NASA Astrophysics Data System (ADS)
Drillien, Robert; Spehner, Daniele; Kirn, Andre; Giraudon, Pascale; Buckland, Robin; Wild, Fabian; Lecocq, Jean-Pierre
1988-02-01
Vaccinia virus recombinants encoding the hemagglutinin or fusion protein of measles virus have been constructed. Infection of cell cultures with the recombinants led to the synthesis of authentic measles proteins as judged by their electrophoretic mobility, recognition by antibodies, glycosylation, proteolytic cleavage, and presentation on the cell surface. Mice vaccinated with a single dose of the recombinant encoding the hemagglutinin protein developed antibodies capable of both inhibiting hemagglutination activity and neutralizing measles virus, whereas animals vaccinated with the recombinant encoding the fusion protein developed measles neutralizing antibodies. Mice vaccinated with either of the recombinants resisted a normally lethal intracerebral inoculation of a cell-associated measles virus subacute sclerosing panencephalitis strain.
Valles, Steven M; Bell, Susanne; Firth, Andrew E
2014-01-01
Solenopsis invicta virus 3 (SINV-3) is a positive-sense single-stranded RNA virus that infects the red imported fire ant, Solenopsis invicta. We show that the second open reading frame (ORF) of the dicistronic genome is expressed via a frameshifting mechanism and that the sequences encoding the structural proteins map to both ORF2 and the 3' end of ORF1, downstream of the sequence that encodes the RNA-dependent RNA polymerase. The genome organization and structural protein expression strategy resemble those of Acyrthosiphon pisum virus (APV), an aphid virus. The capsid protein that is encoded by the 3' end of ORF1 in SINV-3 and APV is predicted to have a jelly-roll fold similar to the capsid proteins of picornaviruses and caliciviruses. The capsid-extension protein that is produced by frameshifting, includes the jelly-roll fold domain encoded by ORF1 as its N-terminus, while the C-terminus encoded by the 5' half of ORF2 has no clear homology with other viral structural proteins. A third protein, encoded by the 3' half of ORF2, is associated with purified virions at sub-stoichiometric ratios. Although the structural proteins can be translated from the genomic RNA, we show that SINV-3 also produces a subgenomic RNA encoding the structural proteins. Circumstantial evidence suggests that APV may also produce such a subgenomic RNA. Both SINV-3 and APV are unclassified picorna-like viruses distantly related to members of the order Picornavirales and the family Caliciviridae. Within this grouping, features of the genome organization and capsid domain structure of SINV-3 and APV appear more similar to caliciviruses, perhaps suggesting the basis for a "Calicivirales" order.
USDA-ARS?s Scientific Manuscript database
Bean pod mottle virus (BPMV) is a bipartite, positive sense (+) RNA plant virus in the Secoviridae family. Its RNA1 encodes proteins required for genome replication, whereas RNA2 primarily encodes proteins needed for virion assembly and cell-to-cell movement. However, the function of a 58 kilo-dalto...
Music, Nedzad; Gagnon, Carl A
2010-12-01
Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating viral disease affecting the swine industry worldwide. The etiological agent, PRRS virus (PRRSV), possesses a RNA viral genome with nine open reading frames (ORFs). The ORF1a and ORF1b replicase-associated genes encode the polyproteins pp1a and pp1ab, respectively. The pp1a is processed in nine non-structural proteins (nsps): nsp1α, nsp1β, and nsp2 to nsp8. Proteolytic cleavage of pp1ab generates products nsp9 to nsp12. The proteolytic pp1a cleavage products process and cleave pp1a and pp1ab into nsp products. The nsp9 to nsp12 are involved in virus genome transcription and replication. The 3' end of the viral genome encodes four minor and three major structural proteins. The GP(2a), GP₃ and GP₄ (encoded by ORF2a, 3 and 4), are glycosylated membrane associated minor structural proteins. The fourth minor structural protein, the E protein (encoded by ORF2b), is an unglycosylated membrane associated protein. The viral envelope contains two major structural proteins: a glycosylated major envelope protein GP₅ (encoded by ORF5) and an unglycosylated membrane M protein (encoded by ORF6). The third major structural protein is the nucleocapsid N protein (encoded by ORF7). All PRRSV non-structural and structural proteins are essential for virus replication, and PRRSV infectivity is relatively intolerant to subtle changes within the structural proteins. PRRSV virulence is multigenic and resides in both the non-structural and structural viral proteins. This review discusses the molecular characteristics, biological and immunological functions of the PRRSV structural and nsps and their involvement in the virus pathogenesis.
French, Roy
2016-01-01
ABSTRACT Superinfection exclusion (SIE) is an antagonistic virus-virus interaction whereby initial infection by one virus prevents subsequent infection by closely related viruses. Although SIE has been described in diverse viruses infecting plants, humans, and animals, its mechanisms, including involvement of specific viral determinants, are just beginning to be elucidated. In this study, SIE determinants encoded by two economically important wheat viruses, Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) and Triticum mosaic virus (TriMV; genus Poacevirus, family Potyviridae), were identified in gain-of-function experiments that used heterologous viruses to express individual virus-encoded proteins in wheat. Wheat plants infected with TriMV expressing WSMV P1, HC-Pro, P3, 6K1, CI, 6K2, NIa-VPg, or NIb cistrons permitted efficient superinfection by WSMV expressing green fluorescent protein (WSMV-GFP). In contrast, wheat infected with TriMV expressing WSMV NIa-Pro or coat protein (CP) substantially excluded superinfection by WSMV-GFP, suggesting that both of these cistrons are SIE effectors encoded by WSMV. Importantly, SIE is due to functional WSMV NIa-Pro or CP rather than their encoding RNAs, as altering the coded protein products by minimally changing RNA sequences led to abolishment of SIE. Deletion mutagenesis further revealed that elicitation of SIE by NIa-Pro requires the entire protein while CP requires only a 200-amino-acid (aa) middle fragment (aa 101 to 300) of the 349 aa. Strikingly, reciprocal experiments with WSMV-mediated expression of TriMV proteins showed that TriMV CP, and TriMV NIa-Pro to a lesser extent, likewise excluded superinfection by TriMV-GFP. Collectively, these data demonstrate that WSMV- and TriMV-encoded CP and NIa-Pro proteins are effectors of SIE and that these two proteins trigger SIE independently of each other. IMPORTANCE Superinfection exclusion (SIE) is an antagonistic virus-virus interaction that prevents secondary invasions by identical or closely related viruses in the same host cells. Although known to occur in diverse viruses, SIE remains an enigma in terms of key molecular determinants and action mechanisms. In this study, we found that Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) encode two independently functioning cistrons that serve as effectors of SIE at the protein but not the RNA level. The coat protein and NIa-Pro encoded by these two viruses, when expressed from a heterologous virus, exerted SIE to the cognate viruses. The identification of virus-encoded effectors of SIE and their transgenic expression could potentially facilitate the development of virus-resistant crop plants. Additionally, functional conservation of SIE in diverse virus groups suggests that a better understanding of the underlying mechanisms of SIE could facilitate the development of novel antiviral therapies against viral diseases. PMID:27681136
Wilton, Brianne A.; Campbell, Stephanie; Van Buuren, Nicholas; Garneau, Robyn; Furukawa, Manabu; Xiong, Yue; Barry., Michele
2008-01-01
Cellular proteins containing BTB and kelch domains have been shown to function as adapters for the recruitment of substrates to cullin-3-based ubiquitin ligases. Poxviruses are the only family of viruses known to encode multiple BTB/kelch proteins, suggesting that poxviruses may modulate the ubiquitin pathway through interaction with cullin-3. Ectromelia virus encodes four BTB/kelch proteins and one BTB-only protein. Here we demonstrate that two of the ectromelia virus encoded BTB/kelch proteins, EVM150 and EVM167, interacted with cullin-3. Similar to cellular BTB proteins, the BTB domain of EVM150 and EVM167 was necessary and sufficient for cullin-3 interaction. During infection, EVM150 and EVM167 localized to discrete cytoplasmic regions, which co-localized with cullin-3. Furthermore, EVM150 and EVM167 co-localized and interacted with conjugated ubiquitin, as demonstrated by confocal microscopy and co-immunoprecipitation. Our findings suggest that the ectromelia virus encoded BTB/kelch proteins, EVM150 and EVM167, interact with cullin-3 potentially functioning to recruit unidentified substrates for ubiquitination. PMID:18221766
Virus-encoded chemokine receptors--putative novel antiviral drug targets.
Rosenkilde, Mette M
2005-01-01
Large DNA viruses, in particular herpes- and poxviruses, have evolved proteins that serve as mimics or decoys for endogenous proteins in the host. The chemokines and their receptors serve key functions in both innate and adaptive immunity through control of leukocyte trafficking, and have as such a paramount role in the antiviral immune responses. It is therefore not surprising that viruses have found ways to exploit and subvert the chemokine system by means of molecular mimicry. By ancient acts of molecular piracy and by induction and suppression of endogenous genes, viruses have utilized chemokines and their receptors to serve a variety of roles in viral life-cycle. This review focuses on the pharmacology of virus-encoded chemokine receptors, yet also the family of virus-encoded chemokines and chemokine-binding proteins will be touched upon. Key properties of the virus-encoded receptors, compared to their closest endogenous homologs, are interactions with a wider range of chemokines, which can act as agonists, antagonists and inverse agonists, and the exploitation of many signal transduction pathways. High constitutive activity is another key property of some--but not all--of these receptors. The chemokine receptors belong to the superfamily of G-protein coupled 7TM receptors that per se are excellent drug targets. At present, non-peptide antagonists have been developed against many chemokine receptors. The potentials of the virus-encoded chemokine receptors as drug targets--ie. as novel antiviral strategies--will be highlighted here together with the potentials of the virus-encoded chemokines and chemokine-binding proteins as novel anti-inflammatory biopharmaceutical strategies.
Gauci, Penelope J.; Wu, Josh Q. H.; Rayner, George A.; Barabé, Nicole D.; Nagata, Leslie P.; Proll, David F.
