NASA Astrophysics Data System (ADS)
Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten
2015-11-01
We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.
NASA Astrophysics Data System (ADS)
Yount, Boyd; Roberts, Rhonda S.; Lindesmith, Lisa; Baric, Ralph S.
2006-08-01
Live virus vaccines provide significant protection against many detrimental human and animal diseases, but reversion to virulence by mutation and recombination has reduced appeal. Using severe acute respiratory syndrome coronavirus as a model, we engineered a different transcription regulatory circuit and isolated recombinant viruses. The transcription network allowed for efficient expression of the viral transcripts and proteins, and the recombinant viruses replicated to WT levels. Recombinant genomes were then constructed that contained mixtures of the WT and mutant regulatory circuits, reflecting recombinant viruses that might occur in nature. Although viable viruses could readily be isolated from WT and recombinant genomes containing homogeneous transcription circuits, chimeras that contained mixed regulatory networks were invariantly lethal, because viable chimeric viruses were not isolated. Mechanistically, mixed regulatory circuits promoted inefficient subgenomic transcription from inappropriate start sites, resulting in truncated ORFs and effectively minimize viral structural protein expression. Engineering regulatory transcription circuits of intercommunicating alleles successfully introduces genetic traps into a viral genome that are lethal in RNA recombinant progeny viruses. regulation | systems biology | vaccine design
Transcriptional mapping of rabies virus in vivo. [UV radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flamand, A.; Delagneau, J.F.
1978-11-01
Synthesis of the proteins of rabies virus was studied in hamster cell infected with uv-irradiated virus. The uv target size of genes L, N, M/sub 1/, and M/sub 2/ was measured during primary transcription. Except for N, the target size of the remaining genes was considerably larger than that of their physical sizes. The data fit the hypothesis that four genes occupy a single transcriptional unit and that transcription of rabies virus proceeds in the order N, M/sub 1/, M/sub 2/, and L.
Optical reprogramming with ultrashort femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten
2015-03-01
The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.
CRISPR/Cas9-Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development.
Okoli, Arinze; Okeke, Malachy I; Tryland, Morten; Moens, Ugo
2018-01-22
The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them.
James M. Slavicek
1991-01-01
Genomic expression of the Lymantriu dispar multinucleocapsid nuclear polyhedrosis virus (LdMNPV) was studied. Viral specific transcripts expressed in cell culture at various times from 2 through 72 h postinfection were identified and their genomic origins mapped through Northern analysis. Sixty-five distinct transcripts were identified in this...
Genomic Flexibility of Human Endogenous Retrovirus Type K
Dube, Derek; Contreras-Galindo, Rafael; He, Shirley; King, Steven R.; Gonzalez-Hernandez, Marta J.; Gitlin, Scott D.; Kaplan, Mark H.
2014-01-01
ABSTRACT Human endogenous retrovirus type K (HERV-K) proviruses are scattered throughout the human genome, but as no infectious HERV-K virus has been detected to date, the mechanism by which these viruses replicated and populated the genome remains unresolved. Here, we provide evidence that, in addition to the RNA genomes that canonical retroviruses package, modern HERV-K viruses can contain reverse-transcribed DNA (RT-DNA) genomes. Indeed, reverse transcription of genomic HERV-K RNA into the DNA form is able to occur in three distinct times and locations: (i) in the virus-producing cell prior to viral release, yielding a DNA-containing extracellular virus particle similar to the spumaviruses; (ii) within the extracellular virus particle itself, transitioning from an RNA-containing particle to a DNA-containing particle; and (iii) after entry of the RNA-containing virus into the target cell, similar to canonical retroviruses, such as murine leukemia virus and HIV. Moreover, using a resuscitated HERV-K virus construct, we show that both viruses with RNA genomes and viruses with DNA genomes are capable of infecting target cells. This high level of genomic flexibility historically could have permitted these viruses to replicate in various host cell environments, potentially assisting in their many integration events and resulting in their high prevalence in the human genome. Moreover, the ability of modern HERV-K viruses to proceed through reverse transcription and package RT-DNA genomes suggests a higher level of replication competency than was previously understood, and it may be relevant in HERV-K-associated human diseases. IMPORTANCE Retroviral elements comprise at least 8% of the human genome. Of all the endogenous retroviruses, HERV-K viruses are the most intact and biologically active. While a modern infectious HERV-K has yet to be found, HERV-K activation has been associated with cancers, autoimmune diseases, and HIV-1 infection. Thus, determining how this virus family became such a prevalent member of our genome and what it is capable of in its current form are of the utmost importance. Here, we provide evidence that HERV-K viruses currently found in the human genome are able to proceed through reverse transcription and historically utilized a life cycle with a surprising degree of genomic flexibility in which both RNA- and DNA-containing viruses were capable of mediating infection. PMID:24920813
CRISPR/Cas9—Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development
Okoli, Arinze; Okeke, Malachy I.; Tryland, Morten; Moens, Ugo
2018-01-01
The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them. PMID:29361752
Modeling Ebola Virus Genome Replication and Transcription with Minigenome Systems.
Cressey, Tessa; Brauburger, Kristina; Mühlberger, Elke
2017-01-01
In this chapter, we describe the minigenome system for Ebola virus (EBOV), which reconstitutes EBOV polymerase activity in cells and can be used to model viral genome replication and transcription. This protocol comprises all steps including cell culture, plasmid preparation, transfection, and luciferase reporter assay readout.
Genomic Regulation of the Response of an Agroecosystem to Elements of Global Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLucia, Evan, H.
This document outlines some of the major accomplishments from this project: (1) New tools for analyzing and visualizing microarray data from soybean gene expression experiments; (2) Physiological, biochemical, and gene array evidence that acclimation of carbon metabolism to elevated CO{sub 2} is governed in significant part by changes in gene expression associated with respiratory metabolism; (3) Increased carbon assimilation in soybeans grown at elevated CO{sub 2} altered pools of carbohydrates and transcripts that control growth and expansion of young leaves; (4) Growth at elevated CO{sub 2} increases the abundance of transcripts controlling cell wall polysaccharide synthesis but not transcripts controllingmore » lignin synthesis; (5) The total antioxidant capacity of soybeans varies among cultivars and in response to atmospheric change; (6) Accelerated leaf senescence at elevated O{sub 3} coincides with reduced abundance of transcripts controlling protein synthesis; (7) Growth under elevated CO{sub 2} increases the susceptibility of soybean to insect herbivores by increasing insect lifespan and fecundity through altered leaf chemistry and by defeating molecular induction of plant defenses; (8) Exposure to elevated CO{sub 2} and O{sub 3} alters flavonoid metabolism in soybean; (9) Exposure to elevated CO{sub 2} or O{sub 3} conferred resistance to soybean mosaic virus by cross inducing defense- and stress-related signaling pathways; and (10) Exposure to elevated CO{sub 2} accelerates decomposition by changing chemical and biotic properties of the soil.« less
Establishment of an in vitro transcription system for Peste des petits ruminant virus.
Yunus, Mohammad; Shaila, Melkote S
2012-12-05
Peste-des-petits ruminants virus (PPRV) is a non segmented negative strand RNA virus of the genus Morbillivirus within Paramyxoviridae family. Negative strand RNA viruses are known to carry nucleocapsid (N) protein, phospho (P) protein and RNA polymerase (L protein) packaged within the virion which possess all activities required for transcription, post-transcriptional modification of mRNA and replication. In order to understand the mechanism of transcription and replication of the virus, an in vitro transcription reconstitution system is required. In the present work, an in vitro transcription system has been developed with ribonucleoprotein (RNP) complex purified from virus infected cells as well as partially purified recombinant polymerase (L-P) complex from insect cells along with N-RNA (genomic RNA encapsidated by N protein) template isolated from virus infected cells. RNP complex isolated from virus infected cells and recombinant L-P complex purified from insect cells was used to reconstitute transcription on N-RNA template. The requirement for this transcription reconstitution has been defined. Transcription of viral genes in the in vitro system was confirmed by PCR amplification of cDNAs corresponding to individual transcripts using gene specific primers. In order to measure the relative expression level of viral transcripts, real time PCR analysis was carried out. qPCR analysis of the transcription products made in vitro showed a gradient of polarity of transcription from 3' end to 5' end of the genome similar to that exhibited by the virus in infected cells. This report describes for the first time, the development of an in vitro transcription reconstitution system for PPRV with RNP complex purified from infected cells and recombinant L-P complex expressed in insect cells. Both the complexes were able to synthesize all the mRNA species in vitro, exhibiting a gradient of polarity in transcription.
Kirchner, E A; Bornkamm, G W; Polack, A
1991-10-01
We have studied the relative rate of transcription across the Epstein-Barr virus genome in the Burkitt's lymphoma cell line Raji by nuclear run-on analysis during latency and after induction of an abortive lytic cycle with 12-0-tetradecanoylphorbol 13-acetate (TPA) and 5-iodo-2'-deoxyuridine (IUdR). During latency the entire, or almost the entire, viral genome was found to be transcriptionally active to a low or intermediate extent, with some variation in activity along the genome. The fragment with the highest transcriptional activity was EcoRI J, which contains the genes encoding the small nuclear RNAs EBER1 and -2, transcribed predominantly by RNA polymerase III. An intermediate level of transcription was observed between positions 10 and 138 (kb), with areas of slightly higher activity on the large internal repeats and the left duplicated region (DL). The remaining part of the viral genome, between position 138 and the termini, and the termini and position 10 (kb) (with the exception of the EcoRI J fragment), showed very little transcriptional activity, except for the intermediately active regions carrying the righthand oriLyt (DR) and the terminal repeats. Upon induction of the viral genome with TPA and IUdR, the viral genome was transcriptionally active at a rate at least tenfold that seen during latency. Polymerases were not equally distributed along the genome after induction; the highest density was found in regions 48 to 58 kb, 82 to 84 kb, 102 to 104 kb, 118 to 122 kb and 142 to 145 kb of the viral genome. High transcriptional activity correlated with distinct transcription units in some cases, i.e. BamHI H1LF1 (DL), BamHI MLF1, BamHI ZLF1/BamHI RLF1 and BamHI X (thymidine kinase), but not in others (BamHI H2). Besides initiation of transcription, other regulatory processes such as stabilization and processing of primary transcripts may also contribute to regulation of virus gene expression. Addition of cycloheximide completely abolished the transcriptional activation of the genome mediated by TPA and IUdR.
Villacreses, Javier; Rojas-Herrera, Marcelo; Sánchez, Carolina; Hewstone, Nicole; Undurraga, Soledad F.; Alzate, Juan F.; Manque, Patricio; Maracaja-Coutinho, Vinicius; Polanco, Victor
2015-01-01
Here, we report the genome sequence and evidence for transcriptional activity of a virus-like element in the native Chilean berry tree Aristotelia chilensis. We propose to name the endogenous sequence as Aristotelia chilensis Virus 1 (AcV1). High-throughput sequencing of the genome of this tree uncovered an endogenous viral element, with a size of 7122 bp, corresponding to the complete genome of AcV1. Its sequence contains three open reading frames (ORFs): ORFs 1 and 2 shares 66%–73% amino acid similarity with members of the Caulimoviridae virus family, especially the Petunia vein clearing virus (PVCV), Petuvirus genus. ORF1 encodes a movement protein (MP); ORF2 a Reverse Transcriptase (RT) and a Ribonuclease H (RNase H) domain; and ORF3 showed no amino acid sequence similarity with any other known virus proteins. Analogous to other known endogenous pararetrovirus sequences (EPRVs), AcV1 is integrated in the genome of Maqui Berry and showed low viral transcriptional activity, which was detected by deep sequencing technology (DNA and RNA-seq). Phylogenetic analysis of AcV1 and other pararetroviruses revealed a closer resemblance with Petuvirus. Overall, our data suggests that AcV1 could be a new member of Caulimoviridae family, genus Petuvirus, and the first evidence of this kind of virus in a fruit plant. PMID:25855242
Kuhl, U; Lassner, D; Dorner, A; Rohde, M; Escher, F; Seeberg, B; Hertel, E; Tschope, C; Skurk, C; Gross, U M; Schultheiss, H-P; Poller, W
2013-09-01
Recent studies have detected erythrovirus genomes in the hearts of cardiomyopathy and cardiac transplant patients. Assessment of the functional status of viruses may provide clinically important information beyond detection of the viral genomes. Here, we report transcriptional activation of cardiotropic erythrovirus to be associated with strongly altered myocardial gene expression in a distinct subgroup of cardiomyopathy patients. Endomyocardial biopsies (EMBs) from 415 consecutive cardiac erythrovirus (B19V)-positive patients with clinically suspected cardiomyopathy were screened for virus-encoded VP1/VP2 mRNA indicating transcriptional activation of the virus, and correlated with cardiac host gene expression patterns in transcriptionally active versus latent infections, and in virus-free control hearts. Transcriptional activity was detected in baseline biopsies of only 66/415 patients (15.9 %) harbouring erythrovirus. At the molecular level, significant differences between cardiac B19V-positive patients with transcriptionally active versus latent virus were revealed by expression profiling of EMBs. Importantly, latent B19V infection was indistinguishable from controls. Genes involved encode proteins of antiviral immune response, B19V receptor complex, and mitochondrial energy metabolism. Thus, functional mapping of erythrovirus allows definition of a subgroup of B19V-infected cardiomyopathy patients characterized by virus-encoded VP1/VP2 transcripts and anomalous host myocardial transcriptomes. Cardiac B19V reactivation from latency, as reported here for the first time, is a key factor required for erythrovirus to induce altered cardiac gene expression in a subgroup of cardiomyopathy patients. Virus genome detection is insufficient to assess pathogenic potential, but additional transcriptional mapping should be incorporated into future pathogenetic and therapeutic studies both in cardiology and transplantation medicine.
Rincheval, Vincent; Lelek, Mickael; Gault, Elyanne; Bouillier, Camille; Sitterlin, Delphine; Blouquit-Laye, Sabine; Galloux, Marie; Zimmer, Christophe; Eleouet, Jean-François; Rameix-Welti, Marie-Anne
2017-09-15
Infection of cells by respiratory syncytial virus induces the formation of cytoplasmic inclusion bodies (IBs) where all the components of the viral RNA polymerase complex are concentrated. However, the exact organization and function of these IBs remain unclear. In this study, we use conventional and super-resolution imaging to dissect the internal structure of IBs. We observe that newly synthetized viral mRNA and the viral transcription anti-terminator M2-1 concentrate in IB sub-compartments, which we term "IB-associated granules" (IBAGs). In contrast, viral genomic RNA, the nucleoprotein, the L polymerase and its cofactor P are excluded from IBAGs. Live imaging reveals that IBAGs are highly dynamic structures. Our data show that IBs are the main site of viral RNA synthesis. They further suggest that shortly after synthesis in IBs, viral mRNAs and M2-1 transiently concentrate in IBAGs before reaching the cytosol and suggest a novel post-transcriptional function for M2-1.Respiratory syncytial virus (RSV) induces formation of inclusion bodies (IBs) sheltering viral RNA synthesis. Here, Rincheval et al. identify highly dynamic IB-associated granules (IBAGs) that accumulate newly synthetized viral mRNA and the viral M2-1 protein but exclude viral genomic RNA and RNA polymerase complexes.
Watt, Ari; Moukambi, Felicien; Banadyga, Logan; Groseth, Allison; Callison, Julie; Herwig, Astrid; Ebihara, Hideki; Feldmann, Heinz; Hoenen, Thomas
2014-09-01
Work with infectious Ebola viruses is restricted to biosafety level 4 (BSL4) laboratories, presenting a significant barrier for studying these viruses. Life cycle modeling systems, including minigenome systems and transcription- and replication-competent virus-like particle (trVLP) systems, allow modeling of the virus life cycle under BSL2 conditions; however, all current systems model only certain aspects of the virus life cycle, rely on plasmid-based viral protein expression, and have been used to model only single infectious cycles. We have developed a novel life cycle modeling system allowing continuous passaging of infectious trVLPs containing a tetracistronic minigenome that encodes a reporter and the viral proteins VP40, VP24, and GP1,2. This system is ideally suited for studying morphogenesis, budding, and entry, in addition to genome replication and transcription. Importantly, the specific infectivity of trVLPs in this system was ∼ 500-fold higher than that in previous systems. Using this system for functional studies of VP24, we showed that, contrary to previous reports, VP24 only very modestly inhibits genome replication and transcription when expressed in a regulated fashion, which we confirmed using infectious Ebola viruses. Interestingly, we also discovered a genome length-dependent effect of VP24 on particle infectivity, which was previously undetected due to the short length of monocistronic minigenomes and which is due at least partially to a previously unknown function of VP24 in RNA packaging. Based on our findings, we propose a model for the function of VP24 that reconciles all currently available data regarding the role of VP24 in nucleocapsid assembly as well as genome replication and transcription. Ebola viruses cause severe hemorrhagic fevers in humans, with no countermeasures currently being available, and must be studied in maximum-containment laboratories. Only a few of these laboratories exist worldwide, limiting our ability to study Ebola viruses and develop countermeasures. Here we report the development of a novel reverse genetics-based system that allows the study of Ebola viruses without maximum-containment laboratories. We used this system to investigate the Ebola virus protein VP24, showing that, contrary to previous reports, it only modestly inhibits virus genome replication and transcription but is important for packaging of genomes into virus particles, which constitutes a previously unknown function of VP24 and a potential antiviral target. We further propose a comprehensive model for the function of VP24 in nucleocapsid assembly. Importantly, on the basis of this approach, it should easily be possible to develop similar experimental systems for other viruses that are currently restricted to maximum-containment laboratories. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Application of CRISPR/Cas9 system in breeding of new antiviral plant germplasm.
Zhang, Dao-wei; Zhang, Chao-fan; Dong, Fang; Huang, Yan-lan; Zhang, Ya; Zhou, Hong
2016-09-01
With the development and improvement of CRISPR/Cas9 system in genomic editing technology, the system has been applied to the prevention and control of animal viral infectious diseases, which has made considerable achievements. It has also been applied to the study of highly efficient gene targeting editing in plant virus genomes. The CRISPR/Cas9-mediated targeted gene modification has not only achieved the genome editing of plant DNA virus, but also showed the genome editing potential of plant RNA virus. In addition, the CRISPR/Cas9 system functions at the gene transcriptional and post-transcriptional level, indicating that the system could regulate the replication of plant viruses through different ways. Compared with other plant viral disease control strategies, this system is more accurate in genome editing, more stable in gene expression regulation, and has broader spectrum of resistance to virus disease. In this review, we summarized the advantages, main problems and development tendency of CRISPR/cas9 system in breeding of new antiviral plant germplasms.
Lopez, Christopher R; Singh, Shivani; Hambarde, Shashank; Griffin, Wezley C; Gao, Jun; Chib, Shubeena; Yu, Yang; Ira, Grzegorz; Raney, Kevin D; Kim, Nayun
2017-06-02
G-quadruplex or G4 DNA is a non-B secondary DNA structure consisting of a stacked array of guanine-quartets that can disrupt critical cellular functions such as replication and transcription. When sequences that can adopt Non-B structures including G4 DNA are located within actively transcribed genes, the reshaping of DNA topology necessary for transcription process stimulates secondary structure-formation thereby amplifying the potential for genome instability. Using a reporter assay designed to study G4-induced recombination in the context of an actively transcribed locus in Saccharomyces cerevisiae, we tested whether co-transcriptional activator Sub1, recently identified as a G4-binding factor, contributes to genome maintenance at G4-forming sequences. Our data indicate that, upon Sub1-disruption, genome instability linked to co-transcriptionally formed G4 DNA in Top1-deficient cells is significantly augmented and that its highly conserved DNA binding domain or the human homolog PC4 is sufficient to suppress G4-associated genome instability. We also show that Sub1 interacts specifically with co-transcriptionally formed G4 DNA in vivo and that yeast cells become highly sensitivity to G4-stabilizing chemical ligands by the loss of Sub1. Finally, we demonstrate the physical and genetic interaction of Sub1 with the G4-resolving helicase Pif1, suggesting a possible mechanism by which Sub1 suppresses instability at G4 DNA. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Francisco, Joel Celio; Dai, Qian; Luo, Zhuojuan; Wang, Yan; Chong, Roxanne Hui-Heng; Tan, Yee Joo; Xie, Wei; Lee, Guan-Huei; Lin, Chengqi
2017-10-01
Chronic hepatitis B virus (HBV) infection can lead to liver cirrhosis and hepatocellular carcinoma. HBV reactivation during or after chemotherapy is a potentially fatal complication for cancer patients with chronic HBV infection. Transcription of HBV is a critical intermediate step of the HBV life cycle. However, factors controlling HBV transcription remain largely unknown. Here, we found that different P-TEFb complexes are involved in the transcription of the HBV viral genome. Both BRD4 and the super elongation complex (SEC) bind to the HBV genome. The treatment of bromodomain inhibitor JQ1 stimulates HBV transcription and increases the occupancy of BRD4 on the HBV genome, suggesting the bromodomain-independent recruitment of BRD4 to the HBV genome. JQ1 also leads to the increased binding of SEC to the HBV genome, and SEC is required for JQ1-induced HBV transcription. These findings reveal a novel mechanism by which the HBV genome hijacks the host P-TEFb-containing complexes to promote its own transcription. Our findings also point out an important clinical implication, that is, the potential risk of HBV reactivation during therapy with a BRD4 inhibitor, such as JQ1 or its analogues, which are a potential treatment for acute myeloid leukemia. Copyright © 2017 American Society for Microbiology.
Kumar, Deepak; Sahoo, Dipak K.; Maiti, Indu B.; Dey, Nrisingha
2011-01-01
Background Designing functionally efficient recombinant promoters having reduced sequence homology and enhanced promoter activity will be an important step toward successful stacking or pyramiding of genes in a plant cell for developing transgenic plants expressing desired traits(s). Also basic knowledge regarding plant cell specific expression of a transgene under control of a promoter is crucial to assess the promoter's efficacy. Methodology/Principal Findings We have constructed a set of 10 recombinant promoters incorporating different up-stream activation sequences (UAS) of Mirabilis mosaic virus sub-genomic transcript (MS8, -306 to +27) and TATA containing core domains of Figwort mosaic virus sub-genomic transcript promoter (FS3, −271 to +31). Efficacies of recombinant promoters coupled to GUS and GFP reporter genes were tested in tobacco protoplasts. Among these, a 369-bp long hybrid sub-genomic transcript promoter (MSgt-FSgt) showed the highest activity in both transient and transgenic systems. In a transient system, MSgt-FSgt was 10.31, 2.86 and 2.18 times more active compared to the CaMV35S, MS8 and FS3 promoters, respectively. In transgenic tobacco (Nicotiana tabaccum, var. Samsun NN) and Arabidopsis plants, the MSgt-FSgt hybrid promoter showed 14.22 and 7.16 times stronger activity compared to CaMV35S promoter respectively. The correlation between GUS activity and uidA-mRNA levels in transgenic tobacco plants were identified by qRT-PCR. Both CaMV35S and MSgt-FSgt promoters caused gene silencing but the degree of silencing are less in the case of the MSgt-FSgt promoter compared to CaMV35S. Quantification of GUS activity in individual plant cells driven by the MSgt-FSgt and the CaMV35S promoter were estimated using confocal laser scanning microscopy and compared. Conclusion and Significance We propose strong recombinant promoter MSgt-FSgt, developed in this study, could be very useful for high-level constitutive expression of transgenes in a wide variety of plant cells. PMID:21931783
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurilla, M.G.; Stone, H.O.; Keene, J.D.
The 3' end of the genomic RNA of Newcastle disease virus (NDV) has been sequenced and the leader RNA defined. Using hybridization to a 3'-end-labeled genome, leader RNA species from in vitro transcription reactions and from infected cell extracts were found to be 47 and 53 nucleotides long. In addition, the start site of the 3'-proximal mRNA was determined by sequence analysis of in vitro (beta-32P)GTP-labeled transcription products. The genomic sequence extending beyond the leader region demonstrated an open reading frame for at least 42 amino acids and probably represents the amino terminus of the nucleocapsid protein (NP). The terminalmore » 8 nucleotides of the NDV genome were identical to those of measles virus and Sendai virus while the sequence of the distal half of the leader region was more similar to that of vesicular stomatitis virus. These data argue for strong evolutionary relatedness between the paramyxovirus and rhabdovirus groups.« less
Maribavir Inhibits Epstein-Barr Virus Transcription through the EBV Protein Kinase
Whitehurst, Christopher B.; Sanders, Marcia K.; Law, Mankit; Wang, Fu-Zhang; Xiong, Jie; Dittmer, Dirk P.
2013-01-01
Maribavir (MBV) inhibits Epstein-Barr virus (EBV) replication and the enzymatic activity of the viral protein kinase BGLF4. MBV also inhibits expression of multiple EBV transcripts during EBV lytic infection. Here we demonstrate, with the use of a BGLF4 knockout virus, that effects of MBV on transcription take place primarily through inhibition of BGLF4. MBV inhibits viral genome copy numbers and infectivity to levels similar to and exceeding levels produced by BGLF4 knockout virus. PMID:23449792
Fujimura, Tsutomu; Esteban, Rosa
2016-10-01
The 5'end of RNA conveys important information on self-identity. In mammalian cells, double-stranded RNA (dsRNA) with 5'di- or triphosphates generated during virus infection is recognized as foreign and elicits the host innate immune response. Here, we analyze the 5' ends of the dsRNA genome of the yeast L-A virus. The positive strand has largely diphosphates with a minor amount of triphosphates, while the negative strand has only diphosphates. Although the virus can produce capped transcripts by cap snatching, neither strand carried a cap structure, suggesting that only non-capped transcripts serve as genomic RNA for encapsidation. We also found that the 5' diphosphates of the positive but not the negative strand within the dsRNA genome are crucial for transcription in vitro. Furthermore, the presence of a cap structure in the dsRNA abrogated its template activity. Given that the 5' diphosphates of the transcripts are also essential for cap acquisition and that host cytosolic RNAs (mRNA, rRNA, and tRNA) are uniformly devoid of 5' pp-structures, the L-A virus takes advantage of its 5' terminal diphosphates, using them as a self-identity tag to propagate in the host cytoplasm. © 2016 John Wiley & Sons Ltd.
INITIATION AND REGULATION OF PARAMYXOVIRUS TRANSCRIPTION AND REPLICATION
Noton, Sarah L.; Fearns, Rachel
2015-01-01
The paramyxovirus family has a genome consisting of a single strand of negative sense RNA. This genome acts as a template for two distinct processes: transcription to generate subgenomic, capped and polyadenylated mRNAs, and genome replication. These viruses only encode one polymerase. Thus, an intriguing question is, how does the viral polymerase initiate and become committed to either transcription or replication? By answering this we can begin to understand how these two processes are regulated. In this review article, we present recent findings from studies on the paramyxovirus, respiratory syncytial virus, which show how its polymerase is able to initiate transcription and replication from a single promoter. We discuss how these findings apply to other paramyxoviruses. Then, we examine how trans-acting proteins and promoter secondary structure might serve to regulate transcription and replication during different phases of the paramyxovirus replication cycle. PMID:25683441
Initiation and regulation of paramyxovirus transcription and replication.
Noton, Sarah L; Fearns, Rachel
2015-05-01
The paramyxovirus family has a genome consisting of a single strand of negative sense RNA. This genome acts as a template for two distinct processes: transcription to generate subgenomic, capped and polyadenylated mRNAs, and genome replication. These viruses only encode one polymerase. Thus, an intriguing question is, how does the viral polymerase initiate and become committed to either transcription or replication? By answering this we can begin to understand how these two processes are regulated. In this review article, we present recent findings from studies on the paramyxovirus, respiratory syncytial virus, which show how its polymerase is able to initiate transcription and replication from a single promoter. We discuss how these findings apply to other paramyxoviruses. Then, we examine how trans-acting proteins and promoter secondary structure might serve to regulate transcription and replication during different phases of the paramyxovirus replication cycle. Copyright © 2015 Elsevier Inc. All rights reserved.
van Bel, Nikki; van der Velden, Yme; Bonnard, Damien; Le Rouzic, Erwann; Das, Atze T; Benarous, Richard; Berkhout, Ben
2014-01-01
The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.
Burke, Emily; Mahoney, Nicole M.; Almo, Steven C.; Barik, Sailen
2000-01-01
Transcription of human respiratory syncytial virus (RSV) genome RNA exhibited an obligatory need for the host cytoskeletal protein actin. Optimal transcription, however, required the participation of another cellular protein that was characterized as profilin by a number of criteria. The amino acid sequence of the protein, purified on the basis of its transcription-optimizing activity in vitro, exactly matched that of profilin. RSV transcription was inhibited 60 to 80% by antiprofilin antibody or poly-l-proline, molecules that specifically bind profilin. Native profilin, purified from extracts of lung epithelial cells by affinity binding to a poly-l-proline matrix, stimulated the actin-saturated RSV transcription by 2.5- to 3-fold. Recombinant profilin, expressed in bacteria, stimulated viral transcription as effectively as the native protein and was also inhibited by poly-l-proline. Profilin alone, in the absence of actin, did not activate viral transcription. It is estimated that at optimal levels of transcription, every molecule of viral genomic RNA associates with approximately the following number of protein molecules: 30 molecules of L, 120 molecules of phosphoprotein P, and 60 molecules each of actin and profilin. Together, these results demonstrated for the first time a cardinal role for profilin, an actin-modulatory protein, in the transcription of a paramyxovirus RNA genome. PMID:10623728
Genome variations associated with viral susceptibility and calcification in Emiliania huxleyi.
Kegel, Jessica U; John, Uwe; Valentin, Klaus; Frickenhaus, Stephan
2013-01-01
Emiliania huxleyi, a key player in the global carbon cycle is one of the best studied coccolithophores with respect to biogeochemical cycles, climatology, and host-virus interactions. Strains of E. huxleyi show phenotypic plasticity regarding growth behaviour, light-response, calcification, acidification, and virus susceptibility. This phenomenon is likely a consequence of genomic differences, or transcriptomic responses, to environmental conditions or threats such as viral infections. We used an E. huxleyi genome microarray based on the sequenced strain CCMP1516 (reference strain) to perform comparative genomic hybridizations (CGH) of 16 E. huxleyi strains of different geographic origin. We investigated the genomic diversity and plasticity and focused on the identification of genes related to virus susceptibility and coccolith production (calcification). Among the tested 31940 gene models a core genome of 14628 genes was identified by hybridization among 16 E. huxleyi strains. 224 probes were characterized as specific for the reference strain CCMP1516. Compared to the sequenced E. huxleyi strain CCMP1516 variation in gene content of up to 30 percent among strains was observed. Comparison of core and non-core transcripts sets in terms of annotated functions reveals a broad, almost equal functional coverage over all KOG-categories of both transcript sets within the whole annotated genome. Within the variable (non-core) genome we identified genes associated with virus susceptibility and calcification. Genes associated with virus susceptibility include a Bax inhibitor-1 protein, three LRR receptor-like protein kinases, and mitogen-activated protein kinase. Our list of transcripts associated with coccolith production will stimulate further research, e.g. by genetic manipulation. In particular, the V-type proton ATPase 16 kDa proteolipid subunit is proposed to be a plausible target gene for further calcification studies.
Genome Variations Associated with Viral Susceptibility and Calcification in Emiliania huxleyi
Kegel, Jessica U.; John, Uwe; Valentin, Klaus; Frickenhaus, Stephan
2013-01-01
Emiliania huxleyi, a key player in the global carbon cycle is one of the best studied coccolithophores with respect to biogeochemical cycles, climatology, and host-virus interactions. Strains of E. huxleyi show phenotypic plasticity regarding growth behaviour, light-response, calcification, acidification, and virus susceptibility. This phenomenon is likely a consequence of genomic differences, or transcriptomic responses, to environmental conditions or threats such as viral infections. We used an E. huxleyi genome microarray based on the sequenced strain CCMP1516 (reference strain) to perform comparative genomic hybridizations (CGH) of 16 E. huxleyi strains of different geographic origin. We investigated the genomic diversity and plasticity and focused on the identification of genes related to virus susceptibility and coccolith production (calcification). Among the tested 31940 gene models a core genome of 14628 genes was identified by hybridization among 16 E. huxleyi strains. 224 probes were characterized as specific for the reference strain CCMP1516. Compared to the sequenced E. huxleyi strain CCMP1516 variation in gene content of up to 30 percent among strains was observed. Comparison of core and non-core transcripts sets in terms of annotated functions reveals a broad, almost equal functional coverage over all KOG-categories of both transcript sets within the whole annotated genome. Within the variable (non-core) genome we identified genes associated with virus susceptibility and calcification. Genes associated with virus susceptibility include a Bax inhibitor-1 protein, three LRR receptor-like protein kinases, and mitogen-activated protein kinase. Our list of transcripts associated with coccolith production will stimulate further research, e.g. by genetic manipulation. In particular, the V-type proton ATPase 16 kDa proteolipid subunit is proposed to be a plausible target gene for further calcification studies. PMID:24260453
Multiplex Reverse Transcription-PCR for Simultaneous Surveillance of Influenza A and B Viruses
Zhou, Bin; Barnes, John R.; Sessions, October M.; Chou, Tsui-Wen; Wilson, Malania; Stark, Thomas J.; Volk, Michelle; Spirason, Natalie; Halpin, Rebecca A.; Kamaraj, Uma Sangumathi; Ding, Tao; Stockwell, Timothy B.; Ghedin, Elodie; Barr, Ian G.
2017-01-01
ABSTRACT Influenza A and B viruses are the causative agents of annual influenza epidemics that can be severe, and influenza A viruses intermittently cause pandemics. Sequence information from influenza virus genomes is instrumental in determining mechanisms underpinning antigenic evolution and antiviral resistance. However, due to sequence diversity and the dynamics of influenza virus evolution, rapid and high-throughput sequencing of influenza viruses remains a challenge. We developed a single-reaction influenza A/B virus (FluA/B) multiplex reverse transcription-PCR (RT-PCR) method that amplifies the most critical genomic segments (hemagglutinin [HA], neuraminidase [NA], and matrix [M]) of seasonal influenza A and B viruses for next-generation sequencing, regardless of viral type, subtype, or lineage. Herein, we demonstrate that the strategy is highly sensitive and robust. The strategy was validated on thousands of seasonal influenza A and B virus-positive specimens using multiple next-generation sequencing platforms. PMID:28978683
Dhir, Sunny; Walia, Yashika; Zaidi, A A; Hallan, Vipin
2015-03-01
A simple method to amplify infective, complete genomes of single stranded RNA viruses by long distance PCR (LD PCR) from woody plant tissues is described in detail. The present protocol eliminates partial purification of viral particles and the amplification is achieved in three steps: (i) easy preparation of template RNA by incorporating a pre processing step before loading onto the column (ii) reverse transcription by AMV or Superscript reverse transcriptase and (iii) amplification of cDNA by LD PCR using LA or Protoscript Taq DNA polymerase. Incorporation of a preprocessing step helped to isolate consistent quality RNA from recalcitrant woody tissues such as apple, which was critical for efficient amplification of the complete genomes of Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV) and Apple chlorotic leaf spot virus (ACLSV). Complete genome of ASGV was cloned under T7 RNA polymerase promoter and was confirmed to be infectious through transcript inoculation producing symptoms similar to the wild type virus. This is the first report for the largest RNA virus genome amplified by PCR from total nucleic acid extracts of woody plant tissues. Copyright © 2014 Elsevier B.V. All rights reserved.
Matsumura, Emilyn E; Nerva, Luca; Nigg, Jared C; Falk, Bryce W; Nouri, Shahideh
2016-09-08
A novel flavi-like virus tentatively named Diaphorina citri flavi-like virus (DcFLV) was identified in field populations of Diaphorina citri through small RNA and transcriptome sequencing followed by reverse transcription (RT)-PCR. We report here the complete nucleotide sequence and genome organization of DcFLV, the largest flavi-like virus identified to date. Copyright © 2016 Matsumura et al.
Nouri, Shahideh; Salem, Nidà; Falk, Bryce W
2016-07-21
We present here the complete nucleotide sequence and genome organization of a novel putative RNA virus identified in field populations of the Asian citrus psyllid, Diaphorina citri, through sequencing of the transcriptome followed by reverse transcription-PCR (RT-PCR). We tentatively named this virus Diaphorina citri-associated C virus (DcACV). DcACV is an unclassified positive-sense RNA virus. Copyright © 2016 Nouri et al.
Zhang, Y; Shi, Y; Yu, H; Li, J; Quan, Y; Shu, T; Nie, Z; Zhang, Y; Yu, W
Baculoviridae is a family of invertebrate viruses with large double-stranded DNA genomes. Proteins encoded by some late expression factor (lef ) genes are involved in the regulation of viral gene expression. Lef-9 is one of four transcription-specific Lefs, which are components of the virus-encoded RNA polymerase, and can initiate and transcribe late and very late genes. As a multifunctional protein encoded by the Bombyx mori nucleopolyhedrovirus (BmNPV), Lef-9 may be involved in the regulation of viral propagation. However, the underlying mechanism remains unclear. To determine the role of lef-9 in baculovirus infection, lef-9-knockout virus (lef-9-KO-Bacmid virus) was constructed using the Red recombination system, and the Bac-to-Bac system was used to prepare lef-9-repaired virus (lef-9-Re-Bacmid virus). The lef-9-KO virus did not produce infectious viruses or show infection activity, while the lef-9-repaired virus recovered both. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of the transcription levels in wild-type-Bacmid, lef-9-KO-Bacmid, and lef-9-Re-Bacmid viruses showed that the lef-9-KO bacmid had little effect on viral genome replication. However, the transcription levels of the early and late viral genes, lef-3, ie-1, vp39, and p10, were significantly lower in BmN cells transfected with lef-9-KO-Bacmids than in the controls. Electron microscopy showed no visible enveloped virions in cells transfected with lef-9-KO-Bacmids, while many mature virions in cells transfected with lef-9-Re-Bacmid and wt-Bacmid were present. Thus, lef-9 was not essential for viral genome replication, but significantly affected viral gene transcription and expression in all periods of cell life cycle.
Breaking the 1000-gene barrier for Mimivirus using ultra-deep genome and transcriptome sequencing.
Legendre, Matthieu; Santini, Sébastien; Rico, Alain; Abergel, Chantal; Claverie, Jean-Michel
2011-03-04
Mimivirus, a giant dsDNA virus infecting Acanthamoeba, is the prototype of the mimiviridae family, the latest addition to the family of the nucleocytoplasmic large DNA viruses (NCLDVs). Its 1.2 Mb-genome was initially predicted to encode 917 genes. A subsequent RNA-Seq analysis precisely mapped many transcript boundaries and identified 75 new genes. We now report a much deeper analysis using the SOLiD™ technology combining RNA-Seq of the Mimivirus transcriptome during the infectious cycle (202.4 Million reads), and a complete genome re-sequencing (45.3 Million reads). This study corrected the genome sequence and identified several single nucleotide polymorphisms. Our results also provided clear evidence of previously overlooked transcription units, including an important RNA polymerase subunit distantly related to Euryarchea homologues. The total Mimivirus gene count is now 1018, 11% greater than the original annotation. This study highlights the huge progress brought about by ultra-deep sequencing for the comprehensive annotation of virus genomes, opening the door to a complete one-nucleotide resolution level description of their transcriptional activity, and to the realistic modeling of the viral genome expression at the ultimate molecular level. This work also illustrates the need to go beyond bioinformatics-only approaches for the annotation of short protein and non-coding genes in viral genomes.
Porcine circovirus: transcription and rolling-circle DNA replication
USDA-ARS?s Scientific Manuscript database
This review summarizes the molecular studies pertaining to porcine circovirus (PCV) transcription and DNA replication. The genome of PCV is circular, single-stranded DNA and contains 1759-1768 nucleotides. Both the genome-strand (packaged in the virus particle) and the complementary-strand (synthesi...
Pharmacological inhibition of feline immunodeficiency virus (FIV).
Mohammadi, Hakimeh; Bienzle, Dorothee
2012-05-01
Feline immunodeficiency virus (FIV) is a member of the retroviridae family of viruses and causes an acquired immunodeficiency syndrome (AIDS) in domestic and non-domestic cats worldwide. Genome organization of FIV and clinical characteristics of the disease caused by the virus are similar to those of human immunodeficiency virus (HIV). Both viruses infect T lymphocytes, monocytes and macrophages, and their replication cycle in infected cells is analogous. Due to marked similarity in genomic organization, virus structure, virus replication and disease pathogenesis of FIV and HIV, infection of cats with FIV is a useful tool to study and develop novel drugs and vaccines for HIV. Anti-retroviral drugs studied extensively in HIV infection have targeted different steps of the virus replication cycle: (1) inhibition of virus entry into susceptible cells at the level of attachment to host cell surface receptors and co-receptors; (2) inhibition of fusion of the virus membrane with the cell membrane; (3) blockade of reverse transcription of viral genomic RNA; (4) interruption of nuclear translocation and viral DNA integration into host genomes; (5) prevention of viral transcript processing and nuclear export; and (6) inhibition of virion assembly and maturation. Despite much success of anti-retroviral therapy slowing disease progression in people, similar therapy has not been thoroughly investigated in cats. In this article we review current pharmacological approaches and novel targets for anti-lentiviral therapy, and critically assess potentially suitable applications against FIV infection in cats.
Miklík, Dalibor; Šenigl, Filip; Hejnar, Jiří
2018-01-01
Individual groups of retroviruses and retroviral vectors differ in their integration site preference and interaction with the host genome. Hence, immediately after infection genome-wide distribution of integrated proviruses is non-random. During long-term in vitro or persistent in vivo infection, the genomic position and chromatin environment of the provirus affects its transcriptional activity. Thus, a selection of long-term stably expressed proviruses and elimination of proviruses, which have been gradually silenced by epigenetic mechanisms, helps in the identification of genomic compartments permissive for proviral transcription. We compare here the extent and time course of provirus silencing in single cell clones of the K562 human myeloid lymphoblastoma cell line that have been infected with retroviral reporter vectors derived from avian sarcoma/leukosis virus (ASLV), human immunodeficiency virus type 1 (HIV) and murine leukaemia virus (MLV). While MLV proviruses remain transcriptionally active, ASLV proviruses are prone to rapid silencing. The HIV provirus displays gradual silencing only after an extended time period in culture. The analysis of integration sites of long-term stably expressed proviruses shows a strong bias for some genomic features—especially integration close to the transcription start sites of active transcription units. Furthermore, complex analysis of histone modifications enriched at the site of integration points to the accumulation of proviruses of all three groups in gene regulatory segments, particularly close to the enhancer loci. We conclude that the proximity to active regulatory chromatin segments correlates with stable provirus expression in various retroviral species. PMID:29517993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assenberg, René; Delmas, Olivier; Graham, Stephen C.
The expression, purification and crystallization of the full-length matrix protein from three lyssaviruses is described. The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number ofmore » factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress.« less
Sarid, Ronit; Flore, Ornella; Bohenzky, Roy A.; Chang, Yuan; Moore, Patrick S.
1998-01-01
Kaposi’s sarcoma-associated herpesvirus (KSHV) gene transcription in the BC-1 cell line (KSHV and Epstein-Barr virus coinfected) was examined by using Northern analysis with DNA probes extending across the viral genome except for a 3-kb unclonable rightmost region. Three broad classes of viral gene transcription have been identified. Class I genes, such as those encoding the v-cyclin, latency-associated nuclear antigen, and v-FLIP, are constitutively transcribed under standard growth conditions, are unaffected by tetradecanoylphorbol acetate (TPA) induction, and presumably represent latent viral transcripts. Class II genes are primarily clustered in nonconserved regions of the genome and include small polyadenylated RNAs (T0.7 and T1.1) as well as most of the virus-encoded cytokines and signal transduction genes. Class II genes are transcribed without TPA treatment but are induced to higher transcription levels by TPA treatment. Class III genes are primarily structural and replication genes that are transcribed only following TPA treatment and are presumably responsible for lytic virion production. These results indicate that BC-1 cells have detectable transcription of a number of KSHV genes, particularly nonconserved genes involved in cellular signal transduction and regulation, during noninduced (latent) virus culture. PMID:9444993
Wang, Zhongyi; Li, Jiaming; Fu, Yingying; Zhao, Zongzheng; Zhang, Chunmao; Li, Nan; Li, Jingjing; Cheng, Hongliang; Jin, Xiaojun; Lu, Bing; Guo, Zhendong; Qian, Jun; Liu, Linna
2018-05-16
MicroRNAs (miRNAs) may become efficient antiviral agents against the Ebola virus (EBOV) targeting viral genomic RNAs or transcripts. We previously conducted a genome-wide search for differentially expressed miRNAs during viral replication and transcription. In this study, we established a rapid screen for miRNAs with inhibitory effects against EBOV using a tetracistronic transcription- and replication-competent virus-like particle (trVLP) system. This system uses a minigenome comprising an EBOV leader region, luciferase reporter, VP40, GP, VP24, EBOV trailer region, and three noncoding regions from the EBOV genome and can be used to model the life cycle of EBOV under biosafety level (BSL) 2 conditions. Informatic analysis was performed to select up-regulated miRNAs targeting the coding regions of the minigenome with the highest binding energy to perform inhibitory effect screening. Among these miRNAs, miR-150-3p had the most significant inhibitory effect. Reverse transcription polymerase chain reaction (RT-PCR), Western blot, and double fluorescence reporter experiments demonstrated that miR-150-3p inhibited the reproduction of trVLPs via the regulation of GP and VP40 expression by directly targeting the coding regions of GP and VP40. This novel, rapid, and convenient screening method will efficiently facilitate the exploration of miRNAs against EBOV under BSL-2 conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn
Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified amore » novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC{sub 50} values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets.« less
Henderson, Heather H; Timberlake, Kensey B; Austin, Zoe A; Badani, Hussain; Sanford, Bridget; Tremblay, Keriann; Baird, Nicholas L; Jones, Kenneth; Rovnak, Joel; Frietze, Seth; Gilden, Don; Cohrs, Randall J
2016-02-01
Regulation of gene transcription in varicella-zoster virus (VZV), a ubiquitous human neurotropic alphaherpesvirus, requires coordinated binding of multiple host and virus proteins onto specific regions of the virus genome. Chromatin immunoprecipitation (ChIP) is widely used to determine the location of specific proteins along a genomic region. Since the size range of sheared virus DNA fragments governs the limit of accurate protein localization, particularly for compact herpesvirus genomes, we used a quantitative PCR (qPCR)-based assay to determine the efficiency of VZV DNA shearing before ChIP, after which the assay was used to determine the relationship between transcript abundance and the occupancy of phosphorylated RNA polymerase II (RNAP) on the gene promoter, body, and terminus of VZV genes 9, 51, and 66. The abundance of VZV gene 9, 51, and 66 transcripts in VZV-infected human fetal lung fibroblasts was determined by reverse transcription-linked quantitative PCR. Our results showed that the C-terminal domain of RNAP is hyperphosphorylated at serine 5 (S5(P)) on VZV genes 9, 51, and 66 independently of transcript abundance and the location within the virus gene at both 1 and 3 days postinfection (dpi). In contrast, phosphorylated serine 2 (S2(P))-modified RNAP was not detected at any virus gene location at 3 dpi and was detected at levels only slightly above background levels at 1 dpi. Regulation of herpesvirus gene transcription is an elaborate choreography between proteins and DNA that is revealed by chromatin immunoprecipitation (ChIP). We used a quantitative PCR-based assay to determine fragment size after DNA shearing, a critical parameter in ChIP assays, and exposed a basic difference in the mechanism of transcription between mammalian cells and VZV. We found that hyperphosphorylation at serine 5 of the C-terminal domain of RNAP along the lengths of VZV genes (the promoter, body, and transcription termination site) was independent of mRNA abundance. In contrast, little to no enrichment of serine 3 phosphorylation of RNAP was detected at these virus gene regions. This is distinct from the findings for RNAP at highly regulated host genes, where RNAP S5(P) occupancy decreased and S2(P) levels increased as the polymerase transited through the gene. Overall, these results suggest that RNAP associates with human and virus transcriptional units through different mechanisms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tratschin, J.D.; West, M.H.P.; Sandbank, T.
1984-10-01
The authors have used the defective human parvovirus adeno-associated virus (AAV) as a novel eurocaryotic vector (parvector) for the expression of a foreign gene in human cells. The recombinant, pAV2, contains the AAV genome in a pBR322-derived bacterial plasmid. When pAV2 is transfected into human cells together with helper adenovirus particles, the AAV genome is rescued from the recombinant plasmid and replicated to produce infectious AAV particles at high efficiency. To create a vector, we inserted a procaryotic sequence coding for chloramphenicol acetyltransferase (CAT) into derivatives of pAV2 following either of the AAV promoters p/sub 40/ (pAVHiCAT) and p/sub 19/more » (pAVBcCAT). When transfected into human 293 cells or HeLa cells, pAVHiCAT expressed CAT activity in the absence of adenovirus. In the presence of adenovirus, this vector produced increased amounts of CAT activity and the recombinant AAV-CAT genome was replicated. In 293 cells, pAVBcCAT expressed a similar amount of CAT activity in the absence or presence of adenovirus and the recombinant AAV-CAT genome was not replicated. In HeLa cells, pAVBcCAT expressed low levels of CAT activity, but this level was elevated by coinfection with adenovirus particles or by cotransfection with a plasmid which expressed the adenovirus early region 1A (E1A) product. The E1A product is a transcriptional activator and is expressed in 293 cells. Thus, expression from two AAV promoters is differentially regulated: expression from p/sub 19/ is increased by E1A, whereas p/sub 40/ yields high levels of constitutive expression in the absence of E1A. Both AAV vectors were packaged into AAV particles by complementation with wild-type AAV and yielded CAT activity when subsequently infected into cells in the presence of adenovirus.« less
Replication of plant RNA virus genomes in a cell-free extract of evacuolated plant protoplasts
Komoda, Keisuke; Naito, Satoshi; Ishikawa, Masayuki
2004-01-01
The replication of eukaryotic positive-strand RNA virus genomes occurs through a complex process involving multiple viral and host proteins and intracellular membranes. Here we report a cell-free system that reproduces this process in vitro. This system uses a membrane-containing extract of uninfected plant protoplasts from which the vacuoles had been removed by Percoll gradient centrifugation. We demonstrate that the system supported translation, negative-strand RNA synthesis, genomic RNA replication, and subgenomic RNA transcription of tomato mosaic virus and two other plant positive-strand RNA viruses. The RNA synthesis, which depended on translation of the genomic RNA, produced virus-related RNA species similar to those that are generated in vivo. This system will aid in the elucidation of the mechanisms of genome replication in these viruses. PMID:14769932
Falk, K.; Batts, W.N.; Kvellestad, A.; Kurath, G.; Wiik-Nielsen, J.; Winton, J.R.
2008-01-01
Atlantic salmon paramyxovirus (ASPV) was isolated in 1995 from gills of farmed Atlantic salmon suffering from proliferative gill inflammation. The complete genome sequence of ASPV was determined, revealing a genome 16,968 nucleotides in length consisting of six non-overlapping genes coding for the nucleo- (N), phospho- (P), matrix- (M), fusion- (F), haemagglutinin-neuraminidase- (HN) and large polymerase (L) proteins in the order 3???-N-P-M-F-HN-L-5???. The various conserved features related to virus replication found in most paramyxoviruses were also found in ASPV. These include: conserved and complementary leader and trailer sequences, tri-nucleotide intergenic regions and highly conserved transcription start and stop signal sequences. The P gene expression strategy of ASPV was like that of the respiro-, morbilli- and henipaviruses, which express the P and C proteins from the primary transcript and edit a portion of the mRNA to encode V and W proteins. Sequence similarities among various features related to virus replication, pairwise comparisons of all deduced ASPV protein sequences with homologous regions from other members of the family Paramyxoviridae, and phylogenetic analyses of these amino acid sequences suggested that ASPV was a novel member of the sub-family Paramyxovirinae, most closely related to the respiroviruses. ?? 2008 Elsevier B.V. All rights reserved.
Turan, Kadir; Mibayashi, Masaki; Sugiyama, Kenji; Saito, Shoko; Numajiri, Akiko; Nagata, Kyosuke
2004-01-01
Mx proteins belong to the dynamin superfamily of high molecular weight GTPases and interfere with multiplication of a wide variety of viruses. Earlier studies show that nuclear mouse Mx1 and human MxA designed to be localized in the nucleus inhibit the transcription step of the influenza virus genome. Here we set a transient influenza virus transcription system using luciferase as a reporter gene and cells expressing the three RNA polymerase subunits, PB1, PB2 and PA, and NP. We used this reporter assay system and nuclear-localized MxA proteins to get clues for elucidating the anti-influenza virus activity of MxA. Nuclear-localized VP16-MxA and MxA-TAg NLS strongly interfered with the influenza virus transcription. Over-expression of PB2 led to a slight resumption of the transcription inhibition by nuclear MxA, whereas over-expression of PB1 and PA did not affect the MxA activity. Of interest is that the inhibitory activity of the nuclear MxA was markedly neutralized by over-expression of NP. An NP devoid of its C-terminal region, but containing the N-terminal RNA binding domain, also neutralized the VP16-MxA activity in a dose-dependent manner, whereas an NP lacking the N-terminal region did not affect the VP16-MxA activity. Further, not only VP16-MxA but also the wild-type MxA was found to interact with NP in influenza virus-infected cells. This indicates that the nuclear MxA suppresses the influenza virus transcription by interacting with not only PB2 but also NP. PMID:14752052
Harkness, Justine M; Kader, Muhamuda; DeLuca, Neal A
2014-06-01
Herpes simplex virus 1 (HSV-1) can undergo a productive infection in nonneuronal and neuronal cells such that the genes of the virus are transcribed in an ordered cascade. HSV-1 can also establish a more quiescent or latent infection in peripheral neurons, where gene expression is substantially reduced relative to that in productive infection. HSV mutants defective in multiple immediate early (IE) gene functions are highly defective for later gene expression and model some aspects of latency in vivo. We compared the expression of wild-type (wt) virus and IE gene mutants in nonneuronal cells (MRC5) and adult murine trigeminal ganglion (TG) neurons using the Illumina platform for cDNA sequencing (RNA-seq). RNA-seq analysis of wild-type virus revealed that expression of the genome mostly followed the previously established kinetics, validating the method, while highlighting variations in gene expression within individual kinetic classes. The accumulation of immediate early transcripts differed between MRC5 cells and neurons, with a greater abundance in neurons. Analysis of a mutant defective in all five IE genes (d109) showed dysregulated genome-wide low-level transcription that was more highly attenuated in MRC5 cells than in TG neurons. Furthermore, a subset of genes in d109 was more abundantly expressed over time in neurons. While the majority of the viral genome became relatively quiescent, the latency-associated transcript was specifically upregulated. Unexpectedly, other genes within repeat regions of the genome, as well as the unique genes just adjacent the repeat regions, also remained relatively active in neurons. The relative permissiveness of TG neurons to viral gene expression near the joint region is likely significant during the establishment and reactivation of latency. During productive infection, the genes of HSV-1 are transcribed in an ordered cascade. HSV can also establish a more quiescent or latent infection in peripheral neurons. HSV mutants defective in multiple immediate early (IE) genes establish a quiescent infection that models aspects of latency in vivo. We simultaneously quantified the expression of all the HSV genes in nonneuronal and neuronal cells by RNA-seq analysis. The results for productive infection shed further light on the nature of genes and promoters of different kinetic classes. In quiescent infection, there was greater transcription across the genome in neurons than in nonneuronal cells. In particular, the transcription of the latency-associated transcript (LAT), IE genes, and genes in the unique regions adjacent to the repeats persisted in neurons. The relative activity of this region of the genome in the absence of viral activators suggests a more dynamic state for quiescent genomes persisting in neurons. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Pharmacological Inhibition of Feline Immunodeficiency Virus (FIV)
Mohammadi, Hakimeh; Bienzle, Dorothee
2012-01-01
Feline immunodeficiency virus (FIV) is a member of the retroviridae family of viruses and causes an acquired immunodeficiency syndrome (AIDS) in domestic and non-domestic cats worldwide. Genome organization of FIV and clinical characteristics of the disease caused by the virus are similar to those of human immunodeficiency virus (HIV). Both viruses infect T lymphocytes, monocytes and macrophages, and their replication cycle in infected cells is analogous. Due to marked similarity in genomic organization, virus structure, virus replication and disease pathogenesis of FIV and HIV, infection of cats with FIV is a useful tool to study and develop novel drugs and vaccines for HIV. Anti-retroviral drugs studied extensively in HIV infection have targeted different steps of the virus replication cycle: (1) inhibition of virus entry into susceptible cells at the level of attachment to host cell surface receptors and co-receptors; (2) inhibition of fusion of the virus membrane with the cell membrane; (3) blockade of reverse transcription of viral genomic RNA; (4) interruption of nuclear translocation and viral DNA integration into host genomes; (5) prevention of viral transcript processing and nuclear export; and (6) inhibition of virion assembly and maturation. Despite much success of anti-retroviral therapy slowing disease progression in people, similar therapy has not been thoroughly investigated in cats. In this article we review current pharmacological approaches and novel targets for anti-lentiviral therapy, and critically assess potentially suitable applications against FIV infection in cats. PMID:22754645
Expression of a non-coding RNA in ectromelia virus is required for normal plaque formation.
Esteban, David J; Upton, Chris; Bartow-McKenney, Casey; Buller, R Mark L; Chen, Nanhai G; Schriewer, Jill; Lefkowitz, Elliot J; Wang, Chunlin
2014-02-01
Poxviruses are dsDNA viruses with large genomes. Many genes in the genome remain uncharacterized, and recent studies have demonstrated that the poxvirus transcriptome includes numerous so-called anomalous transcripts not associated with open reading frames. Here, we characterize the expression and role of an apparently non-coding RNA in orthopoxviruses, which we call viral hairpin RNA (vhRNA). Using a bioinformatics approach, we predicted expression of a transcript not associated with an open reading frame that is likely to form a stem-loop structure due to the presence of a 21 nt palindromic sequence. Expression of the transcript as early as 2 h post-infection was confirmed by northern blot and analysis of publicly available vaccinia virus infected cell transcriptomes. The transcription start site was determined by RACE PCE and transcriptome analysis, and early and late promoter sequences were identified. Finally, to test the function of the transcript we generated an ectromelia virus knockout, which failed to form plaques in cell culture. The important role of the transcript in viral replication was further demonstrated using siRNA. Although the function of the transcript remains unknown, our work contributes to evidence of an increasingly complex poxvirus transcriptome, suggesting that transcripts such as vhRNA not associated with an annotated open reading frame can play an important role in viral replication.
The Epstein-Barr Virus Episome Maneuvers between Nuclear Chromatin Compartments during Reactivation
Moquin, Stephanie A.; Thomas, Sean; Whalen, Sean; Warburton, Alix; Fernandez, Samantha G.; McBride, Alison A.; Pollard, Katherine S.
2017-01-01
ABSTRACT The human genome is structurally organized in three-dimensional space to facilitate functional partitioning of transcription. We learned that the latent episome of the human Epstein-Barr virus (EBV) preferentially associates with gene-poor chromosomes and avoids gene-rich chromosomes. Kaposi's sarcoma-associated herpesvirus behaves similarly, but human papillomavirus does not. Contacts on the EBV side localize to OriP, the latent origin of replication. This genetic element and the EBNA1 protein that binds there are sufficient to reconstitute chromosome association preferences of the entire episome. Contacts on the human side localize to gene-poor and AT-rich regions of chromatin distant from transcription start sites. Upon reactivation from latency, however, the episome moves away from repressive heterochromatin and toward active euchromatin. Our work adds three-dimensional relocalization to the molecular events that occur during reactivation. Involvement of myriad interchromosomal associations also suggests a role for this type of long-range association in gene regulation. IMPORTANCE The human genome is structurally organized in three-dimensional space, and this structure functionally affects transcriptional activity. We set out to investigate whether a double-stranded DNA virus, Epstein-Barr virus (EBV), uses mechanisms similar to those of the human genome to regulate transcription. We found that the EBV genome associates with repressive compartments of the nucleus during latency and with active compartments during reactivation. This study advances our knowledge of the EBV life cycle, adding three-dimensional relocalization as a novel component to the molecular events that occur during reactivation. Furthermore, the data add to our understanding of nuclear compartments, showing that disperse interchromosomal interactions may be important for regulating transcription. PMID:29142137
In vitro transcription of two human rotaviruses.
Flores, J; Myslinski, J; Kalica, A R; Greenberg, H B; Wyatt, R G; Kapikian, A Z; Chanock, R M
1982-01-01
The RNA polymerase activities of a cultivatable (Wa) and a noncultivatable (DS-1) strain of human rotavirus were studied. Under optimal conditions, transcription of all of their RNA segments occurred, as evidenced by the hybridization of labeled transcripts to genomic RNA. Cross-hybridization between the two viruses showed that none of their 11 genes were completely homologous. The transcription products could be translated in vitro, yielding proteins with an electrophoretic pattern resembling that obtained with proteins labeled in vivo during infection with the Wa virus. Images PMID:6292446
Elliott, Richard M.
2014-01-01
Rift Valley fever virus (RVFV, family Bunyaviridae) is a mosquito-borne pathogen of both livestock and humans, found primarily in Sub-Saharan Africa and the Arabian Peninsula. The viral genome comprises two negative-sense (L and M segments) and one ambisense (S segment) RNAs that encode seven proteins. The S segment encodes the nucleocapsid (N) protein in the negative-sense and a nonstructural (NSs) protein in the positive-sense, though NSs cannot be translated directly from the S segment but rather from a specific subgenomic mRNA. Using reverse genetics we generated a virus, designated rMP12:S-Swap, in which the N protein is expressed from the NSs locus and NSs from the N locus within the genomic S RNA. In cells infected with rMP12:S-Swap NSs is expressed at higher levels with respect to N than in cells infected with the parental rMP12 virus. Despite NSs being the main interferon antagonist and determinant of virulence, growth of rMP12:S-Swap was attenuated in mammalian cells and gave a small plaque phenotype. The increased abundance of the NSs protein did not lead to faster inhibition of host cell protein synthesis or host cell transcription in infected mammalian cells. In cultured mosquito cells, however, infection with rMP12:S-Swap resulted in cell death rather than establishment of persistence as seen with rMP12. Finally, altering the composition of the S segment led to a differential packaging ratio of genomic to antigenomic RNA into rMP12:S-Swap virions. Our results highlight the plasticity of the RVFV genome and provide a useful experimental tool to investigate further the packaging mechanism of the segmented genome. PMID:24550727
Maumus, Florian; Blanc, Guillaume
2016-12-14
The nucleocytoplasmic large DNA viruses (NCLDV) are a group of extremely complex double-stranded DNA viruses, which are major parasites of a variety of eukaryotes. Recent studies showed that certain unicellular eukaryotes contain fragments of NCLDV DNA integrated in their genome, when surprisingly many of these organisms were not previously shown to be infected by NCLDVs. These findings prompted us to search the genome of Acanthamoeba castellanii strain Neff (Neff), one of the most prolific hosts in the discovery of giant NCLDVs, for possible DNA inserts of viral origin. We report the identification of 267 markers of lateral gene transfer with viruses, approximately half of which are clustered in Neff genome regions of viral origins, transcriptionally inactive or exhibit nucleotide-composition signatures suggestive of a foreign origin. The integrated viral genes had diverse origin among relatives of viruses that infect Neff, including Mollivirus, Pandoravirus, Marseillevirus, Pithovirus, and Mimivirus However, phylogenetic analysis suggests the existence of a yet-undiscovered family of amoeba-infecting NCLDV in addition to the five already characterized. The active transcription of some apparently anciently integrated virus-like genes suggests that some viral genes might have been domesticated during the amoeba evolution. These insights confirm that genomic insertion of NCLDV DNA is a common theme in eukaryotes. This gene flow contributed fertilizing the eukaryotic gene repertoire and participated in the occurrence of orphan genes, a long standing issue in genomics. Search for viral inserts in eukaryotic genomes followed by environmental screening of the original viruses should be used to isolate radically new NCLDVs. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Complete genome sequence of a recent panzootic virulent Newcastle disease virus from Pakistan
USDA-ARS?s Scientific Manuscript database
Complete genome sequence of a new strain of Newcastle disease virus (NDV) (chicken/Pak/Lahore-611/2013) is reported. The strain was isolated from a vaccinated chicken flock in Pakistan in 2013 and has panzootic features. The genome is 15192 nucleotides in length and is classified as sub-genotype V...
Geslin, C.; Gaillard, M.; Flament, D.; Rouault, K.; Le Romancer, M.; Prieur, D.; Erauso, G.
2007-01-01
Only one virus-like particle (VLP) has been reported from hyperthermophilic Euryarchaeotes. This VLP, named PAV1, is shaped like a lemon and was isolated from a strain of “Pyrococcus abyssi,” a deep-sea isolate. Its genome consists of a double-stranded circular DNA of 18 kb which is also present at a high copy number (60 per chromosome) free within the host cytoplasm but is not integrated into the host chromosome. Here, we report the results of complete analysis of the PAV1 genome. All the 25 predicted genes, except 3, are located on one DNA strand. A transcription map has been made by using a reverse transcription-PCR assay. All the identified open reading frames (ORFs) are transcribed. The most significant similarities relate to four ORFs. ORF 180a shows 31% identity with ORF 181 of the pRT1 plasmid isolated from Pyrococcus sp. strain JT1. ORFs 676 and 678 present similarities with a concanavalin A-like lectin/glucanase domain, which could be involved in the process of host-virus recognition, and ORF 59 presents similarities with the transcriptional regulator CopG. The genome of PAV1 displays unique features at the nucleic and proteinic level, indicating that PAV1 should be attached at least to a novel genus or virus family. PMID:17449623
Zhao, Cui; Zhang, Chen; Chen, Bin; Shi, Yanghui; Quan, Yanping; Nie, Zuoming; Zhang, Yaozhou; Yu, Wei
2016-01-01
A DNA-binding protein (DBP) [GenBank accession number: M63416] of Bombyx mori nuclear polyhedrosis virus (BmNPV) has been reported to be a regulatory factor in BmNPV, but its detailed functions remain unknown. In order to study the regulatory mechanism of DBP on viral proliferation, genome replication, and gene transcription, a BmNPV dbp gene knockout virus dbp-ko-Bacmid was generated by the means of Red recombination system. In addition, dbp-repaired virus dbp-re-Bacmid was constructed by the means of the Bac to Bac system. Then, the Bacmids were transfected into BmN cells. The results of this viral titer experiment revealed that the TCID50 of the dbp-ko-Bacmid was 0; however, the dbp-re-Bacmid was similar to the wtBacmid (p>0.05), indicating that the dbp-deficient would lead to failure in the assembly of virus particles. In the next step, Real-Time PCR was used to analyze the transcriptional phases of dbp gene in BmN cells, which had been infected with BmNPV. The results of the latter experiment revealed that the transcript of dbp gene was first detected at 3 h post-infection. Furthermore, the replication level of virus genome and the transcriptional level of virus early, late, and very late genes in BmN cells, which had been transfected with 3 kinds of Bacmids, were analyzed by Real-Time PCR. The demonstrating that the replication level of genome was lower than that of wtBacmid and dbp-re-Bacmid (p<0.01). The transcriptional level of dbp-ko-Bacmid early gene lef-3, ie-1, dnapol, late gene vp39 and very late gene p10 were statistically significantly lower than dbp-re-Bacmid and wtBacmid (p<0.01). The results presented are based on Western blot analysis, which indicated that the lack of dbp gene would lead to low expressions of lef3, vp39, and p10. In conclusion, dbp was not only essential for early viral replication, but also a viral gene that has a significant impact on transcription and expression during all periods of baculovirus life cycle.
Error baseline rates of five sample preparation methods used to characterize RNA virus populations.
Kugelman, Jeffrey R; Wiley, Michael R; Nagle, Elyse R; Reyes, Daniel; Pfeffer, Brad P; Kuhn, Jens H; Sanchez-Lockhart, Mariano; Palacios, Gustavo F
2017-01-01
Individual RNA viruses typically occur as populations of genomes that differ slightly from each other due to mutations introduced by the error-prone viral polymerase. Understanding the variability of RNA virus genome populations is critical for understanding virus evolution because individual mutant genomes may gain evolutionary selective advantages and give rise to dominant subpopulations, possibly even leading to the emergence of viruses resistant to medical countermeasures. Reverse transcription of virus genome populations followed by next-generation sequencing is the only available method to characterize variation for RNA viruses. However, both steps may lead to the introduction of artificial mutations, thereby skewing the data. To better understand how such errors are introduced during sample preparation, we determined and compared error baseline rates of five different sample preparation methods by analyzing in vitro transcribed Ebola virus RNA from an artificial plasmid-based system. These methods included: shotgun sequencing from plasmid DNA or in vitro transcribed RNA as a basic "no amplification" method, amplicon sequencing from the plasmid DNA or in vitro transcribed RNA as a "targeted" amplification method, sequence-independent single-primer amplification (SISPA) as a "random" amplification method, rolling circle reverse transcription sequencing (CirSeq) as an advanced "no amplification" method, and Illumina TruSeq RNA Access as a "targeted" enrichment method. The measured error frequencies indicate that RNA Access offers the best tradeoff between sensitivity and sample preparation error (1.4-5) of all compared methods.
Error baseline rates of five sample preparation methods used to characterize RNA virus populations
Kugelman, Jeffrey R.; Wiley, Michael R.; Nagle, Elyse R.; Reyes, Daniel; Pfeffer, Brad P.; Kuhn, Jens H.; Sanchez-Lockhart, Mariano; Palacios, Gustavo F.
2017-01-01
Individual RNA viruses typically occur as populations of genomes that differ slightly from each other due to mutations introduced by the error-prone viral polymerase. Understanding the variability of RNA virus genome populations is critical for understanding virus evolution because individual mutant genomes may gain evolutionary selective advantages and give rise to dominant subpopulations, possibly even leading to the emergence of viruses resistant to medical countermeasures. Reverse transcription of virus genome populations followed by next-generation sequencing is the only available method to characterize variation for RNA viruses. However, both steps may lead to the introduction of artificial mutations, thereby skewing the data. To better understand how such errors are introduced during sample preparation, we determined and compared error baseline rates of five different sample preparation methods by analyzing in vitro transcribed Ebola virus RNA from an artificial plasmid-based system. These methods included: shotgun sequencing from plasmid DNA or in vitro transcribed RNA as a basic “no amplification” method, amplicon sequencing from the plasmid DNA or in vitro transcribed RNA as a “targeted” amplification method, sequence-independent single-primer amplification (SISPA) as a “random” amplification method, rolling circle reverse transcription sequencing (CirSeq) as an advanced “no amplification” method, and Illumina TruSeq RNA Access as a “targeted” enrichment method. The measured error frequencies indicate that RNA Access offers the best tradeoff between sensitivity and sample preparation error (1.4−5) of all compared methods. PMID:28182717
Lusky, M; Berg, L; Weiher, H; Botchan, M
1983-01-01
Bovine papilloma virus (BPV) contains a cis-acting DNA element which can enhance transcription of distal promoters. Utilizing both direct and indirect transient transfection assays, we showed that a 59-base-pair DNA sequence from the BPV genome could activate the simian virus 40 promoter from distances exceeding 2.5 kilobases and in an orientation-independent manner. In contrast to the promoter 5'-proximal localization of other known viral activators, this element was located immediately 3' to the early polyadenylation signal in the BPV genome. Deletion of these sequences from the BPV genome inactivated the transforming ability of BPV recombinant plasmids. Orientation-independent reinsertion of this 59-base-pair sequence, or alternatively of activator DNA sequences from simian virus 40 or polyoma virus, restored the transforming activity of the BPV recombinant plasmids. Furthermore, the stable transformation frequency of the herpes simplex virus type 1 thymidine kinase gene was enhanced when linked to restriction fragments of BPV DNA which included the defined activator element. This enhancement was orientation independent with respect to the thymidine kinase promoter. The enhancement also appeared to be unrelated to the establishment of the recombinant plasmids as episomes, since in transformed cells these sequences are found linked to high-molecular-weight DNA. We propose that the enhancement of stable transformation frequencies and the activation of transcription units are in this case alternate manifestations of the same biochemical events. Images PMID:6308425
Scholthof, Karen-Beth G.
2015-01-01
In eukaryotes, alternative splicing (AS) promotes transcriptome and proteome diversity. The extent of genome-wide AS changes occurring during a plant-microbe interaction is largely unknown. Here, using high-throughput, paired-end RNA sequencing, we generated an isoform-level spliceome map of Brachypodium distachyon infected with Panicum mosaic virus and its satellite virus. Overall, we detected ∼44,443 transcripts in B. distachyon, ∼30% more than those annotated in the reference genome. Expression of ∼28,900 transcripts was ≥2 fragments per kilobase of transcript per million mapped fragments, and ∼42% of multi-exonic genes were alternatively spliced. Comparative analysis of AS patterns in B. distachyon, rice (Oryza sativa), maize (Zea mays), sorghum (Sorghum bicolor), Arabidopsis thaliana, potato (Solanum tuberosum), Medicago truncatula, and poplar (Populus trichocarpa) revealed conserved ratios of the AS types between monocots and dicots. Virus infection quantitatively altered AS events in Brachypodium with little effect on the AS ratios. We discovered AS events for >100 immune-related genes encoding receptor-like kinases, NB-LRR resistance proteins, transcription factors, RNA silencing, and splicing-associated proteins. Cloning and molecular characterization of SCL33, a serine/arginine-rich splicing factor, identified multiple novel intron-retaining splice variants that are developmentally regulated and modulated during virus infection. B. distachyon SCL33 splicing patterns are also strikingly conserved compared with a distant Arabidopsis SCL33 ortholog. This analysis provides new insights into AS landscapes conserved among monocots and dicots and uncovered AS events in plant defense-related genes. PMID:25634987
Genomic characterisation of Wongabel virus reveals novel genes within the Rhabdoviridae.
Gubala, Aneta J; Proll, David F; Barnard, Ross T; Cowled, Chris J; Crameri, Sandra G; Hyatt, Alex D; Boyle, David B
2008-06-20
Viruses belonging to the family Rhabdoviridae infect a variety of different hosts, including insects, vertebrates and plants. Currently, there are approximately 200 ICTV-recognised rhabdoviruses isolated around the world. However, the majority remain poorly characterised and only a fraction have been definitively assigned to genera. The genomic and transcriptional complexity displayed by several of the characterised rhabdoviruses indicates large diversity and complexity within this family. To enable an improved taxonomic understanding of this family, it is necessary to gain further information about the poorly characterised members of this family. Here we present the complete genome sequence and predicted transcription strategy of Wongabel virus (WONV), a previously uncharacterised rhabdovirus isolated from biting midges (Culicoides austropalpalis) collected in northern Queensland, Australia. The 13,196 nucleotide genome of WONV encodes five typical rhabdovirus genes N, P, M, G and L. In addition, the WONV genome contains three genes located between the P and M genes (U1, U2, U3) and two open reading frames overlapping with the N and G genes (U4, U5). These five additional genes and their putative protein products appear to be novel, and their functions are unknown. Predictive analysis of the U5 gene product revealed characteristics typical of viroporins, and indicated structural similarities with the alpha-1 protein (putative viroporin) of viruses in the genus Ephemerovirus. Phylogenetic analyses of the N and G proteins of WONV indicated closest similarity with the avian-associated Flanders virus; however, the genomes of these two viruses are significantly diverged. WONV displays a novel and unique genome structure that has not previously been described for any animal rhabdovirus.
USDA-ARS?s Scientific Manuscript database
A highly sensitive detection test for Rinderpest virus (RPV), based on a real-time reverse transcription-PCR (RT-PR) system, was developed. Five different RPV genomic targets were examined, and one was selected and optimized to detect viral RNA in infected tissue culture fluid with a level of detec...
Nagai, T; Nakayama, T
2001-01-08
Seven children were followed for up to 42 days post-vaccination with live mumps vaccine and 37 throat swabs were obtained serially. Viral genomic RNA was detected by reverse transcription-polymerase chain reaction (RT-PCR) in the phosphoprotein (P) and hemagglutinin-neuraminidase (HN) regions. Virus isolation was also attempted. Genomic differentiation of detected mumps virus genome was performed by sequence analysis and/or restriction fragment length polymorphism (RFLP). No adverse reaction was observed in these children. Although mumps virus was not isolated from any of the samples, viral RNA was detected in four samples from three vaccine recipients, 18, 18 and 26, and 7 days after vaccination, respectively. Detected viral RNA was identified as the vaccine strain. Our data suggests that vaccine virus inoculated replicates in the parotid glands but the incidence of virus transmission from recipients to other susceptible subjects should be low.
USDA-ARS?s Scientific Manuscript database
Citrus tatter leaf virus isolated from Meyer lemon trees (CTLV-ML) from California and Florida induces bud union incompatibility of citrus trees grafted on the widely used trifoliate and trifoliate hybrid rootstocks. The complete genome sequence of CTLV-ML was determined to be 6,495 nucleotides (nts...
Targeting CTCF to Control Virus Gene Expression: A Common Theme amongst Diverse DNA Viruses.
Pentland, Ieisha; Parish, Joanna L
2015-07-06
All viruses target host cell factors for successful life cycle completion. Transcriptional control of DNA viruses by host cell factors is important in the temporal and spatial regulation of virus gene expression. Many of these factors are recruited to enhance virus gene expression and thereby increase virus production, but host cell factors can also restrict virus gene expression and productivity of infection. CCCTC binding factor (CTCF) is a host cell DNA binding protein important for the regulation of genomic chromatin boundaries, transcriptional control and enhancer element usage. CTCF also functions in RNA polymerase II regulation and in doing so can influence co-transcriptional splicing events. Several DNA viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and human papillomavirus (HPV) utilize CTCF to control virus gene expression and many studies have highlighted a role for CTCF in the persistence of these diverse oncogenic viruses. CTCF can both enhance and repress virus gene expression and in some cases CTCF increases the complexity of alternatively spliced transcripts. This review article will discuss the function of CTCF in the life cycle of DNA viruses in the context of known host cell CTCF functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Li; Tanaka, Michiko; Kawaguchi, Yasushi
2004-11-10
Previous results indicated that the herpes simplex virus 1 (HSV-1) U{sub L}31 gene is necessary and sufficient for localization of the U{sub L}34 protein exclusively to the nuclear membrane of infected Hep2 cells. In the current studies, a bacterial artificial chromosome containing the entire HSV-1 strain F genome was used to construct a recombinant viral genome in which a gene encoding kanamycin resistance was inserted in place of 262 codons of the 306 codon U{sub L}31 open reading frame. The deletion virus produced virus titers approximately 10- to 50-fold lower in rabbit skin cells, more than 2000-fold lower in Veromore » cells, and more than 1500-fold lower in CV1 cells, compared to a virus bearing a restored U{sub L}31 gene. The replication of the U{sub L}31 deletion virus was restored on U{sub L}31-complementing cell lines derived either from rabbit skin cells or CV1 cells. Confocal microscopy indicated that the majority of U{sub L}34 protein localized aberrantly in the cytoplasm and nucleoplasm of Vero cells and CV1 cells, whereas U{sub L}34 protein localized at the nuclear membrane in rabbit skin cells, and U{sub L}31 complementing CV1 cells infected with the U{sub L}31 deletion virus. We conclude that rabbit skin cells encode a function that allows proper localization of U{sub L}34 protein to the nuclear membrane. We speculate that this function partially complements that of U{sub L}31 and may explain why U{sub L}31 is less critical for replication in rabbit skin cells as opposed to Vero and CV1 cells.« less
Khrustalev, Vladislav Victorovich; Ermalovich, Marina Anatolyevna; Hübschen, Judith M; Khrustaleva, Tatyana Aleksandrovna
2017-12-21
In this study we used non-overlapping parts of the two long open reading frames coding for nonstructural (NS) and capsid (VP) proteins of all available sequences of the Parvovirus B19 subgenotype 1a genome and found out that the rates of A to G, C to T and A to T mutations are higher in the first long reading frame (NS) of the virus than in the second one (VP). This difference in mutational pressure directions for two parts of the same viral genome can be explained by the fact of transcription of just the first long reading frame during the lifelong latency in nonerythroid cells. Adenine deamination (producing A to G and A to T mutations) and cytosine deamination (producing C to T mutations) occur more frequently in transcriptional bubbles formed by DNA "plus" strand of the first open reading frame. These mutations can be inherited only in case of reactivation of the infectious virus due to the help of Adenovirus that allows latent Parvovirus B19 to start transcription of the second reading frame and then to replicate its genome by the rolling circle mechanism using the specific origin. Results of this study provide evidence that the genomes reactivated from latency make significant contributions to the variability of Parvovirus B19. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Objectives: Newcastle disease virus (NDV), a member of the Paramxoviridae family, has been developed as a vector to express foreign genes for vaccine and gene therapy purposes. The foreign genes are usually inserted into a non-coding region of the NDV genome as an independent transcription unit (ITU...
Rajeswaran, Rajendran; Seguin, Jonathan; Chabannes, Matthieu; Duroy, Pierre-Olivier; Laboureau, Nathalie; Farinelli, Laurent; Iskra-Caruana, Marie-Line
2014-01-01
ABSTRACT Vegetatively propagated crop plants often suffer from infections with persistent RNA and DNA viruses. Such viruses appear to evade the plant defenses that normally restrict viral replication and spread. The major antiviral defense mechanism is based on RNA silencing generating viral short interfering RNAs (siRNAs) that can potentially repress viral genes posttranscriptionally through RNA cleavage and transcriptionally through DNA cytosine methylation. Here we examined the RNA silencing machinery of banana plants persistently infected with six pararetroviruses after many years of vegetative propagation. Using deep sequencing, we reconstructed consensus master genomes of the viruses and characterized virus-derived and endogenous small RNAs. Consistent with the presence of endogenous siRNAs that can potentially establish and maintain DNA methylation, the banana genomic DNA was extensively methylated in both healthy and virus-infected plants. A novel class of abundant 20-nucleotide (nt) endogenous small RNAs with 5′-terminal guanosine was identified. In all virus-infected plants, 21- to 24-nt viral siRNAs accumulated at relatively high levels (up to 22% of the total small RNA population) and covered the entire circular viral DNA genomes in both orientations. The hotspots of 21-nt and 22-nt siRNAs occurred within open reading frame (ORF) I and II and the 5′ portion of ORF III, while 24-nt siRNAs were more evenly distributed along the viral genome. Despite the presence of abundant viral siRNAs of different size classes, the viral DNA was largely free of cytosine methylation. Thus, the virus is able to evade siRNA-directed DNA methylation and thereby avoid transcriptional silencing. This evasion of silencing likely contributes to the persistence of pararetroviruses in banana plants. IMPORTANCE We report that DNA pararetroviruses in Musa acuminata banana plants are able to evade DNA cytosine methylation and transcriptional gene silencing, despite being targeted by the host silencing machinery generating abundant 21- to 24-nucleotide short interfering RNAs. At the same time, the banana genomic DNA is extensively methylated in both healthy and virus-infected plants. Our findings shed light on the siRNA-generating gene silencing machinery of banana and provide a possible explanation why episomal pararetroviruses can persist in plants whereas true retroviruses with an obligatory genome-integration step in their replication cycle do not exist in plants. PMID:25056897
Rajeswaran, Rajendran; Seguin, Jonathan; Chabannes, Matthieu; Duroy, Pierre-Olivier; Laboureau, Nathalie; Farinelli, Laurent; Iskra-Caruana, Marie-Line; Pooggin, Mikhail M
2014-10-01
Vegetatively propagated crop plants often suffer from infections with persistent RNA and DNA viruses. Such viruses appear to evade the plant defenses that normally restrict viral replication and spread. The major antiviral defense mechanism is based on RNA silencing generating viral short interfering RNAs (siRNAs) that can potentially repress viral genes posttranscriptionally through RNA cleavage and transcriptionally through DNA cytosine methylation. Here we examined the RNA silencing machinery of banana plants persistently infected with six pararetroviruses after many years of vegetative propagation. Using deep sequencing, we reconstructed consensus master genomes of the viruses and characterized virus-derived and endogenous small RNAs. Consistent with the presence of endogenous siRNAs that can potentially establish and maintain DNA methylation, the banana genomic DNA was extensively methylated in both healthy and virus-infected plants. A novel class of abundant 20-nucleotide (nt) endogenous small RNAs with 5'-terminal guanosine was identified. In all virus-infected plants, 21- to 24-nt viral siRNAs accumulated at relatively high levels (up to 22% of the total small RNA population) and covered the entire circular viral DNA genomes in both orientations. The hotspots of 21-nt and 22-nt siRNAs occurred within open reading frame (ORF) I and II and the 5' portion of ORF III, while 24-nt siRNAs were more evenly distributed along the viral genome. Despite the presence of abundant viral siRNAs of different size classes, the viral DNA was largely free of cytosine methylation. Thus, the virus is able to evade siRNA-directed DNA methylation and thereby avoid transcriptional silencing. This evasion of silencing likely contributes to the persistence of pararetroviruses in banana plants. We report that DNA pararetroviruses in Musa acuminata banana plants are able to evade DNA cytosine methylation and transcriptional gene silencing, despite being targeted by the host silencing machinery generating abundant 21- to 24-nucleotide short interfering RNAs. At the same time, the banana genomic DNA is extensively methylated in both healthy and virus-infected plants. Our findings shed light on the siRNA-generating gene silencing machinery of banana and provide a possible explanation why episomal pararetroviruses can persist in plants whereas true retroviruses with an obligatory genome-integration step in their replication cycle do not exist in plants. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Ertel, Monica K.; Cammarata, Amy L.; Hron, Rebecca J.
