    Varicella-zoster virus (VZV) glycoprotein H (gH) is the major neutralization target of VZV, and its neutralizing epitope is conformational. Ten neutralizing human monoclonal antibodies to gH were used to map the epitopes by immunohistochemical analysis and were categorized into seven epitope groups. The combinational neutralization efficacy of two epitope groups was not synergistic. Each epitope was partially or completely resistant to concanavalin A blocking of the glycomoiety of gH, and their antibodies inhibited the cell-to-cell spread of infection. The neutralization epitope comprised at least seven independent protein portions of gH that served as the target to inhibit cell-to-cell spread.

  15. Role of neutralizing antibodies and T-cells in pathogenesis of herpes simplex virus infection in congenitally athymic mice.

    PubMed

    Kapoor, A K; Buckmaster, A; Nash, A A; Field, H J; Wildy, P

    1982-11-01

    Congenitally athymic nude mice were infected with 10(4) p.f.u. herpes simplex type 1 (strain SC16). Following the passive transfer of neutralizing monoclonal antibodies (AP7, AP8 and AP12) it was observed that AP7 alone reduced the virus infectivity in the nervous system; AP8 and AP12 failed to protect mice probably due to poor in vivo binding to the neutralization site on the virus. Latent ganglionic infection could be established in nude mice following adoptive transfer of optimum number (2 x 10(7) cells/mouse) of immune lymph node cells from day 7 herpes virus-infected hairy immunocompetent donor mice. Moreover, in some of the immune lymph node cell protected nudes, latency could be maintained even in complete absence of neutralizing antibodies. Results of ear-ablation experiments revealed that removal of primary source of infection after day 5 of infection reduced the amount of virus in the ganglia and spinal cord. Acute neurological infection was not detected following transfer of protective anti-gp-D neutralizing antibody (LP2) in combination with removal of infected pinna. These data suggest that continuous seeding of virus occurs in related ganglia via the axonal route from infected ear pinna. It appears that local T-cell-mediated immune mechanisms are involved in maintenance of latency.

  16. Prevalence of antibodies against Rift Valley fever virus in Kenyan wildlife

    PubMed Central

    EVANS, A.; GAKUYA, F.; PAWESKA, J. T.; ROSTAL, M.; AKOOLO, L.; VAN VUREN, P. J.; MANYIBE, T.; MACHARIA, J. M.; KSIAZEK, T. G.; FEIKIN, D. R.; BREIMAN, R. F.; KARIUKI NJENGA, M.

    2008-01-01

    SUMMARY Rift Valley fever virus (RVFV) is an arbovirus associated with periodic outbreaks, mostly on the African continent, of febrile disease accompanied by abortion in livestock, and a severe, fatal haemorrhagic syndrome in humans. However, the maintenance of the virus during the inter-epidemic period (IEP) when there is low or no disease activity detected in livestock or humans has not been determined. This study report prevalence of RVFV-neutralizing antibodies in sera (n=896) collected from 16 Kenyan wildlife species including at least 35% that were born during the 1999–2006 IEP. Specimens from seven species had detectable neutralizing antibodies against RVFV, including African buffalo, black rhino, lesser kudu, impala, African elephant, kongoni, and waterbuck. High RVFV antibody prevalence (>15%) was observed in black rhinos and ruminants (kudu, impala, buffalo, and waterbuck) with the highest titres (up to 1:1280) observed mostly in buffalo, including animals born during the IEP. All lions, giraffes, plains zebras, and warthogs tested were either negative or less than two animals in each species had low (⩽1:16) titres of RVFV antibodies. Of 249 sera collected from five wildlife species during the 2006–2007 outbreak, 16 out of 19 (84%) of the ruminant (gerenuk, waterbuck, and eland) specimens had RVFV-neutralizing titres ⩾1:80. These data provide evidence that wild ruminants are infected by RVFV but further studies are required to determine whether these animals play a role in the virus maintenance between outbreaks and virus amplification prior to a noticeable outbreak. PMID:17988425

  17. Identification of B- and T-cell epitopes from glycoprotein B of herpes simplex virus 2 and evaluation of their immunogenicity and protection efficacy.

    PubMed

    Liu, Kun; Jiang, Deyu; Zhang, Liangyan; Yao, Zhidong; Chen, Zhongwei; Yu, Sanke; Wang, Xiliang

    2012-04-19

    Herpes simplex virus (HSV) infection is a major health concern worldwide. Evidence obtained from animals and humans indicates that B- and T-cell responses contribute to protective immunity against herpes virus infection. Glycoprotein B is a transmembrane envelope component of HSV-1 and HSV-2, which plays an important role in virion morphogenesis and penetration into host cells, and can induce neutralizing antibodies and protective T-cell response when it is used to immunize humans and animals. However, little is known about gB epitopes that are involved in B- and T-cell activities in vitro and in vivo. Thus, the HSV-2 gB sequence was screened using B- and T-cell epitope prediction systems, and the B-cell regions and the HLA-A*0201-restricted epitopes were identified. These B-cell epitopes elicited high IgG antibody titers in Balb/C mice, with a predominantly IgG1 subclass distribution, which indicated a Th2 bias. Specific IgGs induced by these two epitopes were evaluated as the neutralizing antibodies for virus neutralization. The predicted T-cell epitopes stabilized the HLA-A*0201 molecules on T(2) cells, and stimulate interferon-γ-secreting and cytotoxic CD8(+) T cells. Immunization with the predicted peptides reduced virus shedding and protected against lethal viral challenge in mice. The functional epitopes described herein, both B- and T-cell epitopes, are potentially implicated in vaccine development. Copyright © 2012. Published by Elsevier Ltd.

  18. Incorporation of IgG Depletion in a Neutralization Assay Facilitates Differential Diagnosis of Zika and Dengue in Secondary Flavivirus Infection Cases.

    PubMed

    Calvert, Amanda E; Boroughs, Karen L; Laven, Janeen; Stovall, Janae L; Luy, Betty E; Kosoy, Olga I; Huang, Claire Y-H

    2018-06-01

    Zika virus (ZIKV) has emerged as a major global public health concern due to its link as a causative agent of human birth defects. Laboratory diagnosis of suspected ZIKV infections by serological testing of specimens collected a week or more after symptom onset primarily relies on detection of anti-ZIKV-specific IgM antibodies by enzyme-linked immunosorbent assay coupled with detection of ZIKV-specific neutralizing antibody by neutralization tests. A definitive diagnosis based on serological assays is possible during primary ZIKV infections; however, due to the cross-reactivity of antibodies elicited during flaviviral infections, a definitive diagnosis is not always possible, especially among individuals who have previously been exposed to closely related flaviviruses, such as dengue virus (DENV). Here, we investigated the neutralizing IgM antibody profiles of 33 diagnostic specimens collected from individuals with suspected primary and secondary flaviviral infections acquired when visiting areas experiencing active ZIKV transmission in 2015 and 2016. Specimens collected between 1 day and 3 months postexposure were tested for ZIKV and dengue virus type 1 (DENV1) and type 2 (DENV2) by the plaque reduction neutralization test (PRNT) before and after IgG depletion. We found that IgG depletion prior to neutralization testing had little effect in differentiating samples from individuals with secondary infections taken less than 3 weeks postexposure; however, IgG depletion significantly reduced the cross-reactive neutralizing antibody titers and increased the percentage of cases discernible by PRNT from 15.4% (95% confidence interval [CI], 4.3 to 42.2%) to 76.9% (95% CI, 49.7 to 91.8%) for samples collected between roughly 3 and 12 weeks postexposure. These results highlight the potential of IgG depletion to improve the specificity of PRNT for better confirmation and differential diagnosis of flavivirus infections. Copyright © 2018 American Society for Microbiology.

  19. Biochemical and antigenic properties of the first isolates of infectious hematopoietic necrosis virus from salmonid fish in Europe

    USGS Publications Warehouse

    Arkush, K.D.; Bovo, G.; DeKinkelin, P.; Winton, J.R.; Wingfield, W.H.; Hedrick, R.P.

    1989-01-01

    The first isolates of infectious hematopoietic necrosis virus (IHNV) recovered from rainbow trout Oncorhynchus mykiss (formerly Salmo gairdneri) in France and Italy were compared to six representative strains from North America by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of virion polypeptides and neutralization by monoclonal antibodies (MAbs). All three IHNV isolates from Europe had similar polypeptide profiles when compared by SDS-PAGE. An analysis of the antigenic relatedness of the European isolates to representative strains from North America showed that they were clearly different from viruses obtained from salmonids in California. The RB/B5 MAb, which was developed against virus isolated from adult steelhead (anadromous rainbow trout) reared in central Oregon, neutralized all isolates examined. The 193–110/B4 MAb, developed against IHNV isolated from infected yearling rainbow trout in southern Idaho, neutralized all isolates tested except those from California. The SRCV/A4 MAb, developed against Sacramento River chinook virus (SRCV) isolated from adult spring chinook salmon O. tshawytscha in central California, was the least reactive, and strong neutralization was observed only with the SRCV strain of IHNV from California. However, partial reactivity of the virus isolates from France with the SRCV/A4 MAb distinguished them from the virus recovered from salmonids in Italy.

  20. Antibody escape kinetics of equine infectious anemia virus infection of horses.

    PubMed

    Schwartz, Elissa J; Nanda, Seema; Mealey, Robert H

    2015-07-01

    Lentivirus escape from neutralizing antibodies (NAbs) is not well understood. In this work, we quantified antibody escape of a lentivirus, using antibody escape data from horses infected with equine infectious anemia virus. We calculated antibody blocking rates of wild-type virus, fitness costs of mutant virus, and growth rates of both viruses. These quantitative kinetic estimates of antibody escape are important for understanding lentiviral control by antibody neutralization and in developing NAb-eliciting vaccine strategies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Powassan virus infection in snowshoe hares (Lepus americanus).

    PubMed

    Zarnke, R L; Yuill, T M

    1981-04-01

    Sera from snowshoe hares (Lepus americanus) trapped near Rochester, Alberta, Canada were tested for Powassan virus antibody by the constant virus/serum dilution neutralization test. Of 1264 serum samples tested, 137 had an antibody titer of at least 1:4 for Powassan virus. Ten hares were inoculated with Powassan virus in the laboratory. Viremia lasted 4-5 days and ceased with the appearance of Powassan antibody in the serum. Neutralizing antibody reached a peak titer of 1:119 on day 15 post-inoculation and was still detectable 13 months post-inoculation.

  2. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    PubMed

    Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B

    2016-01-01

    HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  3. The Neonatal Fc Receptor (FcRn) Enhances Human Immunodeficiency Virus Type 1 (HIV-1) Transcytosis across Epithelial Cells

    PubMed Central

    Gupta, Sandeep; Gach, Johannes S.; Becerra, Juan C.; Phan, Tran B.; Pudney, Jeffrey; Moldoveanu, Zina; Joseph, Sarah B.; Landucci, Gary; Supnet, Medalyn Jude; Ping, Li-Hua; Corti, Davide; Moldt, Brian; Hel, Zdenek; Lanzavecchia, Antonio; Ruprecht, Ruth M.; Burton, Dennis R.; Mestecky, Jiri; Anderson, Deborah J.; Forthal, Donald N.

    2013-01-01

    The mechanisms by which human immunodeficiency virus type 1 (HIV-1) crosses mucosal surfaces to establish infection are unknown. Acidic genital secretions of HIV-1-infected women contain HIV-1 likely coated by antibody. We found that the combination of acidic pH and Env-specific IgG, including that from cervicovaginal and seminal fluids of HIV-1-infected individuals, augmented transcytosis across epithelial cells as much as 20-fold compared with Env-specific IgG at neutral pH or non-specific IgG at either pH. Enhanced transcytosis was observed with clinical HIV-1 isolates, including transmitted/founder strains, and was eliminated in Fc neonatal receptor (FcRn)-knockdown epithelial cells. Non-neutralizing antibodies allowed similar or less transcytosis than neutralizing antibodies. However, the ratio of total:infectious virus was higher for neutralizing antibodies, indicating that they allowed transcytosis while blocking infectivity of transcytosed virus. Immunocytochemistry revealed abundant FcRn expression in columnar epithelia lining the human endocervix and penile urethra. Acidity and Env-specific IgG enhance transcytosis of virus across epithelial cells via FcRn and could facilitate translocation of virus to susceptible target cells following sexual exposure. PMID:24278022

  4. Sialic acid content in human saliva and anti-influenza activity against human and avian influenza viruses.

    PubMed

    Limsuwat, Nattavatchara; Suptawiwat, Ornpreya; Boonarkart, Chompunuch; Puthavathana, Pilaipan; Wiriyarat, Witthawat; Auewarakul, Prasert

    2016-03-01

    It was shown previously that human saliva has higher antiviral activity against human influenza viruses than against H5N1 highly pathogenic avian influenza viruses, and that the major anti-influenza activity was associated with sialic-acid-containing molecules. To further characterize the differential susceptibility to saliva among influenza viruses, seasonal influenza A and B virus, pandemic H1N1 virus, and 15 subtypes of avian influenza virus were tested for their susceptibility to human and chicken saliva. Human saliva showed higher hemagglutination inhibition (HI) and neutralization (NT) titers against seasonal influenza A virus and the pandemic H1N1 viruses than against influenza B virus and most avian influenza viruses, except for H9N2 and H12N9 avian influenza viruses, which showed high HI and NT titers. To understand the nature of sialic-acid-containing anti-influenza factors in human saliva, α2,3- and α2,6-linked sialic acid was measured in human saliva samples using a lectin binding and dot blot assay. α2,6-linked sialic acid was found to be more abundant than α2,3-linked sialic acid, and a seasonal H1N1 influenza virus bound more efficiently to human saliva than an H5N1 virus in a dot blot analysis. These data indicated that human saliva contains the sialic acid type corresponding to the binding preference of seasonal influenza viruses.

  5. Identification of full-length transmitted/founder viruses and their progeny in primary HIV-1 infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korber, Bette; Hraber, Peter; Giorgi, Elena

    2009-01-01

    Identification of transmitted/founder virus genomes and their progeny by is a novel strategy for probing the molecular basis of HIV-1 transmission and for evaluating the genetic imprint of viral and host factors that act to constrain or facilitate virus replication. Here, we show in a cohort of twelve acutely infected subjects (9 clade B; 3 clade C), that complete genomic sequences of transmitted/founder viruses could be inferred using single genome amplification of plasma viral RNA, direct amplicon sequencing, and a model of random virus evolution. This allowed for the precise identification, chemical synthesis, molecular cloning, and biological analysis of thosemore » viruses actually responsible for productive clinical infection and for a comprehensive mapping of sequential viral genomes and proteomes for mutations that are necessary or incidental to the establishment of HIV-1 persistence. Transmitted/founder viruses were CD4 and CCR5 tropic, replicated preferentially in activated primary T-Iymphocytes but not monocyte-derived macrophages, and were effectively shielded from most heterologous or broadly neutralizing antibodies. By 3 months of infection, the evolving viral quasispecies in three subjects showed mutational fixation at only 2-5 discreet genomic loci. By 6-12 months, mutational fixation was evident at 18-27 genomic loci. Some, but not all, of these mutations were attributable to virus escape from cytotoxic Tlymphocytes or neutralizing antibodies, suggesting that other viral or host factors may influence early HIV -1 fitness.« less

  6. Reduced Potency and Incomplete Neutralization of Broadly Neutralizing Antibodies against Cell-to-Cell Transmission of HIV-1 with Transmitted Founder Envs.

    PubMed

    Li, Hongru; Zony, Chati; Chen, Ping; Chen, Benjamin K

    2017-05-01

    Broadly neutralizing antibodies (bNAbs) have been isolated from HIV-1 patients and can potently block infection of a wide spectrum of HIV-1 subtypes. These antibodies define common epitopes shared by many viral isolates. While bNAbs potently antagonize infection with cell-free virus, inhibition of HIV-1 transmission from infected to uninfected CD4 + T cells through virological synapses (VS) has been found to require greater amounts of antibody. In this study, we examined two well-studied molecular clones and two transmitted/founder (T/F) clones for their sensitivities to a panel of bNAbs in cell-free and cell-to-cell infection assays. We observed resistance of cell-to-cell transmission to antibody neutralization that was reflected not only by reductions of antibody potency but also by decreases in maximum neutralization capacity relative to the levels seen with cell-free infections. BNAbs targeting different epitopes exhibited incomplete neutralization against cell-associated virus with T/F Envs, which was not observed with the cell-free form of the same virus. We further identified the membrane-proximal internal tyrosine-based sorting motif as a determinant that can affect the incomplete neutralization of these T/F clones in cell-to-cell infection. These findings indicate that the signal that affects surface expression and/or internalization of Env from the plasma membrane can modulate the presentation of neutralizing epitopes on infected cells. These results highlight that a fraction of virus can escape from high concentrations of antibody through cell-to-cell infection while remaining sensitive to neutralization in cell-free infection. The ability to fully inhibit cell-to-cell transmission may represent an important consideration in the development of antibodies for treatment or prophylaxis. IMPORTANCE In recent years, isolation of new-generation HIV-1 bNAbs has invigorated HIV vaccine research. These bNAbs display remarkable potency and breadth of coverage against cell-free virus; however, they exhibit a diminished ability to block HIV-1 cell-to-cell transmission. The mechanism(s) by which HIV-1 resists neutralization when transmitting through VS remains uncertain. We examined a panel of bNAbs for their ability to neutralize HIV-1 T/F viruses in cell-to-cell infection assays. We found that some antibodies exhibit not only reduced potency but also decreased maximum neutralization capacity or in vitro efficacy against cell-to-cell infection of HIV-1 with T/F Envs compared to cell-free infection of the same virus. We further identified the membrane-proximal internal tyrosine-based sorting motif YXXL as a determinant that can affect the incomplete neutralization phenotype of these T/F clones. When the maximum neutralization capacity falls short of 100%, this can have a major impact on the ability of antibodies to halt viral replication. Copyright © 2017 American Society for Microbiology.

  7. Evidence of Two Lyssavirus Phylogroups with Distinct Pathogenicity and Immunogenicity

    PubMed Central

    Badrane, Hassan; Bahloul, Chokri; Perrin, Pierre; Tordo, Noël

    2001-01-01

    The genetic diversity of representative members of the Lyssavirus genus (rabies and rabies-related viruses) was evaluated using the gene encoding the transmembrane glycoprotein involved in the virus-host interaction, immunogenicity, and pathogenicity. Phylogenetic analysis distinguished seven genotypes, which could be divided into two major phylogroups having the highest bootstrap values. Phylogroup I comprises the worldwide genotype 1 (classic Rabies virus), the European bat lyssavirus (EBL) genotypes 5 (EBL1) and 6 (EBL2), the African genotype 4 (Duvenhage virus), and the Australian bat lyssavirus genotype 7. Phylogroup II comprises the divergent African genotypes 2 (Lagos bat virus) and 3 (Mokola virus). We studied immunogenic and pathogenic properties to investigate the biological significance of this phylogenetic grouping. Viruses from phylogroup I (Rabies virus and EBL1) were found to be pathogenic for mice when injected by the intracerebral or the intramuscular route, whereas viruses from phylogroup II (Mokola and Lagos bat viruses) were only pathogenic by the intracerebral route. We showed that the glycoprotein R333 residue essential for virulence was naturally replaced by a D333 in the phylogroup II viruses, likely resulting in their attenuated pathogenicity. Moreover, cross-neutralization distinguished the same phylogroups. Within each phylogroup, the amino acid sequence of the glycoprotein ectodomain was at least 74% identical, and antiglycoprotein virus-neutralizing antibodies displayed cross-neutralization. Between phylogroups, the identity was less than 64.5% and the cross-neutralization was absent, explaining why the classical rabies vaccines (phylogroup I) cannot protect against lyssaviruses from phylogroup II. Our tree-axial analysis divided lyssaviruses into two phylogroups that more closely reflect their biological characteristics than previous serotypes and genotypes. PMID:11238853

  8. Optimization and Validation of a Plaque Reduction Neutralization Test for the Detection of Neutralizing Antibodies to Four Serotypes of Dengue Virus Used in Support of Dengue Vaccine Development

    PubMed Central

    Timiryasova, Tatyana M.; Bonaparte, Matthew I.; Luo, Ping; Zedar, Rebecca; Hu, Branda T.; Hildreth, Stephen W.

    2013-01-01

    A dengue plaque reduction neutralization test (PRNT) to measure dengue serotype–specific neutralizing antibodies for all four virus serotypes was developed, optimized, and validated in accordance with guidelines for validation of bioanalytical test methods using human serum samples from dengue-infected persons and persons receiving a dengue vaccine candidate. Production and characterization of dengue challenge viruses used in the assay was standardized. Once virus stocks were characterized, the dengue PRNT50 for each of the four serotypes was optimized according to a factorial design of experiments approach for critical test parameters, including days of cell seeding before testing, percentage of overlay carboxymethylcellulose medium, and days of incubation post-infection to generate a robust assay. The PRNT50 was then validated and demonstrated to be suitable to detect and measure dengue serotype-specific neutralizing antibodies in human serum samples with acceptable intra-assay and inter-assay precision, accuracy/dilutability, specificity, and with a lower limit of quantitation of 10. PMID:23458954

  9. Dissection of Antibody Specificities Induced by Yellow Fever Vaccination

    PubMed Central

    Vratskikh, Oksana; Stiasny, Karin; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Jarmer, Johanna; Karrer, Urs; Roggendorf, Michael; Roggendorf, Hedwig; Allwinn, Regina; Heinz, Franz X.

    2013-01-01

    The live attenuated yellow fever (YF) vaccine has an excellent record of efficacy and one dose provides long-lasting immunity, which in many cases may last a lifetime. Vaccination stimulates strong innate and adaptive immune responses, and neutralizing antibodies are considered to be the major effectors that correlate with protection from disease. Similar to other flaviviruses, such antibodies are primarily induced by the viral envelope protein E, which consists of three distinct domains (DI, II, and III) and is presented at the surface of mature flavivirions in an icosahedral arrangement. In general, the dominance and individual variation of antibodies to different domains of viral surface proteins and their impact on neutralizing activity are aspects of humoral immunity that are not well understood. To gain insight into these phenomena, we established a platform of immunoassays using recombinant proteins and protein domains that allowed us to dissect and quantify fine specificities of the polyclonal antibody response after YF vaccination in a panel of 51 vaccinees as well as determine their contribution to virus neutralization by serum depletion analyses. Our data revealed a high degree of individual variation in antibody specificities present in post-vaccination sera and differences in the contribution of different antibody subsets to virus neutralization. Irrespective of individual variation, a substantial proportion of neutralizing activity appeared to be due to antibodies directed to complex quaternary epitopes displayed on the virion surface only but not on monomeric E. On the other hand, DIII-specific antibodies (presumed to have the highest neutralizing activity) as well as broadly flavivirus cross-reactive antibodies were absent or present at very low titers. These data provide new information on the fine specificity as well as variability of antibody responses after YF vaccination that are consistent with a strong influence of individual-specific factors on immunodominance in humoral immune responses. PMID:23818856

  10. Dissection of antibody specificities induced by yellow fever vaccination.

    PubMed

    Vratskikh, Oksana; Stiasny, Karin; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Jarmer, Johanna; Karrer, Urs; Roggendorf, Michael; Roggendorf, Hedwig; Allwinn, Regina; Heinz, Franz X

    2013-01-01

    The live attenuated yellow fever (YF) vaccine has an excellent record of efficacy and one dose provides long-lasting immunity, which in many cases may last a lifetime. Vaccination stimulates strong innate and adaptive immune responses, and neutralizing antibodies are considered to be the major effectors that correlate with protection from disease. Similar to other flaviviruses, such antibodies are primarily induced by the viral envelope protein E, which consists of three distinct domains (DI, II, and III) and is presented at the surface of mature flavivirions in an icosahedral arrangement. In general, the dominance and individual variation of antibodies to different domains of viral surface proteins and their impact on neutralizing activity are aspects of humoral immunity that are not well understood. To gain insight into these phenomena, we established a platform of immunoassays using recombinant proteins and protein domains that allowed us to dissect and quantify fine specificities of the polyclonal antibody response after YF vaccination in a panel of 51 vaccinees as well as determine their contribution to virus neutralization by serum depletion analyses. Our data revealed a high degree of individual variation in antibody specificities present in post-vaccination sera and differences in the contribution of different antibody subsets to virus neutralization. Irrespective of individual variation, a substantial proportion of neutralizing activity appeared to be due to antibodies directed to complex quaternary epitopes displayed on the virion surface only but not on monomeric E. On the other hand, DIII-specific antibodies (presumed to have the highest neutralizing activity) as well as broadly flavivirus cross-reactive antibodies were absent or present at very low titers. These data provide new information on the fine specificity as well as variability of antibody responses after YF vaccination that are consistent with a strong influence of individual-specific factors on immunodominance in humoral immune responses.

  11. [Confirmation of West Nile virus seroreactivity in central nervous system infections of unknown etiology from Ankara Province, Central Anatolia, Turkey].

    PubMed

    Ergünay, Koray; Özkul, Aykut

    2011-04-01

    West Nile virus (WNV) infections may trigger febrile conditions and/or neuroinvasive disease in a portion of the exposed individuals. Serosurveillance data from various regions of Turkey indicate WNV activity. The aim of this study was to confirm the antibody specificity of the serum samples via virus neutralization assay, previously reported to be reactive for WNV IgM. The samples originated from two individuals with the preliminary diagnosis of aseptic meningitis/encephalitis of unknown etiology in 2009 and had been classified as probable WNV infections. Cerebrospinal fluid and sera samples of these patients had been evaluated as negative for WNV RNA and IgG antibodies. Only one serum sample could be included in the neutralization assay due to the limited amounts in the current investigation. The sample was observed as positive in dilutions of 1/20 and 1/40, thus confirming the diagnosis of WNV-related central nervous system infection in a 62 year-old female patient from Ankara, Central Anatolia, Turkey.

  12. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects.

    PubMed

    Jurgeit, Andreas; McDowell, Robert; Moese, Stefan; Meldrum, Eric; Schwendener, Reto; Greber, Urs F

    2012-01-01

    Viruses use a limited set of host pathways for infection. These pathways represent bona fide antiviral targets with low likelihood of viral resistance. We identified the salicylanilide niclosamide as a broad range antiviral agent targeting acidified endosomes. Niclosamide is approved for human use against helminthic infections, and has anti-neoplastic and antiviral effects. Its mode of action is unknown. Here, we show that niclosamide, which is a weak lipophilic acid inhibited infection with pH-dependent human rhinoviruses (HRV) and influenza virus. Structure-activity studies showed that antiviral efficacy and endolysosomal pH neutralization co-tracked, and acidification of the extracellular medium bypassed the virus entry block. Niclosamide did not affect the vacuolar H(+)-ATPase, but neutralized coated vesicles or synthetic liposomes, indicating a proton carrier mode-of-action independent of any protein target. This report demonstrates that physico-chemical interference with host pathways has broad range antiviral effects, and provides a proof of concept for the development of host-directed antivirals.

  13. Estimates of Mumps Seroprevalence May Be Influenced by Antibody Specificity and Serologic Method

    PubMed Central

    McGrew, Marcia; Williams, Nobia J.; Sowers, Sun B.; Bellini, William J.; Hickman, Carole J.

    2014-01-01

    Neutralizing antibodies are assumed to be essential for protection against mumps virus infection, but their measurement is labor- and time-intensive. For this reason, enzyme-linked immunosorbent assays (ELISAs) are typically used to measure mumps-specific IgG levels. However, since there is poor correlation between mumps neutralization titers and ELISAs that measure the presence of mumps-specific IgG levels, ELISAs that better correlate with neutralization are needed. To address this issue, we measured mumps antibody levels by plaque reduction neutralization, by a commercial ELISA (whole-virus antigen), and by ELISAs specific for the mumps nucleoprotein and hemagglutinin. The results indicate that differences in the antibody response to the individual mumps proteins could partially explain the lack of correlation among various serologic tests. Furthermore, the data indicate that some seropositive individuals have low levels of neutralizing antibody. If neutralizing antibody is important for protection, this suggests that previous estimates of immunity based on whole-virus ELISAs may be overstated. PMID:24371258

  14. Kinetics of Epstein-Barr Virus (EBV) Neutralizing and Virus-Specific Antibodies after Primary Infection with EBV.

    PubMed

    Bu, Wei; Hayes, Gregory M; Liu, Hui; Gemmell, Lorraine; Schmeling, David O; Radecki, Pierce; Aguilar, Fiona; Burbelo, Peter D; Woo, Jennifer; Balfour, Henry H; Cohen, Jeffrey I

    2016-04-01

    Prospective studies of antibodies to multiple Epstein-Barr virus (EBV) proteins and EBV neutralizing antibodies in the same individuals before, during, and after primary EBV infection have not been reported. We studied antibody responses to EBV in college students who acquired primary EBV infection during prospective surveillance and correlated the kinetics of antibody response with the severity of disease. Neutralizing antibodies and enzyme-linked immunosorbent assay (ELISA) antibodies to gp350, the major target of neutralizing antibody, reached peak levels at medians of 179 and 333 days after the onset of symptoms of infectious mononucleosis, respectively. No clear correlation was found between the severity of the symptoms of infectious mononucleosis and the peak levels of antibody to individual viral proteins or to neutralizing antibody. In summary, we found that titers of neutralizing antibody and antibodies to multiple EBV proteins increase over many months after primary infection with EBV. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Neutralizing inhibitors in the airways of naïve ferrets do not play a major role in modulating the virulence of H3 subtype influenza A viruses.

    PubMed

    Job, Emma R; Pizzolla, Angela; Nebl, Thomas; Short, Kirsty R; Deng, Yi-Mo; Carolan, Louise; Laurie, Karen L; Brooks, Andrew G; Reading, Patrick C

    2016-07-01

    Many insights regarding the pathogenesis of human influenza A virus (IAV) infections have come from studies in mice and ferrets. Surfactant protein (SP)-D is the major neutralizing inhibitor of IAV in mouse airway fluids and SP-D-resistant IAV mutants show enhanced virus replication and virulence in mice. Herein, we demonstrate that sialylated glycoproteins, rather than SP-D, represent the major neutralizing inhibitors against H3 subtype viruses in airway fluids from naïve ferrets. Moreover, while resistance to neutralizing inhibitors is a critical factor in modulating virus replication and disease in the mouse model, it does not appear to be so in the ferret model, as H3 mutants resistant to either SP-D or sialylated glycoproteins in ferret airway fluids did not show enhanced virulence in ferrets. These data have important implications for our understanding of pathogenesis and immunity to human IAV infections in these two widely used animal models of infection. Copyright © 2016. Published by Elsevier Inc.

  16. Infection of Monkeys by Simian-human Immunodeficiency Viruses with Transmitted/ founder Clade C HIV-1 Envelopes

    PubMed Central

    Asmal, Mohammed; Luedemann, Corinne; Lavine, Christy L.; Mach, Linh V.; Balachandran, Harikrishnan; Brinkley, Christie; Denny, Thomas N.; Lewis, Mark G.; Anderson, Hanne; Pal, Ranajit; Sok, Devin; Le, Khoa; Pauthner, Matthias; Hahn, Beatrice H.; Shaw, George M.; Seaman, Michael S.; Letvin, Norman L.; Burton, Dennis R.; Sodroski, Joseph G.; Haynes, Barton F.; Santra, Sampa

    2014-01-01

    Simian-human immunodeficiency viruses (SHIVs) that mirror natural transmitted/founder (T/F) viruses in man are needed for evaluation of HIV-1 vaccine candidates in nonhuman primates. Currently available SHIVs contain HIV-1 env genes from chronically-infected individuals and do not reflect the characteristics of biologically relevant HIV-1 strains that mediate human transmission. We chose to develop clade C SHIVs, as clade C is the major infecting subtype of HIV-1 in the world. We constructed ten clade C SHIVs expressing Env proteins from T/F viruses. Three of these ten clade C SHIVs (SHIV KB9 C3, SHIV KB9 C4 and SHIV KB9 C5) replicated in naïve rhesus monkeys. These three SHIVs are mucosally transmissible and are neutralized by sCD4 and several HIV-1 broadly neutralizing antibodies. However, like natural T/F viruses, they exhibit low Env reactivity and a Tier 2 neutralization sensitivity. Of note, none of the clade C T/F SHIVs elicited detectable autologous neutralizing antibodies in the infected monkeys, even though antibodies that neutralized a heterologous Tier 1 HIV-1 were generated. Challenge with these three new clade C SHIVs will provide biologically relevant tests for vaccine protection in rhesus macaques. PMID:25462344

  17. Interplay of HIV-1 phenotype and neutralizing antibody response in pathogenesis of AIDS.

    PubMed

    Scarlatti, G; Leitner, T; Hodara, V; Jansson, M; Karlsson, A; Wahlberg, J; Rossi, P; Uhlén, M; Fenyö, E M; Albert, J

    1996-06-01

    A majority of human immunodeficiency virus type 1 (HIV-1) infected individuals display a rapid loss of CD4+ lymphocytes with fast progression towards overt acquired immunodeficiency syndrome (AIDS). However, a small proportion of individuals infected by HIV-1 remain immunologically intact for many years. In order to identify factors that might influence the pathogenesis of HIV-1 infection, 21 Italian mothers and 11 Swedish homosexual men were studied for the presence of autologous neutralizing antibodies in serum, biological phenotype of virus isolates and envelope variable region 3 (V3) sequences. The results were compared to the risk of mother-to-child transmission and progression of the disease. The presence of a neutralizing antibody response to the autologous virus as well as a virus with slow replicative capacity were linked both to low risk of mother-to-child transmission and non-progression of the disease. Patients whose peripheral blood mononuclear cells contained a mutation in the tip of the V3 loop (Arg318 to serine, lysine or leucine) significantly more often had neutralizing antibodies to autologous virus isolates containing arginine at this position. Thus, it appears that the interplay and balance between neutralizing antibody response of the host and the biological phenotype of HIV-1 strongly influence pathogenesis.

  18. Proof of principle for epitope-focused vaccine design

    NASA Astrophysics Data System (ADS)

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Chris; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-03-01

    Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.

  19. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies

    PubMed Central

    Fuchs, Sebastian P; Desrosiers, Ronald C

    2016-01-01

    Attempts to elicit antibodies with potent neutralizing activity against a broad range of human immunodeficiency virus (HIV) isolates have so far proven unsuccessful. Long-term delivery of monoclonal antibodies (mAbs) with such activity is a creative alternative that circumvents the need for an immune response and has the potential for creating a long-lasting sterilizing barrier against HIV. This approach is made possible by an incredible array of potent broadly neutralizing antibodies (bnAbs) that have been identified over the last several years. Recombinant adeno-associated virus (rAAV) vectors are ideally suited for long-term delivery for a variety of reasons. The only products made from rAAV are derived from the transgenes that are put into it; as long as those products are not viewed as foreign, expression from muscle tissue may continue for decades. Thus, use of rAAV to achieve long-term delivery of anti-HIV mAbs with potent neutralizing activity against a broad range of HIV-1 isolates is emerging as a promising concept for the prevention or treatment of HIV-1 infection in humans. Experiments in mice and monkeys that have demonstrated protective efficacy against AIDS virus infection have raised hopes for the promise of this approach. However, all published experiments in monkeys have encountered unwanted immune responses to the AAV-delivered antibody, and these immune responses appear to limit the levels of delivered antibody that can be achieved. In this review, we highlight the promise of rAAV-mediated antibody delivery for the prevention or treatment of HIV infection in humans, but we also discuss the obstacles that will need to be understood and solved in order for the promise of this approach to be realized. PMID:28197421

  20. Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaljot, K.T.; Shaw, R.D.; Greenberg, H.B.

    1988-04-01

    Rotaviruses are icosahedral viruses with a segmented, double-stranded RNA genome. They are the major cause of severe infantile infectious diarrhea. Rotavirus growth in tissue culture is markedly enhanced by pretreatment of virus with trypsin. Trypsin activation is associated with cleavage of the viral hemagglutinin (viral protein 3 (VP3); 88 kilodaltons) into two fragments (60 and 28 kilodaltons). The mechanism by which proteolytic cleavage leads to enhanced growth is unknown. To determine whether trypsin treatment affected rotavirus internalization, the authors studied the kinetics of entry of infectious rhesus rotavirus (RRV) into MA104 cells. Trypsin-activated RRV was internalized with a half-time ofmore » 3 to 5 min, while nonactivated virus disappeared from the cell surface with a half-time of 30 to 50 min. In contrast to trypsin-activated RRV, loss of nonactivated RRV from the cell surface did not result in the appearance of infection, as measured by plaque formation. Purified trypsin-activated RRV added to cell monolayers at pH 7.4 mediated {sup 51}Cr, ({sup 14}C)choline, and ({sup 3}H)inositol released from prelabeled MA104 cells. This release could be specifically blocked by neutralizing antibodies to VP3. These results suggest that MA104 cell infection follows the rapid entry of trypsin-activated RRV by direct cell membrane penetration. Cell membrane penetration of infectious RRV is initiated by trypsin cleavage of VP3. Neutralizing antibodies can inhibit this direct membrane penetration.« less

  1. A Broadly Flavivirus Cross-Neutralizing Monoclonal Antibody that Recognizes a Novel Epitope within the Fusion Loop of E Protein

    PubMed Central

    Jiang, Tao; Wang, Hua-Jing; Yang, Hai-ou; Tan, Weng-Long; Liu, Ran; Yu, Man; Ge, Bao-Xue; Zhu, Qing-Yu; Qin, E-De; Guo, Ya-Jun; Qin, Cheng-Feng

    2011-01-01

    Flaviviruses are a group of human pathogenic, enveloped RNA viruses that includes dengue (DENV), yellow fever (YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses. Cross-reactive antibodies against Flavivirus have been described, but most of them are generally weakly neutralizing. In this study, a novel monoclonal antibody, designated mAb 2A10G6, was determined to have broad cross-reactivity with DENV 1–4, YFV, WNV, JEV, and TBEV. Phage-display biopanning and structure modeling mapped 2A10G6 to a new epitope within the highly conserved flavivirus fusion loop peptide, the 98DRXW101 motif. Moreover, in vitro and in vivo experiments demonstrated that 2A10G6 potently neutralizes DENV 1–4, YFV, and WNV and confers protection from lethal challenge with DENV 1–4 and WNV in murine model. Furthermore, functional studies revealed that 2A10G6 blocks infection at a step after viral attachment. These results define a novel broadly flavivirus cross-reactive mAb with highly neutralizing activity that can be further developed as a therapeutic agent against severe flavivirus infections in humans. PMID:21264311

  2. Short Communication: Potential Risk of Replication-Competent Virus in HIV-1 Env-Pseudotyped Virus Preparations.

    PubMed

    Bilska, Miroslawa; Tang, Haili; Montefiori, David C

    2017-04-01

    Env-pseudotyped viruses are valuable reagents for studies of HIV-1 neutralizing antibodies. It is often assumed that all pseudovirus particles are capable of only a single round of infection, making them a safe alternative to work with live HIV-1. In this study, we show that some Env-pseudotyped virus preparations give rise to low levels of replication-competent virus. These levels did not compromise results in the TZM-bl neutralization assay; however, their presence highlights a need to adhere to the same level of biosafety when working with Env-pseudotyped viruses that are required for work with replication competent HIV-1.

  3. Antigenic Variation of East/Central/South African and Asian Chikungunya Virus Genotypes in Neutralization by Immune Sera.