2010-01-01
DNA vaccines encoding different portions of the structural proteins of western equine encephalitis virus were tested for the efficacy of their protection in a 100% lethal mouse model of the virus. The 6K-E1 structural protein encoded by the DNA vaccine conferred complete protection against challenge with the homologous strain and limited protection against challenge with a heterologous strain. PMID:19923571
Plant, Ewan P; Rakauskaite, Rasa; Taylor, Deborah R; Dinman, Jonathan D
2010-05-01
In retroviruses and the double-stranded RNA totiviruses, the efficiency of programmed -1 ribosomal frameshifting is critical for ensuring the proper ratios of upstream-encoded capsid proteins to downstream-encoded replicase enzymes. The genomic organizations of many other frameshifting viruses, including the coronaviruses, are very different, in that their upstream open reading frames encode nonstructural proteins, the frameshift-dependent downstream open reading frames encode enzymes involved in transcription and replication, and their structural proteins are encoded by subgenomic mRNAs. The biological significance of frameshifting efficiency and how the relative ratios of proteins encoded by the upstream and downstream open reading frames affect virus propagation has not been explored before. Here, three different strategies were employed to test the hypothesis that the -1 PRF signals of coronaviruses have evolved to produce the correct ratios of upstream- to downstream-encoded proteins. Specifically, infectious clones of the severe acute respiratory syndrome (SARS)-associated coronavirus harboring mutations that lower frameshift efficiency decreased infectivity by >4 orders of magnitude. Second, a series of frameshift-promoting mRNA pseudoknot mutants was employed to demonstrate that the frameshift signals of the SARS-associated coronavirus and mouse hepatitis virus have evolved to promote optimal frameshift efficiencies. Finally, we show that a previously described frameshift attenuator element does not actually affect frameshifting per se but rather serves to limit the fraction of ribosomes available for frameshifting. The findings of these analyses all support a "golden mean" model in which viruses use both programmed ribosomal frameshifting and translational attenuation to control the relative ratios of their encoded proteins.
A Survey of Protein Structures from Archaeal Viruses
Dellas, Nikki; Lawrence, C. Martin; Young, Mark J.
2013-01-01
Viruses that infect the third domain of life, Archaea, are a newly emerging field of interest. To date, all characterized archaeal viruses infect archaea that thrive in extreme conditions, such as halophilic, hyperthermophilic, and methanogenic environments. Viruses in general, especially those replicating in extreme environments, contain highly mosaic genomes with open reading frames (ORFs) whose sequences are often dissimilar to all other known ORFs. It has been estimated that approximately 85% of virally encoded ORFs do not match known sequences in the nucleic acid databases, and this percentage is even higher for archaeal viruses (typically 90%–100%). This statistic suggests that either virus genomes represent a larger segment of sequence space and/or that viruses encode genes of novel fold and/or function. Because the overall three-dimensional fold of a protein evolves more slowly than its sequence, efforts have been geared toward structural characterization of proteins encoded by archaeal viruses in order to gain insight into their potential functions. In this short review, we provide multiple examples where structural characterization of archaeal viral proteins has indeed provided significant functional and evolutionary insight. PMID:25371334
Graef, Katy M.; Vreede, Frank T.; Lau, Yuk-Fai; McCall, Amber W.; Carr, Simon M.; Subbarao, Kanta; Fodor, Ervin
2010-01-01
The PB2 subunit of the influenza virus RNA polymerase is a major virulence determinant of influenza viruses. However, the molecular mechanisms involved remain unknown. It was previously shown that the PB2 protein, in addition to its nuclear localization, also accumulates in the mitochondria. Here, we demonstrate that the PB2 protein interacts with the mitochondrial antiviral signaling protein, MAVS (also known as IPS-1, VISA, or Cardif), and inhibits MAVS-mediated beta interferon (IFN-β) expression. In addition, we show that PB2 proteins of influenza viruses differ in their abilities to associate with the mitochondria. In particular, the PB2 proteins of seasonal human influenza viruses localize to the mitochondria while PB2 proteins of avian influenza viruses are nonmitochondrial. This difference in localization is caused by a single amino acid polymorphism in the PB2 mitochondrial targeting signal. In order to address the functional significance of the mitochondrial localization of the PB2 protein in vivo, we have generated two recombinant human influenza viruses encoding either mitochondrial or nonmitochondrial PB2 proteins. We found that the difference in the mitochondrial localization of the PB2 proteins does not affect the growth of these viruses in cell culture. However, the virus encoding the nonmitochondrial PB2 protein induces higher levels of IFN-β and, in an animal model, is attenuated compared to the isogenic virus encoding a mitochondrial PB2. Overall this study implicates the PB2 protein in the regulation of host antiviral innate immune pathways and suggests an important role for the mitochondrial association of the PB2 protein in determining virulence. PMID:20538852
Ectromelia virus encodes a novel family of F-box proteins that interact with the SCF complex.
van Buuren, Nick; Couturier, Brianne; Xiong, Yue; Barry, Michele
2008-10-01
Poxviruses are notorious for encoding multiple proteins that regulate cellular signaling pathways, including the ubiquitin-proteasome system. Bioinformatics indicated that ectromelia virus, the causative agent of lethal mousepox, encoded four proteins, EVM002, EVM005, EVM154, and EVM165, containing putative F-box domains. In contrast to cellular F-box proteins, the ectromelia virus proteins contain C-terminal F-box domains in conjunction with N-terminal ankyrin repeats, a combination that has not been previously reported for cellular proteins. These observations suggested that the ectromelia virus F-box proteins interact with SCF (Skp1, cullin-1, and F-box) ubiquitin ligases. We focused our studies on EVM005, since this protein had only one ortholog in cowpox virus. Using mass spectrometry, we identified cullin-1 as a binding partner for EVM005, and this interaction was confirmed by overexpression of hemagglutinin (HA)-cullin-1. During infection, Flag-EVM005 and HA-cullin-1 colocalized to distinct cellular bodies. Significantly, EVM005 coprecipitated with endogenous Skp1, cullin-1, and Roc1 and associated with conjugated ubiquitin, suggesting that EVM005 interacted with the components of a functional ubiquitin ligase. Interaction of EVM005 with cullin-1 and Skp1 was abolished upon deletion of the F-box, indicating that the F-box played a crucial role in interaction with the SCF complex. Additionally, EVM002 and EVM154 interacted with Skp1 and conjugated ubiquitin, suggesting that ectromelia virus encodes multiple F-box-containing proteins that regulate the SCF complex. Our results indicate that ectromelia virus has evolved multiple proteins that interact with the SCF complex.
Marín-López, Alejandro; Ortego, Javier
2016-01-01
Modified Vaccinia Virus Ankara (MVA) is employed widely as an experimental vaccine vector for its lack of replication in mammalian cells and high expression level of foreign/heterologous genes. Recombinant MVAs (rMVAs) are used as platforms for protein production as well as vectors to generate vaccines against a high number of infectious diseases and other pathologies. The portrait of the virus combines desirable elements such as high-level biological safety, the ability to activate appropriate innate immune mediators upon vaccination, and the capacity to deliver substantial amounts of heterologous antigens. Recombinant MVAs encoding proteins of bluetongue virus (BTV), an Orbivirus that infects domestic and wild ruminants transmitted by biting midges of the Culicoides species, are excellent vaccine candidates against this virus. In this chapter we describe the methods for the generation of rMVAs encoding VP2, NS1, and VP7 proteins of bluetongue virus as a model example for orbiviruses. The protocols included cover the cloning of VP2, NS1, and VP7 BTV-4 genes in a transfer plasmid, the construction of recombinant MVAs, the titration of virus working stocks and the protein expression analysis by immunofluorescence and radiolabeling of rMVA infected cells as well as virus purification.
Stewart, Lucy R; Hwang, Min Sook; Falk, Bryce W
2009-11-01
Interactions of Lettuce infectious yellows virus (LIYV)-encoded proteins were tested by yeast-two-hybrid (Y2H) assays. LIYV-encoded P34, Hsp70h, P59, CP, CPm, and P26 were tested in all possible pairwise combinations. Interaction was detected only for the P26-P26 combination. P26 self-interaction domains were mapped using a series of N- and C-terminal truncations. Orthologous P26 proteins from the criniviruses Beet pseudoyellows virus (BPYV), Cucurbit yellow stunting disorder virus (CYSDV), and Lettuce chlorosis virus (LCV) were also tested, and each exhibited strong self-interaction but no interaction with orthologous proteins. Two small putative proteins encoded by LIYV RNA2, P5 and P9, were also tested for interactions with the six aforementioned LIYV proteins and each other. No interactions were detected for P5, but P9-P9 self-interaction was detected. P26- and P9-encoding genes are present in all described members of the genus Crinivirus, but are not present in other members of the family Closteroviridae. LIYV P26 has previously been demonstrated to induce a unique LIYV cytopathology, plasmalemma deposits (PLDs), but no role is yet known for P9.
Lin, Junyan; Guo, Jiangbo; Finer, John; Dorrance, Anne E.; Redinbaugh, Margaret G.
2014-01-01
ABSTRACT Bean pod mottle virus (BPMV) is a bipartite, positive-sense (+) RNA plant virus in the Secoviridae family. Its RNA1 encodes proteins required for genome replication, whereas RNA2 primarily encodes proteins needed for virion assembly and cell-to-cell movement. However, the function of a 58-kDa protein (P58) encoded by RNA2 has not been resolved. P58 and the movement protein (MP) of BPMV are two largely identical proteins differing only at their N termini, with P58 extending MP upstream by 102 amino acid residues. In this report, we unveil a unique role for P58. We show that BPMV RNA2 accumulation in infected cells was abolished when the start codon of P58 was eliminated. The role of P58 does not require the region shared by MP, as RNA2 accumulation in individual cells remained robust even when most of the MP coding sequence was removed. Importantly, the function of P58 required the P58 protein, rather than its coding RNA, as compensatory mutants could be isolated that restored RNA2 accumulation by acquiring new start codons upstream of the original one. Most strikingly, loss of P58 function could not be complemented by P58 provided in trans, suggesting that P58 functions in cis to selectively promote the accumulation of RNA2 copies that encode a functional P58 protein. Finally, we found that all RNA1-encoded proteins are cis-acting relative to RNA1. Together, our results suggest that P58 probably functions by recruiting the RNA1-encoded polyprotein to RNA2 to enable RNA2 reproduction. IMPORTANCE Bean pod mottle virus (BPMV) is one of the most important pathogens of the crop plant soybean, yet its replication mechanism is not well understood, hindering the development of knowledge-based control measures. The current study examined the replication strategy of BPMV RNA2, one of the two genomic RNA segments of this virus, and established an essential role for P58, one of the RNA2-encoded proteins, in the process of RNA2 replication. Our study demonstrates for the first time that P58 functions preferentially with the very RNA from which it is translated, thus greatly advancing our understanding of the replication mechanisms of this and related viruses. Furthermore, this study is important because it provides a potential target for BPMV-specific control, and hence could help to mitigate soybean production losses caused by this virus. PMID:24390330
USDA-ARS?s Scientific Manuscript database
Bean pod mottle virus (BPMV) is a bipartite, positive-sense (+) RNA plant virus of the family Secoviridae. Its RNA1 encodes all proteins needed for genome replication and is capable of autonomous replication. By contrast, BPMV RNA2 must utilize RNA1-encoded proteins for replication. Here, we sought ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hongbing; Franz, Carl J.; Wu, Guang
2014-02-15
Orsay virus is the first identified virus that is capable of naturally infecting Caenorhabditis elegans. Although it is most closely related to nodaviruses, Orsay virus differs from nodaviruses in its genome organization. In particular, the Orsay virus RNA2 segment encodes a putative novel protein of unknown function, termed delta, which is absent from all known nodaviruses. Here we present evidence that Orsay virus utilizes a ribosomal frameshifting strategy to express a novel fusion protein from the viral capsid (alpha) and delta ORFs. Moreover, the fusion protein was detected in purified virus fractions, demonstrating that it is most likely incorporated intomore » Orsay virions. Furthermore, N-terminal sequencing of both the fusion protein and the capsid protein demonstrated that these proteins must be translated from a non-canonical initiation site. While the function of the alpha–delta fusion remains cryptic, these studies provide novel insights into the fundamental properties of this new clade of viruses. - Highlights: • Orsay virus encodes a novel fusion protein by a ribosomal frameshifting mechanism. • Orsay capsid and fusion protein is translated from a non-canonical initiation site. • The fusion protein is likely incorporated into Orsay virions.« less
Role of Soybean mosaic virus-encoded proteins in seed and aphid transmission in soybean
USDA-ARS?s Scientific Manuscript database
Soybean mosaic virus (SMV) is seed and aphid transmitted and can cause significant reductions in yield and seed quality in soybean, Glycine max. The roles in seed and aphid transmission of selected SMV-encoded proteins were investigated by constructing chimeric recombinants between SMV 413 (efficien...