2012-01-01
In herpes simplex virus 1 (HSV-1), binding clusters enriched in CTCF during latency have been previously identified. We hypothesized that CTCF binding to CTCF clusters in HSV-1 would be disrupted in a reactivation event. To investigate, CTCF occupation of three CTCF binding clusters in HSV-1 was analyzed following sodium butyrate (NaB)- and explant-induced reactivation in the mouse. Our data show that the CTCF domains positioned within the HSV-1 genome, specifically around the latency-associated transcript (LAT) and ICP0 and ICP4 regions of the genome, lose CTCF occupancy following the application of reactivation stimuli in wild-type virus. We also found that CTCF binding clusters upstream of the ICP0 and ICP4 promoters both function as classical insulators capable of acting as enhancer blockers of the LAT enhancer. Finally, our results suggest that CTCF occupation of domains in HSV-1 may be differentially regulated both during latency and at early times following reactivation by the presence of lytic transcripts and further implicate epigenetic regulation of HSV-1 as a critical component of the latency-reactivation transition. PMID:22973047
CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells.
Yuen, Kit-San; Chan, Chi-Ping; Wong, Nok-Hei Mickey; Ho, Chau-Ha; Ho, Ting-Hin; Lei, Ting; Deng, Wen; Tsao, Sai Wah; Chen, Honglin; Kok, Kin-Hang; Jin, Dong-Yan
2015-03-01
The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated 9) system is a highly efficient and powerful tool for RNA-guided editing of the cellular genome. Whether CRISPR/Cas9 can also cleave the genome of DNA viruses such as Epstein-Barr virus (EBV), which undergo episomal replication in human cells, remains to be established. Here, we reported on CRISPR/Cas9-mediated editing of the EBV genome in human cells. Two guide RNAs (gRNAs) were used to direct a targeted deletion of 558 bp in the promoter region of BART (BamHI A rightward transcript) which encodes viral microRNAs (miRNAs). Targeted editing was achieved in several human epithelial cell lines latently infected with EBV, including nasopharyngeal carcinoma C666-1 cells. CRISPR/Cas9-mediated editing of the EBV genome was efficient. A recombinant virus with the desired deletion was obtained after puromycin selection of cells expressing Cas9 and gRNAs. No off-target cleavage was found by deep sequencing. The loss of BART miRNA expression and activity was verified, supporting the BART promoter as the major promoter of BART RNA. Although CRISPR/Cas9-mediated editing of the multicopy episome of EBV in infected HEK293 cells was mostly incomplete, viruses could be recovered and introduced into other cells at low m.o.i. Recombinant viruses with an edited genome could be further isolated through single-cell sorting. Finally, a DsRed selectable marker was successfully introduced into the EBV genome during the course of CRISPR/Cas9-mediated editing. Taken together, our work provided not only the first genetic evidence that the BART promoter drives the expression of the BART transcript, but also a new and efficient method for targeted editing of EBV genome in human cells. © 2015 The Authors.
HIV Tat/P-TEFb Interaction: A Potential Target for Novel Anti-HIV Therapies.
Asamitsu, Kaori; Fujinaga, Koh; Okamoto, Takashi
2018-04-17
Transcription is a crucial step in the life cycle of the human immunodeficiency virus type 1 (HIV 1) and is primarily involved in the maintenance of viral latency. Both viral and cellular transcription factors, including transcriptional activators, suppressor proteins and epigenetic factors, are involved in HIV transcription from the proviral DNA integrated within the host cell genome. Among them, the virus-encoded transcriptional activator Tat is the master regulator of HIV transcription. Interestingly, unlike other known transcriptional activators, Tat primarily activates transcriptional elongation and initiation by interacting with the cellular positive transcriptional elongation factor b (P-TEFb). In this review, we describe the molecular mechanism underlying how Tat activates viral transcription through interaction with P-TEFb. We propose a novel therapeutic strategy against HIV replication through blocking Tat action.
Filloux, Denis; Murrell, Sasha; Koohapitagtam, Maneerat; Golden, Michael; Julian, Charlotte; Galzi, Serge; Uzest, Marilyne; Rodier-Goud, Marguerite; D’Hont, Angélique; Vernerey, Marie Stephanie; Wilkin, Paul; Peterschmitt, Michel; Winter, Stephan; Murrell, Ben; Martin, Darren P.; Roumagnac, Philippe
2015-01-01
Endogenous viral sequences are essentially ‘fossil records’ that can sometimes reveal the genomic features of long extinct virus species. Although numerous known instances exist of single-stranded DNA (ssDNA) genomes becoming stably integrated within the genomes of bacteria and animals, there remain very few examples of such integration events in plants. The best studied of these events are those which yielded the geminivirus-related DNA elements found within the nuclear genomes of various Nicotiana species. Although other ssDNA virus-like sequences are included within the draft genomes of various plant species, it is not entirely certain that these are not contaminants. The Nicotiana geminivirus-related DNA elements therefore remain the only definitively proven instances of endogenous plant ssDNA virus sequences. Here, we characterize two new classes of endogenous plant virus sequence that are also apparently derived from ancient geminiviruses in the genus Begomovirus. These two endogenous geminivirus-like elements (EGV1 and EGV2) are present in the Dioscorea spp. of the Enantiophyllum clade. We used fluorescence in situ hybridization to confirm that the EGV1 sequences are integrated in the D. alata genome and showed that one or two ancestral EGV sequences likely became integrated more than 1.4 million years ago during or before the diversification of the Asian and African Enantiophyllum Dioscorea spp. Unexpectedly, we found evidence of natural selection actively favouring the maintenance of EGV-expressed replication-associated protein (Rep) amino acid sequences, which clearly indicates that functional EGV Rep proteins were probably expressed for prolonged periods following endogenization. Further, the detection in D. alata of EGV gene transcripts, small 21–24 nt RNAs that are apparently derived from these transcripts, and expressed Rep proteins, provides evidence that some EGV genes are possibly still functionally expressed in at least some of the Enantiophyllum clade species. PMID:27774276
Antiviral Defenses in Plants through Genome Editing
Romay, Gustavo; Bragard, Claude
2017-01-01
Plant–virus interactions based-studies have contributed to increase our understanding on plant resistance mechanisms, providing new tools for crop improvement. In the last two decades, RNA interference, a post-transcriptional gene silencing approach, has been used to induce antiviral defenses in plants with the help of genetic engineering technologies. More recently, the new genome editing systems (GES) are revolutionizing the scope of tools available to confer virus resistance in plants. The most explored GES are zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats/Cas9 endonuclease. GES are engineered to target and introduce mutations, which can be deleterious, via double-strand breaks at specific DNA sequences by the error-prone non-homologous recombination end-joining pathway. Although GES have been engineered to target DNA, recent discoveries of GES targeting ssRNA molecules, including virus genomes, pave the way for further studies programming plant defense against RNA viruses. Most of plant virus species have an RNA genome and at least 784 species have positive ssRNA. Here, we provide a summary of the latest progress in plant antiviral defenses mediated by GES. In addition, we also discuss briefly the GES perspectives in light of the rebooted debate on genetic modified organisms (GMOs) and the current regulatory frame for agricultural products involving the use of such engineering technologies. PMID:28167937
Characterization of Equine Infectious Anemia Virus Integration in the Horse Genome.
Liu, Qiang; Wang, Xue-Feng; Ma, Jian; He, Xi-Jun; Wang, Xiao-Jun; Zhou, Jian-Hua
2015-06-19
Human immunodeficiency virus (HIV)-1 has a unique integration profile in the human genome relative to murine and avian retroviruses. Equine infectious anemia virus (EIAV) is another well-studied lentivirus that can also be used as a promising retro-transfection vector, but its integration into its native host has not been characterized. In this study, we mapped 477 integration sites of the EIAV strain EIAVFDDV13 in fetal equine dermal (FED) cells during in vitro infection. Published integration sites of EIAV and HIV-1 in the human genome were also analyzed as references. Our results demonstrated that EIAVFDDV13 tended to integrate into genes and AT-rich regions, and it avoided integrating into transcription start sites (TSS), which is consistent with EIAV and HIV-1 integration in the human genome. Notably, the integration of EIAVFDDV13 favored long interspersed elements (LINEs) and DNA transposons in the horse genome, whereas the integration of HIV-1 favored short interspersed elements (SINEs) in the human genome. The chromosomal environment near LINEs or DNA transposons potentially influences viral transcription and may be related to the unique EIAV latency states in equids. The data on EIAV integration in its natural host will facilitate studies on lentiviral infection and lentivirus-based therapeutic vectors.
Characterization of Equine Infectious Anemia Virus Integration in the Horse Genome
Liu, Qiang; Wang, Xue-Feng; Ma, Jian; He, Xi-Jun; Wang, Xiao-Jun; Zhou, Jian-Hua
2015-01-01
Human immunodeficiency virus (HIV)-1 has a unique integration profile in the human genome relative to murine and avian retroviruses. Equine infectious anemia virus (EIAV) is another well-studied lentivirus that can also be used as a promising retro-transfection vector, but its integration into its native host has not been characterized. In this study, we mapped 477 integration sites of the EIAV strain EIAVFDDV13 in fetal equine dermal (FED) cells during in vitro infection. Published integration sites of EIAV and HIV-1 in the human genome were also analyzed as references. Our results demonstrated that EIAVFDDV13 tended to integrate into genes and AT-rich regions, and it avoided integrating into transcription start sites (TSS), which is consistent with EIAV and HIV-1 integration in the human genome. Notably, the integration of EIAVFDDV13 favored long interspersed elements (LINEs) and DNA transposons in the horse genome, whereas the integration of HIV-1 favored short interspersed elements (SINEs) in the human genome. The chromosomal environment near LINEs or DNA transposons potentially influences viral transcription and may be related to the unique EIAV latency states in equids. The data on EIAV integration in its natural host will facilitate studies on lentiviral infection and lentivirus-based therapeutic vectors. PMID:26102582
High-resolution characterization of a hepatocellular carcinoma genome.
Totoki, Yasushi; Tatsuno, Kenji; Yamamoto, Shogo; Arai, Yasuhito; Hosoda, Fumie; Ishikawa, Shumpei; Tsutsumi, Shuichi; Sonoda, Kohtaro; Totsuka, Hirohiko; Shirakihara, Takuya; Sakamoto, Hiromi; Wang, Linghua; Ojima, Hidenori; Shimada, Kazuaki; Kosuge, Tomoo; Okusaka, Takuji; Kato, Kazuto; Kusuda, Jun; Yoshida, Teruhiko; Aburatani, Hiroyuki; Shibata, Tatsuhiro
2011-05-01
Hepatocellular carcinoma, one of the most common virus-associated cancers, is the third most frequent cause of cancer-related death worldwide. By massively parallel sequencing of a primary hepatitis C virus-positive hepatocellular carcinoma (36× coverage) and matched lymphocytes (>28× coverage) from the same individual, we identified more than 11,000 somatic substitutions of the tumor genome that showed predominance of T>C/A>G transition and a decrease of the T>C substitution on the transcribed strand, suggesting preferential DNA repair. Gene annotation enrichment analysis of 63 validated non-synonymous substitutions revealed enrichment of phosphoproteins. We further validated 22 chromosomal rearrangements, generating four fusion transcripts that had altered transcriptional regulation (BCORL1-ELF4) or promoter activity. Whole-exome sequencing at a higher sequence depth (>76× coverage) revealed a TSC1 nonsense substitution in a subpopulation of the tumor cells. This first high-resolution characterization of a virus-associated cancer genome identified previously uncharacterized mutation patterns, intra-chromosomal rearrangements and fusion genes, as well as genetic heterogeneity within the tumor.
Morzunov , Sergey P.; Winton, James R.; Nichol, Stuart T.
1995-01-01
Infectious hematopoietic necrosis virus (IHNV), a member of the family Rhabdoviridae, causes a severe disease with high mortality in salmonid fish. The nucleotide sequence (11, 131 bases) of the entire genome was determined for the pathogenic WRAC strain of IHNV from southern Idaho. This allowed detailed analysis of all 6 genes, the deduced amino acid sequences of their encoded proteins, and important control motifs including leader, trailer and gene junction regions. Sequence analysis revealed that the 6 virus genes are located along the genome in the 3′ to 5′ order: nucleocapsid (N), polymerase-associated phosphoprotein (P or M1), matrix protein (M or M2), surface glycoprotein (G), a unique non-virion protein (NV) and virus polymerase (L). The IHNV genome RNA was found to have highly complementary termini (15 of 16 nucleotides). The gene junction regions display the highly conserved sequence UCURUC(U)7RCCGUG(N)4CACR (in the vRNA sense), which includes the typical rhabdovirus transcription termination/polyadenylation signal and a novel putative transcription initiation signal. Phylogenetic analysis of M, G and L protein sequences allowed insights into the evolutionary and taxonomic relationship of rhabdoviruses of fish relative to those of insects or mammals, and a broader sense of the relationship of non-segmented negative-strand RNA viruses. Based on these data, a new genus, piscivirus, is proposed which will initially contain IHNV, viral hemorrhagic septicemia virus and Hirame rhabdovirus.
Leiser, R M; Ziegler-Graff, V; Reutenauer, A; Herrbach, E; Lemaire, O; Guilley, H; Richards, K; Jonard, G
1992-01-01
Beet western yellows luteovirus, like other luteoviruses, cannot be transmitted to host plants by mechanical inoculation but requires an aphid vector, a feature that has heretofore presented a serious obstacle to the study of such viruses. In this paper we describe use of agroinfection to infect hosts with beet western yellows virus without recourse to aphids. Agroinfection is a procedure for introducing a plant virus into a host via Agrobacterium tumefaciens harboring a Ti plasmid, which can efficiently transfer a portion of the plasmid (T-DNA) to plant cells near a wound. The viral genome must be inserted into the T-DNA in such a way that it can escape and begin autonomous replication, a requirement that has, so far, limited agroinfection to pathogens with a circular genome. We have cloned cDNA corresponding to the complete beet western yellows virus RNA genome between the cauliflower mosaic virus 35S promoter and the nopaline synthase transcription termination signal. In one construct, a self-cleaving (ribozyme) sequence was included so as to produce a transcript in planta with a 3' extremity almost identical to natural viral RNA. When inoculated mechanically to host plants, the naked plasmid DNA was not infectious but, when introduced into T-DNA and agroinfected to plants, both the construct with and without the ribozyme produced an infection. This approach should be applicable to virtually any plant virus with a linear plus-strand RNA genome. Images PMID:1409615
Szymula, Agnieszka; Palermo, Richard D; Bayoumy, Amr; Groves, Ian J; Ba Abdullah, Mohammed; Holder, Beth; White, Robert E
2018-02-01
The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is the first viral latency-associated protein produced after EBV infection of resting B cells. Its role in B cell transformation is poorly defined, but it has been reported to enhance gene activation by the EBV protein EBNA2 in vitro. We generated EBNA-LP knockout (LPKO) EBVs containing a STOP codon within each repeat unit of internal repeat 1 (IR1). EBNA-LP-mutant EBVs established lymphoblastoid cell lines (LCLs) from adult B cells at reduced efficiency, but not from umbilical cord B cells, which died approximately two weeks after infection. Adult B cells only established EBNA-LP-null LCLs with a memory (CD27+) phenotype. Quantitative PCR analysis of virus gene expression after infection identified both an altered ratio of the EBNA genes, and a dramatic reduction in transcript levels of both EBNA2-regulated virus genes (LMP1 and LMP2) and the EBNA2-independent EBER genes in the first 2 weeks. By 30 days post infection, LPKO transcription was the same as wild-type EBV. In contrast, EBNA2-regulated cellular genes were induced efficiently by LPKO viruses. Chromatin immunoprecipitation revealed that EBNA2 and the host transcription factors EBF1 and RBPJ were delayed in their recruitment to all viral latency promoters tested, whereas these same factors were recruited efficiently to several host genes, which exhibited increased EBNA2 recruitment. We conclude that EBNA-LP does not simply co-operate with EBNA2 in activating gene transcription, but rather facilitates the recruitment of several transcription factors to the viral genome, to enable transcription of virus latency genes. Additionally, our findings suggest that EBNA-LP is essential for the survival of EBV-infected naïve B cells.
Szymula, Agnieszka; Palermo, Richard D.; Bayoumy, Amr; Groves, Ian J.
2018-01-01
The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is the first viral latency-associated protein produced after EBV infection of resting B cells. Its role in B cell transformation is poorly defined, but it has been reported to enhance gene activation by the EBV protein EBNA2 in vitro. We generated EBNA-LP knockout (LPKO) EBVs containing a STOP codon within each repeat unit of internal repeat 1 (IR1). EBNA-LP-mutant EBVs established lymphoblastoid cell lines (LCLs) from adult B cells at reduced efficiency, but not from umbilical cord B cells, which died approximately two weeks after infection. Adult B cells only established EBNA-LP-null LCLs with a memory (CD27+) phenotype. Quantitative PCR analysis of virus gene expression after infection identified both an altered ratio of the EBNA genes, and a dramatic reduction in transcript levels of both EBNA2-regulated virus genes (LMP1 and LMP2) and the EBNA2-independent EBER genes in the first 2 weeks. By 30 days post infection, LPKO transcription was the same as wild-type EBV. In contrast, EBNA2-regulated cellular genes were induced efficiently by LPKO viruses. Chromatin immunoprecipitation revealed that EBNA2 and the host transcription factors EBF1 and RBPJ were delayed in their recruitment to all viral latency promoters tested, whereas these same factors were recruited efficiently to several host genes, which exhibited increased EBNA2 recruitment. We conclude that EBNA-LP does not simply co-operate with EBNA2 in activating gene transcription, but rather facilitates the recruitment of several transcription factors to the viral genome, to enable transcription of virus latency genes. Additionally, our findings suggest that EBNA-LP is essential for the survival of EBV-infected naïve B cells. PMID:29462212
Bakos, Agnes; Banati, Ferenc; Koroknai, Anita; Takacs, Maria; Salamon, Daniel; Minarovits-Kormuta, Susanna; Schwarzmann, Fritz; Wolf, Hans; Niller, Hans Helmut; Minarovits, Janos
2007-10-01
Transcripts for the Epstein-Barr virus (EBV) encoded nuclear antigens (EBNAs) are initiated at alternative promoters (Wp, Cp, for EBNA 1-6 transcripts and Qp, for EBNA 1 transcripts only) located in the BamHI W, C or Q fragment of the viral genome. To understand the host-cell dependent expression of EBNAs in EBV-associated tumors (lymphomas and carcinomas) and in vitro transformed cell lines, it is necessary to analyse the regulatory mechanisms governing the activity of the alternative promoters of EBNA transcripts. Such studies focused mainly on lymphoid cell lines carrying latent EBV genomes, due to the lack of EBV-associated carcinoma cell lines maintaining latent EBV genomes during cultivation in tissue culture. We took advantage of the unique nasopharyngeal carcinoma cell line, C666-1, harboring EBV genomes, and undertook a detailed analysis of CpG methylation patterns and in vivo protein-DNA interactions at the latency promoters Qp and Cp. We found that the active, unmethylated Qp was marked with strong footprints of cellular transcription factors and the viral protein EBNA 1. In contrast, we could not detect binding of relevant transcription factors to the methylated, silent Cp. We concluded that the epigenetic marks at Qp and Cp in C666-1 cells of epithelial origin resemble those of group I Burkitt's lymphoma cell lines.
Zhu, Min; Chen, Yuting; Ding, Xin Shun; Webb, Stephen L; Zhou, Tao; Nelson, Richard S; Fan, Zaifeng
2014-01-01
The viral genome-linked protein, VPg, of potyviruses is involved in viral genome replication and translation. To determine host proteins that interact with Sugarcane mosaic virus (SCMV) VPg, a yeast two-hybrid screen was used and a maize (Zea mays) Elongin C (ZmElc) protein was identified. ZmELC transcript was observed in all maize organs, but most highly in leaves and pistil extracts, and ZmElc was present in the cytoplasm and nucleus of maize cells in the presence or absence of SCMV. ZmELC expression was increased in maize tissue at 4 and 6 d post SCMV inoculation. When ZmELC was transiently overexpressed in maize protoplasts the accumulation of SCMV RNA was approximately doubled compared with the amount of virus in control protoplasts. Silencing ZmELC expression using a Brome mosaic virus-based gene silencing vector (virus-induced gene silencing) did not influence maize plant growth and development, but did decrease RNA accumulation of two isolates of SCMV and host transcript encoding ZmeIF4E during SCMV infection. Interestingly, Maize chlorotic mottle virus, from outside the Potyviridae, was increased in accumulation after silencing ZmELC expression. Our results describe both the location of ZmElc expression in maize and a new activity associated with an Elc: support of potyvirus accumulation. PMID:24954157
Zhu, Min; Chen, Yuting; Ding, Xin Shun; Webb, Stephen L; Zhou, Tao; Nelson, Richard S; Fan, Zaifeng
2014-09-01
The viral genome-linked protein, VPg, of potyviruses is involved in viral genome replication and translation. To determine host proteins that interact with Sugarcane mosaic virus (SCMV) VPg, a yeast two-hybrid screen was used and a maize (Zea mays) Elongin C (ZmElc) protein was identified. ZmELC transcript was observed in all maize organs, but most highly in leaves and pistil extracts, and ZmElc was present in the cytoplasm and nucleus of maize cells in the presence or absence of SCMV. ZmELC expression was increased in maize tissue at 4 and 6 d post SCMV inoculation. When ZmELC was transiently overexpressed in maize protoplasts the accumulation of SCMV RNA was approximately doubled compared with the amount of virus in control protoplasts. Silencing ZmELC expression using a Brome mosaic virus-based gene silencing vector (virus-induced gene silencing) did not influence maize plant growth and development, but did decrease RNA accumulation of two isolates of SCMV and host transcript encoding ZmeIF4E during SCMV infection. Interestingly, Maize chlorotic mottle virus, from outside the Potyviridae, was increased in accumulation after silencing ZmELC expression. Our results describe both the location of ZmElc expression in maize and a new activity associated with an Elc: support of potyvirus accumulation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Luteijn, Rutger David; Drexler, Ingo; Smith, Geoffrey L; Lebbink, Robert Jan; Wiertz, Emmanuel J H J
2018-06-01
Poxviruses comprise a group of large dsDNA viruses that include members relevant to human and animal health, such as variola virus, monkeypox virus, cowpox virus and vaccinia virus (VACV). Poxviruses are remarkable for their unique replication cycle, which is restricted to the cytoplasm of infected cells. The independence from the host nucleus requires poxviruses to encode most of the enzymes involved in DNA replication, transcription and processing. Here, we use the CRISPR/Cas9 genome engineering system to induce DNA damage to VACV (strain Western Reserve) genomes. We show that targeting CRISPR/Cas9 to essential viral genes limits virus replication efficiently. Although VACV is a strictly cytoplasmic pathogen, we observed extensive viral genome editing at the target site; this is reminiscent of a non-homologous end-joining DNA repair mechanism. This pathway was not dependent on the viral DNA ligase, but critically involved the cellular DNA ligase IV. Our data show that DNA ligase IV can act outside of the nucleus to allow repair of dsDNA breaks in poxvirus genomes. This pathway might contribute to the introduction of mutations within the genome of poxviruses and may thereby promote the evolution of these viruses.
HIV-1-associated PKA acts as a cofactor for genome reverse transcription
2013-01-01
Background Host cell proteins, including cellular kinases, are embarked into intact HIV-1 particles. We have previously shown that the Cα catalytic subunit of cAMP-dependent protein kinase is packaged within HIV-1 virions as an enzymatically active form able to phosphorylate a synthetic substrate in vitro (Cartier et al. J. Biol. Chem. 278:35211 (2003)). The present study was conceived to investigate the contribution of HIV-1-associated PKA to the retroviral life cycle. Results NL4.3 viruses were produced from cells cultured in the presence of PKA inhibitors H89 (H89-NL4.3) or Myr-PKI (PKI-NL4.3) and analyzed for viral replication. Despite being mature and normally assembled, and containing expected levels of genomic RNA and RT enzymatic activity, such viruses showed poor infectivity. Indeed, infection generated reduced amounts of strong-strop minus strand DNA, while incoming RNA levels in target cells were unaffected. Decreased cDNA synthesis was also evidenced in intact H89-NL4.3 and PKI-NL4.3 cell free particles using endogenous reverse transcription (ERT) experiments. Moreover, similar defects were reproduced when wild type NL4.3 particles preincubated with PKA inhibitors were subjected to ERT reactions. Conclusions Altogether, our results indicate that HIV-1-associated PKA is required for early reverse transcription of the retroviral genome both in cell free intact viruses and in target cells. Accordingly, virus-associated PKA behaves as a cofactor of an intraviral process required for optimal reverse transcription and for early post-entry events. PMID:24344931
Lorenzo, Gema; Rodríguez-Pulido, Miguel; López-Gil, Elena; Sobrino, Francisco; Borrego, Belén; Sáiz, Margarita; Brun, Alejandro
2014-09-01
In this work we have addressed the effect of synthetic, non-infectious, RNA transcripts, mimicking structural domains of the non-coding regions (NCRs) of the foot-and-mouth disease virus (FMDV) genome on the infection of mice with Rift Valley fever virus (RVFV). Groups of 5 mice were inoculated intraperitoneally (i.p.) with 200 μg of synthetic RNA resembling the 5'-terminal S region, the internal ribosome entry site (IRES) or the 3'-NCR of the FMDV genome. RNA inoculation was performed 24h before (-24 h), 24 h after (+24 h) or simultaneously to the challenge with a lethal dose of RVFV. Administration of the IRES RNA afforded higher survival rates than administration of S or 3'NCR transcripts either at -24h or +24h after challenge. In contrast, when RNA inoculation and viral challenge were performed simultaneously, all mice survived in both IRES- and 3'NCR-inoculated groups, with an 80% survival in mice receiving the S RNA. Among survivors, a complete correlation between significant anti-RVFV circulating antibody titers and resistance to a second lethal challenge with the virus was observed, supporting a limited viral replication in the RNA-inoculated animals upon the first challenge. All three RNA transcripts were able to induce the production of systemic antiviral and pro-inflammatory cytokines. These data show that triggering of intracellular pathogen sensing pathways constitutes a promising approach towards development of novel RVF preventive or therapeutic strategies. Copyright © 2014 Elsevier B.V. All rights reserved.
Tannir, Nizar M.; Williams, Michelle D.; Chen, Yunxin; Yao, Hui; Zhang, Jianping; Thompson, Erika J.; Meric-Bernstam, Funda; Medeiros, L. Jeffrey; Weinstein, John N.
2013-01-01
Elucidation of tumor-DNA virus associations in many cancer types has enhanced our knowledge of fundamental oncogenesis mechanisms and provided a basis for cancer prevention initiatives. RNA-Seq is a novel tool to comprehensively assess such associations. We interrogated RNA-Seq data from 3,775 malignant neoplasms in The Cancer Genome Atlas database for the presence of viral sequences. Viral integration sites were also detected in expressed transcripts using a novel approach. The detection capacity of RNA-Seq was compared to available clinical laboratory data. Human papillomavirus (HPV) transcripts were detected using RNA-Seq analysis in head-and-neck squamous cell carcinoma, uterine endometrioid carcinoma, and squamous cell carcinoma of the lung. Detection of HPV by RNA-Seq correlated with detection by in situ hybridization and immunohistochemistry in squamous cell carcinoma tumors of the head and neck. Hepatitis B virus and Epstein-Barr virus (EBV) were detected using RNA-Seq in hepatocellular carcinoma and gastric carcinoma tumors, respectively. Integration sites of viral genes and oncogenes were detected in cancers harboring HPV or hepatitis B virus but not in EBV-positive gastric carcinoma. Integration sites of expressed viral transcripts frequently involved known coding areas of the host genome. No DNA virus transcripts were detected in acute myeloid leukemia, cutaneous melanoma, low- and high-grade gliomas of the brain, and adenocarcinomas of the breast, colon and rectum, lung, prostate, ovary, kidney, and thyroid. In conclusion, this study provides a large-scale overview of the landscape of DNA viruses in human malignant cancers. While further validation is necessary for specific cancer types, our findings highlight the utility of RNA-Seq in detecting tumor-associated DNA viruses and identifying viral integration sites that may unravel novel mechanisms of cancer pathogenesis. PMID:23740984
A Herpesviral Immediate Early Protein Promotes Transcription Elongation of Viral Transcripts.
Fox, Hannah L; Dembowski, Jill A; DeLuca, Neal A
2017-06-13
Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (RNA Pol II). While four viral immediate early proteins (ICP4, ICP0, ICP27, and ICP22) function in some capacity in viral transcription, the mechanism by which ICP22 functions remains unclear. We observed that the FACT complex (comprised of SSRP1 and Spt16) was relocalized in infected cells as a function of ICP22. ICP22 was also required for the association of FACT and the transcription elongation factors SPT5 and SPT6 with viral genomes. We further demonstrated that the FACT complex interacts with ICP22 throughout infection. We therefore hypothesized that ICP22 recruits cellular transcription elongation factors to viral genomes for efficient transcription elongation of viral genes. We reevaluated the phenotype of an ICP22 mutant virus by determining the abundance of all viral mRNAs throughout infection by transcriptome sequencing (RNA-seq). The accumulation of almost all viral mRNAs late in infection was reduced compared to the wild type, regardless of kinetic class. Using chromatin immunoprecipitation sequencing (ChIP-seq), we mapped the location of RNA Pol II on viral genes and found that RNA Pol II levels on the bodies of viral genes were reduced in the ICP22 mutant compared to wild-type virus. In contrast, the association of RNA Pol II with transcription start sites in the mutant was not reduced. Taken together, our results indicate that ICP22 plays a role in recruiting elongation factors like the FACT complex to the HSV-1 genome to allow for efficient viral transcription elongation late in viral infection and ultimately infectious virion production. IMPORTANCE HSV-1 interacts with many cellular proteins throughout productive infection. Here, we demonstrate the interaction of a viral protein, ICP22, with a subset of cellular proteins known to be involved in transcription elongation. We determined that ICP22 is required to recruit the FACT complex and other transcription elongation factors to viral genomes and that in the absence of ICP22 viral transcription is globally reduced late in productive infection, due to an elongation defect. This insight defines a fundamental role of ICP22 in HSV-1 infection and elucidates the involvement of cellular factors in HSV-1 transcription. Copyright © 2017 Fox et al.
Noumeavirus replication relies on a transient remote control of the host nucleus
Fabre, Elisabeth; Jeudy, Sandra; Santini, Sébastien; Legendre, Matthieu; Trauchessec, Mathieu; Couté, Yohann; Claverie, Jean-Michel; Abergel, Chantal
2017-01-01
Acanthamoeba are infected by a remarkable diversity of large dsDNA viruses, the infectious cycles of which have been characterized using genomics, transcriptomics and electron microscopy. Given their gene content and the persistence of the host nucleus throughout their infectious cycle, the Marseilleviridae were initially assumed to fully replicate in the cytoplasm. Unexpectedly, we find that their virions do not incorporate the virus-encoded transcription machinery, making their replication nucleus-dependent. However, instead of delivering their DNA to the nucleus, the Marseilleviridae initiate their replication by transiently recruiting the nuclear transcription machinery to their cytoplasmic viral factory. The nucleus recovers its integrity after becoming leaky at an early stage. This work highlights the importance of virion proteomic analyses to complement genome sequencing in the elucidation of the replication scheme and evolution of large dsDNA viruses. PMID:28429720
Hernandez Reyes, Yenney; Provost, Chantale; Traesel, Carolina Kist; Jacques, Mario; Gagnon, Carl A
2018-02-01
Recently, the strong antiviral activity of an Actinobacillus pleuropneumoniae (App) culture supernatant against porcine reproductive and respiratory syndrome virus (PRRSV) was discovered. Following this finding, the objective of the present study was to understand how the App culture supernatant inhibits PRRSV replication in its natural targeted host cells, i.e. porcine alveolar macrophages (PAMs). Several assays were conducted with App culture supernatant-treated PRRSV-infected cell lines, such as PAM, St-Jude porcine lung and MARC-145 cells. RT-qPCR assays were used to determine the expression levels of type I and II IFN mRNAs, viral genomic (gRNA) and sub-genomic RNAs (sgRNAs). Proteomic, Western blot and immunofluorescence assays were conducted to determine the involvement of actin filaments in the App culture supernatant antiviral effect.Results/Key findings. Type I and II IFN mRNA expressions were not upregulated by the App culture supernatant. Time courses of gRNA and sgRNA expression levels demonstrated that the App culture supernatant inhibits PRRSV infection before the first viral transcription cycle. Western blot experiments confirmed an increase in the expression of cofilin (actin cytoskeleton dynamics regulator) and immunofluorescence also demonstrated a significant decrease of actin filaments in App culture supernatant-treated PRRSV-infected PAM cells. App culture supernatant antiviral activity was also demonstrated against other PRRSV strains of genotypes I and II. App culture supernatant antiviral effect against PRRSV takes place early during PRRSV infection. Results suggest that App culture supernatant antiviral effect may take place via the activation of cofilin, which induces actin depolymerization and subsequently, probably affects PRRSV endocytosis. Other experiments are needed to fully validate this latest hypothesis.
Kruse, Thomas; Biedenkopf, Nadine; Hertz, Emil Peter Thrane; Dietzel, Erik; Stalmann, Gertrud; López-Méndez, Blanca; Davey, Norman E; Nilsson, Jakob; Becker, Stephan
2018-01-04
Transcription of the Ebola virus genome depends on the viral transcription factor VP30 in its unphosphorylated form, but the underlying molecular mechanism of VP30 dephosphorylation is unknown. Here we show that the Ebola virus nucleoprotein (NP) recruits the host PP2A-B56 protein phosphatase through a B56-binding LxxIxE motif and that this motif is essential for VP30 dephosphorylation and viral transcription. The LxxIxE motif and the binding site of VP30 in NP are in close proximity, and both binding sites are required for the dephosphorylation of VP30. We generate a specific inhibitor of PP2A-B56 and show that it suppresses Ebola virus transcription and infection. This work dissects the molecular mechanism of VP30 dephosphorylation by PP2A-B56, and it pinpoints this phosphatase as a potential target for therapeutic intervention. Copyright © 2017 Elsevier Inc. All rights reserved.
Viral Determinants of Integration Site Preferences of Simian Immunodeficiency Virus-Based Vectors
Monse, Hella; Laufs, Stephanie; Kuate, Seraphin; Zeller, W. Jens; Fruehauf, Stefan; Überla, Klaus
2006-01-01
Preferential integration into transcriptionally active regions of genomes has been observed for retroviral vectors based on gamma-retroviruses and lentiviruses. However, differences in the integration site preferences were detected, which might be explained by differences in viral components of the preintegration complexes. Viral determinants of integration site preferences have not been defined. Therefore, integration sites of simian immunodeficiency virus (SIV)-based vectors produced in the absence of accessory genes or lacking promoter and enhancer elements were compared. Similar integration patterns for the different SIV vectors indicate that vif, vpr, vpx, nef, env, and promoter or enhancer elements are not required for preferential integration of SIV into transcriptionally active regions of genomes. PMID:16873270
Owen, Carolyn A.; Moukarzel, Romy; Huang, Xiao; Kassem, Mona A.; Eliasco, Eleonora; Aranda, Miguel A.; Coutts, Robert H. A.; Livieratos, Ioannis C.
2016-01-01
Cucurbit yellow stunting disorder virus (CYSDV), a bipartite whitefly-transmitted virus, constitutes a major threat to commercial cucurbit production worldwide. Here, construction of full-length CYSDV RNA1 and RNA2 cDNA clones allowed the in vitro synthesis of RNA transcripts able to replicate in cucumber protoplasts. CYSDV RNA1 proved competent for replication; transcription of both polarities of the genomic RNA was detectable 24 h post inoculation. Hybridization of total RNA extracted from transfected protoplasts or from naturally CYSDV-infected cucurbits revealed high-level transcription of the p22 subgenomic RNA species. Replication of CYSDV RNA2 following co-transfection with RNA1 was also observed, with similar transcription kinetics. A CYSDV RNA2 cDNA clone (T3CM8Δ) comprising the 5′- and 3′-UTRs plus the 3′-terminal gene, generated a 2.8 kb RNA able to replicate to high levels in protoplasts in the presence of CYSDV RNA1. The clone T3CM8Δ will facilitate reverse genetics studies of CYSDV gene function and RNA replication determinants. PMID:27314380
Dhar, Alok; Polev, Dmitrii E.; Masharsky, Alexey E.; Rogozin, Igor B.; Pavlov, Youri I.
2015-01-01
Mutations in genomes of species are frequently distributed non-randomly, resulting in mutation clusters, including recently discovered kataegis in tumors. DNA editing deaminases play the prominent role in the etiology of these mutations. To gain insight into the enigmatic mechanisms of localized hypermutagenesis that lead to cluster formation, we analyzed the mutational single nucleotide variations (SNV) data obtained by whole-genome sequencing of drug-resistant mutants induced in yeast diploids by AID/APOBEC deaminase and base analog 6-HAP. Deaminase from sea lamprey, PmCDA1, induced robust clusters, while 6-HAP induced a few weak ones. We found that PmCDA1, AID, and APOBEC1 deaminases preferentially mutate the beginning of the actively transcribed genes. Inactivation of transcription initiation factor Sub1 strongly reduced deaminase-induced can1 mutation frequency, but, surprisingly, did not decrease the total SNV load in genomes. However, the SNVs in the genomes of the sub1 clones were re-distributed, and the effect of mutation clustering in the regions of transcription initiation was even more pronounced. At the same time, the mutation density in the protein-coding regions was reduced, resulting in the decrease of phenotypically detected mutants. We propose that the induction of clustered mutations by deaminases involves: a) the exposure of ssDNA strands during transcription and loss of protection of ssDNA due to the depletion of ssDNA-binding proteins, such as Sub1, and b) attainment of conditions favorable for APOBEC action in subpopulation of cells, leading to enzymatic deamination within the currently expressed genes. This model is applicable to both the initial and the later stages of oncogenic transformation and explains variations in the distribution of mutations and kataegis events in different tumor cells. PMID:25941824
Hoenen, Thomas; Groseth, Allison; de Kok-Mercado, Fabian; Kuhn, Jens H.; Wahl-Jensen, Victoria
2012-01-01
Reverse-genetics systems are powerful tools enabling researchers to study the replication cycle of RNA viruses, including filoviruses and other hemorrhagic fever viruses, as well as to discover new antivirals. They include full-length clone systems as well as a number of life cycle modeling systems. Full-length clone systems allow for the generation of infectious, recombinant viruses, and thus are an important tool for studying the virus replication cycle in its entirety. In contrast, life cycle modeling systems such as minigenome and transcription and replication competent virus-like particle systems can be used to simulate and dissect parts of the virus life cycle outside of containment facilities. Minigenome systems are used to model viral genome replication and transcription, whereas transcription and replication competent virus-like particle systems also model morphogenesis and budding as well as infection of target cells. As such, these modeling systems have tremendous potential to further the discovery and screening of new antivirals targeting hemorrhagic fever viruses. This review provides an overview of currently established reverse genetics systems for hemorrhagic fever-causing negative-sense RNA viruses, with a particular emphasis on filoviruses, and the potential application of these systems for antiviral research. PMID:21699921
Amelio, Antonio L.; McAnany, Peterjon K.; Bloom, David C.
2006-01-01
A previous study demonstrated that the latency-associated transcript (LAT) promoter and the LAT enhancer/reactivation critical region (rcr) are enriched in acetyl histone H3 (K9, K14) during herpes simplex virus type 1 (HSV-1) latency, whereas all lytic genes analyzed (ICP0, UL54, ICP4, and DNA polymerase) are not (N. J. Kubat, R. K. Tran, P. McAnany, and D. C. Bloom, J. Virol. 78:1139-1149, 2004). This suggests that the HSV-1 latent genome is organized into histone H3 (K9, K14) hyperacetylated and hypoacetylated regions corresponding to transcriptionally permissive and transcriptionally repressed chromatin domains, respectively. Such an organization implies that chromatin insulators, similar to those of cellular chromosomes, may separate distinct transcriptional domains of the HSV-1 latent genome. In the present study, we sought to identify cis elements that could partition the HSV-1 genome into distinct chromatin domains. Sequence analysis coupled with chromatin immunoprecipitation and luciferase reporter assays revealed that (i) the long and short repeats and the unique-short region of the HSV-1 genome contain clustered CTCF (CCCTC-binding factor) motifs, (ii) CTCF motif clusters similar to those in HSV-1 are conserved in other alphaherpesviruses, (iii) CTCF binds to these motifs on latent HSV-1 genomes in vivo, and (iv) a 1.5-kb region containing the CTCF motif cluster in the LAT region possesses insulator activities, specifically, enhancer blocking and silencing. The finding that CTCF, a cellular protein associated with chromatin insulators, binds to motifs on the latent genome and insulates the LAT enhancer suggests that CTCF may facilitate the formation of distinct chromatin boundaries during herpesvirus latency. PMID:16474142
Virus versus Host Plant MicroRNAs: Who Determines the Outcome of the Interaction?
Maghuly, Fatemeh; Ramkat, Rose C.; Laimer, Margit
2014-01-01
Considering the importance of microRNAs (miRNAs) in the regulation of essential processes in plant pathogen interactions, it is not surprising that, while plant miRNA sequences counteract viral attack via antiviral RNA silencing, viruses in turn have developed antihost defense mechanisms blocking these RNA silencing pathways and establish a counter-defense. In the current study, computational and stem-loop Reverse Transcription – Polymerase Chain Reaction (RT-PCR) approaches were employed to a) predict and validate virus encoded mature miRNAs (miRs) in 39 DNA-A sequences of the bipartite genomes of African cassava mosaic virus (ACMV) and East African cassava mosaic virus-Uganda (EACMV-UG) isolates, b) determine whether virus encoded miRs/miRs* generated from the 5′/3′ harpin arms have the capacity to bind to genomic sequences of the host plants Jatropha or cassava and c) investigate whether plant encoded miR/miR* sequences have the potential to bind to the viral genomes. Different viral pre-miRNA hairpin sequences and viral miR/miR* length variants occurring as isomiRs were predicted in both viruses. These miRNAs were located in three Open Reading Frames (ORFs) and in the Intergenic Region (IR). Moreover, various target genes for miRNAs from both viruses were predicted and annotated in the host plant genomes indicating that they are involved in biotic response, metabolic pathways and transcription factors. Plant miRs/miRs* from conserved and highly expressed families were identified, which were shown to have potential targets in the genome of both begomoviruses, representing potential plant miRNAs mediating antiviral defense. This is the first assessment of predicted viral miRs/miRs* of ACMV and EACMV-UG and host plant miRNAs, providing a reference point for miRNA identification in pathogens and their hosts. These findings will improve the understanding of host- pathogen interaction pathways and the function of viral miRNAs in Euphorbiaceous crop plants. PMID:24896088
A simplified approach to construct infectious cDNA clones of a tobamovirus in a binary vector.
Junqueira, Bruna Rayane Teodoro; Nicolini, Cícero; Lucinda, Natalia; Orílio, Anelise Franco; Nagata, Tatsuya
2014-03-01
Infectious cDNA clones of RNA viruses are important tools to study molecular processes such as replication and host-virus interactions. However, the cloning steps necessary for construction of cDNAs of viral RNA genomes in binary vectors are generally laborious. In this study, a simplified method of producing an agro-infectious Pepper mild mottle virus (PMMoV) clone is described in detail. Initially, the complete genome of PMMoV was amplified by a single-step RT-PCR, cloned, and subcloned into a small plasmid vector under the T7 RNA polymerase promoter to confirm the infectivity of the cDNA clone through transcript inoculation. The complete genome was then transferred to a binary vector using a single-step, overlap-extension PCR. The selected clones were agro-infiltrated to Nicotiana benthamiana plants and showed to be infectious, causing typical PMMoV symptoms. No differences in host responses were observed when the wild-type PMMoV isolate, the T7 RNA polymerase-derived transcripts and the agroinfiltration-derived viruses were inoculated to N. benthamiana, Capsicum chinense PI 159236 and Capsicum annuum plants. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markussen, Turhan; Jonassen, Christine Monceyron; Numanovic, Sanela
2008-05-10
Infectious salmon anaemia virus (ISAV) is an orthomyxovirus causing a multisystemic, emerging disease in Atlantic salmon. Here we present, for the first time, detailed sequence analyses of the full-genome sequence of a presumed avirulent isolate displaying a full-length hemagglutinin-esterase (HE) gene (HPR0), and compare this with full-genome sequences of 11 Norwegian ISAV isolates from clinically diseased fish. These analyses revealed the presence of a virulence marker right upstream of the putative cleavage site R{sub 267} in the fusion (F) protein, suggesting a Q{sub 266} {yields} L{sub 266} substitution to be a prerequisite for virulence. To gain virulence in isolates lackingmore » this substitution, a sequence insertion near the cleavage site seems to be required. This strongly suggests the involvement of a protease recognition pattern at the cleavage site of the fusion protein as a determinant of virulence, as seen in highly pathogenic influenza A virus H5 or H7 and the paramyxovirus Newcastle disease virus.« less
Discovery of parvovirus-related sequences in an unexpected broad range of animals.
François, S; Filloux, D; Roumagnac, P; Bigot, D; Gayral, P; Martin, D P; Froissart, R; Ogliastro, M
2016-09-07
Our knowledge of the genetic diversity and host ranges of viruses is fragmentary. This is particularly true for the Parvoviridae family. Genetic diversity studies of single stranded DNA viruses within this family have been largely focused on arthropod- and vertebrate-infecting species that cause diseases of humans and our domesticated animals: a focus that has biased our perception of parvovirus diversity. While metagenomics approaches could help rectify this bias, so too could transcriptomics studies. Large amounts of transcriptomic data are available for a diverse array of animal species and whenever this data has inadvertently been gathered from virus-infected individuals, it could contain detectable viral transcripts. We therefore performed a systematic search for parvovirus-related sequences (PRSs) within publicly available transcript, genome and protein databases and eleven new transcriptome datasets. This revealed 463 PRSs in the transcript databases of 118 animals. At least 41 of these PRSs are likely integrated within animal genomes in that they were also found within genomic sequence databases. Besides illuminating the ubiquity of parvoviruses, the number of parvoviral sequences discovered within public databases revealed numerous previously unknown parvovirus-host combinations; particularly in invertebrates. Our findings suggest that the host-ranges of extant parvoviruses might span the entire animal kingdom.
Genome activation by raspberry bushy dwarf virus coat protein.
Macfarlane, Stuart A; McGavin, Wendy J
2009-03-01
Two sets of infectious cDNA clones of raspberry bushy dwarf virus (RBDV) have been constructed, enabling either the synthesis of infectious RNA transcripts or the delivery of infectious binary plasmid DNA by infiltration of Agrobacterium tumefaciens. In whole plants and in protoplasts, inoculation of RBDV RNA1 and RNA2 transcripts led to a low level of infection, which was greatly increased by the addition of RNA3, a subgenomic RNA coding for the RBDV coat protein (CP). Agroinfiltration of RNA1 and RNA2 constructs did not produce a detectable infection but, again, inclusion of a construct encoding the CP led to high levels of infection. Thus, RBDV replication is greatly stimulated by the presence of the CP, a mechanism that also operates with ilarviruses and alfalfa mosaic virus, where it is referred to as genome activation. Mutation to remove amino acids from the N terminus of the CP showed that the first 15 RBDV CP residues are not required for genome activation. Other experiments, in which overlapping regions at the CP N terminus were fused to the monomeric red fluorescent protein, showed that sequences downstream of the first 48 aa are not absolutely required for genome activation.
Induction of infectious petunia vein clearing (pararetro) virus from endogenous provirus in petunia
Richert-Pöggeler, Katja R.; Noreen, Faiza; Schwarzacher, Trude; Harper, Glyn; Hohn, Thomas
2003-01-01
Infection by an endogenous pararetrovirus using forms of both episomal and chromosomal origin has been demonstrated and characterized, together with evidence that petunia vein clearing virus (PVCV) is a constituent of the Petunia hybrida genome. Our findings allow comparative and direct analysis of horizontally and vertically transmitted virus forms and demonstrate their infectivity using biolistic transformation of a provirus-free petunia species. Some integrants within the genome of P.hybrida are arranged in tandem, allowing direct release of virus by transcription. In addition to known inducers of endogenous pararetroviruses, such as genome hybridization, tissue culture and abiotic stresses, we observed activation of PVCV after wounding. Our data also support the hypothesis that the host plant uses DNA methylation to control the endogenous pararetrovirus. PMID:12970195
Marston, D A; McElhinney, L M; Johnson, N; Müller, T; Conzelmann, K K; Tordo, N; Fooks, A R
2007-04-01
We report the first full-length genomic sequences for European bat lyssavirus type-1 (EBLV-1) and type-2 (EBLV-2). The EBLV-1 genomic sequence was derived from a virus isolated from a serotine bat in Hamburg, Germany, in 1968 and the EBLV-2 sequence was derived from a virus isolate from a human case of rabies that occurred in Scotland in 2002. A long-distance PCR strategy was used to amplify the open reading frames (ORFs), followed by standard and modified RACE (rapid amplification of cDNA ends) techniques to amplify the 3' and 5' ends. The lengths of each complete viral genome for EBLV-1 and EBLV-2 were 11 966 and 11 930 base pairs, respectively, and follow the standard rhabdovirus genome organization of five viral proteins. Comparison with other lyssavirus sequences demonstrates variation in degrees of homology, with the genomic termini showing a high degree of complementarity. The nucleoprotein was the most conserved, both intra- and intergenotypically, followed by the polymerase (L), matrix and glyco- proteins, with the phosphoprotein being the most variable. In addition, we have shown that the two EBLVs utilize a conserved transcription termination and polyadenylation (TTP) motif, approximately 50 nt upstream of the L gene start codon. All available lyssavirus sequences to date, with the exception of Pasteur virus (PV) and PV-derived isolates, use the second TTP site. This observation may explain differences in pathogenicity between lyssavirus strains, dependent on the length of the untranslated region, which might affect transcriptional activity and RNA stability.
Wang, Xurong; Zhang, Fuxian; Su, Rui; Li, Xiaowu; Chen, Wenyuan; Chen, Qingxiu; Yang, Tao; Wang, Jiawei; Liu, Hongrong; Fang, Qin; Cheng, Lingpeng
2018-06-25
Most double-stranded RNA (dsRNA) viruses transcribe RNA plus strands within a common innermost capsid shell. This process requires coordinated efforts by RNA-dependent RNA polymerase (RdRp) together with other capsid proteins and genomic RNA. Here we report the near-atomic resolution structure of the RdRp protein VP2 in complex with its cofactor protein VP4 and genomic RNA within an aquareovirus capsid using 200-kV cryoelectron microscopy and symmetry-mismatch reconstruction. The structure of these capsid proteins enabled us to observe the elaborate nonicosahedral structure within the double-layered icosahedral capsid. Our structure shows that the RdRp complex is anchored at the inner surface of the capsid shell and interacts with genomic dsRNA and four of the five asymmetrically arranged N termini of the capsid shell proteins under the fivefold axis, implying roles for these N termini in virus assembly. The binding site of the RNA end at VP2 is different from the RNA cap binding site identified in the crystal structure of orthoreovirus RdRp λ3, although the structures of VP2 and λ3 are almost identical. A loop, which was thought to separate the RNA template and transcript, interacts with an apical domain of the capsid shell protein, suggesting a mechanism for regulating RdRp replication and transcription. A conserved nucleoside triphosphate binding site was localized in our RdRp cofactor protein VP4 structure, and interactions between the VP4 and the genomic RNA were identified.
Tan, Joon Ling; Chan, Kok Gan; Kamarulzaman, Adeeba; Chan, Yoke Fun; Sam, I-Ching; Tee, Kok Keng
2017-01-01
Reassortment of genetic segments between and within influenza B lineages (Victoria and Yamagata) has been shown to generate novel reassortants with unique genetic characteristics. Based on hemagglutinin (HA) and neuraminidase (NA) genes, recent surveillance study has identified reassortment properties in B/Phuket/3073/2013-like virus, which is currently used in the WHO-recommended influenza vaccine. To understand the potential reassortment patterns for all gene segments, four B/Phuket/3073/2013-like viruses and two unique reassortants (one each from Yamagata and Victoria) detected in Malaysia from 2012–2014 were subjected to whole-genome sequencing. Each gene was phylogenetically classified into lineages, clades and sub-clades. Three B/Phuket/3073/2013-like viruses from Yamagata lineage were found to be intra-clade reassortants, possessing PA and NA genes derived from Stockholm/12-like sub-clade, while the remaining genes from Wisconsin/01-like sub-clade (both sub-clades were within Yamagata Clade 3/Yam-3). However, the other B/Phuket/3073/2013-like virus had NS gene that derived from Stockholm/12-like sub-clade instead of Wisconsin/01-like sub-clade. One inter-clade reassortant had Yamagata Clade 2/Yam-2-derived HA and NP, and its remaining genes were Yam-3-derived. Within Victoria Clade 1/Vic-1 in Victoria lineage, one virus had intra-clade reassortment properties: HA and PB2 from Vic-1B sub-clade, MP and NS from a unique sub-clade “Vic-1C”, and the remaining genes from Vic-1A sub-clade. Although random reassortment event may generate unique reassortants, detailed phylogenetic classification of gene segments showed possible genetic linkage between PA and NA genes in B/Phuket/3073/2013-like viruses, which requires further investigation. Understanding on reassortment patterns in influenza B evolution may contribute to future vaccine design. PMID:28129386
Harpen, Mary; Barik, Tiasha; Musiyenko, Alla; Barik, Sailen
2009-11-01
As obligatory parasites, viruses co-opt a variety of cellular functions for robust replication. The expression of the nonsegmented negative-strand RNA genome of respiratory syncytial virus (RSV), a significant pediatric pathogen, absolutely requires actin and is stimulated by the actin-regulatory protein profilin. As actin is a major contractile protein, it was important to determine whether the known functional domains of actin and profilin were important for their ability to activate RSV transcription. Analyses of recombinant mutants in a reconstituted RSV transcription system suggested that the divalent-cation-binding domain of actin is critically needed for binding to the RSV genome template and for the activation of viral RNA synthesis. In contrast, the nucleotide-binding domain and the N-terminal acidic domain were needed neither for template binding nor for transcription. Specific surface residues of actin, required for actin-actin contact during filamentation, were also nonessential for viral transcription. Unlike actin, profilin did not directly bind to the viral template but was recruited by actin. Mutation of the interactive residues of actin or profilin, resulting in the loss of actin-profilin binding, also abolished profilin's ability to stimulate viral transcription. Together, these results suggest that actin acts as a classical transcription factor for the virus by divalent-cation-dependent binding to the viral template and that profilin acts as a transcriptional cofactor, in part by associating with actin. This essential viral role of actin is independent of its contractile cellular role.
PCR analysis of the viral complex associated with La France disease of Agaricus bisporus.
Romaine, C P; Schlagnhaufer, B
1995-01-01
Reverse transcription PCR analysis was used to investigate the involvement of two RNA-genome viruses, La France isometric virus (LIV) and mushroom bacilliform virus (MBV), in the etiology of La France disease of the cultivated mushroom Agaricus bisporus. Reverse transcription PCR amplification of sequences targeted to the genomes of LIV and MBV, with a sensitivity of detection of < 10 fg of viral RNA, showed diseased mushrooms to be either singly infected by LIV or doubly infected by LIV and MBV. Of 70 geographically diverse diseased mushroom isolates, 100% were infected by LIV, whereas almost 60% of these isolates were coinfected by MBV. Of 58 mushroom isolates determined to be free of infection by LIV, 3 were found to be infected by MBV. This represents the first documented report of the independent replication of these two viruses. Our data support the hypothesis that La France disease is associated with infection by two autonomously replicating viruses in which LIV is the primary causal agent and MBV, although possibly pathogenic and capable of modulating symptoms, is not required for pathogenesis. PMID:7793952
Mühlberger, Elke; Weik, Michael; Volchkov, Viktor E.; Klenk, Hans-Dieter; Becker, Stephan
1999-01-01
The members of the family Filoviridae, Marburg virus (MBGV) and Ebola virus (EBOV), are very similar in terms of morphology, genome organization, and protein composition. To compare the replication and transcription strategies of both viruses, an artificial replication system based on the vaccinia virus T7 expression system was established for EBOV. Specific transcription and replication of an artificial monocistronic minireplicon was demonstrated by reporter gene expression and detection of the transcribed and replicated RNA species. As it was shown previously for MBGV, three of the four EBOV nucleocapsid proteins, NP, VP35, and L, were essential and sufficient for replication. In contrast to MBGV, EBOV-specific transcription was dependent on the presence of the fourth nucleocapsid protein, VP30. When EBOV VP30 was replaced by MBGV VP30, EBOV-specific transcription was observed but with lower efficiency. Exchange of NP, VP35, and L between the two replication systems did not lead to detectable reporter gene expression. It was further observed that neither MBGV nor EBOV were able to replicate the heterologous minigenomes. A chimeric minigenome, however, containing the EBOV leader and the MBGV trailer was encapsidated, replicated, transcribed, and packaged by both viruses. PMID:9971816
Pervasive Transcription of a Herpesvirus Genome Generates Functionally Important RNAs
Canny, Susan P.; Reese, Tiffany A.; Johnson, L. Steven; Zhang, Xin; Kambal, Amal; Duan, Erning; Liu, Catherine Y.; Virgin, Herbert W.
2014-01-01
ABSTRACT Pervasive transcription is observed in a wide range of organisms, including humans, mice, and viruses, but the functional significance of the resulting transcripts remains uncertain. Current genetic approaches are often limited by their emphasis on protein-coding open reading frames (ORFs). We previously identified extensive pervasive transcription from the murine gammaherpesvirus 68 (MHV68) genome outside known ORFs and antisense to known genes (termed expressed genomic regions [EGRs]). Similar antisense transcripts have been identified in many other herpesviruses, including Kaposi’s sarcoma-associated herpesvirus and human and murine cytomegalovirus. Despite their prevalence, whether these RNAs have any functional importance in the viral life cycle is unknown, and one interpretation is that these are merely “noise” generated by functionally unimportant transcriptional events. To determine whether pervasive transcription of a herpesvirus genome generates RNA molecules that are functionally important, we used a strand-specific functional approach to target transcripts from thirteen EGRs in MHV68. We found that targeting transcripts from six EGRs reduced viral protein expression, proving that pervasive transcription can generate functionally important RNAs. We characterized transcripts emanating from EGRs 26 and 27 in detail using several methods, including RNA sequencing, and identified several novel polyadenylated transcripts that were enriched in the nuclei of infected cells. These data provide the first evidence of the functional importance of regions of pervasive transcription emanating from MHV68 EGRs. Therefore, studies utilizing mutation of a herpesvirus genome must account for possible effects on RNAs generated by pervasive transcription. PMID:24618256
Washington, Shannan D; Musarrat, Farhana; Ertel, Monica K; Backes, Gregory L; Neumann, Donna M
2018-04-15
There are seven conserved CTCF binding domains in the herpes simplex virus 1 (HSV-1) genome. These binding sites individually flank the latency-associated transcript (LAT) and the immediate early (IE) gene regions, suggesting that CTCF insulators differentially control transcriptional domains in HSV-1 latency. In this work, we show that two CTCF binding motifs in HSV-1 display enhancer blocking in a cell-type-specific manner. We found that CTCF binding to the latent HSV-1 genome was LAT dependent and that the quantity of bound CTCF was site specific. Following reactivation, CTCF eviction was dynamic, suggesting that each CTCF site was independently regulated. We explored whether CTCF sites recruit the polycomb-repressive complex 2 (PRC2) to establish repressive domains through a CTCF-Suz12 interaction and found that Suz12 colocalized to the CTCF insulators flanking the ICP0 and ICP4 regions and, conversely, was removed at early times postreactivation. Collectively, these data support the idea that CTCF sites in HSV-1 are independently regulated and may contribute to lytic-latent HSV-1 control in a site-specific manner. IMPORTANCE The role of chromatin insulators in DNA viruses is an area of interest. It has been shown in several beta- and gammaherpesviruses that insulators likely control the lytic transcriptional profile through protein recruitment and through the formation of three-dimensional (3D) chromatin loops. The ability of insulators to regulate alphaherpesviruses has been understudied to date. The alphaherpesvirus HSV-1 has seven conserved insulator binding motifs that flank regions of the genome known to contribute to the establishment of latency. Our work presented here contributes to the understanding of how insulators control transcription of HSV-1. Copyright © 2018 American Society for Microbiology.
Enterovirus A71 DNA-Launched Infectious Clone as a Robust Reverse Genetic Tool
Tan, Chee Wah; Tee, Han Kang; Lee, Michelle Hui Pheng; Sam, I-Ching; Chan, Yoke Fun
2016-01-01
Enterovirus A71 (EV-A71) causes major outbreaks of hand, foot and mouth disease, and is occasionally associated with neurological complications and death in children. Reverse genetics is widely used in the field of virology for functional study of viral genes. For EV-A71, such tools are limited to clones that are transcriptionally controlled by T7/SP6 bacteriophage promoter. This is often time-consuming and expensive. Here, we describe the development of infectious plasmid DNA-based EV-A71 clones, for which EV-A71 genome expression is under transcriptional control by the CMV-intermediate early promoter and SV40 transcriptional-termination signal. Transfection of this EV-A71 infectious DNA produces good virus yield similar to in vitro-transcribed EV-A71 infectious RNA, 6.4 and 5.8 log10PFU/ml, respectively. Infectious plasmid with enhanced green fluorescence protein and Nano luciferase reporter genes also produced good virus titers, with 4.3 and 5.0 log10 PFU/ml, respectively. Another infectious plasmid with both CMV and T7 promoters was also developed for easy manipulation of in vitro transcription or direct plasmid transfection. Transfection with either dual-promoter infectious plasmid DNA or infectious RNA derived from this dual-promoter clone produced infectious viral particles. Incorporation of hepatitis delta virus ribozyme, which yields precise 3’ ends of the DNA-launched EV-A71 genomic transcripts, increased infectious viral production. In contrast, the incorporation of hammerhead ribozyme in the DNA-launched EV-A71 resulted in lower virus yield, but improved the virus titers for T7 promoter-derived infectious RNA. This study describes rapid and robust reverse genetic tools for EV-A71. PMID:27617744
Prasinovirus Attack of Ostreococcus Is Furtive by Day but Savage by Night.
Derelle, Evelyne; Yau, Sheree; Moreau, Hervé; Grimsley, Nigel H
2018-02-15
Prasinoviruses are large DNA viruses that infect diverse genera of green microalgae worldwide in aquatic ecosystems, but molecular knowledge of their life cycles is lacking. Several complete genomes of both these viruses and their marine algal hosts are now available and have been used to show the pervasive presence of these species in microbial metagenomes. We have analyzed the life cycle of Ostreococcus tauri virus 5 (OtV5), a lytic virus, using transcriptome sequencing (RNA-Seq) from 12 time points of healthy or infected Ostreococcus tauri cells over a day/night cycle in culture. In the day, viral gene transcription remained low while host nitrogen metabolism gene transcription was initially strongly repressed for two successive time points before being induced for 8 h, but during the night, viral transcription increased steeply while host nitrogen metabolism genes were repressed and many host functions that are normally reduced in the dark appeared to be compensated either by genes expressed from the virus or by increased expression of a subset of 4.4% of the host's genes. Some host cells underwent lysis progressively during the night, but a larger proportion were lysed the following morning. Our data suggest that the life cycles of algal viruses mirror the diurnal rhythms of their hosts. IMPORTANCE Prasinoviruses are common in marine environments, and although several complete genomes of these viruses and their hosts have been characterized, little is known about their life cycles. Here we analyze in detail the transcriptional changes occurring over a 27-h-long experiment in a natural diurnal rhythm, in which the growth of host cells is to some extent synchronized, so that host DNA replication occurs late in the day or early in the night and cell division occurs during the night. Surprisingly, viral transcription remains quiescent over the daytime, when the most energy (from light) is available, but during the night viral transcription activates, accompanied by expression of a few host genes that are probably required by the virus. Although our experiment was accomplished in the lab, cyclical changes have been documented in host transcription in the ocean. Our observations may thus be relevant for eukaryotic phytoplankton in natural environments. Copyright © 2018 Derelle et al.
Crescenzo-Chaigne, Bernadette; Barbezange, Cyril; van der Werf, Sylvie
2008-01-01
Background The transcription/replication of the influenza viruses implicate the terminal nucleotide sequences of viral RNA, which comprise sequences at the extremities conserved among the genomic segments as well as variable 3' and 5' non-coding (NC) regions. The plasmid-based system for the in vivo reconstitution of functional ribonucleoproteins, upon expression of viral-like RNAs together with the nucleoprotein and polymerase proteins has been widely used to analyze transcription/replication of influenza viruses. It was thus shown that the type A polymerase could transcribe and replicate type A, B, or C vRNA templates whereas neither type B nor type C polymerases were able to transcribe and replicate type A templates efficiently. Here we studied the importance of the NC regions from the seven segments of type C influenza virus for efficient transcription/replication by the type A and C polymerases. Results The NC sequences of the seven genomic segments of the type C influenza virus C/Johannesburg/1/66 strain were found to be more variable in length than those of the type A and B viruses. The levels of transcription/replication of viral-like vRNAs harboring the NC sequences of the respective type C virus segments flanking the CAT reporter gene were comparable in the presence of either type C or type A polymerase complexes except for the NS and PB2-like vRNAs. For the NS-like vRNA, the transcription/replication level was higher after introduction of a U residue at position 6 in the 5' NC region as for all other segments. For the PB2-like vRNA the CAT expression level was particularly reduced with the type C polymerase. Analysis of mutants of the 5' NC sequence in the PB2-like vRNA, the shortest 5' NC sequence among the seven segments, showed that additional sequences within the PB2 ORF were essential for the efficiency of transcription but not replication by the type C polymerase complex. Conclusion In the context of a PB2-like reporter vRNA template, the sequence upstream the polyU stretch plays a role in the transcription/replication process by the type C polymerase complex. PMID:18973655
Promoter for Sindbis virus RNA-dependent subgenomic RNA transcription.
Levis, R; Schlesinger, S; Huang, H V
1990-04-01
Sindbis virus is a positive-strand RNA enveloped virus, a member of the Alphavirus genus of the Togaviridae family. Two species of mRNA are synthesized in cells infected with Sindbis virus; one, the 49S RNA, is the genomic RNA; the other, the 26S RNA, is a subgenomic RNA that is identical in sequence to the 3' one-third of the genomic RNA. Ou et al. (J.-H. Ou, C. M. Rice, L. Dalgarno, E. G. Strauss, and J. H. Strauss, Proc. Natl. Acad. Sci. USA 79:5235-5239, 1982) identified a highly conserved region 19 nucleotides upstream and 2 nucleotides downstream from the start of the 26S RNA and proposed that in the negative-strand template, these nucleotides compose the promoter for directing the synthesis of the subgenomic RNA. Defective interfering (DI) RNAs of Sindbis virus were used to test this proposal. A 227-nucleotide sequence encompassing 98 nucleotides upstream and 117 nucleotides downstream from the start site of the Sindbis virus subgenomic RNA was inserted into a DI genome. The DI RNA containing the insert was replicated and packaged in the presence of helper virus, and cells infected with these DI particles produced a subgenomic RNA of the size and sequence expected if the promoter was functional. The initiating nucleotide was identical to that used for Sindbis virus subgenomic mRNA synthesis. Deletion analysis showed that the minimal region required to detect transcription of a subgenomic RNA from the negative-strand template of a DI RNA was 18 or 19 nucleotides upstream and 5 nucleotides downstream from the start of the subgenomic RNA.
T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus
Shuda, Masahiro; Feng, Huichen; Kwun, Hyun Jin; Rosen, Steven T.; Gjoerup, Ole; Moore, Patrick S.; Chang, Yuan
2008-01-01
Merkel cell polyomavirus (MCV) is a virus discovered in our laboratory at the University of Pittsburgh that is monoclonally integrated into the genome of ≈80% of human Merkel cell carcinomas (MCCs). Transcript mapping was performed to show that MCV expresses transcripts in MCCs similar to large T (LT), small T (ST), and 17kT transcripts of SV40. Nine MCC tumor-derived LT genomic sequences have been examined, and all were found to harbor mutations prematurely truncating the MCV LT helicase. In contrast, four presumed episomal viruses from nontumor sources did not possess this T antigen signature mutation. Using coimmunoprecipitation and origin replication assays, we show that tumor-derived virus mutations do not affect retinoblastoma tumor suppressor protein (Rb) binding by LT but do eliminate viral DNA replication capacity. Identification of an MCC cell line (MKL-1) having monoclonal MCV integration and the signature LT mutation allowed us to functionally test both tumor-derived and wild type (WT) T antigens. Only WT LT expression activates replication of integrated MCV DNA in MKL-1 cells. Our findings suggest that MCV-positive MCC tumor cells undergo selection for LT mutations to prevent autoactivation of integrated virus replication that would be detrimental to cell survival. Because these mutations render the virus replication-incompetent, MCV is not a “passenger virus” that secondarily infects MCC tumors. PMID:18812503
Characterization of the catalytic center of the Ebola virus L polymerase.
Schmidt, Marie Luisa; Hoenen, Thomas
2017-10-01
Ebola virus (EBOV) causes a severe hemorrhagic fever in humans and non-human primates. While no licensed therapeutics are available, recently there has been tremendous progress in developing antivirals. Targeting the ribonucleoprotein complex (RNP) proteins, which facilitate genome replication and transcription, and particularly the polymerase L, is a promising antiviral approach since these processes are essential for the virus life cycle. However, until now little is known about L in terms of its structure and function, and in particular the catalytic center of the RNA-dependent RNA polymerase (RdRp) of L, which is one of the most promising molecular targets, has never been experimentally characterized. Using multiple sequence alignments with other negative sense single-stranded RNA viruses we identified the putative catalytic center of the EBOV RdRp. An L protein with mutations in this center was then generated and characterized using various life cycle modelling systems. These systems are based on minigenomes, i.e. miniature versions of the viral genome, in which the viral genes are exchanged against a reporter gene. When such minigenomes are coexpressed with RNP proteins in mammalian cells, the RNP proteins recognize them as authentic templates for replication and transcription, resulting in reporter activity reflecting these processes. Replication-competent minigenome systems indicated that our L catalytic domain mutant was impaired in genome replication and/or transcription, and by using replication-deficient minigenome systems, as well as a novel RT-qPCR-based genome replication assay, we showed that it indeed no longer supported either of these processes. However, it still showed similar expression to wild-type L, and retained its ability to be incorporated into inclusion bodies, which are the sites of EBOV genome replication. We have experimentally defined the catalytic center of the EBOV RdRp, and thus a promising antiviral target regulating an essential aspect of the EBOV life cycle.
Geisler, Christoph; Jarvis, Donald L
2016-07-01
Spodoptera frugiperda (Sf) cell lines are used to produce several biologicals for human and veterinary use. Recently, it was discovered that all tested Sf cell lines are persistently infected with Sf-rhabdovirus, a novel rhabdovirus. As part of an effort to search for other adventitious viruses, we searched the Sf cell genome and transcriptome for sequences related to Sf-rhabdovirus. To our surprise, we found intact Sf-rhabdovirus N- and P-like ORFs, and partial Sf-rhabdovirus G- and L-like ORFs. The transcribed and genomic sequences matched, indicating the transcripts were derived from the genomic sequences. These appear to be endogenous viral elements (EVEs), which result from the integration of partial viral genetic material into the host cell genome. It is theoretically impossible for the Sf-rhabdovirus-like EVEs to produce infectious virus particles as 1) they are disseminated across 4 genomic loci, 2) the G and L ORFs are incomplete, and 3) the M ORF is missing. Our finding of transcribed virus-like sequences in Sf cells underscores that MPS-based searches for adventitious viruses in cell substrates used to manufacture biologics should take into account both genomic and transcribed sequences to facilitate the identification of transcribed EVE's, and to avoid false positive detection of replication-competent adventitious viruses. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Geisler, Christoph; Jarvis, Donald L.
2016-01-01
Spodoptera frugiperda (Sf) cell lines are used to produce several biologicals for human and veterinary use. Recently, it was discovered that all tested Sf cell lines are persistently infected with Sf-rhabdovirus, a novel rhabdovirus. As part of an effort to search for other adventitious viruses, we searched the Sf cell genome and transcriptome for sequences related to Sf-rhabdovirus. To our surprise, we found intact Sf-rhabdovirus N- and P-like ORFs, and partial Sf-rhabdovirus G- and L-like ORFs. The transcribed and genomic sequences matched, indicating the transcripts were derived from the genomic sequences. These appear to be endogenous viral elements (EVEs), which result from the integration of partial viral genetic material into the host cell genome. It is theoretically impossible for the Sf-rhabdovirus-like EVEs to produce infectious virus particles as 1) they are disseminated across 4 genomic loci, 2) the G and L ORFs are incomplete, and 3) the M ORF is missing. Our finding of transcribed virus-like sequences in Sf cells underscores that MPS-based searches for adventitious viruses in cell substrates used to manufacture biologics should take into account both genomic and transcribed sequences to facilitate the identification of transcribed EVE's, and to avoid false positive detection of replication-competent adventitious viruses. PMID:27236849
Tomo, Naoki; Goto, Toshiyuki; Morikawa, Yuko
2013-03-26
Yeast is recognized as a generally safe microorganism and is utilized for the production of pharmaceutical products, including vaccines. We previously showed that expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in Saccharomyces cerevisiae spheroplasts released Gag virus-like particles (VLPs) extracellularly, suggesting that the production system could be used in vaccine development. In this study, we further establish HIV-1 genome packaging into Gag VLPs in a yeast cell system. The nearly full-length HIV-1 genome containing the entire 5' long terminal repeat, U3-R-U5, did not transcribe gag mRNA in yeast. Co-expression of HIV-1 Tat, a transcription activator, did not support the transcription. When the HIV-1 promoter U3 was replaced with the promoter for the yeast glyceraldehyde-3-phosphate dehydrogenase gene, gag mRNA transcription was restored, but no Gag protein expression was observed. Co-expression of HIV-1 Rev, a factor that facilitates nuclear export of gag mRNA, did not support the protein synthesis. Progressive deletions of R-U5 and its downstream stem-loop-rich region (SL) to the gag start ATG codon restored Gag protein expression, suggesting that a highly structured noncoding RNA generated from the R-U5-SL region had an inhibitory effect on gag mRNA translation. When a plasmid containing the HIV-1 genome with the R-U5-SL region was coexpressed with an expression plasmid for Gag protein, the HIV-1 genomic RNA was transcribed and incorporated into Gag VLPs formed by Gag protein assembly, indicative of the trans-packaging of HIV-1 genomic RNA into Gag VLPs in a yeast cell system. The concentration of HIV-1 genomic RNA in Gag VLPs released from yeast was approximately 500-fold higher than that in yeast cytoplasm. The deletion of R-U5 to the gag gene resulted in the failure of HIV-1 RNA packaging into Gag VLPs, indicating that the packaging signal of HIV-1 genomic RNA present in the R-U5 to gag region functions similarly in yeast cells. Our data indicate that selective trans-packaging of HIV-1 genomic RNA into Gag VLPs occurs in a yeast cell system, analogous to a mammalian cell system, suggesting that yeast may provide an alternative packaging system for lentiviral RNA.
Dostálková, Alžběta; Kaufman, Filip; Křížová, Ivana; Kultová, Anna; Strohalmová, Karolína; Hadravová, Romana; Ruml, Tomáš; Rumlová, Michaela
2018-05-15
In addition to specific RNA-binding zinc finger domains, the retroviral Gag polyprotein contains clusters of basic amino acid residues that are thought to support Gag-viral genomic RNA (gRNA) interactions. One of these clusters is the basic K 16 NK 18 EK 20 region, located upstream of the first zinc finger of the Mason-Pfizer monkey virus (M-PMV) nucleocapsid (NC) protein. To investigate the role of this basic region in the M-PMV life cycle, we used a combination of in vivo and in vitro methods to study a series of mutants in which the overall charge of this region was more positive (RNRER), more negative (AEAEA), or neutral (AAAAA). The mutations markedly affected gRNA incorporation and the onset of reverse transcription. The introduction of a more negative charge (AEAEA) significantly reduced the incorporation of M-PMV gRNA into nascent particles. Moreover, the assembly of immature particles of the AEAEA Gag mutant was relocated from the perinuclear region to the plasma membrane. In contrast, an enhancement of the basicity of this region of M-PMV NC (RNRER) caused a substantially more efficient incorporation of gRNA, subsequently resulting in an increase in M-PMV RNRER infectivity. Nevertheless, despite the larger amount of gRNA packaged by the RNRER mutant, the onset of reverse transcription was delayed in comparison to that of the wild type. Our data clearly show the requirement for certain positively charged amino acid residues upstream of the first zinc finger for proper gRNA incorporation, assembly of immature particles, and proceeding of reverse transcription. IMPORTANCE We identified a short sequence within the Gag polyprotein that, together with the zinc finger domains and the previously identified RKK motif, contributes to the packaging of genomic RNA (gRNA) of Mason-Pfizer monkey virus (M-PMV). Importantly, in addition to gRNA incorporation, this basic region (KNKEK) at the N terminus of the nucleocapsid protein is crucial for the onset of reverse transcription. Mutations that change the positive charge of the region to a negative one significantly reduced specific gRNA packaging. The assembly of immature particles of this mutant was reoriented from the perinuclear region to the plasma membrane. On the contrary, an enhancement of the basic character of this region increased both the efficiency of gRNA packaging and the infectivity of the virus. However, the onset of reverse transcription was delayed even in this mutant. In summary, the basic region in M-PMV Gag plays a key role in the packaging of genomic RNA and, consequently, in assembly and reverse transcription. Copyright © 2018 American Society for Microbiology.
Springfeld, Christoph; Darai, Gholamreza; Cattaneo, Roberto
2005-06-01
Rhabdoviruses are negative-stranded RNA viruses of the order Mononegavirales and have been isolated from vertebrates, insects, and plants. Members of the genus Lyssavirus cause the invariably fatal disease rabies, and a member of the genus Vesiculovirus, Chandipura virus, has recently been associated with acute encephalitis in children. We present here the complete genome sequence and transcription map of a rhabdovirus isolated from cultivated cells of hepatocellular carcinoma tissue from a moribund tree shrew. The negative-strand genome of tupaia rhabdovirus is composed of 11,440 nucleotides and encodes six genes that are separated by one or two intergenic nucleotides. In addition to the typical rhabdovirus genes in the order N-P-M-G-L, a gene encoding a small hydrophobic putative type I transmembrane protein of approximately 11 kDa was identified between the M and G genes, and the corresponding transcript was detected in infected cells. Similar to some Vesiculoviruses and many Paramyxovirinae, the P gene has a second overlapping reading frame that can be accessed by ribosomal choice and encodes a protein of 26 kDa, predicted to be the largest C protein of these virus families. Phylogenetic analyses of the tupaia rhabdovirus N and L genes show that the virus is distantly related to the Vesiculoviruses, Ephemeroviruses, and the recently characterized Flanders virus and Oita virus and further extends the sequence territory occupied by animal rhabdoviruses.
Springfeld, Christoph; Darai, Gholamreza; Cattaneo, Roberto
2005-01-01
Rhabdoviruses are negative-stranded RNA viruses of the order Mononegavirales and have been isolated from vertebrates, insects, and plants. Members of the genus Lyssavirus cause the invariably fatal disease rabies, and a member of the genus Vesiculovirus, Chandipura virus, has recently been associated with acute encephalitis in children. We present here the complete genome sequence and transcription map of a rhabdovirus isolated from cultivated cells of hepatocellular carcinoma tissue from a moribund tree shrew. The negative-strand genome of tupaia rhabdovirus is composed of 11,440 nucleotides and encodes six genes that are separated by one or two intergenic nucleotides. In addition to the typical rhabdovirus genes in the order N-P-M-G-L, a gene encoding a small hydrophobic putative type I transmembrane protein of approximately 11 kDa was identified between the M and G genes, and the corresponding transcript was detected in infected cells. Similar to some Vesiculoviruses and many Paramyxovirinae, the P gene has a second overlapping reading frame that can be accessed by ribosomal choice and encodes a protein of 26 kDa, predicted to be the largest C protein of these virus families. Phylogenetic analyses of the tupaia rhabdovirus N and L genes show that the virus is distantly related to the Vesiculoviruses, Ephemeroviruses, and the recently characterized Flanders virus and Oita virus and further extends the sequence territory occupied by animal rhabdoviruses. PMID:15890917
Moyo, Lindani; Ramesh, Shunmugiah V; Kappagantu, Madhu; Mitter, Neena; Sathuvalli, Vidyasagar; Pappu, Hanu R
2017-07-17
Potato virus Y (PVY) is one of the most economically important pathogen of potato that is present as biologically distinct strains. The virus-derived small interfering RNAs (vsiRNAs) from potato cv. Russet Burbank individually infected with PVY-N, PVY-NTN and PVY-O strains were recently characterized. Plant defense RNA-silencing mechanisms deployed against viruses produce vsiRNAs to degrade homologous viral transcripts. Based on sequence complementarity, the vsiRNAs can potentially degrade host RNA transcripts raising the prospect of vsiRNAs as pathogenicity determinants in virus-host interactions. This study investigated the global effects of PVY vsiRNAs on the host potato transcriptome. The strain-specific vsiRNAs of PVY, expressed in high copy number, were analyzed in silico for their proclivity to target potato coding and non-coding RNAs using psRobot and psRNATarget algorithms. Functional annotation of target coding transcripts was carried out to predict physiological effects of the vsiRNAs on the potato cv. Russet Burbank. The downregulation of selected target coding transcripts was further validated using qRT-PCR. The vsiRNAs derived from biologically distinct strains of PVY displayed diversity in terms of absolute number, copy number and hotspots for siRNAs on their respective genomes. The vsiRNAs populations were derived with a high frequency from 6 K1, P1 and Hc-Pro for PVY-N, P1, Hc-Pro and P3 for PVY-NTN, and P1, 3' UTR and NIa for PVY-O genomic regions. The number of vsiRNAs that displayed interaction with potato coding transcripts and number of putative coding target transcripts were comparable between PVY-N and PVY-O, and were relatively higher for PVY-NTN. The most abundant target non-coding RNA transcripts for the strain specific PVY-derived vsiRNAs were found to be MIR821, 28S rRNA,18S rRNA, snoR71, tRNA-Met and U5. Functional annotation and qRT-PCR validation suggested that the vsiRNAs target genes involved in plant hormone signaling, genetic information processing, plant-pathogen interactions, plant defense and stress response processes in potato. The findings suggested that the PVY-derived vsiRNAs could act as a pathogenicity determinant and as a counter-defense strategy to host RNA silencing in PVY-potato interactions. The broad range of host genes targeted by PVY vsiRNAs in infected potato suggests a diverse role for vsiRNAs that includes suppression of host stress responses and developmental processes. The interactome scenario is the first report on the interaction between one of the most important Potyvirus genome-derived siRNAs and the potato transcripts.
Pathogenesis of human papillomavirus-associated mucosal disease.
Groves, Ian J; Coleman, Nicholas
2015-03-01
Human papillomaviruses (HPVs) are a necessary cause of carcinoma of the cervix and other mucosal epithelia. Key events in high-risk HPV (HRHPV)-associated neoplastic progression include persistent infection, deregulated expression of virus early genes in basal epithelial cells and genomic instability causing secondary host genomic imbalances. There are multiple mechanisms by which deregulated virus early gene expression may be achieved. Integration of virus DNA into host chromosomes is observed in the majority of cervical squamous cell carcinomas (SCCs), although in ∼15% of cases the virus remains extrachromosomal (episomal). Interestingly, not all integration events provide a growth advantage to basal cervical epithelial cells or lead to increased levels of the virus oncogenes E6 and E7, when compared with episome-containing basal cells. The factors that provide a competitive advantage to some integrants, but not others, are complex and include virus and host contributions. Gene expression from integrated and episomal HRHPV is regulated through host epigenetic mechanisms affecting the virus long control region (LCR), which appear to be of functional importance. New approaches to treating HRHPV-associated mucosal neoplasia include knockout of integrated HRHPV DNA, depletion of virus transcripts and inhibition of virus early gene transcription through targeting or use of epigenetic modifiers. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Molecular characterization of emaraviruses associated with Pigeonpea sterility mosaic disease.