    PubMed

    Chua, Chong-Long; Sam, I-Ching; Merits, Andres; Chan, Yoke-Fun

    2016-08-01

    Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus which causes epidemics of fever, severe joint pain and rash. Between 2005 and 2010, the East/Central/South African (ECSA) genotype was responsible for global explosive outbreaks across India, the Indian Ocean and Southeast Asia. From late 2013, Asian genotype CHIKV has caused outbreaks in the Americas. The characteristics of cross-antibody efficacy and epitopes are poorly understood. We characterized human immune sera collected during two independent outbreaks in Malaysia of the Asian genotype in 2006 and the ECSA genotype in 2008-2010. Neutralizing capacity was analyzed against representative clinical isolates as well as viruses rescued from infectious clones of ECSA and Asian CHIKV. Using whole virus antigen and recombinant E1 and E2 envelope glycoproteins, we further investigated antibody binding sites, epitopes, and antibody titers. Both ECSA and Asian sera demonstrated stronger neutralizing capacity against the ECSA genotype, which corresponded to strong epitope-antibody interaction. ECSA serum targeted conformational epitope sites in the E1-E2 glycoprotein, and E1-E211K, E2-I2T, E2-H5N, E2-G118S and E2-S194G are key amino acids that enhance cross-neutralizing efficacy. As for Asian serum, the antibodies targeting E2 glycoprotein correlated with neutralizing efficacy, and I2T, H5N, G118S and S194G altered and improved the neutralization profile. Rabbit polyclonal antibody against the N-terminal linear neutralizing epitope from the ECSA sequence has reduced binding capacity and neutralization efficacy against Asian CHIKV. These findings imply that the choice of vaccine strain may impact cross-protection against different genotypes. Immune serum from humans infected with CHIKV of either ECSA or Asian genotypes showed differences in binding and neutralization characteristics. These findings have implications for the continued outbreaks of co-circulating CHIKV genotypes and effective design of vaccines and diagnostic serological assays.

  4. Neutralizing Antibodies Induced by Gene-Based Hydrodynamic Injection Have a Therapeutic Effect in Lethal Influenza Infection

    PubMed Central

    Yamazaki, Tatsuya; Nagashima, Maria; Ninomiya, Daisuke; Ainai, Akira; Fujimoto, Akira; Ichimonji, Isao; Takagi, Hidekazu; Morita, Naoko; Murotani, Kenta; Hasegawa, Hideki; Chiba, Joe; Akashi-Takamura, Sachiko

    2018-01-01

    The influenza virus causes annual epidemics and occasional pandemics and is thus a major public health problem. Development of vaccines and antiviral drugs is essential for controlling influenza virus infection. We previously demonstrated the use of vectored immune-prophylaxis against influenza virus infection. We generated a plasmid encoding neutralizing IgG monoclonal antibodies (mAbs) against A/PR/8/34 influenza virus (IAV) hemagglutinin (HA). We then performed electroporation of the plasmid encoding neutralizing mAbs (EP) in mice muscles and succeeded in inducing the expression of neutralizing antibodies in mouse serum. This therapy has a prophylactic effect against lethal IAV infection in mice. In this study, we established a new method of passive immunotherapy after IAV infection. We performed hydrodynamic injection of the plasmid encoding neutralizing mAbs (HD) involving rapid injection of a large volume of plasmid-DNA solution into mice via the tail vein. HD could induce neutralizing antibodies in the serum and in several mucosal tissues more rapidly than in EP. We also showed that a single HD completely protected the mice even after infection with a lethal dose of IAV. We also established other isotypes of anti-HA antibody (IgA, IgM, IgD, and IgE) and showed that like anti-HA IgG, anti-HA IgA was also effective at combating upper respiratory tract IAV infection. Passive immunotherapy with HD could thus provide a new therapeutic strategy targeting influenza virus infection. PMID:29416543

  5. A Japanese Encephalitis Virus Vaccine Inducing Antibodies Strongly Enhancing In Vitro Infection Is Protective in Pigs

    PubMed Central

    García-Nicolás, Obdulio; Ricklin, Meret E.; Liniger, Matthias; Vielle, Nathalie J.; Python, Sylvie; Souque, Philippe; Charneau, Pierre; Summerfield, Artur

    2017-01-01

    The Japanese encephalitis virus (JEV) is responsible for zoonotic severe viral encephalitis transmitted by Culex mosquitoes. Although birds are reservoirs, pigs play a role as amplifying hosts, and are affected in particular through reproductive failure. Here, we show that a lentiviral JEV vector, expressing JEV prM and E proteins (TRIP/JEV.prME), but not JEV infection induces strong antibody-dependent enhancement (ADE) activities for infection of macrophages. Such antibodies strongly promoted infection via Fc receptors. ADE was found at both neutralizing and non-neutralizing serum dilutions. Nevertheless, in vivo JEV challenge of pigs demonstrated comparable protection induced by the TRIP/JEV.prME vaccine or heterologous JEV infection. Thus, either ADE antibodies cause no harm in the presence of neutralizing antibodies or may even have protective effects in vivo in pigs. Additionally, we found that both pre-infected and vaccinated pigs were not fully protected as low levels of viral RNA were found in lymphoid and nervous system tissue in some animals. Strikingly, the virus from the pre-infection persisted in the tonsils throughout the experiment. Finally, despite the vaccination challenge, viral RNA was detected in the oronasal swabs in all vaccinated pigs. These latter data are relevant when JEV vaccination is employed in pigs. PMID:28531165

  6. [Study of the virus carrier state in chicken influenza].

    PubMed

    Smolenskiĭ, V I; Osidze, N G; Bogautdinov, Z F; Panteleev, Iu V; Siurin, V N

    1978-01-01

    The problems of virus carrier state in influenza are connected with two aspects of the disease: the duration of virus antigen persistence in convalescents and changes of influenza virus properties in the course of persistence. In the present study, natural influenza infection in chickens caused by influenza A/chicken/USSR/336/74 virus (Hav6H3--N2) was used to determine the duration of virus antigen persistence (up to 60 days) and the entire period of virus isolation from the survivers (up to 30 days). Administration of hydrocortisone on the 50th day of convalescence permitted to obtain from the chickens several influenza A virus isolates antigenically unrelated to the epizootic strain either in hemagglutinin or in neuraminidase. Cultivation of isolate No. 42 (Hav7Neq1) in the presence of the homologous serum yielded strain 42' which was neutralized by the serum to Hav6H3--N2 virus. The isolates differed from the epizootic virus by their biological properties: the eluting activity, pathogenesis and morphology. The above facts of antigenic variability are considered in the light of the antigenic heterogeneity of the natural virus population and the possibility of virus activation by the provoking effect of extreme conditions on the carriers of latent infection.

  7. A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, Theodore C.; Sanchez, Melissa D.; Puffer, Bridget A.

    2006-03-01

    West Nile virus (WNV) is a neurotropic flavivirus within the Japanese encephalitis antigenic complex that is responsible for causing West Nile encephalitis in humans. The surface of WNV virions is covered by a highly ordered icosahedral array of envelope proteins that is responsible for mediating attachment and fusion with target cells. These envelope proteins are also primary targets for the generation of neutralizing antibodies in vivo. In this study, we describe a novel approach for measuring antibody-mediated neutralization of WNV infection using virus-like particles that measure infection as a function of reporter gene expression. These reporter virus particles (RVPs) aremore » produced by complementation of a sub-genomic replicon with WNV structural proteins provided in trans using conventional DNA expression vectors. The precision and accuracy of this approach stem from an ability to measure the outcome of the interaction between antibody and viral antigens under conditions that satisfy the assumptions of the law of mass action as applied to virus neutralization. In addition to its quantitative strengths, this approach allows the production of WNV RVPs bearing the prM-E proteins of different WNV strains and mutants, offering considerable flexibility for the study of the humoral immune response to WNV in vitro. WNV RVPs are capable of only a single round of infection, can be used under BSL-2 conditions, and offer a rapid and quantitative approach for detecting virus entry and its inhibition by neutralizing antibody.« less

  8. Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromowski, Gregory D.; Barrett, Alan D.T.

    2007-09-30

    The surface of the mature dengue virus (DENV) particle consists of 90 envelope (E) protein dimers that mediate both receptor binding and fusion. The E protein ectodomain can be divided into three structural domains designated ED1, ED2, and ED3, of which ED3 contains the critical and dominant virus-specific neutralization sites. In this study the ED3 epitopes recognized by seven, murine, IgG1 DENV-2 type-specific, monoclonal antibodies (MAbs) were determined using site-directed mutagenesis of a recombinant DENV-2 ED3 (rED3) protein. A total of 41 single amino acid substitutions were introduced into the rED3 at 30 different surface accessible residues. The affinity ofmore » each MAb with the mutant rED3s was assessed by indirect ELISA and the results indicate that all seven MAbs recognize overlapping epitopes with residues K305 and P384 critical for binding. These residues are conserved among DENV-2 strains and cluster together on the upper lateral face of ED3. A linear relationship was observed between relative occupancy of ED3 on the virion by MAb and neutralization of the majority of virus infectivity ({approx} 90%) for all seven MAbs. Depending on the MAb, it is predicted that between 10% and 50% relative occupancy of ED3 on the virion is necessary for virus neutralization and for all seven MAbs occupancy levels approaching saturation were required for 100% neutralization of virus infectivity. Overall, the conserved antigenic site recognized by all seven MAbs is likely to be a dominant DENV-2 type-specific, neutralization determinant.« less

  9. Novel antibody binding determinants on the capsid surface of serotype O foot-and-mouth disease virus

    PubMed Central

    Asfor, Amin S.; Upadhyaya, Sasmita; Knowles, Nick J.; King, Donald P.; Paton, David J.

    2014-01-01

    Five neutralizing antigenic sites have been described for serotype O foot-and-mouth disease viruses (FMDV) based on monoclonal antibody (mAb) escape mutant studies. However, a mutant virus selected to escape neutralization of mAb binding at all five sites was previously shown to confer complete cross-protection with the parental virus in guinea pig challenge studies, suggesting that amino acid residues outside the mAb binding sites contribute to antibody-mediated in vivo neutralization of FMDV. Comparison of the ability of bovine antisera to neutralize a panel of serotype O FMDV identified three novel putative sites at VP2-74, VP2-191 and VP3-85, where amino acid substitutions correlated with changes in sero-reactivity. The impact of these positions was tested using site-directed mutagenesis to effect substitutions at critical amino acid residues within an infectious copy of FMDV O1 Kaufbeuren (O1K). Recovered viruses containing additional mutations at VP2-74 and VP2-191 exhibited greater resistance to neutralization with both O1K guinea pig and O BFS bovine antisera than a virus that was engineered to include only mutations at the five known antigenic sites. The changes at VP2-74 and VP3-85 are adjacent to critical amino acids that define antigenic sites 2 and 4, respectively. However VP2-191 (17 Å away from VP2-72), located at the threefold axis and more distant from previously identified antigenic sites, exhibited the most profound effect. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and will improve our strategies for vaccine strain selection and rational vaccine design. PMID:24584474

  10. The importance of RSV F protein conformation in VLPs in stimulation of neutralizing antibody titers in mice previously infected with RSV

    PubMed Central

    Cullen, Lori M.; Schmidt, Madelyn R.; Morrison, Trudy G.

    2017-01-01

    ABSTRACT Respiratory syncytial virus (RSV) is a significant respiratory pathogen but no vaccine is available. RSV infections present 2 major, unique problems. First, humans can experience repeated infections caused by the same virus sero-group indicating that protective memory responses to RSV infection are defective. Second, most people have been infected with RSV by age 5. Immune responses to these infections, while poorly protective, could impact the effectiveness of a vaccine. The goal of this study was to assess the generation of protective immune responses in mice previously infected with RSV by virus-like particle (VLP) vaccine candidates containing a stabilized pre-fusion form of the RSV F protein or a stabilized post-fusion F protein. We report that a single immunization of RSV-experienced animals with a stabilized pre-fusion F protein VLP stimulated high titers of neutralizing antibody while a single injection of a post-fusion F protein VLP or a second RSV infection only weakly stimulated neutralizing antibody titers. These results suggest that prior RSV infection can induce neutralizing antibody memory responses, which can be activated by pre-F protein VLPs but not by post-F protein VLPs or a subsequent infection. Thus the F protein conformation has a major impact on enhancing production of neutralizing antibodies in RSV-experienced animals. Furthermore, although both VLPs contained the same RSV G protein, the pre-F VLP stimulated significantly higher titers of total anti-G protein IgG than the post-F VLP in both naïve and RSV-experienced animals. Thus the F protein conformation also influences anti-G protein responses. PMID:28604155

  11. The importance of RSV F protein conformation in VLPs in stimulation of neutralizing antibody titers in mice previously infected with RSV.

    PubMed

    Cullen, Lori M; Schmidt, Madelyn R; Morrison, Trudy G

    2017-12-02

    Respiratory syncytial virus (RSV) is a significant respiratory pathogen but no vaccine is available. RSV infections present 2 major, unique problems. First, humans can experience repeated infections caused by the same virus sero-group indicating that protective memory responses to RSV infection are defective. Second, most people have been infected with RSV by age 5. Immune responses to these infections, while poorly protective, could impact the effectiveness of a vaccine. The goal of this study was to assess the generation of protective immune responses in mice previously infected with RSV by virus-like particle (VLP) vaccine candidates containing a stabilized pre-fusion form of the RSV F protein or a stabilized post-fusion F protein. We report that a single immunization of RSV-experienced animals with a stabilized pre-fusion F protein VLP stimulated high titers of neutralizing antibody while a single injection of a post-fusion F protein VLP or a second RSV infection only weakly stimulated neutralizing antibody titers. These results suggest that prior RSV infection can induce neutralizing antibody memory responses, which can be activated by pre-F protein VLPs but not by post-F protein VLPs or a subsequent infection. Thus the F protein conformation has a major impact on enhancing production of neutralizing antibodies in RSV-experienced animals. Furthermore, although both VLPs contained the same RSV G protein, the pre-F VLP stimulated significantly higher titers of total anti-G protein IgG than the post-F VLP in both naïve and RSV-experienced animals. Thus the F protein conformation also influences anti-G protein responses.

  12. Broad neutralization of wild-type dengue virus isolates following immunization in monkeys with a tetravalent dengue vaccine based on chimeric yellow fever 17D/dengue viruses.

    PubMed

    Barban, Veronique; Munoz-Jordan, Jorge L; Santiago, Gilberto A; Mantel, Nathalie; Girerd, Yves; Gulia, Sandrine; Claude, Jean-Baptiste; Lang, Jean

    2012-08-01

    The objective of the study was to evaluate if the antibodies elicited after immunization with a tetravalent dengue vaccine, based on chimeric yellow fever 17D/dengue viruses, can neutralize a large range of dengue viruses (DENV). A panel of 82 DENVs was developed from viruses collected primarily during the last decade in 30 countries and included the four serotypes and the majority of existing genotypes. Viruses were isolated and minimally amplified before evaluation against a tetravalent polyclonal serum generated during vaccine preclinical evaluation in monkey, a model in which protection efficacy of this vaccine has been previously demonstrated (Guirakhoo et al., 2004). Neutralization was observed across all the DENV serotypes, genotypes, geographical origins and isolation years. These data indicate that antibodies elicited after immunization with this dengue vaccine candidate should widely protect against infection with contemporary DENV lineages circulating in endemic countries. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Definition of neutralizing sites on African horse sickness virus serotype 4 VP2 at the level of peptides.

    PubMed

    Martínez-Torrecuadrada, J L; Langeveld, J P; Meloen, R H; Casal, J I

    2001-10-01

    The antigenic structure of African horse sickness virus (AHSV) serotype 4 capsid protein VP2 has been determined at the peptide level by PEPSCAN analysis in combination with a large collection of polyclonal antisera and monoclonal antibodies. VP2, the determinant for the virus serotype and an important target in virus neutralization, was found to contain 15 antigenic sites. A major antigenic region containing 12 of the 15 sites was identified in the region between residues 223 and 400. A second domain between residues 568 and 681 contained the three remaining sites. These sites were used for the synthesis of peptides, which were later tested in rabbits. Of the 15 synthetic peptides, three were able to induce neutralizing antibodies for AHSV-4, defining two neutralizing epitopes, 'a' and 'b', between residues 321 and 339, and 377 and 400, respectively. A combination of peptides representing both sites induced a more effective neutralizing response. Still, the relatively low neutralization titres make the possibility of producing a synthetic vaccine for AHSV unlikely. The complex protein-protein interaction of the outer shell of the viral capsid would probably require the presence of either synthetic peptides in the correct conformation or peptide segments from the different proteins VP2, VP5 and VP7.

  14. Virus neutralizing antibody response in mice and dogs with a bicistronic DNA vaccine encoding rabies virus glycoprotein and canine parvovirus VP2.

    PubMed

    Patial, Sonika; Chaturvedi, V K; Rai, A; Saini, M; Chandra, Rajesh; Saini, Y; Gupta, Praveen K

    2007-05-16

    A bicistronic DNA vaccine against rabies and parvovirus infection of dogs was developed by subcloning rabies glycoprotein and canine parvovirus (CPV) VP2 genes into a bicistronic vector. After characterizing the expression of both the proteins in vitro, the bicistronic DNA vaccine was injected in mice and induced immune response was compared with monocistronic DNA vaccines. There was no significant difference in ELISA and virus neutralizing (VN) antibody responses against rabies and CPV in mice immunized with either bicistronic or monocistronic DNA vaccine. Further, there was significantly similar protection in mice immunized with either bicistronic or monocistronic rabies DNA vaccine on rabies virus challenge. Similarly, dogs immunized with monocistronic and bicistronic DNA vaccines developed comparable VN antibodies against rabies and CPV. This study indicated that bicistronic DNA vaccine can be used in dogs to induce virus neutralizing immune responses against both rabies and CPV.

  15. Vital Role for CD8+ Cells in Controlling Retroviral Infections ▿

    PubMed Central

    Kane, Melissa; Case, Laure K.; Golovkina, Tatyana V.

    2011-01-01

    Antiviral adaptive immune defenses consist of humoral and cell-mediated responses, which together eliminate extracellular and intracellular virus. As most retrovirus-infected individuals do not raise efficient protective antivirus immune responses, the relative importance of humoral and cell-mediated responses in restraining retroviral infection is not well understood. We utilized retrovirus-resistant I/LnJ mice, which control infection with mouse mammary tumor virus (MMTV) and murine leukemia virus (MuLV) via an adaptive immune mechanism, to assess the contribution of cellular responses and virus-neutralizing antibodies (Abs) to the control of retroviral infection. We found that in retrovirus-infected CD8-deficient I/LnJ mice, viral titers exceed the neutralizing capability of antiviral Abs, resulting in augmented virus spread and disease induction. Thus, even in the presence of robust neutralizing Ab responses, CD8-mediated responses are essential for full protection against retroviral infection. PMID:21248041

  16. The VP7 Outer Capsid Protein of Rotavirus Induces Polyclonal B-Cell Activation

    PubMed Central

    Blutt, Sarah E.; Crawford, Sue E.; Warfield, Kelly L.; Lewis, Dorothy E.; Estes, Mary K.; Conner, Margaret E.

    2004-01-01

    The early response to a homologous rotavirus infection in mice includes a T-cell-independent increase in the number of activated B lymphocytes in the Peyer's patches. The mechanism of this activation has not been previously determined. Since rotavirus has a repetitively arranged triple-layered capsid and repetitively arranged antigens can induce activation of B cells, one or more of the capsid proteins could be responsible for the initial activation of B cells during infection. To address this question, we assessed the ability of rotavirus and virus-like particles to induce B-cell activation in vivo and in vitro. Using infectious rotavirus, inactivated rotavirus, noninfectious but replication-competent virus, and virus-like particles, we determined that neither infectivity nor RNA was necessary for B-cell activation but the presence of the rotavirus outer capsid protein, VP7, was sufficient for murine B-cell activation. Preincubation of the virus with neutralizing VP7 antibodies inhibited B-cell activation. Polymyxin B treatment and boiling of the virus preparation were performed, which ruled out possible lipopolysaccharide contamination as the source of activation and confirmed that the structural conformation of VP7 is important for B-cell activation. These findings indicate that the structure and conformation of the outer capsid protein, VP7, initiate intestinal B-cell activation during rotavirus infection. PMID:15194774

  17. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenza A viruses.

    PubMed

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-06-01

    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenza A viruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population.

  18. Staged induction of HIV-1 glycan–dependent broadly neutralizing antibodies

    DOE PAGES

    Bonsignori, Mattia; Kreider, Edward F.; Fera, Daniela; ...

    2017-03-15

    A preventive HIV-1 vaccine should induce HIV-1–specific broadly neutralizing antibodies (bnAbs). However, bnAbs generally require high levels of somatic hypermutation (SHM) to acquire breadth, and current vaccine strategies have not been successful in inducing bnAbs. Because bnAbs directed against a glycosylated site adjacent to the third variable loop (V3) of the HIV-1 envelope protein require limited SHM, the V3-glycan epitope is an attractive vaccine target. By studying the cooperation among multiple V3-glycan B cell lineages and their coevolution with autologous virus throughout 5 years of infection, we identify key events in the ontogeny of a V3- glycan bnAb. Two autologousmore » neutralizing antibody lineages selected for virus escape mutations and consequently allowed initiation and affinity maturation of a V3-glycan bnAb lineage. The nucleotide substitution required to initiate the bnAb lineage occurred at a low-probability site for activation-induced cytidine deaminase activity. Cooperation of B cell lineages and an improbable mutation critical for bnAb activity defined the necessary events leading to breadth in this V3- glycan bnAb lineage. These findings may, in part, explain why initiation of V3-glycan bnAbs is rare, and suggest an immunization strategy for inducing similar V3-glycan bnAbs.« less

  19. Staged induction of HIV-1 glycan–dependent broadly neutralizing antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonsignori, Mattia; Kreider, Edward F.; Fera, Daniela

    A preventive HIV-1 vaccine should induce HIV-1–specific broadly neutralizing antibodies (bnAbs). However, bnAbs generally require high levels of somatic hypermutation (SHM) to acquire breadth, and current vaccine strategies have not been successful in inducing bnAbs. Because bnAbs directed against a glycosylated site adjacent to the third variable loop (V3) of the HIV-1 envelope protein require limited SHM, the V3-glycan epitope is an attractive vaccine target. By studying the cooperation among multiple V3-glycan B cell lineages and their coevolution with autologous virus throughout 5 years of infection, we identify key events in the ontogeny of a V3- glycan bnAb. Two autologousmore » neutralizing antibody lineages selected for virus escape mutations and consequently allowed initiation and affinity maturation of a V3-glycan bnAb lineage. The nucleotide substitution required to initiate the bnAb lineage occurred at a low-probability site for activation-induced cytidine deaminase activity. Cooperation of B cell lineages and an improbable mutation critical for bnAb activity defined the necessary events leading to breadth in this V3- glycan bnAb lineage. These findings may, in part, explain why initiation of V3-glycan bnAbs is rare, and suggest an immunization strategy for inducing similar V3-glycan bnAbs.« less

  20. 9 CFR 93.916 - Special provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... establishment discharges its waste water to a municipal sewage system that includes waste water disinfection... waste water disinfection sufficient to neutralize any VHS virus or to either a non-discharging settling... includes waste water disinfection sufficient to neutralize any VHS virus or to either a non-discharging...

  1. 9 CFR 93.916 - Special provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... establishment discharges its waste water to a municipal sewage system that includes waste water disinfection... waste water disinfection sufficient to neutralize any VHS virus or to either a non-discharging settling... includes waste water disinfection sufficient to neutralize any VHS virus or to either a non-discharging...

  2. 9 CFR 93.916 - Special provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... establishment discharges its waste water to a municipal sewage system that includes waste water disinfection... waste water disinfection sufficient to neutralize any VHS virus or to either a non-discharging settling... includes waste water disinfection sufficient to neutralize any VHS virus or to either a non-discharging...

  3. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors.

    PubMed

    Bhattacharyya, Suchita; Zagórska, Anna; Lew, Erin D; Shrestha, Bimmi; Rothlin, Carla V; Naughton, John; Diamond, Michael S; Lemke, Greg; Young, John A T

    2013-08-14

    Upon activation by the ligands Gas6 and Protein S, Tyro3/Axl/Mer (TAM) receptor tyrosine kinases promote phagocytic clearance of apoptotic cells and downregulate immune responses initiated by Toll-like receptors and type I interferons (IFNs). Many enveloped viruses display the phospholipid phosphatidylserine on their membranes, through which they bind Gas6 and Protein S and engage TAM receptors. We find that ligand-coated viruses activate TAM receptors on dendritic cells (DCs), dampen type I IFN signaling, and thereby evade host immunity and promote infection. Upon virus challenge, TAM-deficient DCs display type I IFN responses that are elevated in comparison to wild-type cells. As a consequence, TAM-deficient DCs are relatively resistant to infection by flaviviruses and pseudotyped retroviruses, but infection can be restored with neutralizing type I IFN antibodies. Correspondingly, a TAM kinase inhibitor antagonizes the infection of wild-type DCs. Thus, TAM receptors are engaged by viruses in order to attenuate type I IFN signaling and represent potential therapeutic targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Antibody neutralization of retargeted measles viruses.

    PubMed

    Lech, Patrycja J; Pappoe, Roland; Nakamura, Takafumi; Tobin, Gregory J; Nara, Peter L; Russell, Stephen J

    2014-04-01

    The measles virus (MV) vaccine lineage is a promising oncolytic but prior exposure to the measles vaccine or wild-type MV strains limits treatment utility due to the presence of anti-measles antibodies. MV entry can be redirected by displaying a polypeptide ligand on the Hemagglutinin (H) C-terminus. We hypothesized that retargeted MV would escape neutralization by monoclonal antibodies (mAbs) recognizing the H receptor-binding surface and be less susceptible to neutralization by human antisera. Using chimeric H proteins, with and without mutations that ablate MV receptor binding, we show that retargeted MVs escape mAbs that target the H receptor-binding surface by virtue of mutations that ablate infection via SLAM and CD46. However, C-terminally displayed domains do not mediate virus entry in the presence of human antibodies that bind to the underlying H domain. In conclusion, utility of retargeted oncolytic measles viruses does not extend to evasion of human serum neutralization. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Neutralization tiers of HIV-1

    PubMed Central

    Montefiori, David C.; Roederer, Mario; Morris, Lynn; Seaman, Michael S.

    2018-01-01

    Purpose of review HIV-1 isolates are often classified on the basis of neutralization ‘tier’ phenotype. Tier classification has important implications for the monitoring and interpretation of vaccine-elicited neutralizing antibody responses. The molecular basis that distinguishes the multiple neutralization phenotypes of HIV-1 has been unclear. We present a model based on the dynamic nature of the HIV-1 envelope glycoproteins and its impact on epitope exposure. We also describe a new approach for ranking HIV-1 vaccine-elicited neutralizing antibody responses. Recent findings The unliganded trimeric HIV-1 envelope glycoprotein spike spontaneously transitions through at least three conformations. Neutralization tier phenotypes correspond to the frequency by which the trimer exists in a closed (tiers 2 and 3), open (tier 1A), or intermediate (tier 1B) conformation. An increasing number of epitopes become exposed as the trimer opens, making the virus more sensitive to neutralization by certain antibodies. The closed conformation is stabilized by many broadly neutralizing antibodies. Summary The tier 2 neutralization phenotype is typical of most circulating strains and is associated with a predominantly closed Env trimer configuration that is a high priority to target with vaccines. Assays with tier 1A viruses should be interpreted with caution and with the understanding that they detect many antibody specificities that do not neutralize tier 2 viruses and do not protect against HIV-1 infection. PMID:29266013

  6. Patient-Specific Neutralizing Antibody Responses to Herpes Simplex Virus Are Attributed to Epitopes on gD, gB, or Both and Can Be Type Specific

    PubMed Central

    Huang, Zhen-Yu; Gallagher, John R.; Lin, Yixin; Lou, Huan; Whitbeck, J. Charles; Wald, Anna; Cohen, Gary H.; Eisenberg, Roselyn J.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) and HSV-2 infect many humans and establish a latent infection in sensory ganglia. Although some infected people suffer periodic recurrences, others do not. Infected people mount both cell-mediated and humoral responses, including the production of virus-neutralizing antibodies (Abs) directed at viral entry glycoproteins. Previously, we examined IgGs from 10 HSV-seropositive individuals; all neutralized virus and were directed primarily against gD or gD+gB. Here, we expand our studies and examine 32 additional sera from HSV-infected individuals, 23 of whom had no recurrent disease. Using an Octet RED96 system, we screened all 32 serum samples directly for both glycoprotein binding and competition with known neutralizing anti-gD and -gB monoclonal Abs (MAbs). On average, the recurrent cohort exhibited higher binding to gD and gB and had higher neutralization titers. There were similar trends in the blocking of MAbs to critical gD and gB epitopes. When we depleted six sera of Abs to specific glycoproteins, we found different types of responses, but always directed primarily at gD and/or gB. Interestingly, in one dual-infected person, the neutralizing response to HSV-2 was due to gD2 and gB2, whereas HSV-1 neutralization was due to gD1 and gB1. In another case, virus neutralization was HSV-1 specific, with the Ab response directed entirely at gB1, despite this serum blocking type-common anti-gD and -gB neutralizing MAbs. These data are pertinent in the design of future HSV vaccines since they demonstrate the importance of both serotypes of gD and gB as immunogens. IMPORTANCE We previously showed that people infected with HSV produce neutralizing Abs directed against gD or a combination of gD+gB (and in one case, gD+gB+gC, which was HSV-1 specific). In this more extensive study, we again found that gD or gD+gB can account for the virus neutralizing response and critical epitopes of one or both of these proteins are represented in sera of naturally infected humans. However, we also found that some individuals produced a strong response against gB alone. In addition, we identified type-specific contributions to HSV neutralization from both gD and gB. Contributions from the other entry glycoproteins, gC and gH/gL, were minimal and limited to HSV-1 neutralization. Knowing the variations in how humans see and mount a response to HSV will be important to vaccine development. PMID:26109729

  7. Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates.

    PubMed

    Saunders, Kevin O; Santra, Sampa; Parks, Robert; Yates, Nicole L; Sutherland, Laura L; Scearce, Richard M; Balachandran, Harikrishnan; Bradley, Todd; Goodman, Derrick; Eaton, Amanda; Stanfield-Oakley, Sherry A; Tartaglia, James; Phogat, Sanjay; Pantaleo, Giuseppe; Esteban, Mariano; Gomez, Carmen E; Perdiguero, Beatriz; Jacobs, Bertram; Kibler, Karen; Korber, Bette; Montefiori, David C; Ferrari, Guido; Vandergrift, Nathan; Liao, Hua-Xin; Tomaras, Georgia D; Haynes, Barton F

    2018-04-15

    A preventive human immunodeficiency virus type 1 (HIV-1) vaccine is an essential part of the strategy to eradicate AIDS. A critical question is whether antibodies that do not neutralize primary isolate (tier 2) HIV-1 strains can protect from infection. In this study, we investigated the ability of an attenuated poxvirus vector (NYVAC) prime-envelope gp120 boost to elicit potentially protective antibody responses in a rhesus macaque model of mucosal simian-human immunodeficiency virus (SHIV) infection. NYVAC vector delivery of a group M consensus envelope, trivalent mosaic envelopes, or a natural clade B isolate B.1059 envelope elicited antibodies that mediated neutralization of tier 1 viruses, cellular cytotoxicity, and phagocytosis. None of the macaques made neutralizing antibodies against the tier 2 SHIV SF162P3 used for mucosal challenge. Significant protection from infection was not observed for the three groups of vaccinated macaques compared to unvaccinated macaques, although binding antibody to HIV-1 Env correlated with decreased viremia after challenge. Thus, NYVAC Env prime-gp120 boost vaccination elicited polyfunctional, nonneutralizing antibody responses with minimal protective activity against tier 2 SHIV mucosal challenge. IMPORTANCE The antibody responses that confer protection against HIV-1 infection remain unknown. Polyfunctional antibody responses correlated with time to infection in previous macaque studies. Determining the ability of vaccines to induce these types of responses is critical for understanding how to improve upon the one efficacious human HIV-1 vaccine trial completed thus far. We characterized the antibody responses induced by a NYVAC-protein vaccine and determined the protective capacity of polyfunctional antibody responses in an R5, tier 2 mucosal SHIV infection model. Copyright © 2018 American Society for Microbiology.

  8. Newcastle disease virus-vectored rabies vaccine is safe, highly immunogenic, and provides long-lasting protection in dogs and cats.

    PubMed

    Ge, Jinying; Wang, Xijun; Tao, Lihong; Wen, Zhiyuan; Feng, Na; Yang, Songtao; Xia, Xianzhu; Yang, Chinglai; Chen, Hualan; Bu, Zhigao

    2011-08-01

    Effective, safe, and affordable rabies vaccines are still being sought. Newcastle disease virus (NDV), an avian paramyxovirus, has shown promise as a vaccine vector for mammals. Here, we generated a recombinant avirulent NDV La Sota strain expressing the rabies virus glycoprotein (RVG) and evaluated its potential to serve as a vaccine against rabies. The recombinant virus, rL-RVG, retained its high-growth property in chicken eggs, with titers of up to 10⁹·⁸ 50% egg infective doses (EID₅₀)/ml of allantoic fluid. RVG expression enabled rL-RVG to spread from cell to cell in a rabies virus-like manner, and RVG was incorporated on the surface of the rL-RVG viral particle. RVG incorporation did not alter the trypsin-dependent infectivity of the NDV vector in mammalian cells. rL-RVG and La Sota NDV showed similar levels of sensitivity to a neutralization antibody against NDV and similar levels of resistance to a neutralization antibody against rabies virus. Animal studies demonstrated that rL-RVG is safe in several species, including cats and dogs, when administered as multiple high doses of recombinant vaccine. Intramuscular vaccination with rL-RVG induced a substantial rabies virus neutralization antibody response and provided complete protection from challenge with circulating rabies virus strains. Most importantly, rL-RVG induced strong and long-lasting protective neutralization antibody responses to rabies virus in dogs and cats. A low vaccine dose of 10⁸·³ EID₅₀ completely protected dogs from challenge with a circulating strain of rabies virus for more than a year. This is the first study to demonstrate that immunization with an NDV-vectored vaccine can induce long-lasting, systemic protective immunity against rabies.

  9. Neutralizing Antibodies in Patients with Chronic Hepatitis C, Genotype 1, against a Panel of Genotype 1 Culture Viruses: Lack of Correlation to Treatment Outcome

    PubMed Central

    Pedersen, Jannie; Jensen, Tanja B.; Carlsen, Thomas H. R.; Schønning, Kristian; Christensen, Peer Brehm; Laursen, Alex Lund; Krarup, Henrik; Bukh, Jens; Weis, Nina

    2013-01-01

    The correlation of neutralizing antibodies to treatment outcome in patients with chronic hepatitis C virus (HCV) infection has not been established. The aim of this study was to determine whether neutralizing antibodies could be used as an outcome predictor in patients with chronic HCV, genotype 1, infection treated with pegylated interferon-α and ribavirin. Thirty-nine patients with chronic hepatitis C, genotype 1a or 1b, with either sustained virologic response (n = 23) or non-sustained virologic response (n = 16) were enrolled. Samples taken prior to treatment were tested for their ability to neutralize 6 different HCV genotype 1 cell culture recombinants (1a: H77/JFH1, TN/JFH1, DH6/JFH1; 1b: J4/JFH1, DH1/JFH1, DH5/JFH1). The results were expressed as the highest dilution yielding 50% neutralization (NAb50-titer). We observed no genotype or subtype specific differences in NAb50-titers between patients with chronic HCV infection with and without sustained virologic response when tested against any of the included culture viruses. However, NAb50-titers varied significantly with a mean reciprocal NAb50-titer of 800 (range: 100–6400) against DH6/JFH1 compared to a mean NAb50-titer of 50 (range: <50–400) against all other included isolates. Subsequent studies demonstrated that the efficient neutralization of DH6/JFH1 could be linked to engineered adaptive mutations in the envelope-2 protein. In analysis of envelope 1 and 2 sequences of HCV, recovered from a subset of patients, we observed no apparent link between relatedness of patient sequences with culture viruses used and the corresponding neutralization results. In conclusion, pre-treatment levels of neutralizing antibodies against HCV genotype 1 isolates could not predict treatment outcome in patients with chronic HCV infection. High neutralization susceptibility of DH6/JFH1 could be correlated with adaptive envelope mutations previously highlighted as important for neutralization. Our study emphasizes the importance of using multiple culture viruses for neutralization studies and contributes to the current knowledge about neutralizing epitopes, important for future therapeutic- and vaccine-studies. PMID:23667506

  10. Disinfecting capabilities of oxychlorine compounds.

    PubMed Central

    Noss, C I; Olivieri, V P

    1985-01-01

    The bacterial virus f2 was inactivated by chlorine dioxide at acidic, neutral, and alkaline pH values. The rate of inactivation increased with increasing pH. Chlorine dioxide disproportionation products, chlorite and chlorate, were not active disinfectants. As chlorine dioxide solutions were degraded under alkaline conditions, they displayed reduced viricidal effectiveness, thereby confirming the chlorine dioxide free radical as the active disinfecting species. PMID:3911893

  11. Hepatitis C virus resistance to broadly neutralizing antibodies measured using replication-competent virus and pseudoparticles

    PubMed Central

    Wasilewski, Lisa N.; Ray, Stuart C.

    2016-01-01

    A better understanding of natural variation in neutralization resistance and fitness of diverse hepatitis C virus (HCV) envelope (E1E2) variants will be critical to guide rational development of an HCV vaccine. This work has been hindered by inadequate genetic diversity in viral panels and by a lack of standardization of HCV entry assays. Neutralization assays generally use lentiviral pseudoparticles expressing HCV envelope proteins (HCVpp) or chimeric full-length viruses that are replication competent in cell culture (HCVcc). There have been few systematic comparisons of specific infectivities of E1E2-matched HCVcc and HCVpp, and to our knowledge, neutralization of E1E2-matched HCVpp and HCVcc has never been compared using a diverse panel of human broadly neutralizing monoclonal antibodies (bNAbs) targeting distinct epitopes. Here, we describe an efficient method for introduction of naturally occurring E1E2 genes into a full-length HCV genome, producing replication-competent chimeric HCVcc. We generated diverse panels of E1E2-matched HCVcc and HCVpp and measured the entry-mediating fitness of E1E2 variants using the two systems. We also compared neutralization of E1E2-matched HCVcc and HCVpp by a diverse panel of human bNAbs targeting epitopes across E1E2. We found no correlation between specific infectivities of E1E2-matched HCVcc versus HCVpp, but found a very strong positive correlation between relative neutralization resistance of these same E1E2-matched HCVcc and HCVpp variants. These results suggest that quantitative comparisons of neutralization resistance of E1E2 variants can be made with confidence using either HCVcc or HCVpp, allowing the use of either or both systems to maximize diversity of neutralization panels. PMID:27667373

  12. Hepatitis C virus resistance to broadly neutralizing antibodies measured using replication-competent virus and pseudoparticles.

    PubMed

    Wasilewski, Lisa N; Ray, Stuart C; Bailey, Justin R

    2016-11-01

    A better understanding of natural variation in neutralization resistance and fitness of diverse hepatitis C virus (HCV) envelope (E1E2) variants will be critical to guide rational development of an HCV vaccine. This work has been hindered by inadequate genetic diversity in viral panels and by a lack of standardization of HCV entry assays. Neutralization assays generally use lentiviral pseudoparticles expressing HCV envelope proteins (HCVpp) or chimeric full-length viruses that are replication competent in cell culture (HCVcc). There have been few systematic comparisons of specific infectivities of E1E2-matched HCVcc and HCVpp, and to our knowledge, neutralization of E1E2-matched HCVpp and HCVcc has never been compared using a diverse panel of human broadly neutralizing monoclonal antibodies (bNAbs) targeting distinct epitopes. Here, we describe an efficient method for introduction of naturally occurring E1E2 genes into a full-length HCV genome, producing replication-competent chimeric HCVcc. We generated diverse panels of E1E2-matched HCVcc and HCVpp and measured the entry-mediating fitness of E1E2 variants using the two systems. We also compared neutralization of E1E2-matched HCVcc and HCVpp by a diverse panel of human bNAbs targeting epitopes across E1E2. We found no correlation between specific infectivities of E1E2-matched HCVcc versus HCVpp, but found a very strong positive correlation between relative neutralization resistance of these same E1E2-matched HCVcc and HCVpp variants. These results suggest that quantitative comparisons of neutralization resistance of E1E2 variants can be made with confidence using either HCVcc or HCVpp, allowing the use of either or both systems to maximize diversity of neutralization panels.