Haseloff, J; Goelet, P; Zimmern, D; Ahlquist, P; Dasgupta, R; Kaesberg, P
1984-01-01
The plant viruses alfalfa mosaic virus (AMV) and brome mosaic virus (BMV) each divide their genetic information among three RNAs while tobacco mosaic virus (TMV) contains a single genomic RNA. Amino acid sequence comparisons suggest that the single proteins encoded by AMV RNA 1 and BMV RNA 1 and by AMV RNA 2 and BMV RNA 2 are related to the NH2-terminal two-thirds and the COOH-terminal one-third, respectively, of the largest protein encoded by TMV. Separating these two domains in the TMV RNA sequence is an amber termination codon, whose partial suppression allows translation of the downstream domain. Many of the residues that the TMV read-through domain and the segmented plant viruses have in common are also conserved in a read-through domain found in the nonstructural polyprotein of the animal alphaviruses Sindbis and Middelburg. We suggest that, despite substantial differences in gene organization and expression, all of these viruses use related proteins for common functions in RNA replication. Reassortment of functional modules of coding and regulatory sequence from preexisting viral or cellular sources, perhaps via RNA recombination, may be an important mechanism in RNA virus evolution. PMID:6611550
Plant, Ewan P.; Rakauskaitė, Rasa; Taylor, Deborah R.; Dinman, Jonathan D.
2010-01-01
In retroviruses and the double-stranded RNA totiviruses, the efficiency of programmed −1 ribosomal frameshifting is critical for ensuring the proper ratios of upstream-encoded capsid proteins to downstream-encoded replicase enzymes. The genomic organizations of many other frameshifting viruses, including the coronaviruses, are very different, in that their upstream open reading frames encode nonstructural proteins, the frameshift-dependent downstream open reading frames encode enzymes involved in transcription and replication, and their structural proteins are encoded by subgenomic mRNAs. The biological significance of frameshifting efficiency and how the relative ratios of proteins encoded by the upstream and downstream open reading frames affect virus propagation has not been explored before. Here, three different strategies were employed to test the hypothesis that the −1 PRF signals of coronaviruses have evolved to produce the correct ratios of upstream- to downstream-encoded proteins. Specifically, infectious clones of the severe acute respiratory syndrome (SARS)-associated coronavirus harboring mutations that lower frameshift efficiency decreased infectivity by >4 orders of magnitude. Second, a series of frameshift-promoting mRNA pseudoknot mutants was employed to demonstrate that the frameshift signals of the SARS-associated coronavirus and mouse hepatitis virus have evolved to promote optimal frameshift efficiencies. Finally, we show that a previously described frameshift attenuator element does not actually affect frameshifting per se but rather serves to limit the fraction of ribosomes available for frameshifting. The findings of these analyses all support a “golden mean” model in which viruses use both programmed ribosomal frameshifting and translational attenuation to control the relative ratios of their encoded proteins. PMID:20164235
Cousins, Emily; Nicholas, John
2014-01-01
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the second identified human gammaherpesvirus. Like its relative Epstein-Barr virus, HHV-8 is linked to B-cell tumors, specifically primary effusion lymphoma and multicentric Castleman's disease, in addition to endothelial-derived KS. HHV-8 is unusual in its possession of a plethora of "accessory" genes and encoded proteins in addition to the core, conserved herpesvirus and gammaherpesvirus genes that are necessary for basic biological functions of these viruses. The HHV-8 accessory proteins specify not only activities deducible from their cellular protein homologies but also novel, unsuspected activities that have revealed new mechanisms of virus-host interaction that serve virus replication or latency and may contribute to the development and progression of virus-associated neoplasia. These proteins include viral interleukin-6 (vIL-6), viral chemokines (vCCLs), viral G protein-coupled receptor (vGPCR), viral interferon regulatory factors (vIRFs), and viral antiapoptotic proteins homologous to FLICE (FADD-like IL-1β converting enzyme)-inhibitory protein (FLIP) and survivin. Other HHV-8 proteins, such as signaling membrane receptors encoded by open reading frames K1 and K15, also interact with host mechanisms in unique ways and have been implicated in viral pathogenesis. Additionally, a set of micro-RNAs encoded by HHV-8 appear to modulate expression of multiple host proteins to provide conditions conducive to virus persistence within the host and could also contribute to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.
Noel, Eric A; Kang, Ming; Adamec, Jiri; Van Etten, James L; Oyler, George A
2014-12-01
The ubiquitin-proteasome system is targeted by many viruses that have evolved strategies to redirect host ubiquitination machinery. Members of the genus Chlorovirus are proposed to share an ancestral lineage with a broader group of related viruses, nucleo-cytoplasmic large DNA viruses (NCLDV). Chloroviruses encode an Skp1 homolog and ankyrin repeat (ANK) proteins. Several chlorovirus-encoded ANK repeats contain C-terminal domains characteristic of cellular F-boxes or related NCLDV chordopox PRANC (pox protein repeats of ankyrin at C-terminal) domains. These observations suggested that this unique combination of Skp1 and ANK repeat proteins might form complexes analogous to the cellular Skp1-Cul1-F-box (SCF) ubiquitin ligase complex. We identified two ANK proteins from the prototypic chlorovirus Paramecium bursaria chlorella virus-1 (PBCV-1) that functioned as binding partners for the virus-encoded Skp1, proteins A682L and A607R. These ANK proteins had a C-terminal Skp1 interactional motif that functioned similarly to cellular F-box domains. A C-terminal motif of ANK protein A682L binds Skp1 proteins from widely divergent species. Yeast two-hybrid analyses using serial domain deletion constructs confirmed the C-terminal localization of the Skp1 interactional motif in PBCV-1 A682L. ANK protein A607R represents an ANK family with one member present in all 41 sequenced chloroviruses. A comprehensive phylogenetic analysis of these related ANK and viral Skp1 proteins suggested partnered function tailored to the host alga or common ancestral heritage. Here, we show protein-protein interaction between corresponding family clusters of virus-encoded ANK and Skp1 proteins from three chlorovirus types. Collectively, our results indicate that chloroviruses have evolved complementing Skp1 and ANK proteins that mimic cellular SCF-associated proteins. Viruses have evolved ways to direct ubiquitination events in order to create environments conducive to their replication. As reported in the manuscript, the large chloroviruses encode several components involved in the SCF ubiquitin ligase complex including a viral Skp1 homolog. Studies on how chloroviruses manipulate their host algal ubiquitination system will provide insights toward viral protein mimicry, substrate recognition, and key interactive domains controlling selective protein degradation. These findings may also further understanding of the evolution of other large DNA viruses, like poxviruses, that are reported to share the same monophyly lineage as chloroviruses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Ectromelia virus encodes an anti-apoptotic protein that regulates cell death.
Mehta, Ninad; Taylor, John; Quilty, Douglas; Barry, Michele
2015-01-15
Apoptosis serves as a powerful defense against damaged or pathogen-infected cells. Since apoptosis is an effective defense against viral infection, many viruses including poxviruses, encode proteins to prevent or delay apoptosis. Here we show that ectromelia virus, the causative agent of mousepox encodes an anti-apoptotic protein EVM025. Here we demonstrate that expression of functional EVM025 is crucial to prevent apoptosis triggered by virus infection and staurosporine. We demonstrate that the expression of EVM025 prevents the conformational activation of the pro-apoptotic proteins Bak and Bax, allowing the maintenance of mitochondrial membrane integrity upon infection with ECTV. Additionally, EVM025 interacted with intracellular Bak. We were able to demonstrate that EVM025 ability to inhibit Bax activation is a function of its ability to inhibit the activity of an upstream BH3 only protein Bim. Collectively, our data indicates that EVM025 inhibits apoptosis by sequestering Bak and inhibiting the activity of Bak and Bax. Copyright © 2014 Elsevier Inc. All rights reserved.
Drosophila Nora virus capsid proteins differ from those of other picorna-like viruses.
Ekström, Jens-Ola; Habayeb, Mazen S; Srivastava, Vaibhav; Kieselbach, Thomas; Wingsle, Gunnar; Hultmark, Dan
2011-09-01
The recently discovered Nora virus from Drosophila melanogaster is a single-stranded RNA virus. Its published genomic sequence encodes a typical picorna-like cassette of replicative enzymes, but no capsid proteins similar to those in other picorna-like viruses. We have now done additional sequencing at the termini of the viral genome, extending it by 455 nucleotides at the 5' end, but no more coding sequence was found. The completeness of the final 12,333-nucleotide sequence was verified by the production of infectious virus from the cloned genome. To identify the capsid proteins, we purified Nora virus particles and analyzed their proteins by mass spectrometry. Our results show that the capsid is built from three major proteins, VP4A, B and C, encoded in the fourth open reading frame of the viral genome. The viral particles also contain traces of a protein from the third open reading frame, VP3. VP4A and B are not closely related to other picorna-like virus capsid proteins in sequence, but may form similar jelly roll folds. VP4C differs from the others and is predicted to have an essentially α-helical conformation. In a related virus, identified from EST database sequences from Nasonia parasitoid wasps, VP4C is encoded in a separate open reading frame, separated from VP4A and B by a frame-shift. This opens a possibility that VP4C is produced in non-equimolar quantities. Altogether, our results suggest that the Nora virus capsid has a different protein organization compared to the order Picornavirales. Copyright © 2011 Elsevier B.V. All rights reserved.