Kumar, Surender; Subbarao, B L; Hallan, Vipin
2017-09-19
Sterility Mosaic Disease (SMD) of pigeonpea (Cajanus cajan (L.) Millspaugh) is a complex disease due to various factors including the presence of a mixed infection. Comparison of dsRNA profile and small RNA (sRNA) deep sequencing analysis of samples from three locations revealed the presence of Pigeonpea sterility mosaic virus-I and II (PPSMV-I and II) from Chevella and only PPSMV-II from Bengaluru and Coimbatore. PPSMV-I genome consisted of four while PPSMV-II encompassed six RNAs. The two viruses have modest sequence homology between their corresponding RNA 1-4 encoding RdRp, glycoprotein precursor, nucleocapsid and movement proteins and the corresponding orthologs of other emaraviruses. However, PPSMV-II is more related to Fig mosaic virus (FMV) than to PPSMV-I. ELISA based detection methodology was standardized to identify these two viruses, uniquely. Mite inoculation of sub-isolate Chevella sometimes resulted in few- to- many pigeonpea plants containing PPSMV-I alone. The study shows that (i) the N-terminal region of RdRp (SRD-1) of both the viruses contain "cap-snatching" endonuclease domain and a 13 AA cap binding site at the C-terminal, essential for viral cap-dependent transcription similar to the members of Bunyaviridae family and (ii) P4 is the movement protein and may belong to '30 K superfamily' of MPs.
Gene transfer to brain using herpes simplex virus vectors.
Glorioso, J C; Goins, W F; Meaney, C A; Fink, D J; DeLuca, N A
1994-01-01
Herpes simplex virus type 1 represents an ideal candidate for development as a vehicle for gene transfer to postmitotic neurons of the central nervous system. The natural biology of this virus makes it well suited for this purpose as it is capable of infecting a variety of neuronal cell types in the brain where the viral genome can persist indefinitely in a latent state. In latency, the viral lytic genes are transcriptionally silent and a unique set of latency-associated transcripts are expressed. Two impediments to using herpes simplex virus vectors must be overcome: (1) A noncytotoxic mutant virus backbone must be engineered, and (2) a suitable promoter-regulator that stably expresses foreign genes from the vector genome during latency must be constructed. Deletion of specific immediate early genes from the vector can render the virus nontoxic to neurons in culture and in vivo following stereotactic inoculation into specific regions of the brain. Because these viruses cannot replicate, they enter latency on infection of central nervous system neurons. A number of viral and cellular promoters have been tested for their ability to express genes during latency. Strong viral promoters and neurospecific promoters display transient activity. Although the promoter regions for the latency-associated transcripts are highly active in the peripheral nervous system, they show low-level but persistent activity in the brain. Experiments are in progress to exploit RNA polymerase III gene promoters or novel recombinant promoters capable of auto-inducing their own expression in order to increase gene expression during latency in brain neurons.
Cifuentes-Muñoz, Nicolás; Branttie, Jean; Slaughter, Kerri Beth
2017-01-01
ABSTRACT Human metapneumovirus (HMPV) causes significant upper and lower respiratory disease in all age groups worldwide. The virus possesses a negative-sense single-stranded RNA genome of approximately 13.3 kb encapsidated by multiple copies of the nucleoprotein (N), giving rise to helical nucleocapsids. In addition, copies of the phosphoprotein (P) and the large RNA polymerase (L) decorate the viral nucleocapsids. After viral attachment, endocytosis, and fusion mediated by the viral glycoproteins, HMPV nucleocapsids are released into the cell cytoplasm. To visualize the subsequent steps of genome transcription and replication, a fluorescence in situ hybridization (FISH) protocol was established to detect different viral RNA subpopulations in infected cells. The FISH probes were specific for detection of HMPV positive-sense RNA (+RNA) and viral genomic RNA (vRNA). Time course analysis of human bronchial epithelial BEAS-2B cells infected with HMPV revealed the formation of inclusion bodies (IBs) from early times postinfection. HMPV IBs were shown to be cytoplasmic sites of active transcription and replication, with the translation of viral proteins being closely associated. Inclusion body formation was consistent with an actin-dependent coalescence of multiple early replicative sites. Time course quantitative reverse transcription-PCR analysis suggested that the coalescence of inclusion bodies is a strategy to efficiently replicate and transcribe the viral genome. These results provide a better understanding of the steps following HMPV entry and have important clinical implications. IMPORTANCE Human metapneumovirus (HMPV) is a recently discovered pathogen that affects human populations of all ages worldwide. Reinfections are common throughout life, but no vaccines or antiviral treatments are currently available. In this work, a spatiotemporal analysis of HMPV replication and transcription in bronchial epithelial cell-derived immortal cells was performed. HMPV was shown to induce the formation of large cytoplasmic granules, named inclusion bodies, for genome replication and transcription. Unlike other cytoplasmic structures, such as stress granules and processing bodies, inclusion bodies are exclusively present in infected cells and contain HMPV RNA and proteins to more efficiently transcribe and replicate the viral genome. Though inclusion body formation is nuanced, it corresponds to a more generalized strategy used by different viruses, including filoviruses and rhabdoviruses, for genome transcription and replication. Thus, an understanding of inclusion body formation is crucial for the discovery of innovative therapeutic targets. PMID:28978704
Cifuentes-Muñoz, Nicolás; Branttie, Jean; Slaughter, Kerri Beth; Dutch, Rebecca Ellis
2017-12-15
Human metapneumovirus (HMPV) causes significant upper and lower respiratory disease in all age groups worldwide. The virus possesses a negative-sense single-stranded RNA genome of approximately 13.3 kb encapsidated by multiple copies of the nucleoprotein (N), giving rise to helical nucleocapsids. In addition, copies of the phosphoprotein (P) and the large RNA polymerase (L) decorate the viral nucleocapsids. After viral attachment, endocytosis, and fusion mediated by the viral glycoproteins, HMPV nucleocapsids are released into the cell cytoplasm. To visualize the subsequent steps of genome transcription and replication, a fluorescence in situ hybridization (FISH) protocol was established to detect different viral RNA subpopulations in infected cells. The FISH probes were specific for detection of HMPV positive-sense RNA (+RNA) and viral genomic RNA (vRNA). Time course analysis of human bronchial epithelial BEAS-2B cells infected with HMPV revealed the formation of inclusion bodies (IBs) from early times postinfection. HMPV IBs were shown to be cytoplasmic sites of active transcription and replication, with the translation of viral proteins being closely associated. Inclusion body formation was consistent with an actin-dependent coalescence of multiple early replicative sites. Time course quantitative reverse transcription-PCR analysis suggested that the coalescence of inclusion bodies is a strategy to efficiently replicate and transcribe the viral genome. These results provide a better understanding of the steps following HMPV entry and have important clinical implications. IMPORTANCE Human metapneumovirus (HMPV) is a recently discovered pathogen that affects human populations of all ages worldwide. Reinfections are common throughout life, but no vaccines or antiviral treatments are currently available. In this work, a spatiotemporal analysis of HMPV replication and transcription in bronchial epithelial cell-derived immortal cells was performed. HMPV was shown to induce the formation of large cytoplasmic granules, named inclusion bodies, for genome replication and transcription. Unlike other cytoplasmic structures, such as stress granules and processing bodies, inclusion bodies are exclusively present in infected cells and contain HMPV RNA and proteins to more efficiently transcribe and replicate the viral genome. Though inclusion body formation is nuanced, it corresponds to a more generalized strategy used by different viruses, including filoviruses and rhabdoviruses, for genome transcription and replication. Thus, an understanding of inclusion body formation is crucial for the discovery of innovative therapeutic targets. Copyright © 2017 American Society for Microbiology.
Bloyet, Louis-Marie; Brunel, Joanna; Dosnon, Marion; Hamon, Véronique; Erales, Jenny; Gruet, Antoine; Lazert, Carine; Bignon, Christophe; Roche, Philippe; Longhi, Sonia; Gerlier, Denis
2016-12-01
Measles virus (MeV) and all Paramyxoviridae members rely on a complex polymerase machinery to ensure viral transcription and replication. Their polymerase associates the phosphoprotein (P) and the L protein that is endowed with all necessary enzymatic activities. To be processive, the polymerase uses as template a nucleocapsid made of genomic RNA entirely wrapped into a continuous oligomer of the nucleoprotein (N). The polymerase enters the nucleocapsid at the 3'end of the genome where are located the promoters for transcription and replication. Transcription of the six genes occurs sequentially. This implies ending and re-initiating mRNA synthesis at each intergenic region (IGR). We explored here to which extent the binding of the X domain of P (XD) to the C-terminal region of the N protein (NTAIL) is involved in maintaining the P/L complex anchored to the nucleocapsid template during the sequential transcription. Amino acid substitutions introduced in the XD-binding site on NTAIL resulted in a wide range of binding affinities as determined by combining protein complementation assays in E. coli and human cells and isothermal titration calorimetry. Molecular dynamics simulations revealed that XD binding to NTAIL involves a complex network of hydrogen bonds, the disruption of which by two individual amino acid substitutions markedly reduced the binding affinity. Using a newly designed, highly sensitive dual-luciferase reporter minigenome assay, the efficiency of re-initiation through the five measles virus IGRs was found to correlate with NTAIL/XD KD. Correlatively, P transcript accumulation rate and F/N transcript ratios from recombinant viruses expressing N variants were also found to correlate with the NTAIL to XD binding strength. Altogether, our data support a key role for XD binding to NTAIL in maintaining proper anchor of the P/L complex thereby ensuring transcription re-initiation at each intergenic region.
Hamon, Véronique; Erales, Jenny; Bignon, Christophe; Roche, Philippe
2016-01-01
Measles virus (MeV) and all Paramyxoviridae members rely on a complex polymerase machinery to ensure viral transcription and replication. Their polymerase associates the phosphoprotein (P) and the L protein that is endowed with all necessary enzymatic activities. To be processive, the polymerase uses as template a nucleocapsid made of genomic RNA entirely wrapped into a continuous oligomer of the nucleoprotein (N). The polymerase enters the nucleocapsid at the 3’end of the genome where are located the promoters for transcription and replication. Transcription of the six genes occurs sequentially. This implies ending and re-initiating mRNA synthesis at each intergenic region (IGR). We explored here to which extent the binding of the X domain of P (XD) to the C-terminal region of the N protein (NTAIL) is involved in maintaining the P/L complex anchored to the nucleocapsid template during the sequential transcription. Amino acid substitutions introduced in the XD-binding site on NTAIL resulted in a wide range of binding affinities as determined by combining protein complementation assays in E. coli and human cells and isothermal titration calorimetry. Molecular dynamics simulations revealed that XD binding to NTAIL involves a complex network of hydrogen bonds, the disruption of which by two individual amino acid substitutions markedly reduced the binding affinity. Using a newly designed, highly sensitive dual-luciferase reporter minigenome assay, the efficiency of re-initiation through the five measles virus IGRs was found to correlate with NTAIL/XD KD. Correlatively, P transcript accumulation rate and F/N transcript ratios from recombinant viruses expressing N variants were also found to correlate with the NTAIL to XD binding strength. Altogether, our data support a key role for XD binding to NTAIL in maintaining proper anchor of the P/L complex thereby ensuring transcription re-initiation at each intergenic region. PMID:27936158
Yoshida, Naoko; Fujino, Motoko; Miyata, Akiko; Nagai, Takao; Kamada, Makoto; Sakiyama, Hiroshi; Ihara, Toshiaki; Kumagai, Takuji; Okafuji, Teruo; Okafuji, Takao; Nakayama, Tetsuo
2008-03-01
Clinically apparent mumps reinfection is considered extremely rare, but several cases have been suspected of reinfection in an out-patient clinic. In this study, virological examination, virus isolation, the reverse transcription loop-mediated isothermal amplification (RT-LAMP), and IgG and IgM EIA antibodies, were examined in order to identify mumps reinfection. Patients were divided into three categories; the reinfection group comprised 29 patients with a history of natural infection, the vaccine-failure group consisted of 37 patients with an immunization history, and two patients had histories of both immunization and mumps infection. Another 25 patients were enrolled as a primary infection group. Mumps virus was isolated in 5 (17%) and the genome was detected in 12 (41%) of 29 in the reinfection group. Reinfection was confirmed in 21/28, demonstrating high avidity of IgG EIA. Mumps virus was isolated in 15 (41%) and there was a higher positivity of genome amplification in 25 (68%) of 37 patients in the vaccine-failure group. Among these, 23 were confirmed as secondary vaccine failure by high avidity IgG EIA serology. In the primary infection group, the isolation rate and genome detection rate was higher in 16 (64%) and in 18 (72%) of 25 patients, respectively. There was no significant difference in virus load among the three groups but high mumps virus load was suspected in the IgM EIA-positive group based on the shorter amplification time on RT-LAMP. Mumps virus reinfection was confirmed by RT-LAMP and an IgG avidity test and was not a rare event.
NASA Astrophysics Data System (ADS)
Panicali, Dennis; Paoletti, Enzo
1982-08-01
We have constructed recombinant vaccinia viruses containing the thymidine kinase gene from herpes simplex virus. The gene was inserted into the genome of a variant of vaccinia virus that had undergone spontaneous deletion as well as into the 120-megadalton genome of the large prototypic vaccinia variant. This was accomplished via in vivo recombination by contransfection of eukaryotic tissue culture cells with cloned BamHI-digested thymidine kinase gene from herpes simplex virus containing flanking vaccinia virus DNA sequences and infectious rescuing vaccinia virus. Pure populations of the recombinant viruses were obtained by replica filter techniques or by growth of the recombinant virus in biochemically selective medium. The herpes simplex virus thymidine kinase gene, as an insert in vaccinia virus, is transcribed in vivo and in vitro, and the fidelity of in vivo transcription into a functional gene product was detected by the phosphorylation of 5-[125I]iodo-2'-deoxycytidine.
Castón, José R.; Trus, Benes L.; Booy, Frank P.; Wickner, Reed B.; Wall, Joseph S.; Steven, Alasdair C.
1997-01-01
The genomes of double-stranded (ds)RNA viruses are never exposed to the cytoplasm but are confined to and replicated from a specialized protein-bound compartment—the viral capsid. We have used cryoelectron microscopy and three-dimensional image reconstruction to study this compartment in the case of L-A, a yeast virus whose capsid consists of 60 asymmetric dimers of Gag protein (76 kD). At 16-Å resolution, we distinguish multiple domains in the elongated Gag subunits, whose nonequivalent packing is reflected in subtly different morphologies of the two protomers. Small holes, 10–15 Å across, perforate the capsid wall, which functions as a molecular sieve, allowing the exit of transcripts and the influx of metabolites, while retaining dsRNA and excluding degradative enzymes. Scanning transmission electron microscope measurements of mass-per-unit length suggest that L-A RNA is an A-form duplex, and that RNA filaments emanating from disrupted virions often consist of two or more closely associated duplexes. Nuclease protection experiments confirm that the genome is entirely sequestered inside full capsids, but it is packed relatively loosely; in L-A, the center-to-center spacing between duplexes is 40–45 Å, compared with 25–30 Å in other double-stranded viruses. The looser packing of L-A RNA allows for maneuverability in the crowded capsid interior, in which the genome (in both replication and transcription) must be translocated sequentially past the polymerase immobilized on the inner capsid wall. PMID:9281577
Structure and Function of the N-Terminal Domain of the Vesicular Stomatitis Virus RNA Polymerase
Qiu, Shihong; Ogino, Minako; Luo, Ming
2015-01-01
ABSTRACT Viruses have various mechanisms to duplicate their genomes and produce virus-specific mRNAs. Negative-strand RNA viruses encode their own polymerases to perform each of these processes. For the nonsegmented negative-strand RNA viruses, the polymerase is comprised of the large polymerase subunit (L) and the phosphoprotein (P). L proteins from members of the Rhabdoviridae, Paramyxoviridae, and Filoviridae share sequence and predicted secondary structure homology. Here, we present the structure of the N-terminal domain (conserved region I) of the L protein from a rhabdovirus, vesicular stomatitis virus, at 1.8-Å resolution. The strictly and strongly conserved residues in this domain cluster in a single area of the protein. Serial mutation of these residues shows that many of the amino acids are essential for viral transcription but not for mRNA capping. Three-dimensional alignments show that this domain shares structural homology with polymerases from other viral families, including segmented negative-strand RNA and double-stranded RNA (dsRNA) viruses. IMPORTANCE Negative-strand RNA viruses include a diverse set of viral families that infect animals and plants, causing serious illness and economic impact. The members of this group of viruses share a set of functionally conserved proteins that are essential to their replication cycle. Among this set of proteins is the viral polymerase, which performs a unique set of reactions to produce genome- and subgenome-length RNA transcripts. In this article, we study the polymerase of vesicular stomatitis virus, a member of the rhabdoviruses, which has served in the past as a model to study negative-strand RNA virus replication. We have identified a site in the N-terminal domain of the polymerase that is essential to viral transcription and that shares sequence homology with members of the paramyxoviruses and the filoviruses. Newly identified sites such as that described here could prove to be useful targets in the design of new therapeutics against negative-strand RNA viruses. PMID:26512087
Hepatitis A Virus Genome Organization and Replication Strategy.
McKnight, Kevin L; Lemon, Stanley M
2018-04-02
Hepatitis A virus (HAV) is a positive-strand RNA virus classified in the genus Hepatovirus of the family Picornaviridae It is an ancient virus with a long evolutionary history and multiple features of its capsid structure, genome organization, and replication cycle that distinguish it from other mammalian picornaviruses. HAV proteins are produced by cap-independent translation of a single, long open reading frame under direction of an inefficient, upstream internal ribosome entry site (IRES). Genome replication occurs slowly and is noncytopathic, with transcription likely primed by a uridylated protein primer as in other picornaviruses. Newly produced quasi-enveloped virions (eHAV) are released from cells in a nonlytic fashion in a unique process mediated by interactions of capsid proteins with components of the host cell endosomal sorting complexes required for transport (ESCRT) system. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
Subacute Sclerosing Panencephalitis in an Infant: Diagnostic Role of Viral Genome Analysis
Baram, Tallie Z.; Gonzalez-Gomez, Ignacio; Xie, Zong-De; Yao, Dapeng; Gilles, Floyd H.; Nelson, Marvin D.; Nguyen, Hahn T.; Peters, Julius
2013-01-01
Subacute sclerosing panencephalitis (SSPE) is related to “defective” measles virus or vaccination, though an association with parainfluenza viruses has been reported. SSPE is characterized by a slow, erratic course and elevated cerebrospinal fluid measles titers. An immunocompetent, vaccinated infant, with onset of symptoms in parainfiuenza virus season and a catastrophic course is described. Cerebrospinal fluid titers were negative, but postmortem brain had typical SSPE lesions. Patient brain-derived RNA, subjected to reverse transcription followed by polymerase chain reaction yielded polymerase chain reaction products with measles virus but not parainfluenza virus genes. The sequenced fragment revealed multiple mutations, typical for SSPE. SSPE can thus present in infants, with short latency and no cerebrospinal fluid antibodies. Viral genomic analysis may be diagnostic, permitting early therapy. PMID:8024248
Genomic sequence of mandarin fish rhabdovirus with an unusual small non-transcriptional ORF.
Tao, Jian-Jun; Zhou, Guang-Zhou; Gui, Jian-Fang; Zhang, Qi-Ya
2008-03-01
The complete genome of mandarin fish Siniperca chuatsi rhabdovirus (SCRV) was cloned and sequenced. It comprises 11,545 nucleotides and contains five genes encoding the nucleoprotein N, the phosphoprotein P, the matrix protein M, the glycoprotein G, and the RNA-dependent RNA polymerase protein L. At the 3' and 5' termini of SCRV genome, leader and trailer sequences show inverse complementarity. The N, P, M and G proteins share the highest sequence identities (ranging from 14.8 to 41.5%) with the respective proteins of rhabdovirus 903/87, the L protein has the highest identity with those of vesiculoviruses, especially with Chandipura virus (44.7%). Phylogenetic analysis of L proteins showed that SCRV clustered with spring vireamia of carp virus (SVCV) and was most closely related to viruses in the genus Vesiculovirus. In addition, an overlapping open reading frame (ORF) predicted to encode a protein similar to vesicular stomatitis virus C protein is present within the P gene of SCRV. Furthermore, an unoverlapping small ORF downstream of M ORF within M gene is predicted (tentatively called orf4). Therefore, the genomic organization of SCRV can be proposed as 3' leader-N-P/C-M-(orf4)-G-L-trailer 5'. Orf4 transcription or translation products could not be detected by northern or Western blot, respectively, though one similar mRNA band to M mRNA was found. This is the first report on one small unoverlapping ORF in M gene of a fish rhabdovirus.
Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi; Hoenen, Thomas; Olejnik, Judith; Schümann, Michael; Ebihara, Hideki
2014-01-01
ABSTRACT Ebola virus (EBOV) belongs to the group of nonsegmented negative-sense RNA viruses. The seven EBOV genes are separated by variable gene borders, including short (4- or 5-nucleotide) intergenic regions (IRs), a single long (144-nucleotide) IR, and gene overlaps, where the neighboring gene end and start signals share five conserved nucleotides. The unique structure of the gene overlaps and the presence of a single long IR are conserved among all filoviruses. Here, we sought to determine the impact of the EBOV gene borders during viral transcription. We show that readthrough mRNA synthesis occurs in EBOV-infected cells irrespective of the structure of the gene border, indicating that the gene overlaps do not promote recognition of the gene end signal. However, two consecutive gene end signals at the VP24 gene might improve termination at the VP24-L gene border, ensuring efficient L gene expression. We further demonstrate that the long IR is not essential for but regulates transcription reinitiation in a length-dependent but sequence-independent manner. Mutational analysis of bicistronic minigenomes and recombinant EBOVs showed no direct correlation between IR length and reinitiation rates but demonstrated that specific IR lengths not found naturally in filoviruses profoundly inhibit downstream gene expression. Intriguingly, although truncation of the 144-nucleotide-long IR to 5 nucleotides did not substantially affect EBOV transcription, it led to a significant reduction of viral growth. IMPORTANCE Our current understanding of EBOV transcription regulation is limited due to the requirement for high-containment conditions to study this highly pathogenic virus. EBOV is thought to share many mechanistic features with well-analyzed prototype nonsegmented negative-sense RNA viruses. A single polymerase entry site at the 3′ end of the genome determines that transcription of the genes is mainly controlled by gene order and cis-acting signals found at the gene borders. Here, we examined the regulatory role of the structurally unique EBOV gene borders during viral transcription. Our data suggest that transcriptional regulation in EBOV is highly complex and differs from that in prototype viruses and further the understanding of this most fundamental process in the filovirus replication cycle. Moreover, our results with recombinant EBOVs suggest a novel role of the long IR found in all filovirus genomes during the viral replication cycle. PMID:25142600
Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi; Hoenen, Thomas; Olejnik, Judith; Schümann, Michael; Ebihara, Hideki; Mühlberger, Elke
2014-11-01
Ebola virus (EBOV) belongs to the group of nonsegmented negative-sense RNA viruses. The seven EBOV genes are separated by variable gene borders, including short (4- or 5-nucleotide) intergenic regions (IRs), a single long (144-nucleotide) IR, and gene overlaps, where the neighboring gene end and start signals share five conserved nucleotides. The unique structure of the gene overlaps and the presence of a single long IR are conserved among all filoviruses. Here, we sought to determine the impact of the EBOV gene borders during viral transcription. We show that readthrough mRNA synthesis occurs in EBOV-infected cells irrespective of the structure of the gene border, indicating that the gene overlaps do not promote recognition of the gene end signal. However, two consecutive gene end signals at the VP24 gene might improve termination at the VP24-L gene border, ensuring efficient L gene expression. We further demonstrate that the long IR is not essential for but regulates transcription reinitiation in a length-dependent but sequence-independent manner. Mutational analysis of bicistronic minigenomes and recombinant EBOVs showed no direct correlation between IR length and reinitiation rates but demonstrated that specific IR lengths not found naturally in filoviruses profoundly inhibit downstream gene expression. Intriguingly, although truncation of the 144-nucleotide-long IR to 5 nucleotides did not substantially affect EBOV transcription, it led to a significant reduction of viral growth. Our current understanding of EBOV transcription regulation is limited due to the requirement for high-containment conditions to study this highly pathogenic virus. EBOV is thought to share many mechanistic features with well-analyzed prototype nonsegmented negative-sense RNA viruses. A single polymerase entry site at the 3' end of the genome determines that transcription of the genes is mainly controlled by gene order and cis-acting signals found at the gene borders. Here, we examined the regulatory role of the structurally unique EBOV gene borders during viral transcription. Our data suggest that transcriptional regulation in EBOV is highly complex and differs from that in prototype viruses and further the understanding of this most fundamental process in the filovirus replication cycle. Moreover, our results with recombinant EBOVs suggest a novel role of the long IR found in all filovirus genomes during the viral replication cycle. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Promoter for Sindbis virus RNA-dependent subgenomic RNA transcription.
Levis, R; Schlesinger, S; Huang, H V
1990-01-01
Sindbis virus is a positive-strand RNA enveloped virus, a member of the Alphavirus genus of the Togaviridae family. Two species of mRNA are synthesized in cells infected with Sindbis virus; one, the 49S RNA, is the genomic RNA; the other, the 26S RNA, is a subgenomic RNA that is identical in sequence to the 3' one-third of the genomic RNA. Ou et al. (J.-H. Ou, C. M. Rice, L. Dalgarno, E. G. Strauss, and J. H. Strauss, Proc. Natl. Acad. Sci. USA 79:5235-5239, 1982) identified a highly conserved region 19 nucleotides upstream and 2 nucleotides downstream from the start of the 26S RNA and proposed that in the negative-strand template, these nucleotides compose the promoter for directing the synthesis of the subgenomic RNA. Defective interfering (DI) RNAs of Sindbis virus were used to test this proposal. A 227-nucleotide sequence encompassing 98 nucleotides upstream and 117 nucleotides downstream from the start site of the Sindbis virus subgenomic RNA was inserted into a DI genome. The DI RNA containing the insert was replicated and packaged in the presence of helper virus, and cells infected with these DI particles produced a subgenomic RNA of the size and sequence expected if the promoter was functional. The initiating nucleotide was identical to that used for Sindbis virus subgenomic mRNA synthesis. Deletion analysis showed that the minimal region required to detect transcription of a subgenomic RNA from the negative-strand template of a DI RNA was 18 or 19 nucleotides upstream and 5 nucleotides downstream from the start of the subgenomic RNA. Images PMID:2319651
Genetic stability of genome-scale deoptimized RNA virus vaccine candidates under selective pressure
Le Nouën, Cyril; McCarty, Thomas; Brown, Michael; Smith, Melissa Laird; Lleras, Roberto; Dolan, Michael A.; Mehedi, Masfique; Yang, Lijuan; Luongo, Cindy; Liang, Bo; Munir, Shirin; DiNapoli, Joshua M.; Mueller, Steffen; Wimmer, Eckard; Collins, Peter L.; Buchholz, Ursula J.
2017-01-01
Recoding viral genomes by numerous synonymous but suboptimal substitutions provides live attenuated vaccine candidates. These vaccine candidates should have a low risk of deattenuation because of the many changes involved. However, their genetic stability under selective pressure is largely unknown. We evaluated phenotypic reversion of deoptimized human respiratory syncytial virus (RSV) vaccine candidates in the context of strong selective pressure. Codon pair deoptimized (CPD) versions of RSV were attenuated and temperature-sensitive. During serial passage at progressively increasing temperature, a CPD RSV containing 2,692 synonymous mutations in 9 of 11 ORFs did not lose temperature sensitivity, remained genetically stable, and was restricted at temperatures of 34 °C/35 °C and above. However, a CPD RSV containing 1,378 synonymous mutations solely in the polymerase L ORF quickly lost substantial attenuation. Comprehensive sequence analysis of virus populations identified many different potentially deattenuating mutations in the L ORF as well as, surprisingly, many appearing in other ORFs. Phenotypic analysis revealed that either of two competing mutations in the virus transcription antitermination factor M2-1, outside of the CPD area, substantially reversed defective transcription of the CPD L gene and substantially restored virus fitness in vitro and in case of one of these two mutations, also in vivo. Paradoxically, the introduction into Min L of one mutation each in the M2-1, N, P, and L proteins resulted in a virus with increased attenuation in vivo but increased immunogenicity. Thus, in addition to providing insights on the adaptability of genome-scale deoptimized RNA viruses, stability studies can yield improved synthetic RNA virus vaccine candidates. PMID:28049853
Rasmussen, Thomas Bruun; Boniotti, Maria Beatrice; Papetti, Alice; Grasland, Béatrice; Frossard, Jean-Pierre; Dastjerdi, Akbar; Hulst, Marcel; Hanke, Dennis; Pohlmann, Anne; Blome, Sandra; van der Poel, Wim H. M.; Steinbach, Falko; Blanchard, Yannick; Lavazza, Antonio; Bøtner, Anette
2018-01-01
Porcine epidemic diarrhoea virus, strain CV777, was initially characterized in 1978 as the causative agent of a disease first identified in the UK in 1971. This coronavirus has been widely distributed among laboratories and has been passaged both within pigs and in cell culture. To determine the variability between different stocks of the PEDV strain CV777, sequencing of the full-length genome (ca. 28kb) has been performed in 6 different laboratories, using different protocols. Not surprisingly, each of the different full genome sequences were distinct from each other and from the reference sequence (Accession number AF353511) but they are >99% identical. Unique and shared differences between sequences were identified. The coding region for the surface-exposed spike protein showed the highest proportion of variability including both point mutations and small deletions. The predicted expression of the ORF3 gene product was more dramatically affected in three different variants of this virus through either loss of the initiation codon or gain of a premature termination codon. The genome of one isolate had a substantially rearranged 5´-terminal sequence. This rearrangement was validated through the analysis of sub-genomic mRNAs from infected cells. It is clearly important to know the features of the specific sample of CV777 being used for experimental studies. PMID:29494671
USDA-ARS?s Scientific Manuscript database
Numerous viruses have been detected in honeybees, which can be roughly divided into 14 unique and distinct species-complexes, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.)...
Starrett, Gabriel J; Marcelus, Christina; Cantalupo, Paul G; Katz, Joshua P; Cheng, Jingwei; Akagi, Keiko; Thakuria, Manisha; Rabinowits, Guilherme; Wang, Linda C; Symer, David E; Pipas, James M; Harris, Reuben S; DeCaprio, James A
2017-01-03
Merkel cell polyomavirus is the primary etiological agent of the aggressive skin cancer Merkel cell carcinoma (MCC). Recent studies have revealed that UV radiation is the primary mechanism for somatic mutagenesis in nonviral forms of MCC. Here, we analyze the whole transcriptomes and genomes of primary MCC tumors. Our study reveals that virus-associated tumors have minimally altered genomes compared to non-virus-associated tumors, which are dominated by UV-mediated mutations. Although virus-associated tumors contain relatively small mutation burdens, they exhibit a distinct mutation signature with observable transcriptionally biased kataegic events. In addition, viral integration sites overlap focal genome amplifications in virus-associated tumors, suggesting a potential mechanism for these events. Collectively, our studies indicate that Merkel cell polyomavirus is capable of hijacking cellular processes and driving tumorigenesis to the same severity as tens of thousands of somatic genome alterations. A variety of mutagenic processes that shape the evolution of tumors are critical determinants of disease outcome. Here, we sequenced the entire genome of virus-positive and virus-negative primary Merkel cell carcinomas (MCCs), revealing distinct mutation spectra and corresponding expression profiles. Our studies highlight the strong effect that Merkel cell polyomavirus has on the divergent development of viral MCC compared to the somatic alterations that typically drive nonviral tumorigenesis. A more comprehensive understanding of the distinct mutagenic processes operative in viral and nonviral MCCs has implications for the effective treatment of these tumors. Copyright © 2017 Starrett et al.
High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling
Jones, Joshua D.; Chung, Betty Y.-W.; Siddell, Stuart G.; Brierley, Ian
2016-01-01
Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global “snap-shot” of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal frameshift site. To our knowledge this is the first application of ribosome profiling to an RNA virus. PMID:26919232
Common Viral Integration Sites Identified in Avian Leukosis Virus-Induced B-Cell Lymphomas
Justice, James F.; Morgan, Robin W.
2015-01-01
ABSTRACT Avian leukosis virus (ALV) induces B-cell lymphoma and other neoplasms in chickens by integrating within or near cancer genes and perturbing their expression. Four genes—MYC, MYB, Mir-155, and TERT—have previously been identified as common integration sites in these virus-induced lymphomas and are thought to play a causal role in tumorigenesis. In this study, we employ high-throughput sequencing to identify additional genes driving tumorigenesis in ALV-induced B-cell lymphomas. In addition to the four genes implicated previously, we identify other genes as common integration sites, including TNFRSF1A, MEF2C, CTDSPL, TAB2, RUNX1, MLL5, CXorf57, and BACH2. We also analyze the genome-wide ALV integration landscape in vivo and find increased frequency of ALV integration near transcriptional start sites and within transcripts. Previous work has shown ALV prefers a weak consensus sequence for integration in cultured human cells. We confirm this consensus sequence for ALV integration in vivo in the chicken genome. PMID:26670384
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, D.F.; Sefton, B.M.
Infection of cells with the avian coronavirus infectious bronchitis virus results in the synthesis of five major subgenomic RNAs. These RNAs and the viral genome form a 3' coterminal nested set. We found that the rates of inactivation of synthesis of the RNAs by UV light were different and increased with the length of the transcript. These results show that each RNA is transcribed from a unique promoter and that extensive processing of the primary transcripts probably does not occur.
Nicoll, Michael P.; Hann, William; Shivkumar, Maitreyi; Harman, Laura E. R.; Connor, Viv; Coleman, Heather M.; Proença, João T.; Efstathiou, Stacey
2016-01-01
Herpes simplex virus 1 (HSV-1) establishes life-long latent infection within sensory neurons, during which viral lytic gene expression is silenced. The only highly expressed viral gene product during latent infection is the latency-associated transcript (LAT), a non-protein coding RNA that has been strongly implicated in the epigenetic regulation of HSV-1 gene expression. We have investigated LAT-mediated control of latent gene expression using chromatin immunoprecipitation analyses and LAT-negative viruses engineered to express firefly luciferase or β-galactosidase from a heterologous lytic promoter. Whilst we were unable to determine a significant effect of LAT expression upon heterochromatin enrichment on latent HSV-1 genomes, we show that reporter gene expression from latent HSV-1 genomes occurs at a greater frequency in the absence of LAT. Furthermore, using luciferase reporter viruses we have observed that HSV-1 gene expression decreases during long-term latent infection, with a most marked effect during LAT-negative virus infection. Finally, using a fluorescent mouse model of infection to isolate and culture single latently infected neurons, we also show that reactivation occurs at a greater frequency from cultures harbouring LAT-negative HSV-1. Together, our data suggest that the HSV-1 LAT RNA represses HSV-1 gene expression in small populations of neurons within the mouse TG, a phenomenon that directly impacts upon the frequency of reactivation and the maintenance of the transcriptionally active latent reservoir. PMID:27055281
Dynamic Phosphorylation of VP30 Is Essential for Ebola Virus Life Cycle.
Biedenkopf, Nadine; Lier, Clemens; Becker, Stephan
2016-05-15
Ebola virus is the causative agent of a severe fever with high fatality rates in humans and nonhuman primates. The regulation of Ebola virus transcription and replication currently is not well understood. An important factor regulating viral transcription is VP30, an Ebola virus-specific transcription factor associated with the viral nucleocapsid. Previous studies revealed that the phosphorylation status of VP30 impacts viral transcription. Together with NP, L, and the polymerase cofactor VP35, nonphosphorylated VP30 supports viral transcription. Upon VP30 phosphorylation, viral transcription ceases. Phosphorylation weakens the interaction between VP30 and the polymerase cofactor VP35 and/or the viral RNA. VP30 thereby is excluded from the viral transcription complex, simultaneously leading to increased viral replication which is supported by NP, L, and VP35 alone. Here, we use an infectious virus-like particle assay and recombinant viruses to show that the dynamic phosphorylation of VP30 is critical for the cotransport of VP30 with nucleocapsids to the sites of viral RNA synthesis, where VP30 is required to initiate primary viral transcription. We further demonstrate that a single serine residue at amino acid position 29 was sufficient to render VP30 active in primary transcription and to generate a recombinant virus with characteristics comparable to those of wild-type virus. In contrast, the rescue of a recombinant virus with a single serine at position 30 in VP30 was unsuccessful. Our results indicate critical roles for phosphorylated and dephosphorylated VP30 during the viral life cycle. The current Ebola virus outbreak in West Africa has caused more than 28,000 cases and 11,000 fatalities. Very little is known regarding the molecular mechanisms of how the Ebola virus transcribes and replicates its genome. Previous investigations showed that the transcriptional support activity of VP30 is activated upon VP30 dephosphorylation. The current study reveals that the situation is more complex and that primary transcription as well as the rescue of recombinant Ebola virus also requires the transient phosphorylation of VP30. VP30 encodes six N-proximal serine residues that serve as phosphorylation acceptor sites. The present study shows that the dynamic phosphorylation of serine at position 29 alone is sufficient to activate primary viral transcription. Our results indicate a series of phosphorylation/dephosphorylation events that trigger binding to and release from the nucleocapsid and transcription complex to be essential for the full activity of VP30. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Guo, Xu-Guang; Zhou, Yong-Zhuo; Li, Qin; Wang, Wei; Wen, Jin-Zhou; Zheng, Lei; Wang, Qian
2018-04-18
To detect Zika virus more rapidly and accurately, we developed a novel method that utilized a real-time fluorescence reverse transcription loop-mediated isothermal amplification (LAMP) technique. The NS5 gene was amplified by a set of six specific primers that recognized six distinct sequences. The amplification process, including 60 min of thermostatic reaction with Bst DNA polymerase following real-time fluorescence reverse transcriptase using genomic Zika virus standard strain (MR766), was conducted through fluorescent signaling. Among the six pairs of primers that we designate here, NS5 was the most efficient with a high sensitivity of up to 3.3 ng/μl and reproducible specificity on eight pathogen samples that were used as negative controls. The real-time fluorescence reverse transcription LAMP detection process can be completed within 35 min. Our study demonstrated that real-time fluorescence reverse transcription LAMP could be highly beneficial and convenient clinical application to detect Zika virus due to its high specificity and stability.
Sri, Tanu; Mayee, Pratiksha; Singh, Anandita
2015-09-01
Whole genome sequence analyses allow unravelling such evolutionary consequences of meso-triplication event in Brassicaceae (∼14-20 million years ago (MYA)) as differential gene fractionation and diversification in homeologous sub-genomes. This study presents a simple gene-centric approach involving microsynteny and natural genetic variation analysis for understanding SUPPRESSOR of OVEREXPRESSION of CONSTANS 1 (SOC1) homeolog evolution in Brassica. Analysis of microsynteny in Brassica rapa homeologous regions containing SOC1 revealed differential gene fractionation correlating to reported fractionation status of sub-genomes of origin, viz. least fractionated (LF), moderately fractionated 1 (MF1) and most fractionated (MF2), respectively. Screening 18 cultivars of 6 Brassica species led to the identification of 8 genomic and 27 transcript variants of SOC1, including splice-forms. Co-occurrence of both interrupted and intronless SOC1 genes was detected in few Brassica species. In silico analysis characterised Brassica SOC1 as MADS intervening, K-box, C-terminal (MIKC(C)) transcription factor, with highly conserved MADS and I domains relative to K-box and C-terminal domain. Phylogenetic analyses and multiple sequence alignments depicting shared pattern of silent/non-silent mutations assigned Brassica SOC1 homologs into groups based on shared diploid base genome. In addition, a sub-genome structure in uncharacterised Brassica genomes was inferred. Expression analysis of putative MF2 and LF (Brassica diploid base genome A (AA)) sub-genome-specific SOC1 homeologs of Brassica juncea revealed near identical expression pattern. However, MF2-specific homeolog exhibited significantly higher expression implying regulatory diversification. In conclusion, evidence for polyploidy-induced sequence and regulatory evolution in Brassica SOC1 is being presented wherein differential homeolog expression is implied in functional diversification.
Mondal, Arindam; Potts, Gregory K.; Dawson, Anthony R.; Coon, Joshua J.; Mehle, Andrew
2015-01-01
Negative-sense RNA viruses assemble large ribonucleoprotein (RNP) complexes that direct replication and transcription of the viral genome. Influenza virus RNPs contain the polymerase, genomic RNA and multiple copies of nucleoprotein (NP). During RNP assembly, monomeric NP oligomerizes along the length of the genomic RNA. Regulated assembly of the RNP is essential for virus replication, but how NP is maintained as a monomer that subsequently oligomerizes to form RNPs is poorly understood. Here we elucidate a mechanism whereby NP phosphorylation regulates oligomerization. We identified new evolutionarily conserved phosphorylation sites on NP and demonstrated that phosphorylation of NP decreased formation of higher-order complexes. Two phosphorylation sites were located on opposite sides of the NP:NP interface. In both influenza A and B virus, mutating or mimicking phosphorylation at these residues blocked homotypic interactions and drove NP towards a monomeric form. Highlighting the central role of this process during infection, these mutations impaired RNP formation, polymerase activity and virus replication. Thus, dynamic phosphorylation of NP regulates RNP assembly and modulates progression through the viral life cycle. PMID:25867750
Simultaneous live imaging of the transcription and nuclear position of specific genes
Ochiai, Hiroshi; Sugawara, Takeshi; Yamamoto, Takashi
2015-01-01
The relationship between genome organization and gene expression has recently been established. However, the relationships between spatial organization, dynamics, and transcriptional regulation of the genome remain unknown. In this study, we developed a live-imaging method for simultaneous measurements of the transcriptional activity and nuclear position of endogenous genes, which we termed the ‘Real-time Observation of Localization and EXpression (ROLEX)’ system. We demonstrated that ROLEX is highly specific and does not affect the expression level of the target gene. ROLEX enabled detection of sub-genome-wide mobility changes that depended on the state of Nanog transactivation in embryonic stem cells. We believe that the ROLEX system will become a powerful tool for exploring the relationship between transcription and nuclear dynamics in living cells. PMID:26092696
Le Mercier, Philippe; Jacob, Yves; Tanner, Kyle; Tordo, Noël
2002-01-01
By comparing three expression vectors for the rabies virus (Rv) minigenome, we show that the characteristic of the Rv RNA is important for efficient rescue despite its not being crucial for replication. Moreover, we show that the coexpression of the viral proteins from helper Rv and Mokola virus could rescue the Rv minigenome while Rv-related European bat lyssavirus 1 could not, suggesting that the signals controlling transcription and replication are conserved in the distantly related Rv and Mokola virus. PMID:11799201
In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus
NASA Astrophysics Data System (ADS)
Zhang, Xing; Ding, Ke; Yu, Xuekui; Chang, Winston; Sun, Jingchen; Hong Zhou, Z.
2015-11-01
Viruses in the Reoviridae, like the triple-shelled human rotavirus and the single-shelled insect cytoplasmic polyhedrosis virus (CPV), all package a genome of segmented double-stranded RNAs (dsRNAs) inside the viral capsid and carry out endogenous messenger RNA synthesis through a transcriptional enzyme complex (TEC). By direct electron-counting cryoelectron microscopy and asymmetric reconstruction, we have determined the organization of the dsRNA genome inside quiescent CPV (q-CPV) and the in situ atomic structures of TEC within CPV in both quiescent and transcribing (t-CPV) states. We show that the ten segmented dsRNAs in CPV are organized with ten TECs in a specific, non-symmetric manner, with each dsRNA segment attached directly to a TEC. The TEC consists of two extensively interacting subunits: an RNA-dependent RNA polymerase (RdRP) and an NTPase VP4. We find that the bracelet domain of RdRP undergoes marked conformational change when q-CPV is converted to t-CPV, leading to formation of the RNA template entry channel and access to the polymerase active site. An amino-terminal helix from each of two subunits of the capsid shell protein (CSP) interacts with VP4 and RdRP. These findings establish the link between sensing of environmental cues by the external proteins and activation of endogenous RNA transcription by the TEC inside the virus.
Yoshioka, M; Ishiguro, N; Ishiko, H; Ma, X; Kikuta, H; Kobayashi, K
2001-10-01
Epstein-Barr virus (EBV) has been shown to infect T lymphocytes and to be associated with a chronic active infection (CAEBV), which has been recognized as a mainly non-neoplastic T-cell lymphoproliferative disorder (T-cell LPD). The systemic distribution of EBV genomes was studied, by real-time PCR, in multiple tissues from six patients with CAEBV, including three patients with T-cell LPD, one patient with B-cell LPD and two patients with undetermined cell-type LPD. There were extremely high loads of EBV genomes in all tissues from the patients. This reflects an abundance of circulating and infiltrating EBV-infected cells and a wide variety of clinical symptoms in the affected tissues. We chose one sample from each patient that was shown by real-time PCR to contain a high load of EBV genomes and examined the expression of EBV latent genes by RT-PCR. EBER1 and EBNA1 transcripts were detected in all samples. Only one sample also expressed EBNA2, LMP1 and LMP2A transcripts in addition to EBER1 and EBNA1 transcripts. Two of the remaining five samples expressed LMP1 and LMP2A transcripts. One sample expressed LMP2A but not LMP1 and EBNA2 transcripts. Another sample expressed EBNA2 but not LMP1 and LMP2A transcripts. The other sample did not express transcripts of any of the other EBNAs or LMPs. None of the samples expressed the viral immediate-early gene BZLF1. These results showed that EBV latent gene expression in CAEBV is heterogeneous and that restricted forms of EBV latency might play a pathogenic role in the development of CAEBV.
Catez, Frédéric; Picard, Christel; Held, Kathrin; Gross, Sylvain; Rousseau, Antoine; Theil, Diethilde; Sawtell, Nancy; Labetoulle, Marc; Lomonte, Patrick
2012-01-01
Major human pathologies are caused by nuclear replicative viruses establishing life-long latent infection in their host. During latency the genomes of these viruses are intimately interacting with the cell nucleus environment. A hallmark of herpes simplex virus type 1 (HSV-1) latency establishment is the shutdown of lytic genes expression and the concomitant induction of the latency associated (LAT) transcripts. Although the setting up and the maintenance of the latent genetic program is most likely dependent on a subtle interplay between viral and nuclear factors, this remains uninvestigated. Combining the use of in situ fluorescent-based approaches and high-resolution microscopic analysis, we show that HSV-1 genomes adopt specific nuclear patterns in sensory neurons of latently infected mice (28 days post-inoculation, d.p.i.). Latent HSV-1 genomes display two major patterns, called “Single” and “Multiple”, which associate with centromeres, and with promyelocytic leukemia nuclear bodies (PML-NBs) as viral DNA-containing PML-NBs (DCP-NBs). 3D-image reconstruction of DCP-NBs shows that PML forms a shell around viral genomes and associated Daxx and ATRX, two PML partners within PML-NBs. During latency establishment (6 d.p.i.), infected mouse TGs display, at the level of the whole TG and in individual cells, a substantial increase of PML amount consistent with the interferon-mediated antiviral role of PML. “Single” and “Multiple” patterns are reminiscent of low and high-viral genome copy-containing neurons. We show that LAT expression is significantly favored within the “Multiple” pattern, which underlines a heterogeneity of LAT expression dependent on the viral genome copy number, pattern acquisition, and association with nuclear domains. Infection of PML-knockout mice demonstrates that PML/PML-NBs are involved in virus nuclear pattern acquisition, and negatively regulate the expression of the LAT. This study demonstrates that nuclear domains including PML-NBs and centromeres are functionally involved in the control of HSV-1 latency, and represent a key level of host/virus interaction. PMID:22912575
Silva, Lindsey; Oh, Hyung Suk; Chang, Lynne; Yan, Zhipeng; Triezenberg, Steven J; Knipe, David M
2012-01-01
Little is known about the mechanisms of gene targeting within the nucleus and its effect on gene expression, but most studies have concluded that genes located near the nuclear periphery are silenced by heterochromatin. In contrast, we found that early herpes simplex virus (HSV) genome complexes localize near the nuclear lamina and that this localization is associated with reduced heterochromatin on the viral genome and increased viral immediate-early (IE) gene transcription. In this study, we examined the mechanism of this effect and found that input virion transactivator protein, virion protein 16 (VP16), targets sites adjacent to the nuclear lamina and is required for targeting of the HSV genome to the nuclear lamina, exclusion of heterochromatin from viral replication compartments, and reduction of heterochromatin on the viral genome. Because cells infected with the VP16 mutant virus in1814 showed a phenotype similar to that of lamin A/C(-/-) cells infected with wild-type virus, we hypothesized that the nuclear lamina is required for VP16 activator complex formation. In lamin A/C(-/-) mouse embryo fibroblasts, VP16 and Oct-1 showed reduced association with the viral IE gene promoters, the levels of VP16 and HCF-1 stably associated with the nucleus were lower than in wild-type cells, and the association of VP16 with HCF-1 was also greatly reduced. These results show that the nuclear lamina is required for stable nuclear localization and formation of the VP16 activator complex and provide evidence for the nuclear lamina being the site of assembly of the VP16 activator complex. The targeting of chromosomes in the cell nucleus is thought to be important in the regulation of expression of genes on the chromosomes. The major documented effect of intranuclear targeting has been silencing of chromosomes at sites near the nuclear periphery. In this study, we show that targeting of the herpes simplex virus DNA genome to the nuclear periphery promotes formation of transcriptional activator complexes on the viral genome, demonstrating that the nuclear periphery also has sites for activation of transcription. These results highlight the importance of the nuclear lamina, the structure that lines the inner nuclear membrane, in both transcriptional activation and repression. Future studies defining the molecular structures of these two types of nuclear sites should define new levels of gene regulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freytag, S.O.
1988-04-01
A broad base of data has implicated a role for the c-myc proto-oncogene in the control of the cell cycle and cell differentiation. To further define the role of myc in these processes, the authors examined the effect of enforced myc expression on several events that are thought to be important steps leading to the terminally differentiated state: (i) the ability to arrest growth in G/sub 0//G/sub 1/, (ii) the ability to replicate the genome upon initiation of the differentiation program, and (iii) the ability to loose responsiveness to mitogens and withdraw from the cell cycle. 3T3-L1 preadipocyte cell linesmore » expressing various levels of myc mRNA were established by transfection with a recombinant myc gene under the transcriptional control of the Rous sarcoma virus (RSV) promoter. Cells that expressed high constitutive levels of pRSV myc mRNA arrested in G/sub 0//G/sub 1/ at densities similar to those of normal cells at confluence. Upon initiation of the differentiation program, such cells traversed the cell cycle with kinetics similar to those of normal cells and subsequently arrested in G/sub 0//G/sub 1/. Thus, enforced expression of myc had no effect on the ability of cells to arrest growth in G/sub 0//G/sub 1/ or to replicate the genome upon initiation of the differentiation program. Cells were then tested for their ability to reenter the cell cycle upon exposure to high concentrations of serum and for their capacity to differentiate. In contrast to normal cells, cells expressing high constitutive levels of myc RNA reentered the cell cycle when challenged with 30% serum and failed to terminally differentiate.« less
Sozhamannan, Shanmuga; Holland, Mitchell Y.; Hall, Adrienne T.; Negrón, Daniel A.; Ivancich, Mychal; Koehler, Jeffrey W.; Minogue, Timothy D.; Campbell, Catherine E.; Berger, Walter J.; Christopher, George W.; Goodwin, Bruce G.; Smith, Michael A.
2015-01-01
Genome sequence analyses of the 2014 Ebola Virus (EBOV) isolates revealed a potential problem with the diagnostic assays currently in use; i.e., drifting genomic profiles of the virus may affect the sensitivity or even produce false-negative results. We evaluated signature erosion in ebolavirus molecular assays using an in silico approach and found frequent potential false-negative and false-positive results. We further empirically evaluated many EBOV assays, under real time PCR conditions using EBOV Kikwit (1995) and Makona (2014) RNA templates. These results revealed differences in performance between assays but were comparable between the old and new EBOV templates. Using a whole genome approach and a novel algorithm, termed BioVelocity, we identified new signatures that are unique to each of EBOV, Sudan virus (SUDV), and Reston virus (RESTV). Interestingly, many of the current assay signatures do not fall within these regions, indicating a potential drawback in the past assay design strategies. The new signatures identified in this study may be evaluated with real-time reverse transcription PCR (rRT-PCR) assay development and validation. In addition, we discuss regulatory implications and timely availability to impact a rapidly evolving outbreak using existing but perhaps less than optimal assays versus redesign these assays for addressing genomic changes. PMID:26090727
Stewart, H.; Bingham, R.J.; White, S. J.; Dykeman, E. C.; Zothner, C.; Tuplin, A. K.; Stockley, P. G.; Twarock, R.; Harris, M.
2016-01-01
The specific packaging of the hepatitis C virus (HCV) genome is hypothesised to be driven by Core-RNA interactions. To identify the regions of the viral genome involved in this process, we used SELEX (systematic evolution of ligands by exponential enrichment) to identify RNA aptamers which bind specifically to Core in vitro. Comparison of these aptamers to multiple HCV genomes revealed the presence of a conserved terminal loop motif within short RNA stem-loop structures. We postulated that interactions of these motifs, as well as sub-motifs which were present in HCV genomes at statistically significant levels, with the Core protein may drive virion assembly. We mutated 8 of these predicted motifs within the HCV infectious molecular clone JFH-1, thereby producing a range of mutant viruses predicted to possess altered RNA secondary structures. RNA replication and viral titre were unaltered in viruses possessing only one mutated structure. However, infectivity titres were decreased in viruses possessing a higher number of mutated regions. This work thus identified multiple novel RNA motifs which appear to contribute to genome packaging. We suggest that these structures act as cooperative packaging signals to drive specific RNA encapsidation during HCV assembly. PMID:26972799
Plucienniczak, A; Schroeder, E; Zettlmeissl, G; Streeck, R E
1985-01-01
The nucleotide sequence of a 7.6 kb vaccinia DNA segment from a genomic region conserved among different orthopox virus has been determined. This segment contains a tight cluster of 12 partly overlapping open reading frames most of which can be correlated with previously identified early and late proteins and mRNAs. Regulatory signals used by vaccinia virus have been studied. Presumptive promoter regions are rich in A, T and carry the consensus sequences TATA and AATAA spaced at 20-24 base pairs. Tandem repeats of a CTATTC consensus sequence are proposed to be involved in the termination of early transcription. PMID:2987815
Advances in plant virus evolution: translating evolutionary insights into better disease management.
Acosta-Leal, R; Duffy, S; Xiong, Z; Hammond, R W; Elena, S F
2011-10-01
Recent studies in plant virus evolution are revealing that genetic structure and behavior of virus and viroid populations can explain important pathogenic properties of these agents, such as host resistance breakdown, disease severity, and host shifting, among others. Genetic variation is essential for the survival of organisms. The exploration of how these subcellular parasites generate and maintain a certain frequency of mutations at the intra- and inter-host levels is revealing novel molecular virus-plant interactions. They emphasize the role of host environment in the dynamic genetic composition of virus populations. Functional genomics has identified host factors that are transcriptionally altered after virus infections. The analyses of these data by means of systems biology approaches are uncovering critical plant genes specifically targeted by viruses during host adaptation. Also, a next-generation resequencing approach of a whole virus genome is opening new avenues to study virus recombination and the relationships between intra-host virus composition and pathogenesis. Altogether, the analyzed data indicate that systematic disruption of some specific parameters of evolving virus populations could lead to more efficient ways of disease prevention, eradication, or tolerable virus-plant coexistence.
Griffiths, Samantha J; Koegl, Manfred; Boutell, Chris; Zenner, Helen L; Crump, Colin M; Pica, Francesca; Gonzalez, Orland; Friedel, Caroline C; Barry, Gerald; Martin, Kim; Craigon, Marie H; Chen, Rui; Kaza, Lakshmi N; Fossum, Even; Fazakerley, John K; Efstathiou, Stacey; Volpi, Antonio; Zimmer, Ralf; Ghazal, Peter; Haas, Jürgen
2013-01-01
Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome.
The RNA synthesis machinery of negative-stranded RNA viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortín, Juan, E-mail: jortin@cnb.csic.es; Martín-Benito, Jaime, E-mail: jmartinb@cnb.csic.es
The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure ofmore » their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes. - Highlights: • Overall organisation of NSV RNA synthesis machines. • Structure and function of the ribonucleoprotein components: Atomic structure of the RNA polymerase complex. • Commonalities and differences between segmented- and non-segmented NSVs. • Transcription versus replication programmes.« less
Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C J; Makino, Shinji
2009-09-01
Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a single-stranded, tripartite RNA genome. RVFV is an important zoonotic pathogen transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis, or ocular diseases. A viral nonstructural protein, NSs, is a major viral virulence factor. Past studies showed that NSs suppresses the transcription of host mRNAs, including interferon-beta mRNAs. Here we demonstrated that the NSs protein induced post-transcriptional downregulation of dsRNA-dependent protein kinase (PKR), to prevent phosphorylation of eIF2alpha and promoted viral translation in infected cells. These two biological activities of the NSs most probably have a synergistic effect in suppressing host innate immune functions and facilitate efficient viral replication in infected mammalian hosts.
Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C. J.; Makino, Shinji
2011-01-01
Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a single-stranded, tripartite RNA genome. RVFV is an important zoonotic pathogen transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis or ocular diseases. A viral nonstructural protein, NSs, is a major viral virulence factor. Past studies showed that NSs suppresses the transcription of host mRNAs, including interferon-β mRNAs. Here we demonstrated that the NSs protein induced post-transcriptional downregulation of dsRNA-dependent protein kinase, PKR, to prevent phosphorylation of eIF2α and promoted viral translation in infected cells. These two biological activities of the NSs most probably have a synergistic effect in suppressing host innate immune functions and facilitate efficient viral replication in infected mammalian hosts. PMID:19751406
Pagarete, António; Allen, Michael J; Wilson, William H; Kimmance, Susan A; de Vargas, Colomban
2009-11-01
The interactions between viruses and phytoplankton play a key role in shaping the ecological and evolutionary dynamics of oceanic ecosystems. One of the most fascinating examples of horizontal gene transfer between a eukaryotic host and its virus is a de novo sphingolipid biosynthesis pathway (SBP) found in the genomes of both Emiliania huxleyi and its coccolithovirus EhV-86. Here, we focus on a natural E. huxleyi/coccolithovirus system off the coast of Norway and investigate the dynamics of host and virus homologous gene expression for two of the most important sphingolipid biosynthesis enzymes, serine palmitoyl transferase (SPT) and dihydroceramide desaturase (DCD). Transcriptional dynamics display three defined stages along E. huxleyi bloom formation and decline, with the coccolithovirus transcripts taking over and controlling the SBP in stages 2 and 3. The observed patterns fit the hypothesis according to which viral sphingolipids are involved in the timing and physical processes of virion release from the host cells. This study provides a unique insight into the transcriptional interplay of homologous metabolic pathways between virus and host during temporal progression of oceanic E. huxleyi blooms.
Sävneby, Anna; Luthman, Johannes; Nordenskjöld, Fabian; Andersson, Björn
2016-01-01
The transcriptomes of cells infected with lytic and non-lytic variants of coxsackievirus B2 Ohio-1 (CVB2O) were analyzed using next generation sequencing. This approach was selected with the purpose of elucidating the effects of lytic and non-lytic viruses on host cell transcription. Total RNA was extracted from infected cells and sequenced. The resulting reads were subsequently mapped against the human and CVB2O genomes. The amount of intracellular RNA was measured, indicating lower proportions of human RNA in the cells infected with the lytic virus compared to the non-lytic virus after 48 hours. This may be explained by reduced activity of the cellular transcription/translation machinery in lytic enteroviral replication due to activities of the enteroviral proteases 2A and/or 3C. Furthermore, differential expression in the cells infected with the two virus variants was identified and a number of transcripts were singled out as possible answers to the question of how the viruses interact with the host cells, resulting in lytic or non-lytic infections. PMID:27760161
Gene Rearrangement Attenuates Expression and Lethality of a Nonsegmented Negative Strand RNA Virus
NASA Astrophysics Data System (ADS)
Williams Wertz, Gail; Perepelitsa, Victoria P.; Ball, L. Andrew
1998-03-01
The nonsegmented negative strand RNA viruses comprise hundreds of human, animal, insect, and plant pathogens. Gene expression of these viruses is controlled by the highly conserved order of genes relative to the single transcriptional promoter. We utilized this regulatory mechanism to alter gene expression levels of vesicular stomatitis virus by rearranging the gene order. This report documents that gene expression levels and the viral phenotype can be manipulated in a predictable manner. Translocation of the promoter-proximal nucleocapsid protein gene N, whose product is required stoichiometrically for genome replication, to successive positions down the genome reduced N mRNA and protein expression in a stepwise manner. The reduction in N gene expression resulted in a stepwise decrease in genomic RNA replication. Translocation of the N gene also attenuated the viruses to increasing extents for replication in cultured cells and for lethality in mice, without compromising their ability to elicit protective immunity. Because monopartite negative strand RNA viruses have not been reported to undergo homologous recombination, gene rearrangement should be irreversible and may provide a rational strategy for developing stably attenuated live vaccines against this type of virus.
Estimating evolutionary rates in giant viruses using ancient genomes
Duchêne, Sebastián
2018-01-01
Abstract Pithovirus sibericum is a giant (610 Kpb) double-stranded DNA virus discovered in a purportedly 30,000-year-old permafrost sample. A closely related virus, Pithovirus massiliensis, was recently isolated from a sewer in southern France. An initial comparison of these two virus genomes assumed that P. sibericum was directly ancestral to P. massiliensis and gave a maximum evolutionary rate of 2.60 × 10−5 nucleotide substitutions per site per year (subs/site/year). If correct, this would make pithoviruses among the fastest-evolving DNA viruses, with rates close to those seen in some RNA viruses. To help determine whether this unusually high rate is accurate we utilized the well-known negative association between evolutionary rate and genome size in DNA microbes. This revealed that a more plausible rate estimate for Pithovirus evolution is ∼2.23 × 10−6 subs/site/year, with even lower estimates obtained if evolutionary rates are assumed to be time-dependent. Hence, we estimate that Pithovirus has evolved at least an order of magnitude more slowly than previously suggested. We then used our new rate estimates to infer a time-scale for Pithovirus evolution. Strikingly, this suggests that these viruses could have diverged at least hundreds of thousands of years ago, and hence have evolved over longer time-scales than previously suggested. We propose that the evolutionary rate and time-scale of pithovirus evolution should be reconsidered in the light of these observations and that future estimates of the rate of giant virus evolution should be carefully examined in the context of their biological plausibility. PMID:29511572
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domingo, E.; Holland, J.J.; Ahlquist, P.
1988-01-01
This book contains the proceedings on RNA genetics: RNA-directed virus replication Volume 1. Topics covered include: Replication of the poliovirus genome; Influenza viral RNA transcription and replication; and Relication of the reoviridal: Information derived from gene cloning and expression.
Okafuji, Takao; Yoshida, Naoko; Fujino, Motoko; Motegi, Yoshie; Ihara, Toshiaki; Ota, Yoshinori; Notomi, Tsugunori; Nakayama, Tetsuo
2005-01-01
Most mumps patients are clinically diagnosed without any virological examinations, but some diagnosed cases of mumps may be caused by other pathogens or secondary vaccine failure (SVF). To clarify these issues, a sensitive, specific, and rapid diagnostic method is required. We obtained 60 salivary swabs from 34 patients with natural infection during the course of the illness, 10 samples from patients with vaccine-associated parotitis, and 5 samples from patients with SVF. Total RNA was extracted and subjected to reverse transcription-PCR (RT-PCR) and loop-mediated isothermal amplification (LAMP) for genome amplification. We detected mumps virus RNA corresponding to 0.1 PFU by LAMP within 60 min after RNA extraction, with the same sensitivity as RT-nested PCR. Mumps virus was isolated in 30 of 33 samples within day 2, and mumps virus genome was amplified by LAMP in 32 of them. The quantity of virus titer was calculated by monitoring the time to reach the threshold of turbidity. The viral load decreased after day 3 and was lower in patients serologically diagnosed as having SVF with milder illness. Accuracy of LAMP for the detection of mumps virus genome was confirmed; furthermore, it is of benefit for calculating the viral load, which reflects disease pathogenesis. PMID:15814976
USDA-ARS?s Scientific Manuscript database
Newcastle disease virus (NDV), avian paramyxovirus type 1, has been developed as a vector to express foreign genes for vaccine and gene therapy purposes. The foreign genes are usually inserted into a non-coding region of the NDV genome as an independent transcription unit (ITU), which potentially a...
USDA-ARS?s Scientific Manuscript database
Cotton Leaf Curl virus Disease (CLCuD) has caused enormous losses in cotton (Gossypium hirsutum) production in Pakistan. RNA interference (RNAi) is an emerging technique that could knock out CLCuD by targeting different regions of the pathogen genome that are important for replication, transcription...
USDA-ARS?s Scientific Manuscript database
Efforts to analyze the replicative RNA produced by Maize fine streak virus (MVSF) within maize tissue was complicated by the lack of specificity during cDNA generation using standard reverse transcriptase protocols. Real-time qRT-PCR using cDNA generated by priming with random hexamers does not dist...
Varicella zoster virus latency
Eshleman, Emily; Shahzad, Aamir; Cohrs, Randall J
2011-01-01
Primary infection by varicella zoster virus (VZV) typically results in childhood chickenpox, at which time latency is established in the neurons of the cranial nerve, dorsal root and autonomic ganglia along the entire neuraxis. During latency, the histone-associated virus genome assumes a circular episomal configuration from which transcription is epigenetically regulated. The lack of an animal model in which VZV latency and reactivation can be studied, along with the difficulty in obtaining high-titer cell-free virus, has limited much of our understanding of VZV latency to descriptive studies of ganglia removed at autopsy and analogy to HSV-1, the prototype alphaherpesvirus. However, the lack of miRNA, detectable latency-associated transcript and T-cell surveillance during VZV latency highlight basic differences between the two neurotropic herpesviruses. This article focuses on VZV latency: establishment, maintenance and reactivation. Comparisons are made with HSV-1, with specific attention to differences that make these viruses unique human pathogens. PMID:21695042
In vitro inhibition of African swine fever virus-topoisomerase II disrupts viral replication.
Freitas, Ferdinando B; Frouco, Gonçalo; Martins, Carlos; Leitão, Alexandre; Ferreira, Fernando
2016-10-01
African swine fever virus (ASFV) is the etiological agent of a highly-contagious and fatal disease of domestic pigs, leading to serious socio-economic impact in affected countries. To date, neither a vaccine nor a selective anti-viral drug are available for prevention or treatment of African swine fever (ASF), emphasizing the need for more detailed studies at the role of ASFV proteins involved in viral DNA replication and transcription. Notably, ASFV encodes for a functional type II topoisomerase (ASFV-Topo II) and we recently showed that several fluoroquinolones (bacterial DNA topoisomerase inhibitors) fully abrogate ASFV replication in vitro. Here, we report that ASFV-Topo II gene is actively transcribed throughout infection, with transcripts being detected as early as 2 hpi and reaching a maximum peak concentration around 16 hpi, when viral DNA synthesis, transcription and translation are more active. siRNA knockdown experiments showed that ASFV-Topo II plays a critical role in viral DNA replication and gene expression, with transfected cells presenting lower viral transcripts (up to 89% decrease) and reduced cytopathic effect (-66%) when compared to the control group. Further, a significant decrease in the number of both infected cells (75.5%) and viral factories per cell and in virus yields (up to 99.7%, 2.5 log) was found only in cells transfected with siRNA targeting ASFV-Topo II. We also demonstrate that a short exposure to enrofloxacin during the late phase of infection (from 15 to 1 hpi) induces fragmentation of viral genomes, whereas no viral genomes were detected when enrofloxacin was added from the early phase of infection (from 2 to 16 hpi), suggesting that fluoroquinolones are ASFV-Topo II poisons. Altogether, our results demonstrate that ASFV-Topo II enzyme has an essential role during viral genome replication and transcription, emphasizing the idea that this enzyme can be a potential target for drug and vaccine development against ASF. Copyright © 2016 Elsevier B.V. All rights reserved.
Tang, Roderick S.; Schickli, Jeanne H.; MacPhail, Mia; Fernandes, Fiona; Bicha, Leenas; Spaete, Joshua; Fouchier, Ron A. M.; Osterhaus, Albert D. M. E.; Spaete, Richard; Haller, Aurelia A.
2003-01-01
A live attenuated bovine parainfluenza virus type 3 (PIV3), harboring the fusion (F) and hemagglutinin-neuraminidase (HN) genes of human PIV3, was used as a virus vector to express surface glycoproteins derived from two human pathogens, human metapneumovirus (hMPV) and respiratory syncytial virus (RSV). RSV and hMPV are both paramyxoviruses that cause respiratory disease in young children, the elderly, and immunocompromised individuals. RSV has been known for decades to cause acute lower respiratory tract infections in young children, which often result in hospitalization, while hMPV has only been recently identified as a novel human respiratory pathogen. In this study, the ability of bovine/human PIV3 to express three different foreign transmembrane surface glycoproteins and to induce a protective immune response was evaluated. The RNA-dependent RNA polymerase of paramyxoviruses binds to a single site at the 3′ end of the viral RNA genome to initiate transcription of viral genes. The genome position of the viral gene determines its level of gene expression. The promoter-proximal gene is transcribed with the highest frequency, and each downstream gene is transcribed less often due to attenuation of transcription at each gene junction. This feature of paramyxoviruses was exploited using the PIV3 vector by inserting the foreign viral genes at the 3′ terminus, at position 1 or 2, of the viral RNA genome. These locations were expected to yield high levels of foreign viral protein expression stimulating a protective immune response. The immunogenicity and protection results obtained with a hamster model showed that bovine/human PIV3 can be employed to generate bivalent PIV3/RSV or PIV3/hMPV vaccine candidates that will be further evaluated for safety and efficacy in primates. PMID:14512532
Targeted DNA Mutagenesis for the Cure of Chronic Viral Infections
Schiffer, Joshua T.; Aubert, Martine; Weber, Nicholas D.; Mintzer, Esther; Stone, Daniel
2012-01-01
Human immunodeficiency virus type 1 (HIV-1), hepatitis B virus (HBV), and herpes simplex virus (HSV) have been incurable to date because effective antiviral therapies target only replicating viruses and do not eradicate latently integrated or nonreplicating episomal viral genomes. Endonucleases that can target and cleave critical regions within latent viral genomes are currently in development. These enzymes are being engineered with high specificity such that off-target binding of cellular DNA will be absent or minimal. Imprecise nonhomologous-end-joining (NHEJ) DNA repair following repeated cleavage at the same critical site may permanently disrupt translation of essential viral proteins. We discuss the benefits and drawbacks of three types of DNA cleavage enzymes (zinc finger endonucleases, transcription activator-like [TAL] effector nucleases [TALENs], and homing endonucleases [also called meganucleases]), the development of delivery vectors for these enzymes, and potential obstacles for successful treatment of chronic viral infections. We then review issues regarding persistence of HIV-1, HBV, and HSV that are relevant to eradication with genome-altering approaches. PMID:22718830
King, Benjamin R; Samacoits, Aubin; Eisenhauer, Philip L; Ziegler, Christopher M; Bruce, Emily A; Zenklusen, Daniel; Zimmer, Christophe; Mueller, Florian; Botten, Jason
2018-06-15
Lymphocytic choriomeningitis mammarenavirus (LCMV) is an enveloped, negative-strand RNA virus that causes serious disease in humans but establishes an asymptomatic, lifelong infection in reservoir rodents. Different models have been proposed to describe how arenaviruses regulate the replication and transcription of their bisegmented, single-stranded RNA genomes, particularly during persistent infection. However, these models were based largely on viral RNA profiling data derived from entire populations of cells. To better understand LCMV replication and transcription at the single-cell level, we established a high-throughput, single-molecule fluorescence in situ hybridization (smFISH) image acquisition and analysis pipeline and examined viral RNA species at discrete time points from virus entry through the late stages of persistent infection in vitro We observed the transcription of viral nucleoprotein and polymerase mRNAs from the incoming S and L segment genomic RNAs, respectively, within 1 h of infection, whereas the transcription of glycoprotein mRNA from the S segment antigenome required ∼4 to 6 h. This confirms the temporal separation of viral gene expression expected due to the ambisense coding strategy of arenaviruses and also suggests that antigenomic RNA contained in virions is not transcriptionally active upon entry. Viral replication and transcription peaked at 36 h postinfection, followed by a progressive loss of viral RNAs over the next several days. During persistence, the majority of cells showed repeating cyclical waves of viral transcription and replication followed by the clearance of viral RNA. Thus, our data support a model of LCMV persistence whereby infected cells can spontaneously clear infection and become reinfected by viral reservoir cells that remain in the population. IMPORTANCE Arenaviruses are human pathogens that can establish asymptomatic, lifelong infections in their rodent reservoirs. Several models have been proposed to explain how arenavirus spread is restricted within host rodents, including the periodic accumulation and loss of replication-competent, but transcriptionally incompetent, viral genomes. A limitation of previous studies was the inability to enumerate viral RNA species at the single-cell level. We developed a high-throughput, smFISH assay and used it to quantitate lymphocytic choriomeningitis mammarenavirus (LCMV) replicative and transcriptional RNA species in individual cells at distinct time points following infection. Our findings support a model whereby productively infected cells can clear infection, including viral RNAs and antigen, and later be reinfected. This information improves our understanding of the timing and possible regulation of LCMV genome replication and transcription during infection. Importantly, the smFISH assay and data analysis pipeline developed here is easily adaptable to other RNA viruses. Copyright © 2018 American Society for Microbiology.
mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus.
Legendre, Matthieu; Audic, Stéphane; Poirot, Olivier; Hingamp, Pascal; Seltzer, Virginie; Byrne, Deborah; Lartigue, Audrey; Lescot, Magali; Bernadac, Alain; Poulain, Julie; Abergel, Chantal; Claverie, Jean-Michel
2010-05-01
Mimivirus, a virus infecting Acanthamoeba, is the prototype of the Mimiviridae, the latest addition to the nucleocytoplasmic large DNA viruses. The Mimivirus genome encodes close to 1000 proteins, many of them never before encountered in a virus, such as four amino-acyl tRNA synthetases. To explore the physiology of this exceptional virus and identify the genes involved in the building of its characteristic intracytoplasmic "virion factory," we coupled electron microscopy observations with the massively parallel pyrosequencing of the polyadenylated RNA fractions of Acanthamoeba castellanii cells at various time post-infection. We generated 633,346 reads, of which 322,904 correspond to Mimivirus transcripts. This first application of deep mRNA sequencing (454 Life Sciences [Roche] FLX) to a large DNA virus allowed the precise delineation of the 5' and 3' extremities of Mimivirus mRNAs and revealed 75 new transcripts including several noncoding RNAs. Mimivirus genes are expressed across a wide dynamic range, in a finely regulated manner broadly described by three main temporal classes: early, intermediate, and late. This RNA-seq study confirmed the AAAATTGA sequence as an early promoter element, as well as the presence of palindromes at most of the polyadenylation sites. It also revealed a new promoter element correlating with late gene expression, which is also prominent in Sputnik, the recently described Mimivirus "virophage." These results-validated genome-wide by the hybridization of total RNA extracted from infected Acanthamoeba cells on a tiling array (Agilent)--will constitute the foundation on which to build subsequent functional studies of the Mimivirus/Acanthamoeba system.
Hortamani, Mozhgan; Massah, Amir; Izadpanah, Keramat
2018-04-01
Maize Iranian mosaic virus (MIMV) is a distinct member of the genus Nucleorhabdovirus. In this study, expression of all MIMV genes in maize for four weeks after inoculation and in inoculative planthoppers was examined using a quantitative RT-PCR (RT-qPCR) assay. Accumulation of MIMV P, gene 3, M, G and L transcripts relative to N transcripts was measured and normalized to 18S rRNA in maize plants and to the ribosomal protein S13 gene (RPS13) in planthoppers using the comparative C T method. In plants, higher levels of MIMV N transcripts were found relative to other transcripts, while MIMV L transcripts were at the lowest levels. The highest accumulation of MIMV transcripts was found at 14 days postinoculation (dpi). At 21 dpi, we found the lowest transcript levels for all genes, which increased again at 28 dpi, although in lower amounts than at 14 dpi. In Laodelphax striatellus, MIMV M, G and L transcripts accumulated at lower levels than other transcripts. The gene 3 transcript level was high in both plants and planthoppers. Our results showed that transcript accumulation for the MIMV genes was similar in both hosts and followed the pattern of sequential transcriptional attenuation from the 3' to the 5' end of the genome, similar to vertebrate rhabdoviruses. These results indicate that the regulation of virus gene transcription for this plant-infecting rhabdovirus is similar to that of some vertebrate-infecting rhabdoviruses.
Prats, A C; Sarih, L; Gabus, C; Litvak, S; Keith, G; Darlix, J L
1988-01-01
Retrovirus virions carry a diploid genome associated with a large number of small viral finger protein molecules which are required for encapsidation. Our present results show that finger protein p12 of Rous sarcoma virus (RSV) and p10 of murine leukaemia virus (MuLV) positions replication primer tRNA on the replication initiation site (PBS) at the 5' end of the RNA genome. An RSV mutant with a Val-Pro insertion in the finger motif of p12 is able to partially encapsidate genomic RNA but is not infectious because mutated p12 is incapable of positioning the replication primer, tRNATrp. Since all known replication competent retroviruses, and the plant virus CaMV, code for finger proteins analogous to RSV p12 or MuLV p10, the initial stage of reverse transcription in avian, mammalian and human retroviruses and in CaMV is probably controlled in an analogous way. Images PMID:2458920
Prats, A C; Sarih, L; Gabus, C; Litvak, S; Keith, G; Darlix, J L
1988-06-01
Retrovirus virions carry a diploid genome associated with a large number of small viral finger protein molecules which are required for encapsidation. Our present results show that finger protein p12 of Rous sarcoma virus (RSV) and p10 of murine leukaemia virus (MuLV) positions replication primer tRNA on the replication initiation site (PBS) at the 5' end of the RNA genome. An RSV mutant with a Val-Pro insertion in the finger motif of p12 is able to partially encapsidate genomic RNA but is not infectious because mutated p12 is incapable of positioning the replication primer, tRNATrp. Since all known replication competent retroviruses, and the plant virus CaMV, code for finger proteins analogous to RSV p12 or MuLV p10, the initial stage of reverse transcription in avian, mammalian and human retroviruses and in CaMV is probably controlled in an analogous way.
Ancient Recombination Events between Human Herpes Simplex Viruses
Burrel, Sonia; Boutolleau, David; Ryu, Diane; Agut, Henri; Merkel, Kevin; Leendertz, Fabian H.
2017-01-01
Abstract Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are seen as close relatives but also unambiguously considered as evolutionary independent units. Here, we sequenced the genomes of 18 HSV-2 isolates characterized by divergent UL30 gene sequences to further elucidate the evolutionary history of this virus. Surprisingly, genome-wide recombination analyses showed that all HSV-2 genomes sequenced to date contain HSV-1 fragments. Using phylogenomic analyses, we could also show that two main HSV-2 lineages exist. One lineage is mostly restricted to subSaharan Africa whereas the other has reached a global distribution. Interestingly, only the worldwide lineage is characterized by ancient recombination events with HSV-1. Our findings highlight the complexity of HSV-2 evolution, a virus of putative zoonotic origin which later recombined with its human-adapted relative. They also suggest that coinfections with HSV-1 and 2 may have genomic and potentially functional consequences and should therefore be monitored more closely. PMID:28369565
Ortiz-Riaño, Emilio; Cheng, Benson Yee Hin
2012-01-01
Arenaviruses have a bisegmented, negative-strand RNA genome. Both the large (L) and small (S) genome segments use an ambisense coding strategy to direct the synthesis of two viral proteins. The L segment encodes the virus polymerase (L protein) and the matrix Z protein, whereas the S segment encodes the nucleoprotein (NP) and the glycoprotein precursor (GPC). NPs are the most abundant viral protein in infected cells and virions and encapsidate genomic RNA species to form an NP-RNA complex that, together with the virus L polymerase, forms the virus ribonucleoprotein (RNP) core capable of directing both replication and transcription of the viral genome. RNP formation predicts a self-association property of NPs. Here we document self-association (homotypic interaction) of the NP of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV), as well as those of the hemorrhagic fever (HF) arenaviruses Lassa virus (LASV) and Machupo virus (MACV). We also show heterotypic interaction between NPs from both closely (LCMV and LASV) and distantly (LCMV and MACV) genetically related arenaviruses. LCMV NP self-association was dependent on the presence of single-stranded RNA and mediated by an N-terminal region of the NP that did not overlap with the previously described C-terminal NP domain involved in either counteracting the host type I interferon response or interacting with LCMV Z. PMID:22258244
Todaro, G J; Sherr, C J; Sen, A; King, N; Daniel, M D; Fleckenstein, B
1978-01-01
A type C virus (OMC-1) detected in a culture of owl monkey kidney cells resembled typical type C viruses morphologically, but was slightly larger than previously characterized mammalian type C viruses. OMC-1 can be transmitted to bat lung cells and cat embryo fibroblasts. The virions band at a density of 1.16 g/ml in isopycnic sucrose density gradients and contain reverse transcriptase and a 60-65S RNA genome composed of approximately 32S subunits. The reverse transcriptase is immunologically and biochemically distinct from the polymerases of othe retroviruses. Radioimmunoassays directed to the interspecies antigenic determinants of the major structure proteins of other type C viruses do not detect a related antigen in OMC-1. Nucleic acid hybridization experiments using labeled viral genomic RNA or proviral cDNA transcripts to normal cellular DNA of different species show that OMC-1 is an endogenous virus with multiple virogene copies (20-50 per haploid genome) present in normal owl monkey cells and is distinct from previously isolated type C and D viruses. Sequences related to the OMC-1 genome can be detected in other New World monkeys. Thus, similar to the Old World primates (e.g., baboons as a prototype), the New World monkeys contain endogenous type C viral genes that appear to have been transmitted in the primate germ line. Images PMID:76312
Characterization of a Novel Orthomyxo-like Virus Causing Mass Die-Offs of Tilapia
Bacharach, Eran; Mishra, Nischay; Briese, Thomas; Zody, Michael C.; Kembou Tsofack, Japhette Esther; Zamostiano, Rachel; Berkowitz, Asaf; Ng, James; Nitido, Adam; Corvelo, André; Toussaint, Nora C.; Abel Nielsen, Sandra Cathrine; Hornig, Mady; Del Pozo, Jorge; Bloom, Toby; Ferguson, Hugh
2016-01-01
ABSTRACT Tilapia are an important global food source due to their omnivorous diet, tolerance for high-density aquaculture, and relative disease resistance. Since 2009, tilapia aquaculture has been threatened by mass die-offs in farmed fish in Israel and Ecuador. Here we report evidence implicating a novel orthomyxo-like virus in these outbreaks. The tilapia lake virus (TiLV) has a 10-segment, negative-sense RNA genome. The largest segment, segment 1, contains an open reading frame with weak sequence homology to the influenza C virus PB1 subunit. The other nine segments showed no homology to other viruses but have conserved, complementary sequences at their 5′ and 3′ termini, consistent with the genome organization found in other orthomyxoviruses. In situ hybridization indicates TiLV replication and transcription at sites of pathology in the liver and central nervous system of tilapia with disease. PMID:27048802
Shu, Yaoling; Habchi, Johnny; Costanzo, Stéphanie; Padilla, André; Brunel, Joanna; Gerlier, Denis; Oglesbee, Michael; Longhi, Sonia
2012-01-01
The measles virus (MeV) phosphoprotein (P) tethers the polymerase to the nucleocapsid template for transcription and genome replication. Binding of P to nucleocapsid is mediated by the X domain of P (XD) and a conserved sequence (Box-2) within the C-terminal domain of the nucleoprotein (NTAIL). XD binding induces NTAIL α-helical folding, which in turn has been proposed to stabilize the polymerase-nucleocapsid complex, with cycles of binding and release required for transcription and genome replication. The current work directly assessed the relationships among XD-induced NTAIL folding, XD-NTAIL binding affinity, and polymerase activity. Amino acid substitutions that abolished XD-induced NTAIL α-helical folding were created within Box-2 of Edmonston MeV NTAIL. Polymerase activity in minireplicons was maintained despite a 35-fold decrease in XD-NTAIL binding affinity or reduction/loss of XD-induced NTAIL alpha-helical folding. Recombinant infectious virus was recovered for all mutants, and transcriptase elongation rates remained within a 1.7-fold range of parent virus. Box-2 mutations did however impose a significant cost to infectivity, reflected in an increase in the amount of input genome required to match the infectivity of parent virus. Diminished infectivity could not be attributed to changes in virion protein composition or production of defective interfering particles, where changes from parent virus were within a 3-fold range. The results indicated that MeV polymerase activity, but not infectivity, tolerates amino acid changes in the XD-binding region of the nucleoprotein. Selectional pressure for conservation of the Box-2 sequence may thus reflect a role in assuring the fidelity of polymerase functions or the assembly of viral particles required for optimal infectivity. PMID:22318731
Shu, Yaoling; Habchi, Johnny; Costanzo, Stéphanie; Padilla, André; Brunel, Joanna; Gerlier, Denis; Oglesbee, Michael; Longhi, Sonia
2012-04-06
The measles virus (MeV) phosphoprotein (P) tethers the polymerase to the nucleocapsid template for transcription and genome replication. Binding of P to nucleocapsid is mediated by the X domain of P (XD) and a conserved sequence (Box-2) within the C-terminal domain of the nucleoprotein (N(TAIL)). XD binding induces N(TAIL) α-helical folding, which in turn has been proposed to stabilize the polymerase-nucleocapsid complex, with cycles of binding and release required for transcription and genome replication. The current work directly assessed the relationships among XD-induced N(TAIL) folding, XD-N(TAIL) binding affinity, and polymerase activity. Amino acid substitutions that abolished XD-induced N(TAIL) α-helical folding were created within Box-2 of Edmonston MeV N(TAIL). Polymerase activity in minireplicons was maintained despite a 35-fold decrease in XD-N(TAIL) binding affinity or reduction/loss of XD-induced N(TAIL) alpha-helical folding. Recombinant infectious virus was recovered for all mutants, and transcriptase elongation rates remained within a 1.7-fold range of parent virus. Box-2 mutations did however impose a significant cost to infectivity, reflected in an increase in the amount of input genome required to match the infectivity of parent virus. Diminished infectivity could not be attributed to changes in virion protein composition or production of defective interfering particles, where changes from parent virus were within a 3-fold range. The results indicated that MeV polymerase activity, but not infectivity, tolerates amino acid changes in the XD-binding region of the nucleoprotein. Selectional pressure for conservation of the Box-2 sequence may thus reflect a role in assuring the fidelity of polymerase functions or the assembly of viral particles required for optimal infectivity.