  13. Characterization of broadly neutralizing antibody responses to HIV-1 in a cohort of long term non-progressors.

    PubMed

    González, Nuria; McKee, Krisha; Lynch, Rebecca M; Georgiev, Ivelin S; Jimenez, Laura; Grau, Eulalia; Yuste, Eloísa; Kwong, Peter D; Mascola, John R; Alcamí, José

    2018-01-01

    Only a small fraction of HIV-1-infected patients develop broadly neutralizing antibodies (bNAbs), a process generally associated to chronic antigen stimulation. It has been described that rare aviremic HIV-1-infected patients can generate bNAbs but this issue remains controversial. To address this matter we have assessed bNAb responses in a large cohort of long-term non-progressors (LTNPs) with low or undetectable viremia. Samples from the LTNP cohort of the Spanish AIDS Research Network (87 elite and 42 viremic controllers) and a control population of 176 viremic typical-progressors (TPs) were screened for bNAbs using Env-recombinant viruses. bNAb specificities were studied by ELISA using mutated gp120, neutralization assays with mutated viruses, and peptide competition. Epitope specificities were also elucidated from the serum pattern of neutralization against a panel of diverse HIV-1 isolates. Broadly neutralizing sera were found among 9.3% LTNPs, both elite (7%) and viremic controllers (14%). Within the broadly neutralizing sera, CD4 binding site antibodies were detected by ELISA in 4/12 LTNPs (33%), and 16/33 of TPs (48%). Anti-MPER antibodies were detected in 6/12 LTNPs (50%) and 14/33 TPs (42%) whereas glycan-dependent HIV-1 bNAbs were more frequent in LTNPs (11/12, 92%) as compared to TPs (12/33, 36%). A good concordance between standard serum mapping and neutralization-based mapping was observed. LTNPs, both viremic and elite controllers, showed broad humoral immune responses against HIV-1, including activity against many major epitopes involved in bNAbs-mediated protection.

  14. Characterization of rubella-specific humoral immunity following two doses of MMR vaccine using proteome microarray technology

    PubMed Central

    Haralambieva, Iana H.; Gibson, Michael J.; Kennedy, Richard B.; Ovsyannikova, Inna G.; Warner, Nathaniel D.; Grill, Diane E.

    2017-01-01

    Introduction//Background The lack of standardization of the currently used commercial anti-rubella IgG antibody assays leads to frequent misinterpretation of results for samples with low/equivocal antibody concentration. The use of alternative approaches in rubella serology could add new information leading to a fuller understanding of rubella protective immunity and neutralizing antibody response after vaccination. Methods We applied microarray technology to measure antibodies to all rubella virus proteins in 75 high and 75 low rubella virus-specific antibody responders after two MMR vaccine doses. These data were used in multivariate penalized logistic regression modeling of rubella-specific neutralizing antibody response after vaccination. Results We measured antibodies to all rubella virus structural proteins (i.e., the glycoproteins E1 and E2 and the capsid C protein) and to the non-structural protein P150. Antibody levels to each of these proteins were: correlated with the neutralizing antibody titer (p<0.006); demonstrated differences between the high and the low antibody responder groups (p<0.008); and were components of the model associated with/predictive of vaccine-induced rubella virus-specific neutralizing antibody titers (misclassification error = 0.2). Conclusion Our study supports the use of this new technology, as well as the use of antibody profiles/patterns (rather than single antibody measures) as biomarkers of neutralizing antibody response and correlates of protective immunity in rubella virus serology. PMID:29145521

  15. Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2-MPER region.

    PubMed

    Flyak, Andrew I; Kuzmina, Natalia; Murin, Charles D; Bryan, Christopher; Davidson, Edgar; Gilchuk, Pavlo; Gulka, Christopher P; Ilinykh, Philipp A; Shen, Xiaoli; Huang, Kai; Ramanathan, Palaniappan; Turner, Hannah; Fusco, Marnie L; Lampley, Rebecca; Kose, Nurgun; King, Hannah; Sapparapu, Gopal; Doranz, Benjamin J; Ksiazek, Thomas G; Wright, David W; Saphire, Erica Ollmann; Ward, Andrew B; Bukreyev, Alexander; Crowe, James E

    2018-05-07

    Ebola virus (EBOV) in humans causes a severe illness with high mortality rates. Several strategies have been developed in the past to treat EBOV infection, including the antibody cocktail ZMapp, which has been shown to be effective in nonhuman primate models of infection 1 and has been used under compassionate-treatment protocols in humans 2 . ZMapp is a mixture of three chimerized murine monoclonal antibodies (mAbs) 3-6 that target EBOV-specific epitopes on the surface glycoprotein 7,8 . However, ZMapp mAbs do not neutralize other species from the genus Ebolavirus, such as Bundibugyo virus (BDBV), Reston virus (RESTV) or Sudan virus (SUDV). Here, we describe three naturally occurring human cross-neutralizing mAbs, from BDBV survivors, that target an antigenic site in the canonical heptad repeat 2 (HR2) region near the membrane-proximal external region (MPER) of the glycoprotein. The identification of a conserved neutralizing antigenic site in the glycoprotein suggests that these mAbs could be used to design universal antibody therapeutics against diverse ebolavirus species. Furthermore, we found that immunization with a peptide comprising the HR2-MPER antigenic site elicits neutralizing antibodies in rabbits. Structural features determined by conserved residues in the antigenic site described here could inform an epitope-based vaccine design against infection caused by diverse ebolavirus species.

  16. Translocalized IgA mediates neutralization and stimulates innate immunity inside infected cells

    PubMed Central

    Bidgood, Susanna R.; Tam, Jerry C. H.; McEwan, William A.; Mallery, Donna L.; James, Leo C.

    2014-01-01

    IgA is the most prevalent antibody type on mucosal surfaces and the second most prevalent antibody in circulation, yet its role in immune defense is not fully understood. Here we show that IgA is carried inside cells during virus infection, where it activates intracellular virus neutralization and innate immune signaling. Cytosolic IgA–virion complexes colocalize with the high-affinity antibody receptor tripartite motif-containing protein 21 (TRIM21) and are positive for lysine-48 ubiquitin chains. IgA neutralizes adenovirus infection in a TRIM21- and proteasome-dependent manner in both human and mouse cells. Translocated IgA also potently activates NF-κB signaling pathways in cells expressing TRIM21, whereas viral infection in the absence of antibody or TRIM21 is undetected. TRIM21 recognizes an epitope in IgG Fc that is not conserved in IgA; however, fluorescence anisotropy experiments demonstrate that direct binding to IgA is maintained. We use molecular modeling to show that TRIM21 forms a nonspecific hydrophobic seal around a β-loop structure that is present in IgG, IgM, and IgA, explaining how TRIM21 achieves such remarkable broad antibody specificity. The findings demonstrate that the antiviral protection afforded by IgA extends to the intracellular cytosolic environment. PMID:25169018

  17. Translocalized IgA mediates neutralization and stimulates innate immunity inside infected cells.

    PubMed

    Bidgood, Susanna R; Tam, Jerry C H; McEwan, William A; Mallery, Donna L; James, Leo C

    2014-09-16

    IgA is the most prevalent antibody type on mucosal surfaces and the second most prevalent antibody in circulation, yet its role in immune defense is not fully understood. Here we show that IgA is carried inside cells during virus infection, where it activates intracellular virus neutralization and innate immune signaling. Cytosolic IgA-virion complexes colocalize with the high-affinity antibody receptor tripartite motif-containing protein 21 (TRIM21) and are positive for lysine-48 ubiquitin chains. IgA neutralizes adenovirus infection in a TRIM21- and proteasome-dependent manner in both human and mouse cells. Translocated IgA also potently activates NF-κB signaling pathways in cells expressing TRIM21, whereas viral infection in the absence of antibody or TRIM21 is undetected. TRIM21 recognizes an epitope in IgG Fc that is not conserved in IgA; however, fluorescence anisotropy experiments demonstrate that direct binding to IgA is maintained. We use molecular modeling to show that TRIM21 forms a nonspecific hydrophobic seal around a β-loop structure that is present in IgG, IgM, and IgA, explaining how TRIM21 achieves such remarkable broad antibody specificity. The findings demonstrate that the antiviral protection afforded by IgA extends to the intracellular cytosolic environment.

  18. Protective efficacy of passive immunization with monoclonal antibodies in animal models of H5N1 highly pathogenic avian influenza virus infection.

    PubMed

    Itoh, Yasushi; Yoshida, Reiko; Shichinohe, Shintaro; Higuchi, Megumi; Ishigaki, Hirohito; Nakayama, Misako; Pham, Van Loi; Ishida, Hideaki; Kitano, Mitsutaka; Arikata, Masahiko; Kitagawa, Naoko; Mitsuishi, Yachiyo; Ogasawara, Kazumasa; Tsuchiya, Hideaki; Hiono, Takahiro; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Kida, Hiroshi; Ito, Mutsumi; Quynh Mai, Le; Kawaoka, Yoshihiro; Miyamoto, Hiroko; Ishijima, Mari; Igarashi, Manabu; Suzuki, Yasuhiko; Takada, Ayato

    2014-06-01

    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype often cause severe pneumonia and multiple organ failure in humans, with reported case fatality rates of more than 60%. To develop a clinical antibody therapy, we generated a human-mouse chimeric monoclonal antibody (MAb) ch61 that showed strong neutralizing activity against H5N1 HPAI viruses isolated from humans and evaluated its protective potential in mouse and nonhuman primate models of H5N1 HPAI virus infections. Passive immunization with MAb ch61 one day before or after challenge with a lethal dose of the virus completely protected mice, and partial protection was achieved when mice were treated 3 days after the challenge. In a cynomolgus macaque model, reduced viral loads and partial protection against lethal infection were observed in macaques treated with MAb ch61 intravenously one and three days after challenge. Protective effects were also noted in macaques under immunosuppression. Though mutant viruses escaping from neutralization by MAb ch61 were recovered from macaques treated with this MAb alone, combined treatment with MAb ch61 and peramivir reduced the emergence of escape mutants. Our results indicate that antibody therapy might be beneficial in reducing viral loads and delaying disease progression during H5N1 HPAI virus infection in clinical cases and combined treatment with other antiviral compounds should improve the protective effects of antibody therapy against H5N1 HPAI virus infection.

  19. Conserved neutralizing epitope at globular head of hemagglutinin in H3N2 influenza viruses.

    PubMed

    Iba, Yoshitaka; Fujii, Yoshifumi; Ohshima, Nobuko; Sumida, Tomomi; Kubota-Koketsu, Ritsuko; Ikeda, Mariko; Wakiyama, Motoaki; Shirouzu, Mikako; Okada, Jun; Okuno, Yoshinobu; Kurosawa, Yoshikazu; Yokoyama, Shigeyuki

    2014-07-01

    Neutralizing antibodies that target the hemagglutinin of influenza virus either inhibit binding of hemagglutinin to cellular receptors or prevent the low-pH-induced conformational change in hemagglutinin required for membrane fusion. In general, the former type of antibody binds to the globular head formed by HA1 and has narrow strain specificity, while the latter type binds to the stem mainly formed by HA2 and has broad strain specificity. In the present study, we analyzed the epitope and function of a broadly neutralizing human antibody against H3N2 viruses, F005-126. The crystal structure of F005-126 Fab in complex with hemagglutinin revealed that the antibody binds to the globular head, spans a cleft formed by two hemagglutinin monomers in a hemagglutinin trimer, and cross-links them. It recognizes two peptide portions (sites L and R) and a glycan linked to asparagine at residue 285 using three complementarity-determining regions and framework 3 in the heavy chain. Binding of the antibody to sites L (residues 171 to 173, 239, and 240) and R (residues 91, 92, 270 to 273, 284, and 285) is mediated mainly by van der Waals contacts with the main chains of the peptides in these sites and secondarily by hydrogen bonds with a few side chains of conserved sequences in HA1. Furthermore, the glycan recognized by F005-126 is conserved among H3N2 viruses. F005-126 has the ability to prevent low-pH-induced conformational changes in hemagglutinin. The newly identified conserved epitope, including the glycan, should be immunogenic in humans and may induce production of broadly neutralizing antibodies against H3 viruses. Antibodies play an important role in protection against influenza virus, and hemagglutinin is the major target for virus neutralizing antibodies. It has long been believed that all effective neutralizing antibodies bind to the surrounding regions of the sialic acid-binding pocket and inhibit the binding of hemagglutinin to the cellular receptor. Since mutations are readily introduced into such epitopes, this type of antibody shows narrow strain specificity. Recently, however, broadly neutralizing antibodies have been isolated. Most of these bind either to conserved sites in the stem region or to the sialic acid-binding pocket itself. In the present study, we identified a new neutralizing epitope in the head region recognized by a broadly neutralizing human antibody against H3N2. This epitope may be useful for design of vaccines. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Conserved Neutralizing Epitope at Globular Head of Hemagglutinin in H3N2 Influenza Viruses

    PubMed Central

    Iba, Yoshitaka; Fujii, Yoshifumi; Ohshima, Nobuko; Sumida, Tomomi; Kubota-Koketsu, Ritsuko; Ikeda, Mariko; Wakiyama, Motoaki; Shirouzu, Mikako; Okada, Jun; Okuno, Yoshinobu; Yokoyama, Shigeyuki

    2014-01-01

    ABSTRACT Neutralizing antibodies that target the hemagglutinin of influenza virus either inhibit binding of hemagglutinin to cellular receptors or prevent the low-pH-induced conformational change in hemagglutinin required for membrane fusion. In general, the former type of antibody binds to the globular head formed by HA1 and has narrow strain specificity, while the latter type binds to the stem mainly formed by HA2 and has broad strain specificity. In the present study, we analyzed the epitope and function of a broadly neutralizing human antibody against H3N2 viruses, F005-126. The crystal structure of F005-126 Fab in complex with hemagglutinin revealed that the antibody binds to the globular head, spans a cleft formed by two hemagglutinin monomers in a hemagglutinin trimer, and cross-links them. It recognizes two peptide portions (sites L and R) and a glycan linked to asparagine at residue 285 using three complementarity-determining regions and framework 3 in the heavy chain. Binding of the antibody to sites L (residues 171 to 173, 239, and 240) and R (residues 91, 92, 270 to 273, 284, and 285) is mediated mainly by van der Waals contacts with the main chains of the peptides in these sites and secondarily by hydrogen bonds with a few side chains of conserved sequences in HA1. Furthermore, the glycan recognized by F005-126 is conserved among H3N2 viruses. F005-126 has the ability to prevent low-pH-induced conformational changes in hemagglutinin. The newly identified conserved epitope, including the glycan, should be immunogenic in humans and may induce production of broadly neutralizing antibodies against H3 viruses. IMPORTANCE Antibodies play an important role in protection against influenza virus, and hemagglutinin is the major target for virus neutralizing antibodies. It has long been believed that all effective neutralizing antibodies bind to the surrounding regions of the sialic acid-binding pocket and inhibit the binding of hemagglutinin to the cellular receptor. Since mutations are readily introduced into such epitopes, this type of antibody shows narrow strain specificity. Recently, however, broadly neutralizing antibodies have been isolated. Most of these bind either to conserved sites in the stem region or to the sialic acid-binding pocket itself. In the present study, we identified a new neutralizing epitope in the head region recognized by a broadly neutralizing human antibody against H3N2. This epitope may be useful for design of vaccines. PMID:24719430

  1. Potent Neutralization of Vaccinia Virus by Divergent Murine Antibodies Targeting a Common Site of Vulnerability in L1 Protein

    PubMed Central

    Kaever, Thomas; Meng, Xiangzhi; Matho, Michael H.; Schlossman, Andrew; Li, Sheng; Sela-Culang, Inbal; Ofran, Yanay; Buller, Mark; Crump, Ryan W.; Parker, Scott; Frazier, April; Crotty, Shane; Zajonc, Dirk M.; Peters, Bjoern

    2014-01-01

    ABSTRACT Vaccinia virus (VACV) L1 is an important target for viral neutralization and has been included in multicomponent DNA or protein vaccines against orthopoxviruses. To further understand the protective mechanism of the anti-L1 antibodies, we generated five murine anti-L1 monoclonal antibodies (MAbs), which clustered into 3 distinct epitope groups. While two groups of anti-L1 failed to neutralize, one group of 3 MAbs potently neutralized VACV in an isotype- and complement-independent manner. This is in contrast to neutralizing antibodies against major VACV envelope proteins, such as H3, D8, or A27, which failed to completely neutralize VACV unless the antibodies are of complement-fixing isotypes and complement is present. Compared to nonneutralizing anti-L1 MAbs, the neutralization antibodies bound to the recombinant L1 protein with a significantly higher affinity and also could bind to virions. By using a variety of techniques, including the isolation of neutralization escape mutants, hydrogen/deuterium exchange mass spectrometry, and X-ray crystallography, the epitope of the neutralizing antibodies was mapped to a conformational epitope with Asp35 as the key residue. This epitope is similar to the epitope of 7D11, a previously described potent VACV neutralizing antibody. The epitope was recognized mainly by CDR1 and CDR2 of the heavy chain, which are highly conserved among antibodies recognizing the epitope. These antibodies, however, had divergent light-chain and heavy-chain CDR3 sequences. Our study demonstrates that the conformational L1 epitope with Asp35 is a common site of vulnerability for potent neutralization by a divergent group of antibodies. IMPORTANCE Vaccinia virus, the live vaccine for smallpox, is one of the most successful vaccines in human history, but it presents a level of risk that has become unacceptable for the current population. Studying the immune protection mechanism of smallpox vaccine is important for understanding the basic principle of successful vaccines and the development of next-generation, safer vaccines for highly pathogenic orthopoxviruses. We studied antibody targets in smallpox vaccine by developing potent neutralizing antibodies against vaccinia virus and comprehensively characterizing their epitopes. We found a site in vaccinia virus L1 protein as the target of a group of highly potent murine neutralizing antibodies. The analysis of antibody-antigen complex structure and the sequences of the antibody genes shed light on how these potent neutralizing antibodies are elicited from immunized mice. PMID:25031354

  2. The Hepatitis C Virus Glycan Shield and Evasion of the Humoral Immune Response

    PubMed Central

    Helle, François; Duverlie, Gilles; Dubuisson, Jean

    2011-01-01

    Despite the induction of effective immune responses, 80% of hepatitis C virus (HCV)-infected individuals progress from acute to chronic hepatitis. In contrast to the cellular immune response, the role of the humoral immune response in HCV clearance is still subject to debate. Indeed, HCV escapes neutralizing antibodies in chronically infected patients and reinfection has been described in human and chimpanzee. Studies of antibody-mediated HCV neutralization have long been hampered by the lack of cell-culture-derived virus and the absence of a small animal model. However, the development of surrogate models and recent progress in HCV propagation in vitro now enable robust neutralization assays to be performed. These advances are beginning to shed some light on the mechanisms of HCV neutralization. This review summarizes the current state of knowledge of the viral targets of anti-HCV-neutralizing antibodies and the mechanisms that enable HCV to evade the humoral immune response. The recent description of the HCV glycan shield that reduces the immunogenicity of envelope proteins and masks conserved neutralizing epitopes at their surface constitutes the major focus of this review. PMID:22069522

  3. Induction of human immunodeficiency virus neutralizing antibodies using fusion complexes.

    PubMed

    Zipeto, Donato; Matucci, Andrea; Ripamonti, Chiara; Scarlatti, Gabriella; Rossolillo, Paola; Turci, Marco; Sartoris, Silvia; Tridente, Giuseppe; Bertazzoni, Umberto

    2006-05-01

    Human immunodeficiency virus-1 (HIV-1) infects cells by membrane fusion that is mediated by the envelope proteins gp120/gp41 and the cellular receptors CD4 and CCR5. During this process, some conserved viral epitopes are temporarily exposed and may induce a neutralizing antibody response when fixed in the fusogenic conformation. These transient structures are conserved and may be effective antigens for use in an anti-HIV-1 vaccine. In this study we tested different conditions of preparation of fusion complexes inducing neutralizing antibodies against both R5 and X4 tropic HIV-1 strains. Cell lines expressing HIV-1 gp120/gp41 and CD4-CCR5 were prepared and conditions for producing fusion complexes were tested. Complexes produced at different temperature and fixative combinations were used to immunize mice. Results indicated that (a) fusion complexes prepared at either 21 degrees C, 30 degrees C or 37 degrees C were immunogenic and induced neutralizing antibodies against both R5 and X4 HIV-1 heterologous isolates; (b) after extensive purification of antibodies there was no cytotoxic effect; (c) complexes prepared at 37 degrees C were more immunogenic and induced higher titers of neutralizing antibodies than complexes prepared at either 21 degrees C or 30 degrees C; (d) the fixative used did not affect the titer of neutralizing antibodies except for glutaraldehyde which was ineffective; (e) the neutralizing activity was retained after CD4-CCR5 antibody removal. The production of higher titers of neutralizing antibody with fusion complexes prepared at 37 degrees C, as compared to lower temperatures, may be related to the induction of antibodies against many different conformation intermediates that subsequently act synergistically at different steps in the fusion process.

  4. Virus-Like Particle Secretion and Genotype-Dependent Immunogenicity of Dengue Virus Serotype 2 DNA Vaccine

    PubMed Central

    Galula, Jedhan U.; Shen, Wen-Fan; Chuang, Shih-Te

    2014-01-01

    ABSTRACT Dengue virus (DENV), composed of four distinct serotypes, is the most important and rapidly emerging arthropod-borne pathogen and imposes substantial economic and public health burdens. We constructed candidate vaccines containing the DNA of five of the genotypes of dengue virus serotype 2 (DENV-2) and evaluated the immunogenicity, the neutralizing (Nt) activity of the elicited antibodies, and the protective efficacy elicited in mice immunized with the vaccine candidates. We observed a significant correlation between the level of in vitro virus-like particle secretion, the elicited antibody response, and the protective efficacy of the vaccines containing the DNA of the different DENV genotypes in immunized mice. However, higher total IgG antibody levels did not always translate into higher Nt antibodies against homologous and heterologous viruses. We also found that, in contrast to previous reports, more than 50% of total IgG targeted ectodomain III (EDIII) of the E protein, and a substantial fraction of this population was interdomain highly neutralizing flavivirus subgroup-cross-reactive antibodies, such as monoclonal antibody 1B7-5. In addition, the lack of a critical epitope(s) in the Sylvatic genotype virus recognized by interdomain antibodies could be the major cause of the poor protection of mice vaccinated with the Asian 1 genotype vaccine (pVD2-Asian 1) from lethal challenge with virus of the Sylvatic genotype. In conclusion, although the pVD2-Asian 1 vaccine was immunogenic, elicited sufficient titers of Nt antibodies against all DENV-2 genotypes, and provided 100% protection against challenge with virus of the homologous Asian 1 genotype and virus of the heterologous Cosmopolitan genotype, it is critical to monitor the potential emergence of Sylvatic genotype viruses, since vaccine candidates under development may not protect vaccinated humans from these viruses. IMPORTANCE Five genotype-specific dengue virus serotype 2 (DENV-2) DNA vaccine candidates were evaluated for their immunogenicity, homologous and heterologous neutralizing (Nt) antibody titers, and cross-genotype protection in a murine model. The immunity elicited by our prototype vaccine candidate (Asian 1 genotype strain 16681) in mice was protective against viruses of other genotypes but not against virus of the Sylvatic genotype, whose emergence and potential risk after introduction into the human population have previously been demonstrated. The underlying mechanism of a lack of protection elicited by the prototype vaccine may at least be contributed by the absence of a flavivirus subgroup-cross-reactive, highly neutralizing monoclonal antibody 1B7-5-like epitope in DENV-2 of the Sylvatic genotype. The DENV DNA vaccine directs the synthesis and assembly of virus-like particles (VLPs) and induces immune responses similar to those elicited by live-attenuated vaccines, and its flexibility permits the fast deployment of vaccine to combat emerging viruses, such as Sylvatic genotype viruses. The enhanced VLP secretion obtained by replacement of ectodomain I-II (EDI-II) of the Cosmopolitan genotype vaccine construct (VD2-Cosmopolitan) with the Asian 1 EDI-II elicited significantly higher total IgG and Nt antibody titers and suggests a novel approach to enhance the immunogenicity of the DNA vaccine. A DENV vaccine capable of eliciting protective immunity against viruses of existing and emerging genotypes should be the focus of future DENV vaccine development. PMID:25008922

  5. Human dengue virus serotype 2 neutralizing antibodies target two distinct quaternary epitopes

    PubMed Central

    Gallichotte, Emily N.; Baric, Thomas J.; Widman, Douglas G.; Whitehead, Steve; Baric, Ralph S.; de Silva, Aravinda M.

    2018-01-01

    Dengue virus (DENV) infection causes dengue fever, dengue hemorrhagic fever and dengue shock syndrome. It is estimated that a third of the world’s population is at risk for infection, with an estimated 390 million infections annually. Dengue virus serotype 2 (DENV2) causes severe epidemics, and the leading tetravalent dengue vaccine has lower efficacy against DENV2 compared to the other 3 serotypes. In natural DENV2 infections, strongly neutralizing type-specific antibodies provide protection against subsequent DENV2 infection. While the epitopes of some human DENV2 type-specific antibodies have been mapped, it is not known if these are representative of the polyclonal antibody response. Using structure-guided immunogen design and reverse genetics, we generated a panel of recombinant viruses containing amino acid alterations and epitope transplants between different serotypes. Using this panel of recombinant viruses in binding, competition, and neutralization assays, we have finely mapped the epitopes of three human DENV2 type-specific monoclonal antibodies, finding shared and distinct epitope regions. Additionally, we used these recombinant viruses and polyclonal sera to dissect the epitope-specific responses following primary DENV2 natural infection and monovalent vaccination. Our results demonstrate that antibodies raised following DENV2 infection or vaccination circulate as separate populations that neutralize by occupying domain III and domain I quaternary epitopes. The fraction of neutralizing antibodies directed to different epitopes differs between individuals. The identification of these epitopes could potentially be harnessed to evaluate epitope-specific antibody responses as correlates of protective immunity, potentially improving vaccine design. PMID:29481552

  6. Anti-viral activity of galectin-1 from flounder Paralichthys olivaceus.

    PubMed

    Liu, Shousheng; Hu, Guobin; Sun, Chen; Zhang, Shicui

    2013-06-01

    Galectins are a family of Ca(2+)-independent soluble lectins characterized by their affinity to β-galactosides. Mammalian galectins have been shown to play a defense role against certain bacteria, fungi and viruses. However, the immunological functions of galectins in fish is poorly characterized. Here we demonstrated that the expression of galectin-1 gene from the flounder Paralichthys olivaceus was decreased in the initial 8 h after challenge with poly I:C, then increased markedly from 24 h onwards, and the recombinant galectin-1 was able to neutralize the lymphocystis disease virus (LCDV), inhibiting the formation of cytopathic effects. In addition, the recombinant galectin had a potential anti-inflammatory activity against infection by LCDV, and was able to restrain the overexpression of the anti-viral protein gene mx against virus infection. These results indicate that flounder galectin-1 has an anti-viral activity, capable of reducing LCDV pathogenicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Response of dairy calves to vaccinia viruses that express foreign genes.

    PubMed Central

    Gillespie, J H; Geissinger, C; Scott, F W; Higgins, W P; Holmes, D F; Perkus, M; Mercer, S; Paoletti, E

    1986-01-01

    Repeated intradermal inoculations of calves with wild-type vaccinia virus and recombinant vaccinia viruses expressing human hepatitis B virus surface antigen and herpes simplex virus, type 1, glycoprotein D produced characteristic pox lesions at each site of injection. In some instances, calves were inoculated as many as five times at intervals from 4 to 7 weeks. The lesions invariably were more severe after the second inoculation. Subsequent inoculations produced a less severe area of redness, swelling, necrosis, and scab formation. No other signs of illness, such as an elevation in temperature, were noted in the calves. Vaccinia virus was isolated in low titers from scabs taken at various times after inoculation. No lesions were formed at the sites injected with tissue culture fluid and cellular debris at the same time that virus inoculations were made. Calf contact controls remained normal through the 8-week exposure in isolation units with calves inoculated twice with vaccinia virus. No neutralizing antibody to vaccinia virus was detected in the contact controls. In contrast, the virus-inoculated calves developed neutralizing antibody to vaccinia virus and to herpes simplex virus glycoprotein D in serum. In all cattle, a second inoculation significantly enhanced the neutralizing antibody response within 1 week, suggesting that an anamnestic response had occurred. No antibody to hepatitis B virus surface antigen was elicited in calves after repeated inoculations with vaccinia recombinants that express hepatitis B virus surface antigen and are known to elicit in rabbits antibodies reactive with hepatitis B virus surface antigen. Images PMID:3700615

  8. Hexon and fiber of adenovirus type 14 and 55 are major targets of neutralizing antibody but only fiber-specific antibody contributes to cross-neutralizing activity.

    PubMed

    Feng, Ying; Sun, Xikui; Ye, Xianmiao; Feng, Yupeng; Wang, Jinlin; Zheng, Xuehua; Liu, Xinglong; Yi, Changhua; Hao, Mingli; Wang, Qian; Li, Feng; Xu, Wei; Li, Liang; Li, Chufang; Zhou, Rong; Chen, Ling; Feng, Liqiang

    2018-05-01

    Re-emerging human adenoviruses type 14 (HAdV14) and 55 (HAdV55) represent two highly virulent adenoviruses. The neutralizing antibody (nAb) responses elicited by infection or immunization remain largely unknown. Herein, we generated hexon-chimeric HAdV14 viruses harboring each single or entire hexon hyper-variable-regions (HVR) from HAdV55, and determined the neutralizing epitopes of human and mouse nAbs. In human sera, hexon-targeting nAbs are type-specific and mainly recognize HVR2, 5, and 7. Fiber-targeting nAbs are only detectable in sera cross-neutralizing HAdV14 and HAdV55 and contribute substantially to cross-neutralization. Penton-binding antibodies, however, show no significant neutralizing activities. In mice immunized with HAdV14 or HAdV55, a single immunization mainly elicited hexon-specific nAbs, which recognized HAdV14 HVR1, 2, and 7 and HAdV55 HVR1 and 2, respectively. After a booster immunization, cross-neutralizing fiber-specific nAbs became detectable. These results indicated that hexon elicits type-specific nAbs whereas fiber induces cross-neutralizing nAbs to HAdV14 and HAdV55, which are of significance in vaccine development. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Molecular and serological findings in suspected patients with Crimean-Congo hemorrhagic fever virus in Iran.

    PubMed

    Karlberg, Helen; Sharifi-Mood, Batool; Mousavi-Jazi, Mehrdad; Dilcher, Meik; Lindegren, Gunnel; Mardani, Masoud; Bereskly, Sandor; Weidmann, Manfred; Mirazimi, Ali

    2015-04-01

    Crimean-Congo hemorrhagic fever (CCHF) is an arthropod-borne disease of humans associated with a severe clinical picture, including hemorrhagic syndrome and a high mortality rate. CCHF virus is widely distributed throughout large areas of the world. To characterize the serological status in CCHF patients, paired clinical samples were collected from suspected CCHF patients and analyzed by microbiological and other laboratory analyses with the aim of: determining the presence of neutralizing antibodies against CCHF virus; investigating the cross-reactivity of these neutralizing antibodies against virus isolated from the same outbreak and against other available laboratory strain; and studying the relationship between the isolated virus with other virus by whole genome sequencing. Patients at Boo-Ali Hospital, Zahedan, Iran, with clinical symptoms ranging from mild to severe hemorrhagic fever were included in the study. Two serum samples were taken from each patient, the first as soon as the patient matched the criteria for CCHF notification and the second when the patient was discharged from hospital (2 weeks later). Commercial and in-house assays revealed a positive IgM signal in acute serum samples from six patients. A novel finding was that CCHF patients develop neutralizing antibodies soon after infection. Interestingly these antibodies were able to neutralize other CCHF virus strains too. The complete sequence of the Zahedan 2007 isolate, including the hitherto unknown first L-segment sequence, was identified using an original clinical sample from one patient with confirmed CCHF infection. © 2015 Wiley Periodicals, Inc.

  10. Evaluation of a new serological technique for detecting rabies virus antibodies following vaccination.

    PubMed

    Ma, Xiaoyue; Niezgoda, Michael; Blanton, Jesse D; Recuenco, Sergio; Rupprecht, Charles E

    2012-08-03

    Two major techniques are currently used to estimate rabies virus antibody values: neutralization assays, such as the rapid fluorescent focus inhibition test (RFFIT), and enzyme-linked immunosorbent assays (ELISAs). The RFFIT is considered the gold standard assay and has been used to assess the titer of rabies virus neutralizing antibodies for more than three decades. In the late 1970s, ELISA began to be used to estimate the level of rabies virus antibody and has recently been used by some laboratories as an alternate screening test for animal sera. Although the ELISA appears simpler, safer and more efficient, the assay is less sensitive in detecting low values of rabies virus neutralizing antibodies than neutralization tests. This study was designed to evaluate a new ELISA-based method for detecting rabies virus binding antibody. This new technique uses electro-chemi-luminescence labels and carbon electrode plates to detect binding events. In this comparative study, the RFFIT and the new ELISA-based technique were used to evaluate the level of rabies virus antibodies in human and animal serum samples. By using a conservative approximation of 0.15 IU/ml as a cutoff point, the new ELISA-based technique demonstrated a sensitivity of 100% and a specificity of 95% for human samples and for experimental animal samples. The sensitivity and specificity for field animal samples was 96% and 95%, respectively. The preliminary results from this study appear promising and demonstrate a higher sensitivity than traditional ELISA methods. Published by Elsevier Ltd.

  11. International Network for Comparison of HIV Neutralization Assays: The NeutNet Report II

    PubMed Central

    Heyndrickx, Leo; Heath, Alan; Sheik-Khalil, Enas; Alcami, Jose; Bongertz, Vera; Jansson, Marianne; Malnati, Mauro; Montefiori, David; Moog, Christiane; Morris, Lynn; Osmanov, Saladin; Polonis, Victoria; Ramaswamy, Meghna; Sattentau, Quentin; Tolazzi, Monica; Schuitemaker, Hanneke; Willems, Betty; Wrin, Terri; Fenyö, Eva Maria; Scarlatti, Gabriella

    2012-01-01

    Background Neutralizing antibodies provide markers for vaccine-induced protective immunity in many viral infections. By analogy, HIV-1 neutralizing antibodies induced by immunization may well predict vaccine effectiveness. Assessment of neutralizing antibodies is therefore of primary importance, but is hampered by the fact that we do not know which assay(s) can provide measures of protective immunity. An international collaboration (NeutNet) involving 18 different laboratories previously compared different assays using monoclonal antibodies (mAbs) and soluble CD4 (Phase I study). Methods In the present study (Phase II), polyclonal reagents were evaluated by 13 laboratories. Each laboratory evaluated nine plasmas against an 8 virus panel representing different genetic subtypes and phenotypes. TriMab, a mixture of three mAbs, was used as a positive control allowing comparison of the results with Phase I in a total of nine different assays. The assays used either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (Virus Infectivity Assays, VIA), or Env (gp160)-pseudotyped viruses (pseudoviruses, PSV) produced in HEK293T cells from molecular clones or from uncloned virus. Target cells included PBMC and genetically engineered cell lines in either single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs including extra- or intra-cellular p24 antigen detection, luciferase, beta-galactosidase or green fluorescent protein (GFP) reporter gene expression. Findings Using TriMab, results of Phase I and Phase II were generally in agreement for six of the eight viruses tested and confirmed that the PSV assay is more sensitive than PBMC (p = 0.014). Comparisons with the polyclonal reagents showed that sensitivities were dependent on both virus and plasma. Conclusions Here we further demonstrate clear differences in assay sensitivities that were dependent on both the neutralizing reagent and the virus. Consistent with the Phase I study, we recommend parallel use of PSV and VIA for vaccine evaluation. PMID:22590544

  12. International network for comparison of HIV neutralization assays: the NeutNet report II.

    PubMed

    Heyndrickx, Leo; Heath, Alan; Sheik-Khalil, Enas; Alcami, Jose; Bongertz, Vera; Jansson, Marianne; Malnati, Mauro; Montefiori, David; Moog, Christiane; Morris, Lynn; Osmanov, Saladin; Polonis, Victoria; Ramaswamy, Meghna; Sattentau, Quentin; Tolazzi, Monica; Schuitemaker, Hanneke; Willems, Betty; Wrin, Terri; Fenyö, Eva Maria; Scarlatti, Gabriella

    2012-01-01

    Neutralizing antibodies provide markers for vaccine-induced protective immunity in many viral infections. By analogy, HIV-1 neutralizing antibodies induced by immunization may well predict vaccine effectiveness. Assessment of neutralizing antibodies is therefore of primary importance, but is hampered by the fact that we do not know which assay(s) can provide measures of protective immunity. An international collaboration (NeutNet) involving 18 different laboratories previously compared different assays using monoclonal antibodies (mAbs) and soluble CD4 (Phase I study). In the present study (Phase II), polyclonal reagents were evaluated by 13 laboratories. Each laboratory evaluated nine plasmas against an 8 virus panel representing different genetic subtypes and phenotypes. TriMab, a mixture of three mAbs, was used as a positive control allowing comparison of the results with Phase I in a total of nine different assays. The assays used either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (Virus Infectivity Assays, VIA), or Env (gp160)-pseudotyped viruses (pseudoviruses, PSV) produced in HEK293T cells from molecular clones or from uncloned virus. Target cells included PBMC and genetically engineered cell lines in either single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs including extra- or intra-cellular p24 antigen detection, luciferase, beta-galactosidase or green fluorescent protein (GFP) reporter gene expression. Using TriMab, results of Phase I and Phase II were generally in agreement for six of the eight viruses tested and confirmed that the PSV assay is more sensitive than PBMC (p = 0.014). Comparisons with the polyclonal reagents showed that sensitivities were dependent on both virus and plasma. Here we further demonstrate clear differences in assay sensitivities that were dependent on both the neutralizing reagent and the virus. Consistent with the Phase I study, we recommend parallel use of PSV and VIA for vaccine evaluation.

  13. Induction of Heterologous Tier 2 HIV-1-Neutralizing and Cross-Reactive V1/V2-Specific Antibodies in Rabbits by Prime-Boost Immunization

    PubMed Central

    Townsley, Samantha; Mohamed, Zeinab; Guo, Wenjin; McKenna, Jennifer; Cleveland, Brad; LaBranche, Celia; Beaumont, David; Shen, Xiaoying; Yates, Nicole L.; Pinter, Abraham; Tomaras, Georgia D.; Ferrari, Guido; Montefiori, David C.