Nogales, Aitor; Martinez-Sobrido, Luis
2016-01-01
ABSTRACT Influenza virus NS1 protein is a nonstructural, multifunctional protein that counteracts host innate immune responses, modulating virus pathogenesis. NS1 protein variability in subjects infected with H3N2 influenza A viruses (IAVs) during the 2010/2011 season was analyzed, and amino acid changes in residues 86, 189, and 194 were found. The consequences of these mutations for the NS1-mediated inhibition of IFN responses and the pathogenesis of the virus were evaluated, showing that NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, most probably because these mutations decreased the binding of NS1 to the cleavage and polyadenylation specificity factor 30 (CPSF30). A recombinant A/Puerto Rico/8/34 (PR8) H1N1 virus encoding the H3N2 NS1-D189N protein was slightly attenuated, whereas the virus encoding the H3N2 NS1-V194I protein was further attenuated in mice. The higher attenuation of this virus could not be explained by differences in the ability of the two NS1 proteins to counteract host innate immune responses, indicating that another factor must be responsible. In fact, we showed that the virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive (ts) phenotype, providing a most likely explanation for the stronger attenuation observed. As far as we know, this is the first description of a mutation in NS1 residue 194 conferring a ts phenotype. These studies are relevant in order to identify new residues important for NS1 functions and in human influenza virus surveillance to assess mutations affecting the pathogenicity of circulating viruses. IMPORTANCE Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease that is most effectively prevented through vaccination. The multifunctional nonstructural protein 1 (NS1) is the main viral factor counteracting the host antiviral response. Therefore, influenza virus surveillance to identify new mutations in the NS1 protein affecting the pathogenicity of the circulating viruses is highly important. In this work, we evaluated amino acid variability in the NS1 proteins from H3N2 human seasonal viruses and the effect of the mutations on innate immune responses and virus pathogenesis. NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, and recombinant viruses harboring these mutations were attenuated in a mouse model of influenza infection. Interestingly, a virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive phenotype, further attenuating the virus in vivo. PMID:28003482
Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L
2017-03-01
Influenza virus NS1 protein is a nonstructural, multifunctional protein that counteracts host innate immune responses, modulating virus pathogenesis. NS1 protein variability in subjects infected with H3N2 influenza A viruses (IAVs) during the 2010/2011 season was analyzed, and amino acid changes in residues 86, 189, and 194 were found. The consequences of these mutations for the NS1-mediated inhibition of IFN responses and the pathogenesis of the virus were evaluated, showing that NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, most probably because these mutations decreased the binding of NS1 to the cleavage and polyadenylation specificity factor 30 (CPSF30). A recombinant A/Puerto Rico/8/34 (PR8) H1N1 virus encoding the H3N2 NS1-D189N protein was slightly attenuated, whereas the virus encoding the H3N2 NS1-V194I protein was further attenuated in mice. The higher attenuation of this virus could not be explained by differences in the ability of the two NS1 proteins to counteract host innate immune responses, indicating that another factor must be responsible. In fact, we showed that the virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive (ts) phenotype, providing a most likely explanation for the stronger attenuation observed. As far as we know, this is the first description of a mutation in NS1 residue 194 conferring a ts phenotype. These studies are relevant in order to identify new residues important for NS1 functions and in human influenza virus surveillance to assess mutations affecting the pathogenicity of circulating viruses. IMPORTANCE Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease that is most effectively prevented through vaccination. The multifunctional nonstructural protein 1 (NS1) is the main viral factor counteracting the host antiviral response. Therefore, influenza virus surveillance to identify new mutations in the NS1 protein affecting the pathogenicity of the circulating viruses is highly important. In this work, we evaluated amino acid variability in the NS1 proteins from H3N2 human seasonal viruses and the effect of the mutations on innate immune responses and virus pathogenesis. NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, and recombinant viruses harboring these mutations were attenuated in a mouse model of influenza infection. Interestingly, a virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive phenotype, further attenuating the virus in vivo . Copyright © 2017 American Society for Microbiology.
Qiu, T; Lu, R H; Zhang, J; Zhu, Z Y
2001-07-01
The complete nucleotide sequence of M6 gene of grass carp hemorrhage virus (GCHV) was determined. It is 2039 nucleotides in length and contains a single large open reading frame that could encode a protein of 648 amino acids with predicted molecular mass of 68.7 kDa. Amino acid sequence comparison revealed that the protein encoded by GCHV M6 is closely related to the protein mu1 of mammalian reovirus. The M6 gene, encoding the major outer-capsid protein, was expressed using the pET fusion protein vector in Escherichia coli and detected by Western blotting using chicken anti-GCHV immunoglobulin (IgY). The result indicates that the protein encoded by M6 may share a putative Asn-42-Pro-43 proteolytic cleavage site with mu1.
Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.
Azad, Kimi; Banerjee, Manidipa; Johnson, John E
2017-09-29
Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.
Identification of a novel circular DNA virus in pig feces
USDA-ARS?s Scientific Manuscript database
Metagenomic analysis of fecal samples collected from a swine with diarrhea detected sequences encoding a replicase (Rep) protein typically found in small circular Rep-encoding ssDNA (CRESS-DNA) viruses. The complete 3,062 nucleotide genome was generated and found to encode two bi-directionally trans...
Chareza, Sarah; Slavkovic Lukic, Dragana; Liu, Yang; Räthe, Ann-Mareen; Münk, Carsten; Zabogli, Elisa; Pistello, Mauro; Löchelt, Martin
2012-03-15
Defined host-encoded feline APOBEC3 (feA3) cytidine deaminases efficiently restrict the replication and spread of exogenous retroviruses like Feline Immunodeficiency Virus (FIV) and Feline Foamy Virus (FFV) which developed different feA3 counter-acting strategies. Here we characterize the molecular interaction of FFV proteins with the diverse feA3 proteins. The FFV accessory protein Bet is the virus-encoded defense factor which is shown here to bind all feA3 proteins independent of whether they restrict FFV, a feature shared with FIV Vif that induces degradation of all feA3s including those that do not inactivate FIV. In contrast, only some feA3 proteins bind to FFV Gag, a pattern that in part reflects the restriction pattern detected. Additionally, one-domain feA3 proteins can homo- and hetero-dimerize in vitro, but a trans-dominant phenotype of any of the low-activity feA3 forms on FFV restriction by one of the highly-active feA3Z2 proteins was not detectable. Copyright © 2012 Elsevier Inc. All rights reserved.
Ferriol, I; Silva Junior, D M; Nigg, J C; Zamora-Macorra, E J; Falk, B W
2016-11-01
Torradoviruses, family Secoviridae, are emergent bipartite RNA plant viruses. RNA1 is ca. 7kb and has one open reading frame (ORF) encoding for the protease, helicase and RNA-dependent RNA polymerase (RdRp). RNA2 is ca. 5kb and has two ORFs. RNA2-ORF1 encodes for a putative protein with unknown function(s). RNA2-ORF2 encodes for a putative movement protein and three capsid proteins. Little is known about the replication and polyprotein processing strategies of torradoviruses. Here, the cleavage sites in the RNA2-ORF2-encoded polyproteins of two torradoviruses, Tomato marchitez virus isolate M (ToMarV-M) and tomato chocolate spot virus, were determined by N-terminal sequencing, revealing that the amino acid (aa) at the -1 position of the cleavage sites is a glutamine. Multiple aa sequence comparison confirmed that this glutamine is conserved among other torradoviruses. Finally, site-directed mutagenesis of conserved aas in the ToMarV-M RdRp and protease prevented substantial accumulation of viral coat proteins or RNAs. Copyright © 2016 Elsevier Inc. All rights reserved.
Aubrecht, Taryn G; Weil, Zachary M; Ariza, Maria Eugenia; Williams, Marshall; Reader, Brenda F; Glaser, Ronald; Sheridan, John F; Nelson, Randy J
2014-10-01
Most adult humans have been infected with Epstein-Barr virus (EBV) and carry the latent virus. The EBV genome codes for several proteins that form an early antigen complex important for viral replication; one of these proteins is deoxyuridine triphosphate nucleotidohydrolase (dUTPase). The EBV-encoded dUTPase can induce sickness responses in mice. Because stress can increase latent virus reactivation, we hypothesized that chronic restraint would exacerbate sickness behaviors elicited by EBV-encoded dUTPase. Male Swiss-Webster mice were injected daily for 15 days with either saline or EBV-encoded dUTPase. Additionally, half of the mice from each condition were either restrained for 3h daily or left undisturbed. Restraint stress impaired learning and memory in the passive avoidance chamber; impaired learning and memory was due to EBV-encoded dUTPase injected into restrained mice. EBV-encoded dUTPase induced sickness responses and restraint stress interacts with EBV-encoded dUTPase to exacerbate the sickness response. These data support a role for EBV-encoded dUTPase and restraint stress in altering the pathophysiology of EBV independent of viral replication. Copyright © 2014 Elsevier Inc. All rights reserved.
Das, Subash C; Panda, Debasis; Nayak, Debasis; Pattnaik, Asit K
2009-03-01
A recombinant vesicular stomatitis virus (VSV-PeGFP-M-MmRFP) encoding enhanced green fluorescent protein fused in frame with P (PeGFP) in place of P and a fusion matrix protein (monomeric red fluorescent protein fused in frame at the carboxy terminus of M [MmRFP]) at the G-L gene junction, in addition to wild-type (wt) M protein in its normal location, was recovered, but the MmRFP was not incorporated into the virions. Subsequently, we generated recombinant viruses (VSV-PeGFP-DeltaM-Mtc and VSV-DeltaM-Mtc) encoding M protein with a carboxy-terminal tetracysteine tag (Mtc) in place of the M protein. These recombinant viruses incorporated Mtc at levels similar to M in wt VSV, demonstrating recovery of infectious rhabdoviruses encoding and incorporating a tagged M protein. Virions released from cells infected with VSV-PeGFP-DeltaM-Mtc and labeled with the biarsenical red dye (ReAsH) were dually fluorescent, fluorescing green due to incorporation of PeGFP in the nucleocapsids and red due to incorporation of ReAsH-labeled Mtc in the viral envelope. Transport and subsequent association of M protein with the plasma membrane were shown to be independent of microtubules. Sequential labeling of VSV-DeltaM-Mtc-infected cells with the biarsenical dyes ReAsH and FlAsH (green) revealed that newly synthesized M protein reaches the plasma membrane in less than 30 min and continues to accumulate there for up to 2 1/2 hours. Using dually fluorescent VSV, we determined that following adsorption at the plasma membrane, the time taken by one-half of the virus particles to enter cells and to uncoat their nucleocapsids in the cytoplasm is approximately 28 min.
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus (MDV) elicits T-cell lymphomas in chickens. The MDV genome encodes an oncoprotein, Meq, with similarity to the Jun/Fos family of proteins. Similar to Jun, the leucine zipper region of Meq allows the formation of homo- and heterodimers. We have previously shown that Meq homodime...
Bombyx mori nucleopolyhedrovirus ORF101 encodes a budded virus envelope associated protein.