Insights into the nuclear export of murine leukemia virus intron-containing RNA.
Pessel-Vivares, Lucie; Houzet, Laurent; Lainé, Sébastien; Mougel, Marylène
2015-01-01
The retroviral genome consists of an intron-containing transcript that has essential cytoplasmic functions in the infected cell. This viral transcript can escape splicing, circumvent the nuclear checkpoint mechanisms and be transported to the cytoplasm by hijacking the host machinery. Once in the cytoplasm, viral unspliced RNA acts as mRNA to be translated and as genomic RNA to be packaged into nascent viruses. The murine leukemia virus (MLV) is among the first retroviruses discovered and is classified as simple Retroviridae due to its minimal encoding capacity. The oncogenic and transduction abilities of MLV are extensively studied, whereas surprisingly the crucial step of its nuclear export has remained unsolved until 2014. Recent work has revealed the recruitment by MLV of the cellular NXF1/Tap-dependent pathway for export. Unconventionally, MLV uses of Tap to export both spliced and unspliced viral RNAs. Unlike other retroviruses, MLV does not harbor a unique RNA signal for export. Indeed, multiple sequences throughout the MLV genome appear to promote export of the unspliced MLV RNA. We review here the current understanding of the export mechanism and highlight the determinants that influence MLV export. As the molecular mechanism of MLV export is elucidated, we will gain insight into the contribution of the export pathway to the cytoplasmic fate of the viral RNA.
Small molecules targeting viral RNA.
Hermann, Thomas
2016-11-01
Highly conserved noncoding RNA (ncRNA) elements in viral genomes and transcripts offer new opportunities to expand the repertoire of drug targets for the development of antiinfective therapy. Ligands binding to ncRNA architectures are able to affect interactions, structural stability or conformational changes and thereby block processes essential for viral replication. Proof of concept for targeting functional RNA by small molecule inhibitors has been demonstrated for multiple viruses with RNA genomes. Strategies to identify antiviral compounds as inhibitors of ncRNA are increasingly emphasizing consideration of drug-like properties of candidate molecules emerging from screening and ligand design. Recent efforts of antiviral lead discovery for RNA targets have provided drug-like small molecules that inhibit viral replication and include inhibitors of human immunodeficiency virus (HIV), hepatitis C virus (HCV), severe respiratory syndrome coronavirus (SARS CoV), and influenza A virus. While target selectivity remains a challenge for the discovery of useful RNA-binding compounds, a better understanding is emerging of properties that define RNA targets amenable for inhibition by small molecule ligands. Insight from successful approaches of targeting viral ncRNA in HIV, HCV, SARS CoV, and influenza A will provide a basis for the future exploration of RNA targets for therapeutic intervention in other viral pathogens which create urgent, unmet medical needs. Viruses for which targeting ncRNA components in the genome or transcripts may be promising include insect-borne flaviviruses (Dengue, Zika, and West Nile) and filoviruses (Ebola and Marburg). WIREs RNA 2016, 7:726-743. doi: 10.1002/wrna.1373 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Structural insights into the multifunctional protein VP3 of birnaviruses.
Casañas, Arnau; Navarro, Aitor; Ferrer-Orta, Cristina; González, Dolores; Rodríguez, José F; Verdaguer, Núria
2008-01-01
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is the causative agent of one of the most harmful poultry diseases. The IBDV genome encodes five mature proteins; of these, the multifunctional protein VP3 plays an essential role in virus morphogenesis. This protein, which interacts with the structural protein VP2, with the double-stranded RNA genome, and with the virus-encoded, RNA-dependent RNA polymerase, VP1, is involved not only in the formation of the viral capsid, but also in the recruitment of VP1 into the capsid and in the encapsidation of the viral genome. Here, we report the X-ray structure of the central region of VP3, residues 92-220, consisting of two alpha-helical domains connected by a long and flexible hinge that are organized as a dimer. Unexpectedly, the overall fold of the second VP3 domain shows significant structural similarities with different transcription regulation factors.
Didierlaurent, Ludovic; Houzet, Laurent; Morichaud, Zakia; Darlix, Jean-Luc; Mougel, Marylène
2008-01-01
Reverse transcription of the genomic RNA by reverse transcriptase occurs soon after HIV-1 infection of target cells. The viral nucleocapsid (NC) protein chaperones this process via its nucleic acid annealing activities and its interactions with the reverse transcriptase enzyme. To function, NC needs its two conserved zinc fingers and flanking basic residues. We recently reported a new role for NC, whereby it negatively controls reverse transcription in the course of virus formation. Indeed, deleting its zinc fingers causes reverse transcription activation in virus producer cells. To investigate this new NC function, we used viruses with subtle mutations in the conserved zinc fingers and its flanking domains. We monitored by quantitative PCR the HIV-1 DNA content in producer cells and in produced virions. Results showed that the two intact zinc-finger structures are required for the temporal control of reverse transcription by NC throughout the virus replication cycle. The N-terminal basic residues also contributed to this new role of NC, while Pro-31 residue between the zinc fingers and Lys-59 in the C-terminal region did not. These findings further highlight the importance of NC as a major target for anti-HIV-1 drugs. PMID:18641038
Hodgetts, Ross
2004-12-01
RNA interference might have evolved to minimize the deleterious impact of transposable elements and viruses on eukaryotic genomes, because mutations in genes within the RNAi pathway cause mobilization of transposons in nematodes and flies. Although the first examples of RNAi involved post-transcriptional gene silencing, recently the pathway has been shown to act at the transcriptional level. It does so by establishing a chromatin configuration on the target DNA that has many of the hallmarks of heterochromatin, thus preventing its transcription. Members of dispersed, repeated sequence families appear to have been utilized by the RNAi machinery to regulate nearby genes in yeast. The unusual genomic distribution of three repeated element families in the chicken, fruit-fly and nematode genomes prompts speculation that some of these repeats have been co-opted to control gene expression, either locally or over extended chromosomal domains.
De Nicola, Beatrice; Lech, Christopher J.; Heddi, Brahim; Regmi, Sagar; Frasson, Ilaria; Perrone, Rosalba; Richter, Sara N.; Phan, Anh Tuân
2016-01-01
The long terminal repeat (LTR) of the proviral human immunodeficiency virus (HIV)-1 genome is integral to virus transcription and host cell infection. The guanine-rich U3 region within the LTR promoter, previously shown to form G-quadruplex structures, represents an attractive target to inhibit HIV transcription and replication. In this work, we report the structure of a biologically relevant G-quadruplex within the LTR promoter region of HIV-1. The guanine-rich sequence designated LTR-IV forms a well-defined structure in physiological cationic solution. The nuclear magnetic resonance (NMR) structure of this sequence reveals a parallel-stranded G-quadruplex containing a single-nucleotide thymine bulge, which participates in a conserved stacking interaction with a neighboring single-nucleotide adenine loop. Transcription analysis in a HIV-1 replication competent cell indicates that the LTR-IV region may act as a modulator of G-quadruplex formation in the LTR promoter. Consequently, the LTR-IV G-quadruplex structure presented within this work could represent a valuable target for the design of HIV therapeutics. PMID:27298260
Enhancer scanning to locate regulatory regions in genomic loci
Buckley, Melissa; Gjyshi, Anxhela; Mendoza-Fandiño, Gustavo; Baskin, Rebekah; Carvalho, Renato S.; Carvalho, Marcelo A.; Woods, Nicholas T.; Monteiro, Alvaro N.A.
2016-01-01
The present protocol provides a rapid, streamlined and scalable strategy to systematically scan genomic regions for the presence of transcriptional regulatory regions active in a specific cell type. It creates genomic tiles spanning a region of interest that are subsequently cloned by recombination into a luciferase reporter vector containing the Simian Virus 40 promoter. Tiling clones are transfected into specific cell types to test for the presence of transcriptional regulatory regions. The protocol includes testing of different SNP (single nucleotide polymorphism) alleles to determine their effect on regulatory activity. This procedure provides a systematic framework to identify candidate functional SNPs within a locus during functional analysis of genome-wide association studies. This protocol adapts and combines previous well-established molecular biology methods to provide a streamlined strategy, based on automated primer design and recombinational cloning to rapidly go from a genomic locus to a set of candidate functional SNPs in eight weeks. PMID:26658467
Curtil, Claire; Enache, Liviu S; Radreau, Pauline; Dron, Anne-Gaëlle; Scholtès, Caroline; Deloire, Alexandre; Roche, Didier; Lotteau, Vincent; André, Patrice; Ramière, Christophe
2014-03-01
Hepatitis B virus (HBV) genome transcription is highly dependent on liver-enriched, metabolic nuclear receptors (NRs). Among others, NR farnesoid X receptor α (FXRα) enhances HBV core promoter activity and pregenomic RNA synthesis. Interestingly, two food-withdrawal-induced FXRα modulators, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and deacetylase SIRT1, have been found to be associated with HBV genomes ex vivo. Whereas PGC-1α induction was shown to increase HBV replication, the effect of SIRT1 on HBV transcription remains unknown. Here, we showed that, in hepatocarcinoma-derived Huh-7 cells, combined activation of FXRα by GW4064 and SIRT1 by activator 3 increased HBV core promoter-controlled luciferase expression by 25-fold, compared with a 10-fold increase with GW4064 alone. Using cell lines differentially expressing FXRα in overexpression and silencing experiments, we demonstrated that SIRT1 activated the core promoter in an FXRα- and PGC-1α-dependent manner. Maximal activation (>150-fold) was observed in FXRα- and PGC-1α-overexpressing Huh-7 cells treated with FXRα and SIRT1 activators. Similarly, in cells transfected with full-length HBV genomes, maximal induction (3.5-fold) of core promoter-controlled synthesis of 3.5-kb RNA was observed in the same conditions of transfection and treatments. Thus, we identified a subnetwork of metabolic factors regulating HBV replication, strengthening the hypothesis that transcription of HBV and metabolic genes is similarly controlled.
Complete and Incomplete Hepatitis B Virus Particles: Formation, Function, and Application.
Hu, Jianming; Liu, Kuancheng
2017-03-21
Hepatitis B virus (HBV) is a para-retrovirus or retroid virus that contains a double-stranded DNA genome and replicates this DNA via reverse transcription of a RNA pregenome. Viral reverse transcription takes place within a capsid upon packaging of the RNA and the viral reverse transcriptase. A major characteristic of HBV replication is the selection of capsids containing the double-stranded DNA, but not those containing the RNA or the single-stranded DNA replication intermediate, for envelopment during virion secretion. The complete HBV virion particles thus contain an outer envelope, studded with viral envelope proteins, that encloses the capsid, which, in turn, encapsidates the double-stranded DNA genome. Furthermore, HBV morphogenesis is characterized by the release of subviral particles that are several orders of magnitude more abundant than the complete virions. One class of subviral particles are the classical surface antigen particles (Australian antigen) that contain only the viral envelope proteins, whereas the more recently discovered genome-free (empty) virions contain both the envelope and capsid but no genome. In addition, recent evidence suggests that low levels of RNA-containing particles may be released, after all. We will summarize what is currently known about how the complete and incomplete HBV particles are assembled. We will discuss briefly the functions of the subviral particles, which remain largely unknown. Finally, we will explore the utility of the subviral particles, particularly, the potential of empty virions and putative RNA virions as diagnostic markers and the potential of empty virons as a vaccine candidate.
Eusebio-Cope, Ana; Sun, Liying; Tanaka, Toru; Chiba, Sotaro; Kasahara, Shin; Suzuki, Nobuhiro
2015-03-01
The chestnut blight fungus, Cryphonectria parasitica, is an important plant pathogenic ascomycete. The fungus hosts a wide range of viruses and now has been established as a model filamentous fungus for studying virus/host and virus/virus interactions. This is based on the development of methods for artificial virus introduction and elimination, host genome manipulability, available host genome sequence with annotations, host mutant strains, and molecular tools. Molecular tools include sub-cellular distribution markers, gene expression reporters, and vectors with regulatable promoters that have been long available for unicellular organisms, cultured cells, individuals of animals and plants, and certain filamentous fungi. A comparison with other filamentous fungi such as Neurospora crassa has been made to establish clear advantages and disadvantages of C. parasitica as a virus host. In addition, a few recent studies on RNA silencing vs. viruses in this fungus are introduced. Copyright © 2014 Elsevier Inc. All rights reserved.
Synthetic transcripts of double-stranded Birnavirus genome are infectious.
Mundt, E; Vakharia, V N
1996-01-01
We have developed a system for generation of infectious bursal disease virus (IBDV), a segmented double-stranded RNA virus of the Birnaviridae family, with the use of synthetic transcripts derived from cloned cDNA. Independent full-length cDNA clones were constructed that contained the entire coding and noncoding regions of RNA segments A and B of two distinguishable IBDV strains of serotype I. Segment A encodes all of the structural (VP2, VP4, and VP3) and nonstructural (VP5) proteins, whereas segment B encodes the RNA-dependent RNA polymerase (VP1). Synthetic RNAs of both segments were produced by in vitro transcription of linearized plasmids with T7 RNA polymerase. Transfection of Vero cells with combined plus-sense transcripts of both segments generated infectious virus as early as 36 hr after transfection. The infectivity and specificity of the recovered chimeric virus was ascertained by the appearance of cytopathic effect in chicken embryo cells, by immunofluorescence staining of infected Vero cells with rabbit anti-IBDV serum, and by nucleotide sequence analysis of the recovered virus, respectively. In addition, transfectant viruses containing genetically tagged sequences in either segment A or segment B of IBDV were generated to confirm the feasibility of this system. The development of a reverse genetics system for double-stranded RNA viruses will greatly facilitate studies of the regulation of viral gene expression, pathogenesis, and design of a new generation of live vaccines. Images Fig. 2 Fig. 3 Fig. 4 PMID:8855321
Evidence for an Ancestral Association of Human Coronavirus 229E with Bats
Corman, Victor Max; Baldwin, Heather J.; Tateno, Adriana Fumie; Zerbinati, Rodrigo Melim; Annan, Augustina; Owusu, Michael; Nkrumah, Evans Ewald; Maganga, Gael Darren; Oppong, Samuel; Adu-Sarkodie, Yaw; Vallo, Peter; da Silva Filho, Luiz Vicente Ribeiro Ferreira; Leroy, Eric M.; Thiel, Volker; van der Hoek, Lia; Poon, Leo L. M.; Tschapka, Marco
2015-01-01
ABSTRACT We previously showed that close relatives of human coronavirus 229E (HCoV-229E) exist in African bats. The small sample and limited genomic characterizations have prevented further analyses so far. Here, we tested 2,087 fecal specimens from 11 bat species sampled in Ghana for HCoV-229E-related viruses by reverse transcription-PCR (RT-PCR). Only hipposiderid bats tested positive. To compare the genetic diversity of bat viruses and HCoV-229E, we tested historical isolates and diagnostic specimens sampled globally over 10 years. Bat viruses were 5- and 6-fold more diversified than HCoV-229E in the RNA-dependent RNA polymerase (RdRp) and spike genes. In phylogenetic analyses, HCoV-229E strains were monophyletic and not intermixed with animal viruses. Bat viruses formed three large clades in close and more distant sister relationships. A recently described 229E-related alpaca virus occupied an intermediate phylogenetic position between bat and human viruses. According to taxonomic criteria, human, alpaca, and bat viruses form a single CoV species showing evidence for multiple recombination events. HCoV-229E and the alpaca virus showed a major deletion in the spike S1 region compared to all bat viruses. Analyses of four full genomes from 229E-related bat CoVs revealed an eighth open reading frame (ORF8) located at the genomic 3′ end. ORF8 also existed in the 229E-related alpaca virus. Reanalysis of HCoV-229E sequences showed a conserved transcription regulatory sequence preceding remnants of this ORF, suggesting its loss after acquisition of a 229E-related CoV by humans. These data suggested an evolutionary origin of 229E-related CoVs in hipposiderid bats, hypothetically with camelids as intermediate hosts preceding the establishment of HCoV-229E. IMPORTANCE The ancestral origins of major human coronaviruses (HCoVs) likely involve bat hosts. Here, we provide conclusive genetic evidence for an evolutionary origin of the common cold virus HCoV-229E in hipposiderid bats by analyzing a large sample of African bats and characterizing several bat viruses on a full-genome level. Our evolutionary analyses show that animal and human viruses are genetically closely related, can exchange genetic material, and form a single viral species. We show that the putative host switches leading to the formation of HCoV-229E were accompanied by major genomic changes, including deletions in the viral spike glycoprotein gene and loss of an open reading frame. We reanalyze a previously described genetically related alpaca virus and discuss the role of camelids as potential intermediate hosts between bat and human viruses. The evolutionary history of HCoV-229E likely shares important characteristics with that of the recently emerged highly pathogenic Middle East respiratory syndrome (MERS) coronavirus. PMID:26378164
Geographic Population Structure in Epstein-Barr Virus Revealed by Comparative Genomics
Chiara, Matteo; Manzari, Caterina; Lionetti, Claudia; Mechelli, Rosella; Anastasiadou, Eleni; Chiara Buscarinu, Maria; Ristori, Giovanni; Salvetti, Marco; Picardi, Ernesto; D’Erchia, Anna Maria; Pesole, Graziano; Horner, David S.
2016-01-01
Epstein-Barr virus (EBV) latently infects the majority of the human population and is implicated as a causal or contributory factor in numerous diseases. We sequenced 27 complete EBV genomes from a cohort of Multiple Sclerosis (MS) patients and healthy controls from Italy, although no variants showed a statistically significant association with MS. Taking advantage of the availability of ∼130 EBV genomes with known geographical origins, we reveal a striking geographic distribution of EBV sub-populations with distinct allele frequency distributions. We discuss mechanisms that potentially explain these observations, and their implications for understanding the association of EBV with human disease. PMID:27635051
Brauburger, Kristina; Boehmann, Yannik; Krähling, Verena
2015-01-01
ABSTRACT The highly pathogenic Ebola virus (EBOV) has a nonsegmented negative-strand (NNS) RNA genome containing seven genes. The viral genes either are separated by intergenic regions (IRs) of variable length or overlap. The structure of the EBOV gene overlaps is conserved throughout all filovirus genomes and is distinct from that of the overlaps found in other NNS RNA viruses. Here, we analyzed how diverse gene borders and noncoding regions surrounding the gene borders influence transcript levels and govern polymerase behavior during viral transcription. Transcription of overlapping genes in EBOV bicistronic minigenomes followed the stop-start mechanism, similar to that followed by IR-containing gene borders. When the gene overlaps were extended, the EBOV polymerase was able to scan the template in an upstream direction. This polymerase feature seems to be generally conserved among NNS RNA virus polymerases. Analysis of IR-containing gene borders showed that the IR sequence plays only a minor role in transcription regulation. Changes in IR length were generally well tolerated, but specific IR lengths led to a strong decrease in downstream gene expression. Correlation analysis revealed that these effects were largely independent of the surrounding gene borders. Each EBOV gene contains exceptionally long untranslated regions (UTRs) flanking the open reading frame. Our data suggest that the UTRs adjacent to the gene borders are the main regulators of transcript levels. A highly complex interplay between the different cis-acting elements to modulate transcription was revealed for specific combinations of IRs and UTRs, emphasizing the importance of the noncoding regions in EBOV gene expression control. IMPORTANCE Our data extend those from previous analyses investigating the implication of noncoding regions at the EBOV gene borders for gene expression control. We show that EBOV transcription is regulated in a highly complex yet not easily predictable manner by a set of interacting cis-active elements. These findings are important not only for the design of recombinant filoviruses but also for the design of other replicon systems widely used as surrogate systems to study the filovirus replication cycle under low biosafety levels. Insights into the complex regulation of EBOV transcription conveyed by noncoding sequences will also help to interpret the importance of mutations that have been detected within these regions, including in isolates of the current outbreak. PMID:26656691
Brauburger, Kristina; Boehmann, Yannik; Krähling, Verena; Mühlberger, Elke
2016-02-15
The highly pathogenic Ebola virus (EBOV) has a nonsegmented negative-strand (NNS) RNA genome containing seven genes. The viral genes either are separated by intergenic regions (IRs) of variable length or overlap. The structure of the EBOV gene overlaps is conserved throughout all filovirus genomes and is distinct from that of the overlaps found in other NNS RNA viruses. Here, we analyzed how diverse gene borders and noncoding regions surrounding the gene borders influence transcript levels and govern polymerase behavior during viral transcription. Transcription of overlapping genes in EBOV bicistronic minigenomes followed the stop-start mechanism, similar to that followed by IR-containing gene borders. When the gene overlaps were extended, the EBOV polymerase was able to scan the template in an upstream direction. This polymerase feature seems to be generally conserved among NNS RNA virus polymerases. Analysis of IR-containing gene borders showed that the IR sequence plays only a minor role in transcription regulation. Changes in IR length were generally well tolerated, but specific IR lengths led to a strong decrease in downstream gene expression. Correlation analysis revealed that these effects were largely independent of the surrounding gene borders. Each EBOV gene contains exceptionally long untranslated regions (UTRs) flanking the open reading frame. Our data suggest that the UTRs adjacent to the gene borders are the main regulators of transcript levels. A highly complex interplay between the different cis-acting elements to modulate transcription was revealed for specific combinations of IRs and UTRs, emphasizing the importance of the noncoding regions in EBOV gene expression control. Our data extend those from previous analyses investigating the implication of noncoding regions at the EBOV gene borders for gene expression control. We show that EBOV transcription is regulated in a highly complex yet not easily predictable manner by a set of interacting cis-active elements. These findings are important not only for the design of recombinant filoviruses but also for the design of other replicon systems widely used as surrogate systems to study the filovirus replication cycle under low biosafety levels. Insights into the complex regulation of EBOV transcription conveyed by noncoding sequences will also help to interpret the importance of mutations that have been detected within these regions, including in isolates of the current outbreak. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Wang, Xiaohong; Zheng, Zhi-Ming
2016-01-01
Papillomaviruses are a family of small, non-enveloped DNA tumor viruses. Knowing a complete transcription map from each papillomavirus genome can provide guidance for various papillomavirus studies. This unit provides detailed protocols to construct a transcription map of human papillomavirus type 18. The same approach can be easily adapted to other transcription map studies of any other papillomavirus genotype due to the high degree of conservation in the genome structure, organization and gene expression among papillomaviruses. The focused methods are 5’- and 3’- rapid amplification of cDNA ends (RACE), which are the techniques commonly used in molecular biology to obtain the full length RNA transcript or to map a transcription start site (TSS) or an RNA polyadenylation (pA) cleavage site. Primer walking RT-PCR is a method for studying splicing junction of RACE products. In addition, RNase protection assay and primer extension are also introduced as alternative methods in the mapping analysis. PMID:26855281
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mushegian, Arcady R., E-mail: mushegian2@gmail.com; Elena, Santiago F., E-mail: sfelena@ibmcp.upv.es; The Santa Fe Institute, Santa Fe, NM 87501
Homologs of Tobacco mosaic virus 30K cell-to-cell movement protein are encoded by diverse plant viruses. Mechanisms of action and evolutionary origins of these proteins remain obscure. We expand the picture of conservation and evolution of the 30K proteins, producing sequence alignment of the 30K superfamily with the broadest phylogenetic coverage thus far and illuminating structural features of the core all-beta fold of these proteins. Integrated copies of pararetrovirus 30K movement genes are prevalent in euphyllophytes, with at least one copy intact in nearly every examined species, and mRNAs detected for most of them. Sequence analysis suggests repeated integrations, pseudogenizations, andmore » positive selection in those provirus genes. An unannotated 30K-superfamily gene in Arabidopsis thaliana genome is likely expressed as a fusion with the At1g37113 transcript. This molecular background of endopararetrovirus gene products in plants may change our view of virus infection and pathogenesis, and perhaps of cellular homeostasis in the hosts. - Highlights: • Sequence region shared by plant virus “30K” movement proteins has an all-beta fold. • Most euphyllophyte genomes contain integrated copies of pararetroviruses. • These integrated virus genomes often include intact movement protein genes. • Molecular evidence suggests that these “30K” genes may be selected for function.« less
High-Throughput Sequencing Reveals Principles of Adeno-Associated Virus Serotype 2 Integration
Janovitz, Tyler; Klein, Isaac A.; Oliveira, Thiago; Mukherjee, Piali; Nussenzweig, Michel C.; Sadelain, Michel
2013-01-01
Viral integrations are important in human biology, yet genome-wide integration profiles have not been determined for many viruses. Adeno-associated virus (AAV) infects most of the human population and is a prevalent gene therapy vector. AAV integrates into the human genome with preference for a single locus, termed AAVS1. However, the genome-wide integration of AAV has not been defined, and the principles underlying this recombination remain unclear. Using a novel high-throughput approach, integrant capture sequencing, nearly 12 million AAV junctions were recovered from a human cell line, providing five orders of magnitude more data than were previously available. Forty-five percent of integrations occurred near AAVS1, and several thousand novel integration hotspots were identified computationally. Most of these occurred in genes, with dozens of hotspots targeting known oncogenes. Viral replication protein binding sites (RBS) and transcriptional activity were major factors favoring integration. In a first for eukaryotic viruses, the data reveal a unique asymmetric integration profile with distinctive directional orientation of viral genomes. These studies provide a new understanding of AAV integration biology through the use of unbiased high-throughput data acquisition and bioinformatics. PMID:23720718
Tang, Cheng; Lan, Daoliang; Zhang, Huanrong; Ma, Jing; Yue, Hua
2013-01-01
Duck is an economically important poultry and animal model for human viral hepatitis B. However, the molecular mechanisms underlying host-virus interaction remain unclear because of limited information on the duck genome. This study aims to characterize the duck normal liver transcriptome and to identify the differentially expressed transcripts at 24 h after duck hepatitis A virus genotype C (DHAV-C) infection using Illumina-Solexa sequencing. After removal of low-quality sequences and assembly, a total of 52,757 unigenes was obtained from the normal liver group. Further blast analysis showed that 18,918 unigenes successfully matched the known genes in the database. GO analysis revealed that 25,116 unigenes took part in 61 categories of biological processes, cellular components, and molecular functions. Among the 25 clusters of orthologous group categories (COG), the cluster for "General function prediction only" represented the largest group, followed by "Transcription" and "Replication, recombination, and repair." KEGG analysis showed that 17,628 unigenes were involved in 301 pathways. Through comparison of normal and infected transcriptome data, we identified 20 significantly differentially expressed unigenes, which were further confirmed by real-time polymerase chain reaction. Of the 20 unigenes, nine matched the known genes in the database, including three up-regulated genes (virus replicase polyprotein, LRRC3B, and PCK1) and six down-regulated genes (CRP, AICL-like 2, L1CAM, CYB26A1, CHAC1, and ADAM32). The remaining 11 novel unigenes that did not match any known genes in the database may provide a basis for the discovery of new transcripts associated with infection. This study provided a gene expression pattern for normal duck liver and for the previously unrecognized changes in gene transcription that are altered during DHAV-C infection. Our data revealed useful information for future studies on the duck genome and provided new insights into the molecular mechanism of host-DHAV-C interaction.
Huang, Ying-Wen; Hu, Chung-Chi; Lin, Na-Sheng; Hsu, Yau-Heiu
2010-01-01
Satellite RNAs (satRNAs) and satellite viruses depend on the replicase complexes provided by their cognate helper viruses and host plants for replication, pretending that they are part of the viral genomes. Although satRNAs and satellite viruses do not share significant nucleotide sequence similarity with the helper viruses, the essential cis-acting elements recognized by the replicase complexes must reside on their genomes, acting as the mimicry for the molecular pretenders. By understanding how this molecular mimicry deceives the helper viruses into supporting the satellites, a significant amount of knowledge of the basic requirements and mechanisms for replication of viruses and satellites has been obtained. Here we review the recent advances in understanding the effects of the cis elements at the termini of satRNAs and satellite viruses on their accumulation. Several well-characterized satellite/helper virus systems, representing the non-coding short satRNAs, mRNA-type long satRNAs, circular satRNAs and satellite viruses, are compared and contrasted. It is concluded that different satellites may adopt different strategies to exploit the replication/transcription/translation machineries of their helper viruses, and different mimicries may be implemented by the same molecular pretender for different biological functions.
Random Amplification and Pyrosequencing for Identification of Novel Viral Genome Sequences
Hang, Jun; Forshey, Brett M.; Kochel, Tadeusz J.; Li, Tao; Solórzano, Víctor Fiestas; Halsey, Eric S.; Kuschner, Robert A.
2012-01-01
ssRNA viruses have high levels of genomic divergence, which can lead to difficulty in genomic characterization of new viruses using traditional PCR amplification and sequencing methods. In this study, random reverse transcription, anchored random PCR amplification, and high-throughput pyrosequencing were used to identify orthobunyavirus sequences from total RNA extracted from viral cultures of acute febrile illness specimens. Draft genome sequence for the orthobunyavirus L segment was assembled and sequentially extended using de novo assembly contigs from pyrosequencing reads and orthobunyavirus sequences in GenBank as guidance. Accuracy and continuous coverage were achieved by mapping all reads to the L segment draft sequence. Subsequently, RT-PCR and Sanger sequencing were used to complete the genome sequence. The complete L segment was found to be 6936 bases in length, encoding a 2248-aa putative RNA polymerase. The identified L segment was distinct from previously published South American orthobunyaviruses, sharing 63% and 54% identity at the nucleotide and amino acid level, respectively, with the complete Oropouche virus L segment and 73% and 81% identity at the nucleotide and amino acid level, respectively, with a partial Caraparu virus L segment. The result demonstrated the effectiveness of a sequence-independent amplification and next-generation sequencing approach for obtaining complete viral genomes from total nucleic acid extracts and its use in pathogen discovery. PMID:22468136
Ikegami, Tetsuro; Peters, C J; Makino, Shinji
2005-05-01
Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, has a tripartite negative-strand genome (S, M, and L segments) and is an important mosquito-borne pathogen for domestic animals and humans. We established an RVFV T7 RNA polymerase-driven minigenome system in which T7 RNA polymerase from an expression plasmid drove expression of RNA transcripts for viral proteins and minigenome RNA transcripts carrying a reporter gene between both termini of the M RNA segment in 293T cells. Like other viruses of the Bunyaviridae family, replication and transcription of the RVFV minigenome required expression of viral N and L proteins. Unexpectedly, the coexpression of an RVFV nonstructural protein, NSs, with N and L proteins resulted in a significant enhancement of minigenome RNA replication. Coexpression of NSs protein with N and L proteins also enhanced minigenome mRNA transcription in the cells expressing viral-sense minigenome RNA transcripts. NSs protein expression increased the RNA replication of minigenomes that originated from S and L RNA segments. Enhancement of minigenome RNA synthesis by NSs protein occurred in cells lacking alpha/beta interferon (IFN-alpha/beta) genes, indicating that the effect of NSs protein on minigenome RNA replication was unrelated to a putative NSs protein-induced inhibition of IFN-alpha/beta production. Our finding that RVFV NSs protein augmented minigenome RNA synthesis was in sharp contrast to reports that Bunyamwera virus (genus Bunyavirus) NSs protein inhibits viral minigenome RNA synthesis, suggesting that RVFV NSs protein and Bunyamwera virus NSs protein have distinctly different biological roles in viral RNA synthesis.
Novel microRNA-like viral small regulatory RNAs arising during human hepatitis A virus infection.
Shi, Jiandong; Sun, Jing; Wang, Bin; Wu, Meini; Zhang, Jing; Duan, Zhiqing; Wang, Haixuan; Hu, Ningzhu; Hu, Yunzhang
2014-10-01
MicroRNAs (miRNAs), including host miRNAs and viral miRNAs, play vital roles in regulating host-virus interactions. DNA viruses encode miRNAs that regulate the viral life cycle. However, it is generally believed that cytoplasmic RNA viruses do not encode miRNAs, owing to inaccessible cellular miRNA processing machinery. Here, we provide a comprehensive genome-wide analysis and identification of miRNAs that were derived from hepatitis A virus (HAV; Hu/China/H2/1982), which is a typical cytoplasmic RNA virus. Using deep-sequencing and in silico approaches, we identified 2 novel virally encoded miRNAs, named hav-miR-1-5p and hav-miR-2-5p. Both of the novel virally encoded miRNAs were clearly detected in infected cells. Analysis of Dicer enzyme silencing demonstrated that HAV-derived miRNA biogenesis is Dicer dependent. Furthermore, we confirmed that HAV mature miRNAs were generated from viral miRNA precursors (pre-miRNAs) in host cells. Notably, naturally derived HAV miRNAs were biologically and functionally active and induced post-transcriptional gene silencing (PTGS). Genomic location analysis revealed novel miRNAs located in the coding region of the viral genome. Overall, our results show that HAV naturally generates functional miRNA-like small regulatory RNAs during infection. This is the first report of miRNAs derived from the coding region of genomic RNA of a cytoplasmic RNA virus. These observations demonstrate that a cytoplasmic RNA virus can naturally generate functional miRNAs, as DNA viruses do. These findings also contribute to improved understanding of host-RNA virus interactions mediated by RNA virus-derived miRNAs. © FASEB.
Modes of Human T Cell Leukemia Virus Type 1 Transmission, Replication and Persistence
Carpentier, Alexandre; Barez, Pierre-Yves; Hamaidia, Malik; Gazon, Hélène; de Brogniez, Alix; Perike, Srikanth; Gillet, Nicolas; Willems, Luc
2015-01-01
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that causes cancer (Adult T cell Leukemia, ATL) and a spectrum of inflammatory diseases (mainly HTLV-associated myelopathy—tropical spastic paraparesis, HAM/TSP). Since virions are particularly unstable, HTLV-1 transmission primarily occurs by transfer of a cell carrying an integrated provirus. After transcription, the viral genomic RNA undergoes reverse transcription and integration into the chromosomal DNA of a cell from the newly infected host. The virus then replicates by either one of two modes: (i) an infectious cycle by virus budding and infection of new targets and (ii) mitotic division of cells harboring an integrated provirus. HTLV-1 replication initiates a series of mechanisms in the host including antiviral immunity and checkpoint control of cell proliferation. HTLV-1 has elaborated strategies to counteract these defense mechanisms allowing continuous persistence in humans. PMID:26198240
Hu, Xiaolong; Shen, Yunwang; Zheng, Qin; Wang, Guobao; Wu, Xiaofeng; Gong, Chengliang
2016-02-01
Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen that specifically infects the domestic silkworm and causes serious economic loss to sericulture around the world. The function of BmNPV Bm59 gene in the viral life cycle is inconclusive. To investigate the role of Bm59 during viral infection, the transcription initiation site and temporal expression of Bm59 were analyzed, and Bm59-knockout virus was generated through homologous recombination in Escherichia coli. The results showed that Bm59 is an early transcription gene with an atypia early transcriptional start motif. Budded virion (BV) production and DNA replication in the BmN cells transfected with the Bm59-knockout virus bacmid were similar to those in the cells transfected with the wild-type virus. Electron microscopy revealed that the occlusion-derived virus can be produced in cells infected with the Bm59-knockout virus. These results indicated that Bm59 is an early gene and is not essential for viral replication or assembly of BmNPV. These findings suggested that non-essential gene (Bm59) remained in the viral genome, which may interact with other viral/host genes in a certain situation.
The Tat Inhibitor Didehydro-Cortistatin A Prevents HIV-1 Reactivation from Latency
Mousseau, Guillaume; Kessing, Cari F.; Fromentin, Rémi; Trautmann, Lydie; Chomont, Nicolas
2015-01-01
ABSTRACT Antiretroviral therapy (ART) inhibits HIV-1 replication, but the virus persists in latently infected resting memory CD4+ T cells susceptible to viral reactivation. The virus-encoded early gene product Tat activates transcription of the viral genome and promotes exponential viral production. Here we show that the Tat inhibitor didehydro-cortistatin A (dCA), unlike other antiretrovirals, reduces residual levels of viral transcription in several models of HIV latency, breaks the Tat-mediated transcriptional feedback loop, and establishes a nearly permanent state of latency, which greatly diminishes the capacity for virus reactivation. Importantly, treatment with dCA induces inactivation of viral transcription even after its removal, suggesting that the HIV promoter is epigenetically repressed. Critically, dCA inhibits viral reactivation upon CD3/CD28 or prostratin stimulation of latently infected CD4+ T cells from HIV-infected subjects receiving suppressive ART. Our results suggest that inclusion of a Tat inhibitor in current ART regimens may contribute to a functional HIV-1 cure by reducing low-level viremia and preventing viral reactivation from latent reservoirs. PMID:26152583
mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus
Legendre, Matthieu; Audic, Stéphane; Poirot, Olivier; Hingamp, Pascal; Seltzer, Virginie; Byrne, Deborah; Lartigue, Audrey; Lescot, Magali; Bernadac, Alain; Poulain, Julie; Abergel, Chantal; Claverie, Jean-Michel
2010-01-01
Mimivirus, a virus infecting Acanthamoeba, is the prototype of the Mimiviridae, the latest addition to the nucleocytoplasmic large DNA viruses. The Mimivirus genome encodes close to 1000 proteins, many of them never before encountered in a virus, such as four amino-acyl tRNA synthetases. To explore the physiology of this exceptional virus and identify the genes involved in the building of its characteristic intracytoplasmic “virion factory,” we coupled electron microscopy observations with the massively parallel pyrosequencing of the polyadenylated RNA fractions of Acanthamoeba castellanii cells at various time post-infection. We generated 633,346 reads, of which 322,904 correspond to Mimivirus transcripts. This first application of deep mRNA sequencing (454 Life Sciences [Roche] FLX) to a large DNA virus allowed the precise delineation of the 5′ and 3′ extremities of Mimivirus mRNAs and revealed 75 new transcripts including several noncoding RNAs. Mimivirus genes are expressed across a wide dynamic range, in a finely regulated manner broadly described by three main temporal classes: early, intermediate, and late. This RNA-seq study confirmed the AAAATTGA sequence as an early promoter element, as well as the presence of palindromes at most of the polyadenylation sites. It also revealed a new promoter element correlating with late gene expression, which is also prominent in Sputnik, the recently described Mimivirus “virophage.” These results—validated genome-wide by the hybridization of total RNA extracted from infected Acanthamoeba cells on a tiling array (Agilent)—will constitute the foundation on which to build subsequent functional studies of the Mimivirus/Acanthamoeba system. PMID:20360389
Kon, Tatsuya; Yoshikawa, Nobuyuki
2014-01-01
Apple latent spherical virus (ALSV) is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation) system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS) is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the cauliflower mosaic virus 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation zero plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A) was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification. PMID:25426109
Al-Dujaili, Lena J; Clerkin, Patrick P; Clement, Christian; McFerrin, Harris E; Bhattacharjee, Partha S; Varnell, Emily D; Kaufman, Herbert E; Hill, James M
2011-08-01
Most humans are infected with herpes simplex virus (HSV) type 1 in early childhood and remain latently infected throughout life. While most individuals have mild or no symptoms, some will develop destructive HSV keratitis. Ocular infection with HSV-1 and its associated sequelae account for the majority of corneal blindness in industrialized nations. Neuronal latency in the peripheral ganglia is established when transcription of the viral genome is repressed (silenced) except for the latency-associated transcripts and microRNAs. The functions of latency-associated transcripts have been investigated since 1987. Roles have been suggested relating to reactivation, establishment of latency, neuronal protection, antiapoptosis, apoptosis, virulence and asymptomatic shedding. Here, we review HSV-1 latent infections, reactivation, recurrent disease and antiviral therapies for the ocular HSV diseases.
Al-Dujaili, Lena J; Clerkin, Patrick P; Clement, Christian; McFerrin, Harris E; Bhattacharjee, Partha S; Varnell, Emily D; Kaufman, Herbert E; Hill, James M
2012-01-01
Most humans are infected with herpes simplex virus (HSV) type 1 in early childhood and remain latently infected throughout life. While most individuals have mild or no symptoms, some will develop destructive HSV keratitis. Ocular infection with HSV-1 and its associated sequelae account for the majority of corneal blindness in industrialized nations. Neuronal latency in the peripheral ganglia is established when transcription of the viral genome is repressed (silenced) except for the latency-associated transcripts and microRNAs. The functions of latency-associated transcripts have been investigated since 1987. Roles have been suggested relating to reactivation, establishment of latency, neuronal protection, antiapoptosis, apoptosis, virulence and asymptomatic shedding. Here, we review HSV-1 latent infections, reactivation, recurrent disease and antiviral therapies for the ocular HSV diseases. PMID:21861620
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, Amber R., E-mail: engelam@mail.nih.go; Rumyantsev, Alexander A., E-mail: alexander.rumyantsev@sanofipasteur.co; Maximova, Olga A., E-mail: maximovao@mail.nih.go
Tick-borne encephalitis (TBE) is a severe disease affecting thousands of people throughout Eurasia. Despite the use of formalin-inactivated vaccines in endemic areas, an increasing incidence of TBE emphasizes the need for an alternative vaccine that will induce a more durable immunity against TBE virus (TBEV). The chimeric attenuated virus vaccine candidate containing the structural protein genes of TBEV on a dengue virus genetic background (TBEV/DEN4) retains a high level of neurovirulence in both mice and monkeys. Therefore, attenuating mutations were introduced into the envelope (E{sub 315}) and NS5 (NS5{sub 654,655}) proteins, and into the 3' non-coding region ({Delta}30) of TBEV/DEN4.more » The variant that contained all three mutations (v{Delta}30/E{sub 315}/NS5{sub 654,655}) was significantly attenuated for neuroinvasiveness and neurovirulence and displayed a reduced level of replication and virus-induced histopathology in the brains of mice. The high level of safety in the central nervous system indicates that v{Delta}30/E{sub 315}/NS5{sub 654,655} should be further evaluated as a TBEV vaccine.« less
Hagiwara, Kyoji; Sato, Hiroki; Inoue, Yoshihisa; Watanabe, Akira; Yoneda, Misako; Ikeda, Fusako; Fujita, Kentaro; Fukuda, Hiroyuki; Takamura, Chizuko; Kozuka-Hata, Hiroko; Oyama, Masaaki; Sugano, Sumio; Ohmi, Shinobu; Kai, Chieko
2008-05-01
We report the first identification of phosphorylation sites of the nucleoprotein (N) of the family Paramyxoviridae. The N protein is known to be the most abundant protein in infected cells; it constructs the N-RNA complex (nucleocapsid) and supports transcription and replication of viral genomic RNA. To determine the role of phosphorylation of the N protein, we expressed the N protein of the HL strain of measles virus (MV) in mammalian cells and purified the nucleocapsid. After separation of the C-terminal region from the core region, phosphorylated amino acids were assayed using MALDI-TOF/TOF and ESI-Q-TOF MS analyses. Two amino acids, S479 and S510, were shown to be phosphorylated by both methods of analysis. Metabolic labeling of the N protein with (32)P demonstrated that these two sites are the major phosphorylated sites within the MV-N protein. In transcriptional analysis using negative-strand minigenomic RNA containing the ORF of the luciferase gene, mutants of each phosphorylation site showed approximately 80% reduction in luciferase activity compared with the wild-type N, suggesting that the phosphorylation of N protein is important in the activation of the transcription of viral mRNA and/or replication of the genome in vivo.
Calvet, Guilherme; Aguiar, Renato S; Melo, Adriana S O; Sampaio, Simone A; de Filippis, Ivano; Fabri, Allison; Araujo, Eliane S M; de Sequeira, Patricia C; de Mendonça, Marcos C L; de Oliveira, Louisi; Tschoeke, Diogo A; Schrago, Carlos G; Thompson, Fabiano L; Brasil, Patricia; Dos Santos, Flavia B; Nogueira, Rita M R; Tanuri, Amilcar; de Filippis, Ana M B
2016-06-01
The incidence of microcephaly in Brazil in 2015 was 20 times higher than in previous years. Congenital microcephaly is associated with genetic factors and several causative agents. Epidemiological data suggest that microcephaly cases in Brazil might be associated with the introduction of Zika virus. We aimed to detect and sequence the Zika virus genome in amniotic fluid samples of two pregnant women in Brazil whose fetuses were diagnosed with microcephaly. In this case study, amniotic fluid samples from two pregnant women from the state of Paraíba in Brazil whose fetuses had been diagnosed with microcephaly were obtained, on the recommendation of the Brazilian health authorities, by ultrasound-guided transabdominal amniocentesis at 28 weeks' gestation. The women had presented at 18 weeks' and 10 weeks' gestation, respectively, with clinical manifestations that could have been symptoms of Zika virus infection, including fever, myalgia, and rash. After the amniotic fluid samples were centrifuged, DNA and RNA were extracted from the purified virus particles before the viral genome was identified by quantitative reverse transcription PCR and viral metagenomic next-generation sequencing. Phylogenetic reconstruction and investigation of recombination events were done by comparing the Brazilian Zika virus genome with sequences from other Zika strains and from flaviviruses that occur in similar regions in Brazil. We detected the Zika virus genome in the amniotic fluid of both pregnant women. The virus was not detected in their urine or serum. Tests for dengue virus, chikungunya virus, Toxoplasma gondii, rubella virus, cytomegalovirus, herpes simplex virus, HIV, Treponema pallidum, and parvovirus B19 were all negative. After sequencing of the complete genome of the Brazilian Zika virus isolated from patient 1, phylogenetic analyses showed that the virus shares 97-100% of its genomic identity with lineages isolated during an outbreak in French Polynesia in 2013, and that in both envelope and NS5 genomic regions, it clustered with sequences from North and South America, southeast Asia, and the Pacific. After assessing the possibility of recombination events between the Zika virus and other flaviviruses, we ruled out the hypothesis that the Brazilian Zika virus genome is a recombinant strain with other mosquito-borne flaviviruses. These findings strengthen the putative association between Zika virus and cases of microcephaly in neonates in Brazil. Moreover, our results suggest that the virus can cross the placental barrier. As a result, Zika virus should be considered as a potential infectious agent for human fetuses. Pathogenesis studies that confirm the tropism of Zika virus for neuronal cells are warranted. Consellho Nacional de Desenvolvimento e Pesquisa (CNPq), Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ). Copyright © 2016 Elsevier Ltd. All rights reserved.
Sugai, Akihiro; Sato, Hiroki; Yoneda, Misako; Kai, Chieko
2017-08-01
The regulation of transcription during Nipah virus (NiV) replication is poorly understood. Using a bicistronic minigenome system, we investigated the involvement of non-coding regions (NCRs) in the transcriptional re-initiation efficiency of NiV RNA polymerase. Reporter assays revealed that attenuation of NiV gene expression was not constant at each gene junction, and that the attenuating property was controlled by the 3' NCR. However, this regulation was independent of the gene-end, gene-start and intergenic regions. Northern blot analysis indicated that regulation of viral gene expression by the phosphoprotein (P) and large protein (L) 3' NCRs occurred at the transcription level. We identified uridine-rich tracts within the L 3' NCR that are similar to gene-end signals. These gene-end-like sequences were recognized as weak transcription termination signals by the viral RNA polymerase, thereby reducing downstream gene transcription. Thus, we suggest that NiV has a unique mechanism of transcriptional regulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Plant genomes enclose footprints of past infections by giant virus relatives.
Maumus, Florian; Epert, Aline; Nogué, Fabien; Blanc, Guillaume
2014-06-27
Nucleocytoplasmic large DNA viruses (NCLDVs) are eukaryotic viruses with large genomes (100 kb-2.5 Mb), which include giant Mimivirus, Megavirus and Pandoravirus. NCLDVs are known to infect animals, protists and phytoplankton but were never described as pathogens of land plants. Here, we show that the bryophyte Physcomitrella patens and the lycophyte Selaginella moellendorffii have open reading frames (ORFs) with high phylogenetic affinities to NCLDV homologues. The P. patens genes are clustered in DNA stretches (up to 13 kb) containing up to 16 NCLDV-like ORFs. Molecular evolution analysis suggests that the NCLDV-like regions were acquired by horizontal gene transfer from distinct but closely related viruses that possibly define a new family of NCLDVs. Transcriptomics and DNA methylation data indicate that the NCLDV-like regions are transcriptionally inactive and are highly cytosine methylated through a mechanism not relying on small RNAs. Altogether, our data show that members of NCLDV have infected land plants.
Reverse Genetics for Newcastle Disease Virus as a Vaccine Vector.
Kim, Shin-Hee; Samal, Siba K
2018-02-22
Newcastle disease virus (NDV) is an economically important pathogen in the poultry industry worldwide. Recovery of infectious NDV from cDNA using reverse genetics has made it possible to manipulate the genome of NDV. This has greatly contributed to our understanding of the molecular biology and pathogenesis of NDV. Furthermore, NDV has modular genome and accommodates insertion of a foreign gene as a transcriptional unit, thus enabling NDV as a vaccine vector against diseases of humans and animals. Avirulent NDV strains (e.g., LaSota and B1) have been commonly used as vaccine vectors. In this protocol, we have described reverse genetics of NDV to be used as a vaccine vector by exemplifying the recovery of NDV vectored avian influenza virus vaccine. Specifically, cloning and recovery of NDV expressing the hemagglutinin protein of highly pathogenic influenza virus were explained. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.
Venuti, A; Di Russo, C; del Grosso, N; Patti, A M; Ruggeri, F; De Stasio, P R; Martiniello, M G; Pagnotti, P; Degener, A M; Midulla, M
1985-01-01
A fast-growing strain of human hepatitis A virus was selected and characterized. The virus has the unusual property of developing a strong cytopathic effect in tissue culture in 7 to 10 days. Sequences of the viral genome were cloned into recombinant plasmids with the double-stranded replicative form as a template for the reverse transcription of cDNA. Restriction analysis and direct sequencing indicate that this strain is different from that described by Ticehurst et al. (Proc. Natl. Acad. Sci. USA 80:5885-5889, 1983) in the region that presumptively codes for the major capsid protein VP1, but both isolates have conserved large areas of homology in the untranslated 5'-terminal sequences of the genome. Images PMID:2997478
Ancient Recombination Events between Human Herpes Simplex Viruses.
Burrel, Sonia; Boutolleau, David; Ryu, Diane; Agut, Henri; Merkel, Kevin; Leendertz, Fabian H; Calvignac-Spencer, Sébastien
2017-07-01
Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are seen as close relatives but also unambiguously considered as evolutionary independent units. Here, we sequenced the genomes of 18 HSV-2 isolates characterized by divergent UL30 gene sequences to further elucidate the evolutionary history of this virus. Surprisingly, genome-wide recombination analyses showed that all HSV-2 genomes sequenced to date contain HSV-1 fragments. Using phylogenomic analyses, we could also show that two main HSV-2 lineages exist. One lineage is mostly restricted to subSaharan Africa whereas the other has reached a global distribution. Interestingly, only the worldwide lineage is characterized by ancient recombination events with HSV-1. Our findings highlight the complexity of HSV-2 evolution, a virus of putative zoonotic origin which later recombined with its human-adapted relative. They also suggest that coinfections with HSV-1 and 2 may have genomic and potentially functional consequences and should therefore be monitored more closely. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Structural insights into the rhabdovirus transcription/replication complex.
Ivanov, Ivan; Yabukarski, Filip; Ruigrok, Rob W H; Jamin, Marc
2011-12-01
The rhabdoviruses have a non-segmented single stranded negative-sense RNA genome. Their multiplication in a host cell requires three viral proteins in addition to the viral RNA genome. The nucleoprotein (N) tightly encapsidates the viral RNA, and the N-RNA complex serves as the template for both transcription and replication. The viral RNA-dependent RNA polymerase is a two subunit complex that consists of a large subunit, L, and a non-catalytic cofactor, the phosphoprotein, P. P also acts as a chaperone of nascent RNA-free N by forming a N(0)-P complex that prevents N from binding to cellular RNAs and from polymerizing in the absence of RNA. Here, we discuss the recent molecular and structural studies of individual components and multi-molecular complexes that are involved in the transcription/replication complex of these viruses with regard to their implication in viral transcription and replication. Copyright © 2011 Elsevier B.V. All rights reserved.
Veits, Jutta; Mettenleiter, Thomas C; Fuchs, Walter
2003-06-01
The chicken alphaherpesvirus infectious laryngotracheitis virus (ILTV) exhibits several unique genetic features including an internal inversion of a conserved part of the unique long genome region. At one end, this inversion is preceded by a cluster of five open reading frames (ORFs) of 335-411 codons, designated ORF A to ORF E, that are not present in any other known herpesvirus genome. In this report we analysed expression of these genes and identified the corresponding viral RNA and protein products. Northern blot analyses showed 3'-coterminal transcripts of ORFs A and B, and monocistronic mRNAs of ORFs C and D. ORF E is part of a 3'-coterminal transcription unit that includes the conserved glycoprotein H and thymidine kinase genes. Monospecific antisera obtained after immunization of rabbits with bacterial fusion proteins allowed detection of the protein products of ORF A (40 kDa), ORF B (34 kDa), ORF C (38 and 30 kDa), ORF D (41 kDa) and ORF E (44 kDa) in ILTV-infected cells. For functional analyses, five virus recombinants possessing deletions within the individual ORFs and concomitant insertions of a reporter gene cassette encoding green fluorescent protein were generated. All virus mutants were replication competent in cell culture, but exhibited reduced virus titres or plaque sizes when compared to wild-type ILTV. These findings indicate that the ILTV-specific ORF A to ORF E genes might be important for virus replication in the natural host organism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dresang, Lindsay R.; Teuton, Jeremy R.; Feng, Huichen
Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are related human tumor viruses that cause primary effusion lymphomas (PEL) and Burkitt's lymphomas (BL), respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions. Results The majority of viral genes were efficiently detected atmore » the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels. Conclusions This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.« less
Flather, Dylan; Semler, Bert L.
2015-01-01
The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review. PMID:26150805
Khalil, Mohamed I; Sommer, Marvin H; Hay, John; Ruyechan, William T; Arvin, Ann M
2015-07-01
The VZV genome has two origins of DNA replication (oriS), each of which consists of an AT-rich sequence and three origin binding protein (OBP) sites called Box A, C and B. In these experiments, the mutation in the core sequence CGC of the Box A and C not only inhibited DNA replication but also inhibited both ORF62 and ORF63 expression in reporter gene assays. In contrast the Box B mutation did not influence DNA replication or flanking gene transcription. These results suggest that efficient DNA replication enhances ORF62 and ORF63 transcription. Recombinant viruses carrying these mutations in both sites and one with a deletion of the whole oriS were constructed. Surprisingly, the recombinant virus lacking both copies of oriS retained the capacity to replicate in melanoma and HELF cells suggesting that VZV has another origin of DNA replication. Copyright © 2015 Elsevier Inc. All rights reserved.
Origin and Metabolic Properties of the RNA Species Formed During the Replication Cycle of Virus 2C
Cocito, C.
1974-01-01
When short pulses of [3H]uracil were administered to Bacillus subtilis infected with phage 2C, the main species of labeled RNA was a 10S component that hybridized chiefly, but not exclusively, with the heavy strand of 2C DNA. After long pulses, most of the radioactivity was found in the 23S, 16S, and 5S rRNA's, which are coded for by the cell genome. Formation of such RNA species was reduced but not suppressed upon infection, the extent of inhibition being proportional to the virus-to-cell ratio. When bacteria were incubated with virginiamycin, an inhibitor of protein synthesis, and then infected with phage 2C, formation of virus-specific RNA decreased. This antibiotic also reduced the preferential transcription of the heavy strand of 2C DNA. The methylation pattern of rRNA remained unchanged upon infection with phage 2C. Virginiamycin reduced both the methylation and stability of rRNA in uninfected cells; this effect, however, was clearly reduced during the viral cycle. It can be concluded that in 2C-infected B. subtilis, cellular and viral RNA species are simultaneously synthesized and a preferential transcription of viral message depends not only on the number of available copies of viral template, but also on their translation. Moreover, virus-dictated proteins are responsible for the inhibition of cellular RNA formation as well as for the asymmetrical transcription of phage genome. Finally, virginiamycin and phage 2C have antagonistic, nonoverlapping effects on the metabolism and function of the RNA of the host cell. PMID:4214950
Chao, Mei; Wang, Tzu-Chi; Lin, Chia-Chi; Yung-Liang Wang, Robert; Lin, Wen-Bin; Lee, Shang-En; Cheng, Ying-Yu; Yeh, Chau-Ting; Iang, Shan-Bei
2017-01-01
The genome of hepatitis delta virus (HDV) is a 1.7-kb single-stranded circular RNA that folds into an unbranched rod-like structure and has ribozyme activity. HDV redirects host RNA polymerase(s) (RNAP) to perform viral RNA-directed RNA transcription. RNA recombination is known to contribute to the genetic heterogeneity of HDV, but its molecular mechanism is poorly understood. Here, we established a whole-genome HDV-1/HDV-4 recombination map using two cloned sequences coexisting in cultured cells. Our functional analyses of the resulting chimeric delta antigens (the only viral-encoded protein) and recombinant genomes provide insights into how recombination promotes the genotypic and phenotypic diversity of HDV. Our examination of crossover distribution and subsequent mutagenesis analyses demonstrated that ribozyme activity on HDV genome, which is required for viral replication, also contributes to the generation of an inter-clade junction. These data provide circumstantial evidence supporting our contention that HDV RNA recombination occurs via a replication-dependent mechanism. Furthermore, we identify an intrinsic asymmetric bulge on the HDV genome, which appears to promote recombination events in the vicinity. We therefore propose a mammalian RNAP-driven and viral-RNA-structure-promoted template-switching mechanism for HDV genetic recombination. The present findings improve our understanding of the capacities of the host RNAP beyond typical DNA-directed transcription. PMID:28977829
Kariithi, Henry M.; Cousserans, François; Parker, Nicolas J.; İnce, İkbal Agah; Scully, Erin D.; Boeren, Sjef; Geib, Scott M.; Mekonnen, Solomon; Vlak, Just M.; Parker, Andrew G.; Vreysen, Marc J. B.; Bergoin, Max
2016-01-01
Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) can establish asymptomatic and symptomatic infection in its tsetse fly host. Here, we present a comprehensive annotation of the genome of an Ethiopian GpSGHV isolate (GpSGHV-Eth) compared with the reference Ugandan GpSGHV isolate (GpSGHV-Uga; GenBank accession number EF568108). GpSGHV-Eth has higher salivary gland hypertrophy syndrome prevalence than GpSGHV-Uga. We show that the GpSGHV-Eth genome has 190 291 nt, a low G+C content (27.9 %) and encodes 174 putative ORFs. Using proteogenomic and transcriptome mapping, 141 and 86 ORFs were mapped by transcripts and peptides, respectively. Furthermore, of the 174 ORFs, 132 had putative transcriptional signals [TATA-like box and poly(A) signals]. Sixty ORFs had both TATA-like box promoter and poly(A) signals, and mapped by both transcripts and peptides, implying that these ORFs encode functional proteins. Of the 60 ORFs, 10 ORFs are homologues to baculovirus and nudivirus core genes, including three per os infectivity factors and four RNA polymerase subunits (LEF4, 5, 8 and 9). Whereas GpSGHV-Eth and GpSGHV-Uga are 98.1 % similar at the nucleotide level, 37 ORFs in the GpSGHV-Eth genome had nucleotide insertions (n = 17) and deletions (n = 20) compared with their homologues in GpSGHV-Uga. Furthermore, compared with the GpSGHV-Uga genome, 11 and 24 GpSGHV ORFs were deleted and novel, respectively. Further, 13 GpSGHV-Eth ORFs were non-canonical; they had either CTG or TTG start codons instead of ATG. Taken together, these data suggest that GpSGHV-Eth and GpSGHV-Uga represent two different lineages of the same virus. Genetic differences combined with host and environmental factors possibly explain the differential GpSGHV pathogenesis observed in different G. pallidipes colonies. PMID:26801744
Engineered Viruses as Genome Editing Devices.
Chen, Xiaoyu; Gonçalves, Manuel A F V
2016-03-01
Genome editing based on sequence-specific designer nucleases, also known as programmable nucleases, seeks to modify in a targeted and precise manner the genetic information content of living cells. Delivering into cells designer nucleases alone or together with donor DNA templates, which serve as surrogate homologous recombination (HR) substrates, can result in gene knockouts or gene knock-ins, respectively. As engineered replication-defective viruses, viral vectors are having an increasingly important role as delivery vehicles for donor DNA templates and designer nucleases, namely, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated Cas9 (CRISPR-Cas9) nucleases, also known as RNA-guided nucleases (RGNs). We review this dual role played by engineered viral particles on genome editing while focusing on their main scaffolds, consisting of lentiviruses, adeno-associated viruses, and adenoviruses. In addition, the coverage of the growing body of research on the repurposing of viral vectors as delivery systems for genome editing tools is complemented with information regarding their main characteristics, pros, and cons. Finally, this information is framed by a concise description of the chief principles, tools, and applications of the genome editing field as a whole.
Engineered Viruses as Genome Editing Devices
Chen, Xiaoyu; Gonçalves, Manuel A F V
2016-01-01
Genome editing based on sequence-specific designer nucleases, also known as programmable nucleases, seeks to modify in a targeted and precise manner the genetic information content of living cells. Delivering into cells designer nucleases alone or together with donor DNA templates, which serve as surrogate homologous recombination (HR) substrates, can result in gene knockouts or gene knock-ins, respectively. As engineered replication-defective viruses, viral vectors are having an increasingly important role as delivery vehicles for donor DNA templates and designer nucleases, namely, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated Cas9 (CRISPR−Cas9) nucleases, also known as RNA-guided nucleases (RGNs). We review this dual role played by engineered viral particles on genome editing while focusing on their main scaffolds, consisting of lentiviruses, adeno-associated viruses, and adenoviruses. In addition, the coverage of the growing body of research on the repurposing of viral vectors as delivery systems for genome editing tools is complemented with information regarding their main characteristics, pros, and cons. Finally, this information is framed by a concise description of the chief principles, tools, and applications of the genome editing field as a whole. PMID:26336974
HIV promoter integration site primarily modulates transcriptional burst size rather than frequency.
Skupsky, Ron; Burnett, John C; Foley, Jonathan E; Schaffer, David V; Arkin, Adam P
2010-09-30
Mammalian gene expression patterns, and their variability across populations of cells, are regulated by factors specific to each gene in concert with its surrounding cellular and genomic environment. Lentiviruses such as HIV integrate their genomes into semi-random genomic locations in the cells they infect, and the resulting viral gene expression provides a natural system to dissect the contributions of genomic environment to transcriptional regulation. Previously, we showed that expression heterogeneity and its modulation by specific host factors at HIV integration sites are key determinants of infected-cell fate and a possible source of latent infections. Here, we assess the integration context dependence of expression heterogeneity from diverse single integrations of a HIV-promoter/GFP-reporter cassette in Jurkat T-cells. Systematically fitting a stochastic model of gene expression to our data reveals an underlying transcriptional dynamic, by which multiple transcripts are produced during short, infrequent bursts, that quantitatively accounts for the wide, highly skewed protein expression distributions observed in each of our clonal cell populations. Interestingly, we find that the size of transcriptional bursts is the primary systematic covariate over integration sites, varying from a few to tens of transcripts across integration sites, and correlating well with mean expression. In contrast, burst frequencies are scattered about a typical value of several per cell-division time and demonstrate little correlation with the clonal means. This pattern of modulation generates consistently noisy distributions over the sampled integration positions, with large expression variability relative to the mean maintained even for the most productive integrations, and could contribute to specifying heterogeneous, integration-site-dependent viral production patterns in HIV-infected cells. Genomic environment thus emerges as a significant control parameter for gene expression variation that may contribute to structuring mammalian genomes, as well as be exploited for survival by integrating viruses.
Functional Characterization of Adaptive Mutations during the West African Ebola Virus Outbreak.
Dietzel, Erik; Schudt, Gordian; Krähling, Verena; Matrosovich, Mikhail; Becker, Stephan
2017-01-15
The Ebola virus (EBOV) outbreak in West Africa started in December 2013, claimed more than 11,000 lives, threatened to destabilize a whole region, and showed how easily health crises can turn into humanitarian disasters. EBOV genomic sequences of the West African outbreak revealed nonsynonymous mutations, which induced considerable public attention, but their role in virus spread and disease remains obscure. In this study, we investigated the functional significance of three nonsynonymous mutations that emerged early during the West African EBOV outbreak. Almost 90% of more than 1,000 EBOV genomes sequenced during the outbreak carried the signature of three mutations: a D759G substitution in the active center of the L polymerase, an A82V substitution in the receptor binding domain of surface glycoprotein GP, and an R111C substitution in the self-assembly domain of RNA-encapsidating nucleoprotein NP. Using a newly developed virus-like particle system and reverse genetics, we found that the mutations have an impact on the functions of the respective viral proteins and on the growth of recombinant EBOVs. The mutation in L increased viral transcription and replication, whereas the mutation in NP decreased viral transcription and replication. The mutation in the receptor binding domain of the glycoprotein GP improved the efficiency of GP-mediated viral entry into target cells. Recombinant EBOVs with combinations of the three mutations showed a growth advantage over the prototype isolate Makona C7 lacking the mutations. This study showed that virus variants with improved fitness emerged early during the West African EBOV outbreak. The dimension of the Ebola virus outbreak in West Africa was unprecedented. Amino acid substitutions in the viral L polymerase, surface glycoprotein GP, and nucleocapsid protein NP emerged, were fixed early in the outbreak, and were found in almost 90% of the sequences. Here we showed that these mutations affected the functional activity of viral proteins and improved viral growth in cell culture. Our results demonstrate emergence of adaptive changes in the Ebola virus genome during virus circulation in humans and prompt further studies on the potential role of these changes in virus transmissibility and pathogenicity. Copyright © 2017 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, J.; Roizman, B.; Kern, E.R.
1990-11-30
The gene designated {gamma}{sub 1}34.5 maps in the inverted repeats flanking the long unique sequence of herpes simplex virus-1 (HSV-1) DNA, and therefore it is present in two copies per genome. This gene is not essential for viral growth in cell culture. Four recombinant viruses were genetically engineered to test the function of this gene. These were (i) a virus from which both copies of the gene were deleted, (ii) a virus containing a stop codon in both copies of the gene, (iii) a virus containing after the first codon an insert encoding a 16-amino acid epitope known to reactmore » with a specific monoclonal antibody, and (iv) a virus in which the deleted sequences were restored. The viruses from which the gene was deleted or which carried stop codons were avirulent on intracerebral inoculation of mice. The virus with the gene tagged by the sequence encoding the epitope was moderately virulent, whereas the restored virus reacquired the phenotype of the parent virus. Significant amounts of virus were recovered only from brains of animals inoculated with virulent viruses. Inasmuch as the product of the {gamma}{sub 1}34.5 gene extended the host range of the virus by enabling it to replicate and destroy brain cells, it is a viral neurovirulence factor.« less
Analytical study of avian reticuloendotheliosis virus dimeric RNA generated in vivo and in vitro.
Darlix, J L; Gabus, C; Allain, B
1992-12-01
The retroviral genome consists of two identical RNA molecules associated at their 5' ends by a stable structure called the dimer linkage structure. The dimer linkage structure, while maintaining the dimer state of the retroviral genome, might also be involved in packaging and reverse transcription, as well as recombination during proviral DNA synthesis. To study the dimer structure of the retroviral genome and the mechanism of dimerization, we analyzed features of the dimeric genome of reticuloendotheliosis virus (REV) type A and identified elements required for its dimerization. Here we report that the REV dimeric genome extracted from virions and infected cells, as well as that synthesized in vitro, is more resistant to heat denaturation than avian sarcoma and leukemia virus, murine leukemia virus, or human immunodeficiency virus type 1 dimeric RNA. The minimal domain required to form a stable REV RNA dimer in vitro was found to map between positions 268 and 452 (KpnI and SalI sites), thus corresponding to the E encapsidation sequence (J. E. Embretson and H. M. Temin, J. Virol. 61:2675-2683, 1987). In addition, both the 5' and 3' halves of E are necessary in cis for RNA dimerization and the extent of RNA dimerization is influenced by viral sequences flanking E. Rapid and efficient dimerization of REV RNA containing gag sequences in addition to the E sequences and annealing of replication primer tRNA(Pro) to the primer-binding site necessitate the nucleocapsid protein.
Analytical study of avian reticuloendotheliosis virus dimeric RNA generated in vivo and in vitro.
Darlix, J L; Gabus, C; Allain, B
1992-01-01
The retroviral genome consists of two identical RNA molecules associated at their 5' ends by a stable structure called the dimer linkage structure. The dimer linkage structure, while maintaining the dimer state of the retroviral genome, might also be involved in packaging and reverse transcription, as well as recombination during proviral DNA synthesis. To study the dimer structure of the retroviral genome and the mechanism of dimerization, we analyzed features of the dimeric genome of reticuloendotheliosis virus (REV) type A and identified elements required for its dimerization. Here we report that the REV dimeric genome extracted from virions and infected cells, as well as that synthesized in vitro, is more resistant to heat denaturation than avian sarcoma and leukemia virus, murine leukemia virus, or human immunodeficiency virus type 1 dimeric RNA. The minimal domain required to form a stable REV RNA dimer in vitro was found to map between positions 268 and 452 (KpnI and SalI sites), thus corresponding to the E encapsidation sequence (J. E. Embretson and H. M. Temin, J. Virol. 61:2675-2683, 1987). In addition, both the 5' and 3' halves of E are necessary in cis for RNA dimerization and the extent of RNA dimerization is influenced by viral sequences flanking E. Rapid and efficient dimerization of REV RNA containing gag sequences in addition to the E sequences and annealing of replication primer tRNA(Pro) to the primer-binding site necessitate the nucleocapsid protein. Images PMID:1331519
Structure and assembly of the Ebola virus nucleocapsid
Wan, William; Kolesnikova, Larissa; Clarke, Mairi; Koehler, Alexander; Noda, Takeshi; Becker, Stephan; Briggs, John A. G.
2017-01-01
Ebola and Marburg viruses are filoviruses: filamentous, enveloped viruses that cause hemorrhagic fever1. Filoviruses are within the order Mononegavirales2 which also includes rabies virus, measles virus, and respiratory syncytial virus. Mononegaviruses have non-segmented, single-stranded negative-sense RNA genomes that are encapsidated by nucleoprotein (NP) and other viral proteins to form a helical nucleocapsid (NC). NC acts as a scaffold for virus assembly and as a template for genome transcription and replication. Insights into NP-NP interactions have been derived from structural studies of oligomerized, RNA-encapsidating NP3–6 and cryo-electron microscopy (cryo-EM) of NC7–12 or NC-like structures11–13. There have been no high-resolution reconstructions of complete mononegavirus NCs. Here, we have applied cryo-electron tomography and subtomogram averaging to determine the structure of Ebola virus NC within intact viruses and recombinant NC-like assemblies. These structures reveal the identity and arrangement of the NC components, and suggest that the formation of an extended alpha-helix from the disordered C-terminal region of NP-core links NP oligomerization, NC condensation, RNA encapsidation, and accessory protein recruitment. PMID:29144446
Brostoff, Terza; Dela Cruz, Florante N; Church, Molly E; Woolard, Kevin D; Pesavento, Patricia A
2014-11-01
Raccoon polyomavirus (RacPyV) is associated with 100% of neuroglial tumors in free-ranging raccoons. Other tumor-associated polyomaviruses (PyVs), including simian virus 40 (SV40), murine PyV, and Merkel cell PyV, are found integrated in the host genome in neoplastic cells, where they constitutively express splice variants of the tumor antigen (TAg) gene. We have previously reported that RacPyV exists only as an episome (nonintegrated) in neuroglial tumors. Here, we have investigated TAg transcription in primary tumor tissue by transcriptome analysis, and we identified the alternatively spliced TAg transcripts for RacPyV. We also determined that TAg was highly transcribed relative to host cellular genes. We further colocalized TAg DNA and mRNA by in situ hybridization and found that the majority of tumor cells showed positive staining. Lastly, we examined the stability of the viral genome and TAg transcription by quantitative reverse transcriptase PCR in cultured tumor cells in vitro and in a mouse xenograft model. When tumor cells were cultured in vitro, TAg transcription increased nearly 2 log-fold over that of parental tumor tissue by passage 17. Both episomal viral genome and TAg transcription were faithfully maintained in culture and in tumors arising from xenotransplantation of cultured cells in mice. This study represents a minimal criterion for RacPyV's association with neuroglial tumors and a novel mechanism of stability for a polyomavirus in cancer. The natural cycle of polyomaviruses in mammals is to persist in the host without causing disease, but they can cause cancer in humans or in other animals. Because this is an unpredictable and rare event, the oncogenic potential of polyomavirus is primarily evaluated in laboratory animal models. Recently, raccoon polyomavirus (RacPyV) was identified in neuroglial tumors of free-ranging raccoons. Viral copy number was consistently high in these tumors but was low or undetectable in nontumor tissue or in unaffected raccoons. Unlike other oncogenic polyomaviruses, RacPyV was episomal, not integrated, in these tumors. To determine the stability of the viral genome and sustained transcription of the oncogenic tumor antigen genes, we cultured primary raccoon tumor cells and passaged them in mice, confirming the nonintegrated state of the virus and the maintenance of viral gene transcription throughout. RacPyV provides a naturally occurring and tractable model for a novel mechanism of polyomavirus-mediated oncogenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Brostoff, Terza; Dela Cruz, Florante N.; Church, Molly E.; Woolard, Kevin D.
2014-01-01
ABSTRACT Raccoon polyomavirus (RacPyV) is associated with 100% of neuroglial tumors in free-ranging raccoons. Other tumor-associated polyomaviruses (PyVs), including simian virus 40 (SV40), murine PyV, and Merkel cell PyV, are found integrated in the host genome in neoplastic cells, where they constitutively express splice variants of the tumor antigen (TAg) gene. We have previously reported that RacPyV exists only as an episome (nonintegrated) in neuroglial tumors. Here, we have investigated TAg transcription in primary tumor tissue by transcriptome analysis, and we identified the alternatively spliced TAg transcripts for RacPyV. We also determined that TAg was highly transcribed relative to host cellular genes. We further colocalized TAg DNA and mRNA by in situ hybridization and found that the majority of tumor cells showed positive staining. Lastly, we examined the stability of the viral genome and TAg transcription by quantitative reverse transcriptase PCR in cultured tumor cells in vitro and in a mouse xenograft model. When tumor cells were cultured in vitro, TAg transcription increased nearly 2 log-fold over that of parental tumor tissue by passage 17. Both episomal viral genome and TAg transcription were faithfully maintained in culture and in tumors arising from xenotransplantation of cultured cells in mice. This study represents a minimal criterion for RacPyV's association with neuroglial tumors and a novel mechanism of stability for a polyomavirus in cancer. IMPORTANCE The natural cycle of polyomaviruses in mammals is to persist in the host without causing disease, but they can cause cancer in humans or in other animals. Because this is an unpredictable and rare event, the oncogenic potential of polyomavirus is primarily evaluated in laboratory animal models. Recently, raccoon polyomavirus (RacPyV) was identified in neuroglial tumors of free-ranging raccoons. Viral copy number was consistently high in these tumors but was low or undetectable in nontumor tissue or in unaffected raccoons. Unlike other oncogenic polyomaviruses, RacPyV was episomal, not integrated, in these tumors. To determine the stability of the viral genome and sustained transcription of the oncogenic tumor antigen genes, we cultured primary raccoon tumor cells and passaged them in mice, confirming the nonintegrated state of the virus and the maintenance of viral gene transcription throughout. RacPyV provides a naturally occurring and tractable model for a novel mechanism of polyomavirus-mediated oncogenesis. PMID:25165109
A Roadmap for Tick-Borne Flavivirus Research in the "Omics" Era.
Grabowski, Jeffrey M; Hill, Catherine A
2017-01-01
Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis , the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, "omic" studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the "omics era," and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030.
A Roadmap for Tick-Borne Flavivirus Research in the “Omics” Era
Grabowski, Jeffrey M.; Hill, Catherine A.
2017-01-01
Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis, the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, “omic” studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the “omics era,” and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030. PMID:29312896
De Nicola, Beatrice; Lech, Christopher J; Heddi, Brahim; Regmi, Sagar; Frasson, Ilaria; Perrone, Rosalba; Richter, Sara N; Phan, Anh Tuân
2016-07-27
The long terminal repeat (LTR) of the proviral human immunodeficiency virus (HIV)-1 genome is integral to virus transcription and host cell infection. The guanine-rich U3 region within the LTR promoter, previously shown to form G-quadruplex structures, represents an attractive target to inhibit HIV transcription and replication. In this work, we report the structure of a biologically relevant G-quadruplex within the LTR promoter region of HIV-1. The guanine-rich sequence designated LTR-IV forms a well-defined structure in physiological cationic solution. The nuclear magnetic resonance (NMR) structure of this sequence reveals a parallel-stranded G-quadruplex containing a single-nucleotide thymine bulge, which participates in a conserved stacking interaction with a neighboring single-nucleotide adenine loop. Transcription analysis in a HIV-1 replication competent cell indicates that the LTR-IV region may act as a modulator of G-quadruplex formation in the LTR promoter. Consequently, the LTR-IV G-quadruplex structure presented within this work could represent a valuable target for the design of HIV therapeutics. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
2018-01-01
ABSTRACT Herpes simplex virus 1 (HSV-1) establishes latent infection in neurons via a variety of epigenetic mechanisms that silence its genome. The cellular CCCTC-binding factor (CTCF) functions as a mediator of transcriptional control and chromatin organization and has binding sites in the HSV-1 genome. We constructed an HSV-1 deletion mutant that lacked a pair of CTCF-binding sites (CTRL2) within the latency-associated transcript (LAT) coding sequences and found that loss of these CTCF-binding sites did not alter lytic replication or levels of establishment of latent infection, but their deletion reduced the ability of the virus to reactivate from latent infection. We also observed increased heterochromatin modifications on viral chromatin over the LAT promoter and intron. We therefore propose that CTCF binding at the CTRL2 sites acts as a chromatin insulator to keep viral chromatin in a form that is poised for reactivation, a state which we call poised latency. PMID:29437926
Abayli, Hasan; Tonbak, Sukru; Azkur, Ahmet Kursat; Bulut, Hakan
2017-10-01
Relatively high prevalence and mortality rates of bovine ephemeral fever (BEF) have been reported in recent epidemics in some countries, including Turkey, when compared with previous outbreaks. A limited number of complete genome sequences of BEF virus (BEFV) are available in the GenBank Database. In this study, the complete genome of highly pathogenic BEFV isolated during an outbreak in Turkey in 2012 was analyzed for genetic characterization. The complete genome of the Turkish BEFV isolate was amplified by reverse transcription-polymerase chain reaction (RT-PCR) and sequenced. It was found that the complete genome of the Turkish BEFV isolate was 14,901 nt in length. The complete genome sequence obtained from the study showed 91-92% identity at nucleotide level to Australian (BB7721) and Chinese (Bovine/China/Henan1/2012) BEFV isolates. Phylogenetic analysis of the glycoprotein gene of the Turkish BEFV isolate also showed that Turkish isolates were closely related to Israeli isolates. Because of the limited number of complete BEFV genome sequences, the results from this study will be useful for understanding the global molecular epidemiology and geodynamics of BEF.
Haugland, Øyvind; Mikalsen, Aase B.; Nilsen, Pål; Lindmo, Karine; Thu, Beate J.; Eliassen, Trygve M.; Roos, Norbert; Rode, Marit; Evensen, Øystein
2011-01-01
Cardiomyopathy syndrome (CMS) of farmed and wild Atlantic salmon (Salmo salar L.) is a disease of yet unknown etiology characterized by a necrotizing myocarditis involving the atrium and the spongious part of the heart ventricle. Here, we report the identification of a double-stranded RNA virus likely belonging to the family Totiviridae as the causative agent of the disease. The proposed name of the virus is piscine myocarditis virus (PMCV). On the basis of the RNA-dependent RNA polymerase (RdRp) sequence, PMCV grouped with Giardia lamblia virus and infectious myonecrosis virus of penaeid shrimp. The genome size of PMCV is 6,688 bp, with three open reading frames (ORFs). ORF1 likely encodes the major capsid protein, while ORF2 encodes the RdRp, possibly expressed as a fusion protein with the ORF1 product. ORF3 seems to be translated as a separate protein not described for any previous members of the family Totiviridae. Following experimental challenge with cell culture-grown virus, histopathological changes are observed in heart tissue by 6 weeks postchallenge (p.c.), with peak severity by 9 weeks p.c. Viral genome levels detected by real-time reverse transcription (RT)-PCR peak earlier at 6 to 7 weeks p.c. The virus genome is detected by in situ hybridization in degenerate cardiomyocytes from clinical cases of CMS. Virus genome levels in the hearts from clinical field cases correlate well with the severity of histopathological changes in heart tissue. The identification of the causative agent for CMS is important for improved disease surveillance and disease control and will serve as a basis for vaccine development against the disease. PMID:21411528
Paulin, Luis F; de los D Soto-Del Río, María; Sánchez, Iván; Hernández, Jesús; Gutiérrez-Ríos, Rosa M; López-Martínez, Irma; Wong-Chew, Rosa M; Parissi-Crivelli, Aurora; Isa, P; López, Susana; Arias, Carlos F
2014-03-01
Recent evidence suggests that most influenza A virus gene segments can contribute to the pathogenicity of the virus. In this regard, the hemagglutinin (HA) subtype of the circulating strains has been closely surveyed, but the reassortment of internal gene segments is usually not monitored as a potential source of an increased pathogenicity. In this work, an oligonucleotide DNA microarray (PhyloFlu) designed to determine the phylogenetic origins of the eight segments of the influenza virus genome was constructed and validated. Clades were defined for each segment and also for the 16 HA and 9 neuraminidase (NA) subtypes. Viral genetic material was amplified by reverse transcription-PCR (RT-PCR) with primers specific to the conserved 5' and 3' ends of the influenza A virus genes, followed by PCR amplification with random primers and Cy3 labeling. The microarray unambiguously determined the clades for all eight influenza virus genes in 74% (28/38) of the samples. The microarray was validated with reference strains from different animal origins, as well as from human, swine, and avian viruses from field or clinical samples. In most cases, the phylogenetic clade of each segment defined its animal host of origin. The genomic fingerprint deduced by the combined information of the individual clades allowed for the determination of the time and place that strains with the same genomic pattern were previously reported. PhyloFlu is useful for characterizing and surveying the genetic diversity and variation of animal viruses circulating in different environmental niches and for obtaining a more detailed surveillance and follow up of reassortant events that can potentially modify virus pathogenicity.
Rodríguez, Javier M; Moreno, Leticia Tais; Alejo, Alí; Lacasta, Anna; Rodríguez, Fernando; Salas, María L
2015-01-01
The strain BA71V has played a key role in African swine fever virus (ASFV) research. It was the first genome sequenced, and remains the only genome completely determined. A large part of the studies on the function of ASFV genes, viral transcription, replication, DNA repair and morphogenesis, has been performed using this model. This avirulent strain was obtained by adaptation to grow in Vero cells of the highly virulent BA71 strain. We report here the analysis of the genome sequence of BA71 in comparison with that of BA71V. They possess the smallest genomes for a virulent or an attenuated ASFV, and are essentially identical except for a relatively small number of changes. We discuss the possible contribution of these changes to virulence. Analysis of the BA71 sequence allowed us to identify new similarities among ASFV proteins, and with database proteins including two ASFV proteins that could function as a two-component signaling network.