    2016-01-01

    ABSTRACT Poxvirus prime-protein boost used in the RV144 trial remains the only immunization strategy shown to elicit a modest level of protection against HIV-1 acquisition in humans. Although neutralizing antibodies (NAb) were generated, they were against sensitive viruses, not the more resistant “tier 2” isolates that dominate circulating strains. Instead, risk reduction correlated with antibodies recognizing epitopes in the V1/V2 region of HIV-1 envelope glycoprotein (Env). Here, we examined whether tier 2 virus NAb and V1/V2-specific non-NAb could be elicited by a poxvirus prime-gp120 boost strategy in a rabbit model. We studied two clade B Envs that differ in multiple parameters, including tissue origin, neutralization sensitivity, and presence of the N197 (N7) glycan that was previously shown to modulate the exposure of conserved epitopes on Env. We demonstrate that immunized rabbits generated cross-reactive neutralizing activities against >50% of the tier 2 global HIV-1 isolates tested. Some of these activities were directed against the CD4 binding site (CD4bs). These rabbits also generated antibodies that recognized protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. However, there are subtle differences in the specificities and the response rates of V1/V2-specific antibodies between animals immunized with different Envs, with or without the N7 glycan. These findings demonstrate that antibody responses that have been correlated with protection against HIV-1 acquisition in humans can be elicited in a preclinical model by a poxvirus prime-gp120 boost strategy and that improvements may be achievable by optimizing the nature of the priming and boosting immunogens. IMPORTANCE The only vaccine approach shown to elicit any protective efficacy against HIV-1 acquisition is based on a poxvirus prime-protein boost regimen (RV144 Thai trial). Reduction of risk was associated with nonneutralizing antibodies targeting the V1/V2 loops of the envelope protein gp120. However, the modest efficacy (31.2%) achieved in this trial highlights the need to examine approaches and factors that may improve vaccine-induced responses, including cross-reactive neutralizing activities. We show here that rabbits immunized with a novel recombinant vaccinia virus prime-gp120 protein boost regimen generated antibodies that recognize protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. Importantly, immunized rabbits also showed neutralizing activities against heterologous tier 2 HIV-1 isolates. These findings may inform the design of prime-boost immunization approaches and help improve the protective efficacy of candidate HIV-1 vaccines. PMID:27440894

  14. Induction of Heterologous Tier 2 HIV-1-Neutralizing and Cross-Reactive V1/V2-Specific Antibodies in Rabbits by Prime-Boost Immunization.

    PubMed

    Townsley, Samantha; Mohamed, Zeinab; Guo, Wenjin; McKenna, Jennifer; Cleveland, Brad; LaBranche, Celia; Beaumont, David; Shen, Xiaoying; Yates, Nicole L; Pinter, Abraham; Tomaras, Georgia D; Ferrari, Guido; Montefiori, David C; Hu, Shiu-Lok

    2016-10-01

    Poxvirus prime-protein boost used in the RV144 trial remains the only immunization strategy shown to elicit a modest level of protection against HIV-1 acquisition in humans. Although neutralizing antibodies (NAb) were generated, they were against sensitive viruses, not the more resistant "tier 2" isolates that dominate circulating strains. Instead, risk reduction correlated with antibodies recognizing epitopes in the V1/V2 region of HIV-1 envelope glycoprotein (Env). Here, we examined whether tier 2 virus NAb and V1/V2-specific non-NAb could be elicited by a poxvirus prime-gp120 boost strategy in a rabbit model. We studied two clade B Envs that differ in multiple parameters, including tissue origin, neutralization sensitivity, and presence of the N197 (N7) glycan that was previously shown to modulate the exposure of conserved epitopes on Env. We demonstrate that immunized rabbits generated cross-reactive neutralizing activities against >50% of the tier 2 global HIV-1 isolates tested. Some of these activities were directed against the CD4 binding site (CD4bs). These rabbits also generated antibodies that recognized protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. However, there are subtle differences in the specificities and the response rates of V1/V2-specific antibodies between animals immunized with different Envs, with or without the N7 glycan. These findings demonstrate that antibody responses that have been correlated with protection against HIV-1 acquisition in humans can be elicited in a preclinical model by a poxvirus prime-gp120 boost strategy and that improvements may be achievable by optimizing the nature of the priming and boosting immunogens. The only vaccine approach shown to elicit any protective efficacy against HIV-1 acquisition is based on a poxvirus prime-protein boost regimen (RV144 Thai trial). Reduction of risk was associated with nonneutralizing antibodies targeting the V1/V2 loops of the envelope protein gp120. However, the modest efficacy (31.2%) achieved in this trial highlights the need to examine approaches and factors that may improve vaccine-induced responses, including cross-reactive neutralizing activities. We show here that rabbits immunized with a novel recombinant vaccinia virus prime-gp120 protein boost regimen generated antibodies that recognize protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. Importantly, immunized rabbits also showed neutralizing activities against heterologous tier 2 HIV-1 isolates. These findings may inform the design of prime-boost immunization approaches and help improve the protective efficacy of candidate HIV-1 vaccines. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Paramyxovirus activation and inhibition of innate immune responses.

    PubMed

    Parks, Griffith D; Alexander-Miller, Martha A

    2013-12-13

    Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells. © 2013.

  16. Paramyxovirus Activation and Inhibition of Innate Immune Responses

    PubMed Central

    Parks, Griffith D.; Alexander-Miller, Martha A.

    2014-01-01

    Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells. PMID:24056173

  17. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, andmore » infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.« less

  18. Cell-Cell Transmission Enables HIV-1 to Evade Inhibition by Potent CD4bs Directed Antibodies

    PubMed Central

    Schanz, Merle; Reynell, Lucy; Günthard, Huldrych F.; Rusert, Peter; Trkola, Alexandra

    2012-01-01

    HIV is known to spread efficiently both in a cell-free state and from cell to cell, however the relative importance of the cell-cell transmission mode in natural infection has not yet been resolved. Likewise to what extent cell-cell transmission is vulnerable to inhibition by neutralizing antibodies and entry inhibitors remains to be determined. Here we report on neutralizing antibody activity during cell-cell transmission using specifically tailored experimental strategies which enable unambiguous discrimination between the two transmission routes. We demonstrate that the activity of neutralizing monoclonal antibodies (mAbs) and entry inhibitors during cell-cell transmission varies depending on their mode of action. While gp41 directed agents remain active, CD4 binding site (CD4bs) directed inhibitors, including the potent neutralizing mAb VRC01, dramatically lose potency during cell-cell transmission. This implies that CD4bs mAbs act preferentially through blocking free virus transmission, while still allowing HIV to spread through cell-cell contacts. Thus providing a plausible explanation for how HIV maintains infectivity and rapidly escapes potent and broadly active CD4bs directed antibody responses in vivo. PMID:22496655

  19. Antibody response and maternal immunity upon boosting PRRSV-immune sows with experimental farm-specific and commercial PRRSV vaccines.

    PubMed

    Geldhof, Marc F; Van Breedam, Wander; De Jong, Ellen; Lopez Rodriguez, Alfonso; Karniychuk, Uladzimir U; Vanhee, Merijn; Van Doorsselaere, Jan; Maes, Dominiek; Nauwynck, Hans J

    2013-12-27

    The porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure in sows and respiratory disease in pigs of all ages. Despite the frequent use of vaccines to maintain PRRSV immunity in sows, little is known on how the currently used vaccines affect the immunity against currently circulating and genetically divergent PRRSV variants in PRRSV-immune sows, i.e. sows that have a pre-existing PRRSV-specific immunity due to previous infection with or vaccination against the virus. Therefore, this study aimed to assess the capacity of commercially available attenuated/inactivated PRRSV vaccines and autogenous inactivated PRRSV vaccines - prepared according to a previously optimized in-house protocol - to boost the antibody immunity against currently circulating PRRSV variants in PRRSV-immune sows. PRRSV isolates were obtained from 3 different swine herds experiencing PRRSV-related problems, despite regular vaccination of gilts and sows against the virus. In a first part of the study, the PRRSV-specific antibody response upon booster vaccination with commercial PRRSV vaccines and inactivated farm-specific PRRSV vaccines was evaluated in PRRSV-immune, non-pregnant replacement sows from the 3 herds. A boost in virus-neutralizing antibodies against the farm-specific isolate was observed in all sow groups vaccinated with the corresponding farm-specific inactivated vaccines. Use of the commercial attenuated EU type vaccine boosted neutralizing antibodies against the farm-specific isolate in sows derived from 2 farms, while use of the commercial attenuated NA type vaccine did not boost farm-specific virus-neutralizing antibodies in any of the sow groups. Interestingly, the commercial inactivated EU type vaccine boosted farm-specific virus-neutralizing antibodies in sows from 1 farm. In the second part of the study, a field trial was performed at one of the farms to evaluate the booster effect of an inactivated farm-specific vaccine and a commercial attenuated EU-type vaccine in immune sows at 60 days of gestation. The impact of this vaccination on maternal immunity and on the PRRSV infection pattern in piglets during their first weeks of life was evaluated. Upon vaccination with the farm-specific inactivated vaccine, a significant increase in farm-specific virus-neutralizing antibodies was detected in all sows. Virus-neutralizing antibodies were also transferred to the piglets via colostrum and were detectable in the serum of these animals until 5 weeks after parturition. In contrast, not all sows vaccinated with the commercial attenuated vaccine showed an increase in farm-specific virus-neutralizing antibodies and the piglets of this group generally had lower virus-neutralizing antibody titers. Interestingly, the number of viremic animals (i.e. animals that have infectious virus in their bloodstream) was significantly lower among piglets of both vaccinated groups than among piglets of mock-vaccinated sows and this at least until 9 weeks after parturition. The results of this study indicate that inactivated farm-specific PRRSV vaccines and commercial attenuated vaccines can be useful tools to boost PRRSV-specific (humoral) immunity in sows and reduce viremia in weaned piglets. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. West Nile Virus and Usutu Virus Monitoring of Wild Birds in Germany.

    PubMed

    Michel, Friederike; Fischer, Dominik; Eiden, Martin; Fast, Christine; Reuschel, Maximilian; Müller, Kerstin; Rinder, Monika; Urbaniak, Sylvia; Brandes, Florian; Schwehn, Rebekka; Lühken, Renke; Groschup, Martin H; Ziegler, Ute

    2018-01-22

    By systematically setting up a unique nation-wide wild bird surveillance network, we monitored migratory and resident birds for zoonotic arthropod-borne virus infections, such as the flaviviruses West Nile virus (WNV) and Usutu virus (USUV). More than 1900 wild bird blood samples, from 20 orders and 136 different bird species, were collected between 2014 and 2016. Samples were investigated by WNV and USUV-specific real-time polymerase chain reactions as well as by differentiating virus neutralization tests. Dead bird surveillance data, obtained from organ investigations in 2016, were also included. WNV-specific RNA was not detected, whereas four wild bird blood samples tested positive for USUV-specific RNA. Additionally, 73 USUV-positive birds were detected in the 2016 dead bird surveillance. WNV neutralizing antibodies were predominantly found in long-distance, partial and short-distance migrants, while USUV neutralizing antibodies were mainly detected in resident wild bird species, preferentially with low seroprevalences. To date, WNV-specific RNA has neither been detected in wild birds, nor in mosquitoes, thus, we conclude that WNV is not yet present in Germany. Continued wild bird and mosquito monitoring studies are essential to detect the incursion of zoonotic viruses and to allow risk assessments for zoonotic pathogens.

  1. Pseudo-plaque reduction neutralization test (PPRNT) for the measurement of neutralizing antibodies to Crimean-Congo hemorrhagic fever virus.

    PubMed

    Canakoglu, Nurettin; Berber, Engin; Ertek, Mustafa; Yoruk, Mustafa D; Tonbak, Sukru; Bolat, Yusuf; Aktas, Munir; Kalkan, Ahmet; Ozdarendeli, Aykut

    2013-01-03

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus of the genus Nairovirus family Bunyaviridae, which are enveloped viruses containing tripartite, negative polarity, single-stranded RNA. CCHF is characterized by high case mortality, occurring in Asia, Africa, the Middle East and Europe. Currently, there are no specific treatments or licensed vaccines available for CCHFV. Recently, two research groups have found adult mice with defective interferon responses allowed to lethal CCHFV infection. These mouse models could provide invaluable information for further studies. Efforts to develop a vaccine against CCHFV are being made. To determine the efficacy of vaccine candidates it is important to conduct serological studies that can accurately measure levels of protective antibodies. In the present study, a pseudo-plaque reduction neutralization test (PPRNT) based on enzyme-catalyzed color development of infected cells probed with anti-CCHFV antibodies was used to measure neutralization antibody of CCHFV. Sixty-nine human serum samples (20 acute and 49 convalescent) were tested. The presence of CCHFV antibodies was determined and confirmed by a commercial ELISA kit. CCHFV RNA was determined by RT-PCR. All the samples were analyzed by PPRNT and fluorescent focus reduction neutralization test (FFRNT) to measure of CCHFV-neutralizing antibodies. Pseudo-plaque reduction neutralization test showed a high sensitivity (98%), specificity (100%) and agreement (96,6%) in qualitative comparison with those of the FFRNT. There was a high correlation between the titers obtained in PPRNT and FFRNT (R2 = 0.92). The inter- and intra-assay variation of PPRNT revealed good reproducibility and positive cut-off of PPRNT was defined as 1:4 by the geometric mean titers for the individual samples distributed. The pseudo-plaque reduction neutralization test described in this study is a fast, reproducible and sensitive method for the measurement of CCHF neutralizing antibodies. This novel assay could serve as useful tools for CCHF research in epidemiology, vaccine development and other studies of immunity. It also provides an alternative to PRNT when viruses with no or poor CPE in cell culture.

  2. Pseudo-plaque reduction neutralization test (PPRNT) for the measurement of neutralizing antibodies to Crimean-Congo hemorrhagic fever virus

    PubMed Central

    2013-01-01

    Background Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus of the genus Nairovirus family Bunyaviridae, which are enveloped viruses containing tripartite, negative polarity, single-stranded RNA. CCHF is characterized by high case mortality, occurring in Asia, Africa, the Middle East and Europe. Currently, there are no specific treatments or licensed vaccines available for CCHFV. Recently, two research groups have found adult mice with defective interferon responses allowed to lethal CCHFV infection. These mouse models could provide invaluable information for further studies. Efforts to develop a vaccine against CCHFV are being made. To determine the efficacy of vaccine candidates it is important to conduct serological studies that can accurately measure levels of protective antibodies. In the present study, a pseudo-plaque reduction neutralization test (PPRNT) based on enzyme-catalyzed color development of infected cells probed with anti-CCHFV antibodies was used to measure neutralization antibody of CCHFV. Methods Sixty-nine human serum samples (20 acute and 49 convalescent) were tested. The presence of CCHFV antibodies was determined and confirmed by a commercial ELISA kit. CCHFV RNA was determined by RT-PCR. All the samples were analyzed by PPRNT and fluorescent focus reduction neutralization test (FFRNT) to measure of CCHFV-neutralizing antibodies. Results Pseudo-plaque reduction neutralization test showed a high sensitivity (98%), specificity (100%) and agreement (96,6%) in qualitative comparison with those of the FFRNT. There was a high correlation between the titers obtained in PPRNT and FFRNT (R2 = 0.92). The inter- and intra-assay variation of PPRNT revealed good reproducibility and positive cut-off of PPRNT was defined as 1:4 by the geometric mean titers for the individual samples distributed. Conclusion The pseudo-plaque reduction neutralization test described in this study is a fast, reproducible and sensitive method for the measurement of CCHF neutralizing antibodies. This novel assay could serve as useful tools for CCHF research in epidemiology, vaccine development and other studies of immunity. It also provides an alternative to PRNT when viruses with no or poor CPE in cell culture. PMID:23282186

  3. Antigenic Variation of East/Central/South African and Asian Chikungunya Virus Genotypes in Neutralization by Immune Sera

    PubMed Central

    Chua, Chong-Long; Sam, I-Ching; Merits, Andres; Chan, Yoke-Fun

    2016-01-01

    Background Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus which causes epidemics of fever, severe joint pain and rash. Between 2005 and 2010, the East/Central/South African (ECSA) genotype was responsible for global explosive outbreaks across India, the Indian Ocean and Southeast Asia. From late 2013, Asian genotype CHIKV has caused outbreaks in the Americas. The characteristics of cross-antibody efficacy and epitopes are poorly understood. Methodology/Principal Findings We characterized human immune sera collected during two independent outbreaks in Malaysia of the Asian genotype in 2006 and the ECSA genotype in 2008–2010. Neutralizing capacity was analyzed against representative clinical isolates as well as viruses rescued from infectious clones of ECSA and Asian CHIKV. Using whole virus antigen and recombinant E1 and E2 envelope glycoproteins, we further investigated antibody binding sites, epitopes, and antibody titers. Both ECSA and Asian sera demonstrated stronger neutralizing capacity against the ECSA genotype, which corresponded to strong epitope-antibody interaction. ECSA serum targeted conformational epitope sites in the E1-E2 glycoprotein, and E1-E211K, E2-I2T, E2-H5N, E2-G118S and E2-S194G are key amino acids that enhance cross-neutralizing efficacy. As for Asian serum, the antibodies targeting E2 glycoprotein correlated with neutralizing efficacy, and I2T, H5N, G118S and S194G altered and improved the neutralization profile. Rabbit polyclonal antibody against the N-terminal linear neutralizing epitope from the ECSA sequence has reduced binding capacity and neutralization efficacy against Asian CHIKV. These findings imply that the choice of vaccine strain may impact cross-protection against different genotypes. Conclusion/Significance Immune serum from humans infected with CHIKV of either ECSA or Asian genotypes showed differences in binding and neutralization characteristics. These findings have implications for the continued outbreaks of co-circulating CHIKV genotypes and effective design of vaccines and diagnostic serological assays. PMID:27571254

  4. Broadly Neutralizing Immune Responses against Hepatitis C Virus Induced by Vectored Measles Viruses and a Recombinant Envelope Protein Booster

    PubMed Central

    Reyes-del Valle, Jorge; de la Fuente, Cynthia; Turner, Mallory A.; Springfeld, Christoph; Apte-Sengupta, Swapna; Frenzke, Marie E.; Forest, Amelie; Whidby, Jillian; Marcotrigiano, Joseph; Rice, Charles M.

    2012-01-01

    Hepatitis C virus (HCV) infection remains a serious public health problem worldwide. Treatments are limited, and no preventive vaccine is available. Toward developing an HCV vaccine, we engineered two recombinant measles viruses (MVs) expressing structural proteins from the prototypic HCV subtype 1a strain H77. One virus directs the synthesis of the HCV capsid (C) protein and envelope glycoproteins (E1 and E2), which fold properly and form a heterodimer. The other virus expresses the E1 and E2 glycoproteins separately, with each one fused to the cytoplasmic tail of the MV fusion protein. Although these hybrid glycoproteins were transported to the plasma membrane, they were not incorporated into MV particles. Immunization of MV-susceptible, genetically modified mice with either vector induced neutralizing antibodies to MV and HCV. A boost with soluble E2 protein enhanced titers of neutralizing antibody against the homologous HCV envelope. In animals primed with MV expressing properly folded HCV C-E1-E2, boosting also induced cross-neutralizating antibodies against two heterologous HCV strains. These results show that recombinant MVs retain the ability to induce MV-specific humoral immunity while also eliciting HCV neutralizing antibodies, and that anti-HCV immunity can be boosted with a single dose of purified E2 protein. The use of MV vectors could have advantages for pediatric HCV vaccination. PMID:22896607

  5. DNA vaccine-derived human IgG produced in transchromosomal bovines protect in lethal models of hantavirus pulmonary syndrome.

    PubMed

    Hooper, Jay W; Brocato, Rebecca L; Kwilas, Steven A; Hammerbeck, Christopher D; Josleyn, Matthew D; Royals, Michael; Ballantyne, John; Wu, Hua; Jiao, Jin-an; Matsushita, Hiroaki; Sullivan, Eddie J

    2014-11-26

    Polyclonal immunoglobulin-based medical products have been used successfully to treat diseases caused by viruses for more than a century. We demonstrate the use of DNA vaccine technology and transchromosomal bovines (TcBs) to produce fully human polyclonal immunoglobulins (IgG) with potent antiviral neutralizing activity. Specifically, two hantavirus DNA vaccines [Andes virus (ANDV) DNA vaccine and Sin Nombre virus (SNV) DNA vaccine] were used to produce a candidate immunoglobulin product for the prevention and treatment of hantavirus pulmonary syndrome (HPS). A needle-free jet injection device was used to vaccinate TcB, and high-titer neutralizing antibodies (titers >1000) against both viruses were produced within 1 month. Plasma collected at day 10 after the fourth vaccination was used to produce purified α-HPS TcB human IgG. Treatment with 20,000 neutralizing antibody units (NAU)/kg starting 5 days after challenge with ANDV protected seven of eight animals, whereas zero of eight animals treated with the same dose of normal TcB human IgG survived. Likewise, treatment with 20,000 NAU/kg starting 5 days after challenge with SNV protected immunocompromised hamsters from lethal HPS, protecting five of eight animals. Our findings that the α-HPS TcB human IgG is capable of protecting in animal models of lethal HPS when administered after exposure provides proof of concept that this approach can be used to develop candidate next-generation polyclonal immunoglobulin-based medical products without the need for human donors, despeciation protocols, or inactivated/attenuated vaccine antigen. Copyright © 2014, American Association for the Advancement of Science.

  6. Identification of a conserved B-cell epitope on duck hepatitis A type 1 virus VP1 protein.

    PubMed

    Wu, Xiaoying; Li, Xiaojun; Zhang, Qingshan; Wulin, Shaozhou; Bai, Xiaofei; Zhang, Tingting; Wang, Yue; Liu, Ming; Zhang, Yun

    2015-01-01

    The VP1 protein of duck hepatitis A virus (DHAV) is a major structural protein that induces neutralizing antibodies in ducks; however, B-cell epitopes on the VP1 protein of duck hepatitis A genotype 1 virus (DHAV-1) have not been characterized. To characterize B-cell epitopes on VP1, we used the monoclonal antibody (mAb) 2D10 against Escherichia coli-expressed VP1 of DHAV-1. In vitro, mAb 2D10 neutralized DHAV-1 virus. By using an array of overlapping 12-mer peptides, we found that mAb 2D10 recognized phages displaying peptides with the consensus motif LPAPTS. Sequence alignment showed that the epitope 173LPAPTS178 is highly conserved among the DHAV-1 genotypes. Moreover, the six amino acid peptide LPAPTS was proven to be the minimal unit of the epitope with maximal binding activity to mAb 2D10. DHAV-1-positive duck serum reacted with the epitope in dot blotting assay, revealing the importance of the six amino acids of the epitope for antibody-epitope binding. Competitive inhibition assays of mAb 2D10 binding to synthetic LPAPTS peptides and truncated VP1 protein fragments, detected by Western blotting, also verify that LPAPTS was the VP1 epitope. We identified LPAPTS as a VP1-specific linear B-cell epitope recognized by the neutralizing mAb 2D10. Our findings have potential applications in the development of diagnostic techniques and epitope-based marker vaccines against DHAV-1.

  7. Evaluation of single-round infectious, chimeric dengue type 1 virus as an antigen for dengue functional antibody assays.

    PubMed

    Yamanaka, Atsushi; Suzuki, Ryosuke; Konishi, Eiji

    2014-07-23

    Dengue fever and dengue hemorrhagic fever are endemic throughout tropical and subtropical countries. Four serotypes of dengue viruses (DENV-1 to DENV-4), each with several genotypes including various subclades, are co-distributed in most endemic areas. Infection-neutralizing and -enhancing antibodies are believed to play protective and pathogenic roles, respectively. Measurement of these functional antibodies against a variety of viral strains is thus important for evaluating coverage and safety of dengue vaccine candidates. Although transportation of live virus materials beyond national borders is increasingly limited, this difficulty may be overcome using biotechnology that enables generation of an antibody-assay antigen equivalent to authentic virus based on viral sequence information. A rapid system to produce flavivirus single-round infectious particles (SRIPs) was recently developed using a Japanese encephalitis virus (JEV) subgenomic replicon plasmid. This system allows production of chimeric SRIPs that have surface proteins of other flaviviruses. In the present study, SRIPs of DENV-1 (D1-SRIPs) were evaluated as an antigen for functional antibody assays. Inclusion of the whole mature capsid gene of JEV into the replicon plasmid provided higher D1-SRIP yields than did its exclusion in cases where a DENV-1 surface-protein-expressing plasmid was used for co-transfection of 293T cells with the replicon plasmid. In an assay to measure the balance between neutralizing and enhancing activities, dose (antibody dilution)-dependent activity curves in dengue-immune human sera or mouse monoclonal antibodies obtained using D1-SRIP antigen were equivalent to those obtained using DENV-1 antigen. Similar results were obtained using additional DENV-2 and DENV-3 systems. In a conventional Vero-cell neutralization test, a significant correlation was shown between antibody titers obtained using D1-SRIP and DENV-1 antigens. These results demonstrate the utility of D1-SRIPs as an alternative antigen to authentic DENV-1 in functional antibody assays. SRIP antigens may contribute to dengue vaccine candidate evaluation, understanding of dengue pathogenesis, and development of serodiagnostic systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Persistent infection of chimpanzees with human immunodeficiency virus: serological responses and properties of reisolated viruses.

    PubMed Central

    Nara, P L; Robey, W G; Arthur, L O; Asher, D M; Wolff, A V; Gibbs, C J; Gajdusek, D C; Fischinger, P J

    1987-01-01

    Persistent infection by human immunodeficiency virus (HIV-1) in the chimpanzee may be valuable for immunopathologic and potential vaccine evaluation. Two HIV strains, the tissue culture-derived human T-cell lymphotropic virus type IIIB (HTLV-IIIB) and in vivo serially passaged lymphadenopathy-associated virus type 1 (LAV-1), were injected intravenously into chimpanzees. Two animals received HTLV-IIIB as either virus-infected H9 cells or cell-free virus. A third animal received chimpanzee-passaged LAV-1. Evaluation of their sera for virus-specific serologic changes, including neutralizations, was done during a 2-year period. During this period all animals had persistently high titers of antibodies to viral core and envelope antigens. All three animals developed a progressively increasing type-specific neutralizing LAV-1 versus HTLV-IIIB antibody titer during the 2-year observation period which broadened in specificity to include HTLV-HIRF, HTLV-IIIMN, and HTLV-IIICC after 6 to 12 months. The antibody titers against both viruses were still increasing by 2 years after experimental virus inoculation. Sera from all animals were capable of neutralizing both homologously and heterologously reisolated virus from chimpanzees. A slightly more rapid type-specific neutralizing response was noted for the animal receiving HTLV-IIIB-infected cells compared with that for cell-free HTLV-IIIB. Sera from all persistently infected chimpanzees were capable of mediating group-specific antibody-mediated complement-dependent cytolysis of HIV-infected cells derived from all isolates tested. Viruses reisolated from all three animals at 20 months after inoculation revealed very similar peptide maps of their respective envelope gp120s, as determined by two-dimensional chymotrypsin oligopeptide analysis. One peptide, however, from the original HTLV-IIIB-inoculated virus was deleted in viruses from all three animals, and in addition, we noted the appearance of a new or modified peptide which was common to LAV-1 as well as to HTLV-IIIB reisolated from infected chimpanzees. It thus appears that a group-specific neutralizing antibody response as well as a group-specific cytotoxic response can develop in chimpanzees after an inoculation of a single HIV variant. This finding suggests that a common, less immunodominant determinant(s) is present on a single HIV strain which could induce group-specific antibodies during viral infection and replication. The identification of this group-specific epitope and the induction of analogous immunity may be relevant to vaccine development against human acquired immunodeficiency syndrome. Images PMID:2442411

  9. Receptor mimicry by antibody F045–092 facilitates universal binding to the H3 subtype of influenza virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Peter S.; Ohshima, Nobuko; Stanfield, Robyn L.

    Influenza viruses present a significant health challenge each year, as in the H3N2 epidemic of 2012–2013. Here we describe an antibody, F045–092, that possesses broadly neutralizing activity against the entire H3 subtype and accommodates the natural variation and additional glycosylation in all strains tested from 1963 to 2011. Crystal structures of F045–092 in complex with HAs from 1975 and 2011 H3N2 viruses reveal the structural basis for its neutralization breadth through insertion of its 23-residue HCDR3 into the receptor-binding site that involves striking receptor mimicry. F045–092 extends its recognition to divergent subtypes, including H1, H2 and H13, using the enhancedmore » avidity of its IgG to overcome lower-affinity Fab binding, as observed with other antibodies that target the receptor-binding site. This unprecedented level of antibody cross-reactivity against the H3 subtype can potentially inform on development of a pan-H3 vaccine or small-molecule therapeutics.« less

  10. World Reference Center for Arboviruses.

    DTIC Science & Technology

    1987-01-01

    Vesiculovirus genus, family Rhabdoviridae was revised serologically. Immunofluorescence, complement-fixation, enzyme-linked immunosorbent assay and...neutralization testing in insect cells, and neutralization tests with viruses which did not produce plaques or cytopathic effect. 3) Adaptation of the...Quaranf il serogroup of tick-borne viruses including lb An38918, a newly recognized member..... o....... o.......- RHABDOVIRIDAE , Vesiculovirus

  11. Serological evidence for transmission of multiple dengue virus serotypes in Papua New Guinea and West Papua prior to 1963.

    PubMed

    Luang-Suarkia, Dagwin; Ernst, Timo; Alpers, Michael P; Garruto, Ralph; Smith, David; Imrie, Allison

    2017-04-01

    Little is known about the natural history of dengue in Papua New Guinea (PNG). We assessed dengue virus (DENV)-specific neutralizing antibody profiles in serum samples collected from northern and southern coastal areas and the highland region of New Guinea between 1959 and 1963. Neutralizing antibodies were demonstrated in sera from the northern coast of New Guinea: from Sabron in Dutch New Guinea (now known as West Papua) and from four villages in East Sepik in what is now PNG. Previous monotypic infection with DENV-1, DENV-2, and DENV-4 was identified, with a predominance of anti-DENV-2 neutralizing antibody. The majority of positive sera demonstrated evidence of multiple previous DENV infections and neutralizing activity against all four serotypes was detected, with anti-DENV-2 responses being most frequent and of greatest magnitude. No evidence of previous DENV infection was identified in the Asmat villages of the southern coast and a single anti-DENV-positive sample was identified in the Eastern Highlands of PNG. These findings indicate that multiple DENV serotypes circulated along the northern coast of New Guinea at different times in the decades prior to 1963 and support the notion that dengue has been a significant yet neglected tropical infection in PNG for many decades.

  12. Serological evidence for transmission of multiple dengue virus serotypes in Papua New Guinea and West Papua prior to 1963

    PubMed Central

    Luang-Suarkia, Dagwin; Ernst, Timo; Alpers, Michael P.; Garruto, Ralph; Smith, David

    2017-01-01

    Little is known about the natural history of dengue in Papua New Guinea (PNG). We assessed dengue virus (DENV)-specific neutralizing antibody profiles in serum samples collected from northern and southern coastal areas and the highland region of New Guinea between 1959 and 1963. Neutralizing antibodies were demonstrated in sera from the northern coast of New Guinea: from Sabron in Dutch New Guinea (now known as West Papua) and from four villages in East Sepik in what is now PNG. Previous monotypic infection with DENV-1, DENV-2, and DENV-4 was identified, with a predominance of anti-DENV-2 neutralizing antibody. The majority of positive sera demonstrated evidence of multiple previous DENV infections and neutralizing activity against all four serotypes was detected, with anti-DENV-2 responses being most frequent and of greatest magnitude. No evidence of previous DENV infection was identified in the Asmat villages of the southern coast and a single anti-DENV-positive sample was identified in the Eastern Highlands of PNG. These findings indicate that multiple DENV serotypes circulated along the northern coast of New Guinea at different times in the decades prior to 1963 and support the notion that dengue has been a significant yet neglected tropical infection in PNG for many decades. PMID:28437465

  13. Immunogenicity of synthetic peptides representing neutralizing epitopes on the glycoprotein of infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Emmenegger, E.; Landolt, M.; LaPatra, S.; Winton, J.

    1997-01-01

    Three peptides, P76, P226, and P268 representing 3 putative antigen~c determinants on the glycoprotein of infectious hematopoietic necrosis virus (IHNV), were synthesized and injected into rainbow trout Oncorhynchus mykiss to assess their immunogen~city. Antisera extracted from the immunized trout were analyzed uslng an enzyme linked imrnunosorbent assay (ELISA) for the presence of antibodies that could bind to the peptides or to intact virions of IHNV. The antisera were also tested for neutralizing activity against IHNV by a complement-mediated neutralization assay. In general, recognition of the peptides and IHNV was low and only a few antibody binding patterns were demonstrated. Antisera from fish injected with P76 constructs recognized the homologous peptide more than the heterologous peptides, whereas antisera from fish inoculated with either P226 or P268 constructs recognized P76 equally, or better, than the homologous peptide; however, there was a high degree of individual variation within each treatment group. Neutralization actlvlty was demonstrated by serum from a single flsh lnlected with one of the pept~des (P268) and from 7 of 10 positive control f~sh Infected with an attenuated strain of IHNV Possible explanations for the dichotomous immune responses are discussed. These results indicate we need to improve our overall understanding of the

  14. Comparison of a neutralization enzyme immunoassay and an enzyme-linked immunosorbent assay for evaluation of immune status of children vaccinated for mumps.

    PubMed Central

    Harmsen, T; Jongerius, M C; van der Zwan, C W; Plantinga, A D; Kraaijeveld, C A; Berbers, G A

    1992-01-01

    A 50% neutralization enzyme immunoassay (N50-EIA) was compared with an indirect enzyme-linked immunosorbent assay (ELISA) for determining mumps virus antibodies in three consecutive serum samples from 138 children vaccinated with a live mumps vaccine at the age (in years) of 1.5. By the N50-EIA, most (132 of 138) preserum samples did not show neutralizing activity. Eight to 12 weeks after vaccination, 17 of the children were still negative, but only 7 remained so after 2.5 years, resulting in a seroconversion rate of 125 of 132 (95%). Over the same period, the neutralization geometric mean titer rose from 3.6 to 9.9. By an indirect ELISA, 128 of 138 preserum samples were found negative. The early and late postvaccination sera of 8 children were ELISA negative, resulting in a seroconversion rate of 120 of 128 (94%). Only two children remained seronegative by both methods. Seven of the late postvaccination serum samples yielded noncorresponding results, reflecting 95% correlation between both methods. Due to cross-reactivity with parainfluenza viruses, the ELISA proved to be less specific, but on the other hand, it showed a greater sensitivity than the N50-EIA. PMID:1500523

  15. Characterization of two anti-dengue human monoclonal antibodies prepared from PBMCs of patients with dengue illness in Thailand.

    PubMed

    Li, Z-Y; Yamashita, A; Kawashita, N; Sasaki, T; Pan, Y; Ono, K-I; Ikuta, K; Li, Y-G

    2016-06-01

    The global spread of the four dengue virus (DENV) serotypes (dengue-1 to -4) has made this virus a major and growing public health concern. Generally, pre-existing neutralizing antibodies derived from primary infection play a significant role in protecting against subsequent infection with the same serotype. By contrast, these pre-existing antibodies are believed to mediate a non-protective response to subsequent heterotypic DENV infections, leading to the onset of dengue illness. In this study, two monoclonal antibodies prepared by using peripheral blood mononuclear cells (PBMCs) from patients with dengue fever were characterized. Epitope mapping revealed that amino acid residues 254-278 in domain II of the viral envelope protein E were the target region of these antibodies. A database search revealed that certain sequences in this epitope region showed high conservation among the four serotypes of DENV. These two human monoclonal antibodies could neutralize DENV-2,-4 more effectively than DENV-1,-3. The amino acid sequences could not explain this difference in neutralizing activity. However, the 3D structure results showed that amino acid 274 could be the critical residue for the difference in neutralization. These results may provide basic information for the development of a dengue vaccine.

  16. Dengue, Japanese encephalitis and Chikungunya virus antibody prevalence among captive monkey (Macaca nemestrina) colonies of Northern Thailand.

    PubMed

    Nakgoi, Khajornpong; Nitatpattana, Narong; Wajjwalku, Worawidh; Pongsopawijit, Pornsawan; Kaewchot, Supakarn; Yoksan, Sutee; Siripolwat, Voravit; Souris, Marc; Gonzalez, Jean-Paul

    2014-01-01

    The potential of macaque Macaca nemestrina leonina in Thailand to be infected by endemic arboviruses was assessed. The prevalence of antibodies of three arboviruses actively circulating in Thailand was determined by Plaque Reduction Neutralization assay procedures using samples from captive colonies in Northern Thailand. Out of 38 macaques, 9 (24%) presented reacting antibodies against dengue virus, 5 (13%) against Japanese encephalitis virus, and 4 (10%) against Chikungunya virus. Our results indicate that the northern pig-tailed macaque in Thailand can be infected by these arboviruses, inferring therefore that their virus specific vectors have bitten them. Given that, northern pig-tailed macaque represents an abundant population, living in close range to human or in peridomestic setting, they could play a role as potential reservoir host for arboviruses circulating in Thailand. © 2013 Wiley Periodicals, Inc.

  17. Dose-response relationships in a microneutralization test for foot-and-mouth disease viruses.

    PubMed Central

    Booth, J. C.; Rweyemamu, M. M.; Pay, T. W.

    1978-01-01

    Two-dimensional quantal microneutralization tests on foot-and-mouth disease viruses, in which neutralizing antibody activity was titrated against a serial range of virus doses, demonstrated a variety of dose-response curves some of which were rectilinear, others clearly curvilinear. Moreover, in the case of the non-linear responses obtained with some antisera, the shape of the curve was such that antibody titres recorded with doses of virus ranging from 10(3)-10(5) TCD50 were closely similar. Studies were carried out on the effect of varying the conditions of the test on the shape of the dose-response curve: significant differences were obtained after treatment of the antiserum-virus mixtures with anti-species globulin, and when the test was assayed in cells of differing susceptibility to infection. PMID:202650

  18. Screening test for neutralizing antibodies against yellow fever virus, based on a flavivirus pseudotype.

    PubMed

    Mercier-Delarue, Séverine; Durier, Christine; Colin de Verdière, Nathalie; Poveda, Jean-Dominique; Meiffrédy, Vincent; Fernandez Garcia, Maria Dolores; Lastère, Stéphane; Césaire, Raymond; Manuggera, Jean-Claude; Molina, Jean-Michel; Amara, Ali; Simon, François

    2017-01-01

    Given the possibility of yellow fever virus reintroduction in epidemiologically receptive geographic areas, the risk of vaccine supply disruption is a serious issue. New strategies to reduce the doses of injected vaccines should be evaluated very carefully in terms of immunogenicity. The plaque reduction test for the determination of neutralizing antibodies (PRNT) is particularly time-consuming and requires the use of a confinement laboratory. We have developed a new test based on the use of a non-infectious pseudovirus (WN/YF17D). The presence of a reporter gene allows sensitive determination of neutralizing antibodies by flow cytometry. This WN/YF17D test was as sensitive as PRNT for the follow-up of yellow fever vaccinees. Both tests lacked specificity with sera from patients hospitalized for acute Dengue virus infection. Conversely, both assays were strictly negative in adults never exposed to flavivirus infection or vaccination, and in patients sampled some time after acute Dengue infection. This WN/YF17D test will be particularly useful for large epidemiological studies and for screening for neutralizing antibodies against yellow fever virus.

  19. Sequential immunization with V3 peptides from primary human immunodeficiency virus type 1 produces cross-neutralizing antibodies against primary isolates with a matching narrow-neutralization sequence motif.