Chen, Huiqing; Li, Mei; Huang, Guoping; Mai, Weijun; Chen, Keping; Zhou, Yajing
2014-08-01
Orf101 (Bm101) of Bombyx mori nucleopolyhedrovirus (BmNPV) is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this study, Bm101 was characterized. Transcripts of Bm101 were detected from 24 through 96 h post infection (h p.i.) by RT-PCR. The corresponding protein was also detected from 24 to 96 h p.i. in BmNPV-infected BmN cells by Western blot analysis using a polyclonal antibody against Bm101. Western blot assay of occlusion-derived virus and budded virus (BV) preparations revealed that Bm101 encodes a 28-kDa structural protein that is associated with BV and is located in the envelope fraction of budded virions. In addition, confocal analysis showed that the protein was localized in the cytosol and cytoplasmic membrane in virus-infected cells. In conclusion, the available data suggest that Bm101 is a functional ORF of BmNPV and encodes a protein expressed in the late stage of the infection cycle that is associated with the BV envelope.
Toscana virus NSs protein promotes degradation of double-stranded RNA-dependent protein kinase.
Kalveram, Birte; Ikegami, Tetsuro
2013-04-01
Toscana virus (TOSV), which is transmitted by Phlebotomus spp. sandflies, is a major etiologic agent of aseptic meningitis and encephalitis in the Mediterranean. Like other members of the genus Phlebovirus of the family Bunyaviridae, TOSV encodes a nonstructural protein (NSs) in its small RNA segment. Although the NSs of Rift Valley fever virus (RVFV) has been identified as an important virulence factor, which suppresses host general transcription, inhibits transcription from the beta interferon promoter, and promotes the proteasomal degradation of double-stranded RNA-dependent protein kinase (PKR), little is known about the functions of NSs proteins encoded by less-pathogenic members of this genus. In this study we report that TOSV is able to downregulate PKR with similar efficiency as RVFV, while infection with the other phleboviruses-i.e., Punta Toro virus, sandfly fever Sicilian virus, or Frijoles virus-has no effect on cellular PKR levels. In contrast to RVFV, however, cellular transcription remains unaffected during TOSV infection. TOSV NSs protein promotes the proteasome-dependent downregulation of PKR and is able to interact with kinase-inactive PKR in infected cells.
Elfassi, E; Haseltine, W A; Dienstag, J L
1986-01-01
The genome of the hepatitis B virus (HBV) contains a sequence, designated X, capable of encoding a protein of 154 amino acids. To determine whether the putative protein synthesized from this region is antigenic, we examined the sera of HBV-infected patients for the ability to react with a hybrid protein that contained 133 amino acids encoded by the X region and portions of the bacterial ompF and beta-galactosidase genes. Some HBV-positive sera tested contained antibodies that specifically recognized the hybrid protein. All sera were from patients diagnosed as suffering from chronic active hepatitis. We conclude that the X region of HBV encodes a protein and that this protein is antigenic in some patients. Images PMID:3515347
Springfeld, Christoph; Darai, Gholamreza; Cattaneo, Roberto
2005-06-01
Rhabdoviruses are negative-stranded RNA viruses of the order Mononegavirales and have been isolated from vertebrates, insects, and plants. Members of the genus Lyssavirus cause the invariably fatal disease rabies, and a member of the genus Vesiculovirus, Chandipura virus, has recently been associated with acute encephalitis in children. We present here the complete genome sequence and transcription map of a rhabdovirus isolated from cultivated cells of hepatocellular carcinoma tissue from a moribund tree shrew. The negative-strand genome of tupaia rhabdovirus is composed of 11,440 nucleotides and encodes six genes that are separated by one or two intergenic nucleotides. In addition to the typical rhabdovirus genes in the order N-P-M-G-L, a gene encoding a small hydrophobic putative type I transmembrane protein of approximately 11 kDa was identified between the M and G genes, and the corresponding transcript was detected in infected cells. Similar to some Vesiculoviruses and many Paramyxovirinae, the P gene has a second overlapping reading frame that can be accessed by ribosomal choice and encodes a protein of 26 kDa, predicted to be the largest C protein of these virus families. Phylogenetic analyses of the tupaia rhabdovirus N and L genes show that the virus is distantly related to the Vesiculoviruses, Ephemeroviruses, and the recently characterized Flanders virus and Oita virus and further extends the sequence territory occupied by animal rhabdoviruses.
Springfeld, Christoph; Darai, Gholamreza; Cattaneo, Roberto
2005-01-01
Rhabdoviruses are negative-stranded RNA viruses of the order Mononegavirales and have been isolated from vertebrates, insects, and plants. Members of the genus Lyssavirus cause the invariably fatal disease rabies, and a member of the genus Vesiculovirus, Chandipura virus, has recently been associated with acute encephalitis in children. We present here the complete genome sequence and transcription map of a rhabdovirus isolated from cultivated cells of hepatocellular carcinoma tissue from a moribund tree shrew. The negative-strand genome of tupaia rhabdovirus is composed of 11,440 nucleotides and encodes six genes that are separated by one or two intergenic nucleotides. In addition to the typical rhabdovirus genes in the order N-P-M-G-L, a gene encoding a small hydrophobic putative type I transmembrane protein of approximately 11 kDa was identified between the M and G genes, and the corresponding transcript was detected in infected cells. Similar to some Vesiculoviruses and many Paramyxovirinae, the P gene has a second overlapping reading frame that can be accessed by ribosomal choice and encodes a protein of 26 kDa, predicted to be the largest C protein of these virus families. Phylogenetic analyses of the tupaia rhabdovirus N and L genes show that the virus is distantly related to the Vesiculoviruses, Ephemeroviruses, and the recently characterized Flanders virus and Oita virus and further extends the sequence territory occupied by animal rhabdoviruses. PMID:15890917
Cytokine Diedel and a viral homologue suppress the IMD pathway in Drosophila.
Lamiable, Olivier; Kellenberger, Christine; Kemp, Cordula; Troxler, Laurent; Pelte, Nadège; Boutros, Michael; Marques, Joao Trindade; Daeffler, Laurent; Hoffmann, Jules A; Roussel, Alain; Imler, Jean-Luc
2016-01-19
Viruses are obligatory intracellular parasites that suffer strong evolutionary pressure from the host immune system. Rapidly evolving viral genomes can adapt to this pressure by acquiring genes that counteract host defense mechanisms. For example, many vertebrate DNA viruses have hijacked cellular genes encoding cytokines or cytokine receptors to disrupt host cell communication. Insect viruses express suppressors of RNA interference or apoptosis, highlighting the importance of these cell intrinsic antiviral mechanisms in invertebrates. Here, we report the identification and characterization of a family of proteins encoded by insect DNA viruses that are homologous to a 12-kDa circulating protein encoded by the virus-induced Drosophila gene diedel (die). We show that die mutant flies have shortened lifespan and succumb more rapidly than controls when infected with Sindbis virus. This reduced viability is associated with deregulated activation of the immune deficiency (IMD) pathway of host defense and can be rescued by mutations in the genes encoding the homolog of IKKγ or IMD itself. Our results reveal an endogenous pathway that is exploited by insect viruses to modulate NF-κB signaling and promote fly survival during the antiviral response.
USDA-ARS?s Scientific Manuscript database
The complete genome sequence of Triticum mosaic virus (TriMV) has been determined to be 10,266 nucleotides encoding a large polyprotein of 3,112 amino acids. The proteins of TriMV possess only 33-44% (with NIb protein) and 15-29% (with P1 protein) amino acid identity with the reported members of Pot...
Palanisamy, Navaneethan; Goedecke, Ulrike; Jäger, Nils; Pöhlmann, Stefan; Winkler, Michael
2014-01-01
Reporter genes inserted into viral genomes enable the easy and rapid quantification of virus replication, which is instrumental to efficient in vitro screening of antiviral compounds or in vivo analysis of viral spread and pathogenesis. Based on a published design, we have generated several replication competent influenza A viruses carrying either fluorescent proteins or Gaussia luciferase. Reporter activity could be readily quantified in infected cultures, but the virus encoding Gaussia luciferase was more stable than viruses bearing fluorescent proteins and was therefore analyzed in detail. Quantification of Gaussia luciferase activity in the supernatants of infected culture allowed the convenient and highly sensitive detection of viral spread, and enzymatic activity correlated with the number of infectious particles released from infected cells. Furthermore, the Gaussia luciferase encoding virus allowed the sensitive quantification of the antiviral activity of the neuraminidase inhibitor (NAI) zanamivir and the host cell interferon-inducible transmembrane (IFITM) proteins 1–3, which are known to inhibit influenza virus entry. Finally, the virus was used to demonstrate that influenza A virus infection is sensitive to a modulator of endosomal cholesterol, in keeping with the concept that IFITMs inhibit viral entry by altering cholesterol levels in the endosomal membrane. In sum, we report the characterization of a novel influenza A reporter virus, which allows fast and sensitive detection of viral spread and its inhibition, and we show that influenza A virus entry is sensitive to alterations of endosomal cholesterol levels. PMID:24842154
Strecker, Thomas; Eichler, Robert; Meulen, Jan ter; Weissenhorn, Winfried; Dieter Klenk, Hans; Garten, Wolfgang; Lenz, Oliver
2003-10-01
Lassa virus is an enveloped virus with glycoprotein spikes on its surface. It contains an RNA ambisense genome that encodes the glycoprotein precursor GP-C, the nucleoprotein NP, the polymerase L, and the Z protein. Here we demonstrate that the Lassa virus Z protein (i). is abundant in viral particles, (ii). is strongly membrane associated, (iii). is sufficient in the absence of all other viral proteins to release enveloped particles, and (iv). contains two late domains, PTAP and PPXY, necessary for the release of virus-like particles. Our data provide evidence that Z is the Lassa virus matrix protein that is the driving force for virus particle release.
Kang, Sung-Hwan; Atallah, Osama O; Sun, Yong-Duo; Folimonova, Svetlana Y
2018-01-15
Viruses from the family Closteroviridae show an example of intra-genome duplications of more than one gene. In addition to the hallmark coat protein gene duplication, several members possess a tandem duplication of papain-like leader proteases. In this study, we demonstrate that domains encoding the L1 and L2 proteases in the Citrus tristeza virus genome underwent a significant functional divergence at the RNA and protein levels. We show that the L1 protease is crucial for viral accumulation and establishment of initial infection, whereas its coding region is vital for virus transport. On the other hand, the second protease is indispensable for virus infection of its natural citrus host, suggesting that L2 has evolved an important adaptive function that mediates virus interaction with the woody host. Copyright © 2017 Elsevier Inc. All rights reserved.
Yamada, Takashi; Onimatsu, Hideki; Van Etten, James L.