Genomic copy concentrations of selected waterborne viruses in a slum environment in Kampala, Uganda.
Katukiza, A Y; Temanu, H; Chung, J W; Foppen, J W A; Lens, P N L
2013-06-01
The presence of viruses in a slum environment where sanitation is poor is a major concern. However, little is known of their occurrence and genomic copy concentration in the slum environment. The main objective of this study was to determine the genomic copy concentrations of human adenoviruses F and G, Rotavirus (RV), Hepatitis A virus (HAV), Hepatitis E virus (HEV) and human adenovirus species A,C,D,E, and F (HAdV-ACDEF) in Bwaise III, a typical slum in Kampala, Uganda. Forty-one samples from surface water, grey water and ground water were collected from 30 sampling locations. The virus particles were recovered by glass wool filtration with elution using beef extract. DNA and RNA viruses were detected by the real time quantitative polymerase chain reaction (qPCR) and the reverse transcription-qPCR (RT-qPCR), respectively. HAdV-F and G were detected in 70.7% of the samples with concentrations up to 2.65 × 10(1) genomic copies per mL (gc mL(-1)). RV and HAV were detected in 60.9% and 17.1% of the samples, respectively. The maximum concentration of RV was 1.87 × 10(2)gc mL(-1). In addition, 78% of the samples tested positive for the HAdV-ACDEF, but all samples tested negative for HEV. These new data are essential for quantitative microbial risk assessment, and for understanding the effects of environmental pollution in slums.
Cassone, Bryan J; Cisneros Carter, Fiorella M; Michel, Andrew P; Stewart, Lucy R; Redinbaugh, Margaret G
2014-01-01
Most plant-infecting rhabdoviruses are transmitted by one or a few closely related insect species. Additionally, intraspecific differences in transmission efficacy often exist among races/biotypes within vector species and among strains within a virus species. The black-faced leafhopper, Graminella nigrifrons, is the only known vector of the persistent propagative rhabdovirus Maize fine streak virus (MFSV). Only a small percentage of leafhoppers are capable of transmitting the virus, although the mechanisms underlying vector competence are not well understood. RNA-Seq was carried out to explore transcript expression changes and sequence variation in G. nigrifrons and MFSV that may be associated with the ability of the vector to acquire and transmit the virus. RT-qPCR assays were used to validate differential transcript accumulation. Feeding on MFSV-infected maize elicited a considerable transcriptional response in G. nigrifrons, with increased expression of cytoskeleton organization and immunity transcripts in infected leafhoppers. Differences between leafhoppers capable of transmitting MFSV, relative to non-transmitting but infected leafhoppers were more limited, which may reflect difficulties discerning between the two groups and/or the likelihood that the transmitter phenotype results from one or a few genetic differences. The ability of infected leafhoppers to transmit MFSV did not appear associated with virus transcript accumulation in the infected leafhoppers or sequence polymorphisms in the viral genome. However, the non-structural MFSV 3 gene was expressed at unexpectedly high levels in infected leafhoppers, suggesting it plays an active role in the infection of the insect host. The results of this study begin to define the functional roles of specific G. nigrifrons and MFSV genes in the viral transmission process.
Michel, Andrew P.; Stewart, Lucy R.; Redinbaugh, Margaret G.
2014-01-01
Background Most plant-infecting rhabdoviruses are transmitted by one or a few closely related insect species. Additionally, intraspecific differences in transmission efficacy often exist among races/biotypes within vector species and among strains within a virus species. The black-faced leafhopper, Graminella nigrifrons, is the only known vector of the persistent propagative rhabdovirus Maize fine streak virus (MFSV). Only a small percentage of leafhoppers are capable of transmitting the virus, although the mechanisms underlying vector competence are not well understood. Methodology RNA-Seq was carried out to explore transcript expression changes and sequence variation in G. nigrifrons and MFSV that may be associated with the ability of the vector to acquire and transmit the virus. RT-qPCR assays were used to validate differential transcript accumulation. Results/Significance Feeding on MFSV-infected maize elicited a considerable transcriptional response in G. nigrifrons, with increased expression of cytoskeleton organization and immunity transcripts in infected leafhoppers. Differences between leafhoppers capable of transmitting MFSV, relative to non-transmitting but infected leafhoppers were more limited, which may reflect difficulties discerning between the two groups and/or the likelihood that the transmitter phenotype results from one or a few genetic differences. The ability of infected leafhoppers to transmit MFSV did not appear associated with virus transcript accumulation in the infected leafhoppers or sequence polymorphisms in the viral genome. However, the non-structural MFSV 3 gene was expressed at unexpectedly high levels in infected leafhoppers, suggesting it plays an active role in the infection of the insect host. The results of this study begin to define the functional roles of specific G. nigrifrons and MFSV genes in the viral transmission process. PMID:25420026
Gallei, Andreas; Rümenapf, Till; Thiel, Heinz-Jürgen; Becher, Paul
2005-01-01
Molecular analyses revealed that most cytopathogenic (cp) pestivirus strains evolve from noncytopathogenic (noncp) viruses by nonhomologous RNA recombination. In contrast to bovine viral diarrhea virus (BVDV), cp classical swine fever virus (CSFV) field isolates were rarely detected and always represented helper virus-dependent subgenomes. To investigate RNA recombination in more detail, we recently established an in vivo system allowing the efficient generation of recombinant cp BVDV strains in cell culture after transfecting a synthetic subgenomic and nonreplicatable transcript into cells being infected with noncp BVDV (A. Gallei, A. Pankraz, H.-J. Thiel, and P. Becher, J. Virol. 78:6271-6281, 2004). Using an analogous approach, the first helper virus-independent cp CSFV strain (CP G1) has now been generated by RNA recombination. Accordingly, this study demonstrates the applicability of RNA recombination for designing new viral RNA genomes. The genomic RNA of CP G1 has a calculated size of 18.139 kb, almost 6 kb larger than all previously described CSFV genomes. It contains cellular sequences encoding a polyubiquitin fragment directly upstream of the nonstructural protein NS3 coding gene together with a duplication of viral sequences. CP G1 induces a cytopathic effect on different tissue culture cell lines from pigs and cattle. Subsequent analyses addressed growth kinetics, expression of NS3, and genetic stability of CP G1. PMID:15681445
Kurath, Gael; Purcell, Maureen K.; Wargo, Andrew; Park, Jeong Woo; Moon, Chang Hoon
2010-01-01
Infectious haematopoietic necrosis virus (IHNV) is one of the most important viral pathogens of salmonids. In rainbow trout, IHNV isolates in the M genogroup are highly pathogenic, while U genogroup isolates are significantly less pathogenic. We show here that, at a multiplicity of infection (MOI) of 1, a representative U type strain yielded 42-fold less infectious virus than an M type strain in the rainbow trout–derived RTG-2 cell line at 24 h post-infection (p.i.). However, at an MOI of 10, there was only fivefold difference in the yield of infectious virus between the U and M strains. Quantification of extracellular viral genomic RNA suggested that the number of virus particles released from cells infected with the U strain at a MOI of 1 was 47-fold lower than from M-infected cells, but U and M virions were equally infectious by particle to infectivity ratios. At an MOI of 1, U strain intracellular viral genome accumulation and transcription were 37- and 12-fold lower, respectively, than those of the M strain at 24 h p.i. Viral nucleocapsid (N) protein accumulation in U strain infections was fivefold lower than in M strain infections. These results suggest that the block in U type strain growth in RTG-2 cells was because of the effects of reduced genome replication and transcription. The reduced growth of the U strain does not seem to be caused by defective genes, because the U and M strains grew equally well in the permissive epithelioma papulosum cyprini cell line at an MOI of 1. This suggests that host-specific factors in RTG-2 cells control the growth of the IHNV U and M strains differently, leading to growth restriction of the U type virus during the RNA synthesis step.
Økland, Arnfinn Lodden; Nylund, Are; Øvergård, Aina-Cathrine; Blindheim, Steffen; Watanabe, Kuninori; Grotmol, Sindre; Arnesen, Carl-Erik; Plarre, Heidrun
2014-01-01
Several new viruses have emerged during farming of salmonids in the North Atlantic causing large losses to the industry. Still the blood feeding copepod parasite, Lepeophtheirus salmonis, remains the major challenge for the industry. Histological examinations of this parasite have revealed the presence of several virus-like particles including some with morphologies similar to rhabdoviruses. This study is the first description of the genome and target tissues of two new species of rhabdoviruses associated with pathology in the salmon louse. Salmon lice were collected at different Atlantic salmon (Salmo salar) farming sites on the west coast of Norway and prepared for histology, transmission electron microscopy and Illumina sequencing of the complete RNA extracted from these lice. The nearly complete genomes, around 11,600 nucleotides encoding the five typical rhabdovirus genes N, P, M, G and L, of two new species were obtained. The genome sequences, the putative protein sequences, and predicted transcription strategies for the two viruses are presented. Phylogenetic analyses of the putative N and L proteins indicated closest similarity to the Sigmavirus/Dimarhabdoviruses cluster, however, the genomes of both new viruses are significantly diverged with no close affinity to any of the existing rhabdovirus genera. In situ hybridization, targeting the N protein genes, showed that the viruses were present in the same glandular tissues as the observed rhabdovirus-like particles. Both viruses were present in all developmental stages of the salmon louse, and associated with necrosis of glandular tissues in adult lice. As the two viruses were present in eggs and free-living planktonic stages of the salmon louse vertical, transmission of the viruses are suggested. The tissues of the lice host, Atlantic salmon, with the exception of skin at the attachment site for the salmon louse chalimi stages, were negative for these two viruses.
Økland, Arnfinn Lodden; Nylund, Are; Øvergård, Aina-Cathrine; Blindheim, Steffen; Watanabe, Kuninori; Grotmol, Sindre; Arnesen, Carl-Erik; Plarre, Heidrun
2014-01-01
Several new viruses have emerged during farming of salmonids in the North Atlantic causing large losses to the industry. Still the blood feeding copepod parasite, Lepeophtheirus salmonis, remains the major challenge for the industry. Histological examinations of this parasite have revealed the presence of several virus-like particles including some with morphologies similar to rhabdoviruses. This study is the first description of the genome and target tissues of two new species of rhabdoviruses associated with pathology in the salmon louse. Salmon lice were collected at different Atlantic salmon (Salmo salar) farming sites on the west coast of Norway and prepared for histology, transmission electron microscopy and Illumina sequencing of the complete RNA extracted from these lice. The nearly complete genomes, around 11 600 nucleotides encoding the five typical rhabdovirus genes N, P, M, G and L, of two new species were obtained. The genome sequences, the putative protein sequences, and predicted transcription strategies for the two viruses are presented. Phylogenetic analyses of the putative N and L proteins indicated closest similarity to the Sigmavirus/Dimarhabdoviruses cluster, however, the genomes of both new viruses are significantly diverged with no close affinity to any of the existing rhabdovirus genera. In situ hybridization, targeting the N protein genes, showed that the viruses were present in the same glandular tissues as the observed rhabdovirus-like particles. Both viruses were present in all developmental stages of the salmon louse, and associated with necrosis of glandular tissues in adult lice. As the two viruses were present in eggs and free-living planktonic stages of the salmon louse vertical, transmission of the viruses are suggested. The tissues of the lice host, Atlantic salmon, with the exception of skin at the attachment site for the salmon louse chalimi stages, were negative for these two viruses. PMID:25402203
Oreshkova, Nadia; Moormann, Rob J. M.; Kortekaas, Jeroen
2014-01-01
ABSTRACT Bunyavirus genomes comprise a small (S), a medium (M), and a large (L) RNA segment of negative polarity. Although the untranslated regions have been shown to comprise signals required for transcription, replication, and encapsidation, the mechanisms that drive the packaging of at least one S, M, and L segment into a single virion to generate infectious virus are largely unknown. One of the most important members of the Bunyaviridae family that causes devastating disease in ruminants and occasionally humans is the Rift Valley fever virus (RVFV). We studied the flexibility of RVFV genome packaging by splitting the glycoprotein precursor gene, encoding the (NSm)GnGc polyprotein, into two individual genes encoding either (NSm)Gn or Gc. Using reverse genetics, six viruses with a segmented glycoprotein precursor gene were rescued, varying from a virus comprising two S-type segments in the absence of an M-type segment to a virus consisting of four segments (RVFV-4s), of which three are M-type. Despite that all virus variants were able to grow in mammalian cell lines, they were unable to spread efficiently in cells of mosquito origin. Moreover, in vivo studies demonstrated that RVFV-4s is unable to cause disseminated infection and disease in mice, even in the presence of the main virulence factor NSs, but induced a protective immune response against a lethal challenge with wild-type virus. In summary, splitting bunyavirus glycoprotein precursor genes provides new opportunities to study bunyavirus genome packaging and offers new methods to develop next-generation live-attenuated bunyavirus vaccines. IMPORTANCE Rift Valley fever virus (RVFV) causes devastating disease in ruminants and occasionally humans. Virions capable of productive infection comprise at least one copy of the small (S), medium (M), and large (L) RNA genome segments. The M segment encodes a glycoprotein precursor (GPC) protein that is cotranslationally cleaved into Gn and Gc, which are required for virus entry and fusion. We studied the flexibility of RVFV genome packaging and developed experimental live-attenuated vaccines by applying a unique strategy based on the splitting of the GnGc open reading frame. Several RVFV variants, varying from viruses comprising two S-type segments to viruses consisting of four segments (RVFV-4s), of which three are M-type, could be rescued and were shown to induce a rapid protective immune response. Altogether, the segmentation of bunyavirus GPCs provides a new method for studying bunyavirus genome packaging and facilitates the development of novel live-attenuated bunyavirus vaccines. PMID:25008937
Wichgers Schreur, Paul J; Oreshkova, Nadia; Moormann, Rob J M; Kortekaas, Jeroen
2014-09-01
Bunyavirus genomes comprise a small (S), a medium (M), and a large (L) RNA segment of negative polarity. Although the untranslated regions have been shown to comprise signals required for transcription, replication, and encapsidation, the mechanisms that drive the packaging of at least one S, M, and L segment into a single virion to generate infectious virus are largely unknown. One of the most important members of the Bunyaviridae family that causes devastating disease in ruminants and occasionally humans is the Rift Valley fever virus (RVFV). We studied the flexibility of RVFV genome packaging by splitting the glycoprotein precursor gene, encoding the (NSm)GnGc polyprotein, into two individual genes encoding either (NSm)Gn or Gc. Using reverse genetics, six viruses with a segmented glycoprotein precursor gene were rescued, varying from a virus comprising two S-type segments in the absence of an M-type segment to a virus consisting of four segments (RVFV-4s), of which three are M-type. Despite that all virus variants were able to grow in mammalian cell lines, they were unable to spread efficiently in cells of mosquito origin. Moreover, in vivo studies demonstrated that RVFV-4s is unable to cause disseminated infection and disease in mice, even in the presence of the main virulence factor NSs, but induced a protective immune response against a lethal challenge with wild-type virus. In summary, splitting bunyavirus glycoprotein precursor genes provides new opportunities to study bunyavirus genome packaging and offers new methods to develop next-generation live-attenuated bunyavirus vaccines. Rift Valley fever virus (RVFV) causes devastating disease in ruminants and occasionally humans. Virions capable of productive infection comprise at least one copy of the small (S), medium (M), and large (L) RNA genome segments. The M segment encodes a glycoprotein precursor (GPC) protein that is cotranslationally cleaved into Gn and Gc, which are required for virus entry and fusion. We studied the flexibility of RVFV genome packaging and developed experimental live-attenuated vaccines by applying a unique strategy based on the splitting of the GnGc open reading frame. Several RVFV variants, varying from viruses comprising two S-type segments to viruses consisting of four segments (RVFV-4s), of which three are M-type, could be rescued and were shown to induce a rapid protective immune response. Altogether, the segmentation of bunyavirus GPCs provides a new method for studying bunyavirus genome packaging and facilitates the development of novel live-attenuated bunyavirus vaccines. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
2013-01-01
Background During reverse transcription, retroviruses duplicate the long terminal repeats (LTRs). These identical LTRs carry both promoter regions and functional polyadenylation sites. To express full-length transcripts, retroviruses have to suppress polyadenylation in the 5′LTR and activate polyadenylation in the 3′LTR. Foamy viruses have a unique LTR structure with respect to the location of the major splice donor (MSD), which is located upstream of the polyadenylation signal. Results Here, we describe the mechanisms of foamy viruses regulating polyadenylation. We show that binding of the U1 small nuclear ribonucleoprotein (U1snRNP) to the MSD suppresses polyadenylation at the 5′LTR. In contrast, polyadenylation at the 3′LTR is achieved by adoption of a different RNA structure at the MSD region, which blocks U1snRNP binding and furthers RNA cleavage and subsequent polyadenylation. Conclusion Recently, it was shown that U1snRNP is able to suppress the usage of intronic cryptic polyadenylation sites in the cellular genome. Foamy viruses take advantage of this surveillance mechanism to suppress premature polyadenylation at the 5’end of their RNA. At the 3’end, Foamy viruses use a secondary structure to presumably block access of U1snRNP and thereby activate polyadenylation at the end of the genome. Our data reveal a contribution of U1snRNP to cellular polyadenylation site selection and to the regulation of gene expression. PMID:23718736
Russo, Alice G; Eden, John-Sebastian; Enosi Tuipulotu, Daniel; Shi, Mang; Selechnik, Daniel; Shine, Richard; Rollins, Lee Ann; Holmes, Edward C; White, Peter A
2018-06-13
Cane toads are a notorious invasive species, inhabiting over 1.2 million km 2 of Australia and threatening native biodiversity. Release of pathogenic cane toad viruses is one possible biocontrol strategy yet is currently hindered by the poorly-described cane toad virome. Metatranscriptomic analysis of 16 cane toad livers revealed the presence of a novel and full-length picornavirus, Rhimavirus A (RhiV-A), a member of a reptile and amphibian specific-cluster of the Picornaviridae basal to the Kobuvirus -like group. In the combined liver transcriptome, we also identified a complete genome sequence of a distinct epsilonretrovirus, R. marina endogenous retrovirus (RMERV). The recently sequenced cane toad genome contains eight complete RMERV proviruses, as well as 21 additional truncated insertions. The oldest full length RMERV provirus was estimated to have inserted 1.9 MYA. To screen for these viral sequences in additional toads, we analysed publicly available transcriptomes from six diverse Australian locations. RhiV-A transcripts were identified in toads sampled from three locations across 1,000 km of Australia, stretching to the current Western Australia (WA) invasion front, whilst RMERV transcripts were observed at all six sites. Lastly, we scanned the cane toad genome for non-retroviral endogenous viral elements, finding three sequences related to small DNA viruses in the family Circoviridae This shows ancestral circoviral infection with subsequent genomic integration. The identification of these current and past viral infections enriches our knowledge of the cane toad virome, an understanding of which will facilitate future work on infection and disease in this important invasive species. Importance Cane toads are poisonous amphibians which were introduced to Australia in 1935 for insect control. Since then, their population has increased dramatically, and they now threat many native Australian species. One potential method to control the population is to release a cane toad virus with high mortality, yet few cane toad viruses have been characterised. This study samples cane toads from different Australian locations and uses an RNA sequencing and computational approach to find new viruses. We report novel complete picornavirus and retrovirus sequences which were genetically similar to viruses infecting frogs, reptiles and fish. Using data generated in other studies, we show that these viral sequences are present in cane toads from distinct Australian locations. Three sequences related to circoviruses were also found in the toad genome. The identification of new viral sequences will aid future studies which investigate their prevalence and potential as agents for biocontrol. Copyright © 2018 American Society for Microbiology.
Bedoya, Leonor C.; Martínez, Fernando; Orzáez, Diego; Daròs, José-Antonio
2012-01-01
Insertion of reporter genes into plant virus genomes is a common experimental strategy to research many aspects of the viral infection dynamics. Their numerous advantages make fluorescent proteins the markers of choice in most studies. However, the use of fluorescent proteins still has some limitations, such as the need of specialized material and facilities to detect the fluorescence. Here, we demonstrate a visual reporter marker system to track virus infection and movement through the plant. The reporter system is based on expression of Antirrhinum majus MYB-related Rosea1 (Ros1) transcription factor (220 amino acids; 25.7 kD) that activates a series of biosynthetic genes leading to accumulation of colored anthocyanins. Using two different tobacco etch potyvirus recombinant clones tagged with Ros1, we show that infected tobacco (Nicotiana tabacum) tissues turn bright red, demonstrating that in this context, the sole expression of Ros1 is sufficient to induce pigment accumulation to a level readily detectable to the naked eye. This marker system also reports viral load qualitatively and quantitatively by means of a very simple extraction process. The Ros1 marker remained stable within the potyvirus genome through successive infectious passages from plant to plant. The main limitation of this marker system is that color output will depend on each particular plant host-virus combination and must be previously tested. However, our experiments demonstrate accurate tracking of turnip mosaic potyvirus infecting Arabidopsis (Arabidopsis thaliana) and either tobacco mosaic virus or potato X virus infecting Nicotiana benthamiana, stressing the general applicability of the method. PMID:22238422
NASA Astrophysics Data System (ADS)
Paul, B. G.; Burstein, D.; Castelle, C. J.; Banfield, J. F.; Valentine, D. L.; Miller, J. F.; Ghosh, P.; Handa, S.; Arambula, D.; Czornyj, E.; Thomas, B. C.
2016-12-01
Uncultivated microorganisms primarily account for the remarkable diversity harbored in subsurface environments and represent an expansive subset of the current Tree of Life. Recent metagenomic efforts to investigate subsurface biomes have unveiled an array of bacterial and archaeal candidate phyla, whose members have minimal genomes and an apparent host-dependent existence. Still, little is known about the adaptive strategies that mediate host interactions in these organisms or their viruses. Genomic features known as diversity-generating retroelements (DGRs), which guide variability into targeted genes, were recently discovered in two single-cell genomes of uncultivated nanoarchaea, and independently in the genome of a marine virus from methane seep sediments. These prodigious drivers of protein hypervariability were first identified as the key force behind phage tail fiber diversification for binding different host receptors. Since their discovery, approximately 500 new DGRs have been found across a wide range of bacterial genomes representing various niches. We identified an unexpected 1136 distinct diversifiers from a single groundwater environment in reconstructed microbial genomes and genome fragments. The newly detected DGRs - predominantly linked to members of the candidate phyla radiation (CPR) - appear to target genes associated with cell-cell attachment, signaling, and transcription regulation. These findings suggest that targeted protein diversification may have an important role in regulating symbiotic or parasitic associations in groundwater microbiomes.
The VP35 and VP40 proteins of filoviruses. Homology between Marburg and Ebola viruses.
Bukreyev, A A; Volchkov, V E; Blinov, V M; Netesov, S V
1993-05-03
The fragments of genomic RNA sequences of Marburg (MBG) and Ebola (EBO) viruses are reported. These fragments were found to encode the VP35 and VP40 proteins. The canonic sequences were revealed before and after each open reading frame. It is suggested that these sequences are mRNA extremities and at the same time the regulatory elements for mRNA transcription. Homology between the MBG and EBO proteins was discovered.
Genomic screening for blood-borne viruses in transfusion settings.
Allain, J P
2000-02-01
The residual risk of post-transfusion human immunodeficiency virus (HIV) infection is low but slightly higher for hepatitis B virus (HBV) and hepatitis C virus (HCV), the main reason being viraemia during the window period preceding antibody or antigen detection by enzyme immunoassays. Immunosilent-infected individuals and carriers of distant viral variants also play an unquantifiable role. Multiple techniques, e.g. reverse transcription-polymerase chain reaction (RT-PCR), PCR, ligase-chain reaction, nucleic acid sequence-based amplification (NASBA) and transcription-mediated amplification (TMA) have been developed to amplify and detect viral genomes as single or multiplex assays. Equipment providing various degrees of automation has been adapted to these techniques. Applying nucleic acid amplification techniques (NAT) to blood screening, two main approaches have been advocated: plasma pool and single-donation testing. Pool testing presents the advantage of lower cost and readily available equipment although it is prone to false negative and positive reactions. The time required to identify infected donations is incompatible with blood component release, and may lead to product waste. Single-unit testing, although appealing, is not yet fully automated and potentially very costly unless a systematic multiplex approach is taken. Although technically feasible, NAT applied to the blood supply needs to be clinically evaluated and its cost efficiency assessed in the general public health context. However, pool NAT is currently implemented in continental Europe and the USA.
Durantel, D; Croizier, L; Ayres, M D; Croizier, G; Possee, R D; López-Ferber, M
1998-03-01
Autographa californica nucleopolyhedrovirus (AcMNPV) ORF 86, located within the HindIII C fragment, potentially encodes a protein which shares sequence similarity with two T4 bacteriophage gene products, RNA ligase and polynucleotide kinase. This AcMNPV gene has been designated pnk/pnl but has yet to be assigned a function in virus replication. It has been classified as an immediate early virus gene, since the promoter was active in uninfected insect cells and mRNA transcripts were detectable from 4 to 48 h post-infection and in the presence of cycloheximide or aphidicolin in virus-infected cells. The extremities of the transcript have been mapped by primer extension and 3' RACE-PCR to positions -18 from the translational start codon and +15 downstream of the stop codon. The function of pnk/pnl was investigated by producing a recombinant virus (Acdel86lacZ) with the coding region replaced with that of lacZ. This virus replicated normally in Spodoptera frugiperda (Sf 21) cells, indicating that pnk/pnl is not essential for propagation in these cells. Virus protein production in Acdel86lacZ-infected Sf 21 cells also appeared to be unaffected, with normal synthesis of the IE-1, GP64, VP39 and polyhedrin proteins. Shut-down of host protein synthesis was not abolished in recombinant infection. When other baculovirus genomes were examined for the presence of pnk/pnl by restriction enzyme digestion and PCR, a deletion was found in AcMNPV 1.2, Galleria mellonella NPV (GmMNPV) and Bombyx mori NPV (BmNPV), suggesting that in many isolates this gene has either never been acquired or has been lost during genome evolution. This is one of the first baculovirus immediate early genes that appears to be nonessential for virus survival.
Creation of a Recombinant Rift Valley Fever Virus with a Two-Segmented Genome ▿ †
Brennan, Benjamin; Welch, Stephen R.; McLees, Angela; Elliott, Richard M.
2011-01-01
Rift Valley fever virus (RVFV; family Bunyaviridae) is a clinically important, mosquito-borne pathogen of both livestock and humans, which is found mainly in sub-Saharan Africa and the Arabian Peninsula. RVFV has a trisegmented single-stranded RNA (ssRNA) genome. The L and M segments are negative sense and encode the L protein (viral polymerase) on the L segment and the virion glycoproteins Gn and Gc as well as two other proteins, NSm and 78K, on the M segment. The S segment uses an ambisense coding strategy to express the nucleocapsid protein, N, and the nonstructural protein, NSs. Both the NSs and NSm proteins are dispensable for virus growth in tissue culture. Using reverse genetics, we generated a recombinant virus, designated r2segMP12, containing a two-segmented genome in which the NSs coding sequence was replaced with that for the Gn and Gc precursor. Thus, r2segMP12 lacks an M segment, and although it was attenuated in comparison to the three-segmented parental virus in both mammalian and insect cell cultures, it was genetically stable over multiple passages. We further show that the virus can stably maintain an M-like RNA segment encoding the enhanced green fluorescent protein gene. The implications of these findings for RVFV genome packaging and the potential to develop multivalent live-attenuated vaccines are discussed. PMID:21795328
Dou, Dan; Hernández-Neuta, Iván; Wang, Hao; Östbye, Henrik; Qian, Xiaoyan; Thiele, Swantje; Resa-Infante, Patricia; Kouassi, Nancy Mounogou; Sender, Vicky; Hentrich, Karina; Mellroth, Peter; Henriques-Normark, Birgitta; Gabriel, Gülsah; Nilsson, Mats; Daniels, Robert
2017-07-05
Genome delivery to the proper cellular compartment for transcription and replication is a primary goal of viruses. However, methods for analyzing viral genome localization and differentiating genomes with high identity are lacking, making it difficult to investigate entry-related processes and co-examine heterogeneous RNA viral populations. Here, we present an RNA labeling approach for single-cell analysis of RNA viral replication and co-infection dynamics in situ, which uses the versatility of padlock probes. We applied this method to identify influenza A virus (IAV) infections in cells and lung tissue with single-nucleotide specificity and to classify entry and replication stages by gene segment localization. Extending the classification strategy to co-infections of IAVs with single-nucleotide variations, we found that the dependence on intracellular trafficking places a time restriction on secondary co-infections necessary for genome reassortment. Altogether, these data demonstrate how RNA viral genome labeling can help dissect entry and co-infections. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Martin, Kathleen; Singh, Jugpreet; Hill, John H; Whitham, Steven A; Cannon, Steven B
2016-08-11
Bean common mosaic virus (BCMV) is widespread, with Phaseolus species as the primary host plants. Numerous BCMV strains have been identified on the basis of a panel of bean varieties that distinguish the pathogenicity types with respect to the viral strains. The molecular responses in Phaseolus to BCMV infection have not yet been well characterized. We report the transcriptional responses of a widely susceptible variety of common bean (Phaseolus vulgaris L., cultivar 'Stringless green refugee') to two BCMV strains, in a time-course experiment. We also report the genome sequence of a previously unreported BCMV strain. The interaction with the known strain NL1-Iowa causes moderate symptoms and large transcriptional responses, and the newly identified strain (Strain 2 or S2) causes severe symptoms and moderate transcriptional responses. The transcriptional profiles of host plants infected with the two isolates are distinct, and involve numerous differences in splice forms in particular genes, and pathway specific expression patterns. We identified differential host transcriptome response after infection of two different strains of Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris L.). Virus infection initiated a suite of changes in gene expression level and patterns in the host plants. Pathways related to defense, gene regulation, metabolic processes, photosynthesis were specifically altered after virus infection. Results presented in this study can increase the understanding of host-pathogen interactions and provide resources for further investigations of the biological mechanisms in BCMV infection and defense.
Govindaraj, Lekha; Gupta, Tania; Esvaran, Vijaya Gowri; Awasthi, Arvind Kumar; Ponnuvel, Kangayam M
2016-04-01
Sugar transporters play an essential role in controlling carbohydrate transport and are responsible for mediating the movement of sugars into cells. These genes exist as large multigene families within the insect genome. In insects, sugar transporters not only have a role in sugar transport, but may also act as receptors for virus entry. Genome-wide annotation of silkworm Bombyx mori (B. mori) revealed 100 putative sugar transporter (BmST) genes exists as a large multigene family and were classified into 11 sub families, through phylogenetic analysis. Chromosomes 27, 26 and 20 were found to possess the highest number of BmST paralogous genes, harboring 22, 7 and 6 genes, respectively. These genes occurred in clusters exhibiting the phenomenon of tandem gene duplication. The ovary, silk gland, hemocytes, midgut and malphigian tubules were the different tissues/cells enriched with BmST gene expression. The BmST gene BGIBMGA001498 had maximum EST transcripts of 134 and expressed exclusively in the malphigian tubule. The expression of EST transcripts of the BmST clustered genes on chromosome 27 was distributed in various tissues like testis, ovary, silk gland, malphigian tubule, maxillary galea, prothoracic gland, epidermis, fat body and midgut. Three sugar transporter genes (BmST) were constitutively expressed in the susceptible race and were down regulated upon BmNPV infection at 12h post infection (hpi). The expression pattern of these three genes was validated through real-time PCR in the midgut tissues at different time intervals from 0 to 30hpi. In the susceptible B. mori race, expression of sugar transporter genes was constitutively expressed making the host succumb to viral infection. Copyright © 2015 Elsevier B.V. All rights reserved.
Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes.
Dembowski, Jill A; DeLuca, Neal A
2015-05-01
Much of the HSV-1 life cycle is carried out in the cell nucleus, including the expression, replication, repair, and packaging of viral genomes. Viral proteins, as well as cellular factors, play essential roles in these processes. Isolation of proteins on nascent DNA (iPOND) was developed to label and purify cellular replication forks. We adapted aspects of this method to label viral genomes to both image, and purify replicating HSV-1 genomes for the identification of associated proteins. Many viral and cellular factors were enriched on viral genomes, including factors that mediate DNA replication, repair, chromatin remodeling, transcription, and RNA processing. As infection proceeded, packaging and structural components were enriched to a greater extent. Among the more abundant proteins that copurified with genomes were the viral transcription factor ICP4 and the replication protein ICP8. Furthermore, all seven viral replication proteins were enriched on viral genomes, along with cellular PCNA and topoisomerases, while other cellular replication proteins were not detected. The chromatin-remodeling complexes present on viral genomes included the INO80, SWI/SNF, NURD, and FACT complexes, which may prevent chromatinization of the genome. Consistent with this conclusion, histones were not readily recovered with purified viral genomes, and imaging studies revealed an underrepresentation of histones on viral genomes. RNA polymerase II, the mediator complex, TFIID, TFIIH, and several other transcriptional activators and repressors were also affinity purified with viral DNA. The presence of INO80, NURD, SWI/SNF, mediator, TFIID, and TFIIH components is consistent with previous studies in which these complexes copurified with ICP4. Therefore, ICP4 is likely involved in the recruitment of these key cellular chromatin remodeling and transcription factors to viral genomes. Taken together, iPOND is a valuable method for the study of viral genome dynamics during infection and provides a comprehensive view of how HSV-1 selectively utilizes cellular resources.
Mühlberger, Elke; Lötfering, Beate; Klenk, Hans-Dieter; Becker, Stephan
1998-01-01
This paper describes the first reconstituted replication system established for a member of the Filoviridae, Marburg virus (MBGV). MBGV minigenomes containing the leader and trailer regions of the MBGV genome and the chloramphenicol acetyltransferase (CAT) gene were constructed. In MBGV-infected cells, these minigenomes were replicated and encapsidated and could be passaged. Unlike most other members of the order Mononegavirales, filoviruses possess four proteins presumed to be components of the nucleocapsid (NP, VP35, VP30, and L). To determine the protein requirements for replication and transcription, a reverse genetic system was established for MBGV based on the vaccinia virus T7 expression system. Northern blot analysis of viral RNA revealed that three nucleocapsid proteins (NP, VP35, and L) were essential and sufficient for transcription as well as replication and encapsidation. These data indicate that VP35, rather than VP30, is the functional homologue of rhabdo- and paramyxovirus P proteins. The reconstituted replication system was profoundly affected by the NP-to-VP35 expression ratio. To investigate whether CAT gene expression was achieved entirely by mRNA or in part by full-length plus-strand minigenomes, a copy-back minireplicon containing the CAT gene but lacking MBGV-specific transcriptional start sites was employed in the artificial replication system. This construct was replicated without accompanying CAT activity. It was concluded that the CAT activity reflected MBGV-specific transcription and not replication. PMID:9765419
Matsumoto, Yusuke; Ohta, Keisuke; Goto, Hideo; Nishio, Machiko
2016-07-01
Gene expression of paramyxoviruses is regulated by genome-encoded cis-acting elements; however, whether all the required elements for viral growth have been identified is not clear. Using a mini-replicon system, it has been shown that human parainfluenza virus type 2 (hPIV2) polymerase can recognize the promoter elements of parainfluenza virus type 5 (PIV5), but reporter activity is lower in this case. We constructed a series of luciferase-encoding chimeric PIV2/5 mini-genomes that are basically hPIV2, but whose leader (le), mRNA start signal and trailer sequence are partially replaced with those of PIV5. Studies of the chimeric PIV2/5 mini-replicons demonstrated that replacement of hPIV2 le with PIV5 le results in remarkably weak luciferase expression. Further mutagenesis identified the responsible region as positions 25-30 of the PIV5 le. Using recombinant hPIV2, the impact of this region on viral life cycles was assessed. Insertion of the mutation at this region facilitated viral growth, genomic replication and mRNA transcription at the early stage of infection, which elicited severe cell damage. In contrast, at the late infection stage it caused a reduction in viral transcription. Here, we identify a novel cis-acting element in the internal region of an le sequence that is involved in the regulation of polymerase, and which contributes to maintaining a balance between viral growth and cytotoxicity.
Müllers, Erik; Uhlig, Tobias; Stirnnagel, Kristin; Fiebig, Uwe; Zentgraf, Hanswalter; Lindemann, Dirk
2011-02-01
Prototype foamy virus (PFV) Gag lacks the characteristic orthoretroviral Cys-His motifs that are essential for various steps of the orthoretroviral replication cycle, such as RNA packaging, reverse transcription, infectivity, integration, and viral assembly. Instead, it contains three glycine-arginine-rich boxes (GR boxes) in its C terminus that putatively represent a functional equivalent. We used a four-plasmid replication-deficient PFV vector system, with uncoupled RNA genome packaging and structural protein translation, to analyze the effects of deletion and various substitution mutations within each GR box on particle release, particle-associated protein composition, RNA packaging, DNA content, infectivity, particle morphology, and intracellular localization. The degree of viral particle release by all mutants was similar to that of the wild type. Only minimal effects on Pol encapsidation, exogenous reverse transcriptase (RT) activity, and genomic viral RNA packaging were observed. In contrast, particle-associated DNA content and infectivity were drastically reduced for all deletion mutants and were undetectable for all alanine substitution mutants. Furthermore, GR box I mutants had significant changes in particle morphology, and GR box II mutants lacked the typical nuclear localization pattern of PFV Gag. Finally, it could be shown that GR boxes I and III, but not GR box II, can functionally complement each other. It therefore appears that, similar to the orthoretroviral Cys-His motifs, the PFV Gag GR boxes are important for RNA encapsidation, genome reverse transcription, and virion infectivity as well as for particle morphogenesis.
Structural Studies on Varicella Zoster Virus
1990-08-20
TABLE OF CONTENTS INTRODUCTION 1 The VZV Genome , 8 VZV Proteins 12 VZV Transcription 14 The Structure of HSV 15 Herpesvirus Expression 16...VZV virion . . . 4 Figure 2. A drawing of the VZV nucleocapsid 6 Figure 3. A comparison of the structure of the genomes of HSV - 1 and VZV 9 Figure 4...VZV, and purified VZ virions probed with antibody against VZV IE62 (the HSV - 1 ICP4 equivalent) . . . 154 xii Figure 48. Autoradiograph of VZV IE62
Song, Wen Jun; Qin, Qi Wei; Qiu, Jin; Huang, Can Hua; Wang, Fan; Hew, Choy Leong
2004-01-01
Here we report the complete genome sequence of Singapore grouper iridovirus (SGIV). Sequencing of the random shotgun and restriction endonuclease genomic libraries showed that the entire SGIV genome consists of 140,131 nucleotide bp. One hundred sixty-two open reading frames (ORFs) from the sense and antisense DNA strands, coding for lengths varying from 41 to 1,268 amino acids, were identified. Computer-assisted analyses of the deduced amino acid sequences revealed that 77 of the ORFs exhibited homologies to known virus genes, 23 of which matched functional iridovirus proteins. Forty-two putative conserved domains or signatures were detected in the National Center for Biotechnology Information CD-Search database and PROSITE database. An assortment of enzyme activities involved in DNA replication, transcription, nucleotide metabolism, cell signaling, etc., were identified. Viruses were cultured on a cell line derived from the embryonated egg of the grouper Epinephelus tauvina, isolated, and purified by sucrose gradient ultracentrifugation. The protein extract from the purified virions was analyzed by polyacrylamide gel electrophoresis followed by in-gel digestion of protein bands. Matrix-assisted laser desorption ionization-time of flight mass spectrometry and database searching led to identification of 26 proteins. Twenty of these represented novel or previously unidentified genes, which were further confirmed by reverse transcription-PCR (RT-PCR) and DNA sequencing of their respective RT-PCR products. PMID:15507645
Shields, B A; Engelman, R W; Fukaura, Y; Good, R A; Day, N K
1991-01-01
Calorie restriction suppresses mammary proviral mRNA expression and protooncogene activation in breast tumor-prone C3H/Ou mice while inhibiting tumor formation. To determine whether the beneficial effects of chronic energy-intake restriction (CEIR) can be extended to an organ site of retrovirus-induced tumorigenesis where the dynamics of growth and sexual maturity are not paramount as they are in breast tissue, calorie restriction of 40% was imposed on thymic lymphoma-prone AKR mice when 4 weeks old. Recombination between various murine leukemia virus (MuLV) mRNAs, resulting in the generation of an 8.4-kilobase genomic-length transcript with mink cytopathic focus-forming (MCF) characteristics, is considered the proximal retroviral event in AKR lymphomagenesis. Thymic expression of subgenomic MCF MuLV mRNA was uniformly suppressed among 6- and 8-week-old CEIR mice (P less than 0.02). This suppression of MuLV transcription preceded a 25% reduction in the appearance of genomic-length MCF transcripts among CEIR mice and a 28% reduction in cumulative lymphoma mortality. The latency to median tumor incidence was extended greater than 3 months by calorie restriction, and median lifespan was extended approximately 50%. Survival curves for the full-fed and CEIR dietary cohorts were found to be significantly different (P less than 0.0001), with full-fed mice experiencing a 3 times greater risk of lymphoma mortality. These findings extend the known range of pathologic states influenced by CEIR in inbred mice and show that retroviral mechanisms involved in generation of lymphoid malignancy can be significantly impaired by calorie restriction. Images PMID:1763029
Regulation of Viral RNA Synthesis by the V Protein of Parainfluenza Virus 5
Yang, Yang; Zengel, James; Sun, Minghao; Sleeman, Katrina; Timani, Khalid Amine; Aligo, Jason; Rota, Paul
2015-01-01
ABSTRACT Paramyxoviruses include many important animal and human pathogens. The genome of parainfluenza virus 5 (PIV5), a prototypical paramyxovirus, encodes a V protein that inhibits viral RNA synthesis. In this work, the mechanism of inhibition was investigated. Using mutational analysis and a minigenome system, we identified regions in the N and C termini of the V protein that inhibit viral RNA synthesis: one at the very N terminus of V and the second at the C terminus of V. Furthermore, we determined that residues L16 and I17 are critical for the inhibitory function of the N-terminal region of the V protein. Both regions interact with the nucleocapsid protein (NP), an essential component of the viral RNA genome complex (RNP). Mutations at L16 and I17 abolished the interaction between NP and the N-terminal domain of V. This suggests that the interaction between NP and the N-terminal domain plays a critical role in V inhibition of viral RNA synthesis by the N-terminal domain. Both the N- and C-terminal regions inhibited viral RNA replication. The C terminus inhibited viral RNA transcription, while the N-terminal domain enhanced viral RNA transcription, suggesting that the two domains affect viral RNA through different mechanisms. Interestingly, V also inhibited the synthesis of the RNA of other paramyxoviruses, such as Nipah virus (NiV), human parainfluenza virus 3 (HPIV3), measles virus (MeV), mumps virus (MuV), and respiratory syncytial virus (RSV). This suggests that a common host factor may be involved in the replication of these paramyxoviruses. IMPORTANCE We identified two regions of the V protein that interact with NP and determined that one of these regions enhances viral RNA transcription via its interaction with NP. Our data suggest that a common host factor may be involved in the regulation of paramyxovirus replication and could be a target for broad antiviral drug development. Understanding the regulation of paramyxovirus replication will enable the rational design of vaccines and potential antiviral drugs. PMID:26378167
Laredo-Tiscareño, S Viridiana; Machain-Williams, Carlos; Rodríguez-Pérez, Mario A; Garza-Hernandez, Javier A; Doria-Cobos, Gloria L; Cetina-Trejo, Rosa C; Bacab-Cab, Lucio A; Tangudu, Chandra S; Charles, Jermilia; De Luna-Santillana, Erick J; Garcia-Rejon, Julian E; Blitvich, Bradley J
2018-05-14
A total of 1,090 residents of the city of Reynosa, Tamaulipas, on the Mexico-U.S. border presented at hospitals and clinics of the Secretariat of Health, Mexico, in 2015 with symptoms characteristic of dengue. Dengue virus (DENV) antigen was detected by enzyme-linked immunosorbent assay in acute sera from 134 (12.3%) patients. Sera from select patients ( N = 34) were also tested for chikungunya virus (CHIKV) RNA by quantitative reverse transcription-polymerase chain reaction. Thirteen (38.2%) patients, including five DENV antigen-positive patients, were positive. Sera from three CHIKV RNA-positive patients were further assayed by virus isolation in cell culture and CHIKV was recovered on each occasion. The genome of one isolate and structural genes of the other two isolates were sequenced. In conclusion, we present evidence of CHIKV and DENV coinfections in patients who live near the Mexico-U.S. border and provide the first genome sequence of a CHIKV isolate from northern Mexico.
Chao, Mei; Lin, Chia-Chi; Lin, Feng-Ming; Li, Hsin-Pai; Iang, Shan-Bei
2015-12-01
Hepatitis delta virus (HDV) is the only animal RNA virus that has an unbranched rod-like genome with ribozyme activity and is replicated by host RNA polymerase. HDV RNA recombination was previously demonstrated in patients and in cultured cells by analysis of a region corresponding to the C terminus of the delta antigen (HDAg), the only viral-encoded protein. Here, a whole-genome recombination map of HDV was constructed using an experimental system in which two HDV-1 sequences were co-transfected into cultured cells and the recombinants were analysed by sequencing of cloned reverse transcription-PCR products. Fifty homologous recombinants with 60 crossovers mapping to 22 junctions were identified from 200 analysed clones. Small HDAg chimeras harbouring a junction newly detected in the recombination map were then constructed. The results further indicated that the genome-replication level of HDV was sensitive to the sixth amino acid within the N-terminal 22 aa of HDAg. Therefore, the recombination map established in this study provided a tool for not only understanding HDV RNA recombination, but also elucidating the related mechanisms, such as molecular elements responsible for the trans-activation levels of the small HDAg.
Huiet, L; Feldstein, P A; Tsai, J H; Falk, B W
1993-12-01
Primer extension analyses and a PCR-based cloning strategy were used to identify and characterize 5' nucleotide sequences on the maize stripe virus (MStV) RNA4 mRNA transcripts encoding the major noncapsid protein (NCP). Direct RNA sequence analysis by primer extension showed that the NCP mRNA transcripts had 10-15 nucleotides beyond the 5' terminus of the MStV RNA4 nucleotide sequence. MStV genomic RNAs isolated from ribonucleoprotein particles (RNPs) lacked the additional 5' nucleotides. cDNA clones representing the 5' region of the mRNA transcripts were constructed, and the nucleotide sequences of the 5' regions were determined for 16 clones. Each was found to have a distinct 10-15 nucleotide sequence immediately 5' of the MStV RNA4 sequence. Eleven of 16 clones had the correct MStV RNA4 5' nucleotide sequence, while five showed minor variations at or near the 5' most MStV RNA4 nucleotide. These characteristics show strong similarities to other viral mRNA transcripts which are synthesized by cap snatching.
Benferhat, Rima; Josse, Thibaut; Albaud, Benoit; Gentien, David; Mansuroglu, Zeyni; Marcato, Vasco; Souès, Sylvie; Le Bonniec, Bernard; Bouloy, Michèle; Bonnefoy, Eliette
2012-10-01
Rift Valley fever virus (RVFV) is a highly pathogenic Phlebovirus that infects humans and ruminants. Initially confined to Africa, RVFV has spread outside Africa and presently represents a high risk to other geographic regions. It is responsible for high fatality rates in sheep and cattle. In humans, RVFV can induce hepatitis, encephalitis, retinitis, or fatal hemorrhagic fever. The nonstructural NSs protein that is the major virulence factor is found in the nuclei of infected cells where it associates with cellular transcription factors and cofactors. In previous work, we have shown that NSs interacts with the promoter region of the beta interferon gene abnormally maintaining the promoter in a repressed state. In this work, we performed a genome-wide analysis of the interactions between NSs and the host genome using a genome-wide chromatin immunoprecipitation combined with promoter sequence microarray, the ChIP-on-chip technique. Several cellular promoter regions were identified as significantly interacting with NSs, and the establishment of NSs interactions with these regions was often found linked to deregulation of expression of the corresponding genes. Among annotated NSs-interacting genes were present not only genes regulating innate immunity and inflammation but also genes regulating cellular pathways that have not yet been identified as targeted by RVFV. Several of these pathways, such as cell adhesion, axonal guidance, development, and coagulation were closely related to RVFV-induced disorders. In particular, we show in this work that NSs targeted and modified the expression of genes coding for coagulation factors, demonstrating for the first time that this hemorrhagic virus impairs the host coagulation cascade at the transcriptional level.
Benferhat, Rima; Josse, Thibaut; Albaud, Benoit; Gentien, David; Mansuroglu, Zeyni; Marcato, Vasco; Souès, Sylvie; Le Bonniec, Bernard
2012-01-01
Rift Valley fever virus (RVFV) is a highly pathogenic Phlebovirus that infects humans and ruminants. Initially confined to Africa, RVFV has spread outside Africa and presently represents a high risk to other geographic regions. It is responsible for high fatality rates in sheep and cattle. In humans, RVFV can induce hepatitis, encephalitis, retinitis, or fatal hemorrhagic fever. The nonstructural NSs protein that is the major virulence factor is found in the nuclei of infected cells where it associates with cellular transcription factors and cofactors. In previous work, we have shown that NSs interacts with the promoter region of the beta interferon gene abnormally maintaining the promoter in a repressed state. In this work, we performed a genome-wide analysis of the interactions between NSs and the host genome using a genome-wide chromatin immunoprecipitation combined with promoter sequence microarray, the ChIP-on-chip technique. Several cellular promoter regions were identified as significantly interacting with NSs, and the establishment of NSs interactions with these regions was often found linked to deregulation of expression of the corresponding genes. Among annotated NSs-interacting genes were present not only genes regulating innate immunity and inflammation but also genes regulating cellular pathways that have not yet been identified as targeted by RVFV. Several of these pathways, such as cell adhesion, axonal guidance, development, and coagulation were closely related to RVFV-induced disorders. In particular, we show in this work that NSs targeted and modified the expression of genes coding for coagulation factors, demonstrating for the first time that this hemorrhagic virus impairs the host coagulation cascade at the transcriptional level. PMID:22896612
Hepatitis E: Molecular Virology and Pathogenesis
Panda, Subrat K.; Varma, Satya P.K.
2013-01-01
Hepatitis E virus is a single, positive-sense, capped and poly A tailed RNA virus classified under the family Hepeviridae. Enteric transmission, acute self-limiting hepatitis, frequent epidemic and sporadic occurrence, high mortality in affected pregnants are hallmarks of hepatitis E infection. Lack of an efficient culture system and resulting reductionist approaches for the study of replication and pathogenesis of HEV made it to be a less understood agent. Early studies on animal models, sub-genomic expression of open reading frames (ORF) and infectious cDNA clones have helped in elucidating the genome organization, important stages in HEV replication and pathogenesis. The genome contains three ORF's and three untranslated regions (UTR). The 5′ distal ORF, ORF1 is translated by host ribosomes in a cap dependent manner to form the non-structural polyprotein including the viral replicase. HEV replicates via a negative-sense RNA intermediate which helps in the formation of the positive-sense genomic RNA and a single bi-cistronic sub-genomic RNA. The 3′ distal ORF's including the major structural protein pORF2 and the multifunctional host interacting protein pORF3 are translated from the sub-genomic RNA. Pathogenesis in HEV infections is not well articulated, and remains a concern due to the many aspects like host dependent and genotype specific variations. Animal HEV, zoonosis, chronicity in immunosuppressed patients, and rapid decompensation in affected chronic liver diseased patients warrants detailed investigation of the underlying pathogenesis. Recent advances about structure, entry, egress and functional characterization of ORF1 domains has furthered our understanding about HEV. This article is an effort to review our present understanding about molecular biology and pathogenesis of HEV. PMID:25755485
Complete genome sequence of Fer-de-Lance Virus reveals a novel gene in reptilian Paramyxoviruses
Kurath, G.; Batts, W.N.; Ahne, W.; Winton, J.R.
2004-01-01
The complete RNA genome sequence of the archetype reptilian paramyxovirus, Fer-de-Lance virus (FDLV), has been determined. The genome is 15,378 nucleotides in length and consists of seven nonoverlapping genes in the order 3??? N-U-P-M-F-HN-L 5???, coding for the nucleocapsid, unknown, phospho-, matrix, fusion, hemagglutinin-neuraminidase, and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and tri-nucleotide intergenic regions similar to those of other Paramyxoviridae. The FDLV P gene expression strategy is like that of rubulaviruses, which express the accessory V protein from the primary transcript and edit a portion of the mRNA to encode P and I proteins. There is also an overlapping open reading frame potentially encoding a small basic protein in the P gene. The gene designated U (unknown), encodes a deduced protein of 19.4 kDa that has no counterpart in other paramyxoviruses and has no similarity with sequences in the National Center for Biotechnology Information database. Active transcription of the U gene in infected cells was demonstrated by Northern blot analysis, and bicistronic N-U mRNA was also evident. The genomes of two other snake paramyxovirus genotypes were also found to have U genes, with 11 to 16% nucleotide divergence from the FDLV U gene. Pairwise comparisons of amino acid identities and phylogenetic analyses of all deduced FDLV protein sequences with homologous sequences from other Paramyxoviridae indicate that FDLV represents a new genus within the subfamily Paramyxovirinae. We suggest the name Ferlavirus for the new genus, with FDLV as the type species.
A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation.
Kennedy, Peter G E; Rovnak, Joel; Badani, Hussain; Cohrs, Randall J
2015-07-01
Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an 'end-less' state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing evidence that HSV-1 and VZV latency is epigenetically regulated. In vitro models that permit pathway analysis and identification of both epigenetic modulations and global transcriptional mechanisms of HSV-1 and VZV latency hold much promise for our future understanding in this complex area. This review summarizes the molecular biology of HSV-1 and VZV latency and reactivation, and also presents future directions for study.
A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation
Kennedy, Peter G. E.; Rovnak, Joel; Badani, Hussain
2015-01-01
Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an ‘end-less’ state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing evidence that HSV-1 and VZV latency is epigenetically regulated. In vitro models that permit pathway analysis and identification of both epigenetic modulations and global transcriptional mechanisms of HSV-1 and VZV latency hold much promise for our future understanding in this complex area. This review summarizes the molecular biology of HSV-1 and VZV latency and reactivation, and also presents future directions for study. PMID:25794504
cDNA cloning and analysis of RNA 2 of a Prunus stem pitting isolate of tomato ringspot virus.
Hadidi, A; Powell, C A
1991-10-01
Recombinant plasmids containing sequences derived from the genome of a tomato ringspot virus (TomRSV) isolate associated with both stem pitting disease of stone fruits and apple union necrosis and decline were constructed. Selected inserts were subcloned into the polylinker region of the SP6 transcription vector pSP64. Using the SP6 promoter flanking this region, high specific activity 32P-labelled cRNA probes were generated by SP6 RNA polymerase. cRNA probes were specific for TomRSV RNA 2 present in purified virions or in extracts from woody and herbacous hosts. No sequence relatedness was detected between TomRSV RNA 2 and genomic RNA from tobacco ringspot, arabis mosaic, strawberry latent ringspot, or cucumber mosaic virus in Northern blot analysis using TomRSV cRNA probes. These probes detected TomRSV infection in woody and herbaceous hosts in dot-blot hybridization assays.
Mott, Kevin R.; Allen, Sariah J.; Zandian, Mandana
2014-01-01
ABSTRACT The latency-associated transcript (LAT) of herpes simplex virus 1 (HSV-1), CD8α+ dendritic cells (DCs), and programmed death 1 (PD-1) have all been implicated in the HSV-1 latency-reactivation cycle. It is not known, however, whether an interaction between LAT and CD8α+ DCs regulates latency and T-cell exhaustion. To address this question, we used LAT-expressing [LAT(+)] and LAT-negative [LAT(−)] viruses. Depletion of DCs in mice ocularly infected with LAT(+) virus resulted in a reduction in the number of T cells expressing PD-1 in the trigeminal ganglia (TG), whereas depletion of DCs in mice similarly infected with LAT(−) virus did not alter PD-1 expression. CD8α+ DCs, but not CD4+ DCs, infected with LAT(+) virus had higher levels of ICP0, ICP4, thymidine kinase (TK), and PD-1 ligand 1 (PD-L1) transcripts than those infected with LAT(−) virus. Coculture of infected bone marrow (BM)-derived DCs from wild-type (WT) mice, but not infected DCs from CD8α−/− mice, with WT naive T cells contributed to an increase in PD-1 expression. Transfer of bone marrow from WT mice but not CD8α−/− mice to recipient Rag1−/− mice increased the number of latent viral genomes in reconstituted mice infected with the LAT(+) virus. Collectively, these data indicated that a reduction in latency correlated with a decline in the levels of CD8α+ DCs and PD-1 expression. In summary, our results demonstrate an interaction among LAT, PD-1, and CD11c CD8α+ cells that regulates latency in the TG of HSV-1-infected mice. IMPORTANCE Very little is known regarding the interrelationship of LAT, PD-1, and CD8α+ DCs and how such interactions might contribute to relative numbers of latent viral genomes. We show here that (i) in both in vivo and in vitro studies, deficiency of CD8α+ DCs significantly reduced T-cell exhaustion in the presence of LAT(+) virus but not LAT(−) virus; (ii) HSV-1 infectivity was significantly lower in LAT(−)-infected DCs than in their LAT(+)-infected counterparts; and (iii) adoptive transfer of bone marrow (BM) from WT but not CD8α−/− mice to recipient Rag1−/− mice restored latency to the level in WT mice following infection with LAT(+) virus. These studies point to a key role for CD8α+ DCs in T-cell exhaustion in the presence of LAT, which leads to larger numbers of latent viral genomes. Thus, altering this negative function of CD8α+ DCs can potentially be used to generate a more effective vaccine against HSV infection. PMID:24672046
Dimitriou, T G; Kyriakopoulou, Z; Tsakogiannis, D; Fikatas, A; Gartzonika, C; Levidiotou-Stefanou, S; Markoulatos, P
2016-08-01
Polioviruses (PVs) are the causal agents of acute paralytic poliomyelitis. Since the 1960s, poliomyelitis has been effectively controlled by the use of two vaccines containing all three serotypes of PVs, the inactivated poliovirus vaccine and the live attenuated oral poliovirus vaccine (OPV). Despite the success of OPV in polio eradication programme, a significant disadvantage was revealed: the emergence of vaccine-associated paralytic poliomyelitis (VAPP). VAPP is the result of accumulated mutations and putative recombination events located at the genome of attenuated vaccine Sabin strains. In the present study, ten Sabin isolates derived from OPV vaccinees and environmental samples were studied in order to identify recombination types located from VP1 to 3D genomic regions of virus genome. The experimental procedure that was followed was virus RNA extraction, reverse transcription to convert the virus genome into cDNA, PCR and multiplex-PCR using specific designed primers able to localize and identify each recombination following agarose gel electrophoresis. This multiplex RT-PCR assay allows for the immediate detection and identification of multiple recombination types located at the viral genome of OPV derivatives. After the eradication of wild PVs, the remaining sources of poliovirus infection worldwide would be the OPV derivatives. As a consequence, the immediate detection and molecular characterization of recombinant derivatives are important to avoid epidemics due to the circulation of neurovirulent viral strains.
Wang, Dai; Parrish, Colin R.
1999-01-01
Phage display of cDNA clones prepared from feline cells was used to identify host cell proteins that bound to DNA-containing feline panleukopenia virus (FPV) capsids but not to empty capsids. One gene found in several clones encoded a heterogeneous nuclear ribonucleoprotein (hnRNP)-related protein (DBP40) that was very similar in sequence to the A/B-type hnRNP proteins. DBP40 bound specifically to oligonucleotides representing a sequence near the 5′ end of the genome which is exposed on the outside of the full capsid but did not bind most other terminal sequences. Adding purified DBP40 to an in vitro fill-in reaction using viral DNA as a template inhibited the production of the second strand after nucleotide (nt) 289 but prior to nt 469. DBP40 bound to various regions of the viral genome, including a region between nt 295 and 330 of the viral genome which has been associated with transcriptional attenuation of the parvovirus minute virus of mice, which is mediated by a stem-loop structure of the DNA and cellular proteins. Overexpression of the protein in feline cells from a plasmid vector made them largely resistant to FPV infection. Mutagenesis of the protein binding site within the 5′ end viral genome did not affect replication of the virus. PMID:10438866
Rabies virus matrix protein interplay with eIF3, new insights into rabies virus pathogenesis
Komarova, Anastassia V.; Real, Eléonore; Borman, Andrew M.; Brocard, Michèle; England, Patrick; Tordo, Noël; Hershey, John W.B.; Jacob, Yves
2007-01-01
Viral proteins are frequently multifunctional to accommodate the high density of information encoded in viral genomes. Matrix (M) protein of negative-stranded RNA viruses such as Rhabdoviridae is one such example. Its primary function is virus assembly/budding but it is also involved in the switch from viral transcription to replication and the concomitant down regulation of host gene expression. In this study we undertook a search for potential rabies virus (RV) M protein's cellular partners. In a yeast two-hybrid screen the eIF3h subunit was identified as an M-interacting cellular factor, and the interaction was validated by co-immunoprecipitation and surface plasmon resonance assays. Upon expression in mammalian cell cultures, RV M protein was localized in early small ribosomal subunit fractions. Further, M protein added in trans inhibited in vitro translation on mRNA encompassing classical (Kozak-like) 5′-UTRs. Interestingly, translation of hepatitis C virus IRES-containing mRNA, which recruits eIF3 via a different noncanonical mechanism, was unaffected. Together, the data suggest that, as a complement to its functions in virus assembly/budding and regulation of viral transcription, RV M protein plays a role in inhibiting translation in virus-infected cells through a protein–protein interaction with the cellular translation machinery. PMID:17287294
Characterization of a Novel Orthomyxo-like Virus Causing Mass Die-Offs of Tilapia.
Bacharach, Eran; Mishra, Nischay; Briese, Thomas; Zody, Michael C; Kembou Tsofack, Japhette Esther; Zamostiano, Rachel; Berkowitz, Asaf; Ng, James; Nitido, Adam; Corvelo, André; Toussaint, Nora C; Abel Nielsen, Sandra Cathrine; Hornig, Mady; Del Pozo, Jorge; Bloom, Toby; Ferguson, Hugh; Eldar, Avi; Lipkin, W Ian
2016-04-05
Tilapia are an important global food source due to their omnivorous diet, tolerance for high-density aquaculture, and relative disease resistance. Since 2009, tilapia aquaculture has been threatened by mass die-offs in farmed fish in Israel and Ecuador. Here we report evidence implicating a novel orthomyxo-like virus in these outbreaks. The tilapia lake virus (TiLV) has a 10-segment, negative-sense RNA genome. The largest segment, segment 1, contains an open reading frame with weak sequence homology to the influenza C virus PB1 subunit. The other nine segments showed no homology to other viruses but have conserved, complementary sequences at their 5' and 3' termini, consistent with the genome organization found in other orthomyxoviruses. In situ hybridization indicates TiLV replication and transcription at sites of pathology in the liver and central nervous system of tilapia with disease. The economic impact of worldwide trade in tilapia is estimated at $7.5 billion U.S. dollars (USD) annually. The infectious agent implicated in mass tilapia die-offs in two continents poses a threat to the global tilapia industry, which not only provides inexpensive dietary protein but also is a major employer in the developing world. Here we report characterization of the causative agent as a novel orthomyxo-like virus, tilapia lake virus (TiLV). We also describe complete genomic and protein sequences that will facilitate TiLV detection and containment and enable vaccine development. Copyright © 2016 Bacharach et al.
Zambenedetti, Miriam Ribas; Pavoni, Daniela Parada; Dallabona, Andreia Cristine; Dominguez, Alejandro Correa; Poersch, Celina de Oliveira; Fragoso, Stenio Perdigão; Krieger, Marco Aurélio
2017-05-01
Real-time reverse transcription polymerase chain reaction (RT-PCR) is routinely used to detect viral infections. In Brazil, it is mandatory the use of nucleic acid tests to detect hepatitis C virus (HCV), hepatitis B virus and human immunodeficiency virus in blood banks because of the immunological window. The use of an internal control (IC) is necessary to differentiate the true negative results from those consequent from a failure in some step of the nucleic acid test. The aim of this study was the construction of virus-modified particles, based on MS2 bacteriophage, to be used as IC for the diagnosis of RNA viruses. The MS2 genome was cloned into the pET47b(+) plasmid, generating pET47b(+)-MS2. MS2-like particles were produced through the synthesis of MS2 RNA genome by T7 RNA polymerase. These particles were used as non-competitive IC in assays for RNA virus diagnostics. In addition, a competitive control for HCV diagnosis was developed by cloning a mutated HCV sequence into the MS2 replicase gene of pET47b(+)-MS2, which produces a non-propagating MS2 particle. The utility of MS2-like particles as IC was evaluated in a one-step format multiplex real-time RT-PCR for HCV detection. We demonstrated that both competitive and non-competitive IC could be successfully used to monitor the HCV amplification performance, including the extraction, reverse transcription, amplification and detection steps, without compromising the detection of samples with low target concentrations. In conclusion, MS2-like particles generated by this strategy proved to be useful IC for RNA virus diagnosis, with advantage that they are produced by a low cost protocol. An attractive feature of this system is that it allows the construction of a multicontrol by the insertion of sequences from more than one pathogen, increasing its applicability for diagnosing different RNA viruses.
Zambenedetti, Miriam Ribas; Pavoni, Daniela Parada; Dallabona, Andreia Cristine; Dominguez, Alejandro Correa; Poersch, Celina de Oliveira; Fragoso, Stenio Perdigão; Krieger, Marco Aurélio
2017-01-01
BACKGROUND Real-time reverse transcription polymerase chain reaction (RT-PCR) is routinely used to detect viral infections. In Brazil, it is mandatory the use of nucleic acid tests to detect hepatitis C virus (HCV), hepatitis B virus and human immunodeficiency virus in blood banks because of the immunological window. The use of an internal control (IC) is necessary to differentiate the true negative results from those consequent from a failure in some step of the nucleic acid test. OBJECTIVES The aim of this study was the construction of virus-modified particles, based on MS2 bacteriophage, to be used as IC for the diagnosis of RNA viruses. METHODS The MS2 genome was cloned into the pET47b(+) plasmid, generating pET47b(+)-MS2. MS2-like particles were produced through the synthesis of MS2 RNA genome by T7 RNA polymerase. These particles were used as non-competitive IC in assays for RNA virus diagnostics. In addition, a competitive control for HCV diagnosis was developed by cloning a mutated HCV sequence into the MS2 replicase gene of pET47b(+)-MS2, which produces a non-propagating MS2 particle. The utility of MS2-like particles as IC was evaluated in a one-step format multiplex real-time RT-PCR for HCV detection. FINDINGS We demonstrated that both competitive and non-competitive IC could be successfully used to monitor the HCV amplification performance, including the extraction, reverse transcription, amplification and detection steps, without compromising the detection of samples with low target concentrations. In conclusion, MS2-like particles generated by this strategy proved to be useful IC for RNA virus diagnosis, with advantage that they are produced by a low cost protocol. An attractive feature of this system is that it allows the construction of a multicontrol by the insertion of sequences from more than one pathogen, increasing its applicability for diagnosing different RNA viruses. PMID:28403327
Melamed, Anat; Laydon, Daniel J.; Gillet, Nicolas A.; Tanaka, Yuetsu; Taylor, Graham P.; Bangham, Charles R. M.
2013-01-01
The regulation of proviral latency is a central problem in retrovirology. We postulate that the genomic integration site of human T lymphotropic virus type 1 (HTLV-1) determines the pattern of expression of the provirus, which in turn determines the abundance and pathogenic potential of infected T cell clones in vivo. We recently developed a high-throughput method for the genome-wide amplification, identification and quantification of proviral integration sites. Here, we used this protocol to test two hypotheses. First, that binding sites for transcription factors and chromatin remodelling factors in the genome flanking the proviral integration site of HTLV-1 are associated with integration targeting, spontaneous proviral expression, and in vivo clonal abundance. Second, that the transcriptional orientation of the HTLV-1 provirus relative to that of the nearest host gene determines spontaneous proviral expression and in vivo clonal abundance. Integration targeting was strongly associated with the presence of a binding site for specific host transcription factors, especially STAT1 and p53. The presence of the chromatin remodelling factors BRG1 and INI1 and certain host transcription factors either upstream or downstream of the provirus was associated respectively with silencing or spontaneous expression of the provirus. Cells expressing HTLV-1 Tax protein were significantly more frequent in clones of low abundance in vivo. We conclude that transcriptional interference and chromatin remodelling are critical determinants of proviral latency in natural HTLV-1 infection. PMID:23555266
Alicai, Titus; Ndunguru, Joseph; Sseruwagi, Peter; Tairo, Fred; Okao-Okuja, Geoffrey; Nanvubya, Resty; Kiiza, Lilliane; Kubatko, Laura; Kehoe, Monica A.; Boykin, Laura M.
2016-01-01
Cassava is a major staple food for about 800 million people in the tropics and sub-tropical regions of the world. Production of cassava is significantly hampered by cassava brown streak disease (CBSD), caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). The disease is suppressing cassava yields in eastern Africa at an alarming rate. Previous studies have documented that CBSV is more devastating than UCBSV because it more readily infects both susceptible and tolerant cassava cultivars, resulting in greater yield losses. Using whole genome sequences from NGS data, we produced the first coalescent-based species tree estimate for CBSV and UCBSV. This species framework led to the finding that CBSV has a faster rate of evolution when compared with UCBSV. Furthermore, we have discovered that in CBSV, nonsynonymous substitutions are more predominant than synonymous substitution and occur across the entire genome. All comparative analyses between CBSV and UCBSV presented here suggest that CBSV may be outsmarting the cassava immune system, thus making it more devastating and harder to control. PMID:27808114
Self-Assembly of Measles Virus Nucleocapsid-like Particles: Kinetics and RNA Sequence Dependence.
Milles, Sigrid; Jensen, Malene Ringkjøbing; Communie, Guillaume; Maurin, Damien; Schoehn, Guy; Ruigrok, Rob W H; Blackledge, Martin
2016-08-01
Measles virus RNA genomes are packaged into helical nucleocapsids (NCs), comprising thousands of nucleo-proteins (N) that bind the entire genome. N-RNA provides the template for replication and transcription by the viral polymerase and is a promising target for viral inhibition. Elucidation of mechanisms regulating this process has been severely hampered by the inability to controllably assemble NCs. Here, we demonstrate self-organization of N into NC-like particles in vitro upon addition of RNA, providing a simple and versatile tool for investigating assembly. Real-time NMR and fluorescence spectroscopy reveals biphasic assembly kinetics. Remarkably, assembly depends strongly on the RNA-sequence, with the genomic 5' end and poly-Adenine sequences assembling efficiently, while sequences such as poly-Uracil are incompetent for NC formation. This observation has important consequences for understanding the assembly process. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Church, Molly E; Estrada, Marko; Leutenegger, Christian M; Dela Cruz, Florante N; Pesavento, Patricia A; Woolard, Kevin D
2016-11-01
Polyomavirus infection often results in persistence of the viral genome with little or no virion production. However, infection of certain cell types can result in high viral gene transcription and either cytolysis or neoplastic transformation. While infection by polyomavirus is common in humans and many animals, major questions regarding viral persistence of most polyomaviruses remain unanswered. Specifically, identification of target cells for viral infection and the mechanisms polyomaviruses employ to maintain viral genomes within cells are important not only in ascribing causality to polyomaviruses in disease, but in understanding specific mechanisms by which they cause disease. Here, we characterize the cell of origin in raccoon polyomavirus (RacPyV)-associated neuroglial brain tumours as a neural stem cell. Moreover, we identify an association between the viral genome and the host cell bromodomain protein, BRD4, which is involved in numerous cellular functions, including cell cycle progression, differentiation of stem cells, tethering of persistent DNA viruses, and regulation of viral and host-cell gene transcription. We demonstrate that inhibition of BRD4 by the small molecule inhibitors (+)-JQ1 and IBET-151 (GSK1210151A) results in reduced RacPyV genome within cells in vitro, as well as significant reduction of viral gene transcripts LT and VP1, highlighting its importance in both maintenance of the viral genome and in driving oncogenic transformation by RacPyV. This work implicates BRD4 as a central protein involved in RacPyV neuroglial tumour cell proliferation and in the maintenance of a stem cell state.
Archaeal viruses--novel, diverse and enigmatic.
Peng, Xu; Garrett, Roger A; She, QunXin
2012-05-01
Recent research has revealed a remarkable diversity of viruses in archaeal-rich environments where spindles, spheres, filaments and rods are common, together with other exceptional morphotypes never recorded previously. Moreover, their double-stranded DNA genomes carry very few genes exhibiting homology to those of bacterial and eukaryal viruses. Studies on viral life cycles are still at a preliminary stage but important insights are being gained especially from microarray analyses of viral transcripts for a few model virus-host systems. Recently, evidence has been presented for some exceptional archaeal-specific mechanisms for extra-cellular morphological development of virions and for their cellular extrusion. Here we summarise some of the recent developments in this rapidly developing and exciting research area.
Bencun, Maja; Klinke, Olaf; Hotz-Wagenblatt, Agnes; Klaus, Severina; Tsai, Ming-Han; Poirey, Remy; Delecluse, Henri-Jacques
2018-04-06
The Epstein-Barr virus (EBV) genome encodes several hundred transcripts. We have used ribosome profiling to characterize viral translation in infected cells and map new translation initiation sites. We show here that EBV transcripts are translated with highly variable efficiency, owing to variable transcription and translation rates, variable ribosome recruitment to the leader region and coverage by monosomes versus polysomes. Some transcripts were hardly translated, others mainly carried monosomes, showed ribosome accumulation in leader regions and most likely represent non-coding RNAs. A similar process was visible for a subset of lytic genes including the key transactivators BZLF1 and BRLF1 in cells infected with weakly replicating EBV strains. This suggests that ribosome trapping, particularly in the leader region, represents a new checkpoint for the repression of lytic replication. We could identify 25 upstream open reading frames (uORFs) located upstream of coding transcripts that displayed 5' leader ribosome trapping, six of which were located in the leader region shared by many latent transcripts. These uORFs repressed viral translation and are likely to play an important role in the regulation of EBV translation.
Zhang, Zhijun; Zhang, Pengjun; Li, Weidi; Zhang, Jinming; Huang, Fang; Yang, Jian; Bei, Yawei; Lu, Yaobin
2013-05-01
The western flower thrips (WFT), Frankliniella occidentalis, a world-wide invasive insect, causes agricultural damage by directly feeding and by indirectly vectoring Tospoviruses, such as Tomato spotted wilt virus (TSWV). We characterized the transcriptome of WFT and analyzed global gene expression of WFT response to TSWV infection using Illumina sequencing platform. We compiled 59,932 unigenes, and identified 36,339 unigenes by similarity analysis against public databases, most of which were annotated using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Within these annotated transcripts, we collected 278 sequences related to insecticide resistance. GO and KEGG analysis of different expression genes between TSWV-infected and non-infected WFT population revealed that TSWV can regulate cellular process and immune response, which might lead to low virus titers in thrips cells and no detrimental effects on F. occidentalis. This data-set not only enriches genomic resource for WFT, but also benefits research into its molecular genetics and functional genomics. Copyright © 2013 Elsevier Inc. All rights reserved.
van Rijn, Piet A; Heutink, René G; Boonstra, Jan; Kramps, Hans A; van Gennip, René G P
2012-05-01
A real-time reverse transcription polymerase chain reaction assay (PCR test) based on genome segment 10 of Bluetongue virus (BTV) was developed. The PCR test consists of robotized viral RNA isolation from blood samples and an all-in-one method including initial denaturation of genomic double-stranded RNA, reverse transcription polymerase chain reaction (RT-PCR), and real-time detection and analysis. Reference strains of the 24 recognized BTV serotypes, isolates from different years, and geographic origins were detected. Other orbiviruses such as African horse sickness virus, Epizootic hemorrhagic disease virus, and Equine encephalosis virus were not detected. Experimentally infected animals were PCR positive from 2 days postinoculation, which was earlier than fever, other clinical signs, or seroconversion. The diagnostic sensitivity and specificity were very close to or even 100%. The PCR test played a key role in the detection of BTV serotype 8 in August 2006 in The Netherlands. The outbreak in a completely naive ruminant population allowed for further evaluation of the PCR test with field samples. In 2006, the correlation between enzyme-linked immunosorbent assay and PCR results was estimated to be 95%. In the following years, the PCR test was used for diagnosis of diseased animals, for testing of healthy animals for trade purposes, and for detection of BTV RNA in different species of the insect vector, Culicoides. In the autumn of 2008, BTV serotype 6 unexpectedly emerged in northwest Europe and was also detected with the PCR test developed in the current study. The performance in routine use over 5 years has been recorded and evaluated.
Zhang, Kun; Niu, Shaofang; Di, Dianping; Shi, Lindan; Liu, Deshui; Cao, Xiuling; Miao, Hongqin; Wang, Xianbing; Han, Chenggui; Yu, Jialin; Li, Dawei; Zhang, Yongliang
2013-10-10
Both genome-wide transcriptomic surveys of the mRNA expression profiles and virus-induced gene silencing-based molecular studies of target gene during virus-plant interaction involve the precise estimation of the transcript abundance. Quantitative real-time PCR (qPCR) is the most widely adopted technique for mRNA quantification. In order to obtain reliable quantification of transcripts, identification of the best reference genes forms the basis of the preliminary work. Nevertheless, the stability of internal controls in virus-infected monocots needs to be fully explored. In this work, the suitability of ten housekeeping genes (ACT, EF1α, FBOX, GAPDH, GTPB, PP2A, SAND, TUBβ, UBC18 and UK) for potential use as reference genes in qPCR were investigated in five different monocot plants (Brachypodium, barley, sorghum, wheat and maize) under infection with different viruses including Barley stripe mosaic virus (BSMV), Brome mosaic virus (BMV), Rice black-streaked dwarf virus (RBSDV) and Sugarcane mosaic virus (SCMV). By using three different algorithms, the most appropriate reference genes or their combinations were identified for different experimental sets and their effectiveness for the normalisation of expression studies were further validated by quantitative analysis of a well-studied PR-1 gene. These results facilitate the selection of desirable reference genes for more accurate gene expression studies in virus-infected monocots. Copyright © 2013 Elsevier B.V. All rights reserved.
Rezelj, Veronica V.; Elliott, Richard M.
2017-01-01
ABSTRACT SFTS phlebovirus (SFTSV) is an emerging tick-borne bunyavirus that was first reported in China in 2009. Here we report the generation of a recombinant SFTSV (rHB29NSsKO) that cannot express the viral nonstructural protein (NSs) upon infection of cells in culture. We show that rHB29NSsKO replication kinetics are greater in interferon (IFN)-incompetent cells and that the virus is unable to suppress IFN induced in response to viral replication. The data confirm for the first time in the context of virus infection that NSs acts as a virally encoded IFN antagonist and that NSs is dispensable for virus replication. Using 3′ rapid amplification of cDNA ends (RACE), we mapped the 3′ end of the N and NSs mRNAs, showing that the mRNAs terminate within the coding region of the opposite open reading frame. We show that the 3′ end of the N mRNA terminates upstream of a 5′-GCCAGCC-3′ motif present in the viral genomic RNA. With this knowledge, and using virus-like particles, we could demonstrate that the last 36 nucleotides of the NSs open reading frame (ORF) were needed to ensure the efficient termination of the N mRNA and were required for recombinant virus rescue. We demonstrate that it is possible to recover viruses lacking NSs (expressing just a 12-amino-acid NSs peptide or encoding enhanced green fluorescent protein [eGFP]) or an NSs-eGFP fusion protein in the NSs locus. This opens the possibility for further studies of NSs and potentially the design of attenuated viruses for vaccination studies. IMPORTANCE SFTS phlebovirus (SFTSV) and related tick-borne viruses have emerged globally since 2009. SFTSV has been shown to cause severe disease in humans. For bunyaviruses, it has been well documented that the nonstructural protein (NSs) enables the virus to counteract the human innate antiviral defenses and that NSs is one of the major determinants of virulence in infection. Therefore, the use of reverse genetics systems to engineer viruses lacking NSs is an attractive strategy to rationally attenuate bunyaviruses. Here we report the generation of several recombinant SFTS viruses that cannot express the NSs protein or have the NSs open reading frame replaced with a reporter gene. These viruses cannot antagonize the mammalian interferon (IFN) response mounted to virus infection. The generation of NSs-lacking viruses was achieved by mapping the transcriptional termination of two S-segment-derived subgenomic mRNAs, which revealed that transcription termination occurs upstream of a 5′-GCCAGCC-3′ motif present in the virus genomic S RNA. PMID:28592543
Brennan, Benjamin; Rezelj, Veronica V; Elliott, Richard M
2017-08-15
SFTS phlebovirus (SFTSV) is an emerging tick-borne bunyavirus that was first reported in China in 2009. Here we report the generation of a recombinant SFTSV (rHB29NSsKO) that cannot express the viral nonstructural protein (NSs) upon infection of cells in culture. We show that rHB29NSsKO replication kinetics are greater in interferon (IFN)-incompetent cells and that the virus is unable to suppress IFN induced in response to viral replication. The data confirm for the first time in the context of virus infection that NSs acts as a virally encoded IFN antagonist and that NSs is dispensable for virus replication. Using 3' rapid amplification of cDNA ends (RACE), we mapped the 3' end of the N and NSs mRNAs, showing that the mRNAs terminate within the coding region of the opposite open reading frame. We show that the 3' end of the N mRNA terminates upstream of a 5'-GCCAGCC-3' motif present in the viral genomic RNA. With this knowledge, and using virus-like particles, we could demonstrate that the last 36 nucleotides of the NSs open reading frame (ORF) were needed to ensure the efficient termination of the N mRNA and were required for recombinant virus rescue. We demonstrate that it is possible to recover viruses lacking NSs (expressing just a 12-amino-acid NSs peptide or encoding enhanced green fluorescent protein [eGFP]) or an NSs-eGFP fusion protein in the NSs locus. This opens the possibility for further studies of NSs and potentially the design of attenuated viruses for vaccination studies. IMPORTANCE SFTS phlebovirus (SFTSV) and related tick-borne viruses have emerged globally since 2009. SFTSV has been shown to cause severe disease in humans. For bunyaviruses, it has been well documented that the nonstructural protein (NSs) enables the virus to counteract the human innate antiviral defenses and that NSs is one of the major determinants of virulence in infection. Therefore, the use of reverse genetics systems to engineer viruses lacking NSs is an attractive strategy to rationally attenuate bunyaviruses. Here we report the generation of several recombinant SFTS viruses that cannot express the NSs protein or have the NSs open reading frame replaced with a reporter gene. These viruses cannot antagonize the mammalian interferon (IFN) response mounted to virus infection. The generation of NSs-lacking viruses was achieved by mapping the transcriptional termination of two S-segment-derived subgenomic mRNAs, which revealed that transcription termination occurs upstream of a 5'-GCCAGCC-3' motif present in the virus genomic S RNA. Copyright © 2017 Brennan et al.
Trafficking of bluetongue virus visualized by recovery of tetracysteine-tagged virion particles.
Du, Junzheng; Bhattacharya, Bishnupriya; Ward, Theresa H; Roy, Polly
2014-11-01
Bluetongue virus (BTV), a member of the Orbivirus genus in the Reoviridae family, is a double-capsid insect-borne virus enclosing a genome of 10 double-stranded RNA segments. Like those of other members of the family, BTV virions are nonenveloped particles containing two architecturally complex capsids. The two proteins of the outer capsid, VP2 and VP5, are involved in BTV entry and in the delivery of the transcriptionally active core to the cell cytoplasm. Although the importance of the endocytic pathway in BTV entry has been reported, detailed analyses of entry and the role of each protein in virus trafficking have not been possible due to the lack of availability of a tagged virus. Here, for the first time, we report on the successful manipulation of a segmented genome of a nonenveloped capsid virus by the introduction of tags that were subsequently fluorescently visualized in infected cells. The genetically engineered fluorescent BTV particles were observed to enter live cells immediately after virus adsorption. Further, we showed the separation of VP2 from VP5 during virus entry and confirmed that while VP2 is shed from virions in early endosomes, virus particles still consisting of VP5 were trafficked sequentially from early to late endosomes. Since BTV infects both mammalian and insect cells, the generation of tagged viruses will allow visualization of the trafficking of BTV farther downstream in different host cells. In addition, the tagging technology has potential for transferable application to other nonenveloped complex viruses. Live-virus trafficking in host cells has been highly informative on the interactions between virus and host cells. Although the insertion of fluorescent markers into viral genomes has made it possible to study the trafficking of enveloped viruses, the physical constraints of architecturally complex capsid viruses have imposed practical limitations. In this study, we have successfully genetically engineered the segmented RNA genome of bluetongue virus (BTV), a complex nonenveloped virus belonging to the Reoviridae family. The resulting fluorescent virus particles could be visualized in virus entry studies of both live and fixed cells. This is the first time a structurally complex capsid virus has been successfully genetically manipulated to generate virus particles that could be visualized in infected cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Generation of Recombinant Ebola Viruses Using Reverse Genetics.