    PubMed

    Eda, Yasuyuki; Takizawa, Mari; Murakami, Toshio; Maeda, Hiroaki; Kimachi, Kazuhiko; Yonemura, Hiroshi; Koyanagi, Satoshi; Shiosaki, Kouichi; Higuchi, Hirofumi; Makizumi, Keiichi; Nakashima, Toshihiro; Osatomi, Kiyoshi; Tokiyoshi, Sachio; Matsushita, Shuzo; Yamamoto, Naoki; Honda, Mitsuo

    2006-06-01

    An antibody response capable of neutralizing not only homologous but also heterologous forms of the CXCR4-tropic human immunodeficiency virus type 1 (HIV-1) MNp and CCR5-tropic primary isolate HIV-1 JR-CSF was achieved through sequential immunization with a combination of synthetic peptides representing HIV-1 Env V3 sequences from field and laboratory HIV-1 clade B isolates. In contrast, repeated immunization with a single V3 peptide generated antibodies that neutralized only type-specific laboratory-adapted homologous viruses. To determine whether the cross-neutralization response could be attributed to a cross-reactive antibody in the immunized animals, we isolated a monoclonal antibody, C25, which neutralized the heterologous primary viruses of HIV-1 clade B. Furthermore, we generated a humanized monoclonal antibody, KD-247, by transferring the genes of the complementary determining region of C25 into genes of the human V region of the antibody. KD-247 bound with high affinity to the "PGR" motif within the HIV-1 Env V3 tip region, and, among the established reference antibodies, it most effectively neutralized primary HIV-1 field isolates possessing the matching neutralization sequence motif, suggesting its promise for clinical applications involving passive immunizations. These results demonstrate that sequential immunization with B-cell epitope peptides may contribute to a humoral immune-based HIV vaccine strategy. Indeed, they help lay the groundwork for the development of HIV-1 vaccine strategies that use sequential immunization with biologically relevant peptides to overcome difficulties associated with otherwise poorly immunogenic epitopes.

  20. Sequential Immunization with V3 Peptides from Primary Human Immunodeficiency Virus Type 1 Produces Cross-Neutralizing Antibodies against Primary Isolates with a Matching Narrow-Neutralization Sequence Motif

    PubMed Central

    Eda, Yasuyuki; Takizawa, Mari; Murakami, Toshio; Maeda, Hiroaki; Kimachi, Kazuhiko; Yonemura, Hiroshi; Koyanagi, Satoshi; Shiosaki, Kouichi; Higuchi, Hirofumi; Makizumi, Keiichi; Nakashima, Toshihiro; Osatomi, Kiyoshi; Tokiyoshi, Sachio; Matsushita, Shuzo; Yamamoto, Naoki; Honda, Mitsuo

    2006-01-01

    An antibody response capable of neutralizing not only homologous but also heterologous forms of the CXCR4-tropic human immunodeficiency virus type 1 (HIV-1) MNp and CCR5-tropic primary isolate HIV-1 JR-CSF was achieved through sequential immunization with a combination of synthetic peptides representing HIV-1 Env V3 sequences from field and laboratory HIV-1 clade B isolates. In contrast, repeated immunization with a single V3 peptide generated antibodies that neutralized only type-specific laboratory-adapted homologous viruses. To determine whether the cross-neutralization response could be attributed to a cross-reactive antibody in the immunized animals, we isolated a monoclonal antibody, C25, which neutralized the heterologous primary viruses of HIV-1 clade B. Furthermore, we generated a humanized monoclonal antibody, KD-247, by transferring the genes of the complementary determining region of C25 into genes of the human V region of the antibody. KD-247 bound with high affinity to the “PGR” motif within the HIV-1 Env V3 tip region, and, among the established reference antibodies, it most effectively neutralized primary HIV-1 field isolates possessing the matching neutralization sequence motif, suggesting its promise for clinical applications involving passive immunizations. These results demonstrate that sequential immunization with B-cell epitope peptides may contribute to a humoral immune-based HIV vaccine strategy. Indeed, they help lay the groundwork for the development of HIV-1 vaccine strategies that use sequential immunization with biologically relevant peptides to overcome difficulties associated with otherwise poorly immunogenic epitopes. PMID:16699036

  1. Protective efficacy of neutralizing monoclonal antibodies in a nonhuman primate model of Ebola hemorrhagic fever.

    PubMed

    Marzi, Andrea; Yoshida, Reiko; Miyamoto, Hiroko; Ishijima, Mari; Suzuki, Yasuhiko; Higuchi, Megumi; Matsuyama, Yukie; Igarashi, Manabu; Nakayama, Eri; Kuroda, Makoto; Saijo, Masayuki; Feldmann, Friederike; Brining, Douglas; Feldmann, Heinz; Takada, Ayato

    2012-01-01

    Ebola virus (EBOV) is the causative agent of severe hemorrhagic fever in primates, with human case fatality rates up to 90%. Today, there is neither a licensed vaccine nor a treatment available for Ebola hemorrhagic fever (EHF). Single monoclonal antibodies (MAbs) specific for Zaire ebolavirus (ZEBOV) have been successfully used in passive immunization experiments in rodent models, but have failed to protect nonhuman primates from lethal disease. In this study, we used two clones of human-mouse chimeric MAbs (ch133 and ch226) with strong neutralizing activity against ZEBOV and evaluated their protective potential in a rhesus macaque model of EHF. Reduced viral loads and partial protection were observed in animals given MAbs ch133 and ch226 combined intravenously at 24 hours before and 24 and 72 hours after challenge. MAbs circulated in the blood of a surviving animal until virus-induced IgG responses were detected. In contrast, serum MAb concentrations decreased to undetectable levels at terminal stages of disease in animals that succumbed to infection, indicating substantial consumption of these antibodies due to virus replication. Accordingly, the rapid decrease of serum MAbs was clearly associated with increased viremia in non-survivors. Our results indicate that EBOV neutralizing antibodies, particularly in combination with other therapeutic strategies, might be beneficial in reducing viral loads and prolonging disease progression during EHF.

  2. Vaccinia Virus Recombinants: Expression of VSV Genes and Protective Immunization of Mice and Cattle

    NASA Astrophysics Data System (ADS)

    Mackett, M.; Yilma, T.; Rose, J. K.; Moss, B.

    1985-01-01

    Vesicular stomatitis virus (VSV) causes a contagious disease of horses, cattle, and pigs. When DNA copies of messenger RNA's for the G or N proteins of VSV were linked to a vaccinia virus promoter and inserted into the vaccinia genome, the recombinants retained infectivity and synthesized VSV polypeptides. After intradermal vaccination with live recombinant virus expressing the G protein, mice produced VSV-neutralizing antibodies and were protected against lethal encephalitis upon intravenous challenge with VSV. In cattle, the degree of protection against intradermalingually injected VSV was correlated with the level of neutralizing antibody produced following vaccination.

  3. Patient-Specific Neutralizing Antibody Responses to Herpes Simplex Virus Are Attributed to Epitopes on gD, gB, or Both and Can Be Type Specific.

    PubMed

    Cairns, Tina M; Huang, Zhen-Yu; Gallagher, John R; Lin, Yixin; Lou, Huan; Whitbeck, J Charles; Wald, Anna; Cohen, Gary H; Eisenberg, Roselyn J

    2015-09-01

    Herpes simplex virus 1 (HSV-1) and HSV-2 infect many humans and establish a latent infection in sensory ganglia. Although some infected people suffer periodic recurrences, others do not. Infected people mount both cell-mediated and humoral responses, including the production of virus-neutralizing antibodies (Abs) directed at viral entry glycoproteins. Previously, we examined IgGs from 10 HSV-seropositive individuals; all neutralized virus and were directed primarily against gD or gD+gB. Here, we expand our studies and examine 32 additional sera from HSV-infected individuals, 23 of whom had no recurrent disease. Using an Octet RED96 system, we screened all 32 serum samples directly for both glycoprotein binding and competition with known neutralizing anti-gD and -gB monoclonal Abs (MAbs). On average, the recurrent cohort exhibited higher binding to gD and gB and had higher neutralization titers. There were similar trends in the blocking of MAbs to critical gD and gB epitopes. When we depleted six sera of Abs to specific glycoproteins, we found different types of responses, but always directed primarily at gD and/or gB. Interestingly, in one dual-infected person, the neutralizing response to HSV-2 was due to gD2 and gB2, whereas HSV-1 neutralization was due to gD1 and gB1. In another case, virus neutralization was HSV-1 specific, with the Ab response directed entirely at gB1, despite this serum blocking type-common anti-gD and -gB neutralizing MAbs. These data are pertinent in the design of future HSV vaccines since they demonstrate the importance of both serotypes of gD and gB as immunogens. We previously showed that people infected with HSV produce neutralizing Abs directed against gD or a combination of gD+gB (and in one case, gD+gB+gC, which was HSV-1 specific). In this more extensive study, we again found that gD or gD+gB can account for the virus neutralizing response and critical epitopes of one or both of these proteins are represented in sera of naturally infected humans. However, we also found that some individuals produced a strong response against gB alone. In addition, we identified type-specific contributions to HSV neutralization from both gD and gB. Contributions from the other entry glycoproteins, gC and gH/gL, were minimal and limited to HSV-1 neutralization. Knowing the variations in how humans see and mount a response to HSV will be important to vaccine development. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. HIV Neutralizing Antibodies Induced by Native-like Envelope Trimers

    PubMed Central

    Sanders, Rogier W.; van Gils, Marit J.; Derking, Ronald; Sok, Devin; Ketas, Thomas J.; Burger, Judith A.; Ozorowski, Gabriel; Cupo, Albert; Simonich, Cassandra; Goo, Leslie; Arendt, Heather; Kim, Helen J.; Lee, Jeong Hyun; Pugach, Pavel; Williams, Melissa; Debnath, Gargi; Moldt, Brian; van Breemen, Mariëlle J.; Isik, Gözde; Medina-Ramírez, Max; Back, Jaap Willem; Koff, Wayne; Julien, Jean-Philippe; Rakasz, Eva G.; Seaman, Michael S.; Guttman, Miklos; Lee, Kelly K.; Klasse, Per Johan; LaBranche, Celia; Schief, William R.; Wilson, Ian A.; Overbaugh, Julie; Burton, Dennis R.; Ward, Andrew B.; Montefiori, David C.; Dean, Hansi; Moore, John P.

    2015-01-01

    A challenge for HIV-1 immunogen design is inducing neutralizing antibodies (NAbs) against neutralization-resistant (Tier-2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation (BG505 SOSIP.664) induced NAbs potently against the sequence-matched Tier-2 virus in rabbits and similar but weaker responses in macaques. The trimer also consistently induced cross-reactive NAbs against more sensitive (Tier-1) viruses. Tier-2 NAbs recognized conformational epitopes that differed between animals and in some cases overlapped with those recognized by broadly neutralizing antibodies (bNAbs), whereas Tier-1 responses targeted linear V3 epitopes. A second trimer, B41 SOSIP.664, also induced a strong autologous Tier-2 NAb response in rabbits. Thus, native-like trimers represent a promising starting point for developing HIV-1 vaccines aimed at inducing bNAbs. PMID:26089353

  5. Reliability of Pseudotyped Influenza Viral Particles in Neutralizing Antibody Detection

    PubMed Central

    Yang, Jinghui; Li, Weidong; Long, Yunfeng; Song, Shaohui; Liu, Jing; Zhang, Xinwen; Wang, Xiaoguang; Jiang, Shude; Liao, Guoyang

    2014-01-01

    Background Current influenza control strategies require an active surveillance system. Pseudotyped viral particles (pp) together with the evaluation of pre-existing immunity in a population might satisfy this requirement. However, the reliability of using pp in neutralizing antibody (nAb) detection are undefined. Methodology/Principal Findings Pseudotyped particles of A(H1N1)pmd09 (A/California/7/2009) and HPAI H5N1 (A/Anhui/1/2005), as well as their reassortants, were generated. The reliability of using these pp in nAb detection were compared concurrently with the corresponding viruses by a hemagglutination inhibition test, as well as ELISA-, cytopathic effect-, and fluorescence-based microneutralization assays. In the qualitative detection on nAbs, the pp and their corresponding viruses were in complete agreement, with an R2 value equal to or near 1 in two different populations. In the quantitative detection on nAbs, although the geometric mean titers (95% confidence interval) differed between the pp and viruses, no significant difference was observed. Furthermore, humoral immunity against the reassortants was evaluated; our results indicated strong consistency between the nAbs against reassortant pp and those against naïve pp harboring the same hemagglutinin. Conclusion/Significance The pp displayed high reliability in influenza virus nAb detection. The use of reassortant pp is a safe and convenient strategy for characterizing emerging influenza viruses and surveying the disease burden. PMID:25436460

  6. Identification of Human Papillomavirus Type 16 L1 Surface Loops Required for Neutralization by Human Sera†

    PubMed Central

    Carter, Joseph J.; Wipf, Greg C.; Madeleine, Margaret M.; Schwartz, Stephen M.; Koutsky, Laura A.; Galloway, Denise A.

    2006-01-01

    The variable surface loops on human papillomavirus (HPV) virions required for type-specific neutralization by human sera remain poorly defined. To determine which loops are required for neutralization, a series of hybrid virus-like particles (VLPs) were used to adsorb neutralizing activity from HPV type 16 (HPV16)-reactive human sera before being tested in an HPV16 pseudovirion neutralization assay. The hybrid VLPs used were composed of L1 sequences of either HPV16 or HPV31, on which one or two regions were replaced with homologous sequences from the other type. The regions chosen for substitution were the five known loops that form surface epitopes recognized by monoclonal antibodies and two additional variable regions between residues 400 and 450. Pretreatment of human sera, previously found to react to HPV16 VLPs in enzyme-linked immunosorbent assays, with wild-type HPV16 VLPs and hybrid VLPs that retained the neutralizing epitopes reduced or eliminated the ability of sera to inhibit pseudovirus infection in vitro. Surprisingly, substitution of a single loop often ablated the ability of VLPs to adsorb neutralizing antibodies from human sera. However, for all sera tested, multiple surface loops were found to be important for neutralizing activity. Three regions, defined by loops DE, FG, and HI, were most frequently identified as being essential for binding by neutralizing antibodies. These observations are consistent with the existence of multiple neutralizing epitopes on the HPV virion surface. PMID:16641259

  7. Identification of human papillomavirus type 16 L1 surface loops required for neutralization by human sera.

    PubMed

    Carter, Joseph J; Wipf, Greg C; Madeleine, Margaret M; Schwartz, Stephen M; Koutsky, Laura A; Galloway, Denise A

    2006-05-01

    The variable surface loops on human papillomavirus (HPV) virions required for type-specific neutralization by human sera remain poorly defined. To determine which loops are required for neutralization, a series of hybrid virus-like particles (VLPs) were used to adsorb neutralizing activity from HPV type 16 (HPV16)-reactive human sera before being tested in an HPV16 pseudovirion neutralization assay. The hybrid VLPs used were composed of L1 sequences of either HPV16 or HPV31, on which one or two regions were replaced with homologous sequences from the other type. The regions chosen for substitution were the five known loops that form surface epitopes recognized by monoclonal antibodies and two additional variable regions between residues 400 and 450. Pretreatment of human sera, previously found to react to HPV16 VLPs in enzyme-linked immunosorbent assays, with wild-type HPV16 VLPs and hybrid VLPs that retained the neutralizing epitopes reduced or eliminated the ability of sera to inhibit pseudovirus infection in vitro. Surprisingly, substitution of a single loop often ablated the ability of VLPs to adsorb neutralizing antibodies from human sera. However, for all sera tested, multiple surface loops were found to be important for neutralizing activity. Three regions, defined by loops DE, FG, and HI, were most frequently identified as being essential for binding by neutralizing antibodies. These observations are consistent with the existence of multiple neutralizing epitopes on the HPV virion surface.

  8. Serological relatedness of herpes simplex viruses. Type-specificity of antibody response.

    PubMed Central

    Skinner, G R; Thouless, M E; Trueman, S; Edwards, J; Gibbs, A J

    1976-01-01

    The serological relatedness of forty-seven strains of type 1 and type 2 herpes simplex virus was investigated by reciprocal and non-reciprocal neutralization kinetics. Early rabbit antisera divided the virus strains into two distinct groups where confident indentification of virus type was possible. Hyperimmune mouse and rabbit antisera did not divide the two virus types into two distinct non-over-lapping groups. The extent of overlap varied with the particular attribute of the virus being studied. The virus types were best discriminated by their neutralizability by type 1 antisera and least well by their neutralizability by type 2 antisera. The results of reciprocal kinetic neutralization test with hyperimmune mouse antisera were analysed by multi-dimensional cluster analysis. Hyperimmune mouse or rabbit antisera could not be discriminated with respect to their immunogenic type by their absolute neutralization rate constants against either type 1 or type 2 virus, but could be distinguished on a group basis by their relative neutralizability against both virus types (antiserum specificity attribute); however, using this latter criterion, the type of immunogen could only be predicted in seven of the forty antisera under test. 'Early' mouse antisera could also be distinguished as groups by their absolute k-values against type 1 herpes virus. Thus, immunogenic identification, on other than a group basis, was unreliable. The specificity of a given serum was inversely related to its titre. There was a positive correlation between the specificity of a given virus strain and of its corresponding antiserum. PMID:194831

  9. Canine distemper virus (CDV) infection of ferrets as a model for testing Morbillivirus vaccine strategies: NYVAC- and ALVAC-based CDV recombinants protect against symptomatic infection.

    PubMed Central

    Stephensen, C B; Welter, J; Thaker, S R; Taylor, J; Tartaglia, J; Paoletti, E

    1997-01-01

    Canine distemper virus (CDV) infection of ferrets causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system (CNS). We have tested candidate CDV vaccines incorporating the fusion (F) and hemagglutinin (HA) proteins in the highly attenuated NYVAC strain of vaccinia virus and in the ALVAC strain of canarypox virus, which does not productively replicate in mammalian hosts. Juvenile ferrets were vaccinated twice with these constructs, or with an attenuated live-virus vaccine, while controls received saline or the NYVAC and ALVAC vectors expressing rabies virus glycoprotein. Control animals did not develop neutralizing antibody and succumbed to distemper after developing fever, weight loss, leukocytopenia, decreased activity, conjunctivitis, an erythematous rash typical of distemper, CNS signs, and viremia in peripheral blood mononuclear cells (as measured by reverse transcription-PCR). All three CDV vaccines elicited neutralizing titers of at least 1:96. All vaccinated ferrets survived, and none developed viremia. Both recombinant vaccines also protected against the development of symptomatic distemper. However, ferrets receiving the live-virus vaccine lost weight, became lymphocytopenic, and developed the erythematous rash typical of CDV. These data show that ferrets are an excellent model for evaluating the ability of CDV vaccines to protect against symptomatic infection. Because the pathogenesis and clinical course of CDV infection of ferrets is quite similar to that of other Morbillivirus infections, including measles, this model will be useful in testing new candidate Morbillivirus vaccines. PMID:8995676

  10. Canine distemper virus (CDV) infection of ferrets as a model for testing Morbillivirus vaccine strategies: NYVAC- and ALVAC-based CDV recombinants protect against symptomatic infection.

    PubMed

    Stephensen, C B; Welter, J; Thaker, S R; Taylor, J; Tartaglia, J; Paoletti, E

    1997-02-01

    Canine distemper virus (CDV) infection of ferrets causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system (CNS). We have tested candidate CDV vaccines incorporating the fusion (F) and hemagglutinin (HA) proteins in the highly attenuated NYVAC strain of vaccinia virus and in the ALVAC strain of canarypox virus, which does not productively replicate in mammalian hosts. Juvenile ferrets were vaccinated twice with these constructs, or with an attenuated live-virus vaccine, while controls received saline or the NYVAC and ALVAC vectors expressing rabies virus glycoprotein. Control animals did not develop neutralizing antibody and succumbed to distemper after developing fever, weight loss, leukocytopenia, decreased activity, conjunctivitis, an erythematous rash typical of distemper, CNS signs, and viremia in peripheral blood mononuclear cells (as measured by reverse transcription-PCR). All three CDV vaccines elicited neutralizing titers of at least 1:96. All vaccinated ferrets survived, and none developed viremia. Both recombinant vaccines also protected against the development of symptomatic distemper. However, ferrets receiving the live-virus vaccine lost weight, became lymphocytopenic, and developed the erythematous rash typical of CDV. These data show that ferrets are an excellent model for evaluating the ability of CDV vaccines to protect against symptomatic infection. Because the pathogenesis and clinical course of CDV infection of ferrets is quite similar to that of other Morbillivirus infections, including measles, this model will be useful in testing new candidate Morbillivirus vaccines.

  11. Serum IgG titres, but not avidity, correlates with neutralizing antibody response after H5N1 vaccination.

    PubMed

    Pedersen, Gabriel Kristian; Höschler, Katja; Øie Solbak, Sara Marie; Bredholt, Geir; Pathirana, Rishi Delan; Afsar, Aram; Breakwell, Lucy; Nøstbakken, Jane Kristin; Raae, Arnt Johan; Brokstad, Karl Albert; Sjursen, Haakon; Zambon, Maria; Cox, Rebecca Jane

    2014-07-31

    Influenza H5N1 virus constitutes a pandemic threat and development of effective H5N1 vaccines is a global priority. Anti-influenza antibodies directed towards the haemagglutinin (HA) define a correlate of protection. Both antibody concentration and avidity may be important for virus neutralization and resolving influenza disease. We conducted a phase I clinical trial of a virosomal H5N1 vaccine adjuvanted with the immunostimulating complex Matrix M™. Sixty adults were intramuscularly immunized with two vaccine doses (21 days apart) of 30 μg HA alone or 1.5, 7.5 or 30 μg HA adjuvanted with Matrix M™. Serum H5 HA1-specific antibodies and virus neutralization were determined at days 0, 21, 42, 180 and 360 and long-term memory B cells at day 360 post-vaccination. The binding of the HA specific antibodies was measured by avidity NaSCN-elution ELISA and surface plasmon resonance (SPR). The H5 HA1-specific IgG response peaked after the second dose (day 42), was dominated by IgG1 and IgG3 and was highest in the adjuvanted vaccine groups. IgG titres correlated significantly with virus neutralization at all time points (Spearman r≥0.66, p<0.0001). By elution ELISA, serum antibody avidity was highest at days 180 and 360 post vaccination and did not correlate with virus neutralization. Long-lasting H5 HA1-specific memory B cells produced high IgG antibody avidity similar to serum IgG. Maturation of serum antibody avidity continued up to day 360 after influenza H5N1 vaccination. Virus neutralization correlated with serum H5 HA1-specific IgG antibody concentrations and not antibody avidity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Single-dose live-attenuated Nipah virus vaccines confer complete protection by eliciting antibodies directed against surface glycoproteins

    PubMed Central

    DeBuysscher, Blair L.; Scott, Dana; Marzi, Andrea; Prescott, Joseph; Feldmann, Heinz

    2016-01-01

    Background Nipah virus (NiV), a zoonotic pathogen causing severe respiratory illness and encephalitis in humans, emerged in Malaysia in 1998 with subsequent outbreaks on an almost annual basis since 2001 in parts of the Indian subcontinent. The high case fatality rate, human-to-human transmission, wide-ranging reservoir distribution and lack of licensed intervention options are making NiV a serious regional and potential global public health problem. The objective of this study was to develop a fast-acting, single-dose NiV vaccine that could be implemented in a ring vaccination approach during outbreaks. Methods In this study we have designed new live-attenuated vaccine vectors based on recombinant vesicular stomatitis viruses (rVSV) expressing NiV glycoproteins (G or F) or nucleoprotein (N) and evaluated their protective efficacy in Syrian hamsters, an established NiV animal disease model. We further characterized the humoral immune response to vaccination in hamsters using ELISA and neutralization assays and performed serum transfer studies. Results Vaccination of Syrian hamsters with a single dose of the rVSV vaccine vectors resulted in strong humoral immune responses with neutralizing activities found only in those animals vaccinated with rVSV expressing NiV G or F proteins. Vaccinated animals with neutralizing antibody responses were completely protected from lethal NiV disease, whereas animals vaccinated with rVSV expressing NiV N showed only partial protection. Protection of NiV G or F vaccinated animals was conferred by antibodies, most likely the neutralizing fraction, as demonstrated by serum transfer studies. Protection of N-vaccinated hamsters was not antibody-dependent indicating a role of adaptive cellular responses for protection. Conclusions The rVSV vectors expressing Nipah virus G or F are prime candidates for new ‘emergency vaccines’ to be utilized for NiV outbreak management. PMID:24631094

  13. Single-dose live-attenuated Nipah virus vaccines confer complete protection by eliciting antibodies directed against surface glycoproteins.

    PubMed

    DeBuysscher, Blair L; Scott, Dana; Marzi, Andrea; Prescott, Joseph; Feldmann, Heinz

    2014-05-07

    Nipah virus (NiV), a zoonotic pathogen causing severe respiratory illness and encephalitis in humans, emerged in Malaysia in 1998 with subsequent outbreaks on an almost annual basis since 2001 in parts of the Indian subcontinent. The high case fatality rate, human-to-human transmission, wide-ranging reservoir distribution and lack of licensed intervention options are making NiV a serious regional and potential global public health problem. The objective of this study was to develop a fast-acting, single-dose NiV vaccine that could be implemented in a ring vaccination approach during outbreaks. In this study we have designed new live-attenuated vaccine vectors based on recombinant vesicular stomatitis viruses (rVSV) expressing NiV glycoproteins (G or F) or nucleoprotein (N) and evaluated their protective efficacy in Syrian hamsters, an established NiV animal disease model. We further characterized the humoral immune response to vaccination in hamsters using ELISA and neutralization assays and performed serum transfer studies. Vaccination of Syrian hamsters with a single dose of the rVSV vaccine vectors resulted in strong humoral immune responses with neutralizing activities found only in those animals vaccinated with rVSV expressing NiV G or F proteins. Vaccinated animals with neutralizing antibody responses were completely protected from lethal NiV disease, whereas animals vaccinated with rVSV expressing NiV N showed only partial protection. Protection of NiV G or F vaccinated animals was conferred by antibodies, most likely the neutralizing fraction, as demonstrated by serum transfer studies. Protection of N-vaccinated hamsters was not antibody-dependent indicating a role of adaptive cellular responses for protection. The rVSV vectors expressing Nipah virus G or F are prime candidates for new 'emergency vaccines' to be utilized for NiV outbreak management. Published by Elsevier Ltd.

  14. Structure-Based Design of Hepatitis C Virus Vaccines That Elicit Neutralizing Antibody Responses to a Conserved Epitope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Brian G.; Boucher, Elisabeth N.; Piepenbrink, Kurt H.

    Despite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody in complex with a conserved linear epitope from the HCV E2 envelope glycoprotein (residues 412 to 423; epitope I), we performed structure-based design of immunogens to induce antibody responses to this epitope. This resulted in epitope-based immunogens based on a cyclic defensin protein, asmore » well as a bivalent immunogen with two copies of the epitope on the E2 surface. We solved the X-ray structure of a cyclic immunogen in complex with the HCV1 antibody and confirmed preservation of the epitope conformation and the HCV1 interface. Mice vaccinated with our designed immunogens produced robust antibody responses to epitope I, and their serum could neutralize HCV. Notably, the cyclic designs induced greater epitope-specific responses and neutralization than the native peptide epitope. Beyond successfully designing several novel HCV immunogens, this study demonstrates the principle that neutralizing anti-HCV antibodies can be induced by epitope-based, engineered vaccines and provides the basis for further efforts in structure-based design of HCV vaccines. IMPORTANCEHepatitis C virus is a leading cause of liver disease and liver cancer, with approximately 3% of the world's population infected. To combat this virus, an effective vaccine would have distinct advantages over current therapeutic options, yet experimental vaccines have not been successful to date, due in part to the virus's high sequence variability leading to immune escape. In this study, we rationally designed several vaccine immunogens based on the structure of a conserved epitope that is the target of broadly neutralizing antibodies.In vivoresults in mice indicated that these antigens elicited epitope-specific neutralizing antibodies, with various degrees of potency and breadth. These promising results suggest that a rational design approach can be used to generate an effective vaccine for this virus.« less

  15. Glycoprotein-Specific Antibodies Produced by DNA Vaccination Protect Guinea Pigs from Lethal Argentine and Venezuelan Hemorrhagic Fever.

    PubMed

    Golden, Joseph W; Maes, Piet; Kwilas, Steven A; Ballantyne, John; Hooper, Jay W

    2016-01-20

    Several members of the Arenaviridae can cause acute febrile diseases in humans, often resulting in lethality. The use of convalescent-phase human plasma is an effective treatment in humans infected with arenaviruses, particularly species found in South America. Despite this, little work has focused on developing potent and defined immunotherapeutics against arenaviruses. In the present study, we produced arenavirus neutralizing antibodies by DNA vaccination of rabbits with plasmids encoding the full-length glycoprotein precursors of Junín virus (JUNV), Machupo virus (MACV), and Guanarito virus (GTOV). Geometric mean neutralizing antibody titers, as measured by the 50% plaque reduction neutralization test (PRNT(50)), exceeded 5,000 against homologous viruses. Antisera against each targeted virus exhibited limited cross-species binding and, to a lesser extent, cross-neutralization. Anti-JUNV glycoprotein rabbit antiserum protected Hartley guinea pigs from lethal intraperitoneal infection with JUNV strain Romero when the antiserum was administered 2 days after challenge and provided some protection (∼30%) when administered 4 days after challenge. Treatment starting on day 6 did not protect animals. We further formulated an IgG antibody cocktail by combining anti-JUNV, -MACV, and -GTOV antibodies produced in DNA-vaccinated rabbits. This cocktail protected 100% of guinea pigs against JUNV and GTOV lethal disease. We then expanded on this cocktail approach by simultaneously vaccinating rabbits with a combination of plasmids encoding glycoproteins from JUNV, MACV, GTOV, and Sabia virus (SABV). Sera collected from rabbits vaccinated with the combination vaccine neutralized all four targets. These findings support the concept of using a DNA vaccine approach to generate a potent pan-arenavirus immunotherapeutic. Arenaviruses are an important family of emerging viruses. In infected humans, convalescent-phase plasma containing neutralizing antibodies can mitigate the severity of disease caused by arenaviruses, particularly species found in South America. Because of variations in potency of the human-derived product, limited availability, and safety concerns, this treatment option has essentially been abandoned. Accordingly, despite this approach being an effective postinfection treatment option, research on novel approaches to produce potent polyclonal antibody-based therapies have been deficient. Here we show that DNA-based vaccine technology can be used to make potently neutralizing antibodies in rabbits that exclusively target the glycoproteins of several human-pathogenic arenaviruses found in South America, including JUNV, MACV, GTOV, and SABV. These antibodies protected guinea pigs from lethal disease when given post-virus challenge. We also generated a purified antibody cocktail with antibodies targeting three arenaviruses and demonstrated protective efficacy against all three targets. Our findings demonstrate that use of the DNA vaccine technology could be used to produce candidate antiarenavirus neutralizing antibody-based products. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Glycoprotein-Specific Antibodies Produced by DNA Vaccination Protect Guinea Pigs from Lethal Argentine and Venezuelan Hemorrhagic Fever

    PubMed Central

    Golden, Joseph W.; Maes, Piet; Kwilas, Steven A.; Ballantyne, John

    2016-01-01

    ABSTRACT Several members of the Arenaviridae can cause acute febrile diseases in humans, often resulting in lethality. The use of convalescent-phase human plasma is an effective treatment in humans infected with arenaviruses, particularly species found in South America. Despite this, little work has focused on developing potent and defined immunotherapeutics against arenaviruses. In the present study, we produced arenavirus neutralizing antibodies by DNA vaccination of rabbits with plasmids encoding the full-length glycoprotein precursors of Junín virus (JUNV), Machupo virus (MACV), and Guanarito virus (GTOV). Geometric mean neutralizing antibody titers, as measured by the 50% plaque reduction neutralization test (PRNT50), exceeded 5,000 against homologous viruses. Antisera against each targeted virus exhibited limited cross-species binding and, to a lesser extent, cross-neutralization. Anti-JUNV glycoprotein rabbit antiserum protected Hartley guinea pigs from lethal intraperitoneal infection with JUNV strain Romero when the antiserum was administered 2 days after challenge and provided some protection (∼30%) when administered 4 days after challenge. Treatment starting on day 6 did not protect animals. We further formulated an IgG antibody cocktail by combining anti-JUNV, -MACV, and -GTOV antibodies produced in DNA-vaccinated rabbits. This cocktail protected 100% of guinea pigs against JUNV and GTOV lethal disease. We then expanded on this cocktail approach by simultaneously vaccinating rabbits with a combination of plasmids encoding glycoproteins from JUNV, MACV, GTOV, and Sabia virus (SABV). Sera collected from rabbits vaccinated with the combination vaccine neutralized all four targets. These findings support the concept of using a DNA vaccine approach to generate a potent pan-arenavirus immunotherapeutic. IMPORTANCE Arenaviruses are an important family of emerging viruses. In infected humans, convalescent-phase plasma containing neutralizing antibodies can mitigate the severity of disease caused by arenaviruses, particularly species found in South America. Because of variations in potency of the human-derived product, limited availability, and safety concerns, this treatment option has essentially been abandoned. Accordingly, despite this approach being an effective postinfection treatment option, research on novel approaches to produce potent polyclonal antibody-based therapies have been deficient. Here we show that DNA-based vaccine technology can be used to make potently neutralizing antibodies in rabbits that exclusively target the glycoproteins of several human-pathogenic arenaviruses found in South America, including JUNV, MACV, GTOV, and SABV. These antibodies protected guinea pigs from lethal disease when given post-virus challenge. We also generated a purified antibody cocktail with antibodies targeting three arenaviruses and demonstrated protective efficacy against all three targets. Our findings demonstrate that use of the DNA vaccine technology could be used to produce candidate antiarenavirus neutralizing antibody-based products. PMID:26792737

  17. Equine Immunoglobulin and Equine Neutralizing F(ab')₂ Protect Mice from West Nile Virus Infection.

    PubMed

    Cui, Jiannan; Zhao, Yongkun; Wang, Hualei; Qiu, Boning; Cao, Zengguo; Li, Qian; Zhang, Yanbo; Yan, Feihu; Jin, Hongli; Wang, Tiecheng; Sun, Weiyang; Feng, Na; Gao, Yuwei; Sun, Jing; Wang, Yanqun; Perlman, Stanley; Zhao, Jincun; Yang, Songtao; Xia, Xianzhu

    2016-12-18

    West Nile virus (WNV) is prevalent in Africa, Europe, the Middle East, West Asia, and North America, and causes epidemic encephalitis. To date, no effective therapy for WNV infection has been developed; therefore, there is urgent need to find an efficient method to prevent WNV disease. In this study, we prepared and evaluated the protective efficacy of immune serum IgG and pepsin-digested F(ab')₂ fragments from horses immunized with the WNV virus-like particles (VLP) expressing the WNV M and E proteins. Immune equine F(ab')₂ fragments and immune horse sera efficiently neutralized WNV infection in tissue culture. The passive transfer of equine immune antibodies significantly accelerated the virus clearance in the spleens and brains of WNV infected mice, and reduced mortality. Thus, equine immunoglobulin or equine neutralizing F(ab')₂ passive immunotherapy is a potential strategy for the prophylactic or therapeutic treatment of patients infected with WNV.

  18. Naturally Occurring Antibodies That Recognize Linear Epitopes in the Amino Terminus of the Hepatitis C Virus E2 Protein Confer Noninterfering, Additive Neutralization

    PubMed Central

    Tarr, Alexander W.; Urbanowicz, Richard A.; Jayaraj, Dhanya; Brown, Richard J. P.; McKeating, Jane A.; Irving, William L.

    2012-01-01

    Chronic hepatitis C virus (HCV) infection can persist even in the presence of a broadly neutralizing antibody response. Various mechanisms that underpin viral persistence have been proposed, and one of the most recently proposed mechanisms is the presence of interfering antibodies that negate neutralizing responses. Specifically, it has been proposed that antibodies targeting broadly neutralizing epitopes located within a region of E2 encompassing residues 412 to 423 can be inhibited by nonneutralizing antibodies binding to a less conserved region encompassing residues 434 to 446. To investigate this phenomenon, we characterized the neutralizing and inhibitory effects of human-derived affinity-purified immunoglobulin fractions and murine monoclonal antibodies and show that antibodies to both regions neutralize HCV pseudoparticle (HCVpp) and cell culture-infectious virus (HCVcc) infection albeit with different breadths and potencies. Epitope mapping revealed the presence of overlapping but distinct epitopes in both regions, which may explain the observed differences in neutralizing phenotypes. Crucially, we failed to demonstrate any inhibition between these two groups of antibodies, suggesting that interference by nonneutralizing antibodies, at least for the region encompassing residues 434 to 446, does not provide a mechanism for HCV persistence in chronically infected individuals. PMID:22171278

  19. Passive immunization against HIV/AIDS by antibody gene transfer.

    PubMed

    Yang, Lili; Wang, Pin

    2014-01-27

    Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored ImmunoProphylaxis (VIP), which involves passive immunization by viral vector-mediated delivery of genes encoding broadly neutralizing antibodies (bnAbs) for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing antibodies. This unorthodox approach raises new promise for combating the ongoing global HIV pandemic. In this article, we survey the status of antibody gene transfer, review the revolutionary progress on isolation of extremely bnAbs, detail VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics.

  20. Redesign of a cross-reactive antibody to dengue virus with broad-spectrum activity and increased in vivo potency

    PubMed Central

    Tharakaraman, Kannan; Robinson, Luke N.; Hatas, Andrew; Chen, Yi-Ling; Siyue, Liu; Raguram, S.; Sasisekharan, V.; Wogan, Gerald N.; Sasisekharan, Ram

    2013-01-01

    Affinity improvement of proteins, including antibodies, by computational chemistry broadly relies on physics-based energy functions coupled with refinement. However, achieving significant enhancement of binding affinity (>10-fold) remains a challenging exercise, particularly for cross-reactive antibodies. We describe here an empirical approach that captures key physicochemical features common to antigen–antibody interfaces to predict protein–protein interaction and mutations that confer increased affinity. We apply this approach to the design of affinity-enhancing mutations in 4E11, a potent cross-reactive neutralizing antibody to dengue virus (DV), without a crystal structure. Combination of predicted mutations led to a 450-fold improvement in affinity to serotype 4 of DV while preserving, or modestly increasing, affinity to serotypes 1–3 of DV. We show that increased affinity resulted in strong in vitro neutralizing activity to all four serotypes, and that the redesigned antibody has potent antiviral activity in a mouse model of DV challenge. Our findings demonstrate an empirical computational chemistry approach for improving protein–protein docking and engineering antibody affinity, which will help accelerate the development of clinically relevant antibodies. PMID:23569282

  1. Immunoglobulin with High-Titer In Vitro Cross-Neutralizing Hepatitis C Virus Antibodies Passively Protects Chimpanzees from Homologous, but Not Heterologous, Challenge

    PubMed Central

    Engle, Ronald E.; Faulk, Kristina; Wang, Richard Y.; Farci, Patrizia; Alter, Harvey J.; Purcell, Robert H.

    2015-01-01

    The importance of neutralizing antibodies (NAbs) in protection against hepatitis C virus (HCV) remains controversial. We infused a chimpanzee with H06 immunoglobulin from a genotype 1a HCV-infected patient and challenged with genotype strains efficiently neutralized by H06 in vitro. Genotype 1a NAbs afforded no protection against genotype 4a or 5a. Protection against homologous 1a lasted 18 weeks, but infection emerged when NAb titers waned. However, 6a infection was prevented. The differential in vivo neutralization patterns have implications for HCV vaccine development. PMID:26085160

  2. Immune response to synthetic peptides representing antigenic sites on the glycoprotein of infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Emmenegger, Eveline J.; Huang, C.; LaPatra, S.; Winton, James R.