2007-01-01
Chlorella viruses or chloroviruses are large, icosahedral, plaque‐forming, double‐stranded‐DNA—containing viruses that replicate in certain strains of the unicellular green alga Chlorella. DNA sequence analysis of the 330‐kbp genome of Paramecium bursaria chlorella virus 1 (PBCV‐1), the prototype of this virus family (Phycodnaviridae), predict ∼366 protein‐encoding genes and 11 tRNA genes. The predicted gene products of ∼50% of these genes resemble proteins of known function, including many that are completely unexpected for a virus. In addition, the chlorella viruses have several features and encode many gene products that distinguish them from most viruses. These products include: (1) multiple DNA methyltransferases and DNA site‐specific endonucleases, (2) the enzymes required to glycosylate their proteins and synthesize polysaccharides such as hyaluronan and chitin, (3) a virus‐encoded K+ channel (called Kcv) located in the internal membrane of the virions, (4) a SET domain containing protein (referred to as vSET) that dimethylates Lys27 in histone 3, and (5) PBCV‐1 has three types of introns; a self‐splicing intron, a spliceosomal processed intron, and a small tRNA intron. Accumulating evidence indicates that the chlorella viruses have a very long evolutionary history. This review mainly deals with research on the virion structure, genome rearrangements, gene expression, cell wall degradation, polysaccharide synthesis, and evolution of PBCV‐1 as well as other related viruses. PMID:16877063
Endogenous murine leukemia virus-encoded proteins in radiation leukemias of BALB/c mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tress, E.; Pierotti, M.; DeLeo, A.B.
1982-02-01
To explore the role of endogenous retroviruses in radiation-induced leukemogenesis in the mouse, we have examined virus-encoded proteins in nine BALB/c leukemias by pulsechase labeling procedures and serological typing with monospecific and monoclonal antibodies. The major gag precursor protein, Pr65/sup gag/, was observed in all cases, but only three leukemias expressed detectable amounts of the glycosylated gag species, gP95/sup gag/, or its precursor, Pr75/sup gag/. No evidence was found for synthesis of gag-host fusion proteins. None of the leukemias released infectious xenotropic or dualtropic virus, but all nine expressed at least one env protein with xenotropic properties. In two instancesmore » a monoclonal antibody, 35/56, which is specific for the NuLV G/sub IX/ antigen, displayed a distinctive reactivity with this class of env protein, although this antibody is unreactive with replicating xenotropic viruses. An ecotropic/xenotropic recombinant env protein with the same 35/56 phenotype was observed in a leukemia induced by a strongly leukemogenic virus isolated from a BALB/c radiation leukemia.« less
Delfosse, Verónica C; Agrofoglio, Yamila C; Casse, María F; Kresic, Iván Bonacic; Hopp, H Esteban; Ziegler-Graff, Véronique; Distéfano, Ana J
2014-02-13
Plants employ RNA silencing as a natural defense mechanism against viruses. As a counter-defense, viruses encode silencing suppressor proteins (SSPs) that suppress RNA silencing. Most, but not all, the P0 proteins encoded by poleroviruses have been identified as SSP. In this study, we demonstrated that cotton leafroll dwarf virus (CLRDV, genus Polerovirus) P0 protein suppressed local silencing that was induced by sense or inverted repeat transgenes in Agrobacterium co-infiltration assay in Nicotiana benthamiana plants. A CLRDV full-length infectious cDNA clone that is able to infect N. benthamiana through Agrobacterium-mediated inoculation also inhibited local silencing in co-infiltration assays, suggesting that the P0 protein exhibits similar RNA silencing suppression activity when expressed from the full-length viral genome. On the other hand, the P0 protein did not efficiently inhibit the spread of systemic silencing signals. Moreover, Northern blotting indicated that the P0 protein inhibits the generation of secondary but not primary small interfering RNAs. The study of CLRDV P0 suppression activity may contribute to understanding the molecular mechanisms involved in the induction of cotton blue disease by CLRDV infection. Copyright © 2013 Elsevier B.V. All rights reserved.
Arboretum and Puerto Almendras viruses: two novel rhabdoviruses isolated from mosquitoes in Peru.
Vasilakis, Nikos; Castro-Llanos, Fanny; Widen, Steven G; Aguilar, Patricia V; Guzman, Hilda; Guevara, Carolina; Fernandez, Roberto; Auguste, Albert J; Wood, Thomas G; Popov, Vsevolod; Mundal, Kirk; Ghedin, Elodie; Kochel, Tadeusz J; Holmes, Edward C; Walker, Peter J; Tesh, Robert B
2014-04-01
Arboretum virus (ABTV) and Puerto Almendras virus (PTAMV) are two mosquito-associated rhabdoviruses isolated from pools of Psorophora albigenu and Ochlerotattus fulvus mosquitoes, respectively, collected in the Department of Loreto, Peru, in 2009. Initial tests suggested that both viruses were novel rhabdoviruses and this was confirmed by complete genome sequencing. Analysis of their 11 482 nt (ABTV) and 11 876 (PTAMV) genomes indicates that they encode the five canonical rhabdovirus structural proteins (N, P, M, G and L) with an additional gene (U1) encoding a small hydrophobic protein. Evolutionary analysis of the L protein indicates that ABTV and PTAMV are novel and phylogenetically distinct rhabdoviruses that cannot be classified as members of any of the eight currently recognized genera within the family Rhabdoviridae, highlighting the vast diversity of this virus family.
Arboretum and Puerto Almendras viruses: two novel rhabdoviruses isolated from mosquitoes in Peru
Castro-Llanos, Fanny; Widen, Steven G.; Aguilar, Patricia V.; Guzman, Hilda; Guevara, Carolina; Fernandez, Roberto; Auguste, Albert J.; Wood, Thomas G.; Popov, Vsevolod; Mundal, Kirk; Ghedin, Elodie; Kochel, Tadeusz J.; Holmes, Edward C.; Walker, Peter J.; Tesh, Robert B.
2014-01-01
Arboretum virus (ABTV) and Puerto Almendras virus (PTAMV) are two mosquito-associated rhabdoviruses isolated from pools of Psorophora albigenu and Ochlerotattus fulvus mosquitoes, respectively, collected in the Department of Loreto, Peru, in 2009. Initial tests suggested that both viruses were novel rhabdoviruses and this was confirmed by complete genome sequencing. Analysis of their 11 482 nt (ABTV) and 11 876 (PTAMV) genomes indicates that they encode the five canonical rhabdovirus structural proteins (N, P, M, G and L) with an additional gene (U1) encoding a small hydrophobic protein. Evolutionary analysis of the L protein indicates that ABTV and PTAMV are novel and phylogenetically distinct rhabdoviruses that cannot be classified as members of any of the eight currently recognized genera within the family Rhabdoviridae, highlighting the vast diversity of this virus family. PMID:24421116
Zamora, Paula F; Hu, Liya; Knowlton, Jonathan J; Lahr, Roni M; Moreno, Rodolfo A; Berman, Andrea J; Prasad, B V Venkataram; Dermody, Terence S
2018-05-16
Viral nonstructural proteins, which are not packaged into virions, are essential for replication of most viruses. Reovirus, a nonenveloped, double-stranded RNA (dsRNA) virus, encodes three nonstructural proteins that are required for viral replication and dissemination in the host. Reovirus nonstructural protein σNS is a single-stranded RNA (ssRNA)-binding protein that must be expressed in infected cells for production of viral progeny. However, activities of σNS during individual steps of the reovirus replication cycle are poorly understood. We explored the function of σNS by disrupting its expression during infection using cells expressing a small interfering RNA (siRNA) targeting the σNS-encoding S3 gene and found that σNS is required for viral genome replication. Using complementary biochemical assays, we determined that σNS forms complexes with viral and nonviral RNAs. We also discovered that σNS increases RNA half-life using in vitro and cell-based RNA degradation experiments. Cryo-electron microscopy revealed that σNS and ssRNAs organize into long, filamentous structures. Collectively, our findings indicate that σNS functions as an RNA-binding protein that increases viral RNA half-life. These results suggest that σNS forms RNA-protein complexes in preparation for genome replication. IMPORTANCE Following infection, viruses synthesize nonstructural proteins that mediate viral replication and promote dissemination. Viruses from the Reoviridae family encode nonstructural proteins that are required for the formation of progeny viruses. Although nonstructural proteins of different Reoviridae family viruses are diverged in primary sequence, these proteins are functionally homologous and appear to facilitate conserved mechanisms of dsRNA virus replication. Using in vitro and cell-culture approaches, we found that the mammalian reovirus nonstructural protein σNS binds and stabilizes viral RNA and is required for genome synthesis. This work contributes new knowledge about basic mechanisms of dsRNA virus replication and provides a foundation for future studies to determine how viruses in the Reoviridae family assort and replicate their genomes. Copyright © 2018 American Society for Microbiology.
Chlorella viruses contain genes encoding a complete polyamine biosynthetic pathway
Baumann, Sascha; Sander, Adrianne; Gurnon, James R.; Yanai-Balser, Giane; VanEtten, James L.; Piotrowski, Markus
2007-01-01
Two genes encoding the putative polyamine biosynthetic enzymes agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase (CPA) were cloned from the chloroviruses PBCV-1, NY-2A and MT325. They were expressed in Escherichia coli to form C-terminal (His)6-tagged proteins and the recombinant proteins were purified by Ni2+- binding affinity chromatography. The biochemical properties of the two enzymes are similar to AIH and CPA enzymes from Arabidopsis thaliana and Pseudomonas aeruginosa. Together with the previously known virus genes encoding ornithine/arginine decarboxlyase (ODC/ADC) and homospermidine synthase, the chloroviruses have genes that encode a complete set of functional enzymes that synthesize the rare polyamine homospermidine from arginine via agmatine, N-carbamoylputrescine and putrescine. The PBCV-1 aih and cpa genes are expressed early during virus infection together with the odc/adc gene, suggesting that biosynthesis of putrescine is important in early stages of viral replication. The aih and cpa genes are widespread in the chlorella viruses. PMID:17101165
Deltabaculoviruses encode a functional type I budded virus envelope fusion protein
USDA-ARS?s Scientific Manuscript database
Envelope fusion proteins (F proteins) are major constituents of budded viruses (BVs) of alpha- and betabaculoviruses (Baculoviridae) and are essential for the systemic infection of insect larvae and insect cells in culture. An F protein homolog gene was absent in gammabaculoviruses. Here we show tha...