Groseth, Allison
2017-01-01
Reverse genetics systems encompass a wide array of tools aimed at recapitulating some or all of the virus life cycle. In their most complete form, full-length clone systems allow us to use plasmid-encoded versions of the ribonucleoprotein (RNP) components to initiate the transcription and replication of a plasmid-encoded version of the complete viral genome, thereby initiating the complete virus life cycle and resulting in infectious virus. As such this approach is ideal for the generation of tailor-made recombinant filoviruses, which can be used to study virus biology. In addition, the generation of tagged and particularly fluorescent or luminescent viruses can be applied as tools for both diagnostic applications and for screening to identify novel countermeasures. Here we describe the generation and basic characterization of recombinant Ebola viruses rescued from cloned cDNA using a T7-driven system.
Teng, Y; Liu, H; Lv, J Q; Fan, W H; Zhang, Q Y; Qin, Q W
2007-01-01
The complete genome of spring viraemia of carp virus (SVCV) strain A-1 isolated from cultured common carp (Cyprinus carpio) in China was sequenced and characterized. Reverse transcription-polymerase chain reaction (RT-PCR) derived clones were constructed and the DNA was sequenced. It showed that the entire genome of SVCV A-1 consists of 11,100 nucleotide base pairs, the predicted size of the viral RNA of rhabdoviruses. However, the additional insertions in bp 4633-4676 and bp 4684-4724 of SVCV A-1 were different from the other two published SVCV complete genomes. Five open reading frames (ORFs) of SVCV A-1 were identified and further confirmed by RT-PCR and DNA sequencing of their respective RT-PCR products. The 5 structural proteins encoded by the viral RNA were ordered 3'-N-P-M-G-L-5'. This is the first report of a complete genome sequence of SVCV isolated from cultured carp in China. Phylogenetic analysis indicates that SVCV A-1 is closely related to the members of the genus Vesiculovirus, family Rhabdoviridae.
Subbiah, Madhuri; Xiao, Sa; Collins, Peter L.; Samal, Siba K
2009-01-01
The complete RNA genome sequence of avian paramyxovirus (APMV) serotype 2, strain Yucaipa isolated from chicken has been determined. With genome size of 14,904 nucleotides (nt), strain Yucaipa is consistent with the “rule of six” and is the smallest virus reported to date among the members of subfamily Paramyxovirinae. The genome contains six non-overlapping genes in the order 3′-N-P/V-M-F-HN-L-5′. The genes are flanked on either side by highly-conserved transcription start and stop signals and have intergenic sequences varying in length from 3 to 23 nt. The genome contains a 55 nt leader sequence at 3′ end and a 154 nt trailer sequence at 5′ end. Alignment and phylogenetic analysis of the predicted amino acid sequences of strain Yucaipa proteins with the cognate proteins of viruses of all of the five genera of family Paramyxoviridae showed that APMV-2 strain Yucaipa is more closely related to APMV-6 than APMV-1. PMID:18603323
Rodríguez, Javier M.; Moreno, Leticia Tais; Alejo, Alí; Lacasta, Anna; Rodríguez, Fernando; Salas, María L.
2015-01-01
The strain BA71V has played a key role in African swine fever virus (ASFV) research. It was the first genome sequenced, and remains the only genome completely determined. A large part of the studies on the function of ASFV genes, viral transcription, replication, DNA repair and morphogenesis, has been performed using this model. This avirulent strain was obtained by adaptation to grow in Vero cells of the highly virulent BA71 strain. We report here the analysis of the genome sequence of BA71 in comparison with that of BA71V. They possess the smallest genomes for a virulent or an attenuated ASFV, and are essentially identical except for a relatively small number of changes. We discuss the possible contribution of these changes to virulence. Analysis of the BA71 sequence allowed us to identify new similarities among ASFV proteins, and with database proteins including two ASFV proteins that could function as a two-component signaling network. PMID:26618713
USDA-ARS?s Scientific Manuscript database
A portion of genomic RNA 1 of tobacco rattle tobravirus (TRV) was amplified by reverse transcription polymerase chain reaction from each of eight processed potato chips from three different bags purchased at three locations. The positive chips all had symptoms typical of corky ringspot disease, cau...
Generation of a Recombinant Akabane Virus Expressing Enhanced Green Fluorescent Protein
Takenaka-Uema, Akiko; Murata, Yousuke; Gen, Fumihiro; Ishihara-Saeki, Yukari; Watanabe, Ken-ichi; Uchida, Kazuyuki; Kato, Kentaro; Murakami, Shin; Haga, Takeshi
2015-01-01
ABSTRACT We generated a recombinant Akabane virus (AKAV) expressing enhanced green fluorescence protein (eGFP-AKAV) by using reverse genetics. We artificially constructed an ambisense AKAV S genome encoding N/NSs on the negative-sense strand, and eGFP on the positive-sense strand with an intergenic region (IGR) derived from the Rift Valley fever virus (RVFV) S genome. The recombinant virus exhibited eGFP fluorescence and had a cytopathic effect in cell cultures, even after several passages. These results indicate that the gene encoding eGFP in the ambisense RNA could be stably maintained. Transcription of N/NSs and eGFP mRNAs of eGFP-AKAV was terminated within the IGR. The mechanism responsible for this appears to be different from that in RVFV, where the termination sites for N and NSs are determined by a defined signal sequence. We inoculated suckling mice intraperitoneally with eGFP-AKAV, which resulted in neurological signs and lethality equivalent to those seen for the parent AKAV. Fluorescence from eGFP in frozen brain slices from the eGFP-AKAV-infected mice was localized to the cerebellum, pons, and medulla oblongata. Our approach to producing a fluorescent virus, using an ambisense genome, helped obtain eGFP-AKAV, a fluorescent bunyavirus whose viral genes are intact and which can be easily visualized. IMPORTANCE AKAV is the etiological agent of arthrogryposis-hydranencephaly syndrome in ruminants, which causes considerable economic loss to the livestock industry. We successfully generated a recombinant enhanced green fluorescent protein-tagged AKAV containing an artificial ambisense S genome. This virus could become a useful tool for analyzing AKAV pathogenesis in host animals. In addition, our approach of using an ambisense genome to generate an orthobunyavirus stably expressing a foreign gene could contribute to establishing alternative vaccine strategies, such as bivalent vaccine virus constructs, for veterinary use against infectious diseases. PMID:26157127
Dombrovsky, Aviv; Glanz, Eyal; Lachman, Oded; Sela, Noa; Doron-Faigenboim, Adi; Antignus, Yehezkel
2013-01-01
We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range. PMID:23936244
Dombrovsky, Aviv; Glanz, Eyal; Lachman, Oded; Sela, Noa; Doron-Faigenboim, Adi; Antignus, Yehezkel
2013-01-01
We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range.
Lim, Chun Shen; Brown, Chris M
2017-01-01
Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community.
Lim, Chun Shen; Brown, Chris M.
2018-01-01
Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community. PMID:29354101
Measles virus: Background and oncolytic virotherapy.
Bhattacharjee, Sankhajit; Yadava, Pramod Kumar
2018-03-01
Measles is a highly transmissible disease caused by measles virus and remains a major cause of child mortality in developing countries. Measles virus nucleoprotein (N) encapsidates the RNA genome of the virus for providing protection from host cell endonucleases and for specific recognition of viral RNA as template for transcription and replication. This protein is over-expressed at the time of viral replication. The C-terminal of N protein is intrinsically disordered, which enables this protein to interact with several host cell proteins. It was previously proved in our laboratory that N expressing human cancerous cells undergo programmed cell death because of reactive oxygen species (ROS) generation as well as Caspase 3 activation. The phosphoprotein (P) along with N protein enclosed viral genomic RNA forming a ribonucleoprotein complex (RNP). It also establishes interaction with the large protein (L) i.e. viral RNA dependent RNA polymerase to ensure viral replication within host cells. The host cell receptors of this virus are CD46, SLAM/CD150 and PVRL4. Measles virus is latently oncotropic in nature and possesses oncolytic property by syncytia formation. We try to highlight the application of this property in developing a virotherapeutic vehicle.
Smeele, Zoe E; Ainley, David G; Varsani, Arvind
2018-01-02
The Antarctic, sub-Antarctic islands and surrounding sea-ice provide a unique environment for the existence of organisms. Nonetheless, birds and seals of a variety of species inhabit them, particularly during their breeding seasons. Early research on Antarctic wildlife health, using serology-based assays, showed exposure to viruses in the families Birnaviridae, Flaviviridae, Herpesviridae, Orthomyxoviridae and Paramyxoviridae circulating in seals (Phocidae), penguins (Spheniscidae), petrels (Procellariidae) and skuas (Stercorariidae). It is only during the last decade or so that polymerase chain reaction-based assays have been used to characterize viruses associated with Antarctic animals. Furthermore, it is only during the last five years that full/whole genomes of viruses (adenoviruses, anelloviruses, orthomyxoviruses, a papillomavirus, paramyoviruses, polyomaviruses and a togavirus) have been sequenced using Sanger sequencing or high throughput sequencing (HTS) approaches. This review summaries the knowledge of animal Antarctic virology and discusses potential future directions with the advent of HTS in virus discovery and ecology. Copyright © 2017 Elsevier B.V. All rights reserved.
Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection.
Bonizzoni, Mariangela; Dunn, W Augustine; Campbell, Corey L; Olson, Ken E; Marinotti, Osvaldo; James, Anthony A
2012-01-01
Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV) are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1-4), each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes.
Reid, Scott M; Mioulet, Valerie; Knowles, Nick J; Shirazi, Nazeem; Belsham, Graham J; King, Donald P
2014-10-01
Rapid and accurate diagnosis is essential for effective control of foot-and-mouth disease (FMD). In countries where FMD is endemic, identification of the serotypes of the causative virus strains is important for vaccine selection and tracing the source of outbreaks. In this study, real-time reverse transcription polymerase chain reaction (rRT-PCR) assays using primer/probe sets designed from the VP1 coding region of the virus genomes were developed for the specific detection of serotype O, A and Asia-1 FMD viruses (FMDVs) circulating in the Middle East. These assays were evaluated using representative field samples of serotype O strains belonging exclusively to the PanAsia-2 lineage, serotype A strains of the Iran-05 lineage and serotype Asia-1 viruses from three relevant sub-groups. When RNA extracted from archival and contemporary field strains was tested using one- or two-step rRT-PCR assays, all three primer/probe sets detected the RNA from homotypic viruses and no cross-reactivity was observed with heterotypic viruses. Similar results were obtained using both single- and multiplex assay formats. Using plasmid standards, the minimum detection level of these tests was found to be lower than two copies. The results illustrate the potential of tailored rRT-PCR tools for the detection and categorization of viruses circulating in the Middle East belonging to distinct subgroups of serotypes O, A and Asia-1. These assays can also overcome the problem of serotyping samples which are found positive by the generic rRT-PCR diagnostic assays but negative by virus isolation and antigen-detection ELISA which would otherwise have to be serotyped by nucleotide sequencing. A similar approach could be used to develop serotyping assays for FMDV strains circulating in other regions of the world. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Aedes aegypti uses RNA interference in defense against Sindbis virus infection.
Campbell, Corey L; Keene, Kimberly M; Brackney, Douglas E; Olson, Ken E; Blair, Carol D; Wilusz, Jeffrey; Foy, Brian D
2008-03-17
RNA interference (RNAi) is an important anti-viral defense mechanism. The Aedes aegypti genome encodes RNAi component orthologs, however, most populations of this mosquito are readily infected by, and subsequently transmit flaviviruses and alphaviruses. The goal of this study was to use Ae. aegypti as a model system to determine how the mosquito's anti-viral RNAi pathway interacts with recombinant Sindbis virus (SINV; family Togaviridae, genus Alphavirus). SINV (TR339-eGFP) (+) strand RNA, infectious virus titers and infection rates transiently increased in mosquitoes following dsRNA injection to cognate Ago2, Dcr2, or TSN mRNAs. Detection of SINV RNA-derived small RNAs at 2 and 7 days post-infection in non-silenced mosquitoes provided important confirmation of RNAi pathway activity. Two different recombinant SINV viruses (MRE16-eGFP and TR339-eGFP) with significant differences in infection kinetics were used to delineate vector/virus interactions in the midgut. We show virus-dependent effects on RNAi component transcript and protein levels during infection. Monitoring midgut Ago2, Dcr2, and TSN transcript levels during infection revealed that only TSN transcripts were significantly increased in midguts over blood-fed controls. Ago2 protein levels were depleted immediately following a non-infectious bloodmeal and varied during SINV infection in a virus-dependent manner. We show that silencing RNAi components in Ae. aegypti results in transient increases in SINV replication. Furthermore, Ae. aegypti RNAi is active during SINV infection as indicated by production of virus-specific siRNAs. Lastly, the RNAi response varies in a virus-dependent manner. These data define important features of RNAi anti-viral defense in Ae. aegypti.
2017-01-01
We investigated the spatiotemporal dynamics of HSV genome transport during the initiation of infection using viruses containing bioorthogonal traceable precursors incorporated into their genomes (HSVEdC). In vitro assays revealed a structural alteration in the capsid induced upon HSVEdC binding to solid supports that allowed coupling to external capture agents and demonstrated that the vast majority of individual virions contained bioorthogonally-tagged genomes. Using HSVEdC in vivo we reveal novel aspects of the kinetics, localisation, mechanistic entry requirements and morphological transitions of infecting genomes. Uncoating and nuclear import was observed within 30 min, with genomes in a defined compaction state (ca. 3-fold volume increase from capsids). Free cytosolic uncoated genomes were infrequent (7–10% of the total uncoated genomes), likely a consequence of subpopulations of cells receiving high particle numbers. Uncoated nuclear genomes underwent temporal transitions in condensation state and while ICP4 efficiently associated with condensed foci of initial infecting genomes, this relationship switched away from residual longer lived condensed foci to increasingly decondensed genomes as infection progressed. Inhibition of transcription had no effect on nuclear entry but in the absence of transcription, genomes persisted as tightly condensed foci. Ongoing transcription, in the absence of protein synthesis, revealed a distinct spatial clustering of genomes, which we have termed genome congregation, not seen with non-transcribing genomes. Genomes expanded to more decondensed forms in the absence of DNA replication indicating additional transitional steps. During full progression of infection, genomes decondensed further, with a diffuse low intensity signal dissipated within replication compartments, but frequently with tight foci remaining peripherally, representing unreplicated genomes or condensed parental strands of replicated DNA. Uncoating and nuclear entry was independent of proteasome function and resistant to inhibitors of nuclear export. Together with additional data our results reveal new insight into the spatiotemporal dynamics of HSV genome uncoating, transport and organisation. PMID:29121649
Yin, Haifeng; Nichols, Teresa D; Horowitz, Jonathan M
2010-07-01
The Sp-family of transcription factors is comprised by nine members, Sp1-9, that share a highly conserved DNA-binding domain. Sp2 is a poorly characterized member of this transcription factor family that is widely expressed in murine and human cell lines yet exhibits little DNA-binding or trans-activation activity in these settings. As a prelude to the generation of a "knock-out" mouse strain, we isolated a mouse Sp2 cDNA and performed a detailed analysis of Sp2 transcription in embryonic and adult mouse tissues. We report that (1) the 5' untranslated region of Sp2 is subject to alternative splicing, (2) Sp2 transcription is regulated by at least two promoters that differ in their cell-type specificity, (3) one Sp2 promoter is highly active in nine mammalian cell lines and strains and is regulated by at least five discrete stimulatory and inhibitory elements, (4) a variety of sub-genomic messages are synthesized from the Sp2 locus in a tissue- and cell-type-specific fashion and these transcripts have the capacity to encode a novel partial-Sp2 protein, and (5) RNA in situ hybridization assays indicate that Sp2 is widely expressed during mouse embryogenesis, particularly in the embryonic brain, and robust Sp2 expression occurs in neurogenic regions of the post-natal and adult brain. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Genomic analysis of regulatory network dynamics reveals large topological changes
NASA Astrophysics Data System (ADS)
Luscombe, Nicholas M.; Madan Babu, M.; Yu, Haiyuan; Snyder, Michael; Teichmann, Sarah A.; Gerstein, Mark
2004-09-01
Network analysis has been applied widely, providing a unifying language to describe disparate systems ranging from social interactions to power grids. It has recently been used in molecular biology, but so far the resulting networks have only been analysed statically. Here we present the dynamics of a biological network on a genomic scale, by integrating transcriptional regulatory information and gene-expression data for multiple conditions in Saccharomyces cerevisiae. We develop an approach for the statistical analysis of network dynamics, called SANDY, combining well-known global topological measures, local motifs and newly derived statistics. We uncover large changes in underlying network architecture that are unexpected given current viewpoints and random simulations. In response to diverse stimuli, transcription factors alter their interactions to varying degrees, thereby rewiring the network. A few transcription factors serve as permanent hubs, but most act transiently only during certain conditions. By studying sub-network structures, we show that environmental responses facilitate fast signal propagation (for example, with short regulatory cascades), whereas the cell cycle and sporulation direct temporal progression through multiple stages (for example, with highly inter-connected transcription factors). Indeed, to drive the latter processes forward, phase-specific transcription factors inter-regulate serially, and ubiquitously active transcription factors layer above them in a two-tiered hierarchy. We anticipate that many of the concepts presented here-particularly the large-scale topological changes and hub transience-will apply to other biological networks, including complex sub-systems in higher eukaryotes.
Causative Role of Grapevine Red Blotch Virus in Red Blotch Disease.
Yepes, Luz Marcela; Cieniewicz, Elizabeth; Krenz, Björn; McLane, Heather; Thompson, Jeremy R; Perry, Keith Lloyd; Fuchs, Marc
2018-05-17
Grapevine red blotch virus (GRBV) has a monopartite single-stranded DNA genome and is the type species of the genus Grablovirus in the family Geminiviridae. To address the etiological role of GRBV in the recently recognized red blotch disease of grapevine, infectious GRBV clones were engineered from the genome of each of the two previously identified phylogenetic clades for Agrobacterium tumefaciens-mediated inoculations of tissue culture-grown Vitis spp. plants. Following agroinoculation and one or two dormancy cycles, systemic GRBV infection was detected by multiplex polymerase chain reaction (PCR) in Vitis vinifera exhibiting foliar disease symptoms but not in asymptomatic vines. Infected rootstock genotype SO4 (V. berlandieri × V. riparia) exhibited leaf chlorosis and cupping, while infection was asymptomatic in agroinoculated 110R (V. berlandieri × V. rupestris), 3309C (V. riparia × V. rupestris), and V. rupestris. Spliced GRBV transcripts of the replicase-associated protein coding region accumulated in leaves of agroinfected vines, as shown by reverse-transcription PCR; this was consistent with systemic infection resulting from virus replication. Additionally, a virus progeny identical in nucleotide sequence to the infectious GRBV clones was recovered from agroinfected vines by rolling circle amplification, cloning, and sequencing. Concomitantly, subjecting naturally infected grapevines to microshoot tip culture resulted in an asymptomatic plant progeny that tested negative for GRBV in multiplex PCR. Altogether, our agroinoculation and therapeutic experiments fulfilled Koch's postulates and revealed the causative role of GRBV in red blotch disease.
Sabra, Mahmoud; Dimitrov, Kiril M; Goraichuk, Iryna V; Wajid, Abdul; Sharma, Poonam; Williams-Coplin, Dawn; Basharat, Asma; Rehmani, Shafqat F; Muzyka, Denys V; Miller, Patti J; Afonso, Claudio L
2017-09-26
The remarkable diversity and mobility of Newcastle disease viruses (NDV) includes virulent viruses of genotype VI. These viruses are often referred to as pigeon paramyxoviruses 1 because they are normally isolated and cause clinical disease in birds from the Columbidae family. Genotype VI viruses occasionally infect, and may also cause clinical disease in poultry. Thus, the evolution, current spread and detection of these viruses are relevant to avian health. Here, we describe the isolation and genomic characterization of six Egyptian (2015), four Pakistani (2015), and two Ukrainian (2007, 2013) recent pigeon-derived NDV isolates of sub-genotype VIg. These viruses are closely related to isolates from Kazakhstan, Nigeria and Russia. In addition, eight genetically related NDV isolates from Pakistan (2014-2016) that define a new sub-genotype (VIm) are described. All of these viruses, and the ancestral Bulgarian (n = 2) and South Korean (n = 2) viruses described here, have predicted virulent cleavage sites of the fusion protein, and those selected for further characterization have intracerebral pathogenicity index assay values characteristic of NDV of genotype VI (1.31 to 1.48). A validated matrix gene real-time RT-PCR (rRT-PCR) NDV test detect all tested isolates. However, the validated rRT-PCR test that is normally used to identify the virulent fusion gene fails to detect the Egyptian and Ukrainian viruses due to mismatches in primers and probe. A new rapid rRT-PCR test to determine the presence of virulent cleavage sites for viruses from sub-genotypes VIg was developed and evaluated on these and other viruses. We describe the almost simultaneous circulation and continuous evolution of genotype VI Newcastle disease viruses in distant locations, suggesting epidemiological connections among three continents. As pigeons are not migratory, this study suggests the need to understand the possible role of human activity in the dispersal of these viruses. Complete genomic characterization identified previously unrecognized genetic diversity that contributes to diagnostic failure and will facilitate future evolutionary studies. These results highlight the importance of conducting active surveillance on pigeons worldwide and the need to update existent rapid diagnostic protocols to detect emerging viral variants and help manage the disease in affected regions.
Transcriptional profiling of the host cell response to feline immunodeficiency virus infection.
Ertl, Reinhard; Klein, Dieter
2014-03-19
Feline immunodeficiency virus (FIV) is a widespread pathogen of the domestic cat and an important animal model for human immunodeficiency virus (HIV) research. In contrast to HIV, only limited information is available on the transcriptional host cell response to FIV infections. This study aims to identify FIV-induced gene expression changes in feline T-cells during the early phase of the infection. Illumina RNA-sequencing (RNA-seq) was used identify differentially expressed genes (DEGs) at 24 h after FIV infection. After removal of low-quality reads, the remaining sequencing data were mapped against the cat genome and the numbers of mapping reads were counted for each gene. Regulated genes were identified through the comparison of FIV and mock-infected data sets. After statistical analysis and the removal of genes with insufficient coverage, we detected a total of 69 significantly DEGs (44 up- and 25 down-regulated genes) upon FIV infection. The results obtained by RNA-seq were validated by reverse transcription qPCR analysis for 10 genes. Out of the most distinct DEGs identified in this study, several genes are already known to interact with HIV in humans, indicating comparable effects of both viruses on the host cell gene expression and furthermore, highlighting the importance of FIV as a model system for HIV. In addition, a set of new genes not previously linked to virus infections could be identified. The provided list of virus-induced genes may represent useful information for future studies focusing on the molecular mechanisms of virus-host interactions in FIV pathogenesis.
Purification and crystallization of Kokobera virus helicase
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Colibus, Luigi; Speroni, Silvia; Coutard, Bruno
2007-03-01
Kokobera virus is a mosquito-borne flavivirus belonging, like West Nile virus, to the Japanese encephalitis virus serocomplex. Crystals of the Kokobera virus helicase domain were obtained by the hanging-drop vapour-diffusion method and exhibit a diffraction limit of 2.3 Å. Kokobera virus is a mosquito-borne flavivirus belonging, like West Nile virus, to the Japanese encephalitis virus serocomplex. The flavivirus genus is characterized by a positive-sense single-stranded RNA genome. The unique open reading frame of the viral RNA is transcribed and translated as a single polyprotein which is post-translationally cleaved to yield three structural and seven nonstructural proteins, one of which ismore » the NS3 gene that encodes a C-terminal helicase domain consisting of 431 amino acids. Helicase inhibitors are potential antiviral drugs as the helicase is essential to viral replication. Crystals of the Kokobera virus helicase domain were obtained by the hanging-drop vapour-diffusion method. The crystals belong to space group P3{sub 1}21 (or P3{sub 2}21), with unit-cell parameters a = 88.6, c = 138.6 Å, and exhibit a diffraction limit of 2.3 Å.« less
Purcell, Maureen K.; Hart, S. Alexandra; Kurath, Gael; Winton, James R.
2006-01-01
The fish rhabdovirus, Infectious hematopoietic necrosis virus (IHNV), is an important pathogen of salmonids. Cell culture assays have traditionally been used to quantify levels of IHNV in samples; however, real-time or quantitative RT-PCR assays have been proposed as a rapid alternative. For viruses having a single-stranded, negative-sense RNA genome, standard qRT-PCR assays do not distinguish between the negative-sense genome and positive-sense RNA species including mRNA and anti-genome. Thus, these methods do not determine viral genome copy number. This study reports development of strand-specific, qRT-PCR assays that use tagged primers for enhancing strand specificity during cDNA synthesis and quantitative PCR. Protocols were developed for positive-strand specific (pss-qRT-PCR) and negative-strand specific (nss-qRT-PCR) assays for IHNV glycoprotein (G) gene sequences. Validation with synthetic RNA transcripts demonstrated the assays could discriminate the correct strand with greater than 1000-fold fidelity. The number of genome copies in livers of IHNV-infected fish determined by nss-qRT-PCR was, on average, 8000-fold greater than the number of infectious units as determined by plaque assay. We also compared the number of genome copies with the quantity of positive-sense RNA and determined that the ratio of positive-sense molecules to negative-sense genome copies was, on average, 2.7:1. Potential future applications of these IHNV strand-specific qRT-PCR assays are discussed.
Valles, Steven M; Bell, Susanne; Firth, Andrew E
2014-01-01
Solenopsis invicta virus 3 (SINV-3) is a positive-sense single-stranded RNA virus that infects the red imported fire ant, Solenopsis invicta. We show that the second open reading frame (ORF) of the dicistronic genome is expressed via a frameshifting mechanism and that the sequences encoding the structural proteins map to both ORF2 and the 3' end of ORF1, downstream of the sequence that encodes the RNA-dependent RNA polymerase. The genome organization and structural protein expression strategy resemble those of Acyrthosiphon pisum virus (APV), an aphid virus. The capsid protein that is encoded by the 3' end of ORF1 in SINV-3 and APV is predicted to have a jelly-roll fold similar to the capsid proteins of picornaviruses and caliciviruses. The capsid-extension protein that is produced by frameshifting, includes the jelly-roll fold domain encoded by ORF1 as its N-terminus, while the C-terminus encoded by the 5' half of ORF2 has no clear homology with other viral structural proteins. A third protein, encoded by the 3' half of ORF2, is associated with purified virions at sub-stoichiometric ratios. Although the structural proteins can be translated from the genomic RNA, we show that SINV-3 also produces a subgenomic RNA encoding the structural proteins. Circumstantial evidence suggests that APV may also produce such a subgenomic RNA. Both SINV-3 and APV are unclassified picorna-like viruses distantly related to members of the order Picornavirales and the family Caliciviridae. Within this grouping, features of the genome organization and capsid domain structure of SINV-3 and APV appear more similar to caliciviruses, perhaps suggesting the basis for a "Calicivirales" order.
Hahn, Cassidy M; Iwanowicz, Luke R; Cornman, Robert S; Conway, Carla M; Winton, James R; Blazer, Vicki S
2015-12-01
The white sucker Catostomus commersonii is a freshwater teleost often utilized as a resident sentinel. Here, we sequenced the full genome of a hepatitis B-like virus that infects white suckers from the Great Lakes Region of the United States. Dideoxy sequencing confirmed that the white sucker hepatitis B virus (WSHBV) has a circular genome (3,542 bp) with the prototypical codon organization of hepadnaviruses. Electron microscopy demonstrated that complete virions of approximately 40 nm were present in the plasma of infected fish. Compared to avi- and orthohepadnaviruses, sequence conservation of the core, polymerase, and surface proteins was low and ranged from 16 to 27% at the amino acid level. An X protein homologue common to the orthohepadnaviruses was not present. The WSHBV genome included an atypical, presumptively noncoding region absent in previously described hepadnaviruses. Phylogenetic analyses confirmed WSHBV as distinct from previously documented hepadnaviruses. The level of divergence in protein sequences between WSHBV and other hepadnaviruses and the identification of an HBV-like sequence in an African cichlid provide evidence that a novel genus of the family Hepadnaviridae may need to be established that includes these hepatitis B-like viruses in fishes. Viral transcription was observed in 9.5% (16 of 169) of white suckers evaluated. The prevalence of hepatic tumors in these fish was 4.9%, and only 2.4% of fish were positive for both virus and hepatic tumors. These results are not sufficient to draw inferences regarding the association of WSHBV and carcinogenesis in white sucker. We report the first full-length genome of a hepadnavirus from fishes. Phylogenetic analysis of this genome indicates divergence from genomes of previously described hepadnaviruses from mammalian and avian hosts and supports the creation of a novel genus. The discovery of this novel virus may better our understanding of the evolutionary history of hepatitis B-like viruses of other hosts. In fishes, knowledge of this virus may provide insight regarding possible risk factors associated with hepatic neoplasia in the white sucker. This may also offer another model system for mechanistic research. Copyright © 2015 Hahn et al.
Hahn, Cassidy M.; Cornman, Robert S.; Conway, Carla M.; Winton, James R.; Blazer, Vicki S.
2015-01-01
ABSTRACT The white sucker Catostomus commersonii is a freshwater teleost often utilized as a resident sentinel. Here, we sequenced the full genome of a hepatitis B-like virus that infects white suckers from the Great Lakes Region of the United States. Dideoxy sequencing confirmed that the white sucker hepatitis B virus (WSHBV) has a circular genome (3,542 bp) with the prototypical codon organization of hepadnaviruses. Electron microscopy demonstrated that complete virions of approximately 40 nm were present in the plasma of infected fish. Compared to avi- and orthohepadnaviruses, sequence conservation of the core, polymerase, and surface proteins was low and ranged from 16 to 27% at the amino acid level. An X protein homologue common to the orthohepadnaviruses was not present. The WSHBV genome included an atypical, presumptively noncoding region absent in previously described hepadnaviruses. Phylogenetic analyses confirmed WSHBV as distinct from previously documented hepadnaviruses. The level of divergence in protein sequences between WSHBV and other hepadnaviruses and the identification of an HBV-like sequence in an African cichlid provide evidence that a novel genus of the family Hepadnaviridae may need to be established that includes these hepatitis B-like viruses in fishes. Viral transcription was observed in 9.5% (16 of 169) of white suckers evaluated. The prevalence of hepatic tumors in these fish was 4.9%, and only 2.4% of fish were positive for both virus and hepatic tumors. These results are not sufficient to draw inferences regarding the association of WSHBV and carcinogenesis in white sucker. IMPORTANCE We report the first full-length genome of a hepadnavirus from fishes. Phylogenetic analysis of this genome indicates divergence from genomes of previously described hepadnaviruses from mammalian and avian hosts and supports the creation of a novel genus. The discovery of this novel virus may better our understanding of the evolutionary history of hepatitis B-like viruses of other hosts. In fishes, knowledge of this virus may provide insight regarding possible risk factors associated with hepatic neoplasia in the white sucker. This may also offer another model system for mechanistic research. PMID:26378165
Senthilkumaran, Chandrika; Yang, Ming; Bittner, Hilary; Ambagala, Aruna; Lung, Oliver; Zimmerman, Jeffrey; Giménez-Lirola, Luis G; Nfon, Charles
2017-04-01
Virus nucleic acids and antibody response to pathogens can be measured using swine oral fluids (OFs). Detection of foot-and-mouth disease virus (FMDV) genome in swine OFs has previously been demonstrated. Virus isolation and viral antigen detection are additional confirmatory assays for diagnosing FMDV, but these methods have not been evaluated using swine OF. The objectives of this study were to further validate the molecular detection of FMDV in oral fluids, evaluate antigen detection and FMDV isolation from swine OFs, and develop an assay for isotypic anti-FMDV antibody detection in OFs. Ribonucleic acid (RNA) from FMDV was detected in OFs from experimentally infected pigs by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) from 1 day post-infection (dpi) to 21 dpi. Foot-and-mouth disease virus (FMDV) was isolated from OFs at 1 to 5 dpi. Additionally, FMDV antigens were detected in OFs from 1 to 6 dpi using a lateral flow immunochromatographic strip test (LFIST), which is a rapid pen-side test, and from 2 to 3 dpi using a double-antibody sandwich enzyme-linked immunosorbent assay (DAS ELISA). Furthermore, FMDV-specific immunoglobulin A (IgA) was detected in OFs using an isotype-specific indirect ELISA starting at dpi 14. These results further demonstrated the potential use of oral fluids for detecting FMDV genome, live virus, and viral antigens, as well as for quantifying mucosal IgA antibody response.
Characterization of a prototype strain of hepatitis E virus.
Tsarev, S A; Emerson, S U; Reyes, G R; Tsareva, T S; Legters, L J; Malik, I A; Iqbal, M; Purcell, R H
1992-01-15
A strain of hepatitis E virus (SAR-55) implicated in an epidemic of enterically transmitted non-A, non-B hepatitis, now called hepatitis E, was characterized extensively. Six cynomolgus monkeys (Macaca fascicularis) were infected with a strain of hepatitis E virus from Pakistan. Reverse transcription-polymerase chain reaction was used to determine the pattern of virus shedding in feces, bile, and serum relative to hepatitis and induction of specific antibodies. Virtually the entire genome of SAR-55 (7195 nucleotides) was sequenced. Comparison of the sequence of SAR-55 with that of a Burmese strain revealed a high level of homology except for one region encoding 100 amino acids of a putative nonstructural polyprotein. Identification of this region as hypervariable was obtained by partial sequencing of a third isolate of hepatitis E virus from Kirgizia.
Zhu, Yan-Mei; Hu, Zeng-Lei; Song, Qing-Qing; Duan, Zhi-Qiang; Gu, Min; Hu, Shun-Lin; Wang, Xiao-Quan; Liu, Xiu-Fan
2012-01-01
Based on the complete genome sequence of pigeon-origin Newcastle disease virus strain JS/07/04/ Pi(genotype VIb), nine overlapped fragments covering its full-length genome were amplified by RT-PCR. The fragments were connected sequentially and then inserted into the transcription vector TVT7/R resulting in the TVT/071204 which contained the full genome of strain JS/07/04/Pi. The TVT/071204 was co-transfected with three helper plasmids pCI-NP, pCI-P and pCI-L into the BSR cells, and the transfected cells and culture supernatant were inoculated into 9-day-old SPF embryonated eggs 60 h post-transfection. The HA and HI tests were conducted following the death of embryonated eggs. The results showed that the allantoic fluids obtained were HA positive and the HA could be inhibited by anti-NDV serum which indicated that the strain JS/07/04/Pi was rescued successfully. The rescued virus rNDV/071204 showed similar growth kinetics to its parental virus in CEF. The successful recovery of this strain would contribute to the understanding of the host-specificity of pigeon-origin NDV and to the development of the novel vaccines against the NDV infection in pigeons.
Reuter, Gábor; Boros, Ákos; Pál, József; Kapusinszky, Beatrix; Delwart, Eric; Pankovics, Péter
2016-04-01
During an investigation for potential arboviruses present in mosquitoes in Hungary (Central Europe) three highly similar virus strains of a novel rhabdovirus (family Rhabdoviridae) called Riverside virus (RISV, KU248085-KU248087) were detected and genetically characterized from Ochlerotatus sp. mosquito pools collected from 3 geographical locations using viral metagenomic and RT-PCR methods. The ssRNA(-) genome of RISVs follows the general genome layout of rhabdoviruses (3'-N-P-M-G-L-5') with two alternatives, small ORFs in the P and G genes (Px and Gx). The genome of RISVs contains some unusual features such as the large P proteins, the short M proteins with the absence of N-terminal region together with the undetectable "Late budding" motif and the overlap of P and M genes. The unusually long 3' UTRs of the M genes of RISVs probably contain a remnant transcription termination signal which is suggesting the presence of an ancestral gene. The phylogenetic analysis and sequence comparisons show that the closest known relative of RISVs is the recently identified partially sequenced mosquito-borne rhabdovirus, North Creek virus (NOCRV), from Australia. The RISVs and NOCRV form a distinct, basally rooted lineage in the dimarhabdovirus supergroup. The host species range of RISVs is currently unknown, although the presence of these viruses especially in Ochlerotatus sp. mosquitoes which are known to be fierce biting pests of humans and warm-blooded animals and abundant and widespread in Hungary could hold some potential medical and/or veterinary risks. Copyright © 2016 Elsevier B.V. All rights reserved.
Lim, Hyoun-Sub; Vaira, Anna Maria; Domier, Leslie L; Lee, Sung Chul; Kim, Hong Gi; Hammond, John
2010-06-20
We have developed plant virus-based vectors for virus-induced gene silencing (VIGS) and protein expression, based on Alternanthera mosaic virus (AltMV), for infection of a wide range of host plants including Nicotiana benthamiana and Arabidopsis thaliana by either mechanical inoculation of in vitro transcripts or via agroinfiltration. In vivo transcripts produced by co-agroinfiltration of bacteriophage T7 RNA polymerase resulted in T7-driven AltMV infection from a binary vector in the absence of the Cauliflower mosaic virus 35S promoter. An artificial bipartite viral vector delivery system was created by separating the AltMV RNA-dependent RNA polymerase and Triple Gene Block (TGB)123-Coat protein (CP) coding regions into two constructs each bearing the AltMV 5' and 3' non-coding regions, which recombined in planta to generate a full-length AltMV genome. Substitution of TGB1 L(88)P, and equivalent changes in other potexvirus TGB1 proteins, affected RNA silencing suppression efficacy and suitability of the vectors from protein expression to VIGS. Published by Elsevier Inc.
Jia, Tingting; Zhang, Lei; Wang, Guojing; Zhang, Rui; Zhang, Kuo; Lin, Guigao; Xie, Jiehong; Wang, Lunan; Li, Jinming
2015-01-01
In recent years, nucleic acid tests for detection of measles virus RNA have been widely applied in laboratories belonging to the measles surveillance system of China. An external quality assessment program was established by the National Center for Clinical Laboratories to evaluate the performance of nucleic acid tests for measles virus. The external quality assessment panel, which consisted of 10 specimens, was prepared using armored RNAs, complex of noninfectious MS2 bacteriophage coat proteins encapsulated RNA of measles virus, as measles virus surrogate controls. Conserved sequences amplified from a circulating measles virus strain or from a vaccine strain were encapsulated into these armored RNAs. Forty-one participating laboratories from 15 provinces, municipalities, or autonomous regions that currently conduct molecular detection of measles virus enrolled in the external quality assessment program, including 40 measles surveillance system laboratories and one diagnostic reagent manufacturer. Forty laboratories used commercial reverse transcription-quantitative PCR kits, with only one laboratory applying a conventional PCR method developed in-house. The results indicated that most of the participants (38/41, 92.7%) were able to accurately detect the panel with 100% sensitivity and 100% specificity. Although a wide range of commercially available kits for nucleic acid extraction and reverse transcription polymerase chain reaction were used by the participants, only two false-negative results and one false-positive result were generated; these were generated by three separate laboratories. Both false-negative results were obtained with tests performed on specimens with the lowest concentration (1.2 × 104 genomic equivalents/mL). In addition, all 18 participants from Beijing achieved 100% sensitivity and 100% specificity. Overall, we conclude that the majority of the laboratories evaluated have reliable diagnostic capacities for the detection of measles virus. PMID:26244795
Zhang, Dong; Sun, Yu; Jia, Tingting; Zhang, Lei; Wang, Guojing; Zhang, Rui; Zhang, Kuo; Lin, Guigao; Xie, Jiehong; Wang, Lunan; Li, Jinming
2015-01-01
In recent years, nucleic acid tests for detection of measles virus RNA have been widely applied in laboratories belonging to the measles surveillance system of China. An external quality assessment program was established by the National Center for Clinical Laboratories to evaluate the performance of nucleic acid tests for measles virus. The external quality assessment panel, which consisted of 10 specimens, was prepared using armored RNAs, complex of noninfectious MS2 bacteriophage coat proteins encapsulated RNA of measles virus, as measles virus surrogate controls. Conserved sequences amplified from a circulating measles virus strain or from a vaccine strain were encapsulated into these armored RNAs. Forty-one participating laboratories from 15 provinces, municipalities, or autonomous regions that currently conduct molecular detection of measles virus enrolled in the external quality assessment program, including 40 measles surveillance system laboratories and one diagnostic reagent manufacturer. Forty laboratories used commercial reverse transcription-quantitative PCR kits, with only one laboratory applying a conventional PCR method developed in-house. The results indicated that most of the participants (38/41, 92.7%) were able to accurately detect the panel with 100% sensitivity and 100% specificity. Although a wide range of commercially available kits for nucleic acid extraction and reverse transcription polymerase chain reaction were used by the participants, only two false-negative results and one false-positive result were generated; these were generated by three separate laboratories. Both false-negative results were obtained with tests performed on specimens with the lowest concentration (1.2 × 104 genomic equivalents/mL). In addition, all 18 participants from Beijing achieved 100% sensitivity and 100% specificity. Overall, we conclude that the majority of the laboratories evaluated have reliable diagnostic capacities for the detection of measles virus.
Gasanov, N B; Toshchakov, S V; Georgiev, P G; Maksimenko, O G
2015-01-01
Mammalian cell lines are widely used to produce recombinant proteins. Stable transgenic cell lines usually contain many insertions of the expression vector in one genomic region. Transcription through transgene can be one of the reasons for target gene repression after prolonged cultivation of cell lines. In the present work, we used the known transcription terminators from the SV40 virus, as well as the human β- and γ-globin genes, to prevent transcription through transgene. The transcription terminators were shown to increase and stabilize the expression of the EGFP reporter gene in transgenic lines of Chinese hamster ovary (CHO) cells. Hence, transcription terminators can be used to create stable mammalian cells with a high and stable level of recombinant protein production.
Renovell, Agueda; Gago, Selma; Ruiz-Ruiz, Susana; Velázquez, Karelia; Navarro, Luis; Moreno, Pedro; Vives, Mari Carmen; Guerri, José
2010-10-25
Citrus leaf blotch virus has a single-stranded positive-sense genomic RNA (gRNA) of 8747 nt organized in three open reading frames (ORFs). The ORF1, encoding a polyprotein involved in replication, is translated directly from the gRNA, whereas ORFs encoding the movement (MP) and coat (CP) proteins are expressed via 3' coterminal subgenomic RNAs (sgRNAs). We characterized the minimal promoter region critical for the CP-sgRNA expression in infected cells by deletion analyses using Agrobacterium-mediated infection of Nicotiana benthamiana plants. The minimal CP-sgRNA promoter was mapped between nucleotides -67 and +50 nt around the transcription start site. Surprisingly, larger deletions in the region between the CP-sgRNA transcription start site and the CP translation initiation codon resulted in increased CP-sgRNA accumulation, suggesting that this sequence could modulate the CP-sgRNA transcription. Site-specific mutational analysis of the transcription start site revealed that the +1 guanylate and the +2 adenylate are important for CP-sgRNA synthesis. Copyright © 2010 Elsevier Inc. All rights reserved.
Salem, Nidá M; Golino, Deborah A; Falk, Bryce W; Rowhani, Adib
2008-01-01
The three double-stranded (ds) RNAs were detected in Rosa multiflora plants showing rose spring dwarf (RSD) symptoms. Northern blot analysis revealed three dsRNAs in preparations of both dsRNA and total RNA from R. multiflora plants. The complete sequences of the dsRNAs (referred to as dsRNA 1, dsRNA 2 and dsRNA 3) were determined based on a combination of shotgun cloning of dsRNA cDNAs and reverse transcription-polymerase chain reaction (RT-PCR). The largest dsRNA (dsRNA 1) was 1,762 bp long with a single open reading frame (ORF) that encoded a putative polypeptide containing 479 amino acid residues with a molecular mass of 55.9 kDa. This polypeptide contains amino acid sequence motifs conserved in the RNA-dependent RNA polymerases (RdRp) of members of the family Partitiviridae. Both dsRNA 2 (1,475 bp) and dsRNA 3 (1,384 bp) contained single ORFs, encoding putative proteins of unknown function. The 5' untranslated regions (UTR) of all three segments shared regions of high sequence homology. Phylogenetic analysis using the RdRp sequences of the various partitiviruses revealed that the new sequences would constitute the genome of a virus in family Partitiviridae. This virus would cluster with Fragaria chiloensis cryptic virus and Raphanus sativus cryptic virus 2. We suggest that the three dsRNA segments constitute the genome of a novel cryptic virus infecting roses; we propose the name Rosa multiflora cryptic virus (RMCV). Detection primers were developed and used for RT-PCR detection of RMCV in rose plants.
Incoming human papillomavirus 16 genome is lost in PML protein-deficient HaCaT keratinocytes.
Bienkowska-Haba, Malgorzata; Luszczek, Wioleta; Keiffer, Timothy R; Guion, Lucile G M; DiGiuseppe, Stephen; Scott, Rona S; Sapp, Martin
2017-05-01
Human papillomaviruses (HPVs) target promyelocytic leukemia (PML) nuclear bodies (NBs) during infectious entry and PML protein is important for efficient transcription of incoming viral genome. However, the transcriptional down regulation was shown to be promoter-independent in that heterologous promoters delivered by papillomavirus particles were also affected. To further investigate the role of PML protein in HPV entry, we used small hairpin RNA to knockdown PML protein in HaCaT keratinocytes. Confirming previous findings, PML knockdown in HaCaT cells reduced HPV16 transcript levels significantly following infectious entry without impairing binding and trafficking. However, when we quantified steady-state levels of pseudogenomes in interphase cells, we found strongly reduced genome levels compared with parental HaCaT cells. Because nuclear delivery was comparable in both cell lines, we conclude that viral pseudogenome must be removed after successful nuclear delivery. Transcriptome analysis by gene array revealed that PML knockdown in clonal HaCaT cells was associated with a constitutive interferon response. Abrogation of JAK1/2 signaling prevented genome loss, however, did not restore viral transcription. In contrast, knockdown of PML protein in HeLa cells did not affect HPV genome delivery and transcription. HeLa cells are transformed by HPV18 oncogenes E6 and E7, which have been shown to interfere with the JAK/Stat signaling pathway. Our data imply that PML NBs protect incoming HPV genomes. Furthermore, they provide evidence that PML NBs are key regulators of the innate immune response in keratinocytes. Promyelocytic leukemia nuclear bodies (PML NBs) are important for antiviral defense. Many DNA viruses target these subnuclear structures and reorganize them. Reorganization of PML NBs by viral proteins is important for establishment of infection. In contrast, HPVs require the presence of PML protein for efficient transcription of incoming viral genome. Our finding that PML protein prevents the loss of HPV genome following infection implies that the host cell may be able to recognize chromatinized HPV genome or the associated capsid proteins. A constitutively active interferon response in absence of PML protein suggests that PML NBs are key regulators of the innate immune response in keratinocytes. © 2016 John Wiley & Sons Ltd.
Standing your Ground to Exoribonucleases: Function of Flavivirus Long Non-coding RNAs
Charley, Phillida A.; Wilusz, Jeffrey
2015-01-01
Members of the Flaviviridae (e.g. Dengue virus, West Nile virus, and Hepatitis C virus) contain a positive-sense RNA genome that encodes a large polyprotein. It is now also clear most if not all of these viruses also produce an abundant subgenomic long non-coding RNA. These non-coding RNAs, which are called subgenomicflavivirus RNAs (sfRNAs) or Xrn1-resistant RNAs (xrRNAs), are stable decay intermediates generated from the viral genomic RNA through the stalling of the cellular exoribonuclease Xrn1 at highly structured regions. Several functions of these flavivirus long non-coding RNAs have been revealed in recent years. The generation of these sfRNAs/xrRNAs from viral transcripts results in the repression of Xrn1 and the dysregulation of cellular mRNA stability. The abundant sfRNAs also serve directly as a decoy for important cellular protein regulators of the interferon and RNA interference antiviral pathways. Thus the generation of long non-coding RNAs from flaviviruses, hepaciviruses and pestiviruses likely disrupts aspects of innate immunity and may directly contribute to viral replication, cytopathology and pathogenesis. PMID:26368052
Ramp, Kristina; Skiba, Martin; Karger, Axel; Mettenleiter, Thomas C; Römer-Oberdörfer, Angela
2011-02-01
Members of the order Mononegavirales express their genes in a transcription gradient from 3' to 5'. To assess how this impacts on expression of a foreign transgene, the haemagglutinin (HA) of highly pathogenic avian influenza virus (HPAIV) A/chicken/Vietnam/P41/05 (subtype H5N1) was inserted between the phosphoprotein (P) and matrix protein (M), M and fusion protein (F), or F and haemagglutinin-neuraminidase protein (HN) genes of attenuated Newcastle disease virus (NDV) Clone 30. In addition, the gene encoding the neuraminidase of HPAIV A/duck/Vietnam/TG24-01/05 (subtype H5N1) was inserted into the NDV genome either alone or in combination with the HA gene. All recombinants replicated well in embryonated chicken eggs. The expression levels of HA-specific mRNA and protein were quantified by Northern blot analysis and mass spectrometry, with good correlation. HA expression levels differed only moderately and were highest in the recombinant carrying the HA insertion between the F and HN genes of NDV.
A third genotype of the human parvovirus PARV4 in sub-Saharan Africa.
Simmonds, Peter; Douglas, Jill; Bestetti, Giovanna; Longhi, Erika; Antinori, Spinello; Parravicini, Carlo; Corbellino, Mario
2008-09-01
PARV4 is a recently discovered human parvovirus widely distributed in injecting drug users in the USA and Europe, particularly in those co-infected with human immunodeficiency virus (HIV). Like parvovirus B19, PARV4 persists in previously exposed individuals. In bone marrow and lymphoid tissue, PARV4 sequences were detected in two sub-Saharan African study subjects with AIDS but without a reported history of parenteral exposure and who were uninfected with hepatitis C virus. PARV4 variants infecting these subjects were phylogenetically distinct from genotypes 1 and 2 (formerly PARV5) that were reported previously. Analysis of near-complete genome sequences demonstrated that they should be classified as a third (equidistant) PARV4 genotype. The availability of a further near-complete genome sequence of this novel genotype facilitated identification of conserved novel open reading frames embedded in the ORF2 coding sequence; one encoded a putative protein with identifiable homology to SAT proteins of members of the genus Parvovirus.
The molecular basis of herpes simplex virus latency
Nicoll, Michael P; Proença, João T; Efstathiou, Stacey
2012-01-01
Herpes simplex virus type 1 is a neurotropic herpesvirus that establishes latency within sensory neurones. Following primary infection, the virus replicates productively within mucosal epithelial cells and enters sensory neurones via nerve termini. The virus is then transported to neuronal cell bodies where latency can be established. Periodically, the virus can reactivate to resume its normal lytic cycle gene expression programme and result in the generation of new virus progeny that are transported axonally back to the periphery. The ability to establish lifelong latency within the host and to periodically reactivate to facilitate dissemination is central to the survival strategy of this virus. Although incompletely understood, this review will focus on the mechanisms involved in the regulation of latency that centre on the functions of the virus-encoded latency-associated transcripts (LATs), epigenetic regulation of the latent virus genome and the molecular events that precipitate reactivation. This review considers current knowledge and hypotheses relating to the mechanisms involved in the establishment, maintenance and reactivation herpes simplex virus latency. PMID:22150699
A Herpesvirus Protein Selectively Inhibits Cellular mRNA Nuclear Export.
Gong, Danyang; Kim, Yong Hoon; Xiao, Yuchen; Du, Yushen; Xie, Yafang; Lee, Kevin K; Feng, Jun; Farhat, Nisar; Zhao, Dawei; Shu, Sara; Dai, Xinghong; Chanda, Sumit K; Rana, Tariq M; Krogan, Nevan J; Sun, Ren; Wu, Ting-Ting
2016-11-09
Nuclear mRNA export is highly regulated to ensure accurate cellular gene expression. Viral inhibition of cellular mRNA export can enhance viral access to the cellular translation machinery and prevent anti-viral protein production but is generally thought to be nonselective. We report that ORF10 of Kaposi's sarcoma-associated herpesvirus (KSHV), a nuclear DNA virus, inhibits mRNA export in a transcript-selective manner to control cellular gene expression. Nuclear export inhibition by ORF10 requires an interaction with an RNA export factor, Rae1. Genome-wide analysis reveals a subset of cellular mRNAs whose nuclear export is blocked by ORF10 with the 3' UTRs of ORF10-targeted transcripts conferring sensitivity to export inhibition. The ORF10-Rae1 interaction is important for the virus to express viral genes and produce infectious virions. These results suggest that a nuclear DNA virus can selectively interfere with RNA export to restrict host gene expression for optimal replication. Published by Elsevier Inc.
Hepatitis B virus pathogenesis: Fresh insights into hepatitis B virus RNA.
Sekiba, Kazuma; Otsuka, Motoyuki; Ohno, Motoko; Yamagami, Mari; Kishikawa, Takahiro; Suzuki, Tatsunori; Ishibashi, Rei; Seimiya, Takahiro; Tanaka, Eri; Koike, Kazuhiko
2018-06-07
Hepatitis B virus (HBV) is still a worldwide health concern. While divergent factors are involved in its pathogenesis, it is now clear that HBV RNAs, principally templates for viral proteins and viral DNAs, have diverse biological functions involved in HBV pathogenesis. These functions include viral replication, hepatic fibrosis and hepatocarcinogenesis. Depending on the sequence similarities, HBV RNAs may act as sponges for host miRNAs and may deregulate miRNA functions, possibly leading to pathological consequences. Some parts of the HBV RNA molecule may function as viral-derived miRNA, which regulates viral replication. HBV DNA can integrate into the host genomic DNA and produce novel viral-host fusion RNA, which may have pathological functions. To date, elimination of HBV-derived covalently closed circular DNA has not been achieved. However, RNA transcription silencing may be an alternative practical approach to treat HBV-induced pathogenesis. A full understanding of HBV RNA transcription and the biological functions of HBV RNA may open a new avenue for the development of novel HBV therapeutics.
Jada, Balaji; Soitamo, Arto J.; Siddiqui, Shahid Aslam; Murukesan, Gayatri; Aro, Eva-Mari; Salakoski, Tapio; Lehto, Kirsi
2014-01-01
Previously described transgenic tobacco lines express the full length infectious Tobacco mosaic virus (TMV) genome under the 35S promoter (Siddiqui et al., 2007. Mol Plant Microbe Interact, 20: 1489–1494). Through their young stages these plants exhibit strong resistance against both the endogenously expressed and exogenously inoculated TMV, but at the age of about 7–8 weeks they break into TMV infection, with typical severe virus symptoms. Infections with some other viruses (Potato viruses Y, A, and X) induce the breaking of the TMV resistance and lead to synergistic proliferation of both viruses. To deduce the gene functions related to this early resistance, we have performed microarray analysis of the transgenic plants during the early resistant stage, and after the resistance break, and also of TMV-infected wild type tobacco plants. Comparison of these transcriptomes to those of corresponding wild type healthy plants indicated that 1362, 1150 and 550 transcripts were up-regulated in the transgenic plants before and after the resistance break, and in the TMV-infected wild type tobacco plants, respectively, and 1422, 1200 and 480 transcripts were down-regulated in these plants, respectively. These transcriptome alterations were distinctly different between the three types of plants, and it appears that several different mechanisms, such as the enhanced expression of the defense, hormone signaling and protein degradation pathways contributed to the TMV-resistance in the young transgenic plants. In addition to these alterations, we also observed a distinct and unique gene expression alteration in these plants, which was the strong suppression of the translational machinery. This may also contribute to the resistance by slowing down the synthesis of viral proteins. Viral replication potential may also be suppressed, to some extent, by the reduction of the translation initiation and elongation factors eIF-3 and eEF1A and B, which are required for the TMV replication complex. PMID:25244327
Umbach, Jennifer L.; Wang, Kening; Tang, Shuang; Krause, Philip R.; Mont, Erik K.; Cohen, Jeffrey I.; Cullen, Bryan R.
2010-01-01
Deep sequencing of small RNAs isolated from human sacral ganglia latently infected with herpes simplex virus 2 (HSV-2) was used to identify HSV-2 microRNAs (miRNAs) expressed during latent infection. This effort resulted in the identification of five distinct HSV-2 miRNA species, two of which, miR-H3/miR-I and miR-H4/miR-II, have been previously reported. Three novel HSV-2 miRNAs were also identified, and two of these, miR-H7 and miR-H9, are derived from the latency-associated transcript (LAT) and are located antisense to the viral transcript encoding transactivator ICP0. A third novel HSV-2 miRNA, miR-H10, is encoded within the unique long (UL) region of the genome, 3′ to the UL15 open reading frame, and is presumably excised from a novel, latent HSV-2 transcript distinct from LAT. PMID:19889786
Umbach, Jennifer L; Wang, Kening; Tang, Shuang; Krause, Philip R; Mont, Erik K; Cohen, Jeffrey I; Cullen, Bryan R
2010-01-01
Deep sequencing of small RNAs isolated from human sacral ganglia latently infected with herpes simplex virus 2 (HSV-2) was used to identify HSV-2 microRNAs (miRNAs) expressed during latent infection. This effort resulted in the identification of five distinct HSV-2 miRNA species, two of which, miR-H3/miR-I and miR-H4/miR-II, have been previously reported. Three novel HSV-2 miRNAs were also identified, and two of these, miR-H7 and miR-H9, are derived from the latency-associated transcript (LAT) and are located antisense to the viral transcript encoding transactivator ICP0. A third novel HSV-2 miRNA, miR-H10, is encoded within the unique long (U(L)) region of the genome, 3' to the U(L)15 open reading frame, and is presumably excised from a novel, latent HSV-2 transcript distinct from LAT.
Genome sequence analysis of dengue virus 1 isolated in Key West, Florida.
Shin, Dongyoung; Richards, Stephanie L; Alto, Barry W; Bettinardi, David J; Smartt, Chelsea T
2013-01-01
Dengue virus (DENV) is transmitted to humans through the bite of mosquitoes. In November 2010, a dengue outbreak was reported in Monroe County in southern Florida (FL), including greater than 20 confirmed human cases. The virus collected from the human cases was verified as DENV serotype 1 (DENV-1) and one isolate was provided for sequence analysis. RNA was extracted from the DENV-1 isolate and was used in reverse transcription polymerase chain reaction (RT-PCR) to amplify PCR fragments to sequence. Nucleic acid primers were designed to generate overlapping PCR fragments that covered the entire genome. The DENV-1 isolate found in Key West (KW), FL was sequenced for whole genome characterization. Sequence assembly, Genbank searches, and recombination analyses were performed to verify the identity of the genome sequences and to determine percent similarity to known DENV-1 sequences. We show that the KW DENV-1 strain is 99% identical to Nicaraguan and Mexican DENV-1 strains. Phylogenetic and recombination analyses suggest that the DENV-1 isolated in KW originated from Nicaragua (NI) and the KW strain may circulate in KW. Also, recombination analysis results detected recombination events in the KW strain compared to DENV-1 strains from Puerto Rico. We evaluate the relative growth of KW strain of DENV-1 compared to other dengue viruses to determine whether the underlying genetics of the strain is associated with a replicative advantage, an important consideration since local transmission of DENV may result because domestic tourism can spread DENVs.
A recombinant rabies virus carrying GFP between N and P affects viral transcription in vitro.
Luo, Jun; Zhao, Jing; Tian, Qin; Mo, Weiyu; Wang, Yifei; Chen, Hao; Guo, Xiaofeng
2016-06-01
Several studies have demonstrated the rabies virus to be a perfect potential vaccine vector to insert foreign genes into the target genome. For this study, a green fluorescent protein (GFP) gene was cloned into the rabies virus (RABV) genome between the N and P gene. CT dinucleotide was inserted as intergenic region. The recombinant high egg passage Flury strain (HEP-Flury) of RABV, carrying GFP (rHEP-NP-GFP), was generated in BHK-21 cells using reverse genetics. According to the viral growth kinetics assay, the addition of GFP between N and P gene has little effect on the viral growth compared to the parental strain HEP-Flury. Quantitative real-time PCR (qPCR) indicated that rHEP-NP-GFP showed different viral gene transcription, especially for G gene, compared to HEP-Flury. The same is true for one other recombinant RABV carrying GFP between G and L gene in NA cells. In addition, parent HEP-Flury showed more expression of innate immune-related molecules in NA cells. Compared to HEP-Flury, Western blotting (WB) indicated that insertion of a foreign gene following N gene enhanced the expression of M and G proteins. According to the qPCR and WB, GFP expression levels of rHEP-NP-GFP were significantly higher than rHEP-GFP. This study indicates HEP-Flury as valid vector to express exogenous genes between N and P.
Viruses in close associations with free-living amoebae.
Scheid, Patrick
2015-11-01
As both groups of organisms, free-living amoebae (FLA) and viruses, can be found in aquatic environments side by side, it appears obvious that there are multiple interactions with respect to host-endocytobiont relationships. Several relationships between viruses and protozoan hosts are described and it was the discovery of the so called "giant viruses," associated with amoebae, which gave another dimension to these interactions. Mimiviruses, Pandoraviruses and Pithoviruses are examples for interesting viral endocytobionts within FLA. In the Mimivirus viral factories, viral DNA undergoes replication and transcription, and the DNA is prepared to be packed in procapsids. Theses Mimivirus factories can be considered as efficient "production lines" where, at any given moment, all stages of viral generation including membrane biogenesis, capsid assembly and genome encapsidation, are occurring concomitantly. There are some hints that similar replication factories are involved as well during the Pandoravirus development. Some scientists favour the assumption that the giant viruses have received many of their genes from their hosts or from sympatric occurring endocytobionts via lateral gene transfer. This hypothesis would mean that this type of transfer has been an important process in the evolution of genomes in the context of the intracellular parasitic or endocytobiotic lifestyle. In turn, that would migitate against hypothesizing development of a new branch in the tree of life. Based on the described scenarios to explain the presence of genes related to translation, it is also possible that earlier ancestors of today's DNA viruses were involved in the origin of eukaryotes. That possibly could in turn support the idea that cellular organisms could have evolved from viruses with growing autarkic properties. In future we expect the discovery of further (giant) viruses within free-living amoebae and other protozoa through genomic, transcriptomic and proteomic analyses.
Markus, Amos; Lebenthal-Loinger, Ilana; Yang, In Hong; Kinchington, Paul R.; Goldstein, Ronald S.
2015-01-01
Varicella zoster virus (VZV) latency in sensory and autonomic neurons has remained enigmatic and difficult to study, and experimental reactivation has not yet been achieved. We have previously shown that human embryonic stem cell (hESC)-derived neurons are permissive to a productive and spreading VZV infection. We now demonstrate that hESC-derived neurons can also host a persistent non-productive infection lasting for weeks which can subsequently be reactivated by multiple experimental stimuli. Quiescent infections were established by exposing neurons to low titer cell-free VZV either by using acyclovir or by infection of axons in compartmented microfluidic chambers without acyclovir. VZV DNA and low levels of viral transcription were detectable by qPCR for up to seven weeks. Quiescently-infected human neuronal cultures were induced to undergo renewed viral gene and protein expression by growth factor removal or by inhibition of PI3-Kinase activity. Strikingly, incubation of cultures induced to reactivate at a lower temperature (34°C) resulted in enhanced VZV reactivation, resulting in spreading, productive infections. Comparison of VZV genome transcription in quiescently-infected to productively-infected neurons using RNASeq revealed preferential transcription from specific genome regions, especially the duplicated regions. These experiments establish a powerful new system for modeling the VZV latent state, and reveal a potential role for temperature in VZV reactivation and disease. PMID:26042814
Nuclear import of viral DNA genomes.
Greber, Urs F; Fassati, Ariberto
2003-03-01
The genomes of many viruses traffic into the nucleus, where they are either integrated into host chromosomes or maintained as episomal DNA and then transcriptionally activated or silenced. Here, we discuss the existing evidence on how the lentiviruses, adenoviruses, herpesviruses, hepadnaviruses and autonomous parvoviruses enter the nucleus. Depending on the size of the capsid enclosing the genome, three principles of viral nucleic acids import are discussed. The first principle is that the capsid disassembles in the cytosol or in a docked state at the nuclear pore complex and a subviral genomic complex is trafficked through the pore. Second, the genome is injected from a capsid that is docked to the pore complex, and third, import factors are recruited to cytosolic capsids to increase capsid affinity to the pore complex, mediate translocation and allow disassembly in the nucleoplasm.
Complex Modulation of the Aedes aegypti Transcriptome in Response to Dengue Virus Infection
Bonizzoni, Mariangela; Dunn, W. Augustine; Campbell, Corey L.; Olson, Ken E.; Marinotti, Osvaldo; James, Anthony A.
2012-01-01
Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV) are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1–4), each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes. PMID:23209765
Laimins, L; Holmgren-König, M; Khoury, G
1986-01-01
The enhancer elements from either simian virus 40 or murine sarcoma virus activate the expression of a transfected rat insulin 1 (rI1) gene when placed within 2.0 kilobases or less of the rI1 gene cap site. Inclusion of 4.0 kilobases of upstream rI1 sequence, however, results in a substantial reduction in the enhancer-dependent insulin gene expression. These observations suggested that a negative transcriptional regulatory element was present between 2.0 and 4.0 kilobases of the rI1 sequence. To test this notion, we employed a heterologous enhancer-dependent transcription assay in which the simian virus 40 72-base-pair repeat is linked to a human beta-globin gene. Addition of the upstream rI1 element to this system decreased the level of enhancer-dependent beta-globin transcription by a factor of 5 to 15. This rI1 "silencer" element functions in a manner relatively independent of position and orientation and requires a cis-dependent relationship to the transcription unit on which it acts. Thus, the silencer sequence seems to have a number of the characteristics of enhancer elements, and we suggest that it may function by the converse of the enhancer mechanism. The rI1 silencer sequence was identified as a member of a long interspersed rat repetitive family. Thus, a potential role for certain repetitive sequences interspersed throughout the eukaryotic genome may be to regulate gene expression by retaining transcriptional activity within defined domains. Images PMID:3010279
Coordinated and sequential transcription of the cyprinid herpesvirus-3 annotated genes.
Ilouze, Maya; Dishon, Arnon; Kotler, Moshe
2012-10-01
Cyprinid herpesvirus-3 (CyHV-3) is the cause of a fatal disease in carp and koi fish. The disease is seasonal and appears when water temperatures range from 18 to 28°C. CyHV-3 is a member of the Alloherpesviridae, a family in the Herpesvirales order that encompasses mammalian, avian and reptilian viruses. CyHV-3 is a large double-stranded DNA (dsDNA) herpesvirus with a genome of approximately 295kbp, divergent from other mammalian, avian and reptilian herpesviruses, but bearing several genes similar to cyprinid herpesvirus-1 (CyHV-1), CyHV-2, anguillid herpesvirus-1 (AngHV-1), ictalurid herpesvirus-1 (IcHV-1) and ranid herpes virus-1 (RaHV-1). Here we show that viral DNA synthesis commences 4-8h post-infection (p.i.), and is completely inhibited by pre-treatment with cytosine β-d-arabinofuranoside (Ara-C). Transcription of CyHV-3 genes initiates after infection as early as 1-2h p.i., and precedes viral DNA synthesis. All 156 annotated open reading frames (ORFs) of the CyHV-3 genome are transcribed into RNAs, most of which can be classified into immediate early (IE or α), early (E or β) and late (L or γ) classes, similar to all other herpesviruses. Several ORFs belonging to these groups are clustered along the viral genome. Copyright © 2012 Elsevier B.V. All rights reserved.
Peng, Xinxia; Alföldi, Jessica; Gori, Kevin; Eisfeld, Amie J; Tyler, Scott R; Tisoncik-Go, Jennifer; Brawand, David; Law, G Lynn; Skunca, Nives; Hatta, Masato; Gasper, David J; Kelly, Sara M; Chang, Jean; Thomas, Matthew J; Johnson, Jeremy; Berlin, Aaron M; Lara, Marcia; Russell, Pamela; Swofford, Ross; Turner-Maier, Jason; Young, Sarah; Hourlier, Thibaut; Aken, Bronwen; Searle, Steve; Sun, Xingshen; Yi, Yaling; Suresh, M; Tumpey, Terrence M; Siepel, Adam; Wisely, Samantha M; Dessimoz, Christophe; Kawaoka, Yoshihiro; Birren, Bruce W; Lindblad-Toh, Kerstin; Di Palma, Federica; Engelhardt, John F; Palermo, Robert E; Katze, Michael G
2014-12-01
The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the 'gold standard' for modeling human influenza virus infection and transmission. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotated 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterized the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time-course data and showed distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis disease progression, we showed that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with cystic fibrosis disease.
Peng, Xinxia; Alföldi, Jessica; Gori, Kevin; Eisfeld, Amie J.; Tyler, Scott R.; Tisoncik-Go, Jennifer; Brawand, David; Law, G. Lynn; Skunca, Nives; Hatta, Masato; Gasper, David J.; Kelly, Sara M.; Chang, Jean; Thomas, Matthew J.; Johnson, Jeremy; Berlin, Aaron M.; Lara, Marcia; Russell, Pamela; Swofford, Ross; Turner-Maier, Jason; Young, Sarah; Hourlier, Thibaut; Aken, Bronwen; Searle, Steve; Sun, Xingshen; Yi, Yaling; Suresh, M.; Tumpey, Terrence M.; Siepel, Adam; Wisely, Samantha M.; Dessimoz, Christophe; Kawaoka, Yoshihiro; Birren, Bruce W.; Lindblad-Toh, Kerstin; Di Palma, Federica; Engelhardt, John F.; Palermo, Robert E.; Katze, Michael G.
2014-01-01
The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the ‘gold standard’ for modeling human influenza virus infection and transmission1–4. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotate 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterize the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time courses, and show distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis (CF) disease progression, we show that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with CF disease. PMID:25402615
Hagemeier, Stacy R.; Dickerson, Sarah J.; Meng, Qiao; Yu, Xianming; Mertz, Janet E.; Kenney, Shannon C.
2010-01-01
The Epstein-Barr virus (EBV) immediate-early protein BZLF1 (Z) mediates the switch between latent and lytic EBV infection. Z not only activates early lytic viral gene transcription but also plays a direct role in lytic viral genome replication. Although a small fraction of Z is known to be sumoylated, the effects of this posttranslational modification on various different Z functions have not been well defined. In this report, we show that only the lysine at amino acid residue 12 is required for the sumoylation of Z, and that Z can be sumoylated by SUMO isoforms 1, 2, and 3. We also demonstrate that the sumo-defective Z mutants ZK12A and ZK12R have enhanced transcriptional activity. The sumoylated and nonsumoylated forms of Z were found to have a similar cellular location, both being localized primarily within the nuclear matrix. The Z sumo-defective mutants were, however, partially defective for disrupting promyelocytic leukemia (PML) bodies compared to the ability of wild-type Z. In addition, we show that lytic viral genome replication does not require the sumoylation of Z, although a Z mutant altered at both amino acids 12 and 13 is replication defective. Furthermore, we show that the sumoylation of Z is greatly increased (from less than 1 to about 11%) in lytically induced 293 cells infected with an EBV mutant virus deleted for the EBV-encoded protein kinase (EBV-PK) compared to that of 293 cells infected with wild-type EBV, and that the overexpression of EBV-PK leads to the reduced sumoylation of Z in EBV-negative cells. Our results suggest that the sumoylation of Z helps to promote viral latency, and that EBV-PK inhibits Z sumoylation during viral reactivation. PMID:20181712
Identification of two novel functional p53 responsive elements in the Herpes Simplex Virus-1 genome
Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R.; Boehmer, Paul E.
2014-01-01
Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. PMID:25010269
N6-Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection.
Gokhale, Nandan S; McIntyre, Alexa B R; McFadden, Michael J; Roder, Allison E; Kennedy, Edward M; Gandara, Jorge A; Hopcraft, Sharon E; Quicke, Kendra M; Vazquez, Christine; Willer, Jason; Ilkayeva, Olga R; Law, Brittany A; Holley, Christopher L; Garcia-Blanco, Mariano A; Evans, Matthew J; Suthar, Mehul S; Bradrick, Shelton S; Mason, Christopher E; Horner, Stacy M
2016-11-09
The RNA modification N6-methyladenosine (m 6 A) post-transcriptionally regulates RNA function. The cellular machinery that controls m 6 A includes methyltransferases and demethylases that add or remove this modification, as well as m 6 A-binding YTHDF proteins that promote the translation or degradation of m 6 A-modified mRNA. We demonstrate that m 6 A modulates infection by hepatitis C virus (HCV). Depletion of m 6 A methyltransferases or an m 6 A demethylase, respectively, increases or decreases infectious HCV particle production. During HCV infection, YTHDF proteins relocalize to lipid droplets, sites of viral assembly, and their depletion increases infectious viral particles. We further mapped m 6 A sites across the HCV genome and determined that inactivating m 6 A in one viral genomic region increases viral titer without affecting RNA replication. Additional mapping of m 6 A on the RNA genomes of other Flaviviridae, including dengue, Zika, yellow fever, and West Nile virus, identifies conserved regions modified by m 6 A. Altogether, this work identifies m 6 A as a conserved regulatory mark across Flaviviridae genomes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host.
Palesch, David; Bosinger, Steven E; Tharp, Gregory K; Vanderford, Thomas H; Paiardini, Mirko; Chahroudi, Ann; Johnson, Zachary P; Kirchhoff, Frank; Hahn, Beatrice H; Norgren, Robert B; Patel, Nirav B; Sodora, Donald L; Dawoud, Reem A; Stewart, Caro-Beth; Seepo, Sara M; Harris, R Alan; Liu, Yue; Raveendran, Muthuswamy; Han, Yi; English, Adam; Thomas, Gregg W C; Hahn, Matthew W; Pipes, Lenore; Mason, Christopher E; Muzny, Donna M; Gibbs, Richard A; Sauter, Daniel; Worley, Kim; Rogers, Jeffrey; Silvestri, Guido
2018-01-03
In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3-4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS.
Analysis of the Genome of the Sexually Transmitted Insect Virus Helicoverpa zea Nudivirus 2
Burand, John P.; Kim, Woojin; Afonso, Claudio L.; Tulman, Edan R.; Kutish, Gerald F.; Lu, Zhiqiang; Rock, Daniel L.
2012-01-01
The sexually transmitted insect virus Helicoverpa zea nudivirus 2 (HzNV-2) was determined to have a circular double-stranded DNA genome of 231,621 bp coding for an estimated 113 open reading frames (ORFs). HzNV-2 is most closely related to the nudiviruses, a sister group of the insect baculoviruses. Several putative ORFs that share homology with the baculovirus core genes were identified in the viral genome. However, HzNV-2 lacks several key genetic features of baculoviruses including the late transcriptional regulation factor, LEF-1 and the palindromic hrs, which serve as origins of replication. The HzNV-2 genome was found to code for three ORFs that had significant sequence homology to cellular genes which are not generally found in viral genomes. These included a presumed juvenile hormone esterase gene, a gene coding for a putative zinc-dependent matrix metalloprotease, and a major facilitator superfamily protein gene; all of which are believed to play a role in the cellular proliferation and the tissue hypertrophy observed in the malformation of reproductive organs observed in HzNV-2 infected corn earworm moths, Helicoverpa zea. PMID:22355451
Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host
Palesch, David; Bosinger, Steven E.; Tharp, Gregory K.; Vanderford, Thomas H.; Paiardini, Mirko; Chahroudi, Ann; Johnson, Zachary P.; Kirchhoff, Frank; Hahn, Beatrice H.; Norgren, Robert B.; Patel, Nirav B.; Sodora, Donald L.; Dawoud, Reem A.; Stewart, Caro-Beth; Seepo, Sara M.; Harris, R. Alan; Liu, Yue; Raveendran, Muthuswamy; Han, Yi; English, Adam; Thomas, Gregg W. C.; Hahn, Matthew W.; Pipes, Lenore; Mason, Christopher E.; Muzny, Donna M.; Gibbs, Richard A.; Sauter, Daniel; Worley, Kim; Rogers, Jeffrey; Silvestri, Guido
2018-01-01
In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia1. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3–4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS. PMID:29300007
Analysis of the genome of the sexually transmitted insect virus Helicoverpa zea nudivirus 2.
Burand, John P; Kim, Woojin; Afonso, Claudio L; Tulman, Edan R; Kutish, Gerald F; Lu, Zhiqiang; Rock, Daniel L
2012-01-01
The sexually transmitted insect virus Helicoverpa zea nudivirus 2 (HzNV-2) was determined to have a circular double-stranded DNA genome of 231,621 bp coding for an estimated 113 open reading frames (ORFs). HzNV-2 is most closely related to the nudiviruses, a sister group of the insect baculoviruses. Several putative ORFs that share homology with the baculovirus core genes were identified in the viral genome. However, HzNV-2 lacks several key genetic features of baculoviruses including the late transcriptional regulation factor, LEF-1 and the palindromic hrs, which serve as origins of replication. The HzNV-2 genome was found to code for three ORFs that had significant sequence homology to cellular genes which are not generally found in viral genomes. These included a presumed juvenile hormone esterase gene, a gene coding for a putative zinc-dependent matrix metalloprotease, and a major facilitator superfamily protein gene; all of which are believed to play a role in the cellular proliferation and the tissue hypertrophy observed in the malformation of reproductive organs observed in HzNV-2 infected corn earworm moths, Helicoverpa zea.
Characterization of a prototype strain of hepatitis E virus.
Tsarev, S A; Emerson, S U; Reyes, G R; Tsareva, T S; Legters, L J; Malik, I A; Iqbal, M; Purcell, R H
1992-01-01
A strain of hepatitis E virus (SAR-55) implicated in an epidemic of enterically transmitted non-A, non-B hepatitis, now called hepatitis E, was characterized extensively. Six cynomolgus monkeys (Macaca fascicularis) were infected with a strain of hepatitis E virus from Pakistan. Reverse transcription-polymerase chain reaction was used to determine the pattern of virus shedding in feces, bile, and serum relative to hepatitis and induction of specific antibodies. Virtually the entire genome of SAR-55 (7195 nucleotides) was sequenced. Comparison of the sequence of SAR-55 with that of a Burmese strain revealed a high level of homology except for one region encoding 100 amino acids of a putative nonstructural polyprotein. Identification of this region as hypervariable was obtained by partial sequencing of a third isolate of hepatitis E virus from Kirgizia. Images PMID:1731327
Respiratory syncytial virus mechanisms to interfere with type 1 interferons.
Barik, Sailen
2013-01-01
Respiratory syncytial virus (RSV) is a member of the Paramyxoviridae family that consists of viruses with nonsegmented negative-strand RNA genome. Infection by these viruses triggers the innate antiviral response of the host, mainly type I interferon (IFN). Essentially all other viruses of this family produce IFN suppressor functions by co-transcriptional RNA editing. In contrast, RSV has evolved two unique nonstructural proteins, NS1 and NS2, to effectively serve this purpose. Together, NS1 and NS2 degrade or sequester multiple signaling proteins that affect both IFN induction and IFN effector functions. While the mechanism of action of NS1 and NS2 is a subject of active research, their effect on adaptive immunity is also being recognized. In this review, we discuss various aspects of NS1 and NS2 function with implications for vaccine design.
Polymorphic integrations of an endogenous gammaretrovirus in the mule deer genome.
Elleder, Daniel; Kim, Oekyung; Padhi, Abinash; Bankert, Jason G; Simeonov, Ivan; Schuster, Stephan C; Wittekindt, Nicola E; Motameny, Susanne; Poss, Mary
2012-03-01
Endogenous retroviruses constitute a significant genomic fraction in all mammalian species. Typically they are evolutionarily old and fixed in the host species population. Here we report on a novel endogenous gammaretrovirus (CrERVγ; for cervid endogenous gammaretrovirus) in the mule deer (Odocoileus hemionus) that is insertionally polymorphic among individuals from the same geographical location, suggesting that it has a more recent evolutionary origin. Using PCR-based methods, we identified seven CrERVγ proviruses and demonstrated that they show various levels of insertional polymorphism in mule deer individuals. One CrERVγ provirus was detected in all mule deer sampled but was absent from white-tailed deer, indicating that this virus originally integrated after the split of the two species, which occurred approximately one million years ago. There are, on average, 100 CrERVγ copies in the mule deer genome based on quantitative PCR analysis. A CrERVγ provirus was sequenced and contained intact open reading frames (ORFs) for three virus genes. Transcripts were identified covering the entire provirus. CrERVγ forms a distinct branch of the gammaretrovirus phylogeny, with the closest relatives of CrERVγ being endogenous gammaretroviruses from sheep and pig. We demonstrated that white-tailed deer (Odocoileus virginianus) and elk (Cervus canadensis) DNA contain proviruses that are closely related to mule deer CrERVγ in a conserved region of pol; more distantly related sequences can be identified in the genome of another member of the Cervidae, the muntjac (Muntiacus muntjak). The discovery of a novel transcriptionally active and insertionally polymorphic retrovirus in mammals could provide a useful model system to study the dynamic interaction between the host genome and an invading retrovirus.
Bolinger, Cheryl; Boris-Lawrie, Kathleen
2009-01-01
Retroviruses have evolved multiple strategies to direct the synthesis of a complex proteome from a single primary transcript. Their mechanisms are modulated by a breadth of virus-host interactions, which are of significant fundamental interest because they ultimately affect the efficiency of virus replication and disease pathogenesis. Motifs located within the untranslated region (UTR) of the retroviral RNA have established roles in transcriptional trans-activation, RNA packaging, and genome reverse transcription; and a growing literature has revealed a necessary role of the UTR in modulating the efficiency of viral protein synthesis. Examples include a 5' UTR post-transcriptional control element (PCE), present in at least eight retroviruses, that interacts with cellular RNA helicase A to facilitate cap-dependent polyribosome association; and 3' UTR constitutive transport element (CTE) of Mason-Pfizer monkey virus that interacts with Tap/NXF1 and SR protein 9G8 to facilitate RNA export and translational utilization. By contrast, nuclear protein hnRNP E1 negatively modulates HIV-1 Gag, Env, and Rev protein synthesis. Alternative initiation strategies by ribosomal frameshifting and leaky scanning enable polycistronic translation of the cap-dependent viral transcript. Other studies posit cap-independent translation initiation by internal ribosome entry at structural features of the 5' UTR of selected retroviruses. The retroviral armamentarium also commands mechanisms to counter cellular post-transcriptional innate defenses, including protein kinase R, 2',5'-oligoadenylate synthetase and the small RNA pathway. This review will discuss recent and historically-recognized insights into retrovirus translational control. The expanding knowledge of retroviral post-transcriptional control is vital to understanding the biology of the retroviral proteome. In a broad perspective, each new insight offers a prospective target for antiviral therapy and strategic improvement of gene transfer vectors. PMID:19166625
Lemay, Julie; Maidou-Peindara, Priscilla; Bader, Thomas; Ennifar, Eric; Rain, Jean-Christophe; Benarous, Richard; Liu, Lang Xia
2008-01-01
Reverse transcription of the genetic material of human immunodeficiency virus type 1 (HIV-1) is a critical step in the replication cycle of this virus. This process, catalyzed by reverse transcriptase (RT), is well characterized at the biochemical level. However, in infected cells, reverse transcription occurs in a multiprotein complex – the reverse transcription complex (RTC) – consisting of viral genomic RNA associated with viral proteins (including RT) and, presumably, as yet uncharacterized cellular proteins. Very little is known about the cellular proteins interacting with the RTC, and with reverse transcriptase in particular. We report here that HIV-1 reverse transcription is affected by the levels of a nucleocytoplasmic shuttling protein – the RNA-binding protein HuR. A direct protein-protein interaction between RT and HuR was observed in a yeast two-hybrid screen and confirmed in vitro by homogenous time-resolved fluorescence (HTRF). We mapped the domain interacting with HuR to the RNAse H domain of RT, and the binding domain for RT to the C-terminus of HuR, partially overlapping the third RRM RNA-binding domain of HuR. HuR silencing with specific siRNAs greatly impaired early and late steps of reverse transcription, significantly inhibiting HIV-1 infection. Moreover, by mutagenesis and immunoprecipitation studies, we could not detect the binding of HuR to the viral RNA. These results suggest that HuR may be involved in and may modulate the reverse transcription reaction of HIV-1, by an as yet unknown mechanism involving a protein-protein interaction with HIV-1 RT. PMID:18544151
The agents of natural genome editing.