    1995-01-01

    Summary ― Monoclonal antibodies against infectious hematopoietic necrosis virus have been used to react with recombinant expression products in immunoblots and to select neutralization-resistant mutants for sequence analysis. These strategies identified neutralizing and non-neutralizing antigenic sites on the viral glycoprotein. Synthetic peptides based upon the amino acid sequences of these antigenic sites were synthesized and were injected together with an adjuvant into rainbow trout. The constructs generally failed to stimulate neutralizing antibodies in the fish. These results indicate that we need to understand more about the ability of peptide antigens to stimulate fish immune systems.

  3. [The phenomenon of antigenic defectiveness in naturally circulating strains of the tick-borne encephalitis virus and its possible connection to seronegative forms of the disease].

    PubMed

    Pogodina, V V; Bochkova, N G; Dzhivanian, T I; Levina, L S; Karganova, G G; Riasova, R A; Sergeeva, V A; Lashkevich, V A

    1992-01-01

    Ten strains of tick-borne encephalitis (TBE) virus isolated from single specimens of I. persulcatus ticks were studied. The strains were divided into antigenically complete (AC) and antigenically defective (AD), depending on the presence or absence of some virus antigens in concentrated virus preparations, characteristics in rocket immune electrophoresis (RIEP), rate and intensity of humoral immune response in monkeys and rabbits, and plaque size in SPEV cell culture. The AC-strain markers include high activities of precipitating, hemagglutinating (HA), and complement-fixing (CF) antigens, formation of precipitates moving in rocket shape towards anode and cathode in RIEP, rapid development of antihemagglutinins and virus-neutralizing antibodies, large plaques (3-5 mm). The AD variants are characterized by the lack of HA and precipitating activity, low titres of CF antigen, slow and poor immune response, the lack of cathode precipitate "rocket", very small plaques. The antigenic defectiveness is transitory and shows in early passages; after 10-11 passages in SPEV cell cultures or in white mice, transformation AD----AC occurs. A transformed strain is neutralized, like standard TBE strains, by blood sera of a typical patient with poliomyelitis-like form of TBE. Examinations of blood sera from the population of an endemic zone (Yaroslavl Province) and 67 TBE patients (Kurgan Province) demonstrated the association of AC and AD variants with the formation of immune portion of the population and TBE etiology. Cases of the disease confirmed by seroconversion in HI with commercial diagnosticum are associated with AC variants, whereas AD variants are associated with those TBE cases which are difficult to diagnose using the commercial diagnosticum.

  4. Isolation and characterization of a virus-specific ribonucleoprotein complex from reticuloendotheliosis virus-transformed chicken bone marrow cells.

    PubMed Central

    Wong, T C; Kang, C Y

    1978-01-01

    Chicken bone marrow cells transformed by reticuloendotheliosis virus (REV) produce in the cytoplasm a ribonucleoprotein (RNP) complex which has a sedimentation value of approximately 80 to 100S and a density of 1.23 g/cm3. This RNP complex is not derived from the mature virion. An endogenous RNA-directed DNA polymerase activity is associated with the RNP complex. The enzyme activity was completely neutralized by anti-REV DNA polymerase antibody but not by anti-avian myeloblastosis virus DNA polymerase antibody. The DNA product from the endogenous RNA-directed DNA polymerase reaction of the RNP complex hybridized to REV RNA but not to avian leukosis virus RNA. The RNA extracted from the RNP hybridized only to REV-specific complementary DNA synthesized from an endogenous DNA polymerase reaction of purified REV. The size of the RNA in the RNP is 30 to 35S, which represents the subunit size of the genomic RNA. No 60S mature genomic RNA was found within the RNP complex. The significance of finding the endogenous DNA polymerase activity in the viral RNP in infected cells and the maturation process of 60S virion RNA of REV are discussed. PMID:81319

  5. Active evolution of memory B-cells specific to viral gH/gL/pUL128/130/131 pentameric complex in healthy subjects with silent human cytomegalovirus infection.

    PubMed

    Xia, Lin; Tang, Aimin; Meng, Weixu; Freed, Daniel C; He, Linling; Wang, Dai; Li, Fengsheng; Li, Leike; Xiong, Wei; Gui, Xun; Schultz, Robbie D; Chen, Haotai; He, Xi; Swoyer, Ryan; Ha, Sha; Liu, Yaping; Morris, Charles D; Zhou, Yu; Wang, I-Ming; Zhao, Qinjian; Luo, Wenxin; Xia, Ningshao; Espeseth, Amy S; Hazuda, Daria J; Rupp, Richard E; Barrett, Alan D; Zhang, Ningyan; Zhu, Jiang; Fu, Tong-Ming; An, Zhiqiang

    2017-09-26

    Human cytomegalovirus (HCMV) can cause life-threatening infection in immunosuppressed patients, and in utero infection that may lead to birth defects. No vaccine is currently available. HCMV infection in healthy subjects is generally asymptomatic, and virus persists as latent infection for life. Host immunity is effective against reactivation and super-infection with another strain. Thus, vaccine candidates able to elicit immune responses similar to those of natural infection may confer protection. Since neutralization is essential for prophylactic vaccines, it is important to understand how antiviral antibodies are developed in natural infection. We hypothesized that the developmental path of antibodies in seropositive subjects could be unveiled by interrogating host B-cell repertoires using unique genetic signature sequences of mAbs. Towards this goal, we isolated 56 mAbs from three healthy donors with different neutralizing titers. Antibodies specific to the gH/gL/pUL128/130/131 pentameric complex were more potent in neutralization than those to gB. Using these mAbs as probes, patterns of extended lineage development for B-cells and evidence of active antibody maturation were revealed in two donors with higher neutralizing titers. Importantly, such patterns were limited to mAbs specific to the pentamer, but none to gB. Thus, memory B-cells with antiviral function such as neutralization were active during latent infection in the two donors, and this activity was responsible for their higher neutralizing titers. Our results indicated that memory B-cells of neutralizing capacity could be frequently mobilized in host, probably responding to silent viral episodes, further suggesting that neutralizing antibodies could play a role in control of recurrent infection.

  6. The presence of anti-Tat antibodies in HIV-infected individuals is associated with containment of CD4+ T-cell decay and viral load, and with delay of disease progression: results of a 3-year cohort study

    PubMed Central

    2014-01-01

    Background Tat is a key HIV-1 virulence factor, which plays pivotal roles in virus gene expression, replication, transmission and disease progression. After release, extracellular Tat accumulates in tissues and exerts effects on both the virus and the immune system, promoting immune activation and virus spreading while disabling the host immune defense. In particular, Tat binds Env spikes on virus particles forming a virus entry complex, which favors infection of dendritic cells and efficient transmission to T cells via RGD-binding integrins. Tat also shields the CCR5-binding sites of Env rendering ineffective virus neutralization by anti-Env antibodies (Abs). This is reversed by the anti-Tat Abs present in natural infection or induced by vaccination. Findings Here we present the results of a cohort study, showing that the presence of anti-Tat Abs in asymptomatic and treatment-naïve HIV-infected subjects is associated with containment of CD4+ T-cell loss and viral load and with a delay of disease progression. In fact, no subjects with high anti-Tat Ab titers initiated antiretroviral therapy during the three years of follow-up. In contrast, no significant effects were seen for anti-Env and anti-Gag Abs. The increase of anti-Env Ab titers was associated with a reduced risk of starting therapy only in the presence of anti-Tat Abs, suggesting an effect of combined anti-Tat and anti-Env Abs on the Tat/Env virus entry complex and on virus neutralization. Conclusions Anti-Tat immunity may help delay HIV disease progression, thus, targeting Tat may offer a novel therapeutic intervention to postpone antiretroviral treatment or to increase its efficacy. PMID:24961156

  7. Multimodality vaccination against clade C SHIV: partial protection against mucosal challenges with a heterologous tier 2 virus.

    PubMed

    Lakhashe, Samir K; Byrareddy, Siddappa N; Zhou, Mingkui; Bachler, Barbara C; Hemashettar, Girish; Hu, Shiu-Lok; Villinger, Francois; Else, James G; Stock, Shannon; Lee, Sandra J; Vargas-Inchaustegui, Diego A; Cofano, Egidio Brocca; Robert-Guroff, Marjorie; Johnson, Welkin E; Polonis, Victoria R; Forthal, Donald N; Loret, Erwann P; Rasmussen, Robert A; Ruprecht, Ruth M

    2014-11-12

    We sought to test whether vaccine-induced immune responses could protect rhesus macaques (RMs) against upfront heterologous challenges with an R5 simian-human immunodeficiency virus, SHIV-2873Nip. This SHIV strain exhibits many properties of transmitted HIV-1, such as tier 2 phenotype (relatively difficult to neutralize), exclusive CCR5 tropism, and gradual disease progression in infected RMs. Since no human AIDS vaccine recipient is likely to encounter an HIV-1 strain that exactly matches the immunogens, we immunized the RMs with recombinant Env proteins heterologous to the challenge virus. For induction of immune responses against Gag, Tat, and Nef, we explored a strategy of immunization with overlapping synthetic peptides (OSP). The immune responses against Gag and Tat were finally boosted with recombinant proteins. The vaccinees and a group of ten control animals were given five low-dose intrarectal (i.r.) challenges with SHIV-2873Nip. All controls and seven out of eight vaccinees became systemically infected; there was no significant difference in viremia levels of vaccinees vs. controls. Prevention of viremia was observed in one vaccinee which showed strong boosting of virus-specific cellular immunity during virus exposures. The protected animal showed no challenge virus-specific neutralizing antibodies in the TZM-bl or A3R5 cell-based assays and had low-level ADCC activity after the virus exposures. Microarray data strongly supported a role for cellular immunity in the protected animal. Our study represents a case of protection against heterologous tier 2 SHIV-C by vaccine-induced, virus-specific cellular immune responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A small antigenic determinant of the Chikungunya virus E2 protein is sufficient to induce neutralizing antibodies which are partially protective in mice.

    PubMed

    Weber, Christopher; Büchner, Sarah M; Schnierle, Barbara S

    2015-04-01

    The mosquito-borne Chikungunya virus (CHIKV) causes high fever and severe joint pain in humans. It is expected to spread in the future to Europe and has recently reached the USA due to globalization, climate change and vector switch. Despite this, little is known about the virus life cycle and, so far, there is no specific treatment or vaccination against Chikungunya infections. We aimed here to identify small antigenic determinants of the CHIKV E2 protein able to induce neutralizing immune responses. E2 enables attachment of the virus to target cells and a humoral immune response against E2 should protect from CHIKV infections. Seven recombinant proteins derived from E2 and consisting of linear and/or structural antigens were created, and were expressed in and purified from E. coli. BALB/c mice were vaccinated with these recombinant proteins and the mouse sera were screened for neutralizing antibodies. Whereas a linear N-terminally exposed peptide (L) and surface-exposed parts of the E2 domain A (sA) alone did not induce neutralizing antibodies, a construct containing domain B and a part of the β-ribbon (called B+) was sufficient to induce neutralizing antibodies. Furthermore, domain sA fused to B+ (sAB+) induced the highest amount of neutralizing antibodies. Therefore, the construct sAB+ was used to generate a recombinant modified vaccinia virus Ankara (MVA), MVA-CHIKV-sAB+. Mice were vaccinated with MVA-CHIKV-sAB+ and/or the recombinant protein sAB+ and were subsequently challenged with wild-type CHIKV. Whereas four vaccinations with MVA-CHIKV-sAB+ were not sufficient to protect mice from a CHIKV infection, protein vaccination with sAB+ markedly reduced the viral titers of vaccinated mice. The recombinant protein sAB+ contains important structural antigens for a neutralizing antibody response in mice and its formulation with appropriate adjuvants might lead to a future CHIKV vaccine.

  9. GB Virus Type C Envelope Protein E2 Elicits Antibodies That React with a Cellular Antigen on HIV-1 Particles and Neutralize Diverse HIV-1 Isolates

    PubMed Central

    Mohr, Emma L.; Xiang, Jinhua; McLinden, James H.; Kaufman, Thomas M.; Chang, Qing; Montefiori, David C.; Klinzman, Donna; Stapleton, Jack T.

    2012-01-01

    Broadly neutralizing Abs to HIV-1 are well described; however, identification of Ags that elicit these Abs has proven difficult. Persistent infection with GB virus type C (GBV-C) is associated with prolonged survival in HIV-1–infected individuals, and among those without HIV-1 viremia, the presence of Ab to GBV-C glycoprotein E2 is also associated with survival. GBV-C E2 protein inhibits HIV-1 entry, and an antigenic peptide within E2 interferes with gp41-induced membrane perturbations in vitro, suggesting the possibility of structural mimicry between GBV-C E2 protein and HIV-1 particles. Naturally occurring human and experimentally induced GBV-C E2 Abs were examined for their ability to neutralize infectious HIV-1 particles and HIV-1–enveloped pseudovirus particles. All GBV-C E2 Abs neutralized diverse isolates of HIV-1 with the exception of rabbit anti-peptide Abs raised against a synthetic GBV-C E2 peptide. Rabbit anti–GBV-C E2 Abs neutralized HIV-1–pseudotyped retrovirus particles but not HIV-1–pseudotyped vesicular stomatitis virus particles, and E2 Abs immune-precipitated HIV-1 gag particles containing the vesicular stomatitis virus type G envelope, HIV-1 envelope, GBV-C envelope, or no viral envelope. The Abs did not neutralize or immune-precipitate mumps or yellow fever viruses. Rabbit GBV-C E2 Abs inhibited HIV attachment to cells but did not inhibit entry following attachment. Taken together, these data indicate that the GBV-C E2 protein has a structural motif that elicits Abs that cross-react with a cellular Ag present on retrovirus particles, independent of HIV-1 envelope glycoproteins. The data provide evidence that a heterologous viral protein can induce HIV-1–neutralizing Abs. PMID:20826757

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Feng; Fong, Rachel H.; Austin, Stephen K.

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes severe acute and chronic disease in humans. Although highly inhibitory murine and human monoclonal antibodies (mAbs) have been generated, the structural basis of their neutralizing activity remains poorly characterized. In this paper, we determined the cryo-EM structures of chikungunya virus-like particles complexed with antibody fragments (Fab) of two highly protective human mAbs, 4J21 and 5M16, that block virus fusion with host membranes. Both mAbs bind primarily to sites within the A and B domains, as well as to the B domain’s β-ribbon connector of the viral glycoprotein E2. The footprints ofmore » these antibodies on the viral surface were consistent with results from loss-of-binding studies using an alanine scanning mutagenesis-based epitope mapping approach. The Fab fragments stabilized the position of the B domain relative to the virus, particularly for the complex with 5M16. Finally, this finding is consistent with a mechanism of neutralization in which anti-CHIKV mAbs that bridge the A and B domains impede movement of the B domain away from the underlying fusion loop on the E1 glycoprotein and therefore block the requisite pH-dependent fusion of viral and host membranes.« less

  11. Peptides designed to spatially depict the Epstein-Barr virus major virion glycoprotein gp350 neutralization epitope elicit antibodies that block virus-neutralizing antibody 72A1 interaction with the native gp350 molecule.

    PubMed

    Tanner, Jerome E; Coinçon, Mathieu; Leblond, Valérie; Hu, Jing; Fang, Janey M; Sygusch, Jurgen; Alfieri, Caroline

    2015-05-01

    Epstein-Barr virus (EBV) is the etiologic agent of infectious mononucleosis and the root cause of B-cell lymphoproliferative disease in individuals with a weakened immune system, as well as a principal cofactor in nasopharyngeal carcinoma, various lymphomas, and other cancers. The EBV major virion surface glycoprotein gp350 is viewed as the best vaccine candidate to prevent infectious mononucleosis in healthy EBV-naive persons and EBV-related cancers in at-risk individuals. Previous epitope mapping of gp350 revealed only one dominant neutralizing epitope, which has been shown to be the target of the monoclonal antibody 72A1. Computer modeling of the 72A1 antibody interaction with the gp350 amino terminus was used to identify gp350 amino acids that could form strong ionic, electrostatic, or hydrogen bonds with the 72A1 antibody. Peptide DDRTTLQLAQNPVYIPETYPYIKWDN (designated peptide 2) and peptide GSAKPGNGSYFASVKTEMLGNEID (designated peptide 3) were designed to spatially represent the gp350 amino acids predicted to interact with the 72A1 antibody paratope. Peptide 2 bound to the 72A1 antibody and blocked 72A1 antibody recognition of the native gp350 molecule. Peptide 2 and peptide 3 were recognized by human IgG and shown to elicit murine antibodies that could target gp350 and block its recognition by the 72A1 antibody. This work provides a structural mapping of the interaction between the EBV-neutralizing antibody 72A1 and the major virion surface protein gp350. gp350 mimetic peptides that spatially depict the EBV-neutralizing epitope would be useful as a vaccine to focus the immune system exclusively to this important virus epitope. The production of virus-neutralizing antibodies targeting the Epstein-Barr virus (EBV) major surface glycoprotein gp350 is important for the prevention of infectious mononucleosis and EBV-related cancers. The data presented here provide the first in silico map of the gp350 interaction with a virus-blocking monoclonal antibody. Immunization with gp350 peptides identified by in silico mapping generated antibodies that cross-react with the EBV gp350 molecule and block recognition of the gp350 molecule by a virus-neutralizing antibody. Through its ability to focus the immune system exclusively on the gp350 sequence important for viral entry, these peptides may form the basis of an EBV vaccine candidate. This strategy would sidestep the production of other irrelevant gp350 antibodies that divert the immune system from generating a protective antiviral response or that impede access to the virus-blocking epitope by protective antibodies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Structural Constraints of Vaccine-Induced Tier-2 Autologous HIV Neutralizing Antibodies Targeting the Receptor-Binding Site.

    PubMed

    Bradley, Todd; Fera, Daniela; Bhiman, Jinal; Eslamizar, Leila; Lu, Xiaozhi; Anasti, Kara; Zhang, Ruijung; Sutherland, Laura L; Scearce, Richard M; Bowman, Cindy M; Stolarchuk, Christina; Lloyd, Krissey E; Parks, Robert; Eaton, Amanda; Foulger, Andrew; Nie, Xiaoyan; Karim, Salim S Abdool; Barnett, Susan; Kelsoe, Garnett; Kepler, Thomas B; Alam, S Munir; Montefiori, David C; Moody, M Anthony; Liao, Hua-Xin; Morris, Lynn; Santra, Sampa; Harrison, Stephen C; Haynes, Barton F

    2016-01-05

    Antibodies that neutralize autologous transmitted/founder (TF) HIV occur in most HIV-infected individuals and can evolve to neutralization breadth. Autologous neutralizing antibodies (nAbs) against neutralization-resistant (Tier-2) viruses are rarely induced by vaccination. Whereas broadly neutralizing antibody (bnAb)-HIV-Envelope structures have been defined, the structures of autologous nAbs have not. Here, we show that immunization with TF mutant Envs gp140 oligomers induced high-titer, V5-dependent plasma neutralization for a Tier-2 autologous TF evolved mutant virus. Structural analysis of autologous nAb DH427 revealed binding to V5, demonstrating the source of narrow nAb specificity and explaining the failure to acquire breadth. Thus, oligomeric TF Envs can elicit autologous nAbs to Tier-2 HIVs, but induction of bnAbs will require targeting of precursors of B cell lineages that can mature to heterologous neutralization. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Human non-neutralizing HIV-1 envelope monoclonal antibodies limit the number of founder viruses during SHIV mucosal infection in rhesus macaques

    DOE PAGES

    Santra, Sampa; Tomaras, Georgia D.; Warrier, Ranjit; ...

    2015-08-03

    HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4⁺ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant regionmore » of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.« less

  14. Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques

    PubMed Central

    Liao, Hua-Xin; Pollara, Justin; Liu, Pinghuang; Alam, S. Munir; Zhang, Ruijun; Cocklin, Sarah L.; Shen, Xiaoying; Duffy, Ryan; Xia, Shi-Mao; Schutte, Robert J.; Pemble IV, Charles W.; Dennison, S. Moses; Li, Hui; Chao, Andrew; Vidnovic, Kora; Evans, Abbey; Klein, Katja; Kumar, Amit; Robinson, James; Landucci, Gary; Forthal, Donald N.; Montefiori, David C.; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Rerks-Ngarm, Supachai; Robb, Merlin L.; Michael, Nelson L.; Kim, Jerome H.; Soderberg, Kelly A.; Giorgi, Elena E.; Blair, Lily; Korber, Bette T.; Moog, Christiane; Shattock, Robin J.; Schmitz, Joern E.; Moody, M. A.; Gao, Feng; Ferrari, Guido; Shaw, George M.; Haynes, Barton F.

    2015-01-01

    HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses. PMID:26237403

  15. Human non-neutralizing HIV-1 envelope monoclonal antibodies limit the number of founder viruses during SHIV mucosal infection in rhesus macaques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santra, Sampa; Tomaras, Georgia D.; Warrier, Ranjit

    HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4⁺ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant regionmore » of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.« less

  16. Independent segregation of two antigenic specificities (VP3 and VP7) involved in neutralization of rotavirus infectivity.

    PubMed Central

    Hoshino, Y; Sereno, M M; Midthun, K; Flores, J; Kapikian, A Z; Chanock, R M

    1985-01-01

    Antiserum prepared against the M37 strain of rotavirus, recovered from an asymptomatic newborn infant in Venezuela, neutralized two prototype human rotaviruses that define two separate serotypes: serotype 1 (Wa) and serotype 4 (ST3). Thus, the M37 strain is a naturally occurring intertypic rotavirus. Analysis of reassortant viruses produced during coinfection in vitro indicated that the observed dual serotype specificity of M37 resulted from sharing a related outer capsid protein, VP3, with the ST3 virus and another related outer capsid protein, VP7, with the Wa virus. Analysis of single (VP3)-gene-substitution reassortants indicated that VP3 was as potent an immunogen as VP7. In addition, direct evidence was obtained that the serotype specificity of neutralizing antibody elicited by VP3 can differ from the serotype specificity of neutralizing antibody elicited by VP7, indicating the need for a dual system of rotavirus classification in which the neutralization specificity of both VP3 and VP7 outer capsid proteins are identified. Images PMID:3001716

  17. A protein-based smallpox vaccine protects mice from vaccinia and ectromelia virus challenges when given as a prime and single boost

    PubMed Central

    Xiao, Yuhong; Aldaz-Carroll, Lydia; Ortiz, Alexandra M.; Whitbeck, J. Charles; Alexander, Edward; Lou, Huan; Davis, J. Heather L.; Braciale, Thomas J.; Eisenberg, Roselyn J.; Cohen, Gary H.; Isaacs, Stuart N.

    2007-01-01

    The heightened concern about the intentional release of variola virus has led to the need to develop safer smallpox vaccines. While subunit vaccine strategies are safer than live virus vaccines, subunit vaccines have been hampered by the need for multiple boosts to confer optimal protection. Here we developed a protein-based subunit vaccine strategy that provides rapid protection in mouse models of orthopoxvirus infections after a prime and single boost. Mice vaccinated with vaccinia virus envelope proteins from the mature virus (MV) and extracellular virus (EV) adjuvanted with CpG-ODN and alum were protected from lethal intranasal challenge with vaccinia virus and the mouse-specific ectromelia virus. Organs from mice vaccinated with three proteins (A33, B5 and L1) and then sacrificed after challenge contained significantly lower titers of virus when compared to control groups of mice that were not vaccinated or that received sub-optimal formulations of the vaccine. Sera from groups of mice obtained prior to challenge had neutralizing activity against the MV and also inhibited comet formation indicating anti-EV activity. Long-term partial protection was also seen in mice challenged with vaccinia virus 6 months after initial vaccinations. Thus, this work represents a step toward the development of a practical subunit smallpox vaccine. PMID:17098336

  18. Human Monoclonal Antibodies to a Novel Cluster of Conformational Epitopes on HCV E2 with Resistance to Neutralization Escape in a Genotype 2a Isolate

    PubMed Central

    Keck, Zhen-yong; Xia, Jinming; Wang, Yong; Wang, Wenyan; Krey, Thomas; Prentoe, Jannick; Carlsen, Thomas; Li, Angela Ying-Jian; Patel, Arvind H.; Lemon, Stanley M.; Bukh, Jens; Rey, Felix A.; Foung, Steven K. H.

    2012-01-01

    The majority of broadly neutralizing antibodies to hepatitis C virus (HCV) are against conformational epitopes on the E2 glycoprotein. Many of them recognize overlapping epitopes in a cluster, designated as antigenic domain B, that contains residues G530 and D535. To gain information on other regions that will be relevant for vaccine design, we employed yeast surface display of antibodies that bound to genotype 1a H77C E2 mutant proteins containing a substitution either at Y632A (to avoid selecting non-neutralizing antibodies) or D535A. A panel of nine human monoclonal antibodies (HMAbs) was isolated and designated as HC-84-related antibodies. Each HMAb neutralized cell culture infectious HCV (HCVcc) with genotypes 1–6 envelope proteins with varying profiles, and each inhibited E2 binding to the viral receptor CD81. Five of these antibodies neutralized representative genotypes 1–6 HCVcc. Epitope mapping identified a cluster of overlapping epitopes that included nine contact residues in two E2 regions encompassing aa418–446 and aa611–616. Effect on virus entry was measured using H77C HCV retroviral pseudoparticles, HCVpp, bearing an alanine substitution at each of the contact residues. Seven of ten mutant HCVpp showed over 90% reduction compared to wild-type HCVpp and two others showed approximately 80% reduction. Interestingly, four of these antibodies bound to a linear E2 synthetic peptide encompassing aa434–446. This region on E2 has been proposed to elicit non-neutralizing antibodies in humans that interfere with neutralizing antibodies directed at an adjacent E2 region from aa410–425. The isolation of four HC-84 HMAbs binding to the peptide, aa434–446, proves that some antibodies to this region are to highly conserved epitopes mediating broad virus neutralization. Indeed, when HCVcc were passaged in the presence of each of these antibodies, virus escape was not observed. Thus, the cluster of HC-84 epitopes, designated as antigenic domain D, is relevant for vaccine design for this highly diverse virus. PMID:22511875

  19. PEGylation of Vesicular Stomatitis Virus Extends Virus Persistence in Blood Circulation of Passively Immunized Mice

    PubMed Central

    Tesfay, Mulu Z.; Kirk, Amber C.; Hadac, Elizabeth M.; Griesmann, Guy E.; Federspiel, Mark J.; Barber, Glen N.; Henry, Stephen M.; Peng, Kah-Whye

    2013-01-01

    We are developing oncolytic vesicular stomatitis viruses (VSVs) for systemic treatment of multiple myeloma, an incurable malignancy of antibody-secreting plasma cells that are specifically localized in the bone marrow. One of the presumed advantages for using VSV as an oncolytic virus is that human infections are rare and preexisting anti-VSV immunity is typically lacking in cancer patients, which is very important for clinical success. However, our studies show that nonimmune human and mouse serum can neutralize clinical-grade VSV, reducing the titer by up to 4 log units in 60 min. In addition, we show that neutralizing anti-VSV antibodies negate the antitumor efficacy of VSV, a concern for repeat VSV administration. We have investigated the potential use of covalent modification of VSV with polyethylene glycol (PEG) or a function-spacer-lipid (FSL)–PEG construct to inhibit serum neutralization and to limit hepatosplenic sequestration of systemically delivered VSV. We report that in mice passively immunized with neutralizing anti-VSV antibodies, PEGylation of VSV improved the persistence of VSV in the blood circulation, maintaining a more than 1-log-unit increase in VSV genome copies for up to 1 h compared to the genome copy numbers for the non-PEGylated virus, which was mostly cleared within 10 min after intravenous injection. We are currently investigating if this increase in PEGylated VSV circulating half-life can translate to increased virus delivery and better efficacy in mouse models of multiple myeloma. PMID:23325695

  20. Impact of Ebola mucin-like domain on antiglycoprotein antibody responses induced by Ebola virus-like particles.

    PubMed

    Martinez, Osvaldo; Tantral, Lee; Mulherkar, Nirupama; Chandran, Kartik; Basler, Christopher F

    2011-11-01

    Ebola virus (EBOV) glycoprotein (GP), responsible for mediating host-cell attachment and membrane fusion, contains a heavily glycosylated mucin-like domain hypothesized to shield GP from neutralizing antibodies. To test whether the mucin-like domain inhibits the production and function of anti-GP antibodies, we vaccinated mice with Ebola virus-like particles (VLPs) that express vesicular stomatitis virus G, wild-type EBOV GP (EBGP), EBOV GP without its mucin-like domain (ΔMucGP), or EBOV GP with a Crimean-Congo hemorrhagic fever virus mucin-like domain substituted for the EBOV mucin-like domain (CMsubGP). EBGP-VLP immunized mice elicited significantly higher serum antibody titers toward EBGP or its mutants, as detected by western blot analysis, than did VLP-ΔMucGP. However, EBGP-, ΔMucGP- and CMsubGP-VLP immunized mouse sera contained antibodies that bound to cell surface-expressed GP at similar levels. Furthermore, low but similar neutralizing antibody titers, measured against a vesicular stomatitis virus (VSV) expressing EBGP or ΔMucGP, were present in EBGP, ΔMucGP, and CMsubGP sera, although a slightly higher neutralizing titer (2- to 2.5-fold) was detected in ΔMucGP sera. We conclude that the EBOV GP mucin-like domain can increase relative anti-GP titers, however these titers appear to be directed, at least partly, to denatured GP. Furthermore, removing the mucin-like domain from immunizing VLPs has modest impact on neutralizing antibody titers in serum.

  1. HIV-1 Therapy with Monoclonal Antibody 3BNC117 Elicits Host Immune Responses against HIV-1

    PubMed Central

    Schoofs, Till; Klein, Florian; Braunschweig, Malte; Kreider, Edward F.; Feldmann, Anna; Nogueira, Lilian; Oliveira, Thiago; Lorenzi, Julio C. C.; Parrish, Erica H.; Learn, Gerald H.; West, Anthony P.; Bjorkman, Pamela J.; Schlesinger, Sarah J.; Seaman, Michael S.; Czartoski, Julie; McElrath, M. Juliana; Pfeifer, Nico; Hahn, Beatrice H.; Caskey, Marina; Nussenzweig, Michel C.

    2016-01-01

    3BNC117 is a broad and potent anti-HIV-1 neutralizing antibody that targets the CD4 binding site on the viral envelope spike. When administered passively, this antibody can prevent infection in animal models and suppress viremia in HIV-1-infected individuals. Here we report that HIV-1 immunotherapy with a single injection of 3BNC117 impacts host antibody responses in viremic subjects. In comparison to untreated controls that showed little change in their neutralizing activity over a six-month period, 3BNC117 infusion significantly improved neutralizing responses to heterologous tier 2 viruses in nearly all study participants. We conclude that 3BNC117-mediated immunotherapy enhances host humoral immunity to HIV-1. PMID:27199429

  2. Elimination of human T cell leukemia virus type-1-infected cells by neutralizing and antibody-dependent cellular cytotoxicity-inducing antibodies against human t cell leukemia virus type-1 envelope gp46.

    PubMed

    Tanaka, Yuetsu; Takahashi, Yoshiaki; Tanaka, Reiko; Kodama, Akira; Fujii, Hideki; Hasegawa, Atsuhiko; Kannagi, Mari; Ansari, Aftab A; Saito, Mineki

    2014-06-01

    Human T cell leukemia virus type-1 (HTLV-1) is prevalent worldwide with foci of high prevalence. However, to date no effective vaccine or drug against HTLV-1 infection has been developed. In efforts to define the role of antibodies in the control of HTLV-1 infection, we capitalized on the use of our previously defined anti-gp46 neutralizing monoclonal antibody (mAb) (clone LAT-27) and high titers of human anti-HTLV-1 IgG purified from HAM/TSP patients (HAM-IgG). LAT-27 and HAM-IgG completely blocked syncytium formation and T cell immortalization mediated by HTLV-1 in vitro. The addition of these antibodies to cultures of CD8(+) T cell-depleted peripheral blood mononuclear cells (PBMCs) from HAM/TSP patients at the initiation of culture not only decreased the numbers of Tax-expressing cells and the production of HTLV-1 p24 but also inhibited the spontaneous immortalization of T cells. Coculture of in vitro-HTLV-1-immortalized T cell lines with autologous PBMCs in the presence of LAT-27 or HAM-IgG, but not an F(ab')2 fragment of LAT-27 or nonneutralizing anti-gp46 mAbs, resulted in depletion of HTLV-1-infected cells. A 24-h (51)Cr release assay showed the presence of significant antibody-dependent cellular cytotoxicity (ADCC) activity in LAT-27 and HAM-IgG, but not F(ab')2 of LAT-27, resulting in the depletion of HTLV-1-infected T cells by autologous PBMCs. The depletion of natural killer (NK) cells from the effector PBMCs reduced this ADCC activity. Altogether, the present data demonstrate that the neutralizing and ADCC-inducing activities of anti-HTLV-1 antibodies are capable of reducing infection and eliminating HTLV-1-infected cells in the presence of autologous PBMCs.

  3. Development of in vitro and in vivo neutralization assays based on the pseudotyped H7N9 virus.

    PubMed

    Tian, Yabin; Zhao, Hui; Liu, Qiang; Zhang, Chuntao; Nie, Jianhui; Huang, Weijing; Li, Changgui; Li, Xuguang; Wang, Youchun

    2018-05-31

    H7N9 viral infections pose a great threat to both animal and human health. This avian virus cannot be handled in level 2 biocontainment laboratories, substantially hindering evaluation of prophylactic vaccines and therapeutic agents. Here, we report a high-titer pseudoviral system with a bioluminescent reporter gene, enabling us to visually and quantitatively conduct analyses of virus replications in both tissue cultures and animals. For evaluation of immunogenicity of H7N9 vaccines, we developed an in vitro assay for neutralizing antibody measurement based on the pseudoviral system; results generated by the in vitro assay were found to be strongly correlated with those by either hemagglutination inhibition (HI) or micro-neutralization (MN) assay. Furthermore, we injected the viruses into Balb/c mice and observed dynamic distributions of the viruses in the animals, which provides an ideal imaging model for quantitative analyses of prophylactic and therapeutic monoclonal antibodies. Taken together, the pseudoviral systems reported here could be of great value for both in vitro and in vivo evaluations of vaccines and antiviral agents without the need of wild type H7N9 virus.

  4. Development of a tier 1 R5 clade C simian-human immunodeficiency virus as a tool to test neutralizing antibody-based immunoprophylaxis.

    PubMed

    Siddappa, Nagadenahalli B; Hemashettar, Girish; Wong, Yin Ling; Lakhashe, Samir; Rasmussen, Robert A; Watkins, Jennifer D; Novembre, Francis J; Villinger, François; Else, James G; Montefiori, David C; Ruprecht, Ruth M

    2011-04-01

    While some recently transmitted HIV clade C (HIV-C) strains exhibited tier 1 neutralization phenotypes, most were tier 2 strains (J Virol 2010; 84:1439). Because induction of neutralizing antibodies (nAbs) through vaccination against tier 2 viruses has proven difficult, we have generated a tier 1, clade C simian-human immunodeficiency virus (SHIV-C) to permit efficacy testing of candidate AIDS vaccines against tier 1 viruses. SHIV-1157ipEL was created by swapping env of a late-stage virus with that of a tier 1, early form. After adaptation to rhesus macaques (RM), passaged SHIV-1157ipEL-p replicated vigorously in vitro and in vivo while maintaining R5 tropism. The virus was reproducibly transmissible intrarectally. Phylogenetically, SHIV-1157ipEL-p Env clustered with HIV-C sequences. All RM chronically infected with SHIV-1157ipEL-p developed high nAb titers against autologous as well as heterologous tier 1 strains. SHIV-1157ipEL-p was reproducibly transmitted in RM, induced cross-clade nAbs, and represents a tool to evaluate anti-HIV-C nAb responses in primates. © 2010 John Wiley & Sons A/S.

  5. West Nile Virus and Usutu Virus Monitoring of Wild Birds in Germany

    PubMed Central

    Michel, Friederike; Fast, Christine; Reuschel, Maximilian; Müller, Kerstin; Urbaniak, Sylvia; Brandes, Florian; Schwehn, Rebekka; Groschup, Martin H.; Ziegler, Ute

    2018-01-01

    By systematically setting up a unique nation-wide wild bird surveillance network, we monitored migratory and resident birds for zoonotic arthropod-borne virus infections, such as the flaviviruses West Nile virus (WNV) and Usutu virus (USUV). More than 1900 wild bird blood samples, from 20 orders and 136 different bird species, were collected between 2014 and 2016. Samples were investigated by WNV and USUV-specific real-time polymerase chain reactions as well as by differentiating virus neutralization tests. Dead bird surveillance data, obtained from organ investigations in 2016, were also included. WNV-specific RNA was not detected, whereas four wild bird blood samples tested positive for USUV-specific RNA. Additionally, 73 USUV-positive birds were detected in the 2016 dead bird surveillance. WNV neutralizing antibodies were predominantly found in long-distance, partial and short-distance migrants, while USUV neutralizing antibodies were mainly detected in resident wild bird species, preferentially with low seroprevalences. To date, WNV-specific RNA has neither been detected in wild birds, nor in mosquitoes, thus, we conclude that WNV is not yet present in Germany. Continued wild bird and mosquito monitoring studies are essential to detect the incursion of zoonotic viruses and to allow risk assessments for zoonotic pathogens. PMID:29361762

  6. Human Monoclonal Antibodies Against a Plethora of Viral Pathogens From Single Combinatorial Libraries

    NASA Astrophysics Data System (ADS)

    Williamson, R. Anthony; Burioni, Roberto; Sanna, Pietro P.; Partridge, Lynda J.; Barbas, Carlos F., III; Burton, Dennis R.

    1993-05-01

    Conventional antibody generation usually requires active immunization with antigen immediately prior to the preparation procedure. Combinatorial antibody library technology offers the possibility of cloning a range of antibody specificities at a single point in time and then accessing these specificities at will. Here we show that human monoclonal antibody Fab fragments against a plethora of infectious agents can be readily derived from a single library. Further examination of a number of libraries shows that whenever antibody against a pathogen can be detected in the serum of the donor, then specific antibodies can be derived from the corresponding library. We describe the generation of human Fab fragments against herpes simplex virus types 1 and 2, human cytomegalovirus, varicella zoster virus, rubella, human immunodeficiency virus type 1, and respiratory syncytial virus. The antibodies are shown to be highly specific and a number are effective in neutralizing virus in vitro.

  7. Seroepidemiology of arboviruses among seabirds and island residents of the Great Barrier Reef and Coral Sea.

    PubMed

    Humphery-Smith, I; Cybinski, D H; Byrnes, K A; St George, T D

    1991-10-01

    Duplicate neutralization tests were done on 401 avian and 101 human sera from island residents collected in the Coral Sea and on Australia's Great Barrier Reef against 19 known arboviruses. Antibodies to a potentially harmful flavivirus, Gadget's Gully virus, were equally present (4%) in both avian and human sera. Antibodies to another flavivirus, Murray Valley Encephalitis, and an ungrouped isolate, CSIRO 1499, were also present in both populations with non-significantly different incidences. Antibodies to Upolu, Johnston Atoll, Lake Clarendon, Taggert, Saumarez Reef and CSIRO 264 viruses were restricted to seabirds. Island residents with antibodies to Ross River and Barmah Forest viruses are thought to have been exposed to these viruses on the mainland as antibody to both viruses was absent among seabirds. These results indicate that consideration should be given to tick-associated arboviruses as potential public health hazards on islands where both seabird and human activities interact.