Gupta, Adarsh K; Hein, Gary L; Graybosch, Robert A; Tatineni, Satyanarayana
2018-05-01
High Plains wheat mosaic virus (HPWMoV, genus Emaravirus; family Fimoviridae), transmitted by the wheat curl mite (Aceria tosichella Keifer), harbors a monocistronic octapartite single-stranded negative-sense RNA genome. In this study, putative proteins encoded by HPWMoV genomic RNAs 2-8 were screened for potential RNA silencing suppression activity by using a green fluorescent protein-based reporter agroinfiltration assay. We found that proteins encoded by RNAs 7 (P7) and 8 (P8) suppressed silencing induced by single- or double-stranded RNAs and efficiently suppressed the transitive pathway of RNA silencing. Additionally, a Wheat streak mosaic virus (WSMV, genus Tritimovirus; family Potyviridae) mutant lacking the suppressor of RNA silencing (ΔP1) but having either P7 or P8 from HPWMoV restored cell-to-cell and long-distance movement in wheat, thus indicating that P7 or P8 rescued silencing suppressor-deficient WSMV. Furthermore, HPWMoV P7 and P8 substantially enhanced the pathogenicity of Potato virus X in Nicotiana benthamiana. Collectively, these data demonstrate that the octapartite genome of HPWMoV encodes two suppressors of RNA silencing. Published by Elsevier Inc.
Toscana Virus NSs Protein Promotes Degradation of Double-Stranded RNA-Dependent Protein Kinase
Kalveram, Birte
2013-01-01
Toscana virus (TOSV), which is transmitted by Phlebotomus spp. sandflies, is a major etiologic agent of aseptic meningitis and encephalitis in the Mediterranean. Like other members of the genus Phlebovirus of the family Bunyaviridae, TOSV encodes a nonstructural protein (NSs) in its small RNA segment. Although the NSs of Rift Valley fever virus (RVFV) has been identified as an important virulence factor, which suppresses host general transcription, inhibits transcription from the beta interferon promoter, and promotes the proteasomal degradation of double-stranded RNA-dependent protein kinase (PKR), little is known about the functions of NSs proteins encoded by less-pathogenic members of this genus. In this study we report that TOSV is able to downregulate PKR with similar efficiency as RVFV, while infection with the other phleboviruses—i.e., Punta Toro virus, sandfly fever Sicilian virus, or Frijoles virus—has no effect on cellular PKR levels. In contrast to RVFV, however, cellular transcription remains unaffected during TOSV infection. TOSV NSs protein promotes the proteasome-dependent downregulation of PKR and is able to interact with kinase-inactive PKR in infected cells. PMID:23325696
Survey of Navy Funded Marine Mammal Research and Studies FY 00-01
2001-05-10
protein of canine distemper virus as a reporter system in order to evaluate 103 the humoral response to DNA-mediated vaccination in cetaceans. If...PCR/ RT PCR, DNA cloning and sequencing, etc. Efforts are ongoing to design and clone a vector encoding Canine Distemper Virus, a virus closely...alternative plasmid as our reporter gene delivery vector. This alternate plasmid will encode for Canine Distemper virus genes, closely related to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalime, Erin N.; Pekosz, Andrew, E-mail: apekosz@jhsph.edu
The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 inmore » addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function.« less
Xin, Min; Zhang, Peipei; Liu, Wenwen; Ren, Yingdang; Cao, Mengji; Wang, Xifeng
2017-10-01
The complete nucleotide sequence of a novel positive single-stranded (+ss) RNA virus, tentatively named watermelon virus A (WVA), was determined using a combination of three methods: RNA sequencing, small RNA sequencing, and Sanger sequencing. The full genome of WVA is comprised of 8,372 nucleotides (nt), excluding the poly (A) tail, and contains four open reading frames (ORFs). The largest ORF, ORF1 encodes a putative replication-associated polyprotein (RP) with three conserved domains. ORF2 and ORF4 encode a movement protein (MP) and coat protein (CP), respectively. The putative product encoded by ORF3, of an estimated molecular mass of 25 kDa, has no significant similarity with other proteins. Identity and phylogenetic analysis indicate that WVA is a new virus, closely related to members of the family Betaflexiviridae. However, the final taxonomic allocation of WVA within the family is yet to be determined.
Evolution and Structural Organization of the C Proteins of Paramyxovirinae
Karlin, David G.
2014-01-01
The phosphoprotein (P) gene of most Paramyxovirinae encodes several proteins in overlapping frames: P and V, which share a common N-terminus (PNT), and C, which overlaps PNT. Overlapping genes are of particular interest because they encode proteins originated de novo, some of which have unknown structural folds, challenging the notion that nature utilizes only a limited, well-mapped area of fold space. The C proteins cluster in three groups, comprising measles, Nipah, and Sendai virus. We predicted that all C proteins have a similar organization: a variable, disordered N-terminus and a conserved, α-helical C-terminus. We confirmed this predicted organization by biophysically characterizing recombinant C proteins from Tupaia paramyxovirus (measles group) and human parainfluenza virus 1 (Sendai group). We also found that the C of the measles and Nipah groups have statistically significant sequence similarity, indicating a common origin. Although the C of the Sendai group lack sequence similarity with them, we speculate that they also have a common origin, given their similar genomic location and structural organization. Since C is dispensable for viral replication, unlike PNT, we hypothesize that C may have originated de novo by overprinting PNT in the ancestor of Paramyxovirinae. Intriguingly, in measles virus and Nipah virus, PNT encodes STAT1-binding sites that overlap different regions of the C-terminus of C, indicating they have probably originated independently. This arrangement, in which the same genetic region encodes simultaneously a crucial functional motif (a STAT1-binding site) and a highly constrained region (the C-terminus of C), seems paradoxical, since it should severely reduce the ability of the virus to adapt. The fact that it originated twice suggests that it must be balanced by an evolutionary advantage, perhaps from reducing the size of the genetic region vulnerable to mutations. PMID:24587180
[Entification of the Rubella virus genotype 1H in Western Siberia].
Seregin, S V; Babkin, I V; Petrova, I D; Iashina, L N; Malkova, E M; Petrov, V S
2011-01-01
Molecular epidemiological study of novel strain of Rubella virus isolated during the outbreak in Western Siberia in 2004 was described. Detailed phylogenetic analysis performed based upon entire SP-region, which encodes all three Rubella structural proteins (C, E2, and E1), was implemented. This analysis provides characterization of this strain and classifies it as 1H genotype, thereby correcting previous classification of this strain based upon shorter nucleotide sequence, only encoding E1 protein. Therefore, this study identified the genotype of the Rubella virus not previously detected in Western Siberia (and even entire Russian Federation), which highlights the importance of more extensive characterization of genetic variability of the Rubella virus, especially with regard to potential influence of vaccination on the Rubella virus mutagenesis.
McBride, Ruth; Fielding, Burtram C.
2012-01-01
A respiratory disease caused by a novel coronavirus, termed the severe acute respiratory syndrome coronavirus (SARS-CoV), was first reported in China in late 2002. The subsequent efficient human-to-human transmission of this virus eventually affected more than 30 countries worldwide, resulting in a mortality rate of ~10% of infected individuals. The spread of the virus was ultimately controlled by isolation of infected individuals and there has been no infections reported since April 2004. However, the natural reservoir of the virus was never identified and it is not known if this virus will re-emerge and, therefore, research on this virus continues. The SARS-CoV genome is about 30 kb in length and is predicted to contain 14 functional open reading frames (ORFs). The genome encodes for proteins that are homologous to known coronavirus proteins, such as the replicase proteins (ORFs 1a and 1b) and the four major structural proteins: nucleocapsid (N), spike (S), membrane (M) and envelope (E). SARS-CoV also encodes for eight unique proteins, called accessory proteins, with no known homologues. This review will summarize the current knowledge on SARS-CoV accessory proteins and will include: (i) expression and processing; (ii) the effects on cellular processes; and (iii) functional studies. PMID:23202509
USDA-ARS?s Scientific Manuscript database
The Rift Valley fever virus (RVFV) encodes structural proteins, nucleoprotein (N), N-terminus glycoprotein (Gn), C-terminus glycoprotein (Gc) and L protein, 78-kDa and non-structural proteins NSm and NSs. Using the baculovirus system we expressed the full-length coding sequence of N, NSs, NSm, Gc an...
Herrera, Elizabeth; del Mar Lorenzo, María; Blasco, Rafael; Isaacs, Stuart N.
1998-01-01
Vaccinia virus has two forms of infectious virions: the intracellular mature virus and the extracellular enveloped virus (EEV). EEV is critical for cell-to-cell and long-range spread of the virus. The B5R open reading frame (ORF) encodes a membrane protein that is essential for EEV formation. Deletion of the B5R ORF results in a dramatic reduction of EEV, and as a consequence, the virus produces small plaques in vitro and is highly attenuated in vivo. The extracellular portion of B5R is composed mainly of four domains that are similar to the short consensus repeats (SCRs) present in complement regulatory proteins. To determine the contribution of these putative SCR domains to EEV formation, we constructed recombinant vaccinia viruses that replaced the wild-type B5R gene with a mutated gene encoding a B5R protein lacking the SCRs. The resulting recombinant viruses produced large plaques, indicating efficient cell-to-cell spread in vitro, and gradient centrifugation of supernatants from infected cells confirmed that EEV was formed. In contrast, phalloidin staining of infected cells showed that the virus lacking the SCR domains was deficient in the induction of thick actin bundles. Thus, the highly conserved SCR domains present in the extracellular portion of the B5R protein are dispensable for EEV formation. This indicates that the B5R protein is a key viral protein with multiple functions in the process of virus envelopment and release. In addition, given the similarity of the extracellular domain to complement control proteins, the B5R protein may be involved in viral evasion from host immune responses. PMID:9420227
Rodríguez, Irene; Nogal, María L; Redrejo-Rodríguez, Modesto; Bustos, María J; Salas, María L
2009-12-01
The African swine fever virus (ASFV) protein pE248R, encoded by the gene E248R, is a late structural component of the virus particle. The protein contains intramolecular disulfide bonds and has been previously identified as a substrate of the ASFV-encoded redox system. Its amino acid sequence contains a putative myristoylation site and a hydrophobic transmembrane region near its carboxy terminus. We show here that the protein pE248R is myristoylated during infection and associates with the membrane fraction in infected cells, behaving as an integral membrane protein. Furthermore, the protein localizes at the inner envelope of the virus particles in the cytoplasmic factories. The function of the protein pE248R in ASFV replication was investigated by using a recombinant virus that inducibly expresses the gene E248R. Under repressive conditions, the ASFV polyproteins pp220 and pp62 are normally processed and virus particles with morphology indistinguishable from that of those produced in a wild-type infection or under permissive conditions are generated. Moreover, the mutant virus particles can exit the cell as does the parental virus. However, the infectivity of the pE248R-deficient virions was reduced at least 100-fold. An investigation of the defect of the mutant virus indicated that neither virus binding nor internalization was affected by the absence of the protein pE248R, but a cytopathic effect was not induced and early and late gene expression was impaired, indicating that the protein is required for some early postentry event.
Rodríguez, Irene; Nogal, María L.; Redrejo-Rodríguez, Modesto; Bustos, María J.; Salas, María L.