Witzany, Guenther
2011-06-01
The DNA serves as a stable information storage medium and every protein which is needed by the cell is produced from this blueprint via an RNA intermediate code. More recently it was found that an abundance of various RNA elements cooperate in a variety of steps and substeps as regulatory and catalytic units with multiple competencies to act on RNA transcripts. Natural genome editing on one side is the competent agent-driven generation and integration of meaningful DNA nucleotide sequences into pre-existing genomic content arrangements, and the ability to (re-)combine and (re-)regulate them according to context-dependent (i.e. adaptational) purposes of the host organism. Natural genome editing on the other side designates the integration of all RNA activities acting on RNA transcripts without altering DNA-encoded genes. If we take the genetic code seriously as a natural code, there must be agents that are competent to act on this code because no natural code codes itself as no natural language speaks itself. As code editing agents, viral and subviral agents have been suggested because there are several indicators that demonstrate viruses competent in both RNA and DNA natural genome editing.
Inclusion Bodies Are a Site of Ebolavirus Replication
Hoenen, Thomas; Shabman, Reed S.; Groseth, Allison; Herwig, Astrid; Weber, Michaela; Schudt, Gordian; Dolnik, Olga; Basler, Christopher F.; Becker, Stephan
2012-01-01
Inclusion bodies are a characteristic feature of ebolavirus infections in cells. They contain large numbers of preformed nucleocapsids, but their biological significance has been debated, and they have been suggested to be aggregates of viral proteins without any further biological function. However, recent data for other viruses that produce similar structures have suggested that inclusion bodies might be involved in genome replication and transcription. In order to study filovirus inclusion bodies, we fused mCherry to the ebolavirus polymerase L, which is found in inclusion bodies. The resulting L-mCherry fusion protein was functional in minigenome assays and incorporated into virus-like particles. Importantly, L-mCherry fluorescence in transfected cells was readily detectable and distributed in a punctate pattern characteristic for inclusion bodies. A recombinant ebolavirus encoding L-mCherry instead of L was rescued and showed virtually identical growth kinetics and endpoint titers to those for wild-type virus. Using this virus, we showed that the onset of inclusion body formation corresponds to the onset of viral genome replication, but that viral transcription occurs prior to inclusion body formation. Live-cell imaging further showed that inclusion bodies are highly dynamic structures and that they can undergo dramatic reorganization during cell division. Finally, by labeling nascent RNAs using click technology we showed that inclusion bodies are indeed the site of viral RNA synthesis. Based on these data we conclude that, rather than being inert aggregates of nucleocapsids, ebolavirus inclusion bodies are in fact complex and dynamic structures and an important site at which viral RNA replication takes place. PMID:22915810
Inclusion bodies are a site of ebolavirus replication.
Hoenen, Thomas; Shabman, Reed S; Groseth, Allison; Herwig, Astrid; Weber, Michaela; Schudt, Gordian; Dolnik, Olga; Basler, Christopher F; Becker, Stephan; Feldmann, Heinz
2012-11-01
Inclusion bodies are a characteristic feature of ebolavirus infections in cells. They contain large numbers of preformed nucleocapsids, but their biological significance has been debated, and they have been suggested to be aggregates of viral proteins without any further biological function. However, recent data for other viruses that produce similar structures have suggested that inclusion bodies might be involved in genome replication and transcription. In order to study filovirus inclusion bodies, we fused mCherry to the ebolavirus polymerase L, which is found in inclusion bodies. The resulting L-mCherry fusion protein was functional in minigenome assays and incorporated into virus-like particles. Importantly, L-mCherry fluorescence in transfected cells was readily detectable and distributed in a punctate pattern characteristic for inclusion bodies. A recombinant ebolavirus encoding L-mCherry instead of L was rescued and showed virtually identical growth kinetics and endpoint titers to those for wild-type virus. Using this virus, we showed that the onset of inclusion body formation corresponds to the onset of viral genome replication, but that viral transcription occurs prior to inclusion body formation. Live-cell imaging further showed that inclusion bodies are highly dynamic structures and that they can undergo dramatic reorganization during cell division. Finally, by labeling nascent RNAs using click technology we showed that inclusion bodies are indeed the site of viral RNA synthesis. Based on these data we conclude that, rather than being inert aggregates of nucleocapsids, ebolavirus inclusion bodies are in fact complex and dynamic structures and an important site at which viral RNA replication takes place.
Advanced yellow fever virus genome detection in point-of-care facilities and reference laboratories.
Domingo, Cristina; Patel, Pranav; Yillah, Jasmin; Weidmann, Manfred; Méndez, Jairo A; Nakouné, Emmanuel Rivalyn; Niedrig, Matthias
2012-12-01
Reported methods for the detection of the yellow fever viral genome are beset by limitations in sensitivity, specificity, strain detection spectra, and suitability to laboratories with simple infrastructure in areas of endemicity. We describe the development of two different approaches affording sensitive and specific detection of the yellow fever genome: a real-time reverse transcription-quantitative PCR (RT-qPCR) and an isothermal protocol employing the same primer-probe set but based on helicase-dependent amplification technology (RT-tHDA). Both assays were evaluated using yellow fever cell culture supernatants as well as spiked and clinical samples. We demonstrate reliable detection by both assays of different strains of yellow fever virus with improved sensitivity and specificity. The RT-qPCR assay is a powerful tool for reference or diagnostic laboratories with real-time PCR capability, while the isothermal RT-tHDA assay represents a useful alternative to earlier amplification techniques for the molecular diagnosis of yellow fever by field or point-of-care laboratories.
2010-01-01
A multiplex reverse transcription-nested polymerase chain reaction (RT-nPCR) method was developed for the detection and differentiation of wild-type and vaccine strains of canine distemper virus (CDV). A pair of primers (P1 and P4) specific for CDV corresponding to the highly conserved region of the CDV genome were used as a common primer pair in the first-round PCR of the nested PCR. Primers P2 specific for CDV wild-type strains, were used as the forward primer together with the common reverse primer P4 in the second round of nested PCR. Primers P3, P5 specific for CDV wild-type strain or vaccine strain, were used as the forward primer together with the common reverse primer P4+P6 in the second round of nested PCR. A fragment of 177 bp was amplified from vaccine strain genomic RNA, and a fragment of 247 bp from wild-type strain genomic RNA in the RT-nPCR, and two fragments of 247 bp and 177 bp were amplified from the mixed samples of vaccine and wild-type strains. No amplification was achieved for uninfected cells, or cells infected with Newcastle disease virus (NDV), canine parvovirus (CPV), canine coronavirus (CCV), rabies virus (RV), or canine adenovirus (CAV). The RT-nPCR method was used to detect 30 field samples suspected of canine distemper from Heilongjiang and Jilin Provinces, and 51 samples in Shandong province. As a result of 30 samples, were found to be wild-type-like, and 5 to be vaccine-strain-like. The RT-nPCR method can be used to effectively detect and differentiate wild-type CDV-infected dogs from dogs vaccinated with CDV vaccine, and thus can be used in clinical detection and epidemiological surveillance. PMID:20433759
Ulianov, Sergey V; Galitsyna, Aleksandra A; Flyamer, Ilya M; Golov, Arkadiy K; Khrameeva, Ekaterina E; Imakaev, Maxim V; Abdennur, Nezar A; Gelfand, Mikhail S; Gavrilov, Alexey A; Razin, Sergey V
2017-07-11
In homeotherms, the alpha-globin gene clusters are located within permanently open genome regions enriched in housekeeping genes. Terminal erythroid differentiation results in dramatic upregulation of alpha-globin genes making their expression comparable to the rRNA transcriptional output. Little is known about the influence of the erythroid-specific alpha-globin gene transcription outburst on adjacent, widely expressed genes and large-scale chromatin organization. Here, we have analyzed the total transcription output, the overall chromatin contact profile, and CTCF binding within the 2.7 Mb segment of chicken chromosome 14 harboring the alpha-globin gene cluster in cultured lymphoid cells and cultured erythroid cells before and after induction of terminal erythroid differentiation. We found that, similarly to mammalian genome, the chicken genomes is organized in TADs and compartments. Full activation of the alpha-globin gene transcription in differentiated erythroid cells is correlated with upregulation of several adjacent housekeeping genes and the emergence of abundant intergenic transcription. An extended chromosome region encompassing the alpha-globin cluster becomes significantly decompacted in differentiated erythroid cells, and depleted in CTCF binding and CTCF-anchored chromatin loops, while the sub-TAD harboring alpha-globin gene cluster and the upstream major regulatory element (MRE) becomes highly enriched with chromatin interactions as compared to lymphoid and proliferating erythroid cells. The alpha-globin gene domain and the neighboring loci reside within the A-like chromatin compartment in both lymphoid and erythroid cells and become further segregated from the upstream gene desert upon terminal erythroid differentiation. Our findings demonstrate that the effects of tissue-specific transcription activation are not restricted to the host genomic locus but affect the overall chromatin structure and transcriptional output of the encompassing topologically associating domain.
The Papillomavirus Episteme: a major update to the papillomavirus sequence database.
Van Doorslaer, Koenraad; Li, Zhiwen; Xirasagar, Sandhya; Maes, Piet; Kaminsky, David; Liou, David; Sun, Qiang; Kaur, Ramandeep; Huyen, Yentram; McBride, Alison A
2017-01-04
The Papillomavirus Episteme (PaVE) is a database of curated papillomavirus genomic sequences, accompanied by web-based sequence analysis tools. This update describes the addition of major new features. The papillomavirus genomes within PaVE have been further annotated, and now includes the major spliced mRNA transcripts. Viral genes and transcripts can be visualized on both linear and circular genome browsers. Evolutionary relationships among PaVE reference protein sequences can be analysed using multiple sequence alignments and phylogenetic trees. To assist in viral discovery, PaVE offers a typing tool; a simplified algorithm to determine whether a newly sequenced virus is novel. PaVE also now contains an image library containing gross clinical and histopathological images of papillomavirus infected lesions. Database URL: https://pave.niaid.nih.gov/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Yoshida, Asuka; Samal, Siba K.
2017-01-01
Avian paramyxovirus serotype 3 (APMV-3) causes infection in a wide variety of avian species, but it does not cause apparent diseases in chickens. On the contrary, APMV-1, also known as Newcastle disease virus (NDV), can cause severe disease in chickens. Currently, natural low virulence strains of NDV are used as live-attenuated vaccines throughout the world. NDV is also being evaluated as a vaccine vector against poultry pathogens. However, due to routine vaccination programs, chickens often possess pre-existing antibodies against NDV, which may cause the chickens to be less sensitive to recombinant NDV vaccines expressing antigens of other avian pathogens. Therefore, it may be possible for an APMV-3 vector vaccine to circumvent this issue. In this study, we determined the optimal insertion site in the genome of APMV-3 for high level expression of a foreign gene. We generated recombinant APMV-3 viruses expressing the green fluorescent protein (GFP) by inserting the GFP gene at five different intergenic regions in the genome. The levels of GFP transcription and translation were evaluated. Interestingly, the levels of GFP transcription and translation did not follow the 3′-to-5′ attenuation mechanism of non-segmented, negative-sense RNA viruses. The insertion of GFP gene into the P-M gene junction resulted in higher level of expression of GFP than when the gene was inserted into the upstream N-P gene junction. Unlike NDV, insertion of GFP did not attenuate the growth efficiency of AMPV-3. Thus, APMV-3 could be a more useful vaccine vector for avian pathogens than NDV. PMID:28473820
Yoshida, Asuka; Samal, Siba K
2017-01-01
Avian paramyxovirus serotype 3 (APMV-3) causes infection in a wide variety of avian species, but it does not cause apparent diseases in chickens. On the contrary, APMV-1, also known as Newcastle disease virus (NDV), can cause severe disease in chickens. Currently, natural low virulence strains of NDV are used as live-attenuated vaccines throughout the world. NDV is also being evaluated as a vaccine vector against poultry pathogens. However, due to routine vaccination programs, chickens often possess pre-existing antibodies against NDV, which may cause the chickens to be less sensitive to recombinant NDV vaccines expressing antigens of other avian pathogens. Therefore, it may be possible for an APMV-3 vector vaccine to circumvent this issue. In this study, we determined the optimal insertion site in the genome of APMV-3 for high level expression of a foreign gene. We generated recombinant APMV-3 viruses expressing the green fluorescent protein (GFP) by inserting the GFP gene at five different intergenic regions in the genome. The levels of GFP transcription and translation were evaluated. Interestingly, the levels of GFP transcription and translation did not follow the 3'-to-5' attenuation mechanism of non-segmented, negative-sense RNA viruses. The insertion of GFP gene into the P-M gene junction resulted in higher level of expression of GFP than when the gene was inserted into the upstream N-P gene junction. Unlike NDV, insertion of GFP did not attenuate the growth efficiency of AMPV-3. Thus, APMV-3 could be a more useful vaccine vector for avian pathogens than NDV.
Kinnunen, Paula Maria; Inkeroinen, Hanna; Ilander, Mette; Kallio, Eva Riikka; Heikkilä, Henna Pauliina; Koskela, Esa; Mappes, Tapio; Palva, Airi; Vaheri, Antti; Kipar, Anja; Vapalahti, Olli
2011-01-01
Bornaviruses, which chronically infect many species, can cause severe neurological diseases in some animal species; their association with human neuropsychiatric disorders is, however, debatable. The epidemiology of Borna disease virus (BDV), as for other members of the family Bornaviridae, is largely unknown, although evidence exists for a reservoir in small mammals, for example bank voles (Myodes glareolus). In addition to the current exogenous infections and despite the fact that bornaviruses have an RNA genome, bornavirus sequences integrated into the genomes of several vertebrates millions of years ago. Our hypothesis is that the bank vole, a common wild rodent species in traditional BDV-endemic areas, can serve as a viral host; we therefore explored whether this species can be infected with BDV, and if so, how the virus spreads and whether viral RNA is transcribed into DNA in vivo. We infected neonate bank voles intracerebrally with BDV and euthanized them 2 to 8 weeks post-infection. Specific Ig antibodies were detectable in 41%. Histological evaluation revealed no significant pathological alterations, but BDV RNA and antigen were detectable in all infected brains. Immunohistology demonstrated centrifugal spread throughout the nervous tissue, because viral antigen was widespread in peripheral nerves and ganglia, including the mediastinum, esophagus, and urinary bladder. This was associated with viral shedding in feces, of which 54% were BDV RNA-positive, and urine at 17%. BDV nucleocapsid gene DNA occurred in 66% of the infected voles, and, surprisingly, occasionally also phosphoprotein DNA. Thus, intracerebral BDV infection of bank vole led to systemic infection of the nervous tissue and viral excretion, as well as frequent reverse transcription of the BDV genome, enabling genomic integration. This first experimental bornavirus infection in wild mammals confirms the recent findings regarding bornavirus DNA, and suggests that bank voles are capable of bornavirus transmission. PMID:21935357
A microarray for assessing transcription from pelagic marine microbial taxa
Shilova, Irina N; Robidart, Julie C; James Tripp, H; Turk-Kubo, Kendra; Wawrik, Boris; Post, Anton F; Thompson, Anne W; Ward, Bess; Hollibaugh, James T; Millard, Andy; Ostrowski, Martin; J Scanlan, David; Paerl, Ryan W; Stuart, Rhona; Zehr, Jonathan P
2014-01-01
Metagenomic approaches have revealed unprecedented genetic diversity within microbial communities across vast expanses of the world's oceans. Linking this genetic diversity with key metabolic and cellular activities of microbial assemblages is a fundamental challenge. Here we report on a collaborative effort to design MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories), a high-density oligonucleotide microarray that targets functional genes of diverse taxa in pelagic and coastal marine microbial communities. MicroTOOLs integrates nucleotide sequence information from disparate data types: genomes, PCR-amplicons, metagenomes, and metatranscriptomes. It targets 19 400 unique sequences over 145 different genes that are relevant to stress responses and microbial metabolism across the three domains of life and viruses. MicroTOOLs was used in a proof-of-concept experiment that compared the functional responses of microbial communities following Fe and P enrichments of surface water samples from the North Pacific Subtropical Gyre. We detected transcription of 68% of the gene targets across major taxonomic groups, and the pattern of transcription indicated relief from Fe limitation and transition to N limitation in some taxa. Prochlorococcus (eHLI), Synechococcus (sub-cluster 5.3) and Alphaproteobacteria SAR11 clade (HIMB59) showed the strongest responses to the Fe enrichment. In addition, members of uncharacterized lineages also responded. The MicroTOOLs microarray provides a robust tool for comprehensive characterization of major functional groups of microbes in the open ocean, and the design can be easily amended for specific environments and research questions. PMID:24477198
Environmental surveillance of viruses by tangential flow filtration and metagenomic reconstruction.
Furtak, Vyacheslav; Roivainen, Merja; Mirochnichenko, Olga; Zagorodnyaya, Tatiana; Laassri, Majid; Zaidi, Sohail Z; Rehman, Lubna; Alam, Muhammad M; Chizhikov, Vladimir; Chumakov, Konstantin
2016-04-14
An approach is proposed for environmental surveillance of poliovirus by concentrating sewage samples with tangential flow filtration (TFF) followed by deep sequencing of viral RNA. Subsequent to testing the method with samples from Finland, samples from Pakistan, a country endemic for poliovirus, were investigated. Genomic sequencing was either performed directly, for unbiased identification of viruses regardless of their ability to grow in cell cultures, or after virus enrichment by cell culture or immunoprecipitation. Bioinformatics enabled separation and determination of individual consensus sequences. Overall, deep sequencing of the entire viral population identified polioviruses, non-polio enteroviruses, and other viruses. In Pakistani sewage samples, adeno-associated virus, unable to replicate autonomously in cell cultures, was the most abundant human virus. The presence of recombinants of wild polioviruses of serotype 1 (WPV1) was also inferred, whereby currently circulating WPV1 of south-Asian (SOAS) lineage comprised two sub-lineages depending on their non-capsid region origin. Complete genome analyses additionally identified point mutants and intertypic recombinants between attenuated Sabin strains in the Pakistani samples, and in one Finnish sample. The approach could allow rapid environmental surveillance of viruses causing human infections. It creates a permanent digital repository of the entire virome potentially useful for retrospective screening of future discovered viruses.
Modelling Hepatitis B Virus Antiviral Therapy and Drug Resistant Mutant Strains
NASA Astrophysics Data System (ADS)
Bernal, Julie; Dix, Trevor; Allison, Lloyd; Bartholomeusz, Angeline; Yuen, Lilly
Despite the existence of vaccines, the Hepatitis B virus (HBV) is still a serious global health concern. HBV targets liver cells. It has an unusual replication process involving an RNA pre-genome that the reverse transcriptase domain of the viral polymerase protein translates into viral DNA. The reverse transcription process is error prone and together with the high replication rates of the virus, allows the virus to exist as a heterogeneous population of mutants, known as a quasispecies, that can adapt and become resistant to antiviral therapy. This study presents an individual-based model of HBV inside an artificial liver, and associated blood serum, undergoing antiviral therapy. This model aims to provide insights into the evolution of the HBV quasispecies and the individual contribution of HBV mutations in the outcome of therapy.
De Rocquigny, H; Gabus, C; Vincent, A; Fournié-Zaluski, M C; Roques, B; Darlix, J L
1992-01-01
The nucleocapsid (NC) of human immunodeficiency virus type 1 consists of a large number of NC protein molecules, probably wrapping the dimeric RNA genome within the virion inner core. NC protein is a gag-encoded product that contains two zinc fingers flanked by basic residues. In human immunodeficiency virus type 1 virions, NCp15 is ultimately processed into NCp7 and p6 proteins. During virion assembly the retroviral NC protein is necessary for core formation and genomic RNA encapsidation, which are essential for virus infectivity. In vitro NCp15 activates viral RNA dimerization, a process most probably linked in vivo to genomic RNA packaging, and replication primer tRNA(Lys,3) annealing to the initiation site of reverse transcription. To characterize the domains of human immunodeficiency virus type 1 NC protein necessary for its various functions, the 72-amino acid NCp7 and several derived peptides were synthesized in a pure form. We show here that synthetic NCp7 with or without the two zinc fingers has the RNA annealing activities of NCp15. Further deletions of the N-terminal 12 and C-terminal 8 amino acids, leading to a 27-residue peptide lacking the finger domains, have little or no effect on NC protein activity in vitro. However deletion of short sequences containing basic residues flanking the first finger leads to a complete loss of NC protein activity. It is proposed that the basic residues and the zinc fingers cooperate to select and package the genomic RNA in vivo. Inhibition of the viral RNA binding and annealing activities associated with the basic residues flanking the first zinc finger of NC protein could therefore be used as a model for the design of antiviral agents. Images PMID:1631144
De Rocquigny, H; Gabus, C; Vincent, A; Fournié-Zaluski, M C; Roques, B; Darlix, J L
1992-07-15
The nucleocapsid (NC) of human immunodeficiency virus type 1 consists of a large number of NC protein molecules, probably wrapping the dimeric RNA genome within the virion inner core. NC protein is a gag-encoded product that contains two zinc fingers flanked by basic residues. In human immunodeficiency virus type 1 virions, NCp15 is ultimately processed into NCp7 and p6 proteins. During virion assembly the retroviral NC protein is necessary for core formation and genomic RNA encapsidation, which are essential for virus infectivity. In vitro NCp15 activates viral RNA dimerization, a process most probably linked in vivo to genomic RNA packaging, and replication primer tRNA(Lys,3) annealing to the initiation site of reverse transcription. To characterize the domains of human immunodeficiency virus type 1 NC protein necessary for its various functions, the 72-amino acid NCp7 and several derived peptides were synthesized in a pure form. We show here that synthetic NCp7 with or without the two zinc fingers has the RNA annealing activities of NCp15. Further deletions of the N-terminal 12 and C-terminal 8 amino acids, leading to a 27-residue peptide lacking the finger domains, have little or no effect on NC protein activity in vitro. However deletion of short sequences containing basic residues flanking the first finger leads to a complete loss of NC protein activity. It is proposed that the basic residues and the zinc fingers cooperate to select and package the genomic RNA in vivo. Inhibition of the viral RNA binding and annealing activities associated with the basic residues flanking the first zinc finger of NC protein could therefore be used as a model for the design of antiviral agents.
Ivancic-Jelecki, Jelena; Slovic, Anamarija; Šantak, Maja; Tešović, Goran; Forcic, Dubravko
2016-07-29
The canonical genome organization of measles virus (MV) is characterized by total size of 15 894 nucleotides (nts) and defined length of every genomic region, both coding and non-coding. Only rarely have reports of strains possessing non-canonical genomic properties (possessing indels, with or without the change of total genome length) been published. The observed mutations are mutually compensatory in a sense that the total genome length remains polyhexameric. Although programmed and highly precise pseudo-templated nucleotide additions during transcription are inherent to polymerases of all viruses belonging to family Paramyxoviridae, a similar mechanism that would serve to non-randomly correct genome length, if an indel has occurred during replication, has so far not been described in the context of a complete virus genome. We compiled all complete MV genomic sequences (64 in total) available in open access sequence databases. Multiple sequence comparisons and phylogenetic analyses were performed with the aim of exploring whether non-recombinant and non-evolutionary linked measles strains that show deviations from canonical genome organization possess a common genetic characteristic. In 11 MV sequences we detected deviations from canonical genome organization due to short indels located within homopolymeric stretches or next to them. In nine out of 11 identified non-canonical MV sequences, a common feature was observed: one mutation, either an insertion or a deletion, was located in a 28 nts long region in F gene 5' untranslated region (positions 5051-5078 in genomic cDNA of canonical strains). This segment is composed of five tandemly linked homopolymeric stretches, its consensus sequence is G6-7C7-8A6-7G1-3C5-6. Although none of the mononucleotide repeats within this segment has fixed length, the total number of nts in canonical strains is always 28. These nine non-canonical strains, as well as the tenth (not mutated in 5051-5078 segment), can be grouped in three clusters, based on their passage histories/epidemiological data/genetic similarities. There are no indications that the 3 clusters are evolutionary linked, other than the fact that they all belong to clade D. A common narrow genomic region was found to be mutated in different, non-related, wild type strains suggesting that this region might have a function in non-random genome length corrections occurring during MV replication.
Silva, Tatiane F; Romanel, Elisson A C; Andrade, Roberto R S; Farinelli, Laurent; Østerås, Magne; Deluen, Cécile; Corrêa, Régis L; Schrago, Carlos E G; Vaslin, Maite F S
2011-08-24
In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus Polerovirus, family Luteoviridae. Deep sequencing of small RNAs (sRNAs) from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt) long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.
Uncovering the Repertoire of Endogenous Flaviviral Elements in Aedes Mosquito Genomes
Suzuki, Yasutsugu; Frangeul, Lionel; Dickson, Laura B.; Blanc, Hervé; Verdier, Yann; Vinh, Joelle
2017-01-01
ABSTRACT Endogenous viral elements derived from nonretroviral RNA viruses have been described in various animal genomes. Whether they have a biological function, such as host immune protection against related viruses, is a field of intense study. Here, we investigated the repertoire of endogenous flaviviral elements (EFVEs) in Aedes mosquitoes, the vectors of arboviruses such as dengue and chikungunya viruses. Previous studies identified three EFVEs from Aedes albopictus cell lines and one from Aedes aegypti cell lines. However, an in-depth characterization of EFVEs in wild-type mosquito populations and individual mosquitoes in vivo has not been performed. We detected the full-length DNA sequence of the previously described EFVEs and their respective transcripts in several A. albopictus and A. aegypti populations from geographically distinct areas. However, EFVE-derived proteins were not detected by mass spectrometry. Using deep sequencing, we detected the production of PIWI-interacting RNA-like small RNAs, in an antisense orientation, targeting the EFVEs and their flanking regions in vivo. The EFVEs were integrated in repetitive regions of the mosquito genomes, and their flanking sequences varied among mosquito populations. We bioinformatically predicted several new EFVEs from a Vietnamese A. albopictus population and observed variation in the occurrence of those elements among mosquitoes. Phylogenetic analysis of an A. aegypti EFVE suggested that it integrated prior to the global expansion of the species and subsequently diverged among and within populations. The findings of this study together reveal the substantial structural and nucleotide diversity of flaviviral integrations in Aedes genomes. Unraveling this diversity will help to elucidate the potential biological function of these EFVEs. IMPORTANCE Endogenous viral elements (EVEs) are whole or partial viral sequences integrated in host genomes. Interestingly, some EVEs have important functions for host fitness and antiviral defense. Because mosquitoes also have EVEs in their genomes, characterizing these EVEs is a prerequisite for their potential use to manipulate the mosquito antiviral response. In the study described here, we focused on EVEs related to the Flavivirus genus, to which dengue and Zika viruses belong, in individual Aedes mosquitoes from geographically distinct areas. We show the existence in vivo of flaviviral EVEs previously identified in mosquito cell lines, and we detected new ones. We show that EVEs have evolved differently in each mosquito population. They produce transcripts and small RNAs but not proteins, suggesting a function at the RNA level. Our study uncovers the diverse repertoire of flaviviral EVEs in Aedes mosquito populations and contributes to an understanding of their role in the host antiviral system. PMID:28539440
Uncovering the Repertoire of Endogenous Flaviviral Elements in Aedes Mosquito Genomes.
Suzuki, Yasutsugu; Frangeul, Lionel; Dickson, Laura B; Blanc, Hervé; Verdier, Yann; Vinh, Joelle; Lambrechts, Louis; Saleh, Maria-Carla
2017-08-01
Endogenous viral elements derived from nonretroviral RNA viruses have been described in various animal genomes. Whether they have a biological function, such as host immune protection against related viruses, is a field of intense study. Here, we investigated the repertoire of endogenous flaviviral elements (EFVEs) in Aedes mosquitoes, the vectors of arboviruses such as dengue and chikungunya viruses. Previous studies identified three EFVEs from Aedes albopictus cell lines and one from Aedes aegypti cell lines. However, an in-depth characterization of EFVEs in wild-type mosquito populations and individual mosquitoes in vivo has not been performed. We detected the full-length DNA sequence of the previously described EFVEs and their respective transcripts in several A. albopictus and A. aegypti populations from geographically distinct areas. However, EFVE-derived proteins were not detected by mass spectrometry. Using deep sequencing, we detected the production of PIWI-interacting RNA-like small RNAs, in an antisense orientation, targeting the EFVEs and their flanking regions in vivo The EFVEs were integrated in repetitive regions of the mosquito genomes, and their flanking sequences varied among mosquito populations. We bioinformatically predicted several new EFVEs from a Vietnamese A. albopictus population and observed variation in the occurrence of those elements among mosquitoes. Phylogenetic analysis of an A. aegypti EFVE suggested that it integrated prior to the global expansion of the species and subsequently diverged among and within populations. The findings of this study together reveal the substantial structural and nucleotide diversity of flaviviral integrations in Aedes genomes. Unraveling this diversity will help to elucidate the potential biological function of these EFVEs. IMPORTANCE Endogenous viral elements (EVEs) are whole or partial viral sequences integrated in host genomes. Interestingly, some EVEs have important functions for host fitness and antiviral defense. Because mosquitoes also have EVEs in their genomes, characterizing these EVEs is a prerequisite for their potential use to manipulate the mosquito antiviral response. In the study described here, we focused on EVEs related to the Flavivirus genus, to which dengue and Zika viruses belong, in individual Aedes mosquitoes from geographically distinct areas. We show the existence in vivo of flaviviral EVEs previously identified in mosquito cell lines, and we detected new ones. We show that EVEs have evolved differently in each mosquito population. They produce transcripts and small RNAs but not proteins, suggesting a function at the RNA level. Our study uncovers the diverse repertoire of flaviviral EVEs in Aedes mosquito populations and contributes to an understanding of their role in the host antiviral system. Copyright © 2017 Suzuki et al.
Salinero, Alicia C; Knoll, Elisabeth R; Zhu, Z Iris; Landsman, David; Curcio, M Joan; Morse, Randall H
2018-02-01
The Ty1 retrotransposons present in the genome of Saccharomyces cerevisiae belong to the large class of mobile genetic elements that replicate via an RNA intermediary and constitute a significant portion of most eukaryotic genomes. The retromobility of Ty1 is regulated by numerous host factors, including several subunits of the Mediator transcriptional co-activator complex. In spite of its known function in the nucleus, previous studies have implicated Mediator in the regulation of post-translational steps in Ty1 retromobility. To resolve this paradox, we systematically examined the effects of deleting non-essential Mediator subunits on the frequency of Ty1 retromobility and levels of retromobility intermediates. Our findings reveal that loss of distinct Mediator subunits alters Ty1 retromobility positively or negatively over a >10,000-fold range by regulating the ratio of an internal transcript, Ty1i, to the genomic Ty1 transcript. Ty1i RNA encodes a dominant negative inhibitor of Ty1 retromobility that blocks virus-like particle maturation and cDNA synthesis. These results resolve the conundrum of Mediator exerting sweeping control of Ty1 retromobility with only minor effects on the levels of Ty1 genomic RNA and the capsid protein, Gag. Since the majority of characterized intrinsic and extrinsic regulators of Ty1 retromobility do not appear to effect genomic Ty1 RNA levels, Mediator could play a central role in integrating signals that influence Ty1i expression to modulate retromobility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, Donald D.; Piper, Mary E.; Gerrard, Sonja R.
2010-07-13
Rift Valley fever virus (RVFV) is a negative-sense RNA virus (genus Phlebovirus, family Bunyaviridae) that infects livestock and humans and is endemic to sub-Saharan Africa. Like all negative-sense viruses, the segmented RNA genome of RVFV is encapsidated by a nucleocapsid protein (N). The 1.93-{angstrom} crystal structure of RVFV N and electron micrographs of ribonucleoprotein (RNP) reveal an encapsidated genome of substantially different organization than in other negative-sense RNA virus families. The RNP polymer, viewed in electron micrographs of both virus RNP and RNP reconstituted from purified N with a defined RNA, has an extended structure without helical symmetry. N-RNA speciesmore » of {approx}100-kDa apparent molecular weight and heterogeneous composition were obtained by exhaustive ribonuclease treatment of virus RNP, by recombinant expression of N, and by reconstitution from purified N and an RNA oligomer. RNA-free N, obtained by denaturation and refolding, has a novel all-helical fold that is compact and well ordered at both the N and C termini. Unlike N of other negative-sense RNA viruses, RVFV N has no positively charged surface cleft for RNA binding and no protruding termini or loops to stabilize a defined N-RNA oligomer or RNP helix. A potential protein interaction site was identified in a conserved hydrophobic pocket. The nonhelical appearance of phlebovirus RNP, the heterogeneous {approx}100-kDa N-RNA multimer, and the N fold differ substantially from the RNP and N of other negative-sense RNA virus families and provide valuable insights into the structure of the encapsidated phlebovirus genome.« less
Noda, Chieko; Narita, Yohei; Watanabe, Takahiro; Yoshida, Masahiro; Ashio, Keiji; Sato, Yoshitaka; Goshima, Fumi; Kanda, Teru; Yoshiyama, Hironori; Tsurumi, Tatsuya; Kimura, Hiroshi
2016-01-01
ABSTRACT Latent membrane protein 1 (LMP1) is a major oncogene essential for primary B cell transformation by Epstein-Barr virus (EBV). Previous studies suggested that some transcription factors, such as PU.1, RBP-Jκ, NF-κB, and STAT, are involved in this expression, but the underlying mechanism is unclear. Here, we identified binding sites for PAX5, AP-2, and EBF in the proximal LMP1 promoter (ED-L1p). We first confirmed the significance of PU.1 and POU domain transcription factor binding for activation of the promoter in latency III. We then focused on the transcription factors AP-2 and early B cell factor (EBF). Interestingly, among the three AP-2-binding sites in the LMP1 promoter, two motifs were also bound by EBF. Overexpression, knockdown, and mutagenesis in the context of the viral genome indicated that AP-2 plays an important role in LMP1 expression in latency II in epithelial cells. In latency III B cells, on the other hand, the B cell-specific transcription factor EBF binds to the ED-L1p and activates LMP1 transcription from the promoter. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is crucial for B cell transformation and oncogenesis of other EBV-related malignancies, such as nasopharyngeal carcinoma and T/NK lymphoma. Its expression is largely dependent on the cell type or condition, and some transcription factors have been implicated in its regulation. However, these previous reports evaluated the significance of specific factors mostly by reporter assay. In this study, we prepared point-mutated EBV at the binding sites of such transcription factors and confirmed the importance of AP-2, EBF, PU.1, and POU domain factors. Our results will provide insight into the transcriptional regulation of the major oncogene LMP1. PMID:26819314
Sequence and immunogenicity of a clinically approved novel measles virus vaccine vector
Zuniga, Amando; Liniger, Mathias; Morin, Teldja Neige Azzouz; Marty, René R.; Wiegand, Marian; Ilter, Orhan; Weibel, Sara; Billeter, Martin A.; Knuchel, Marlyse C.; Naim, Hussein Y.
2013-01-01
The measles virus vaccine (MVbv) is a clinically certified and well-tolerated vaccine strain that has been given both parenterally and mucosally. It has been extensively used in children and has proven to be safe and effective in eliciting protective immunity. This specific strain was therefore chosen to generate a measles viral vector. The genome of the commercial MVbv vaccine strain was isolated, sequenced and a plasmid, p(+)MVb, enabling transcription of the viral antigenome and rescue of MVb, was constructed. Phylogenic and phenotypic analysis revealed that MVbv and the rescued MVb constitute another evolutionary branch within the hitherto classified measles vaccines. Plasmid p(+)MVb was modified by insertion of artificial MV-type transcription units (ATUs) for the generation of recombinant viruses (rMVb) expressing additional proteins. Replication characteristics and immunogenicity of rMVb vectors were similar to the parental MVbv and to other vaccine strains. The expression of the additional proteins was stable over 10 serial virus transfers, which corresponds to an amplification greater than 1020. The excellent safety record and its efficient application as aerosol may add to the usefulness of the derived vectors. PMID:23324616
Kuo, Lili; Koetzner, Cheri A; Hurst, Kelley R; Masters, Paul S
2014-04-01
The coronavirus nucleocapsid (N) protein forms a helical ribonucleoprotein with the viral positive-strand RNA genome and binds to the principal constituent of the virion envelope, the membrane (M) protein, to facilitate assembly and budding. Besides these structural roles, N protein associates with a component of the replicase-transcriptase complex, nonstructural protein 3, at a critical early stage of infection. N protein has also been proposed to participate in the replication and selective packaging of genomic RNA and the transcription and translation of subgenomic mRNA. Coronavirus N proteins contain two structurally distinct RNA-binding domains, an unusual characteristic among RNA viruses. To probe the functions of these domains in the N protein of the model coronavirus mouse hepatitis virus (MHV), we constructed mutants in which each RNA-binding domain was replaced by its counterpart from the N protein of severe acute respiratory syndrome coronavirus (SARS-CoV). Mapping of revertants of the resulting chimeric viruses provided evidence for extensive intramolecular interactions between the two RNA-binding domains. Through analysis of viral RNA that was packaged into virions we identified the second of the two RNA-binding domains as a principal determinant of MHV packaging signal recognition. As expected, the interaction of N protein with M protein was not affected in either of the chimeric viruses. Moreover, the SARS-CoV N substitutions did not alter the fidelity of leader-body junction formation during subgenomic mRNA synthesis. These results more clearly delineate the functions of N protein and establish a basis for further exploration of the mechanism of genomic RNA packaging. This work describes the interactions of the two RNA-binding domains of the nucleocapsid protein of a model coronavirus, mouse hepatitis virus. The main finding is that the second of the two domains plays an essential role in recognizing the RNA structure that allows the selective packaging of genomic RNA into assembled virions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hout, David R.; Gomez, Melissa L.; Pacyniak, Erik
The Vpu protein of human immunodeficiency virus type 1 has been shown to shunt the CD4 receptor molecule to the proteasome for degradation and to enhance virus release from infected cells. The exact mechanism by which the Vpu protein enhances virus release is currently unknown but some investigators have shown that this function is associated with the transmembrane domain and potential ion channel properties. In this study, we determined if the transmembrane domain of Vpu could be functionally substituted with that of the prototypical viroporin, the M2 protein of influenza A virus. We constructed chimeric vpu gene in which themore » transmembrane domain of Vpu was replaced with that of the M2 protein of influenza. This chimeric vpu gene was substituted for the vpu gene in the genome of a pathogenic simian human immunodeficiency virus, SHIV{sub KU-1bMC33}. The resulting virus, SHIV{sub M2}, synthesized a Vpu protein that had a slightly different M{sub r} compared to the parental SHIV{sub KU-1bMC33}, reflecting the different sizes of the two Vpu proteins. The SHIV{sub M2} was shown to replicate with slightly reduced kinetics when compared to the parental SHIV{sub KU-1bMC33} but electron microscopy revealed that the site of maturation was similar to the parental virus SHIV{sub KU1bMC33}. We show that the replication and spread of SHIV{sub M2} could be blocked with the antiviral drug rimantadine, which is known to target the M2 ion channel. Our results indicate a dose dependent inhibition of SHIV{sub M2} with 100 {mu}M rimantadine resulting in a >95% decrease in p27 released into the culture medium. Rimantadine did not affect the replication of the parental SHIV{sub KU-1bMC33}. Examination of SHIV{sub M2}-infected cells treated with 50 {mu}M rimantadine revealed numerous viral particles associated with the cell plasma membrane and within intracytoplasmic vesicles, which is similar to HIV-1 mutants lacking a functional vpu. To determine if SHIV{sub M2} was as pathogenic as the parental SHIV{sub KU-1bMC33} virus, two pig-tailed macaques were inoculated and followed for up to 8 months. Both pig-tailed macaques developed severe CD4{sup +} T cell loss within 1 month of inoculation, high viral loads, and histological lesions consistent with lymphoid depletion similar to the parental SHIV{sub KU-1bMC33}. Taken together, these results indicate for the first time that the TM domain of the Vpu protein can be functionally substituted with the TM of M2 of influenza A virus, and shows that compounds that target the TM domain of Vpu protein of HIV-1 could serve as novel anti-HIV-1 drugs.« less
Hartard, C; Leclerc, M; Rivet, R; Maul, A; Loutreul, J; Banas, S; Boudaud, N; Gantzer, C
2018-01-01
Norovirus (NoV) is the leading cause of gastroenteritis outbreaks linked to oyster consumption. In this study, we investigated the potential of F-specific RNA bacteriophages (FRNAPH) as indicators of viral contamination in oysters by focusing especially on FRNAPH subgroup II (FRNAPH-II). These viral indicators have been neglected because their behavior is sometimes different from that of NoV in shellfish, especially during the depuration processes usually performed before marketing. However, a significant bias needs to be taken into account. This bias is that, in the absence of routine culture methods, NoV is targeted by genome detection, while the presence of FRNAPH is usually investigated by isolation of infectious particles. In this study, by targeting both viruses using genome detection, a significant correlation between the presence of FRNAPH-II and that of NoV in shellfish collected from various European harvesting areas impacted by fecal pollution was observed. Moreover, during their depuration, while the long period of persistence of NoV was confirmed, a similar or even longer period of persistence of the FRNAPH-II genome, which was over 30 days, was observed. Such a striking genome persistence calls into question the relevance of molecular methods for assessing viral hazards. Targeting the same virus (i.e., FRNAPH-II) by culture and genome detection in specimens from harvesting areas as well as during depuration, we concluded that the presence of genomes in shellfish does not provide any information on the presence of the corresponding infectious particles. In view of these results, infectious FRNAPH detection should be reconsidered as a valuable indicator in oysters, and its potential for use in assessing viral hazard needs to be investigated. IMPORTANCE This work brings new data about the behavior of viruses in shellfish, as well as about the relevance of molecular methods for their detection and evaluation of the viral hazard. First, a strong correlation between the presence of F-specific RNA bacteriophages of subgroup II (FRNAPH-II) and that of norovirus (NoV) in shellfish impacted by fecal contamination has been observed when both viruses are detected using molecular approaches. Second, when reverse transcription-PCR and culture are used to detect FRNAPH-II in shellfish, it appears that the genomes of the viruses present a longer period of persistence than infectious virus, and thus, virus genome detection fails to give information about the concomitant presence of infectious viruses. Finally, this study shows that FRNAPH persist at least as long as NoV does. These data are major arguments to reconsider the potential of FRNAPH as indicators of shellfish viral quality. Copyright © 2017 American Society for Microbiology.
Two distinct mechanisms ensure transcriptional polarity in double-stranded RNA bacteriophages.
Yang, Hongyan; Makeyev, Eugene V; Butcher, Sarah J; Gaidelyte, Ausra; Bamford, Dennis H
2003-01-01
In most double-stranded RNA (dsRNA) viruses, RNA transcription occurs inside a polymerase (Pol) complex particle, which contains an RNA-dependent RNA Pol subunit as a minor component. Only plus- but not minus-sense copies of genomic segments are produced during this reaction. In the case of phi6, a dsRNA bacteriophage from the Cystoviridae family, isolated Pol synthesizes predominantly plus strands using virus-specific dsRNAs in vitro, thus suggesting that Pol template preferences determine the transcriptional polarity. Here, we dissect transcription reactions catalyzed by Pol complexes and Pol subunits of two other cystoviruses, phi8 and phi13. While both Pol complexes synthesize exclusively plus strands over a wide range of conditions, isolated Pol subunits can be stimulated by Mn(2+) to produce minus-sense copies on phi13 dsRNA templates. Importantly, all three Pol subunits become more prone to the native-like plus-strand synthesis when the dsRNA templates (including phi13 dsRNA) are activated by denaturation before the reaction. Based on these and earlier observations, we propose a model of transcriptional polarity in Cystoviridae controlled on two independent levels: Pol affinity to plus-strand initiation sites and accessibility of these sites to the Pol in a single-stranded form.
Two Distinct Mechanisms Ensure Transcriptional Polarity in Double-Stranded RNA Bacteriophages
Yang, Hongyan; Makeyev, Eugene V.; Butcher, Sarah J.; Gaidelyte·, Aušra; Bamford, Dennis H.
2003-01-01
In most double-stranded RNA (dsRNA) viruses, RNA transcription occurs inside a polymerase (Pol) complex particle, which contains an RNA-dependent RNA Pol subunit as a minor component. Only plus- but not minus-sense copies of genomic segments are produced during this reaction. In the case of φ6, a dsRNA bacteriophage from the Cystoviridae family, isolated Pol synthesizes predominantly plus strands using virus-specific dsRNAs in vitro, thus suggesting that Pol template preferences determine the transcriptional polarity. Here, we dissect transcription reactions catalyzed by Pol complexes and Pol subunits of two other cystoviruses, φ8 and φ13. While both Pol complexes synthesize exclusively plus strands over a wide range of conditions, isolated Pol subunits can be stimulated by Mn2+ to produce minus-sense copies on φ13 dsRNA templates. Importantly, all three Pol subunits become more prone to the native-like plus-strand synthesis when the dsRNA templates (including φ13 dsRNA) are activated by denaturation before the reaction. Based on these and earlier observations, we propose a model of transcriptional polarity in Cystoviridae controlled on two independent levels: Pol affinity to plus-strand initiation sites and accessibility of these sites to the Pol in a single-stranded form. PMID:12502836
Whole genome sequence phylogenetic analysis of four Mexican rabies viruses isolated from cattle.
Bárcenas-Reyes, I; Loza-Rubio, E; Cantó-Alarcón, G J; Luna-Cozar, J; Enríquez-Vázquez, A; Barrón-Rodríguez, R J; Milián-Suazo, F
2017-08-01
Phylogenetic analysis of the rabies virus in molecular epidemiology has been traditionally performed on partial sequences of the genome, such as the N, G, and P genes; however, that approach raises concerns about the discriminatory power compared to whole genome sequencing. In this study we characterized four strains of the rabies virus isolated from cattle in Querétaro, Mexico by comparing the whole genome sequence to that of strains from the American, European and Asian continents. Four cattle brain samples positive to rabies and characterized as AgV11, genotype 1, were used in the study. A cDNA sequence was generated by reverse transcription PCR (RT-PCR) using oligo dT. cDNA samples were sequenced in an Illumina NextSeq 500 platform. The phylogenetic analysis was performed with MEGA 6.0. Minimum evolution phylogenetic trees were constructed with the Neighbor-Joining method and bootstrapped with 1000 replicates. Three large and seven small clusters were formed with the 26 sequences used. The largest cluster grouped strains from different species in South America: Brazil, and the French Guyana. The second cluster grouped five strains from Mexico. A Mexican strain reported in a different study was highly related to our four strains, suggesting common source of infection. The phylogenetic analysis shows that the type of host is different for the different regions in the American Continent; rabies is more related to bats. It was concluded that the rabies virus in central Mexico is genetically stable and that it is transmitted by the vampire bat Desmodus rotundus. Copyright © 2017 Elsevier Ltd. All rights reserved.
Barreto, Cairé; Coelho, Jaqueline da Rosa; Yuan, Jianbo; Xiang, Jianhai; Perazzolo, Luciane Maria
2018-01-01
Crustins form a large family of antimicrobial peptides (AMPs) in crustaceans composed of four sub-groups (Types I-IV). Type II crustins (Type IIa or “Crustins” and Type IIb or “Crustin-like”) possess a typical hydrophobic N-terminal region and are by far the most representative sub-group found in penaeid shrimp. To gain insight into the molecular diversity of Type II crustins in penaeids, we identified and characterized a Type IIb crustin in Litopenaeus vannamei (Crustin-like Lv) and compared Type II crustins at both molecular and transcriptional levels. Although L. vannamei Type II crustins (Crustin Lv and Crustin-like Lv) are encoded by separate genes, they showed a similar tissue distribution (hemocytes and gills) and transcriptional response to the shrimp pathogens Vibrio harveyi and White spot syndrome virus (WSSV). As Crustin Lv, Crustin-like Lv transcripts were found to be present early in development, suggesting a maternal contribution to shrimp progeny. Altogether, our in silico and transcriptional data allowed to conclude that (1) each sub-type displays a specific amino acid signature at the C-terminal end holding both the cysteine-rich region and the whey acidic protein (WAP) domain, and that (2) shrimp Type II crustins evolved from a common ancestral gene that conserved a similar pattern of transcriptional regulation. PMID:29337853
Miller, Jason R; Koren, Sergey; Dilley, Kari A; Puri, Vinita; Brown, David M; Harkins, Derek M; Thibaud-Nissen, Françoise; Rosen, Benjamin; Chen, Xiao-Guang; Tu, Zhijian; Sharakhov, Igor V; Sharakhova, Maria V; Sebra, Robert; Stockwell, Timothy B; Bergman, Nicholas H; Sutton, Granger G; Phillippy, Adam M; Piermarini, Peter M; Shabman, Reed S
2018-03-01
The 50-year-old Aedes albopictus C6/36 cell line is a resource for the detection, amplification, and analysis of mosquito-borne viruses including Zika, dengue, and chikungunya. The cell line is derived from an unknown number of larvae from an unspecified strain of Aedes albopictus mosquitoes. Toward improved utility of the cell line for research in virus transmission, we present an annotated assembly of the C6/36 genome. The C6/36 genome assembly has the largest contig N50 (3.3 Mbp) of any mosquito assembly, presents the sequences of both haplotypes for most of the diploid genome, reveals independent null mutations in both alleles of the Dicer locus, and indicates a male-specific genome. Gene annotation was computed with publicly available mosquito transcript sequences. Gene expression data from cell line RNA sequence identified enrichment of growth-related pathways and conspicuous deficiency in aquaporins and inward rectifier K+ channels. As a test of utility, RNA sequence data from Zika-infected cells were mapped to the C6/36 genome and transcriptome assemblies. Host subtraction reduced the data set by 89%, enabling faster characterization of nonhost reads. The C6/36 genome sequence and annotation should enable additional uses of the cell line to study arbovirus vector interactions and interventions aimed at restricting the spread of human disease.
Single-cell transcriptional dynamics of flavivirus infection
Bekerman, Elena
2018-01-01
Dengue and Zika viral infections affect millions of people annually and can be complicated by hemorrhage and shock or neurological manifestations, respectively. However, a thorough understanding of the host response to these viruses is lacking, partly because conventional approaches ignore heterogeneity in virus abundance across cells. We present viscRNA-Seq (virus-inclusive single cell RNA-Seq), an approach to probe the host transcriptome together with intracellular viral RNA at the single cell level. We applied viscRNA-Seq to monitor dengue and Zika virus infection in cultured cells and discovered extreme heterogeneity in virus abundance. We exploited this variation to identify host factors that show complex dynamics and a high degree of specificity for either virus, including proteins involved in the endoplasmic reticulum translocon, signal peptide processing, and membrane trafficking. We validated the viscRNA-Seq hits and discovered novel proviral and antiviral factors. viscRNA-Seq is a powerful approach to assess the genome-wide virus-host dynamics at single cell level. PMID:29451494
Dynamic Epstein-Barr Virus Gene Expression on the Path to B-Cell Transformation
Price, Alexander M.; Luftig, Micah A.
2016-01-01
Epstein-Barr Virus is an oncogenic human herpesvirus in the γ-herpesvirinae sub-family that contains a 170–180 kb double stranded DNA genome. In vivo, EBV commonly infects B and epithelial cells and persists for the life of the host in a latent state in the memory B cell compartment of the peripheral blood. EBV can be reactivated from its latent state leading to increased expression of lytic genes that primarily encode for enzymes necessary to replicate the viral genome as well as structural components of the virion. Lytic cycle proteins also aid in immune evasion, inhibition of apoptosis, and the modulation of other host responses to infection. In vitro, EBV has the potential to infect primary human B cells and induce cellular proliferation to yield effectively immortalized lymphoblastoid cell lines, or LCLs. EBV immortalization of B cells in vitro serves as a model system for studying EBV-mediated lymphomagenesis. While much is known about the steady state viral gene expression within EBV immortalized LCLs and other EBV-positive cell lines, relatively little is known about the early events after primary B-cell infection. It was previously thought that upon latent infection EBV only expressed the well-characterized latency associated transcripts found in LCLs. However, recent work has characterized the early, but transient, expression of lytic genes necessary for efficient transformation as well as delayed responses in the known latency genes. This review summarizes these recent findings that show how dynamic and controlled expression of multiple EBV genes can control the activation of B cells, entry into the cell cycle, inhibition of apoptosis, and control of innate and adaptive immune responses. PMID:24373315
Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C J; Makino, Shinji
2009-02-01
Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, and fever and high rates of abortions in livestock. A nonstructural RVFV NSs protein inhibits the transcription of host mRNAs, including interferon-beta mRNA, and is a major virulence factor. The present study explored a novel function of the RVFV NSs protein by testing the replication of RVFV lacking the NSs gene in the presence of actinomycin D (ActD) or alpha-amanitin, both of which served as a surrogate of the host mRNA synthesis suppression function of the NSs. In the presence of the host-transcriptional inhibitors, the replication of RVFV lacking the NSs protein, but not that carrying NSs, induced double-stranded RNA-dependent protein kinase (PKR)-mediated eukaryotic initiation factor (eIF)2alpha phosphorylation, leading to the suppression of host and viral protein translation. RVFV NSs promoted post-transcriptional downregulation of PKR early in the course of the infection and suppressed the phosphorylated eIF2alpha accumulation. These data suggested that a combination of RVFV replication and NSs-induced host transcriptional suppression induces PKR-mediated eIF2alpha phosphorylation, while the NSs facilitates efficient viral translation by downregulating PKR and inhibiting PKR-mediated eIF2alpha phosphorylation. Thus, the two distinct functions of the NSs, i.e., the suppression of host transcription, including that of type I interferon mRNAs, and the downregulation of PKR, work together to prevent host innate antiviral functions, allowing efficient replication and survival of RVFV in infected mammalian hosts.
Konesky, Kasey L.; Nyborg, Jennifer K.; Laybourn, Paul J.
2006-01-01
Upon infection of human T-cell leukemia virus type 1 (HTLV-1), the provirus is integrated into the host cell genome and subsequently packaged into chromatin that contains histone H1. Consequently, transcriptional activation of the virus requires overcoming the environment of chromatin and H1. To efficiently activate transcription, HTLV-1 requires the virally encoded protein Tax and cellular transcription factor CREB. Together Tax and CREB interact with three cis-acting promoter elements called viral cyclic-AMP response elements (vCREs). Binding of Tax and CREB to the vCREs promotes association of p300/CBP into the complex and leads to transcriptional activation. Therefore, to fully understand the mechanism of Tax transactivation, it is necessary to examine transcriptional activation from chromatin assembled with H1. Using a DNA template harboring the complete HTLV-1 promoter sequence and a highly defined recombinant assembly system, we demonstrate proper incorporation of histone H1 into chromatin. Addition of H1 to the chromatin template reduces HTLV-1 transcriptional activation through a novel mechanism. Specifically, H1 does not inhibit CREB or Tax binding to the vCREs or p300 recruitment to the promoter. Rather, H1 directly targets p300 acetyltransferase activity. Interestingly, in determining the mechanism of H1 repression, we have discovered a previously undefined function of Tax, overcoming the repressive effects of H1-chromatin. Tax specifically abrogates the H1 repression of p300 enzymatic activity in a manner independent of p300 recruitment and without displacement of H1 from the promoter. PMID:16943293
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Che-Yen; Karolinska Institute Structural Virology, F68 Karolinska University Hospital, SE-14186 Stockholm; Institute of Public Health, National Yang-Ming University, 112 Taipei,Taiwan
A recombinant virus-like particle that is a potential oral hepatitis E vaccine was crystallized. Diffraction data were collected to 8.3 Å resolution and the X-ray structure was phased with the aid of a low-resolution density map determined using cryo-electron microscopy data. Hepatitis E virus (HEV) accounts for the majority of enterically transmitted hepatitis infections worldwide. Currently, there is no specific treatment for or vaccine against HEV. The major structural protein is derived from open reading frame (ORF) 2 of the viral genome. A potential oral vaccine is provided by the virus-like particles formed by a protein construct of partial ORF3more » protein (residue 70–123) fused to the N-terminus of the ORF2 protein (residues 112–608). Single crystals obtained by the hanging-drop vapour-diffusion method at 293 K diffract X-rays to 8.3 Å resolution. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 337, b = 343, c = 346 Å, α = β = γ = 90°, and contain one particle per asymmetric unit.« less
RNA Recombination In Vivo in the Absence of Viral Replication
Gallei, Andreas; Pankraz, Alexander; Thiel, Heinz-Jürgen; Becher, Paul
2004-01-01
To study fundamental aspects of RNA recombination, an in vivo RNA recombination system was established. This system allowed the efficient generation of recombinant cytopathogenic pestiviruses after transfection of synthetic, nonreplicatable, subgenomic transcripts in cells infected with a replicating noncytopathogenic virus. Studies addressing the interplay between RNA recombination and replication revealed that cotransfection of noninfected cells with various pairs of nonreplicatable RNA derivatives also led to the emergence of recombinant viral genomes. Remarkably, homologous and nonhomologous recombination occurred between two overlapping transcripts, each lacking different essential parts of the viral RNA-dependent RNA polymerase (RdRp) gene. Apart from the generally accepted viral replicative copy choice recombination, our results prove the existence of a viral RdRp-independent mechanism of RNA recombination that occurs in vivo. It appears likely that such a mechanism not only contributes to the evolution of RNA viruses but also leads to the generation of recombinant cellular RNAs. PMID:15163720
Shweta; Akhter, Yusuf; Khan, Jawaid Ahmad
2018-01-05
Cotton leaf curl Burewala virus (CLCuBV, genus Begomovirus) causes devastating cotton leaf curl disease. Among various known virus controlling strategies, RNAi-mediated one has shown potential to protect host crop plants. Micro(mi) RNAs, are the endogenous small RNAs and play a key role in plant development and stress resistance. In the present study we have identified cotton (Gossypium hirsutum)-encoded miRNAs targeting the CLCuBV. Based on threshold free energy and maximum complementarity scores of host miRNA-viral mRNA target pairs, a number of potential miRNAs were annotated. Among them, ghr-miR168 was selected as the most potent candidate, capable of targeting several vital genes namely C1, C3, C4, V1 and V2 of CLCuBV genome. In addition, ghr-miR395a and ghr-miR395d were observed to target the overlapping transcripts of C1 and C4 genes. We have verified the efficacy of these miRNA targets against CLCuBV following suppression of RNAi-mediated virus control through translational inhibition or cleavage of viral mRNA. Copyright © 2017 Elsevier B.V. All rights reserved.
Poirier, Enzo Z; Goic, Bertsy; Tomé-Poderti, Lorena; Frangeul, Lionel; Boussier, Jérémy; Gausson, Valérie; Blanc, Hervé; Vallet, Thomas; Loyd, Hyelee; Levi, Laura I; Lanciano, Sophie; Baron, Chloé; Merkling, Sarah H; Lambrechts, Louis; Mirouze, Marie; Carpenter, Susan; Vignuzzi, Marco; Saleh, Maria-Carla
2018-03-14
The RNAi pathway confers antiviral immunity in insects. Virus-specific siRNA responses are amplified via the reverse transcription of viral RNA to viral DNA (vDNA). The nature, biogenesis, and regulation of vDNA are unclear. We find that vDNA produced during RNA virus infection of Drosophila and mosquitoes is present in both linear and circular forms. Circular vDNA (cvDNA) is sufficient to produce siRNAs that confer partially protective immunity when challenged with a cognate virus. cvDNAs bear homology to defective viral genomes (DVGs), and DVGs serve as templates for vDNA and cvDNA synthesis. Accordingly, DVGs promote the amplification of vDNA-mediated antiviral RNAi responses in infected Drosophila. Furthermore, vDNA synthesis is regulated by the DExD/H helicase domain of Dicer-2 in a mechanism distinct from its role in siRNA generation. We suggest that, analogous to mammalian RIG-I-like receptors, Dicer-2 functions like a pattern recognition receptor for DVGs to modulate antiviral immunity in insects. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Sasaya, Takahide; Kusaba, Shinnosuke; Ishikawa, Koichi; Koganezawa, Hiroki
2004-09-01
Lettuce big-vein virus (LBVV) is the type species of the genus Varicosavirus and is a two-segmented negative-sense single-stranded RNA virus. The larger LBVV genome segment (RNA1) consists of 6797 nt and encodes an L polymerase that resembles that of rhabdoviruses. Here, the nucleotide sequence of the second LBVV genome segment (RNA2) is reported. LBVV RNA2 consisted of 6081 nt and contained antisense information for five major ORFs: ORF1 (nt 210-1403 on the viral RNA), ORF2 (nt 1493-2494), ORF3 (nt 2617-3489), ORF4 (nt 3843-4337) and ORF5 (nt 4530-5636), which had coding capacities of 44, 36, 32, 19 and 41 kDa, respectively. The gene at the 3' end of the viral RNA encoded a coat protein, while the other four genes encoded proteins of unknown functions. The 3'-terminal 11 nt of LBVV RNA2 were identical to those of LBVV RNA1, and the 5'-terminal regions of LBVV RNA1 and RNA2 contained a long common nucleotide stretch of about 100 nt. Northern blot analysis using probes specific to the individual ORFs revealed that LBVV transcribes monocistronic RNAs. Analysis of the terminal sequences, and primer extension and RNase H digestion analysis of LBVV mRNAs, suggested that LBVV utilizes a transcription termination/initiation strategy comparable with that of rhabdoviruses.
Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry
Sampath, Rangarajan; Russell, Kevin L.; Massire, Christian; Eshoo, Mark W.; Harpin, Vanessa; Blyn, Lawrence B.; Melton, Rachael; Ivy, Cristina; Pennella, Thuy; Li, Feng; Levene, Harold; Hall, Thomas A.; Libby, Brian; Fan, Nancy; Walcott, Demetrius J.; Ranken, Raymond; Pear, Michael; Schink, Amy; Gutierrez, Jose; Drader, Jared; Moore, David; Metzgar, David; Addington, Lynda; Rothman, Richard; Gaydos, Charlotte A.; Yang, Samuel; St. George, Kirsten; Fuschino, Meghan E.; Dean, Amy B.; Stallknecht, David E.; Goekjian, Ginger; Yingst, Samuel; Monteville, Marshall; Saad, Magdi D.; Whitehouse, Chris A.; Baldwin, Carson; Rudnick, Karl H.; Hofstadler, Steven A.; Lemon, Stanley M.; Ecker, David J.
2007-01-01
Background Effective influenza surveillance requires new methods capable of rapid and inexpensive genomic analysis of evolving viral species for pandemic preparedness, to understand the evolution of circulating viral species, and for vaccine strain selection. We have developed one such approach based on previously described broad-range reverse transcription PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS) technology. Methods and Principal Findings Analysis of base compositions of RT-PCR amplicons from influenza core gene segments (PB1, PB2, PA, M, NS, NP) are used to provide sub-species identification and infer influenza virus H and N subtypes. Using this approach, we detected and correctly identified 92 mammalian and avian influenza isolates, representing 30 different H and N types, including 29 avian H5N1 isolates. Further, direct analysis of 656 human clinical respiratory specimens collected over a seven-year period (1999–2006) showed correct identification of the viral species and subtypes with >97% sensitivity and specificity. Base composition derived clusters inferred from this analysis showed 100% concordance to previously established clades. Ongoing surveillance of samples from the recent influenza virus seasons (2005–2006) showed evidence for emergence and establishment of new genotypes of circulating H3N2 strains worldwide. Mixed viral quasispecies were found in approximately 1% of these recent samples providing a view into viral evolution. Conclusion/Significance Thus, rapid RT-PCR/ESI-MS analysis can be used to simultaneously identify all species of influenza viruses with clade-level resolution, identify mixed viral populations and monitor global spread and emergence of novel viral genotypes. This high-throughput method promises to become an integral component of influenza surveillance. PMID:17534439
2011-01-01
Background RNA silencing is used in plants as a major defence mechanism against invasive nucleic acids, such as viruses. Accordingly, plant viruses have evolved to produce counter defensive RNA-silencing suppressors (RSSs). These factors interfere in various ways with the RNA silencing machinery in cells, and thereby disturb the microRNA (miRNA) mediated endogene regulation and induce developmental and morphological changes in plants. In this study we have explored these effects using previously characterized transgenic tobacco plants which constitutively express (under CaMV 35S promoter) the helper component-proteinase (HC-Pro) derived from a potyviral genome. The transcript levels of leaves and flowers of these plants were analysed using microarray techniques (Tobacco 4 × 44 k, Agilent). Results Over expression of HC-Pro RSS induced clear phenotypic changes both in growth rate and in leaf and flower morphology of the tobacco plants. The expression of 748 and 332 genes was significantly changed in the leaves and flowers, respectively, in the HC-Pro expressing transgenic plants. Interestingly, these transcriptome alterations in the HC-Pro expressing tobacco plants were similar as those previously detected in plants infected with ssRNA-viruses. Particularly, many defense-related and hormone-responsive genes (e.g. ethylene responsive transcription factor 1, ERF1) were differentially regulated in these plants. Also the expression of several stress-related genes, and genes related to cell wall modifications, protein processing, transcriptional regulation and photosynthesis were strongly altered. Moreover, genes regulating circadian cycle and flowering time were significantly altered, which may have induced a late flowering phenotype in HC-Pro expressing plants. The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants. Transcript levels of S-adenosyl-L-methionine (SAM) were also decreased in these plants, apparently leading to decreased transmethylation capacity. The proteome analysis using 2D-PAGE indicated significantly altered proteome profile, which may have been both due to altered transcript levels, decreased translation, and increased proteosomal/protease activity. Conclusion Expression of the HC-Pro RSS mimics transcriptional changes previously shown to occur in plants infected with intact viruses (e.g. Tobacco etch virus, TEV). The results indicate that the HC-Pro RSS contributes a significant part of virus-plant interactions by changing the levels of multiple cellular RNAs and proteins. PMID:21507209
LaPierre, Lorie A.; Holzschu, Donald L.; Bowser, Paul R.; Casey, James W.
1999-01-01
Walleye epidermal hyperplasia virus types 1 and 2 (WEHV1 and WEHV2, respectively) are associated with a hyperproliferative skin lesion on walleyes that appears and regresses seasonally. We have determined the complete nucleotide sequences and transcriptional profiles of these viruses. WEHV1 and WEHV2 are large, complex retroviruses of 12,999 and 13,125 kb in length, respectively, that are closely related to one another and to walleye dermal sarcoma virus (WDSV). These walleye retroviruses contain three open reading frames, orfA, orfB, and orfC, in addition to gag, pol, and env. orfA and orfB are adjacent to one another and located downstream of env. The OrfA proteins were previously identified as cyclin D homologs that may contribute to the induction of cell proliferation leading to epidermal hyperplasia and dermal sarcoma. The sequence analysis of WEHV1 and WEHV2 revealed that the OrfB proteins are distantly related to the OrfA proteins, suggesting that orfB arose by gene duplication. Presuming that the precursor of orfA and orfB was derived from a cellular cyclin, these genes are the first accessory genes of complex retroviruses that can be traced to a cellular origin. WEHV1, WEHV2, and WDSV are the only retroviruses that have an open reading frame, orfC, of considerable size (ca. 130 amino acids) in the leader region preceding gag. While we were unable to predict a function for the OrfC proteins, they are more conserved than OrfA and OrfB, suggesting that they may be biologically important to the viruses. The transcriptional profiles of WEHV1 and WEHV2 were also similar to that of WDSV; Northern blot analyses detected only low levels of the orfA transcripts in developing lesions, whereas abundant levels of genomic, env, orfA, and orfB transcripts were detected in regressing lesions. The splice donors and acceptors of individual transcripts were identified by reverse transcriptase PCR. The similarities of WEHV1, WEHV2, and WDSV suggest that these viruses use similar strategies of viral replication and induce cell proliferation by a similar mechanism. PMID:10516048
Eisler, Diane L.; McNabb, Alan; Jorgensen, Danielle R.; Isaac-Renton, Judith L.
2004-01-01
We report on the use of West Nile virus Armored RNA as an internal positive control (IPC) for the extraction and reverse transcription-PCR (RT-PCR) of RNA extracted from field-collected mosquitoes and on a multiplex real-time Taqman RT-PCR to simultaneously detect the 3′ noncoding region of West Nile virus and the West Nile virus NS5-2 region comprising the IPC. Mosquito pools from the province of British Columbia, Canada (n = 635), were tested in duplicate and found to be negative for West Nile virus and positive for the IPC. Known West Nile virus-positive supernatants from mosquito pools from the provinces of Alberta and Manitoba were tested in duplicate and found to be positive for both regions of the West Nile virus genome. The mean cycle threshold (Ct) value for the IPC in batch extraction controls ± 2 standard deviations was found to be 36.43 ± 1.78 cycles. IPCs of 98.4% (624) of West Nile virus-negative pools fell within this range, indicating the reproducibility of RNA extraction and RT-PCR for pools varying in mosquito genus and number. A comparison of mosquito pool genera revealed no significant genus effect on the Ct value of the IPC. The incorporation of West Nile virus Armored RNA as an IPC allows monitoring of RNA extraction and RT-PCR and detection of false-negative results due to failures in these processes or to PCR inhibition, respectively. PMID:14766868
Yu, Tsong-Ann; Chiang, Chu-Hui; Wu, Hui-Wen; Li, Chin-Mei; Yang, Ching-Fu; Chen, Jun-Han; Chen, Yu-Wen; Yeh, Shyi-Dong
2011-03-01
Zucchini yellow mosaic virus (ZYMV) and Papaya ringspot virus type W (PRSV W) are major limiting factors for production of watermelon worldwide. For the effective control of these two viruses by transgenic resistance, an untranslatable chimeric construct containing truncated ZYMV coat protein (CP) and PRSV W CP genes was transferred to commercial watermelon cultivars by Agrobacterium-mediated transformation. Using our protocol, a total of 27 putative transgenic lines were obtained from three cultivars of 'Feeling' (23 lines), 'China baby' (3 lines), and 'Quality' (1 line). PCR and Southern blot analyses confirmed that the chimeric construct was incorporated into the genomic DNA of the transformants. Greenhouse evaluation of the selected ten transgenic lines of 'Feeling' cultivar revealed that two immune lines conferred complete resistance to ZYMV and PRSV W, from which virus accumulation were not detected by Western blotting 4 weeks after inoculation. The transgenic transcript was not detected, but small interfering RNA (siRNA) was readily detected from the two immune lines and T(1) progeny of line ZW 10 before inoculation, indicating that RNA-mediated post-transcriptional gene silencing (PTGS) is the underlying mechanism for the double-virus resistance. The segregation ratio of T(1) progeny of the immune line ZW10 indicated that the single inserted transgene is nuclearly inherited and associated with the phenotype of double-virus resistance as a dominant trait. The transgenic lines derived from the commercial watermelon cultivars have great potential for control of the two important viruses and can be implemented directly without further breeding.
Boldogköi, Zsolt
2012-01-01
The regulation of gene expression is essential for normal functioning of biological systems in every form of life. Gene expression is primarily controlled at the level of transcription, especially at the phase of initiation. Non-coding RNAs are one of the major players at every level of genetic regulation, including the control of chromatin organization, transcription, various post-transcriptional processes, and translation. In this study, the Transcriptional Interference Network (TIN) hypothesis was put forward in an attempt to explain the global expression of antisense RNAs and the overall occurrence of tandem gene clusters in the genomes of various biological systems ranging from viruses to mammalian cells. The TIN hypothesis suggests the existence of a novel layer of genetic regulation, based on the interactions between the transcriptional machineries of neighboring genes at their overlapping regions, which are assumed to play a fundamental role in coordinating gene expression within a cluster of functionally linked genes. It is claimed that the transcriptional overlaps between adjacent genes are much more widespread in genomes than is thought today. The Waterfall model of the TIN hypothesis postulates a unidirectional effect of upstream genes on the transcription of downstream genes within a cluster of tandemly arrayed genes, while the Seesaw model proposes a mutual interdependence of gene expression between the oppositely oriented genes. The TIN represents an auto-regulatory system with an exquisitely timed and highly synchronized cascade of gene expression in functionally linked genes located in close physical proximity to each other. In this study, we focused on herpesviruses. The reason for this lies in the compressed nature of viral genes, which allows a tight regulation and an easier investigation of the transcriptional interactions between genes. However, I believe that the same or similar principles can be applied to cellular organisms too. PMID:22783276
Boldogköi, Zsolt
2012-01-01
The regulation of gene expression is essential for normal functioning of biological systems in every form of life. Gene expression is primarily controlled at the level of transcription, especially at the phase of initiation. Non-coding RNAs are one of the major players at every level of genetic regulation, including the control of chromatin organization, transcription, various post-transcriptional processes, and translation. In this study, the Transcriptional Interference Network (TIN) hypothesis was put forward in an attempt to explain the global expression of antisense RNAs and the overall occurrence of tandem gene clusters in the genomes of various biological systems ranging from viruses to mammalian cells. The TIN hypothesis suggests the existence of a novel layer of genetic regulation, based on the interactions between the transcriptional machineries of neighboring genes at their overlapping regions, which are assumed to play a fundamental role in coordinating gene expression within a cluster of functionally linked genes. It is claimed that the transcriptional overlaps between adjacent genes are much more widespread in genomes than is thought today. The Waterfall model of the TIN hypothesis postulates a unidirectional effect of upstream genes on the transcription of downstream genes within a cluster of tandemly arrayed genes, while the Seesaw model proposes a mutual interdependence of gene expression between the oppositely oriented genes. The TIN represents an auto-regulatory system with an exquisitely timed and highly synchronized cascade of gene expression in functionally linked genes located in close physical proximity to each other. In this study, we focused on herpesviruses. The reason for this lies in the compressed nature of viral genes, which allows a tight regulation and an easier investigation of the transcriptional interactions between genes. However, I believe that the same or similar principles can be applied to cellular organisms too.
Hwang, Jiwon; Saffert, Ryan T; Kalejta, Robert F
2011-01-01
Elongins B and C are members of complexes that increase the efficiency of transcriptional elongation by RNA polymerase II (RNAPII) and enhance the monoubiquitination of histone H2B, an epigenetic mark of actively transcribed genes. Here we show that, in addition to its role in facilitating transcription of the cellular genome, elongin B also enhances gene expression from the double-stranded DNA genome of human cytomegalovirus (HCMV), a pathogenic herpesvirus. Reducing the level of elongin B by small interfering RNA- or short hairpin RNA-mediated knockdown decreased viral mRNA expression, viral protein accumulation, viral DNA replication, and infectious virion production. Chromatin immunoprecipitation analysis indicated viral genome occupancy of the elongating form of RNAPII, and monoubiquitinated histone H2B was reduced in elongin B-deficient cells. These data suggest that, in addition to the previously documented epigenetic regulation of transcriptional initiation, HCMV also subverts cellular elongin B-mediated epigenetic mechanisms for enhancing transcriptional elongation to enhance viral gene expression and virus replication. The genetic and epigenetic control of transcription initiation at both cellular and viral promoters is well documented. Recently, the epigenetic modification of histone H2B monoubiquitination throughout the bodies of cellular genes has been shown to enhance the elongation of RNA polymerase II-initiated transcripts. Mechanisms that might control the elongation of viral transcripts are less well studied. Here we show that, as with cellular genes, elongin B-mediated monoubiquitination of histone H2B also facilitates the transcriptional elongation of human cytomegalovirus genes. This and perhaps other epigenetic markings of actively transcribed regions may help in identifying viral genes expressed during in vitro latency or during natural infections of humans. Furthermore, this work identifies a novel, tractable model system to further study the regulation of transcriptional elongation in living cells.
The immune gene repertoire of an important viral reservoir, the Australian black flying fox.
Papenfuss, Anthony T; Baker, Michelle L; Feng, Zhi-Ping; Tachedjian, Mary; Crameri, Gary; Cowled, Chris; Ng, Justin; Janardhana, Vijaya; Field, Hume E; Wang, Lin-Fa
2012-06-20
Bats are the natural reservoir host for a range of emerging and re-emerging viruses, including SARS-like coronaviruses, Ebola viruses, henipaviruses and Rabies viruses. However, the mechanisms responsible for the control of viral replication in bats are not understood and there is little information available on any aspect of antiviral immunity in bats. Massively parallel sequencing of the bat transcriptome provides the opportunity for rapid gene discovery. Although the genomes of one megabat and one microbat have now been sequenced to low coverage, no transcriptomic datasets have been reported from any bat species. In this study, we describe the immune transcriptome of the Australian flying fox, Pteropus alecto, providing an important resource for identification of genes involved in a range of activities including antiviral immunity. Towards understanding the adaptations that have allowed bats to coexist with viruses, we have de novo assembled transcriptome sequence from immune tissues and stimulated cells from P. alecto. We identified about 18,600 genes involved in a broad range of activities with the most highly expressed genes involved in cell growth and maintenance, enzyme activity, cellular components and metabolism and energy pathways. 3.5% of the bat transcribed genes corresponded to immune genes and a total of about 500 immune genes were identified, providing an overview of both innate and adaptive immunity. A small proportion of transcripts found no match with annotated sequences in any of the public databases and may represent bat-specific transcripts. This study represents the first reported bat transcriptome dataset and provides a survey of expressed bat genes that complement existing bat genomic data. In addition, these data provide insight into genes relevant to the antiviral responses of bats, and form a basis for examining the roles of these molecules in immune response to viral infection.
Burden, J P; Griffiths, C M; Cory, J S; Smith, P; Sait, S M
2002-03-01
Knowledge of the mechanisms of pathogen persistence in relation to fluctuations in host density is crucial to our understanding of disease dynamics. In the case of insect baculoviruses, which are typically transmitted horizontally via a lifestage that can persist outside the host, a key issue that remains to be elucidated is whether the virus can also be transmitted vertically as a sublethal infection. We show that RNA transcripts for the Plodia interpunctella GV granulin gene are present in a high proportion of P. interpunctella insects that survive virus challenge. Granulin is a late-expressed gene that is only transcribed after viral genome replication, its presence thus strongly indicates that viral genome replication has occurred. Almost all insects surviving the virus challenge tested positive for viral RNA in the larval and pupal stage. However, this proportion declined in the emerging adults. Granulin mRNA was also detected in both the ovaries and testes, which may represent a putative mechanism by which reduced fecundity in sublethally affected hosts might be manifested. RNA transcripts were also detected in 60-80% of second-generation larvae that were derived from mating surviving adults, but there was no difference between the sexes, with both males and females capable of transmitting a sublethal infection to their offspring. The data indicate that low-level persistent infection, with at least limited gene expression, can occur in P. interpunctella following survival of a granulovirus challenge. We believe that this is the first demonstration of a persistent, sublethal infection by a baculovirus to be initiated by a sublethal virus dose. We hypothesize that the 'latent' baculovirus infections frequently referred to in the literature may also be low level persistent, sublethal infections resulting from survival from initial baculovirus exposure.
Viral evasion of DNA-stimulated innate immune responses
Christensen, Maria H; Paludan, Søren R
2017-01-01
Cellular sensing of virus-derived nucleic acids is essential for early defenses against virus infections. In recent years, the discovery of DNA sensing proteins, including cyclic GMP–AMP synthase (cGAS) and gamma-interferon-inducible protein (IFI16), has led to understanding of how cells evoke strong innate immune responses against incoming pathogens carrying DNA genomes. The signaling stimulated by DNA sensors depends on the adaptor protein STING (stimulator of interferon genes), to enable expression of antiviral proteins, including type I interferon. To facilitate efficient infections, viruses have evolved a wide range of evasion strategies, targeting host DNA sensors, adaptor proteins and transcription factors. In this review, the current literature on virus-induced activation of the STING pathway is presented and we discuss recently identified viral evasion mechanisms targeting different steps in this antiviral pathway. PMID:26972769
Knierim, Dennis; Tsai, Wen-Shi; Kenyon, Lawrence
2013-06-01
Polerovirus infection was detected by reverse transcription polymerase chain reaction (RT-PCR) in 29 pepper plants (Capsicum spp.) and one black nightshade plant (Solanum nigrum) sample collected from fields in India, Indonesia, Mali, Philippines, Thailand and Taiwan. At least two representative samples for each country were selected to generate a general polerovirus RT-PCR product of 1.4 kb length for sequencing. Sequence analysis of the partial genome sequences revealed the presence of pepper vein yellows virus (PeVYV) in all 13 samples. A 1990 Australian herbarium sample of pepper described by serological means as infected with capsicum yellows virus (CYV) was identified by sequence analysis of a partial CP sequence as probably infected with a potato leaf roll virus (PLRV) isolate.
RNA-dependent RNA polymerases of dsRNA bacteriophages.
Makeyev, Eugene V; Grimes, Jonathan M
2004-04-01
Genome replication and transcription of riboviruses are catalyzed by an RNA-dependent RNA polymerase (RdRP). RdRPs are normally associated with other virus- or/and host-encoded proteins that modulate RNA polymerization activity and template specificity. The polymerase complex of double-stranded dsRNA viruses is a large icosahedral particle (inner core) containing RdRP as a minor constituent. In phi6 and other dsRNA bacteriophages from the Cystoviridae family, the inner core is composed of four virus-specific proteins. Of these, protein P2, or Pol subunit, has been tentatively identified as RdRP by sequence comparisons, but the role of this protein in viral RNA synthesis has not been studied until recently. Here, we overview the work on the Pol subunits of phi6 and related viruses from the standpoints of function, structure and evolution.
Borrego, Belén; Rodríguez-Pulido, Miguel; Revilla, Concepción; Álvarez, Belén; Sobrino, Francisco; Domínguez, Javier; Sáiz, Margarita
2015-07-17
The innate immune system is the first line of defense against viral infections. Exploiting innate responses for antiviral, therapeutic and vaccine adjuvation strategies is being extensively explored. We have previously described, the ability of small in vitro RNA transcripts, mimicking the sequence and structure of different domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome (ncRNAs), to trigger a potent and rapid innate immune response. These synthetic non-infectious molecules have proved to have a broad-range antiviral activity and to enhance the immunogenicity of an FMD inactivated vaccine in mice. Here, we have studied the involvement of pattern-recognition receptors (PRRs) in the ncRNA-induced innate response and analyzed the antiviral and cytokine profiles elicited in swine cultured cells, as well as peripheral blood mononuclear cells (PBMCs).
Yang, Wan-Shan; Hsu, Hung-Wei; Campbell, Mel; Cheng, Chia-Yang; Chang, Pei-Ching
2015-01-01
SUMOylation is associated with epigenetic regulation of chromatin structure and transcription. Epigenetic modifications of herpesviral genomes accompany the transcriptional switch of latent and lytic genes during the virus life cycle. Here, we report a genome-wide comparison of SUMO paralog modification on the KSHV genome. Using chromatin immunoprecipitation in conjunction with high-throughput sequencing, our study revealed highly distinct landscape changes of SUMO paralog genomic modifications associated with KSHV reactivation. A rapid and widespread deposition of SUMO-2/3, compared with SUMO-1, modification across the KSHV genome upon reactivation was observed. Interestingly, SUMO-2/3 enrichment was inversely correlated with H3K9me3 mark after reactivation, indicating that SUMO-2/3 may be responsible for regulating the expression of viral genes located in low heterochromatin regions during viral reactivation. RNA-sequencing analysis showed that the SUMO-2/3 enrichment pattern positively correlated with KSHV gene expression profiles. Activation of KSHV lytic genes located in regions with high SUMO-2/3 enrichment was enhanced by SUMO-2/3 knockdown. These findings suggest that SUMO-2/3 viral chromatin modification contributes to the diminution of viral gene expression during reactivation. Our previous study identified a SUMO-2/3-specific viral E3 ligase, K-bZIP, suggesting a potential role of this enzyme in regulating SUMO-2/3 enrichment and viral gene repression. Consistent with this prediction, higher K-bZIP binding on SUMO-2/3 enrichment region during reactivation was observed. Moreover, a K-bZIP SUMO E3 ligase dead mutant, K-bZIP-L75A, in the viral context, showed no SUMO-2/3 enrichment on viral chromatin and higher expression of viral genes located in SUMO-2/3 enriched regions during reactivation. Importantly, virus production significantly increased in both SUMO-2/3 knockdown and KSHV K-bZIP-L75A mutant cells. These results indicate that SUMO-2/3 modification of viral chromatin may function to counteract KSHV reactivation. As induction of herpesvirus reactivation may activate cellular antiviral regimes, our results suggest that development of viral SUMO E3 ligase specific inhibitors may be an avenue for anti-virus therapy. PMID:26197391
Jackson, Robert; Rosa, Bruce A; Lameiras, Sonia; Cuninghame, Sean; Bernard, Josee; Floriano, Wely B; Lambert, Paul F; Nicolas, Alain; Zehbe, Ingeborg
2016-11-02
Human papillomaviruses (HPVs) are a worldwide burden as they are a widespread group of tumour viruses in humans. Having a tropism for mucosal tissues, high-risk HPVs are detected in nearly all cervical cancers. HPV16 is the most common high-risk type but not all women infected with high-risk HPV develop a malignant tumour. Likely relevant, HPV genomes are polymorphic and some HPV16 single nucleotide polymorphisms (SNPs) are under evolutionary constraint instigating variable oncogenicity and immunogenicity in the infected host. To investigate the tumourigenicity of two common HPV16 variants, we used our recently developed, three-dimensional organotypic model reminiscent of the natural HPV infectious cycle and conducted various "omics" and bioinformatics approaches. Based on epidemiological studies we chose to examine the HPV16 Asian-American (AA) and HPV16 European Prototype (EP) variants. They differ by three non-synonymous SNPs in the transforming and virus-encoded E6 oncogene where AAE6 is classified as a high- and EPE6 as a low-risk variant. Remarkably, the high-risk AAE6 variant genome integrated into the host DNA, while the low-risk EPE6 variant genome remained episomal as evidenced by highly sensitive Capt-HPV sequencing. RNA-seq experiments showed that the truncated form of AAE6, integrated in chromosome 5q32, produced a local gene over-expression and a large variety of viral-human fusion transcripts, including long distance spliced transcripts. In addition, differential enrichment of host cell pathways was observed between both HPV16 E6 variant-containing epithelia. Finally, in the high-risk variant, we detected a molecular signature of host chromosomal instability, a common property of cancer cells. We show how naturally occurring SNPs in the HPV16 E6 oncogene cause significant changes in the outcome of HPV infections and subsequent viral and host transcriptome alterations prone to drive carcinogenesis. Host genome instability is closely linked to viral integration into the host genome of HPV-infected cells, which is a key phenomenon for malignant cellular transformation and the reason for uncontrolled E6 oncogene expression. In particular, the finding of variant-specific integration potential represents a new paradigm in HPV variant biology.