  8. Serological evidence of widespread exposure of Grenada fruit bats to chikungunya virus.

    PubMed

    Stone, D; Lyons, A C; Huang, Y-J S; Vanlandingham, D L; Higgs, S; Blitvich, B J; Adesiyun, A A; Santana, S E; Leiser-Miller, L; Cheetham, S

    2018-03-25

    Antibody detection against selected potentially zoonotic vector-borne alphaviruses and flaviviruses was conducted on sera from bats from all six parishes in Grenada, West Indies. Sera were tested for (i) antibodies to flaviviruses West Nile virus, St. Louis encephalitis virus, Ilhéus virus, Bussuquara virus (BSQV), Rio Bravo virus and all four serotypes of dengue virus (DENV) by plaque reduction neutralization test (PRNT); (ii) antibodies to alphaviruses western equine encephalitis virus, Venezuelan equine encephalitis virus and eastern equine encephalitis virus by epitope-blocking enzyme-linked immunosorbent assay (ELISA); and (iii) antibodies to the alphavirus chikungunya (CHIKV) by PRNT. Two species of fruit bats were sampled, Artibeus jamaicensis and Artibeus lituratus, all roosting in or within 1,000 m of human settlements. Fifteen (36%) of the 42 bats tested for neutralizing antibodies to CHIKV were positive. The CHIKV-seropositive bats lived in localities spanning five of the six parishes. All 43 bats tested for epitope-blocking ELISA antibody to the other alphaviruses were negative, except one positive for Venezuelan equine encephalitis virus. All 50 bats tested for neutralizing antibody to flaviviruses were negative, except one that had a BSQV PRNT 80 titre of 20. The CHIKV serology results indicate that bats living close to and within human settlements were exposed to CHIKV in multiple locations. Importantly, bats for this study were trapped a year after the introduction and peak of the human CHIKV epidemic in Grenada. Thus, our data indicate that bats were exposed to CHIKV possibly during a time of marked decline in human cases. © 2018 Blackwell Verlag GmbH.

  9. Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lok, Shee-Mei; Kostyuchenko, Victor; Nybakken, Grant E.

    The monoclonal antibody 1A1D-2 has been shown to strongly neutralize dengue virus serotypes 1, 2 and 3, primarily by inhibiting attachment to host cells. A crystal structure of its antigen binding fragment (Fab) complexed with domain III of the viral envelope glycoprotein, E, showed that the epitope would be partially occluded in the known structure of the mature dengue virus. Nevertheless, antibody could bind to the virus at 37 degrees C, suggesting that the virus is in dynamic motion making hidden epitopes briefly available. A cryo-electron microscope image reconstruction of the virus:Fab complex showed large changes in the organization ofmore » the E protein that exposed the epitopes on two of the three E molecules in each of the 60 icosahedral asymmetric units of the virus. The changes in the structure of the viral surface are presumably responsible for inhibiting attachment to cells.« less

  10. Recombinant Measles AIK-C Vaccine Strain Expressing the prM-E Antigen of Japanese Encephalitis Virus.

    PubMed

    Higuchi, Akira; Toriniwa, Hiroko; Komiya, Tomoyoshi; Nakayama, Tetsuo

    2016-01-01

    An inactivated Japanese encephalitis virus (JEV) vaccine, which induces neutralizing antibodies, has been used for many years in Japan. In the present study, the JEV prM-E protein gene was cloned, inserted at the P/M junction of measles AIK-C cDNA, and an infectious virus was recovered. The JEV E protein was expressed in B95a cells infected with the recombinant virus. Cotton rats were inoculated with recombinant virus. Measles PA antibodies were detected three weeks after immunization. Neutralizing antibodies against JEV developed one week after inoculation, and EIA antibodies were detected three weeks after immunization. The measles AIK-C-based recombinant virus simultaneously induced measles and JEV immune responses, and may be a candidate for infant vaccines. Therefore, the present strategy of recombinant viruses based on a measles vaccine vector would be applicable to the platform for vaccine development.

  11. HIV-1 maternal and infant variants show similar sensitivity to broadly neutralizing antibodies, but sensitivity varies by subtype

    PubMed Central

    Jennifer, Mabuka; Leslie, Goo; Maxwel, Majiwa O.; Ruth, Nduati; Julie, Overbaugh

    2014-01-01

    Rationale To protect against HIV infection, passively transferred and/or vaccine elicited neutralizing antibodies (NAbs) need to effectively target diverse subtypes that are transmitted globally. These variants are a limited subset of those present during chronic infection and display some unique features. In the case of mother-to-child transmission (MTCT), transmitted variants tend to be resistant to neutralization by maternal autologous NAbs. Method To investigate whether variants transmitted during MTCT are generally resistant to HIV-1 specific NAbs, 107 maternal or infant variants representing the dominant HIV-1 subtypes were tested against six recently identified HIV-1-specific broadly neutralizing monoclonal antibodies (bNAbs), NIH45-46W, VRC01, PGT128, PGT121, PG9, and PGT145. Results Infant and maternal variants did not differ in their neutralization sensitivity to individual bNAbs, nor did viruses from transmitting versus non-transmitting mothers, although there was a trend for viruses from transmitting mothers to be less sensitive overall. No single bNAb neutralized all viruses, but a combination of bNAbs that target distinct epitopes covered 100% of the variants tested. Compared to heterosexually transmitted variants, vertically transmitted variants, were significantly more sensitive to neutralization by PGT128 and PGT121 (p=0.03 in both cases) but there were no differences for the other bNAbs. Overall, subtype A variants were significantly more sensitive to NIH45-46 (p=0.04), VRC01 (p=0.002) and PGT145 (p=0.03) compared to the non-subtype A and less sensitive to PGT121 than subtype Cs (p=0.0001). Conclusion A combination of bNAbs against distinct epitopes may be needed to provide maximum coverage against viruses in different modes of transmission and diverse subtypes. PMID:23856624

  12. 9 CFR 113.311 - Bovine Virus Diarrhea Vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... virus diarrhea post-challenge; or both, the Master Seed Virus is unsatisfactory. (6) A sequential test... virus diarrhea susceptible calves shall be used as test animals (20 vaccinates and five controls). Blood... serum dilution in a varying serum-constant virus neutralization test with less than 500 TCID50 of bovine...

  13. Location of a major antigenic site involved in Ross River virus neutralization.

    PubMed

    Vrati, S; Fernon, C A; Dalgarno, L; Weir, R C

    1988-02-01

    The location of a major antigenic domain involved in the neutralization of an alphavirus, Ross River virus, has been defined in terms of its position in the amino acid sequence of the E2 glycoprotein. The domain encompasses three topographically close epitopes which were identified using three E2-specific neutralizing monoclonal antibodies in competitive binding assays. Nucleotide sequencing of the structural protein genes of monoclonal antibody-selected antigenic variants showed that for each variant there was a single nucleotide change in the E2 gene leading to a nonconservative amino acid substitution in E2. Changes were at positions 216, 234, and 246-251 in the amino acid sequence. The epitopes are in a region of E2 which, though not strongly conserved as to sequence among Ross River virus, Semliki Forest virus, and Sindbis virus, is conserved in its hydropathy profile among the three alphaviruses. The epitopes lie between two asparagine-linked glycosylation sites (residues 200 and 262) in E2. They are conserved as to position between the mouse virulent T48 strain and the mouse avirulent NB5092 strain.

  14. Hepatitis C Virus Evasion Mechanisms from Neutralizing Antibodies

    PubMed Central

    Di Lorenzo, Caterina; Angus, Allan G. N.; Patel, Arvind H.

    2011-01-01

    Hepatitis C virus (HCV) represents a major public health problem, affecting 3% of the world’s population. The majority of infected individuals develop chronic hepatitis, which can progress to cirrhosis and hepatocellular carcinoma. To date, a vaccine is not available and current therapy is limited by resistance, adverse effects and high costs. Although it is very well established that cell-mediated immunity is necessary for viral clearance, the importance of host antibodies in clearing HCV infection is being increasingly recognized. Indeed, recent studies indicate that neutralizing antibodies are induced in the early phase of infection by patients who subsequently clear viral infection. Conversely, patients who do not clear the virus develop high titers of neutralizing antibodies during the chronic stage. Surprisingly, these antibodies are not able to control HCV infection. HCV has therefore developed mechanisms to evade immune elimination, allowing it to persist in the majority of infected individuals. A detailed understanding of the mechanisms by which the virus escapes immune surveillance is therefore necessary if novel preventive and therapeutic treatments have to be designed. This review summarizes the current knowledge of the mechanisms used by HCV to evade host neutralizing antibodies. PMID:22163345

  15. Evidence of Schmallenberg virus circulation in ruminants in Greece.

    PubMed

    Chaintoutis, Serafeim C; Kiossis, Evangelos; Giadinis, Nektarios D; Brozos, Christos N; Sailleau, Corinne; Viarouge, Cyril; Bréard, Emmanuel; Papanastassopoulou, Maria; Zientara, Stéphan; Papadopoulos, Orestis; Dovas, Chrysostomos I

    2014-01-01

    During March 2013, we investigated the presence and the levels of Schmallenberg virus (SBV) circulation in three dairy cow herds and three sheep flocks in Central Macedonia, Greece. In two cow herds, a high number of abortions had been observed during the winter. Six bulk-tank milk samples and 147 individual sera were screened for SBV-specific antibodies by ELISA. Positive reactions were obtained from 5 out of 6 bulk-tank milk samples, 58 out of 90 sera from the 3 cow herds, and 2 sera from 2 of the 3 sheep flocks. Twenty-two ELISA-positive sera were tested by serum neutralization test (SNT). SNT confirmed the presence of neutralizing antibodies against SBV in all samples tested, with titers ranging between 1:32 and ≥1:256. No neutralizing antibodies against Akabane virus (AKAV) or Shamonda virus (SHAV) were detected, indicating that neutralizing antibodies against SBV do not cross react with AKAV or SHAV in SNT. ELISA testing of bulk-tank milk samples proved to be convenient and reliable. None of the tested sera was found positive for SBV by real-time RT-PCR, indicating that the sampling was conducted past the viremia stage. This is the first report of SBV circulation in Greece.

  16. A trivalent subunit antigen glycoprotein vaccine as immunotherapy for genital herpes in the guinea pig genital infection model.

    PubMed

    Awasthi, Sita; Hook, Lauren M; Shaw, Carolyn E; Friedman, Harvey M

    2017-12-02

    An estimated 417 million people worldwide ages 15 to 49 are infected with herpes simplex virus type 2 (HSV-2), the most common cause of genital ulcer disease. Some individuals experience frequent recurrences of genital lesions, while others only have subclinical infection, yet all risk transmitting infection to their intimate partners. A vaccine was developed that prevents shingles, which is a recurrent infection caused by varicella-zoster virus (VZV), a closely related member of the Herpesviridae family. The success of the VZV vaccine has stimulated renewed interest in a therapeutic vaccine for genital herpes. We have been evaluating a trivalent subunit antigen vaccine for prevention of genital herpes. Here, we assess the trivalent vaccine as immunotherapy in guinea pigs that were previously infected intravaginally with HSV-2. The trivalent vaccine contains HSV-2 glycoproteins C, D, and E (gC2, gD2, gE2) subunit antigens administered with CpG and alum as adjuvants. We previously demonstrated that antibodies to gD2 neutralize the virus while antibodies to gC2 and gE2 block their immune evasion activities, including evading complement attack and inhibiting activities mediated by the IgG Fc domain, respectively. Here, we demonstrate that the trivalent vaccine significantly boosts ELISA titers and neutralizing antibody titers. The trivalent vaccine reduces the frequency of recurrent genital lesions and vaginal shedding of HSV-2 DNA by approximately 50% and almost totally eliminates vaginal shedding of replication-competent virus, suggesting that the trivalent vaccine is a worthy candidate for immunotherapy of genital herpes.

  17. Design and Characterization of Epitope-Scaffold Immunogens That Present the Motavizumab Epitope from Respiratory Syncytial Virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLellan, Jason S.; Correia, Bruno E.; Chen, Man

    2012-06-28

    Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in infants, but an effective vaccine has not yet been developed. An ideal vaccine would elicit protective antibodies while avoiding virus-specific T-cell responses, which have been implicated in vaccine-enhanced disease with previous RSV vaccines. We propose that heterologous proteins designed to present RSV-neutralizing antibody epitopes and to elicit cognate antibodies have the potential to fulfill these vaccine requirements, as they can be fashioned to be free of viral T-cell epitopes. Here we present the design and characterization of three epitope-scaffolds that present the epitope of motavizumab, a potentmore » neutralizing antibody that binds to a helix-loop-helix motif in the RSV fusion glycoprotein. Two of the epitope-scaffolds could be purified, and one epitope-scaffold based on a Staphylococcus aureus protein A domain bound motavizumab with kinetic and thermodynamic properties consistent with the free epitope-scaffold being stabilized in a conformation that closely resembled the motavizumab-bound state. This epitope-scaffold was well folded as assessed by circular dichroism and isothermal titration calorimetry, and its crystal structure (determined in complex with motavizumab to 1.9 {angstrom} resolution) was similar to the computationally designed model, with all hydrogen-bond interactions critical for binding to motavizumab preserved. Immunization of mice with this epitope-scaffold failed to elicit neutralizing antibodies but did elicit sera with F binding activity. The elicitation of F binding antibodies suggests that some of the design criteria for eliciting protective antibodies without virus-specific T-cell responses are being met, but additional optimization of these novel immunogens is required.« less

  18. Immune Memory to Sudan Virus: Comparison between Two Separate Disease Outbreaks

    PubMed Central

    Sobarzo, Ariel; Eskira, Yael; Herbert, Andrew S.; Kuehne, Ana I.; Stonier, Spencer W.; Ochayon, David E.; Fedida-Metula, Shlomit; Balinandi, Steven; Kislev, Yaara; Tali, Neta; Lewis, Eli C.; Lutwama, Julius Julian; Dye, John M.; Yavelsky, Victoria; Lobel, Leslie

    2015-01-01

    Recovery from ebolavirus infection in humans is associated with the development of both cell-mediated and humoral immune responses. According to recent studies, individuals that did not survive infection with ebolaviruses appear to have lacked a robust adaptive immune response and the expression of several early innate response markers. However, a comprehensive protective immune profile has yet to be described. Here, we examine cellular memory immune responses among survivors of two separate Ebolavirus outbreaks (EVDs) due to Sudan virus (SUDV) infection in Uganda—Gulu 2000–2001 and Kibaale 2012. Freshly collected blood samples were stimulated with inactivated SUDV, as well as with recombinant SUDV or Ebola virus (EBOV) GP (GP1–649). In addition, ELISA and plaque reduction neutralization assays were performed to determine anti-SUDV IgG titers and neutralization capacity. Cytokine expression was measured in whole blood cultures in response to SUDV and SUDV GP stimulation in both survivor pools, demonstrating recall responses that indicate immune memory. Cytokine responses between groups were similar but had distinct differences. Neutralizing, SUDV-specific IgG activity against irradiated SUDV and SUDV recombinant proteins were detected in both survivor cohorts. Furthermore, humoral and cell-mediated crossreactivity to EBOV and EBOV recombinant GP1–649 was observed in both cohorts. In conclusion, immune responses in both groups of survivors demonstrate persistent recognition of relevant antigens, albeit larger cohorts are required in order to reach greater statistical significance. The differing cytokine responses between Gulu and Kibaale outbreak survivors suggests that each outbreak may not yield identical memory responses and promotes the merits of studying the immune responses among outbreaks of the same virus. Finally, our demonstration of cross-reactive immune recognition suggests that there is potential for developing cross-protective vaccines for ebolaviruses. PMID:25569078

  19. Immune memory to Sudan virus: comparison between two separate disease outbreaks.

    PubMed

    Sobarzo, Ariel; Eskira, Yael; Herbert, Andrew S; Kuehne, Ana I; Stonier, Spencer W; Ochayon, David E; Fedida-Metula, Shlomit; Balinandi, Steven; Kislev, Yaara; Tali, Neta; Lewis, Eli C; Lutwama, Julius Julian; Dye, John M; Yavelsky, Victoria; Lobel, Leslie

    2015-01-06

    Recovery from ebolavirus infection in humans is associated with the development of both cell-mediated and humoral immune responses. According to recent studies, individuals that did not survive infection with ebolaviruses appear to have lacked a robust adaptive immune response and the expression of several early innate response markers. However, a comprehensive protective immune profile has yet to be described. Here, we examine cellular memory immune responses among survivors of two separate Ebolavirus outbreaks (EVDs) due to Sudan virus (SUDV) infection in Uganda-Gulu 2000-2001 and Kibaale 2012. Freshly collected blood samples were stimulated with inactivated SUDV, as well as with recombinant SUDV or Ebola virus (EBOV) GP (GP1-649). In addition, ELISA and plaque reduction neutralization assays were performed to determine anti-SUDV IgG titers and neutralization capacity. Cytokine expression was measured in whole blood cultures in response to SUDV and SUDV GP stimulation in both survivor pools, demonstrating recall responses that indicate immune memory. Cytokine responses between groups were similar but had distinct differences. Neutralizing, SUDV-specific IgG activity against irradiated SUDV and SUDV recombinant proteins were detected in both survivor cohorts. Furthermore, humoral and cell-mediated crossreactivity to EBOV and EBOV recombinant GP1-649 was observed in both cohorts. In conclusion, immune responses in both groups of survivors demonstrate persistent recognition of relevant antigens, albeit larger cohorts are required in order to reach greater statistical significance. The differing cytokine responses between Gulu and Kibaale outbreak survivors suggests that each outbreak may not yield identical memory responses and promotes the merits of studying the immune responses among outbreaks of the same virus. Finally, our demonstration of cross-reactive immune recognition suggests that there is potential for developing cross-protective vaccines for ebolaviruses.

  20. Design and characterization of epitope-scaffold immunogens that present the motavizumab epitope from respiratory syncytial virus.

    PubMed

    McLellan, Jason S; Correia, Bruno E; Chen, Man; Yang, Yongping; Graham, Barney S; Schief, William R; Kwong, Peter D

    2011-06-24

    Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in infants, but an effective vaccine has not yet been developed. An ideal vaccine would elicit protective antibodies while avoiding virus-specific T-cell responses, which have been implicated in vaccine-enhanced disease with previous RSV vaccines. We propose that heterologous proteins designed to present RSV-neutralizing antibody epitopes and to elicit cognate antibodies have the potential to fulfill these vaccine requirements, as they can be fashioned to be free of viral T-cell epitopes. Here we present the design and characterization of three epitope-scaffolds that present the epitope of motavizumab, a potent neutralizing antibody that binds to a helix-loop-helix motif in the RSV fusion glycoprotein. Two of the epitope-scaffolds could be purified, and one epitope-scaffold based on a Staphylococcus aureus protein A domain bound motavizumab with kinetic and thermodynamic properties consistent with the free epitope-scaffold being stabilized in a conformation that closely resembled the motavizumab-bound state. This epitope-scaffold was well folded as assessed by circular dichroism and isothermal titration calorimetry, and its crystal structure (determined in complex with motavizumab to 1.9 Å resolution) was similar to the computationally designed model, with all hydrogen-bond interactions critical for binding to motavizumab preserved. Immunization of mice with this epitope-scaffold failed to elicit neutralizing antibodies but did elicit sera with F binding activity. The elicitation of F binding antibodies suggests that some of the design criteria for eliciting protective antibodies without virus-specific T-cell responses are being met, but additional optimization of these novel immunogens is required. Published by Elsevier Ltd.

  1. A recombinant canine distemper virus expressing a modified rabies virus glycoprotein induces immune responses in mice.

    PubMed

    Li, Zhili; Wang, Jigui; Yuan, Daoli; Wang, Shuang; Sun, Jiazeng; Yi, Bao; Hou, Qiang; Mao, Yaping; Liu, Weiquan

    2015-06-01

    Canine distemper virus (CDV) and rabies virus (RV) are two important pathogens of the dog. CDV, a member of the morbillivirus genus, has shown promise as an expression vector. The glycoprotein from RV is a main contributor to protective immunity and capable of eliciting the production of virus-neutralizing antibodies. In this study, we recovered an attenuated strain of canine distemper virus and constructed a recombinant virus, rCDV-RV-G, expressing a modified (R333Q) rabies virus glycoprotein (RV-G) of RV Flury strain LEP. RV-G expression by the recombinant viruses was confirmed. Furthermore, G was proved to be incorporated into the surface of CDV particles. While replication of the recombinant virus was slightly reduced compared with the parental CDV, it stably expressed the RV-G over ten serial passages. Inoculation of mice induced specific neutralizing antibodies against both RV-G and CDV. Therefore, the rCDV-RV-G has the potential as a vaccine that may be used to control rabies virus infection in dogs and other animals.

  2. RIG-I-like receptor activation by dengue virus drives follicular T helper cell formation and antibody production

    PubMed Central

    Sprokholt, Joris K.; Kaptein, Tanja M.; van Hamme, John L.; Overmars, Ronald J.; Gringhuis, Sonja I.

    2017-01-01

    Follicular T helper cells (TFH) are fundamental in orchestrating effective antibody-mediated responses critical for immunity against viral infections and effective vaccines. However, it is unclear how virus infection leads to TFH induction. We here show that dengue virus (DENV) infection of human dendritic cells (DCs) drives TFH formation via crosstalk of RIG-I-like receptor (RLR) RIG-I and MDA5 with type I Interferon (IFN) signaling. DENV infection leads to RLR-dependent IKKε activation, which phosphorylates IFNα/β receptor-induced STAT1 to drive IL-27 production via the transcriptional complex ISGF3. Inhibiting RLR activation as well as neutralizing antibodies against IL-27 prevented TFH formation. DENV-induced CXCR5+PD-1+Bcl-6+ TFH cells secreted IL-21 and activated B cells to produce IgM and IgG. Notably, RLR activation by synthetic ligands also induced IL-27 secretion and TFH polarization. These results identify an innate mechanism by which antibodies develop during viral disease and identify RLR ligands as potent adjuvants for TFH-promoting vaccination strategies. PMID:29186193

  3. Specific-pathogen-free chickens vaccinated with a live FAdV-4 vaccine are fully protected against a severe challenge even in the absence of neutralizing antibodies.

    PubMed

    Schonewille, Esther; Jaspers, Ron; Paul, Guntram; Hess, Michael

    2010-06-01

    By adapting a very virulent fowl adenovirus serotype 4 (FAdV-4) to a fibroblast cell line (QT35) instead of growing the virus in chicken embryo liver cells or chicken kidney cells, it was possible to attenuate the virus. Birds infected with the attenuated virus (FAdV-4/QT35) on the first day of life expressed no adverse clinical signs and no mortality. Intramuscular challenge with the virulent virus grown on chicken embryo liver cells (FAdV-4/CEL) at 21 days of life induced high mortality in previously nonvaccinated birds, whereas none of the birds vaccinated at 1 day old with FAdV-4/QT35 died due to this challenge. Applying enzyme-linked immunosorbent assay and virus neutralization assay, only a weak antibody response could be detected in some birds following vaccination, a response that increased directly after challenge. Nonvaccinated birds displayed a delayed development of antibodies after challenge as compared to previously vaccinated birds. Even birds that did not develop a measurable neutralizing antibody titer prior to challenge were protected from the adverse effects of the virulent FAdV-4/CEL, a phenomenon not described so far for FAdVs. Altogether, the present investigation underlines that neutralizing antibodies are not needed to protect chickens against a severe infection with a virulent fowl adenovirus.

  4. Antigenicity-defined conformations of an extremely neutralization-resistant HIV-1 envelope spike

    DOE PAGES

    Cai, Yongfei; Karaca-Griffin, Selen; Chen, Jia; ...

    2017-04-10

    Here, the extraordinary genetic diversity of the HIV-1 envelope spike [Env; trimeric (gp160) 3, cleaved to (gp120/gp41) 3] poses challenges for vaccine development. Envs of different clinical isolates exhibit different sensitivities to antibody-mediated neutralization. Envs of difficult-to-neutralize viruses are thought to be more stable and conformationally homogeneous trimers than those of easy-to-neutralize viruses, thereby providing more effective concealment of conserved, functionally critical sites. In this study we have characterized the antigenic properties of an Env derived from one of the most neutralization-resistant HIV-1 isolates, CH120.6. Sequence variation at neutralizing epitopes does not fully account for its exceptional resistance to antibodies.more » The full-length, membrane-bound CH120.6 Env is indeed stable and conformationally homogeneous. Its antigenicity correlates closely with its neutralization sensitivity, and major changes in antigenicity upon CD4 engagement appear to be restricted to the coreceptor site. The CH120.6 gp140 trimer, the soluble and uncleaved ectodomain of (gp160) 3, retains many antigenic properties of the intact Env, consistent with a conformation close to that of Env spikes on a virion, whereas its monomeric gp120 exposes many nonneutralizing or strain-specific epitopes. Thus, trimer organization and stability are important determinants not only for occluding many epitopes but also for conferring resistance to neutralization by all but a small set of antibodies. Env preparations derived from neutralization-resistant viruses may induce irrelevant antibody responses less frequently than do other Envs and may be excellent templates for developing soluble immunogens.« less

  5. Antigenicity-defined conformations of an extremely neutralization-resistant HIV-1 envelope spike

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yongfei; Karaca-Griffin, Selen; Chen, Jia

    Here, the extraordinary genetic diversity of the HIV-1 envelope spike [Env; trimeric (gp160) 3, cleaved to (gp120/gp41) 3] poses challenges for vaccine development. Envs of different clinical isolates exhibit different sensitivities to antibody-mediated neutralization. Envs of difficult-to-neutralize viruses are thought to be more stable and conformationally homogeneous trimers than those of easy-to-neutralize viruses, thereby providing more effective concealment of conserved, functionally critical sites. In this study we have characterized the antigenic properties of an Env derived from one of the most neutralization-resistant HIV-1 isolates, CH120.6. Sequence variation at neutralizing epitopes does not fully account for its exceptional resistance to antibodies.more » The full-length, membrane-bound CH120.6 Env is indeed stable and conformationally homogeneous. Its antigenicity correlates closely with its neutralization sensitivity, and major changes in antigenicity upon CD4 engagement appear to be restricted to the coreceptor site. The CH120.6 gp140 trimer, the soluble and uncleaved ectodomain of (gp160) 3, retains many antigenic properties of the intact Env, consistent with a conformation close to that of Env spikes on a virion, whereas its monomeric gp120 exposes many nonneutralizing or strain-specific epitopes. Thus, trimer organization and stability are important determinants not only for occluding many epitopes but also for conferring resistance to neutralization by all but a small set of antibodies. Env preparations derived from neutralization-resistant viruses may induce irrelevant antibody responses less frequently than do other Envs and may be excellent templates for developing soluble immunogens.« less

  6. Sequences in Glycoprotein gp41, the CD4 Binding Site, and the V2 Domain Regulate Sensitivity and Resistance of HIV-1 to Broadly Neutralizing Antibodies

    PubMed Central

    O'Rourke, Sara M.; Schweighardt, Becky; Phung, Pham; Mesa, Kathryn A.; Vollrath, Aaron L.; Tatsuno, Gwen P.; To, Briana; Sinangil, Faruk; Limoli, Kay; Wrin, Terri

    2012-01-01

    The swarm of quasispecies that evolves in each HIV-1-infected individual represents a source of closely related Env protein variants that can be used to explore various aspects of HIV-1 biology. In this study, we made use of these variants to identify mutations that confer sensitivity and resistance to the broadly neutralizing antibodies found in the sera of selected HIV-1-infected individuals. For these studies, libraries of Env proteins were cloned from infected subjects and screened for infectivity and neutralization sensitivity. The nucleotide sequences of the Env proteins were then compared for pairs of neutralization-sensitive and -resistant viruses. In vitro mutagenesis was used to identify the specific amino acids responsible for the neutralization phenotype. All of the mutations altering neutralization sensitivity/resistance appeared to induce conformational changes that simultaneously enhanced the exposure of two or more epitopes located in different regions of gp160. These mutations appeared to occur at unique positions required to maintain the quaternary structure of the gp160 trimer, as well as conformational masking of epitopes targeted by neutralizing antibodies. Our results show that sequences in gp41, the CD4 binding site, and the V2 domain all have the ability to act as global regulators of neutralization sensitivity. Our results also suggest that neutralization assays designed to support the development of vaccines and therapeutics targeting the HIV-1 Env protein should consider virus variation within individuals as well as virus variation between individuals. PMID:22933284

  7. A Fatal Neuroinvasive West Nile Virus Infection in a Traveler Returning from Madagascar: Clinical, Epidemiological and Veterinary Investigations

    PubMed Central

    Larrieu, Sophie; Cardinale, Eric; Ocquidant, Philippe; Roger, Matthieu; Lepec, Richard; Delatte, Hélène; Camuset, Guillaume; Desprès, Philippe; Brottet, Elise; Charlin, Cyril; Michault, Alain

    2013-01-01

    A 58-year-old woman living in Reunion Island and returning from Madagascar was hospitalized for neuroinvasive encephalitis and died 1 month later. West Nile virus (WNV) infection was biologically confirmed by detection of immunoglobulin M (IgM) reactive with WNV antigens in both cerebrospinal fluid and serum, and weak neutralizing activity was also detected. A veterinary survey performed in her traveling area showed a seroprevalence of WNV of 28.7% (95% confidence interval [CI] = 21.1–36.3) in adult poultry, confirming an active circulation of the virus. Development of a severe form could be related to a weak antibody response, because the patient presented low IgM and IgG titers. This case report underlines the constant risk of emergence of West Nile in Indian Ocean territories, including Reunion Island where competent vectors are widely present during the whole year. PMID:23751400

  8. Rational Engineering and Characterization of an mAb that Neutralizes Zika Virus by Targeting a Mutationally Constrained Quaternary Epitope.

    PubMed

    Tharakaraman, Kannan; Watanabe, Satoru; Chan, Kuan Rong; Huan, Jia; Subramanian, Vidya; Chionh, Yok Hian; Raguram, Aditya; Quinlan, Devin; McBee, Megan; Ong, Eugenia Z; Gan, Esther S; Tan, Hwee Cheng; Tyagi, Anu; Bhushan, Shashi; Lescar, Julien; Vasudevan, Subhash G; Ooi, Eng Eong; Sasisekharan, Ram

    2018-05-09

    Following the recent emergence of Zika virus (ZIKV), many murine and human neutralizing anti-ZIKV antibodies have been reported. Given the risk of virus escape mutants, engineering antibodies that target mutationally constrained epitopes with therapeutically relevant potencies can be valuable for combating future outbreaks. Here, we applied computational methods to engineer an antibody, ZAb_FLEP, that targets a highly networked and therefore mutationally constrained surface formed by the envelope protein dimer. ZAb_FLEP neutralized a breadth of ZIKV strains and protected mice in distinct in vivo models, including resolving vertical transmission and fetal mortality in infected pregnant mice. Serial passaging of ZIKV in the presence of ZAb_FLEP failed to generate viral escape mutants, suggesting that its epitope is indeed mutationally constrained. A single-particle cryo-EM reconstruction of the Fab-ZIKV complex validated the structural model and revealed insights into ZAb_FLEP's neutralization mechanism. ZAb_FLEP has potential as a therapeutic in future outbreaks. Copyright © 2018. Published by Elsevier Inc.

  9. Iquitos Virus: A Novel Reassortant Orthobunyavirus Associated with Human Illness in Peru

    PubMed Central

    Aguilar, Patricia V.; Barrett, Alan D.; Saeed, Mohammad F.; Watts, Douglas M.; Russell, Kevin; Guevara, Carolina; Ampuero, Julia S.; Suarez, Luis; Cespedes, Manuel; Montgomery, Joel M.; Halsey, Eric S.; Kochel, Tadeusz J.

    2011-01-01

    Oropouche (ORO) virus, a member of the Simbu serogroup, is one of the few human pathogens in the Orthobunyavirus genus in the family Bunyaviridae. Genetic analyses of ORO-like strains from Iquitos, Peru, identified a novel reassortant containing the S and L segments of ORO virus and the M segment of a novel Simbu serogroup virus. This new pathogen, which we named Iquitos (IQT) virus, was first isolated during 1999 from a febrile patient in Iquitos, an Amazonian city in Peru. Subsequently, the virus was identified as the cause of outbreaks of “Oropouche fever” during 2005 and 2006 in Iquitos. In addition to the identification of 17 isolates of IQT virus between 1999 and 2006, surveys for neutralizing antibody among Iquitos residents revealed prevalence rates of 14.9% for ORO virus and 15.4% for IQT virus. Limited studies indicate that prior infection with ORO virus does not seem to protect against disease caused with the IQT virus infection. Identification of a new Orthobunyavirus human pathogen in the Amazon region of Peru highlights the need for strengthening surveillance activities and laboratory capabilities, and investigating the emergence of new pathogens in tropical regions of South America. PMID:21949892

  10. Detection of the mosquito-borne flaviviruses, West Nile, Dengue, Saint Louis Encephalitis, Ilheus, Bussuquara, and Yellow Fever in free-ranging black howlers (Alouatta caraya) of Northeastern Argentina.

    PubMed

    Morales, María A; Fabbri, Cintia M; Zunino, Gabriel E; Kowalewski, Martín M; Luppo, Victoria C; Enría, Delia A; Levis, Silvana C; Calderón, Gladys E

    2017-02-01

    Several medically important mosquito-borne flaviviruses have been detected in Argentina in recent years: Dengue (DENV), St. Louis encephalitis (SLEV), West Nile (WNV) and Yellow Fever (YFV) viruses. Evidence of Bussuquara virus (BSQV) and Ilheus virus (ILHV) activity were found, but they have not been associated with human disease. Non-human primates can act as important hosts in the natural cycle of flaviviruses and serological studies can lead to improved understanding of virus circulation dynamics and host susceptibility. From July-August 2010, we conducted serological and molecular surveys in free-ranging black howlers (Alouatta caraya) captured in northeastern Argentina. We used 90% plaque-reduction neutralization tests (PRNT90) to analyze 108 serum samples for antibodies to WNV, SLEV, YFV, DENV (serotypes 1and 3), ILHV, and BSQV. Virus genome detection was performed using generic reverse transcription (RT)-nested PCR to identify flaviviruses in 51 antibody-negative animals. Seventy animals had antibodies for one or more flaviviruses for a total antibody prevalence of 64.8% (70/108). Monotypic (13/70, 19%) and heterotypic (27/70, 39%) patterns were differentiated. Specific neutralizing antibodies against WNV, SLEV, DENV-1, DENV-3, ILHV, and BSQV were found. Unexpectedly, the highest flavivirus antibody prevalence detected was to WNV with 9 (8.33%) monotypic responses. All samples tested by (RT)-nested PCR were negative for viral genome. This is the first detection of WNV-specific antibodies in black howlers from Argentina and the first report in free-ranging non-human primates from Latin-American countries. Given that no animals had specific neutralizing antibodies to YFV, our results suggest that the study population remains susceptible to YFV. Monitoring of these agents should be strengthened to detect the establishment of sylvatic cycles of flaviviruses in America and evaluate risks to wildlife and human health.

  11. Native Human Monoclonal Antibodies with Potent Cross-Lineage Neutralization of Influenza B Viruses

    PubMed Central

    Vigil, Adam; Estélles, Angeles; Kauvar, Lawrence M.; Johnson, Scott K.

    2018-01-01

    ABSTRACT Although antibodies that effectively neutralize a broad set of influenza viruses exist in the human antibody repertoire, they are rare. We used a single-cell screening technology to identify rare monoclonal antibodies (MAbs) that recognized a broad set of influenza B viruses (IBV). The screen yielded 23 MAbs with diverse germ line origins that recognized hemagglutinins (HAs) derived from influenza strains of both the Yamagata and Victoria lineages of IBV. Of the 23 MAbs, 3 exhibited low expression in a transient-transfection system, 4 were neutralizers that bound to the HA head region, 11 were stalk-binding nonneutralizers, and 5 were stalk-binding neutralizers, with 4 of these 5 having unique antibody sequences. Of these four unique stalk-binding neutralizing MAbs, all were broadly reactive and neutralizing against a panel of multiple strains spanning both IBV lineages as well as highly effective in treating lethal IBV infections in mice at both 24 and 72 h postinfection. The MAbs in this group were thermostable and bound different epitopes in the highly conserved HA stalk region. These characteristics suggest that these MAbs are suitable for consideration as candidates for clinical studies to address their effectiveness in the treatment of IBV-infected patients. PMID:29507069

  12. Broad neutralization response in a subset of HIV-1 subtype C-infected viraemic non-progressors from southern India.

    PubMed

    Nandagopal, Paneerselvam; Bhattacharya, Jayanta; Srikrishnan, Aylur K; Goyal, Rajat; Ravichandran Swathirajan, Chinnambedu; Patil, Shilpa; Saravanan, Shanmugam; Deshpande, Suprit; Vignesh, Ramachandran; Solomon, Sunil Suhas; Singla, Nikhil; Mukherjee, Joyeeta; Murugavel, Kailapuri G

    2018-02-05

    Broadly neutralizing antibodies (bnAbs) have been considered to be potent therapeutic tools and potential vaccine candidates to enable protection against various clades of human immunodeficiency virus (HIV). The generation of bnAbs has been associated with enhanced exposure to antigen, high viral load and low CD4+ T cell counts, among other factors. However, only limited data are available on the generation of bnAbs in viraemic non-progressors that demonstrate moderate to high viraemia. Further, since HIV-1 subtype C viruses account for more than 50 % of global HIV infections, the identification of bnAbs with novel specificities is crucial to enable the development of potent tools to aid in HIV therapy and prevention. In the present study, we analysed and compared the neutralization potential of responses in 70 plasma samples isolated from ART-naïve HIV-1 subtype C-infected individuals with various disease progression profiles against a panel of 30 pseudoviruses. Among the seven samples that exhibited a neutralization breadth of ≥70 %, four were identified as 'elite neutralizers', and three of these were from viraemic non-progressors while the fourth was from a typical progressor. Analysis of the neutralization specificities revealed that none of the four elite neutralizers were reactive to epitopes in the membrane proximal external region (MPER), CD4-binding site and V1V2 or V3 glycan. However, two of the four elite neutralizers exhibited enhanced sensitivity towards viruses lacking N332 glycan, indicating high neutralization potency. Overall, our findings indicate that the identification of potent neutralization responses with distinct epitope specificities is possible from the as yet unexplored Indian population, which has a high prevalence of HIV-1 subtype C infection.

  13. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye Ling; Lin Jianguo; Sun Yuliang

    2006-08-01

    Recombinant baculoviruses (rBV) expressing Ebola virus VP40 (rBV-VP40) or GP (rBV-GP) proteins were generated. Infection of Sf9 insect cells by rBV-VP40 led to assembly and budding of filamentous particles from the cell surface as shown by electron microscopy. Ebola virus-like particles (VLPs) were produced by coinfection of Sf9 cells with rBV-VP40 and rBV-GP, and incorporation of Ebola GP into VLPs was demonstrated by SDS-PAGE and Western blot analysis. Recombinant baculovirus infection of insect cells yielded high levels of VLPs, which were shown to stimulate cytokine secretion from human dendritic cells similar to VLPs produced in mammalian cells. The immunogenicity ofmore » Ebola VLPs produced in insect cells was evaluated by immunization of mice. Analysis of antibody responses showed that most of the GP-specific antibodies were of the IgG2a subtype, while no significant level of IgG1 subtype antibodies specific for GP was induced, indicating the induction of a Th1-biased immune response. Furthermore, sera from Ebola VLP immunized mice were able to block infection by Ebola GP pseudotyped HIV virus in a single round infection assay, indicating that a neutralizing antibody against the Ebola GP protein was induced. These results show that production of Ebola VLPs in insect cells using recombinant baculoviruses represents a promising approach for vaccine development against Ebola virus infection.« less

  14. Analysis of the entry mechanism of Crimean-Congo hemorrhagic fever virus, using a vesicular stomatitis virus pseudotyping system.