Daikoku, Tohru; Kudoh, Ayumi; Fujita, Masatoshi; Sugaya, Yutaka; Isomura, Hiroki; Tsurumi, Tatsuya
2004-12-24
The Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is required for maintenance of the viral genome DNA during the latent phase of EBV replication but continues to be synthesized after the induction of viral productive replication. An EBV genome-wide chromatin immunoprecipitation assay revealed that EBNA1 constantly binds to oriP of the EBV genome during not only latent but also lytic infection. Although the total levels of EBNA1 proved constant throughout the latter, the levels of the oriP-bound form were increased as lytic infection proceeded. EBV productive DNA replication occurs at discrete sites in nuclei, called replication compartments, where viral replication proteins are clustered. Confocal laser microscopic analyses revealed that whereas EBNA1 was distributed broadly in nuclei as fine punctate dots during the latent phase of infection, the protein became redistributed to the viral replication compartments and localized as distinct spots within and/or nearby the compartments after the induction of lytic replication. Taking these findings into consideration, oriP regions of the EBV genome might be organized by EBNA1 into replication domains that may set up scaffolding for lytic replication and transcription.
Zhao, Bo; Zou, James; Wang, Hongfang; Johannsen, Eric; Peng, Chih-wen; Quackenbush, John; Mar, Jessica C; Morton, Cynthia Casson; Freedman, Matthew L; Blacklow, Stephen C; Aster, Jon C; Bernstein, Bradley E; Kieff, Elliott
2011-09-06
Epstein-Barr virus nuclear antigen 2 (EBNA2) regulation of transcription through the cell transcription factor RBPJ is essential for resting B-lymphocyte (RBL) conversion to immortal lymphoblast cell lines (LCLs). ChIP-seq of EBNA2 and RBPJ sites in LCL DNA found EBNA2 at 5,151 and RBPJ at 10,529 sites. EBNA2 sites were enriched for RBPJ (78%), early B-cell factor (EBF, 39%), RUNX (43%), ETS (39%), NFκB (22%), and PU.1 (22%) motifs. These motif associations were confirmed by LCL RBPJ ChIP-seq finding 72% RBPJ occupancy and Encyclopedia Of DNA Elements LCL ChIP-seq finding EBF, NFκB RELA, and PU.1 at 54%, 31%, and 17% of EBNA2 sites. EBNA2 and RBPJ were predominantly at intergene and intron sites and only 14% at promoter sites. K-means clustering of EBNA2 site transcription factors identified RELA-ETS, EBF-RUNX, EBF, ETS, RBPJ, and repressive RUNX clusters, which ranked from highest to lowest in H3K4me1 signals and nucleosome depletion, indicative of active chromatin. Surprisingly, although quantitatively less, the same genome sites in RBLs exhibited similar high-level H3K4me1 signals and nucleosome depletion. The EBV genome also had an LMP1 promoter EBF site, which proved critical for EBNA2 activation. LCL HiC data mapped intergenic EBNA2 sites to EBNA2 up-regulated genes. FISH and chromatin conformation capture linked EBNA2/RBPJ enhancers 428 kb 5' of MYC to MYC. These data indicate that EBNA2 evolved to target RBL H3K4me1 modified, nucleosome-depleted, nonpromoter sites to drive B-lymphocyte proliferation in primary human infection. The primed RBL program likely supports antigen-induced proliferation.
RNA binding specificity of Ebola virus transcription factor VP30.
Schlereth, Julia; Grünweller, Arnold; Biedenkopf, Nadine; Becker, Stephan; Hartmann, Roland K
2016-09-01
The transcription factor VP30 of the non-segmented RNA negative strand Ebola virus balances viral transcription and replication. Here, we comprehensively studied RNA binding by VP30. Using a novel VP30:RNA electrophoretic mobility shift assay, we tested truncated variants of 2 potential natural RNA substrates of VP30 - the genomic Ebola viral 3'-leader region and its complementary antigenomic counterpart (each ∼155 nt in length) - and a series of other non-viral RNAs. Based on oligonucleotide interference, the major VP30 binding region on the genomic 3'-leader substrate was assigned to the internal expanded single-stranded region (∼ nt 125-80). Best binding to VP30 was obtained with ssRNAs of optimally ∼ 40 nt and mixed base composition; underrepresentation of purines or pyrimidines was tolerated, but homopolymeric sequences impaired binding. A stem-loop structure, particularly at the 3'-end or positioned internally, supports stable binding to VP30. In contrast, dsRNA or RNAs exposing large internal loops flanked by entirely helical arms on both sides are not bound. Introduction of a 5´-Cap(0) structure impaired VP30 binding. Also, ssDNAs bind substantially weaker than isosequential ssRNAs and heparin competes with RNA for binding to VP30, indicating that ribose 2'-hydroxyls and electrostatic contacts of the phosphate groups contribute to the formation of VP30:RNA complexes. Our results indicate a rather relaxed RNA binding specificity of filoviral VP30, which largely differs from that of the functionally related transcription factor of the Paramyxoviridae which binds to ssRNAs as short as 13 nt with a preference for oligo(A) sequences.
Music, Nedzad; Gagnon, Carl A
2010-12-01
Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating viral disease affecting the swine industry worldwide. The etiological agent, PRRS virus (PRRSV), possesses a RNA viral genome with nine open reading frames (ORFs). The ORF1a and ORF1b replicase-associated genes encode the polyproteins pp1a and pp1ab, respectively. The pp1a is processed in nine non-structural proteins (nsps): nsp1α, nsp1β, and nsp2 to nsp8. Proteolytic cleavage of pp1ab generates products nsp9 to nsp12. The proteolytic pp1a cleavage products process and cleave pp1a and pp1ab into nsp products. The nsp9 to nsp12 are involved in virus genome transcription and replication. The 3' end of the viral genome encodes four minor and three major structural proteins. The GP(2a), GP₃ and GP₄ (encoded by ORF2a, 3 and 4), are glycosylated membrane associated minor structural proteins. The fourth minor structural protein, the E protein (encoded by ORF2b), is an unglycosylated membrane associated protein. The viral envelope contains two major structural proteins: a glycosylated major envelope protein GP₅ (encoded by ORF5) and an unglycosylated membrane M protein (encoded by ORF6). The third major structural protein is the nucleocapsid N protein (encoded by ORF7). All PRRSV non-structural and structural proteins are essential for virus replication, and PRRSV infectivity is relatively intolerant to subtle changes within the structural proteins. PRRSV virulence is multigenic and resides in both the non-structural and structural viral proteins. This review discusses the molecular characteristics, biological and immunological functions of the PRRSV structural and nsps and their involvement in the virus pathogenesis.
Cantalupo, Paul G.; Katz, Joshua P.
2015-01-01
ABSTRACT We searched The Cancer Genome Atlas (TCGA) database for viruses by comparing non-human reads present in transcriptome sequencing (RNA-Seq) and whole-exome sequencing (WXS) data to viral sequence databases. Human papillomavirus 18 (HPV18) is an etiologic agent of cervical cancer, and as expected, we found robust expression of HPV18 genes in cervical cancer samples. In agreement with previous studies, we also found HPV18 transcripts in non-cervical cancer samples, including those from the colon, rectum, and normal kidney. However, in each of these cases, HPV18 gene expression was low, and single-nucleotide variants and positions of genomic alignments matched the integrated portion of HPV18 present in HeLa cells. Chimeric reads that match a known virus-cell junction of HPV18 integrated in HeLa cells were also present in some samples. We hypothesize that HPV18 sequences in these non-cervical samples are due to nucleic acid contamination from HeLa cells. This finding highlights the problems that contamination presents in computational virus detection pipelines. IMPORTANCE Viruses associated with cancer can be detected by searching tumor sequence databases. Several studies involving searches of the TCGA database have reported the presence of HPV18, a known cause of cervical cancer, in a small number of additional cancers, including those of the rectum, kidney, and colon. We have determined that the sequences related to HPV18 in non-cervical samples are due to nucleic acid contamination from HeLa cells. To our knowledge, this is the first report of the misidentification of viruses in next-generation sequencing data of tumors due to contamination with a cancer cell line. These results raise awareness of the difficulty of accurately identifying viruses in human sequence databases. PMID:25631090
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniels, Charles
2001-08-10
The Gordon Research Conference on Archaea: Ecology, Metabolism [and Molecular Biology] was held at Proctor Academy, Andover, New Hampshire, August 5-10, 2001. The conference was attended by 135 participants. The attendees represented the spectrum of endeavor in this field, coming from academia, industry, and government laboratories, and included US and foreign scientists, senior researchers, young investigators, and students. Emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate discussion about the key issues in the field today. Session topics included the following: Ecology and genetic elements;more » Genomics and evolution; Ecology, genomes and gene regulation; Replication and recombination; Chromatin and transcription; Gene regulation; Post-transcription processing; Biochemistry and metabolism; Proteomics and protein structure; Metabolism and physiology. The featured speaker addressed the topic: ''Archaeal viruses, witnesses of prebiotic evolution?''« less
Identification of two novel functional p53 responsive elements in the herpes simplex virus-1 genome.
Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R; Boehmer, Paul E
2014-07-01
Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. Copyright © 2014 Elsevier Inc. All rights reserved.
Spartz, Helena; Lehr, Elizabeth; Zhang, Benyue; Roman, Ann; Brown, Darron R
2005-05-25
Studies of changes in the virus and host cell upon progression from human papillomavirus (HPV) episomal infection to integration are critical to understanding HPV-related malignant transformation. However, there exist only a few in vitro models of both productive HPV infection and neoplastic progression on the same host background. We recently described a unique foreskin keratinocyte cell line (ERIN 59) that contains HPV 59 (a close relative of HPV 18). Early passages of ERIN 59 cells (passages 9-13) contained approximately 50 copies of episomes/cell, were feeder cell-dependent, and could be induced to differentiate and produce infectious virus in a simple culture system. We now report that late passage cells (passages greater than 50) were morphologically different from early passage cells, were feeder cell independent, and did not differentiate or produce virus. These late passage cells contained HPV in an integrated form. An integration-derived oncogene transcript was expressed in late passage cells. The E2 open reading frame was interrupted in this transcript at nucleotide 3351. Despite a lower viral genome copy number in late passage ERIN 59 cells, expression of E6/E7 oncogene transcripts was similar to early passage cells. We conclude that ERIN 59 cells are a valuable cell line representing a model of progression from HPV 59 episomal infection and virus production to HPV 59 integration and associated oncogenic transformation on the same host background.
Wang, Jianye; Huang, Yu; Zhou, Mingxu; Hardwidge, Philip R; Zhu, Guoqiang
2016-06-21
Muscovy duck parvovirus (MDPV) is the etiological agent of Muscovy duckling parvoviral disease, which is characterized by diarrhea, locomotive dysfunction, stunting, and death in young ducklings, and causes substantial economic losses in the Muscovy duck industry worldwide. FZ91-30 is an attenuated vaccine strain that is safe and immunogenic to ducklings, but the genomic information and molecular mechanism underlining the attenuation are not understood. The FZ91-30 strain was propagated in 11-day-old embryonated goose eggs, and viral particles were purified from the pooled allantoic fluid by differential centrifugation and ultracentrifugation. Single-stranded genomic DNA was extracted and annealed to form double-stranded DNA. The dsDNA digested with NcoI resulted two sub-genomic fragments, which were then cloned into the modified plasmid pBluescript II SK, respectively, generating plasmid pBSKNL and pBSKNR. The sub-genomic plasmid clones were sequenced and further combined to construct the plasmid pFZ that contained the entire genome of strain FZ91-30. The complete genome sequences of strain FM and YY and partial genome sequences of other strains were retrieved from GenBank for sequence comparison. The plasmid pFZ containing the entire genome of FZ91-30 was transfected in 11-day-old embryonated goose eggs via the chorioallantoic membranes route to rescue infectious virus. A genetic marker was introduced into the rescued virus to discriminate from its parental virus. The genome of FZ91-30 consists of 5,131 nucleotides and has 98.9 % similarity to the FM strain. The inverted terminal repeats (ITR) are 456 nucleotides in length, 14 nucleotides longer than that of Goose parvovirus (GPV). The exterior 415 nucleotides of the ITR form a hairpin structure, and the interior 41 nucleotides constitute the D sequence, a reverse complement of the D' sequence at the 3' ITR. Amino acid sequence alignment of the VP1 proteins between FZ91-30 and five pathogenic MDPV strains revealed that FZ91-30 had five mutations; two in the unique region of the VP1 protein (VP1u) and three in VP3. Sequence alignment of the Rep1 proteins revealed two amino acid alterations for FZ91-30, both of which were conserved for two pathogenic strains YY and P. Transfection of the plasmid pFZ in 11-day-old embryonated goose eggs resulted in generation of infectious virus with similar biological properties as compared with the parental strain. The amino acid mutations identified in the VP1 and Rep1 protein may contribute to the attenuation of FZ91-30 in Muscovy ducklings. Plasmid transfection in embryonated goose eggs was suitable for rescue of infectious MDPV.
Evolution of genome size and complexity in the rhabdoviridae.
Walker, Peter J; Firth, Cadhla; Widen, Steven G; Blasdell, Kim R; Guzman, Hilda; Wood, Thomas G; Paradkar, Prasad N; Holmes, Edward C; Tesh, Robert B; Vasilakis, Nikos
2015-02-01
RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3' to 5' direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae.
Evolution of Genome Size and Complexity in the Rhabdoviridae
Walker, Peter J.; Firth, Cadhla; Widen, Steven G.; Blasdell, Kim R.; Guzman, Hilda; Wood, Thomas G.; Paradkar, Prasad N.; Holmes, Edward C.; Tesh, Robert B.; Vasilakis, Nikos
2015-01-01
RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3’ to 5’ direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae. PMID:25679389
Cohen, Camille; Streichenberger, Nathalie; Texier, Pascale; Takissian, Julie; Rousseau, Antoine; Poccardi, Nolwenn; Welsch, Jérémy; Corpet, Armelle; Schaeffer, Laurent; Labetoulle, Marc; Lomonte, Patrick
2016-01-01
Herpes simplex virus 1 (HSV-1) establishes latency in trigeminal ganglia (TG) sensory neurons of infected individuals. The commitment of infected neurons toward the viral lytic or latent transcriptional program is likely to depend on both viral and cellular factors, and to differ among individual neurons. In this study, we used a mouse model of HSV-1 infection to investigate the relationship between viral genomes and the nuclear environment in terms of the establishment of latency. During acute infection, viral genomes show two major patterns: replication compartments or multiple spots distributed in the nucleoplasm (namely “multiple-acute”). Viral genomes in the “multiple-acute” pattern are systematically associated with the promyelocytic leukemia (PML) protein in structures designated viral DNA-containing PML nuclear bodies (vDCP-NBs). To investigate the viral and cellular features that favor the acquisition of the latency-associated viral genome patterns, we infected mouse primary TG neurons from wild type (wt) mice or knock-out mice for type 1 interferon (IFN) receptor with wt or a mutant HSV-1, which is unable to replicate due to the synthesis of a non-functional ICP4, the major virus transactivator. We found that the inability of the virus to initiate the lytic program combined to its inability to synthesize a functional ICP0, are the two viral features leading to the formation of vDCP-NBs. The formation of the “multiple-latency” pattern is favored by the type 1 IFN signaling pathway in the context of neurons infected by a virus able to replicate through the expression of a functional ICP4 but unable to express functional VP16 and ICP0. Analyses of TGs harvested from HSV-1 latently infected humans showed that viral genomes and PML occupy similar nuclear areas in infected neurons, eventually forming vDCP-NB-like structures. Overall our study designates PML protein and PML-NBs to be major cellular components involved in the control of HSV-1 latency, probably during the entire life of an individual. PMID:27618691
Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng
2015-01-01
Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion® Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure. PMID:26633465
Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng
2015-12-01
Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion(®) Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure.
Meekings, Kiran N.; Leipzig, Jeremy; Bushman, Frederic D.; Taylor, Graham P.; Bangham, Charles R. M.
2008-01-01
Human T-lymphotropic virus type 1 (HTLV-1) causes leukaemia or chronic inflammatory disease in ∼5% of infected hosts. The level of proviral expression of HTLV-1 differs significantly among infected people, even at the same proviral load (proportion of infected mononuclear cells in the circulation). A high level of expression of the HTLV-1 provirus is associated with a high proviral load and a high risk of the inflammatory disease of the central nervous system known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). But the factors that control the rate of HTLV-1 proviral expression remain unknown. Here we show that proviral integration sites of HTLV-1 in vivo are not randomly distributed within the human genome but are associated with transcriptionally active regions. Comparison of proviral integration sites between individuals with high and low levels of proviral expression, and between provirus-expressing and provirus non-expressing cells from within an individual, demonstrated that frequent integration into transcription units was associated with an increased rate of proviral expression. An increased frequency of integration sites in transcription units in individuals with high proviral expression was also associated with the inflammatory disease HAM/TSP. By comparing the distribution of integration sites in human lymphocytes infected in short-term cell culture with those from persistent infection in vivo, we infer the action of two selective forces that shape the distribution of integration sites in vivo: positive selection for cells containing proviral integration sites in transcriptionally active regions of the genome, and negative selection against cells with proviral integration sites within transcription units. PMID:18369476
Chatel-Chaix, Laurent; Fink, Karin; Pham, Tram; Raymond, Valérie-Ann; Audette, Karine; Guenier, Anne-Sophie; Duchaine, Jean; Servant, Marc; Bilodeau, Marc; Cohen, Éric; Grandvaux, Nathalie; Lamarre, Daniel
2013-01-01
To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1) promoter following Sendai virus (SeV) infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1) upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3) inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection. PMID:23785285
Otani, Sanae; Ayata, Minoru; Takeuchi, Kaoru; Takeda, Makoto; Shintaku, Haruo; Ogura, Hisashi
2014-08-01
Measles virus (MV) is the causative agent of measles and its neurological complications, subacute sclerosing panencephalitis (SSPE) and measles inclusion body encephalitis (MIBE). Biased hypermutation in the M gene is a characteristic feature of SSPE and MIBE. To determine whether the M gene is the preferred target of hypermutation, an additional transcriptional unit containing a humanized Renilla reniformis green fluorescent protein (hrGFP) gene was introduced into the IC323 MV genome, and nude mice were inoculated intracerebrally with the virus. Biased hypermutation occurred in the M gene and also in the hrGFP gene when it was inserted between the leader and the N gene, but not between the H and L gene. These results indicate that biased hypermutation is usually found in a gene whose function is not essential for viral proliferation in the brain and that the location of a gene in the MV genome can affect its mutational frequency. Copyright © 2014 Elsevier Inc. All rights reserved.
Baril, Martin; Es-Saad, Salwa; Chatel-Chaix, Laurent; Fink, Karin; Pham, Tram; Raymond, Valérie-Ann; Audette, Karine; Guenier, Anne-Sophie; Duchaine, Jean; Servant, Marc; Bilodeau, Marc; Cohen, Eric; Grandvaux, Nathalie; Lamarre, Daniel
2013-01-01
To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1) promoter following Sendai virus (SeV) infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1) upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3) inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.
Sandra, Nagamani; Jailani, A Abdul Kader; Jain, Rakesh Kumar; Mandal, Bikash
2017-03-15
Nucleotide sequence of a distinct soybean yellow mottle mosaic virusisolate from Vignaradiata (mungbean isolate, SYMMV-Mb) from India was determined and compared with othermembers of the family Tombusviridae. The complete monopartite single-stranded RNA genome of SYMMV-Mb consisted of 3974nt with six putative open reading frames and includes 5' and 3' untranslated regions of 35 and 254nt, respectively. SYMMV-Mb genome shared 75% nt sequence identity at complete genome level and 67-92% identity at all ORFs level with SYMMV Korean and USA isolates (soybean isolates) followed by CPMoV, whereas it shared very low identity with other tombusviridae members (5-41%). A full-length infectious cDNA clone of the SYMMV-Mb placed under the control of the T7 RNA polymerase and the CaMV35S promoters was generated and French bean plants on mechanical inoculation with in vitro RNA transcripts, p35SSYMMV-O4 plasmid and agroinoculation with p35SSYMMV-O4 showed symptoms typical of SYMMV-Mb infection. The infection was confirmed by DAC-ELISA, ISEM, RT-PCR and mechanical transmission to new plant species. Further testing of different plant species with agroinoculation of p35SSYMMV-O4 showed delay in symptoms but indistinguishable from mechanical sap inoculation and the infection was confirmed by DAC-ELISA, RT-PCR and mechanical transmission to new plants. The system developed here will be useful for further studies on pathogenecity, viral gene functions, plant-virus-vector interactions of SYMMV-Mb and to utilize it as a gene expression and silencing vector. Copyright © 2017 Elsevier B.V. All rights reserved.
Diversity and evolution of the emerging Pandoraviridae family.
Legendre, Matthieu; Fabre, Elisabeth; Poirot, Olivier; Jeudy, Sandra; Lartigue, Audrey; Alempic, Jean-Marie; Beucher, Laure; Philippe, Nadège; Bertaux, Lionel; Christo-Foroux, Eugène; Labadie, Karine; Couté, Yohann; Abergel, Chantal; Claverie, Jean-Michel
2018-06-11
With DNA genomes reaching 2.5 Mb packed in particles of bacterium-like shape and dimension, the first two Acanthamoeba-infecting pandoraviruses remained up to now the most complex viruses since their discovery in 2013. Our isolation of three new strains from distant locations and environments is now used to perform the first comparative genomics analysis of the emerging worldwide-distributed Pandoraviridae family. Thorough annotation of the genomes combining transcriptomic, proteomic, and bioinformatic analyses reveals many non-coding transcripts and significantly reduces the former set of predicted protein-coding genes. Here we show that the pandoraviruses exhibit an open pan-genome, the enormous size of which is not adequately explained by gene duplications or horizontal transfers. As most of the strain-specific genes have no extant homolog and exhibit statistical features comparable to intergenic regions, we suggest that de novo gene creation could contribute to the evolution of the giant pandoravirus genomes.
Isolation of a novel Rhabdovirus from an insectivorous bat (Pipistrellus kuhlii) in Italy.
Lelli, Davide; Prosperi, Alice; Moreno, Ana; Chiapponi, Chiara; Gibellini, Anna Maria; De Benedictis, Paola; Leopardi, Stefania; Sozzi, Enrica; Lavazza, Antonio
2018-02-17
Rhabdoviridae is one of the most ecologically diverse families of RNA viruses which can infect a wide range of vertebrates and invertebrates. Bats, among mammals, are pointed to harbor a significantly higher proportion of unknown or emerging viruses with zoonotic potential. Herein, we report the isolation of a novel rhabdovirus, detected in the framework of a virological survey on bats implemented in North Italy. Virus isolation and identification were performed on samples of 635 bats by using cell cultures, negative staining electron microscopy and PCRs for different viruses. NGS was commonly performed on cell culture supernatants showing cytopathic effect or in case of samples resulted positive by at least one of the PCRs included in the diagnostic protocol. A rhabdovirus was isolated from different organs of a Pipistrellus kuhlii. Virus identification was obtained by electron microscopy and NGS sequencing. The complete genome size was 11,774 nt comprised 5 genes, encoding the canonical rhabdovirus structural proteins, and an additional transcriptional unit (U1) encoding a hypothetical small protein (157aa) (3'-N-P-M-G-U1-L-5'). The genome organization and phylogenetic analysis suggest that the new virus, named Vaprio virus (VAPV), belongs to the recently established genus Ledantevirus (subgroup B) and it is highly divergent to its closest known relative, Le Dantec virus (LDV) (human, 1965 Senegal). A specific RT-PCR amplifying a 350 bp fragment of the ORF 6 gene, encoding for L protein, was developed and used to test retrospectively a subset of 76 bats coming from the same area and period, revealing two more VAPV positive bats. VAPV is a novel isolate of chiropteran rhabdovirus. Genome organization and phylogenetic analyses demonstrated that VAPV should be considered a novel species within the genus Ledantevirus for which viral ecology and disease associations should be investigated.
Woo, Patrick C. Y.; Lau, Susanna K. P.; Choi, Garnet K. Y.; Huang, Yi; Teng, Jade L. L.; Tsoi, Hoi-Wah; Tse, Herman; Yeung, Man Lung; Chan, Kwok-Hung; Jin, Dong-Yan
2012-01-01
Dicistroviridae and Picornaviridae are two phylogenetically related families of positive-sense single-stranded RNA viruses in the picornavirus-like superfamily with similar gene contents but different genome organizations and hosts. In a surveillance study involving 1,472 samples from 368 dogs over a 22-month period, we identified a novel picornavirus-like virus from 47 fecal and urine samples by the use of reverse transcription-PCR (RT-PCR). Sequencing and phylogenetic analysis of three complete genomes revealed that, although it seemed that the virus was most closely related to other picornaviruses, P1, P2, and P3 of the virus possessed very low amino acid identities of <30% to those of all other known picornaviruses and that the amino acid identities between the 3Dpol and 2C of the virus and the RNA-dependent RNA polymerases and helicases of all other picornaviruses were <35%. Distinct from other picornaviruses, the genomes of the virus contain two putative internal ribosome entry sites (IRESs) and two open reading frames, encoding two polyprotein precursors (844 and 1,406 amino acids), separated by an intergenic region (IGR) of 588 bases. A dual-luciferase activity assay using DNA and RNA transfection revealed that both IRESs were functional. Quantitative RT-PCR showed that numbers of viral RNAs ranged from 7.55 × 106 to 1.26 × 109 copies/ml of urine and 1.82 × 106 to 4.97 × 1010 copies/ml of fecal sample. This is the first report of the natural occurrence of two functional IRESs in nondicistroviruses. Based on our results, we have proposed a novel species, canine picodicistrovirus (CPDV), to describe this novel member of the picornavirus-like superfamily, which could represent a novel family of viruses. PMID:22205729
CRISPR-Cas Gatekeeper: Slow on the Uptake but Gets the Job Done.
Whitaker, Rachel J; Vanderpool, Carin K
2016-02-10
Microbial CRISPR-Cas acts as a defense, but also as a gatekeeper controlling the flow of new genes into microbial genomes. In a recent Cell paper, Jiang et al. (2016) uncover the functional importance of transcription-dependent RNA targeting in type III-A CRISPR-Cas antiviral defense and provide insight into the co-evolution of virus-host symbioses. Copyright © 2016 Elsevier Inc. All rights reserved.
Salinero, Alicia C.; Knoll, Elisabeth R.; Zhu, Z. Iris
2018-01-01
The Ty1 retrotransposons present in the genome of Saccharomyces cerevisiae belong to the large class of mobile genetic elements that replicate via an RNA intermediary and constitute a significant portion of most eukaryotic genomes. The retromobility of Ty1 is regulated by numerous host factors, including several subunits of the Mediator transcriptional co-activator complex. In spite of its known function in the nucleus, previous studies have implicated Mediator in the regulation of post-translational steps in Ty1 retromobility. To resolve this paradox, we systematically examined the effects of deleting non-essential Mediator subunits on the frequency of Ty1 retromobility and levels of retromobility intermediates. Our findings reveal that loss of distinct Mediator subunits alters Ty1 retromobility positively or negatively over a >10,000-fold range by regulating the ratio of an internal transcript, Ty1i, to the genomic Ty1 transcript. Ty1i RNA encodes a dominant negative inhibitor of Ty1 retromobility that blocks virus-like particle maturation and cDNA synthesis. These results resolve the conundrum of Mediator exerting sweeping control of Ty1 retromobility with only minor effects on the levels of Ty1 genomic RNA and the capsid protein, Gag. Since the majority of characterized intrinsic and extrinsic regulators of Ty1 retromobility do not appear to effect genomic Ty1 RNA levels, Mediator could play a central role in integrating signals that influence Ty1i expression to modulate retromobility. PMID:29462141
Stem-Loop RNA Hairpins in Giant Viruses: Invading rRNA-Like Repeats and a Template Free RNA
Seligmann, Hervé; Raoult, Didier
2018-01-01
We examine the hypothesis that de novo template-free RNAs still form spontaneously, as they did at the origins of life, invade modern genomes, contribute new genetic material. Previously, analyses of RNA secondary structures suggested that some RNAs resembling ancestral (t)RNAs formed recently de novo, other parasitic sequences cluster with rRNAs. Here positive control analyses of additional RNA secondary structures confirm ancestral and de novo statuses of RNA grouped according to secondary structure. Viroids with branched stems resemble de novo RNAs, rod-shaped viroids resemble rRNA secondary structures, independently of GC contents. 5′ UTR leading regions of West Nile and Dengue flavivirid viruses resemble de novo and rRNA structures, respectively. An RNA homologous with Megavirus, Dengue and West Nile genomes, copperhead snake microsatellites and levant cotton repeats, not templated by Mimivirus' genome, persists throughout Mimivirus' infection. Its secondary structure clusters with candidate de novo RNAs. The saltatory phyletic distribution and secondary structure of Mimivirus' peculiar RNA suggest occasional template-free polymerization of this sequence, rather than noncanonical transcriptions (swinger polymerization, posttranscriptional editing). PMID:29449833
Sequence of events in measles virus replication: role of phosphoprotein-nucleocapsid interactions.
Brunel, Joanna; Chopy, Damien; Dosnon, Marion; Bloyet, Louis-Marie; Devaux, Patricia; Urzua, Erica; Cattaneo, Roberto; Longhi, Sonia; Gerlier, Denis
2014-09-01
The genome of nonsegmented negative-strand RNA viruses is tightly embedded within a nucleocapsid made of a nucleoprotein (N) homopolymer. To ensure processive RNA synthesis, the viral polymerase L in complex with its cofactor phosphoprotein (P) binds the nucleocapsid that constitutes the functional template. Measles virus P and N interact through two binding sites. While binding of the P amino terminus with the core of N (NCORE) prevents illegitimate encapsidation of cellular RNA, the interaction between their C-terminal domains, P(XD) and N(TAIL) is required for viral RNA synthesis. To investigate the binding dynamics between the two latter domains, the P(XD) F497 residue that makes multiple hydrophobic intramolecular interactions was mutated. Using a quantitative mammalian protein complementation assay and recombinant viruses, we found that an increase in P(XD)-to-N(TAIL) binding strength is associated with a slower transcript accumulation rate and that abolishing the interaction renders the polymerase nonfunctional. The use of a newly developed system allowing conditional expression of wild-type or mutated P genes, revealed that the loss of the P(XD)-N(TAIL) interaction results in reduced transcription by preformed transcriptases, suggesting reduced engagement on the genomic template. These intracellular data indicate that the viral polymerase entry into and progression along its genomic template relies on a protein-protein interaction that serves as a tightly controlled dynamic anchor. Mononegavirales have a unique machinery to replicate RNA. Processivity of their polymerase is only achieved when the genome template is entirely embedded into a helical homopolymer of nucleoproteins that constitutes the nucleocapsid. The polymerase binds to the nucleocapsid template through the phosphoprotein. How the polymerase complex enters and travels along the nucleocapsid template to ensure uninterrupted synthesis of up to ∼ 6,700-nucleotide messenger RNAs from six to ten consecutive genes is unknown. Using a quantitative protein complementation assay and a biGene-biSilencing system allowing conditional expression of two P genes copies, the role of the P-to-N interaction in polymerase function was further characterized. We report here a dynamic protein anchoring mechanism that differs from all other known polymerases that rely only onto a sustained and direct binding to their nucleic acid template. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Hahn, Cassidy M.; Iwanowicz, Luke R.; Cornman, Robert S.; Conway, Carla M.; Winton, James R.; Blazer, Vicki S.
2015-01-01
The white sucker Catostomus commersonii is a freshwater teleost often utilized as a resident sentinel. Here, we sequenced the full genome of a hepatitis B-like virus that infects white suckers from the Great Lakes Region of the USA. Dideoxysequencing confirmed the white sucker hepatitis B virus (WSHBV) has a circular genome (3542 bp) with the prototypical codon organization of hepadnaviruses. Electron microscopy demonstrated that complete virions of approximately 40 nm were present in the plasma of infected fish. Compared to avi- and orthohepadnaviruses, sequence conservation of the core, polymerase and surface proteins was low and ranged from 16-27% at the amino acid level. An X protein homologue common to the orthohepadnaviruses was not present. The WSHBV genome included an atypical, presumptively non-coding region absent in previously described hepadnaviruses. Phylogenetic analyses confirmed WSHBV as distinct from previously documented hepadnaviruses. The level of divergence in protein sequences between WSHBV other hepadnaviruses, and the identification of an HBV-like sequence in an African cichlid provide evidence that a novel genus of the family Hepadnaviridae may need to be established that includes these hepatitis B-like viruses in fishes. Viral transcription was observed in 9.5% (16 of 169) of white suckers evaluated. The prevalence of hepatic tumors in these fish was 4.9%, of which only 2.4% were positive for both virus and hepatic tumors. These results are not sufficient to draw inferences regarding the association of WSHBV and carcinogenesis in white sucker.
Digital PCR provides absolute quantitation of viral load for an occult RNA virus.
White, Richard Allen; Quake, Stephen R; Curr, Kenneth
2012-01-01
Using a multiplexed LNA-based Taqman assay, RT-digital PCR (RT-dPCR) was performed in a prefabricated microfluidic device that monitored absolute viral load in native and immortalized cell lines, overall precision of detection, and the absolute detection limit of an occult RNA virus GB Virus Type C (GBV-C). RT-dPCR had on average a 10% lower overall coefficient of variation (CV, a measurement of precision) for viral load testing than RT-qPCR and had a higher overall detection limit, able to quantify as low as three 5'-UTR molecules of GBV-C genome. Two commercial high-yield in vitro transcription kits (T7 Ribomax Express by Promega and Ampliscribe T7 Flash by Epicentre) were compared to amplify GBV-C RNA genome with T7-mediated amplification. The Ampliscribe T7 Flash outperformed the T7 Ribomax Express in yield of full-length GBV-C RNA genome. THP-1 cells (a model of monocytic derived cells) were transfected with GBV-C, yielding infectious virions that replicated over a 120h time course and could be infected directly. This study provides the first evidence of GBV-C replication in monocytic derived clonal cells. Thus far, it is the only study using a microfluidic device that measures directly viral load of mammalian RNA virus in a digital format without need for a standard curve. Copyright © 2011 Elsevier B.V. All rights reserved.
Biophysics and bioinformatics of transcription regulation in bacteria and bacteriophages
NASA Astrophysics Data System (ADS)
Djordjevic, Marko
2005-11-01
Due to rapid accumulation of biological data, bioinformatics has become a very important branch of biological research. In this thesis, we develop novel bioinformatic approaches and aid design of biological experiments by using ideas and methods from statistical physics. Identification of transcription factor binding sites within the regulatory segments of genomic DNA is an important step towards understanding of the regulatory circuits that control expression of genes. We propose a novel, biophysics based algorithm, for the supervised detection of transcription factor (TF) binding sites. The method classifies potential binding sites by explicitly estimating the sequence-specific binding energy and the chemical potential of a given TF. In contrast with the widely used information theory based weight matrix method, our approach correctly incorporates saturation in the transcription factor/DNA binding probability. This results in a significant reduction in the number of expected false positives, and in the explicit appearance---and determination---of a binding threshold. The new method was used to identify likely genomic binding sites for the Escherichia coli TFs, and to examine the relationship between TF binding specificity and degree of pleiotropy (number of regulatory targets). We next address how parameters of protein-DNA interactions can be obtained from data on protein binding to random oligos under controlled conditions (SELEX experiment data). We show that 'robust' generation of an appropriate data set is achieved by a suitable modification of the standard SELEX procedure, and propose a novel bioinformatic algorithm for analysis of such data. Finally, we use quantitative data analysis, bioinformatic methods and kinetic modeling to analyze gene expression strategies of bacterial viruses. We study bacteriophage Xp10 that infects rice pathogen Xanthomonas oryzae. Xp10 is an unusual bacteriophage, which has morphology and genome organization that most closely resembles temperate phages, such as lambda. It, however, encodes its own T7-like RNA polymerase (characteristic of virulent phages), whose role in gene expression was unclear. Our analysis resulted in quantitative understanding of the role of both host and phage RNA polymerase, and in the identification of the previously unknown promoter sequence for Xp10 RNA polymerase. More generally, an increasing number of phage genomes are being sequenced every year, and we expect that methods of quantitative data analysis that we introduced will provide an efficient way to study gene expression strategies of novel bacterial viruses.
Hepatitis G virus (HGV) infection in voluntary and commercial blood donors in India.
Kar, P; Bedi, P; Berry, N; Chakravorty, A; Gupta, R K; Saha, R; Das, B C
2000-09-01
The prevalence of hepatitis G virus (HGV) has been determined in commercial as well as voluntary blood donors from India by detecting viral RNA genome using reverse transcription polymerase chain reaction (RT-PCR) assay. 45 professional blood donors from private blood banks and 50 healthy controls who opted for voluntary blood donation were recruited for the study. Both the groups were also screened serologically for HBV and HCV infection. The prevalence of HGV in the general population in India was found to be 4% but significantly a higher frequency (46.6%; p<0.001) of HGV was observed in commercial blood donors.
Choudhary, Nandlal; Wei, G; Govindarajulu, A; Roy, Avijit; Li, Wenbin; Picton, Deric D; Nakhla, M K; Levy, L; Brlansky, R H
2015-11-01
Citrus leprosis virus C (CiLV-C), a causal agent of the leprosis disease in citrus, is mostly present in the South and Central America and spreading toward the North America. To enable better diagnosis and inhibit the further spread of this re-emerging virus a quantitative (q) real-time reverse transcription polymerase chain reaction (qRT-PCR) assay is needed for early detection of CiLV-C when the virus is present in low titer in citrus leprosis samples. Using the genomic sequence of CiLV-C, specific primers and probe were designed and synthesized to amplify a 73 nt amplicon from the movement protein (MP) gene. A standard curve of the 73 nt amplicon MP gene was developed using known 10(10)-10(1) copies of in vitro synthesized RNA transcript to estimate the copy number of RNA transcript in the citrus leprosis samples. The one-step qRT-PCR detection assays for CiLV-C were determined to be 1000 times more sensitive when compared to the one-step conventional reverse transcription polymerase chain reaction (RT-PCR) CiLV-C detection method. To evaluate the quality of the total RNA extracts, NADH dehydrogenase gene specific primers (nad5) and probe were included in reactions as an internal control. The one-step qRT-PCR specificity was successfully validated by testing for the presence of CiLV-C in the total RNA extracts of the citrus leprosis samples collected from Belize, Costa Rica, Mexico and Panama. Implementation of the one-step qRT-PCR assays for CiLV-C diagnosis should assist regulatory agencies in surveillance activities to monitor the distribution pattern of CiLV-C in countries where it is present and to prevent further dissemination into citrus growing countries where there is no report of CiLV-C presence. Published by Elsevier B.V.
Piontkivska, Helen; Matos, Luis F; Paul, Sinu; Scharfenberg, Brian; Farmerie, William G; Miyamoto, Michael M; Wayne, Marta L
2016-10-05
Sigma virus (DMelSV) is ubiquitous in natural populations of Drosophila melanogaster. Host-mediated, selective RNA editing of adenosines to inosines (ADAR) may contribute to control of viral infection by preventing transcripts from being transported into the cytoplasm or being translated accurately; or by increasing the viral genomic mutation rate. Previous PCR-based studies showed that ADAR mutations occur in DMelSV at low frequency. Here we use SOLiD TM deep sequencing of flies from a single host population from Athens, GA, USA to comprehensively evaluate patterns of sequence variation in DMelSV with respect to ADAR. GA dinucleotides, which are weak targets of ADAR, are strongly overrepresented in the positive strand of the virus, consistent with selection to generate ADAR resistance on this complement of the transient, double-stranded RNA intermediate in replication and transcription. Potential ADAR sites in a worldwide sample of viruses are more likely to be "resistant" if the sites do not vary among samples. Either variable sites are less constrained and hence are subject to weaker selection than conserved sites, or the variation is driven by ADAR. We also find evidence of mutations segregating within hosts, hereafter referred to as hypervariable sites. Some of these sites were variable only in one or two flies (i.e., rare); others were shared by four or even all five of the flies (i.e., common). Rare and common hypervariable sites were indistinguishable with respect to susceptibility to ADAR; however, polymorphism in rare sites were more likely to be consistent with the action of ADAR than in common ones, again suggesting that ADAR is deleterious to the virus. Thus, in DMelSV, host mutagenesis is constraining viral evolution both within and between hosts. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Pasieka, Tracy Jo; Cilloniz, Cristian; Carter, Victoria S; Rosato, Pamela; Katze, Michael G; Leib, David A
2011-12-01
Innate immune deficiencies result in a spectrum of severe clinical outcomes following infection. In particular, there is a strong association between loss of the signal transducer and activator of transcription (Stat) pathway, breach of the blood-brain barrier (BBB), and virus-induced neuropathology. The gene signatures that characterize resistance, disease, and mortality in the virus-infected nervous system have not been defined. Herpes simplex virus type 1 (HSV-1) is commonly associated with encephalitis in humans, and humans and mice lacking Stat1 display increased susceptibility to HSV central nervous system (CNS) infections. In this study, two HSV-1 strains were used, KOS (wild type [WT]), and Δvhs, an avirulent recombinant lacking the virion host shutoff (vhs) function. In addition, two mouse strains were used: strain 129 (control) and a Stat1-deficient (Stat1(-/-)) strain. Using combinations of these virus and mouse strains, we established a model of infection resulting in three different outcomes: viral clearance without neurological disease (Δvhs infection of control mice), neurological disease followed by viral clearance (Δvhs infection of Stat1(-/-) mice and WT infection of control mice), or neurological disease followed by death (WT infection of Stat1(-/-) mice). Through the use of functional genomics on the infected brain stems, we determined gene signatures that were representative of the three infection outcomes. We demonstrated a pathological signature in the brain stem of Stat1-deficient mice characterized by upregulation of transcripts encoding chemokine receptors, inflammatory markers, neutrophil chemoattractants, leukocyte adhesion proteins, and matrix metalloproteases. Additionally, there was a greater than 100-fold increase in the inflammatory markers interleukin 1β (IL-1β) and IL-6. Consistent with this gene signature, we demonstrated profound CNS inflammation with a concomitant lethal breach of the BBB. Taken together, our results indicated an essential role for normal Stat1-dependent signaling in mediating a nonpathological immune response to viral CNS infection.
Gulyaeva, Anastasia; Hoogendoorn, Erik; Giles, Julia; Samborskiy, Dmitry
2017-01-01
ABSTRACT In five experimentally characterized arterivirus species, the 5′-end genome coding region encodes the most divergent nonstructural proteins (nsp's), nsp1 and nsp2, which include papain-like proteases (PLPs) and other poorly characterized domains. These are involved in regulation of transcription, polyprotein processing, and virus-host interaction. Here we present results of a bioinformatics analysis of this region of 14 arterivirus species, including that of the most distantly related virus, wobbly possum disease virus (WPDV), determined by a modified 5′ rapid amplification of cDNA ends (RACE) protocol. By combining profile-profile comparisons and phylogeny reconstruction, we identified an association of the four distinct domain layouts of nsp1-nsp2 with major phylogenetic lineages, implicating domain gain, including duplication, and loss in the early nsp1 evolution. Specifically, WPDV encodes highly divergent homologs of PLP1a, PLP1b, PLP1c, and PLP2, with PLP1a lacking the catalytic Cys residue, but does not encode nsp1 Zn finger (ZnF) and “nuclease” domains, which are conserved in other arteriviruses. Unexpectedly, our analysis revealed that the only catalytically active nsp1 PLP of equine arteritis virus (EAV), known as PLP1b, is most similar to PLP1c and thus is likely to be a PLP1b paralog. In all non-WPDV arteriviruses, PLP1b/c and PLP1a show contrasting patterns of conservation, with the N- and C-terminal subdomains, respectively, being enriched with conserved residues, which is indicative of different functional specializations. The least conserved domain of nsp2, the hypervariable region (HVR), has its size varied 5-fold and includes up to four copies of a novel PxPxPR motif that is potentially recognized by SH3 domain-containing proteins. Apparently, only EAV lacks the signal that directs −2 ribosomal frameshifting in the nsp2 coding region. IMPORTANCE Arteriviruses comprise a family of mammalian enveloped positive-strand RNA viruses that include some of the most economically important pathogens of swine. Most of our knowledge about this family has been obtained through characterization of viruses from five species: Equine arteritis virus, Simian hemorrhagic fever virus, Lactate dehydrogenase-elevating virus, Porcine respiratory and reproductive syndrome virus 1, and Porcine respiratory and reproductive syndrome virus 2. Here we present the results of comparative genomics analyses of viruses from all known 14 arterivirus species, including the most distantly related virus, WPDV, whose genome sequence was completed in this study. Our analysis focused on the multifunctional 5′-end genome coding region that encodes multidomain nonstructural proteins 1 and 2. Using diverse bioinformatics techniques, we identified many patterns of evolutionary conservation that are specific to members of distinct arterivirus species, both characterized and novel, or their groups. They are likely associated with structural and functional determinants important for virus replication and virus-host interaction. PMID:28053107
Synthesis of double-stranded RNA in a virus-enriched fraction from Agaricus bisporus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sriskantha, A.; Wach, P.; Schlagnhaufer, B.
Partially purified virus preparations from sporophores of Agaricus bisporus affected with LaFrance disease had up to a 15-fold-higher RNA-dependent RNA polymerase activity than did comparable preparations from health sporophores. Enzyme activity was dependent upon the presence of Mg/sup 2 +/ and the four nucleoside triphosphates and was insensitive to actinomycin D, ..cap alpha..-amanitin, and rifampin. The /sup 3/H-labeled enzyme reaction products were double-stranded RNA (dsRNA) as indicated by CF-11 cellulose column chromatography and by their ionic-strength-dependent sensitivity to hydrolysis by RNase A. The principal dsRNA products had estimated molecular weights of 4.3 /times/ 10/sup 6/ and 1.4 /times/ 10/sup 6/.more » Cs/sub 2/SO/sub 4/ equilibrium centrifugation of the virus preparation resolved a single peak of RNA polymerase activity that banded with a 35-nm spherical virus particle containing dsRNAs with molecular weights of 4.3 /times/ 10/sup 6/ and 1.4 /times/ 10/sup 6/. The data suggest that the RNA-dependent RNA polymerase associated with the 35-nm spherical virus is a replicase which catalyzes the synthesis of the genomic dsRNAs.« less
Strain Variation in the Transcriptome of the Dengue Fever Vector, Aedes aegypti.
Bonizzoni, Mariangela; Dunn, W Augustine; Campbell, Corey L; Olson, Ken E; Marinotti, Osvaldo; James, Anthony A
2012-01-01
Studies of transcriptome dynamics provide a basis for understanding functional elements of the genome and the complexity of gene regulation. The dengue vector mosquito, Aedes aegypti, exhibits great adaptability to diverse ecological conditions, is phenotypically polymorphic, and shows variation in vectorial capacity to arboviruses. Previous genome sequencing showed richness in repetitive DNA and transposable elements that can contribute to genome plasticity. Population genetic studies revealed a varying degree of worldwide genetic polymorphism. However, the extent of functional genetic polymorphism across strains is unknown. The transcriptomes of three Ae. aegypti strains, Chetumal (CTM), Rexville D-Puerto Rico (Rex-D) and Liverpool (LVP), were compared. CTM is more susceptible than Rex- D to infection by dengue virus serotype 2. A total of 4188 transcripts exhibit either no or small variation (<2-fold) among sugar-fed samples of the three strains and between sugar- and blood-fed samples within each strain, corresponding most likely to genes encoding products necessary for vital functions. Transcripts enriched in blood-fed mosquitoes encode proteins associated with catalytic activities, molecular transport, metabolism of lipids, carbohydrates and amino acids, and functions related to blood digestion and the progression of the gonotropic cycle. Significant qualitative and quantitative differences were found in individual transcripts among strains including differential representation of paralogous gene products. The majority of immunity-associated transcripts decreased in accumulation after a bloodmeal and the results are discussed in relation to the different susceptibility of CTM and Rex-D mosquitoes to DENV2 infection.
Lau, Susanna K. P.; Martelli, Paolo; Hui, Suk-Wai; Lau, Candy C. Y.; Fan, Rachel Y. Y.; Groff, Joseph M.; Tam, Emily W. T.; Chan, Kwok-Hung
2014-01-01
Beginning in July 2011, 31 green anaconda (Eunectes murinus) juveniles from an oceanarium in Hong Kong died over a 12-month period. Necropsy revealed at least two of the following features in 23 necropsies: dermatitis, severe pan-nephritis, and/or severe systemic multiorgan necrotizing inflammation. Histopathological examination revealed severe necrotizing inflammation in various organs, most prominently the kidneys. Electron microscopic examination of primary tissues revealed intralesional accumulations of viral nucleocapsids with diameters of 10 to 14 nm, typical of paramyxoviruses. Reverse transcription (RT)-PCR results were positive for paramyxovirus (viral loads of 2.33 × 104 to 1.05 × 108 copies/mg tissue) in specimens from anaconda juveniles that died but negative in specimens from the two anaconda juveniles and anaconda mother that survived. None of the other snakes in the park was moribund, and RT-PCR results for surveillance samples collected from other snakes were negative. The virus was isolated from BHK21 cells, causing cytopathic effects with syncytial formation. The virus could also replicate in 25 of 27 cell lines of various origins, in line with its capability for infecting various organs. Electron microscopy with cell culture material revealed enveloped virus with the typical “herringbone” appearance of helical nucleocapsids in paramyxoviruses. Complete genome sequencing of five isolates confirmed that the infections originated from the same clone. Comparative genomic and phylogenetic analyses and mRNA editing experiments revealed a novel paramyxovirus in the genus Ferlavirus, named anaconda paramyxovirus, with a typical Ferlavirus genomic organization of 3′-N-U-P/V/I-M-F-HN-L-5′. Epidemiological and genomic analyses suggested that the anaconda juveniles acquired the virus perinatally from the anaconda mother rather than from other reptiles in the park, with subsequent interanaconda juvenile transmission. PMID:25078906
Effectiveness of liquid soap and hand sanitizer against Norwalk virus on contaminated hands.
Liu, Pengbo; Yuen, Yvonne; Hsiao, Hui-Mien; Jaykus, Lee-Ann; Moe, Christine
2010-01-01
Disinfection is an essential measure for interrupting human norovirus (HuNoV) transmission, but it is difficult to evaluate the efficacy of disinfectants due to the absence of a practicable cell culture system for these viruses. The purpose of this study was to screen sodium hypochlorite and ethanol for efficacy against Norwalk virus (NV) and expand the studies to evaluate the efficacy of antibacterial liquid soap and alcohol-based hand sanitizer for the inactivation of NV on human finger pads. Samples were tested by real-time reverse transcription-quantitative PCR (RT-qPCR) both with and without a prior RNase treatment. In suspension assay, sodium hypochlorite concentrations of >or=160 ppm effectively eliminated RT-qPCR detection signal, while ethanol, regardless of concentration, was relatively ineffective, giving at most a 0.5 log(10) reduction in genomic copies of NV cDNA. Using the American Society for Testing and Materials (ASTM) standard finger pad method and a modification thereof (with rubbing), we observed the greatest reduction in genomic copies of NV cDNA with the antibacterial liquid soap treatment (0.67 to 1.20 log(10) reduction) and water rinse only (0.58 to 1.58 log(10) reduction). The alcohol-based hand sanitizer was relatively ineffective, reducing the genomic copies of NV cDNA by only 0.14 to 0.34 log(10) compared to baseline. Although the concentrations of genomic copies of NV cDNA were consistently lower on finger pad eluates pretreated with RNase compared to those without prior RNase treatment, these differences were not statistically significant. Despite the promise of alcohol-based sanitizers for the control of pathogen transmission, they may be relatively ineffective against the HuNoV, reinforcing the need to develop and evaluate new products against this important group of viruses.
Afouda, Leonard; Kone, Daouda; Zinsou, Valerien; Dossou, Laurence; Kenyon, Lawrence; Winter, Stephan; Knierim, Dennis
2017-06-01
Surveys were conducted in 2014 and 2015 in Southern and Northern Benin, respectively, to identify the viruses infecting peppers (Capsicum spp.). The samples were screened by ELISA for cucumber mosaic virus (CMV), pepper veinal mottle virus (PVMV), potato virus Y (PVY) and tomato yellow leaf curl virus (TYLCV). A generic reverse transcription PCR (RT-PCR) was used to test for the presence of poleroviruses. ELISA tests confirmed the prevalence of all viruses, while the RT-PCR detected pepper vein yellows virus (PeVYV) which is reported for the first time in Benin. A further, divergent polerovirus isolate was detected from a single pepper sample originating from southern Benin. Screening of samples collected from solanaceous plants during virus surveys in Mali (conducted in 2009) also detected this divergent polerovirus isolate in two samples from African eggplants. The complete genome sequence was obtained from the Mali isolate using transcriptome sequencing and by conventional Sanger sequencing of overlapping RT-PCR products. Based on the sequence characteristics of this isolate we propose a new polerovirus species, African eggplant yellowing virus (AeYV).
Experimental Approaches to Study Genome Packaging of Influenza A Viruses.
Isel, Catherine; Munier, Sandie; Naffakh, Nadia
2016-08-09
The genome of influenza A viruses (IAV) consists of eight single-stranded negative sense viral RNAs (vRNAs) encapsidated into viral ribonucleoproteins (vRNPs). It is now well established that genome packaging (i.e., the incorporation of a set of eight distinct vRNPs into budding viral particles), follows a specific pathway guided by segment-specific cis-acting packaging signals on each vRNA. However, the precise nature and function of the packaging signals, and the mechanisms underlying the assembly of vRNPs into sub-bundles in the cytoplasm and their selective packaging at the viral budding site, remain largely unknown. Here, we review the diverse and complementary methods currently being used to elucidate these aspects of the viral cycle. They range from conventional and competitive reverse genetics, single molecule imaging of vRNPs by fluorescence in situ hybridization (FISH) and high-resolution electron microscopy and tomography of budding viral particles, to solely in vitro approaches to investigate vRNA-vRNA interactions at the molecular level.
Schwab, K J; Neill, F H; Fankhauser, R L; Daniels, N A; Monroe, S S; Bergmire-Sweat, D A; Estes, M K; Atmar, R L
2000-01-01
"Norwalk-like viruses" (NLVs) and hepatitis A virus (HAV) are the most common causes of virus-mediated food-borne illness. Epidemiological investigations of outbreaks associated with these viruses have been hindered by the lack of available methods for the detection of NLVs and HAV in foodstuffs. Although reverse transcription (RT)-PCR methods have been useful in detecting NLVs and HAV in bivalve mollusks implicated in outbreaks, to date such methods have not been available for other foods. To address this need, we developed a method to detect NLVs and HAV recovered from food samples. The method involves washing of food samples with a guanidinium-phenol-based reagent, extraction with chloroform, and precipitation in isopropanol. Recovered viral RNA is amplified with HAV- or NLV-specific primers in RT-PCRs, using a viral RNA internal standard control to identify potential sample inhibition. By this method, 10 to 100 PCR units (estimated to be equivalent to 10(2) to 10(3) viral genome copies) of HAV and Norwalk virus seeded onto ham, turkey, and roast beef were detected. The method was applied to food samples implicated in an NLV-associated outbreak at a university cafeteria. Sliced deli ham was positive for a genogroup II NLV as determined by using both polymerase- and capsid-specific primers and probes. Sequence analysis of the PCR-amplified capsid region of the genome indicated that the sequence was identical to the sequence from virus detected in the stools of ill students. The developed method is rapid, simple, and efficient.
Cassetti, Maria Cristina; Merchlinsky, Michael; Wolffe, Elizabeth J.; Weisberg, Andrea S.; Moss, Bernard
1998-01-01
The vaccinia virus A32 open reading frame was predicted to encode a protein with a nucleoside triphosphate-binding motif and a mass of 34 kDa. To investigate the role of this protein, we constructed a mutant in which the original A32 gene was replaced by an inducible copy. The recombinant virus, vA32i, has a conditional lethal phenotype: infectious virus formation was dependent on isopropyl-β-d-thiogalactopyranoside (IPTG). Under nonpermissive conditions, the mutant synthesized early- and late-stage viral proteins, as well as viral DNA that was processed into unit-length genomes. Electron microscopy of cells infected in the absence of IPTG revealed normal-appearing crescents and immature virus particles but very few with nucleoids. Instead of brick-shaped mature particles with defined core structures, there were numerous electron-dense, spherical particles. Some of these spherical particles were wrapped with cisternal membranes, analogous to intracellular and extracellular enveloped virions. Mutant viral particles, purified by sucrose density gradient centrifugation, had low infectivity and transcriptional activity, and the majority were spherical and lacked DNA. Nevertheless, the particle preparation contained representative membrane proteins, cleaved and uncleaved core proteins, the viral RNA polymerase, the early transcription factor and several enzymes, suggesting that incorporation of these components is not strictly coupled to DNA packaging. PMID:9621036
Voorhies, Alexander A; Eisenlord, Sarah D; Marcus, Daniel N; Duhaime, Melissa B; Biddanda, Bopaiah A; Cavalcoli, James D; Dick, Gregory J
2016-02-01
Metagenomic and metatranscriptomic sequencing was conducted on cyanobacterial mats of the Middle Island Sinkhole (MIS), Lake Huron. Metagenomic data from 14 samples collected over 5 years were used to reconstruct genomes of two genotypes of a novel virus, designated PhV1 type A and PhV1 type B. Both viral genotypes encode and express nblA, a gene involved in degrading phycobilisomes, which are complexes of pigmented proteins that harvest light for photosynthesis. Phylogenetic analysis indicated that the viral-encoded nblA is derived from the host cyanobacterium, Phormidium MIS-PhA. The cyanobacterial host also has two complete CRISPR (clustered regularly interspaced short palindromic repeats) systems that serve as defence mechanisms for bacteria and archaea against viruses and plasmids. One 45 bp CRISPR spacer from Phormidium had 100% nucleotide identity to PhV1 type B, but this region was absent from PhV1 type A. Transcripts from PhV1 and the Phormidium CRISPR loci were detected in all six metatranscriptomic data sets (three during the day and three at night), indicating that both are transcriptionally active in the environment. These results reveal ecological and genetic interactions between viruses and cyanobacteria at MIS, highlighting the value of parallel analysis of viruses and hosts in understanding ecological interactions in natural communities. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
The Battle between Rotavirus and Its Host for Control of the Interferon Signaling Pathway
Arnold, Michelle M.; Sen, Adrish; Greenberg, Harry B.; Patton, John T.
2013-01-01
Viral pathogens must overcome innate antiviral responses to replicate successfully in the host organism. Some of the mechanisms viruses use to interfere with antiviral responses in the infected cell include preventing detection of viral components, perturbing the function of transcription factors that initiate antiviral responses, and inhibiting downstream signal transduction. RNA viruses with small genomes and limited coding space often express multifunctional proteins that modulate several aspects of the normal host response to infection. One such virus, rotavirus, is an important pediatric pathogen that causes severe gastroenteritis, leading to ∼450,000 deaths globally each year. In this review, we discuss the nature of the innate antiviral responses triggered by rotavirus infection and the viral mechanisms for inhibiting these responses. PMID:23359266
Subramanian, Gayatri; Kuzmanovic, Teodora; Zhang, Ying; Peter, Cara Beate; Veleeparambil, Manoj; Chakravarti, Ritu; Sen, Ganes C; Chattopadhyay, Saurabh
2018-01-01
The interferon (IFN) system represents the first line of defense against a wide range of viruses. Virus infection rapidly triggers the transcriptional induction of IFN-β and IFN Stimulated Genes (ISGs), whose protein products act as viral restriction factors by interfering with specific stages of virus life cycle, such as entry, transcription, translation, genome replication, assembly and egress. Here, we report a new mode of action of an ISG, IFN-induced TDRD7 (tudor domain containing 7) inhibited paramyxovirus replication by inhibiting autophagy. TDRD7 was identified as an antiviral gene by a high throughput screen of an ISG shRNA library for blocking IFN's protective effect against Sendai virus (SeV) replication. The antiviral activity of TDRD7 against SeV, human parainfluenza virus 3 and respiratory syncytial virus was confirmed by its genetic ablation or ectopic expression in several types of mouse and human cells. TDRD7's antiviral action was mediated by its ability to inhibit autophagy, a cellular catabolic process which was robustly induced by SeV infection and required for its replication. Mechanistic investigation revealed that TDRD7 interfered with the activation of AMP-dependent kinase (AMPK), an enzyme required for initiating autophagy. AMPK activity was required for efficient replication of several paramyxoviruses, as demonstrated by its genetic ablation or inhibition of its activity by TDRD7 or chemical inhibitors. Therefore, our study has identified a new antiviral ISG with a new mode of action.
A Sensitive Assay for Virus Discovery in Respiratory Clinical Samples
de Vries, Michel; Deijs, Martin; Canuti, Marta; van Schaik, Barbera D. C.; Faria, Nuno R.; van de Garde, Martijn D. B.; Jachimowski, Loes C. M.; Jebbink, Maarten F.; Jakobs, Marja; Luyf, Angela C. M.; Coenjaerts, Frank E. J.; Claas, Eric C. J.; Molenkamp, Richard; Koekkoek, Sylvie M.; Lammens, Christine; Leus, Frank; Goossens, Herman; Ieven, Margareta; Baas, Frank; van der Hoek, Lia
2011-01-01
In 5–40% of respiratory infections in children, the diagnostics remain negative, suggesting that the patients might be infected with a yet unknown pathogen. Virus discovery cDNA-AFLP (VIDISCA) is a virus discovery method based on recognition of restriction enzyme cleavage sites, ligation of adaptors and subsequent amplification by PCR. However, direct discovery of unknown pathogens in nasopharyngeal swabs is difficult due to the high concentration of ribosomal RNA (rRNA) that acts as competitor. In the current study we optimized VIDISCA by adjusting the reverse transcription enzymes and decreasing rRNA amplification in the reverse transcription, using hexamer oligonucleotides that do not anneal to rRNA. Residual cDNA synthesis on rRNA templates was further reduced with oligonucleotides that anneal to rRNA but can not be extended due to 3′-dideoxy-C6-modification. With these modifications >90% reduction of rRNA amplification was established. Further improvement of the VIDISCA sensitivity was obtained by high throughput sequencing (VIDISCA-454). Eighteen nasopharyngeal swabs were analysed, all containing known respiratory viruses. We could identify the proper virus in the majority of samples tested (11/18). The median load in the VIDISCA-454 positive samples was 7.2 E5 viral genome copies/ml (ranging from 1.4 E3–7.7 E6). Our results show that optimization of VIDISCA and subsequent high-throughput-sequencing enhances sensitivity drastically and provides the opportunity to perform virus discovery directly in patient material. PMID:21283679
Ding, Xin Shun; Schneider, William L; Chaluvadi, Srinivasa Rao; Mian, M A Rouf; Nelson, Richard S
2006-11-01
Virus-induced gene silencing (VIGS) is used to analyze gene function in dicotyledonous plants but less so in monocotyledonous plants (particularly rice and corn), partially due to the limited number of virus expression vectors available. Here, we report the cloning and modification for VIGS of a virus from Festuca arundinacea Schreb. (tall fescue) that caused systemic mosaic symptoms on barley, rice, and a specific cultivar of maize (Va35) under greenhouse conditions. Through sequencing, the virus was determined to be a strain of Brome mosaic virus (BMV). The virus was named F-BMV (F for Festuca), and genetic determinants that controlled the systemic infection of rice were mapped to RNAs 1 and 2 of the tripartite genome. cDNA from RNA 3 of the Russian strain of BMV (R-BMV) was modified to accept inserts from foreign genes. Coinoculation of RNAs 1 and 2 from F-BMV and RNA 3 from R-BMV expressing a portion of a plant gene to leaves of barley, rice, and maize plants resulted in visual silencing-like phenotypes. The visual phenotypes were correlated with decreased target host transcript levels in the corresponding leaves. The VIGS visual phenotype varied from maintained during silencing of actin 1 transcript expression to transient with incomplete penetration through affected tissue during silencing of phytoene desaturase expression. F-BMV RNA 3 was modified to allow greater accumulation of virus while minimizing virus pathogenicity. The modified vector C-BMV(A/G) (C for chimeric) was shown to be useful for VIGS. These BMV vectors will be useful for analysis of gene function in rice and maize for which no VIGS system is reported.
QSdpR: Viral quasispecies reconstruction via correlation clustering.
Barik, Somsubhra; Das, Shreepriya; Vikalo, Haris
2017-12-19
RNA viruses are characterized by high mutation rates that give rise to populations of closely related genomes, known as viral quasispecies. Underlying heterogeneity enables the quasispecies to adapt to changing conditions and proliferate over the course of an infection. Determining genetic diversity of a virus (i.e., inferring haplotypes and their proportions in the population) is essential for understanding its mutation patterns, and for effective drug developments. Here, we present QSdpR, a method and software for the reconstruction of quasispecies from short sequencing reads. The reconstruction is achieved by solving a correlation clustering problem on a read-similarity graph and the results of the clustering are used to estimate frequencies of sub-species; the number of sub-species is determined using pseudo F index. Extensive tests on both synthetic datasets and experimental HIV-1 and Zika virus data demonstrate that QSdpR compares favorably to existing methods in terms of various performance metrics. Copyright © 2018 Elsevier Inc. All rights reserved.
Gao, Ge; Smith, David I.
2015-01-01
DNA viruses are known to be associated with a variety of different cancers. Human papillomaviruses (HPV) are a family of viruses and several of its sub-types are classified as high-risk HPVs as they are found to be associated with the development of a number of different cancers. Almost all cervical cancers appear to be driven by HPV infection and HPV is also found in most cancers of the anus and at least half the cancers of the vulva, penis and vagina, and increasingly found in one sub-type of head and neck cancers namely oropharyngeal squamous cell carcinoma. Our understanding of HPVs role in cancer development comes from extensive studies done on cervical cancer and it has just been assumed that HPV plays an identical role in the development of all other cancers arising in the presence of HPV sequences, although this has not been proven. Most invasive cervical cancers have the HPV genome integrated into one or more sites within the human genome. One powerful tool to examine all the sites of HPV integration in a cancer but that also provides a comprehensive view of genomic alterations in that cancer is the use of next generation sequencing of mate-pair libraries produced from the DNA isolated. We will describe how this powerful technology can provide important information about the genomic organization within an individual cancer genome, and how this has demonstrated that HPVs role in oropharyngeal squamous cell carcinoma is distinct from that in cervical cancer. We will also describe why the sequencing of mate-pair libraries could be a powerful clinical tool for the management of patients with a DNA viral etiology and how this could quickly transform the care of these patients. PMID:26262638
A role for small RNA in regulating innate immunity during plant growth
Deng, Yingtian; Wang, Jubin; Tung, Jeffrey; Liu, Dan; Zhou, Yingjia; He, Shuang; Baker, Barbara
2018-01-01
Plant genomes encode large numbers of nucleotide-binding (NB) leucine-rich repeat (LRR) immune receptors (NLR) that mediate effector triggered immunity (ETI) and play key roles in protecting crops from diseases caused by devastating pathogens. Fitness costs are associated with plant NLR genes and regulation of NLR genes by micro(mi)RNAs and phased small interfering RNAs (phasiRNA) is proposed as a mechanism for reducing these fitness costs. However, whether NLR expression and NLR-mediated immunity are regulated during plant growth is unclear. We conducted genome-wide transcriptome analysis and showed that NLR expression gradually increased while expression of their regulatory small RNAs (sRNA) gradually decreased as plants matured, indicating that sRNAs could play a role in regulating NLR expression during plant growth. We further tested the role of miRNA in the growth regulation of NLRs using the tobacco mosaic virus (TMV) resistance gene N, which was targeted by miR6019 and miR6020. We showed that N-mediated resistance to TMV effectively restricted this virus to the infected leaves of 6-week old plants, whereas TMV infection was lethal in 1- and 3-week old seedlings due to virus-induced systemic necrosis. We further found that N transcript levels gradually increased while miR6019 levels gradually decreased during seedling maturation that occurs in the weeks after germination. Analyses of reporter genes in transgenic plants showed that growth regulation of N expression was post-transcriptionally mediated by MIR6019/6020 whereas MIR6019/6020 was regulated at the transcriptional level during plant growth. TMV infection of MIR6019/6020 transgenic plants indicated a key role for miR6019-triggered phasiRNA production for regulation of N-mediated immunity. Together our results demonstrate a mechanistic role for miRNAs in regulating innate immunity during plant growth. PMID:29293695
Londrigan, Sarah L.; Short, Kirsty R.; Ma, Joel; Gillespie, Leah; Rockman, Steven P.; Brooks, Andrew G.
2015-01-01
ABSTRACT Airway epithelial cells are susceptible to infection with seasonal influenza A viruses (IAV), resulting in productive virus replication and release. Macrophages (MΦ) are also permissive to IAV infection; however, virus replication is abortive. Currently, it is unclear how productive infection of MΦ is impaired or the extent to which seasonal IAV replicate in MΦ. Herein, we compared mouse MΦ and epithelial cells for their ability to support genomic replication and transcription, synthesis of viral proteins, assembly of virions, and release of infectious progeny following exposure to genetically defined IAV. We confirm that seasonal IAV differ in their ability to utilize cell surface receptors for infectious entry and that this represents one level of virus restriction. Following virus entry, we demonstrate synthesis of all eight segments of genomic viral RNA (vRNA) and mRNA, as well as seven distinct IAV proteins, in IAV-infected mouse MΦ. Although newly synthesized hemagglutinin (HA) and neuraminidase (NA) glycoproteins are incorporated into the plasma membrane and expressed at the cell surface, electron microscopy confirmed that virus assembly was defective in IAV-infected MΦ, defining a second level of restriction late in the virus life cycle. IMPORTANCE Seasonal influenza A viruses (IAV) and highly pathogenic avian influenza viruses (HPAI) infect macrophages, but only HPAI replicate productively in these cells. Herein, we demonstrate that impaired virus uptake into macrophages represents one level of restriction limiting infection by seasonal IAV. Following uptake, seasonal IAV do not complete productive replication in macrophages, representing a second level of restriction. Using murine macrophages, we demonstrate that productive infection is blocked late in the virus life cycle, such that virus assembly is defective and newly synthesized virions are not released. These studies represent an important step toward identifying host-encoded factors that block replication of seasonal IAV, but not HPAI, in macrophages. PMID:26423941
Londrigan, Sarah L; Short, Kirsty R; Ma, Joel; Gillespie, Leah; Rockman, Steven P; Brooks, Andrew G; Reading, Patrick C
2015-12-01
Airway epithelial cells are susceptible to infection with seasonal influenza A viruses (IAV), resulting in productive virus replication and release. Macrophages (MΦ) are also permissive to IAV infection; however, virus replication is abortive. Currently, it is unclear how productive infection of MΦ is impaired or the extent to which seasonal IAV replicate in MΦ. Herein, we compared mouse MΦ and epithelial cells for their ability to support genomic replication and transcription, synthesis of viral proteins, assembly of virions, and release of infectious progeny following exposure to genetically defined IAV. We confirm that seasonal IAV differ in their ability to utilize cell surface receptors for infectious entry and that this represents one level of virus restriction. Following virus entry, we demonstrate synthesis of all eight segments of genomic viral RNA (vRNA) and mRNA, as well as seven distinct IAV proteins, in IAV-infected mouse MΦ. Although newly synthesized hemagglutinin (HA) and neuraminidase (NA) glycoproteins are incorporated into the plasma membrane and expressed at the cell surface, electron microscopy confirmed that virus assembly was defective in IAV-infected MΦ, defining a second level of restriction late in the virus life cycle. Seasonal influenza A viruses (IAV) and highly pathogenic avian influenza viruses (HPAI) infect macrophages, but only HPAI replicate productively in these cells. Herein, we demonstrate that impaired virus uptake into macrophages represents one level of restriction limiting infection by seasonal IAV. Following uptake, seasonal IAV do not complete productive replication in macrophages, representing a second level of restriction. Using murine macrophages, we demonstrate that productive infection is blocked late in the virus life cycle, such that virus assembly is defective and newly synthesized virions are not released. These studies represent an important step toward identifying host-encoded factors that block replication of seasonal IAV, but not HPAI, in macrophages. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Matassov, Demetrius; Marzi, Andrea; Latham, Terri; Xu, Rong; Ota-Setlik, Ayuko; Feldmann, Friederike; Geisbert, Joan B.; Mire, Chad E.; Hamm, Stefan; Nowak, Becky; Egan, Michael A.; Geisbert, Thomas W.; Eldridge, John H.; Feldmann, Heinz; Clarke, David K.
2015-01-01
Previously, recombinant vesicular stomatitis virus (rVSV) pseudotypes expressing Ebolavirus glycoproteins (GPs) in place of the VSV G protein demonstrated protection of nonhuman primates from lethal homologous Ebolavirus challenge. Those pseudotype vectors contained no additional attenuating mutations in the rVSV genome. Here we describe rVSV vectors containing a full complement of VSV genes and expressing the Ebola virus (EBOV) GP from an additional transcription unit. These rVSV vectors contain the same combination of attenuating mutations used previously in the clinical development pathway of an rVSV/human immunodeficiency virus type 1 vaccine. One of these rVSV vectors (N4CT1-EBOVGP1), which expresses membrane-anchored EBOV GP from the first position in the genome (GP1), elicited a balanced cellular and humoral GP-specific immune response in mice. Guinea pigs immunized with a single dose of this vector were protected from any signs of disease following lethal EBOV challenge, while control animals died in 7–9 days. Subsequently, N4CT1-EBOVGP1 demonstrated complete, single-dose protection of 2 macaques following lethal EBOV challenge. A single sham-vaccinated macaque died from disease due to EBOV infection. These results demonstrate that highly attenuated rVSV vectors expressing EBOV GP may provide safer alternatives to current EBOV vaccines. PMID:26109675
Host-Associated Metagenomics: A Guide to Generating Infectious RNA Viromes
Robert, Catherine; Pascalis, Hervé; Michelle, Caroline; Jardot, Priscilla; Charrel, Rémi; Raoult, Didier; Desnues, Christelle
2015-01-01
Background Metagenomic analyses have been widely used in the last decade to describe viral communities in various environments or to identify the etiology of human, animal, and plant pathologies. Here, we present a simple and standardized protocol that allows for the purification and sequencing of RNA viromes from complex biological samples with an important reduction of host DNA and RNA contaminants, while preserving the infectivity of viral particles. Principal Findings We evaluated different viral purification steps, random reverse transcriptions and sequence-independent amplifications of a pool of representative RNA viruses. Viruses remained infectious after the purification process. We then validated the protocol by sequencing the RNA virome of human body lice engorged in vitro with artificially contaminated human blood. The full genomes of the most abundant viruses absorbed by the lice during the blood meal were successfully sequenced. Interestingly, random amplifications differed in the genome coverage of segmented RNA viruses. Moreover, the majority of reads were taxonomically identified, and only 7–15% of all reads were classified as “unknown”, depending on the random amplification method. Conclusion The protocol reported here could easily be applied to generate RNA viral metagenomes from complex biological samples of different origins. Our protocol allows further virological characterizations of the described viral communities because it preserves the infectivity of viral particles and allows for the isolation of viruses. PMID:26431175
Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera).
Galbraith, David A; Yang, Xingyu; Niño, Elina Lastro; Yi, Soojin; Grozinger, Christina
2015-03-01
Populations of honey bees are declining throughout the world, with US beekeepers losing 30% of their colonies each winter. Though multiple factors are driving these colony losses, it is increasingly clear that viruses play a major role. However, information about the molecular mechanisms mediating antiviral immunity in honey bees is surprisingly limited. Here, we examined the transcriptional and epigenetic (DNA methylation) responses to viral infection in honey bee workers. One-day old worker honey bees were fed solutions containing Israeli Acute Paralysis Virus (IAPV), a virus which causes muscle paralysis and death and has previously been associated with colony loss. Uninfected control and infected, symptomatic bees were collected within 20-24 hours after infection. Worker fat bodies, the primary tissue involved in metabolism, detoxification and immune responses, were collected for analysis. We performed transcriptome- and bisulfite-sequencing of the worker fat bodies to identify genome-wide gene expression and DNA methylation patterns associated with viral infection. There were 753 differentially expressed genes (FDR<0.05) in infected versus control bees, including several genes involved in epigenetic and antiviral pathways. DNA methylation status of 156 genes (FDR<0.1) changed significantly as a result of the infection, including those involved in antiviral responses in humans. There was no significant overlap between the significantly differentially expressed and significantly differentially methylated genes, and indeed, the genomic characteristics of these sets of genes were quite distinct. Our results indicate that honey bees have two distinct molecular pathways, mediated by transcription and methylation, that modulate protein levels and/or function in response to viral infections.
Lee, Se Hee; Baek, Yun Hee; Kim, Yang-Hoon; Choi, Young-Ki; Song, Min-Suk; Ahn, Ji-Young
2017-01-01
Due to the limitation of rapid development of specific antiviral drug or vaccine for novel emerging viruses, an accurate and rapid diagnosis is a key to manage the virus spread. We developed an efficient and rapid method with high specificity for the Middle East Respiratory Syndrome coronavirus (MERS-CoV), based on one-pot reverse transcription loop-mediated isothermal amplification (one-pot RT-LAMP). A set of six LAMP primers [F3, B3, FIP, BIP, LF (Loop-F), and LB (Loop-B)] were designed using the sequence of nucleocapsid (N) gene with optimized RT-LAMP enzyme conditions: 100 U M-MLV RTase and 4 U Bst polymerase, implying that the reaction was able to detect four infectious viral genome copies of MERS-CoV within a 60 min reaction time period. Significantly, EvaGreen dye has better signal read-out properties in one-pot RT-LAMP reaction and is more compatible with DNA polymerase than SYBR green I. Isothermally amplified specific N genes were further evaluated using field-deployable microchamber devices, leading to the specific identification of as few as 0.4 infectious viral genome copies, with no cross-reaction to the other acute respiratory disease viruses, including influenza type A (H1N1 and H3N2), type B, human coronavirus 229E, and human metapneumovirus. This sensitive, specific and feasible method provides a large-scale technical support in emergencies, and is also applied as a sample-to-detection module in Point of Care Testing devices. PMID:28119682
Interplay between SIRT1 and hepatitis B virus X protein in the activation of viral transcription.
Deng, Jian-Jun; Kong, Ka-Yiu Edwin; Gao, Wei-Wei; Tang, Hei-Man Vincent; Chaudhary, Vidyanath; Cheng, Yun; Zhou, Jie; Chan, Chi-Ping; Wong, Danny Ka-Ho; Yuen, Man-Fung; Jin, Dong-Yan
2017-04-01
Hepatitis B virus (HBV) genome is organized into a minichromosome known as covalently closed circular DNA (cccDNA), which serves as the template for all viral transcripts. SIRT1 is an NAD + -dependent protein deacetylase which activates HBV transcription by promoting the activity of cellular transcription factors and coactivators. How SIRT1 and viral transactivator X protein (HBx) might affect each other remains to be clarified. In this study we show synergy and mutual dependence between SIRT1 and HBx in the activation of HBV transcription. All human sirtuins SIRT1 through SIRT7 activated HBV gene expression. The steady-state levels of SIRT1 protein were elevated in HBV-infected liver tissues and HBV-replicating hepatoma cells. SIRT1 interacted with HBx and potentiated HBx transcriptional activity on precore promoter and covalently closed circular DNA (cccDNA) likely through a deacetylase-independent mechanism, leading to more robust production of cccDNA, pregenomic RNA and surface antigen. SIRT1 and HBx proteins were more abundant when both were expressed. SIRT1 promoted the recruitment of HBx as well as cellular transcriptional factors and coactivators such as PGC-1α and FXRα to cccDNA. Depletion of SIRT1 suppressed HBx recruitment. On the other hand, SIRT1 recruitment to cccDNA was compromised when HBx was deficient. Whereas pharmaceutical agonists of SIRT1 such as resveratrol activated HBV transcription, small-molecule inhibitors of SIRT1 including sirtinol and Ex527 exhibited anti-HBV activity. Taken together, our findings revealed not only the interplay between SIRT1 and HBx in the activation of HBV transcription but also new strategies and compounds for developing antivirals against HBV. Copyright © 2017 Elsevier B.V. All rights reserved.
2011-01-01
Background In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus Polerovirus, family Luteoviridae. Results Deep sequencing of small RNAs (sRNAs) from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt) long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. Conclusions This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases. PMID:21864377
Selenium Potentiates Chemotherapeutic Selectivity: Improving Efficacy and Reducing Toxicity
2007-04-01
regulates the rate-limiting step in global genomic repair through transcriptional control of the DNA damage recognition proteins xeroderma pigmentosum ...31). Xeroderma pigmentosum XPA cells defective in DNA repair served as a negative control for some experiments, as previously described (28). Cell...simian virus 40-transformed human cells. Mol Carcinog 2000;29:17–24. 14. Hwang BJ, Ford JM, Hanawalt PC, Chu G. Expression of the p48 xeroderma pigmentosum
Sztuba-Solinska, Joanna; Diaz, Larissa; Kumar, Mia R.; Kolb, Gaëlle; Wiley, Michael R.; Jozwick, Lucas; Kuhn, Jens H.; Palacios, Gustavo; Radoshitzky, Sheli R.; J. Le Grice, Stuart F.; Johnson, Reed F.
2016-01-01
Ebola virus (EBOV) is a single-stranded negative-sense RNA virus belonging to the Filoviridae family. The leader and trailer non-coding regions of the EBOV genome likely regulate its transcription, replication, and progeny genome packaging. We investigated the cis-acting RNA signals involved in RNA–RNA and RNA–protein interactions that regulate replication of eGFP-encoding EBOV minigenomic RNA and identified heat shock cognate protein family A (HSC70) member 8 (HSPA8) as an EBOV trailer-interacting host protein. Mutational analysis of the trailer HSPA8 binding motif revealed that this interaction is essential for EBOV minigenome replication. Selective 2′-hydroxyl acylation analyzed by primer extension analysis of the secondary structure of the EBOV minigenomic RNA indicates formation of a small stem-loop composed of the HSPA8 motif, a 3′ stem-loop (nucleotides 1868–1890) that is similar to a previously identified structure in the replicative intermediate (RI) RNA and a panhandle domain involving a trailer-to-leader interaction. Results of minigenome assays and an EBOV reverse genetic system rescue support a role for both the panhandle domain and HSPA8 motif 1 in virus replication. PMID:27651462
Detection of measles, mumps, and rubella viruses.
Tipples, Graham; Hiebert, Joanne
2011-01-01
Measles, mumps, and rubella are infections caused by RNA viruses of the same name and are vaccine preventable. The vaccines are frequently administered in a trivalent form. Laboratory diagnostic methods can include indirect detection via antibody (IgM and IgG) detection methods and direct detection by viral culture or viral genome detection. There are challenges for the laboratory in areas with low prevalence due to high vaccine uptake. In those areas, routine serological methods such as IgM detection may have a reduced positive predictive value and thus require confirmation by other methods. Direct detection of viral genomic material using reverse transcription polymerase chain reaction (RT-PCR) methodologies can play an important role for laboratory confirmation of acute infections. Furthermore, genotyping of these three viruses provides useful molecular epidemiological data for differentiating vaccine from wild-type strains, linking cases and outbreaks, and tracking geographic spread and elimination. The purpose of this chapter is to provide guidance for the laboratory diagnosis of measles, mumps, and rubella virus infections. Where assays are commercially available or previously published, the appropriate references are provided as well as brief comments on the interpretation of results. Detailed protocols are provided for the molecular assays which have been developed and more commonly applied in recent years.