    PubMed

    Suda, Yuto; Fukushi, Shuetsu; Tani, Hideki; Murakami, Shin; Saijo, Masayuki; Horimoto, Taisuke; Shimojima, Masayuki

    2016-06-01

    Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne disease causing severe hemorrhagic symptoms with a nearly 30 % case-fatality rate in humans. The experimental use of CCHF virus (CCHFV), which causes CCHF, requires high-biosafety-level (BSL) containment. In contrast, pseudotyping of various viral glycoproteins (GPs) onto vesicular stomatitis virus (VSV) can be used in facilities with lower BSL containment, and this has facilitated studies on the viral entry mechanism and the measurement of neutralizing activity, especially for highly pathogenic viruses. In the present study, we generated high titers of pseudotyped VSV bearing the CCHFV envelope GP and analyzed the mechanisms involved in CCHFV infection. A partial deletion of the CCHFV GP cytoplasmic domain increased the titer of the pseudotyped VSV, the entry mechanism of which was dependent on the CCHFV envelope GP. Using the pseudotype virus, DC-SIGN (a calcium-dependent [C-type] lectin cell-surface molecule) was revealed to enhance viral infection and act as an entry factor for CCHFV.

  15. Patterns of HIV/SIV Prevention and Control by Passive Antibody Immunization.

    PubMed

    Yamamoto, Hiroyuki; Matano, Tetsuro

    2016-01-01

    Neutralizing antibody (NAb) responses are promising immune effectors for control of human immunodeficiency virus (HIV) infection. Protective activity and mechanisms of immunodeficiency virus-specific NAbs have been increasingly scrutinized in animals infected with simian immunodeficiency virus (SIV), chimeric simian/human immunodeficiency virus (SHIV) and related viruses. Studies on such models have unraveled a previously underscored protective potential against in vivo immunodeficiency virus replication. Pre-challenge NAb titers feasibly provide sterile protection from SIV/SHIV infection by purging the earliest onset of viral replication and likely modulate innate immune cell responses. Sufficient sub-sterile NAb titers after established infection also confer dose-dependent reduction of viremia, and in certain earlier time frames augment adaptive immune cell responses and even provide rebound-free viral control. Here, we provide an overview of the obtained patterns of SIV/SHIV protection and viral control by various types of NAb passive immunizations and discuss how these notions may be extrapolated to NAb-based clinical control of HIV infection.

  16. Antigenic Relationships Among Four Herpesviruses

    PubMed Central

    Blue, W. T.; Plummer, G.

    1973-01-01

    Common viral antigens were detected, by fluorescent-antibody studies, in cells infected with herpes simplex virus 1, squirrel monkey herpesvirus 1, bovine rhinotracheitis, and equine abortion viruses. The two primate viruses showed slight cross-neutralization. PMID:4351969

  17. West Nile virus-neutralizing antibodies in wild birds from southern Spain.

    PubMed

    Ferraguti, M; LA Puente, J Martínez-DE; Soriguer, R; Llorente, F; Jiménez-Clavero, M Á; Figuerola, J

    2016-07-01

    West Nile virus (WNV) is an emerging vector-borne arbovirus with a zoonotic life-cycle whose main reservoir hosts are birds. In humans and horses, WNV infections rarely result in clinical disease but on occasions - depending on factors such as climatic conditions, insect communities and background immunity levels in local populations - they can lead to outbreaks that threaten public and animal health. We tested for the presence of WNV antibodies in 149 birds belonging to 32 different species. Samples were first tested using a bird-specific ELISA kit and then both positive and doubtful results were confirmed by neutralization tests using WNV and Usutu virus. WNV antibodies were confirmed in a resident Sylvia melanocephala juvenile, supporting the idea of local transmission of WNV in southern Spain in 2013. In addition, the serum from an adult blackbird (Turdus merula) showed neutralization of both WNV and Usutu virus. We discuss our results in light of the occurrence of WNV on horse farms in southern Spain in 2013.

  18. Unique Resistance of I/LnJ Mice to a Retrovirus Is Due to Sustained Interferon γ–dependent Production of Virus-neutralizing Antibodies

    PubMed Central

    Purdy, Alexandra; Case, Laure; Duvall, Melody; Overstrom-Coleman, Max; Monnier, Nilah; Chervonsky, Alexander; Golovkina, Tatyana

    2003-01-01

    Selection of immune escape variants impairs the ability of the immune system to sustain an efficient antiviral response and to control retroviral infections. Like other retroviruses, mouse mammary tumor virus (MMTV) is not efficiently eliminated by the immune system of susceptible mice. In contrast, MMTV-infected I/LnJ mice are capable of producing IgG2a virus-neutralizing antibodies, sustain this response throughout their life, and secrete antibody-coated virions into the milk, thereby preventing infection of their progeny. Antibodies were produced in response to several MMTV variants and were cross-reactive to them. Resistance to MMTV infection was recessive and was dependent on interferon (IFN)-γ production, because I/LnJ mice with targeted deletion of the INF-γ gene failed to produce any virus-neutralizing antibodies. These findings reveal a novel mechanism of resistance to retroviral infection that is based on a robust and sustained IFN-γ–dependent humoral immune response. PMID:12538662

  19. Virus inactivation by grapes and wines.

    PubMed Central

    Konowalchuk, J; Speirs, J I

    1976-01-01

    Infusions and extracts of different grapes inactivated poliovirus; agents responsible for this property resided in the skin of the grape. Commercial grape juice at both natural and neutral pH inactivate various enteric viruses and herpes simplex virus; a 1,000-fold reduction in poliovirus infectivity occurred after incubation with grape juice, pH 7.0, for 24 h at 4 degrees C. A variety of wines were antiviral but to a lesser extent than grape juice; red wines were more antiviral than white. Antiviral activity was demonstrable in fractions of grape juice varying in molecular weight from less than 1,000 to greater than 30,000 as determined by membrane filtration. Some restoration of poliovirus infectivity from virus-grape juice complexes was achieved with 1% gelatin, 0.1% Tween 80, 0.5% polyvinyl pyrrolidone, and 0.5% polyethylene glycol. PMID:12719

  20. Evaluation of serological cross-reactivity and cross-neutralization between the United States porcine epidemic diarrhea virus prototype and S-INDEL-variant strains.

    PubMed

    Chen, Qi; Thomas, Joseph T; Giménez-Lirola, Luis G; Hardham, John M; Gao, Qinshan; Gerber, Priscilla F; Opriessnig, Tanja; Zheng, Ying; Li, Ganwu; Gauger, Phillip C; Madson, Darin M; Magstadt, Drew R; Zhang, Jianqiang

    2016-04-05

    At least two genetically different porcine epidemic diarrhea virus (PEDV) strains have been identified in the United States (U.S. PEDV prototype and S-INDEL-variant strains). The current serological assays offered at veterinary diagnostic laboratories for detection of PEDV-specific antibody are based on the U.S. PEDV prototype strain. The objectives of this study were: 1) isolate the U.S. PEDV S-INDEL-variant strain in cell culture; 2) generate antisera against the U.S. PEDV prototype and S-INDEL-variant strains by experimentally infecting weaned pigs; 3) determine if the various PEDV serological assays could detect antibodies against the U.S. PEDV S-INDEL-variant strain and vice versa. A U.S. PEDV S-INDEL-variant strain was isolated in cell culture in this study. Three groups of PEDV-negative, 3-week-old pigs (five pigs per group) were inoculated orally with a U.S. PEDV prototype isolate (previously isolated in our lab), an S-INDEL-variant isolate or virus-negative culture medium. Serum samples collected at 0, 7, 14, 21 and 28 days post inoculation were evaluated by the following PEDV serological assays: 1) indirect fluorescent antibody (IFA) assays using the prototype and S-INDEL-variant strains as indicator viruses; 2) virus neutralization (VN) tests against the prototype and S-INDEL-variant viruses; 3) PEDV prototype strain whole virus based ELISA; 4) PEDV prototype strain S1-based ELISA; and 5) PEDV S-INDEL-variant strain S1-based ELISA. The positive antisera against the prototype strain reacted to and neutralized both prototype and S-INDEL-variant viruses, and the positive antisera against the S-INDEL-variant strain also reacted to and neutralized both prototype and S-INDEL-variant viruses, as examined by IFA antibody assays and VN tests. Antibodies against the two PEDV strains could be detected by all three ELISAs although detection rates varied to some degree. These data indicate that the antibodies against U.S. PEDV prototype and S-INDEL-variant strains cross-reacted and cross-neutralized both strains in vitro. The current serological assays based on U.S. PEDV prototype strain can detect antibodies against both U.S. PEDV strains.

  1. Anti-MPER antibodies with heterogeneous neutralization capacity are detectable in most untreated HIV-1 infected individuals

    PubMed Central

    2014-01-01

    Background The MPER region of the HIV-1 envelope glycoprotein gp41 is targeted by broadly neutralizing antibodies. However, the localization of this epitope in a hydrophobic environment seems to hamper the elicitation of these antibodies in HIV infected individuals. We have quantified and characterized anti-MPER antibodies by ELISA and by flow cytometry using a collection of mini gp41-derived proteins expressed on the surface of 293T cells. Longitudinal plasma samples from 35 HIV-1 infected individuals were assayed for MPER recognition and MPER-dependent neutralizing capacity using HIV-2 viruses engrafted with HIV-1 MPER sequences. Results Miniproteins devoid of the cysteine loop of gp41 exposed the MPER on 293T cell membrane. Anti-MPER antibodies were identified in most individuals and were stable when analyzed in longitudinal samples. The magnitude of the responses was strongly correlated with the global response to the HIV-1 envelope glycoprotein, suggesting no specific limitation for anti-MPER antibodies. Peptide mapping showed poor recognition of the C-terminal MPER moiety and a wide presence of antibodies against the 2F5 epitope. However, antibody titers failed to correlate with 2F5-blocking activity and, more importantly, with the specific neutralization of HIV-2 chimeric viruses bearing the HIV-1 MPER sequence; suggesting a strong functional heterogeneity in anti-MPER humoral responses. Conclusions Anti-MPER antibodies can be detected in the vast majority of HIV-1 infected individuals and are generated in the context of the global anti-Env response. However, the neutralizing capacity is heterogeneous suggesting that eliciting neutralizing anti-MPER antibodies by immunization might require refinement of immunogens to skip nonneutralizing responses. PMID:24909946

  2. Expression of Human Immunodeficiency Virus Type 1 Neutralizing Antibody Fragments Using Human Vaginal Lactobacillus.

    PubMed

    Marcobal, Angela; Liu, Xiaowen; Zhang, Wenlei; Dimitrov, Antony S; Jia, Letong; Lee, Peter P; Fouts, Timothy R; Parks, Thomas P; Lagenaur, Laurel A

    Eradication of human immunodeficiency virus type 1 (HIV-1) by vaccination with epitopes that produce broadly neutralizing antibodies is the ultimate goal for HIV prevention. However, generating appropriate immune responses has proven difficult. Expression of broadly neutralizing antibodies by vaginal colonizing lactobacilli provides an approach to passively target these antibodies to the mucosa. We tested the feasibility of expressing single-chain and single-domain antibodies (dAbs) in Lactobacillus to be used as a topical microbicide/live biotherapeutic. Lactobacilli provide an excellent platform to express anti-HIV proteins. Broadly neutralizing antibodies have been identified against epitopes on the HIV-1 envelope and have been made into active antibody fragments. We tested single-chain variable fragment m9 and dAb-m36 and its derivative m36.4 as prototype antibodies. We cloned and expressed the antibody fragments m9, m36, and m36.4 in Lactobacillus jensenii-1153 and tested the expression levels and functionality. We made a recombinant L. jensenii 1153-1128 that expresses dAb-m36.4. All antibody fragments m9, m36, and m36.4 were expressed by lactobacilli. However, we noted the smaller m36/m36.4 were expressed to higher levels, ≥3 μg/ml. All L. jensenii-expressed antibody fragments bound to gp120/CD4 complex; Lactobacillus-produced m36.4 inhibited HIV-1 BaL in a neutralization assay. Using a TZM-bl assay, we characterized the breadth of neutralization of the m36.4. Delivery of dAbs by Lactobacillus could provide passive transfer of these antibodies to the mucosa and longevity at the site of HIV-1 transmission.

  3. Production of EV71 vaccine candidates.

    PubMed

    Chong, Pele; Hsieh, Shih-Yang; Liu, Chia-Chyi; Chou, Ai-Hsiang; Chang, Jui-Yuan; Wu, Suh-Chin; Liu, Shih-Jen; Chow, Yen-Hung; Su, Ih-Jen; Klein, Michel

    2012-12-01

    Enterovirus 71 (EV71) is now recognized as an emerging neurotropic virus in Asia and with Coxsackie virus (CV) it is the other major causative agent of hand-foot-mouth diseases (HFMD). Effective medications and/or prophylactic vaccines against HFMD are urgently needed. From a scientific (the feasibility of bioprocess, immunological responses and potency in animal challenge model) and business development (cost of goods) points of view, we in this review address and discuss the pros and cons of different EV71 vaccine candidates that have been produced and evaluated in animal models. Epitope-based synthetic peptide vaccine candidates containing residues 211-225 of VP1 formulated with Freund's adjuvant (CFA/IFA) elicited low EV71 virus neutralizing antibody responses, but were protective in the suckling mouse challenge model. Among recombinant EV71 subunits (rVP1, rVP2 and rVP3) expressed in E. coli, purified and formulated with CFA/IFA, only VP1 elicited mouse antibody responses with measurable EV71-specific virus neutralization titers. Immunization of mice with either a DNA plasmid containing VP1 gene or VP1 expressed in Salmonella typhimurium also generated neutralizing antibody responses and protected animals against a live EV71 challenge. Recombinant EV71 virus-like particles (rVLP) produced from baculovirus formulated either with CFA/IFA or alum elicited good virus neutralization titers in both mice and non-human primates, and were found to be protective in the suckling mouse EV71 challenge model. Synthetic peptides or recombinant EV71 subunit vaccines (rVP1 and rVLP) formulated in alum were found to be poorly immunogenic in rabbits. Only formalin-inactivated (FI) EV71 virions formulated in alum elicited cross-neutralizing antibodies against different EV71 genotypes in mice, rabbits and non-human primates but induced weak neutralizing responses against CAV16. From a regulatory, economic and market acceptability standpoint, FI-EV71 virion vaccines are the most promising candidates and are currently being evaluated in human clinical trials. We further describe and analyze some new bioprocesses technologies that have great potential applications in EV71 vaccine development. This review also demonstrates the opportunities and challenges that the Asian vaccine industry faces today.

  4. The protein DIIIC-2, aggregated with a specific oligodeoxynucleotide and adjuvanted in alum, protects mice and monkeys against DENV-2.

    PubMed

    Gil, Lázaro; Marcos, Ernesto; Izquierdo, Alienys; Lazo, Laura; Valdés, Iris; Ambala, Peris; Ochola, Lucy; Hitler, Rikoi; Suzarte, Edith; Álvarez, Mayling; Kimiti, Prisilla; Ndung'u, James; Kariuki, Thomas; Guzmán, María Guadalupe; Guillén, Gerardo; Hermida, Lisset

    2015-01-01

    Previously, we reported the ability of the chimeric protein DIIIC-2 (domain III of the dengue envelope protein fused to the capsid protein of dengue-2 virus), to induce immunity and protection in mice, when it is highly aggregated with a non-defined oligodeoxynucleotide (ODN) and adjuvanted in alum. In this work, three different defined ODNs were studied as aggregating agents. Our results suggest that the nature of the ODN influences the capacity of protein DIIIC-2 to activate cell-mediated immunity in mice. Consequently, the ODN 39M was selected to perform further experiments in mice and nonhuman primates. Mice receiving the preparation 39M-DIIIC-2 were solidly protected against dengue virus (DENV) challenge. Moreover, monkeys immunized with the same preparation developed neutralizing antibodies, as measured by four different neutralization tests varying the virus strains and the cell lines used. Two of the immunized monkeys were completely protected against challenge, whereas the third animal had a single day of low-titer viremia. This is the first work describing the induction of short-term protection in monkeys by a formulation that is suitable for human use combining a recombinant protein from DENV with alum.

  5. Bovine Herpesvirus-4-Based Vector Delivering Peste des Petits Ruminants Virus Hemagglutinin ORF Induces both Neutralizing Antibodies and Cytotoxic T Cell Responses

    PubMed Central

    Macchi, Francesca; Rojas, José Manuel; Verna, Andrea Elizabeth; Sevilla, Noemí; Franceschi, Valentina; Tebaldi, Giulia; Cavirani, Sandro; Martín, Verónica; Donofrio, Gaetano

    2018-01-01

    Peste des Petits Ruminants Virus (PPRV) is an extremely infective morbillivirus that primarily affects goats and sheep. In underdeveloped countries where livestock are the main economical resource, PPRV causes considerable economic losses. Protective live attenuated vaccines are currently available but they induce antibody responses similar to those produced in PPRV naturally infected animals. Effective vaccines able to distinguish between vaccinated and naturally infected animals are required to PPRV control and eradication programs. Hemagglutinin (H) is a highly immunogenic PPRV envelope glycoprotein displaying both hemagglutinin and neuraminidase activities, playing a crucial role in virus attachment and penetration. In this study, a recombinant Bovine Herpesvirus-4 (BoHV-4)-based vector delivering an optimized PPRV-Hemagglutinin expression cassette, BoHV-4-A-PPRV-H-ΔTK, was assessed in immunocompetent C57BL/6 mice. BoHV-4-A-PPRV-H-ΔTK-immunization elicited both cellular and humoral immune responses with specific T cell, cytotoxic T lymphocyte, and sero-neutralizing antibody against PPRV. These data suggest recombinant BoHV-4-A-PPRV-H-ΔTK as an effective vaccine candidate to protect against PPRV herd infection and potentially applicable for eradication programs. PMID:29556236

  6. West Nile encephalitis outbreak in Kerala, India, 2011.

    PubMed

    Anukumar, B; Sapkal, Gajanan N; Tandale, Babasheb V; Balasubramanian, R; Gangale, Daya

    2014-09-01

    An outbreak of acute encephalitis syndrome (AES) was reported in Kerala in India in May 2011. The outbreak features were unusual in terms of seasonality, geographical distribution, age group, and clinical manifestations in comparison to the epidemiological features of Japanese Encephalitis. To detect the etiology of the acute encephalitis syndrome outbreak. Investigation of outbreak was undertaken by collection of brief clinical history and epidemiological details along with the specimens for viral diagnosis. The serum/CSF samples (patients=208) received from the sentinel hospitals were subjected to IgM capture ELISA and RT-PCR specific for Japanese encephalitis (JE) virus and West Nile virus (WNV). The JE/WN IgM positive samples were further tested by serum neutralization assay for the presence of JE and WNV specific neutralizing antibody. Most of the affected patients were aged above 15 years. No spatial clustering of the disease was noticed. Cases were observed in premonsoon and early monsoon season and in JE non-endemic area of Kerala. A total of 47 patient samples were positive for in-house JE IgM capture ELISA and WNV IgM capture ELISA. Serum neutralization assay result revealed that 32 of 42 (76.19%) sera were positive for WNV neutralization antibodies. WNV was isolated from a clinical specimen. Phylogenetic analysis of WNV envelope gene revealed 99% homology with Russian Lineage 1 WNV. West Nile virus (WNV) etiology was confirmed by virus isolation and detection of virus specific antibody from clinical specimen. Phylogenetic analysis grouped the current strain in lineage I West Nile virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Breadth of neutralizing antibodies elicited by stable, homogeneous clade A and clade C HIV-1 gp140 envelope trimers in guinea pigs.

    PubMed

    Nkolola, Joseph P; Peng, Hanqin; Settembre, Ethan C; Freeman, Michael; Grandpre, Lauren E; Devoy, Colleen; Lynch, Diana M; La Porte, Annalena; Simmons, Nathaniel L; Bradley, Ritu; Montefiori, David C; Seaman, Michael S; Chen, Bing; Barouch, Dan H

    2010-04-01

    The native envelope (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) is trimeric, and thus trimeric Env vaccine immunogens are currently being explored in preclinical immunogenicity studies. Key challenges have included the production and purification of biochemically homogeneous and stable trimers and the evaluation of these immunogens utilizing standardized virus panels for neutralization assays. Here we report the binding and neutralizing antibody (NAb) responses elicited by clade A (92UG037.8) and clade C (CZA97.012) Env gp140 trimer immunogens in guinea pigs. These trimers have been selected and engineered for optimal biochemical stability and have defined antigenic properties. Purified gp140 trimers with Ribi adjuvant elicited potent, cross-clade NAb responses against tier 1 viruses as well as detectable but low-titer NAb responses against select tier 2 viruses from clades A, B, and C. In particular, the clade C trimer elicited NAbs that neutralized 27%, 20%, and 47% of tier 2 viruses from clades A, B, and C, respectively. Heterologous DNA prime, protein boost as well as DNA prime, recombinant adenovirus boost regimens expressing these antigens, however, did not result in an increased magnitude or breadth of NAb responses in this system. These data demonstrate the immunogenicity of stable, homogeneous clade A and clade C gp140 trimers and exemplify the utility of standardized tier 1 and tier 2 virus panels for assessing the NAb responses of candidate HIV-1 Env immunogens.

  8. Prefusion F-specific antibodies determine the magnitude of RSV neutralizing activity in human sera.

    PubMed

    Ngwuta, Joan O; Chen, Man; Modjarrad, Kayvon; Joyce, M Gordon; Kanekiyo, Masaru; Kumar, Azad; Yassine, Hadi M; Moin, Syed M; Killikelly, April M; Chuang, Gwo-Yu; Druz, Aliaksandr; Georgiev, Ivelin S; Rundlet, Emily J; Sastry, Mallika; Stewart-Jones, Guillaume B E; Yang, Yongping; Zhang, Baoshan; Nason, Martha C; Capella, Cristina; Peeples, Mark E; Ledgerwood, Julie E; McLellan, Jason S; Kwong, Peter D; Graham, Barney S

    2015-10-14

    Respiratory syncytial virus (RSV) is estimated to claim more lives among infants <1 year old than any other single pathogen, except malaria, and poses a substantial global health burden. Viral entry is mediated by a type I fusion glycoprotein (F) that transitions from a metastable prefusion (pre-F) to a stable postfusion (post-F) trimer. A highly neutralization-sensitive epitope, antigenic site Ø, is found only on pre-F. We determined what fraction of neutralizing (NT) activity in human sera is dependent on antibodies specific for antigenic site Ø or other antigenic sites on F in healthy subjects from ages 7 to 93 years. Adsorption of individual sera with stabilized pre-F protein removed >90% of NT activity and depleted binding antibodies to both F conformations. In contrast, adsorption with post-F removed ~30% of NT activity, and binding antibodies to pre-F were retained. These findings were consistent across all age groups. Protein competition neutralization assays with pre-F mutants in which sites Ø or II were altered to knock out binding of antibodies to the corresponding sites showed that these sites accounted for ~35 and <10% of NT activity, respectively. Binding competition assays with monoclonal antibodies (mAbs) indicated that the amount of site Ø-specific antibodies correlated with NT activity, whereas the magnitude of binding competed by site II mAbs did not correlate with neutralization. Our results indicate that RSV NT activity in human sera is primarily derived from pre-F-specific antibodies, and therefore, inducing or boosting NT activity by vaccination will be facilitated by using pre-F antigens that preserve site Ø. Copyright © 2015, American Association for the Advancement of Science.

  9. Natural exposure of bats in Grenada to rabies virus

    PubMed Central

    Zieger, Ulrike; Cheetham, Sonia; Santana, Sharlene E.; Leiser-Miller, Leith; Matthew-Belmar, Vanessa; Goharriz, Hooman; Fooks, Anthony R.

    2017-01-01

    ABSTRACT Introduction: Grenada is a rabies endemic country, where terrestrial rabies is maintained in the small Indian mongoose (Herpestes auropunctatus). The role of bats in the epidemiology of rabies in Grenada is unknown. A 1974 report described one rabies virus positive Jamaican fruit bat (Artibeus jamaicensis), and a high seroprevalence in this species. In the current study, the natural exposure to rabies virus in Grenadian bats was re-evaluated. It is postulated that bats serve as a natural rabies reservoir, probably circulating a bat-specific rabies virus variant. Material and methods: Bats were trapped in 2015 in all six parishes of Grenada using mist- and hand nets. For the detection of rabies virus in brain tissue, the direct fluorescent antibody test (dFAT) and the reverse transcription polymerase chain reaction (RT-PCR) were used. Serum neutralizing antibodies were determined using the fluorescent antibody virus neutralization test (FAVN). Results and discussion: Brain tissue and sera from 111 insectivorous and frugivorous bats belonging to four species were tested (52 Artibeus jamaicensis, two Artibeus lituratus, 33 Glossophaga longirostris, 24 Molossus molossus). Rabies virus antigen and genomic RNA were not detected in brain tissues. Rabies virus neutralizing antibodies were detected in the sera of eight A. jamaicensis in four of the six parishes. Bats in Grenada continue to show natural exposure to rabies virus. As rabies virus was not isolated in this study, serology alone is not sufficient to determine the strain of rabies virus circulating in A. jamaicensis bats in Grenada. Conclusion: Artibeus jamaicensis appears to play a role as a reservoir bat species, which is of public health concern in Grenada. Dispersion of bats to neighboring islands is possible and serological bat surveys should be initiated in these neighboring states, especially in those areas that are free of rabies in terrestrial mammals. PMID:28804595

  10. Development and Characterization of a Reverse Genetic System for Studying Dengue Virus Serotype 3 Strain Variation and Neutralization

    PubMed Central

    Messer, William B.; Yount, Boyd; Hacker, Kari E.; Donaldson, Eric F.; Huynh, Jeremy P.; de Silva, Aravinda M.; Baric, Ralph S.

    2012-01-01

    Dengue viruses (DENV) are enveloped single-stranded positive-sense RNA viruses transmitted by Aedes spp. mosquitoes. There are four genetically distinct serotypes designated DENV-1 through DENV-4, each further subdivided into distinct genotypes. The dengue scientific community has long contended that infection with one serotype confers lifelong protection against subsequent infection with the same serotype, irrespective of virus genotype. However this hypothesis is under increased scrutiny and the role of DENV genotypic variation in protection from repeated infection is less certain. As dengue vaccine trials move increasingly into field-testing, there is an urgent need to develop tools to better define the role of genotypic variation in DENV infection and immunity. To better understand genotypic variation in DENV-3 neutralization and protection, we designed and constructed a panel of isogenic, recombinant DENV-3 infectious clones, each expressing an envelope glycoprotein from a different DENV-3 genotype; Philippines 1982 (genotype I), Thailand 1995 (genotype II), Sri Lanka 1989 and Cuba 2002 (genotype III) and Puerto Rico 1977 (genotype IV). We used the panel to explore how natural envelope variation influences DENV-polyclonal serum interactions. When the recombinant viruses were tested in neutralization assays using immune sera from primary DENV infections, neutralization titers varied by as much as ∼19-fold, depending on the expressed envelope glycoprotein. The observed variability in neutralization titers suggests that relatively few residue changes in the E glycoprotein may have significant effects on DENV specific humoral immunity and influence antibody mediated protection or disease enhancement in the setting of both natural infection and vaccination. These genotypic differences are also likely to be important in temporal and spatial microevolution of DENV-3 in the background of heterotypic neutralization. The recombinant and synthetic tools described here are valuable for testing hypotheses on genetic determinants of DENV-3 immunopathogenesis. PMID:22389731

  11. World Reference Center for Arboviruses

    DTIC Science & Technology

    1991-05-08

    Japanese encephalitis virus and acted as sentinels. By molecular hniques it was shown that the dengue-2 viruses in Venezuela and Brazil are very...12 A. Molecular epidemiology of dengue viruses ................... 12 B. Vaccinia virus recombinants expressing Japanese...of Kagoshima virus (strain KC-05Y84) to the Palyam group. Plaque reduction neutralization tests were done with eight viruses of the Palyam serogroup

  12. Novel reassortant of swine influenza H1N2 virus in Germany.

    PubMed

    Zell, Roland; Motzke, Susann; Krumbholz, Andi; Wutzler, Peter; Herwig, Volker; Dürrwald, Ralf

    2008-01-01

    European porcine H1N2 influenza viruses arose after multiple reassortment steps involving a porcine influenza virus with avian-influenza-like internal segments and human H1N1 and H3N2 viruses in 1994. In Germany, H1N2 swine influenza viruses first appeared in 2000. Two German H1N2 swine influenza virus strains isolated from pigs with clinical symptoms of influenza are described. They were characterized by the neutralization test, haemagglutination inhibition (HI) test and complete sequencing of the viral genomes. The data demonstrate that these viruses represent a novel H1N2 reassortant. The viruses showed limited neutralization by sera raised against heterologous A/sw/Bakum/1,832/00-like H1N2 viruses. Sera pools from recovered pigs showed a considerably lower HI reaction, indicative of diagnostic difficulties in using the HI test to detect these viruses with A/sw/Bakum/1,832/00-like H1N2 antigens. Genome sequencing revealed the novel combination of the human-like HAH1 gene of European porcine H1N2 influenza viruses and the NAN2 gene of European porcine H3N2 viruses.

  13. Use of an inactivated eastern equine encephalitis virus vaccine in cranes

    USGS Publications Warehouse

    Carpenter, J.W.; Dein, F.J.; Clark, G.G.; Watts, D.M.; Crabbs, C.L.

    1986-01-01

    An unprecedented outbreak of fatal eastern equine encephalitis (EEE) virus occurred during the late summer and fall of 1984 in endangered whooping cranes (Grus americana) at the Patuxent Wildlife Research Center, Laurel, Maryland. As part of efforts to prevent future epizootics of EEE. studies were conducted to evaluate the antibody response of cranes following vaccination with a formalin-inactivated EEE virus vaccine. Viral specific neutralizing antibody was elicited in sandhill cranes (Grus canadensis) and whooping cranes following 1M inoculation with the vaccine. Among the 1M-inoculated cranes, peak antibody titers of 1:80 on days 30 to 60 had waned to undetectable levels by days 90 to 120. Although the initial titers were not increased by the first booster dose, the duration of the antibody was extended considerably. Whooping cranes, receiving vaccine 6 months after their first vaccination, developed titers of 1:80 to 1:320 by day 30. At 45 days after the final vaccination, these titers had dropped to 1:10 to 1:160. Cranes with preexisting EEE virus antibody, apparently reflecting natural infection, exhibited an anamnestic response indicated by a rapid increase and sustained high antibody titer. Even though EEE virus vaccine induced neutralizing antibody and produced no adverse side effects, further studies will be required to assess the significance of this response as a strategy for protecting whooping cranes against natural EEE virus infection. The loss of captive whooping cranes to the EEE virus presented a previously unrecognized risk and obstacle to recovery of this species. Not only was, there a setback in the captive breeding and reintroduction program for the whooping crane, but, because of the susceptibility of the species to the EEE virus. establishment of additional crane populations may be more complicated than initially envisioned. However, through continued surveillance, serological monitoring, and vaccination activities, we are confident that the impact of EEE virus on whooping crane recovery can be overcome to the ultimate benefit of this endangered species.

  14. Protective immunity against nervous necrosis virus in convict grouper Epinephelus septemfasciatus following vaccination with virus-like particles produced in yeast Saccharomyces cerevisiae.

    PubMed

    Wi, Ga Ram; Hwang, Jee Youn; Kwon, Mun-Gyeong; Kim, Hyoung Jin; Kang, Hyun Ah; Kim, Hong-Jin

    2015-05-15

    Infection with nervous necrosis virus (NNV) causes viral nervous necrosis, which inflicts serious economic losses in marine fish cultivation. Virus-like particles (VLPs) are protein complexes consisting of recombinant virus capsid proteins, whose shapes are similar to native virions. VLPs are considered a novel vaccine platform because they are not infectious and have the ability to induce neutralizing antibodies efficiently. However, there have been few studies of protective immune responses employing virus challenge following immunization with NNV VLPs, and this is important for evaluating the utility of the vaccine. In the present study, we produced red-spotted grouper (Epinephelus akaara) NNV (RGNNV) VLPs in Saccharomyces cerevisiae and investigated protective immune responses in convict grouper (Epinephelus septemfasciatus) following intraperitoneal injection and oral immunization with the RGNNV VLPs. The parenterally administered VLPs elicited neutralizing antibody with high efficacy, and provided the fish with full protection against RGNNV challenge: 100% of the immunized fish survived compared with only 37% of the control fish receiving phosphate-buffered saline. RGNNV VLPs administered orally provoked neutralizing antibody systemically and conferred protective immunity against virus challenge: however only 57% of the fish survived. Our results demonstrate that RGNNV VLP produced in yeast has great potential as vaccine in fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A glycoprotein subunit vaccine elicits a strong Rift Valley fever virus neutralizing antibody response in sheep.

    PubMed

    Faburay, Bonto; Lebedev, Maxim; McVey, D Scott; Wilson, William; Morozov, Igor; Young, Alan; Richt, Juergen A

    2014-10-01

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in nonendemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, amino-terminus glycoprotein (Gn), and carboxyl-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as a GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen with the adjuvant montanide ISA25; at day 21, postvaccination, each animal received a second dose of the same vaccine. The vaccine induced a strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). A plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1280. Furthermore, all animals tested positive for neutralizing antibodies at day 328 postvaccination. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible and represents a promising vaccine platform for RVFV infection in susceptible species.

  16. Antibody-Dependent Cell-Mediated Viral Inhibition Emerges after Simian Immunodeficiency Virus SIVmac251 Infection of Rhesus Monkeys Coincident with gp140-Binding Antibodies and Is Effective against Neutralization-Resistant Viruses▿

    PubMed Central

    Asmal, Mohammed; Sun, Yue; Lane, Sophie; Yeh, Wendy; Schmidt, Stephen D.; Mascola, John R.; Letvin, Norman L.

    2011-01-01

    Antibody-dependent cell-mediated viral inhibition (ADCVI) is an attractive target for vaccination because it takes advantage of both the anamnestic properties of an adaptive immune response and the rapid early response characteristics of an innate immune response. Effective utilization of ADCVI in vaccine strategies will depend on an understanding of the natural history of ADCVI during acute and chronic human immunodeficiency virus type 1 (HIV-1) infection. We used the simian immunodeficiency virus (SIV)-infected rhesus monkey as a model to study the kinetics of ADCVI in early infection, the durability of ADCVI through the course of infection, and the effectiveness of ADCVI against viruses with envelope mutations that are known to confer escape from antibody neutralization. We demonstrate the development of ADCVI, capable of inhibiting viral replication 100-fold, within 3 weeks of infection, preceding the development of a comparable-titer neutralizing antibody response by weeks to months. The emergence of ADCVI was temporally associated with the emergence of gp140-binding antibodies, and in most animals, ADCVI persisted through the course of infection. Highly evolved viral envelopes from viruses isolated at late time points following infection that were resistant to plasma neutralization remained susceptible to ADCVI, suggesting that the epitope determinants of neutralization escape are not shared by antibodies that mediate ADCVI. These findings suggest that despite the ability of SIV to mutate and adapt to multiple immunologic pressures during the course of infection, SIV envelope may not escape the binding of autologous antibodies that mediate ADCVI. PMID:21450829

  17. A Glycoprotein Subunit Vaccine Elicits a Strong Rift Valley Fever Virus Neutralizing Antibody Response in Sheep

    PubMed Central

    Lebedev, Maxim; McVey, D. Scott; Wilson, William; Morozov, Igor; Young, Alan

    2014-01-01

    Abstract Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in nonendemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, amino-terminus glycoprotein (Gn), and carboxyl-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as a GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen with the adjuvant montanide ISA25; at day 21, postvaccination, each animal received a second dose of the same vaccine. The vaccine induced a strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). A plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1280. Furthermore, all animals tested positive for neutralizing antibodies at day 328 postvaccination. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible and represents a promising vaccine platform for RVFV infection in susceptible species. PMID:25325319

  18. Development and evaluation of a new epitope-blocking ELISA for universal detection of antibodies to West Nile virus.

    PubMed

    Sotelo, Elena; Llorente, Francisco; Rebollo, Belen; Camuñas, Ana; Venteo, Angel; Gallardo, Carmina; Lubisi, Alison; Rodríguez, María José; Sanz, Antonio J; Figuerola, Jordi; Jiménez-Clavero, Miguel Ángel

    2011-06-01

    West Nile virus (WNV) is an emerging zoonotic pathogen with a wide range of hosts, including birds, horses and humans. The development and evaluation of the performance of a new enzyme-linked immunosorbent assay (ELISA) are described for rapid detection of WNV-specific antibodies in samples originating from an extensive range of vertebrates susceptible to WNV infection. The assay uses a monoclonal antibody (MAb) which binds whole virus particles and neutralizes infection in vitro by recognizing a neutralizing epitope within the envelope (E) glycoprotein of the virus. This MAb, labelled with horseradish peroxidase, was used to compete with WNV-specific serum antibodies for virus-binding in vitro. The epitope-blocking ELISA was optimized in a manner that enabled its validation with a number of experimental and field sera, from a wide range of wild bird species, and susceptible mammals. The new ELISA exhibited high specificity (79.5-96.5%) and sensitivity (100%), using the virus-neutralization test as reference standard. It also required a much lower volume of sample (10 μl per analysis) compared to other ELISAs available commercially. This new method may be helpful for diagnosis and disease surveillance, particularly when testing samples from small birds, which are available in limited amounts. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Development of in vitro and in vivo rabies virus neutralization assays based on a high-titer pseudovirus system

    PubMed Central

    Nie, Jianhui; Wu, Xiaohong; Ma, Jian; Cao, Shouchun; Huang, Weijin; Liu, Qiang; Li, Xuguang; Li, Yuhua; Wang, Youchun

    2017-01-01

    Pseudoviruses are useful virological tools because of their safety and versatility; however the low titer of these viruses substantially limits their wider applications. We developed a highly efficient pseudovirus production system capable of yielding 100 times more rabies pseudovirus than the traditional method. Employing the high-titer pseudoviruses, we have developed robust in vitro and in vivo neutralization assays for the evaluation of rabies vaccine, which traditionally relies on live-virus based assays. Compared with current rapid fluorescent focus inhibition test (RFFIT), our in vitro pseudovirus-based neutralization assay (PBNA) is much less labor-intensive while demonstrating better reproducibility. Moreover, the in vivo PBNA assay was also found to be superior to the live virus based assay. Following intravenous administration, the pseudovirus effectively infected the mice, with dynamic viral distributions being sequentially observed in spleen, liver and brain. Furthermore, data from in vivo PBNA showed great agreement with those generated from the live virus model but with the experimental time significantly reduced from 2 weeks to 3 days. Taken together, the effective pseudovirus production system facilitated the development of novel PBNA assays which could replace live virus-based traditional assays due to its safety, rapidity, reproducibility and high throughput capacity. PMID:28218278

  20. Modeling Evolution on Nearly Neutral Network Fitness Landscapes

    NASA Astrophysics Data System (ADS)

    Yakushkina, Tatiana; Saakian, David B.

    2017-08-01

    To describe virus evolution, it is necessary to define a fitness landscape. In this article, we consider the microscopic models with the advanced version of neutral network fitness landscapes. In this problem setting, we suppose a fitness difference between one-point mutation neighbors to be small. We construct a modification of the Wright-Fisher model, which is related to ordinary infinite population models with nearly neutral network fitness landscape at the large population limit. From the microscopic models in the realistic sequence space, we derive two versions of nearly neutral network models: with sinks and without sinks. We claim that the suggested model describes the evolutionary dynamics of RNA viruses better than the traditional Wright-Fisher model with few sequences.

Top