2009-01-01
The African swine fever virus (ASFV) protein pE248R, encoded by the gene E248R, is a late structural component of the virus particle. The protein contains intramolecular disulfide bonds and has been previously identified as a substrate of the ASFV-encoded redox system. Its amino acid sequence contains a putative myristoylation site and a hydrophobic transmembrane region near its carboxy terminus. We show here that the protein pE248R is myristoylated during infection and associates with the membrane fraction in infected cells, behaving as an integral membrane protein. Furthermore, the protein localizes at the inner envelope of the virus particles in the cytoplasmic factories. The function of the protein pE248R in ASFV replication was investigated by using a recombinant virus that inducibly expresses the gene E248R. Under repressive conditions, the ASFV polyproteins pp220 and pp62 are normally processed and virus particles with morphology indistinguishable from that of those produced in a wild-type infection or under permissive conditions are generated. Moreover, the mutant virus particles can exit the cell as does the parental virus. However, the infectivity of the pE248R-deficient virions was reduced at least 100-fold. An investigation of the defect of the mutant virus indicated that neither virus binding nor internalization was affected by the absence of the protein pE248R, but a cytopathic effect was not induced and early and late gene expression was impaired, indicating that the protein is required for some early postentry event. PMID:19793823
Subversion of cytokine networks by virally encoded decoy receptors
Epperson, Megan L.; Lee, Chung A.; Fremont, Daved H.
2012-01-01
Summary During the course of evolution, viruses have captured or created a diverse array of open reading frames that encode for proteins that serve to evade and sabotage the host innate and adaptive immune responses, which would otherwise lead to their elimination. These viral genomes are some of the best textbooks of immunology ever written. The established arsenal of immunomodulatory proteins encoded by viruses is large and growing and includes specificities for virtually all known inflammatory pathways and targets. The focus of this review is on herpes and poxvirus-encoded cytokine and chemokine binding proteins that serve to undermine the coordination of host immune surveillance. Structural and mechanistic studies of these decoy receptors have provided a wealth of information, not only about viral pathogenesis but also about the inner workings of cytokine signaling networks. PMID:23046131
Molecular Mechanism of Arenavirus Assembly and Budding
Urata, Shuzo; Yasuda, Jiro
2012-01-01
Arenaviruses have a bisegmented negative-strand RNA genome, which encodes four viral proteins: GP and NP by the S segment and L and Z by the L segment. These four viral proteins possess multiple functions in infection, replication and release of progeny viruses from infected cells. The small RING finger protein, Z protein is a matrix protein that plays a central role in viral assembly and budding. Although all arenaviruses encode Z protein, amino acid sequence alignment showed a huge variety among the species, especially at the C-terminus where the L-domain is located. Recent publications have demonstrated the interactions between viral protein and viral protein, and viral protein and host cellular protein, which facilitate transportation and assembly of viral components to sites of virus egress. This review presents a summary of current knowledge regarding arenavirus assembly and budding, in comparison with other enveloped viruses. We also refer to the restriction of arenavirus production by the antiviral cellular factor, Tetherin/BST-2. PMID:23202453
Dhalia, Rafael; Maciel, Milton; Cruz, Fábia S P; Viana, Isabelle F T; Palma, Mariana L; August, Thomas; Marques, Ernesto T A
2009-12-01
Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the development of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmid DNA-vaccine encoded, are mainly presented to the immune system through Major Histocompatibility Complex class I - MHC I molecules. The MHC I presentation via is mostly associated with a cellular cytotoxic response and often do not elicit a satisfactory humoral response. One of the main strategies to target DNA-encoded antigens to the MHC II compartment is expressing the antigen within the Lysosome-Associated Membrane Protein (LAMP). The flavivirus envelope protein is recognized as the major virus surface protein and the main target for neutralizing antibodies. Different groups have demonstrated that co-expression of flavivirus membrane and envelope proteins in mammalian cells, fused with the carboxyl-terminal of LAMP, is able to induce satisfactory levels of neutralizing antibodies. Here we reviewed the use of the envelope flavivirus protein co-expression strategy as LAMP chimeras with the aim of developing DNA vaccines for dengue, West Nile and yellow fever viruses.
Mohamed, Maizan; McLees, Angela; Elliott, Richard M
2009-08-01
Viruses in the genus Orthobunyavirus, family Bunyaviridae, have a genome comprising three segments (called L, M, and S) of negative-sense RNA. Serological studies have classified the >170 named virus isolates into 18 serogroups, with a few additional as yet ungrouped viruses. Until now, molecular studies and full-length S-segment nucleotide sequences were available for representatives of eight serogroups; in all cases, the S segment encodes two proteins, N (nucleocapsid) and NSs (nonstructural), in overlapping open reading frames (ORFs) that are translated from the same mRNA. The NSs proteins of Bunyamwera virus (BUNV) and California serogroup viruses have been shown to play a role in inhibiting host cell mRNA and protein synthesis, thereby preventing induction of interferon (IFN). We have determined full-length sequences of the S segments of representative viruses in the Anopheles A, Anopheles B, and Tete serogroups, and we report here that these viruses do not show evidence of having an NSs ORF. In addition, these viruses have rather longer N proteins than those in the other serogroups. Most of the naturally occurring viruses that lack the NSs protein behaved like a recombinant BUNV with the NSs gene deleted in that they failed to prevent induction of IFN-beta mRNA. However, Tacaiuma virus (TCMV) in the Anopheles A serogroup inhibited IFN induction in a manner similar to that of wild-type BUNV, suggesting that TCMV has evolved an alternative mechanism, not involving a typical NSs protein, to antagonize the host innate immune response.
Soler, Nicolas; Marguet, Evelyne; Cortez, Diego; Desnoues, Nicole; Keller, Jenny; van Tilbeurgh, Herman; Sezonov, Guennadi; Forterre, Patrick
2010-01-01
Thermococcales (phylum Euryarchaeota) are model organisms for physiological and molecular studies of hyperthermophiles. Here we describe three new plasmids from Thermococcales that could provide new tools and model systems for genetic and molecular studies in Archaea. The plasmids pTN2 from Thermococcus nautilus sp. 30-1 and pP12-1 from Pyrococcus sp. 12-1 belong to the same family. They have similar size (∼12 kb) and share six genes, including homologues of genes encoded by the virus PAV1 from Pyrococcus abyssi. The plasmid pT26-2 from Thermococcus sp. 26-2 (21.5 kb), that corresponds to another plasmid family, encodes many proteins having homologues in virus-like elements integrated in several genomes of Thermococcales and Methanococcales. Our analyses confirm that viruses and plasmids are evolutionary related and co-evolve with their hosts. Whereas all plasmids previously isolated from Thermococcales replicate by the rolling circle mechanism, the three plasmids described here probably replicate by the theta mechanism. The plasmids pTN2 and pP12-1 encode a putative helicase of the SFI superfamily and a new family of DNA polymerase, whose activity was demonstrated in vitro, whereas pT26-2 encodes a putative new type of helicase. This strengthens the idea that plasmids and viruses are a reservoir of novel protein families involved in DNA replication. PMID:20403814
A Multiantigenic DNA Vaccine That Induces Broad Hepatitis C Virus-Specific T-Cell Responses in Mice.
Gummow, Jason; Li, Yanrui; Yu, Wenbo; Garrod, Tamsin; Wijesundara, Danushka; Brennan, Amelia J; Mullick, Ranajoy; Voskoboinik, Ilia; Grubor-Bauk, Branka; Gowans, Eric J
2015-08-01
There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising "multiantigen" vaccine that elicits robust CMI. Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is currently available, and treatment is costly and often results in side effects, limiting the number of patients who are treated. Despite recent advances in treatment, prevention remains the key to efficient control and elimination of this virus. Here, we describe a novel DNA vaccine against hepatitis C virus that is capable of inducing robust cell-mediated immune responses in mice and is a promising vaccine candidate for humans. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Panganiban, Antonito T.; Temin, Howard M.
1984-12-01
We mutagenized cloned spleen necrosis virus DNA to identify a region of the retrovirus genome encoding a polypeptide required for integration of viral DNA. Five plasmids bearing different lesions in the 3' end of the pol gene were examined for the ability to integrate or replicate following transfection of chicken embryo fibroblasts. Transfection with one of these DNAs resulted in the generation of mutant virus incapable of integrating but able to replicate at low levels; this phenotype is identical to that of mutants bearing alterations in the cis-acting region, att. To determine whether the 3' end of the pol gene encodes a protein that interacts with att, we did a complementation experiment. Cells were first infected with an att- virus and then superinfected with the integration-deficient virus containing a lesion in the pol gene and a wild-type att site. The results showed that the att- virus provided a trans-acting function allowing integration of viral DNA derived from the mutant bearing a wild-type att site. Thus, the 3' end of the pol gene serves as an ``int'' locus and encodes a protein mediating integration of retrovirus DNA through interaction with att.
Fontenele, Rafaela S; Abreu, Rayane A; Lamas, Natalia S; Alves-Freitas, Dione M T; Vidal, Andreza H; Poppiel, Raul R; Melo, Fernando L; Lacorte, Cristiano; Martin, Darren P; Campos, Magnolia A; Varsani, Arvind; Ribeiro, Simone G
2018-04-02
Brazil is one of the major passion fruit producers worldwide. Viral diseases are among the most important constraints for passion fruit production. Here we identify and characterize a new passion fruit infecting-virus belonging to the family Geminiviridae : passion fruit chlorotic mottle virus (PCMoV). PCMoV is a divergent geminivirus unlike previously characterized passion fruit-infecting geminiviruses that belonged to the genus Begomovirus . Among the presently known geminiviruses, it is most closely related to, and shares ~62% genome-wide identity with citrus chlorotic dwarf associated virus (CCDaV) and camelia chlorotic dwarf associated virus (CaCDaV). The 3743 nt PCMoV genome encodes a capsid protein (CP) and replication-associated protein (Rep) that respectively share 56 and 60% amino acid identity with those encoded by CaCDaV. The CPs of PCMoV, CCDaV, and CaCDaV cluster with those of begomovirus whereas their Reps with those of becurtoviruses. Hence, these viruses likely represent a lineage of recombinant begomo-like and becurto-like ancestral viruses. Furthermore, PCMoV, CCDaV, and CaCDaV genomes are ~12-30% larger than monopartite geminiviruses and this is primarily due to the encoded movement protein (MP; 891-921 nt) and this MP is most closely related to that encoded by the DNA-B component of bipartite begomoviruses. Hence, PCMoV, CCDaV, and CaCDaV lineage of viruses may represent molecules in an intermediary step in the evolution of bipartite begomoviruses (~5.3 kb) from monopartite geminiviruses (~2.7-3 kb). An infectious clone of PCMoV systemically infected Nicotiana benthamina , Arabidopsis thaliana , and Passiflora edulis .
Fontenele, Rafaela S.; Abreu, Rayane A.; Lamas, Natalia S.; Alves-Freitas, Dione M. T.; Vidal, Andreza H.; Melo, Fernando L.; Lacorte, Cristiano; Martin, Darren P.; Campos, Magnolia A.; Ribeiro, Simone G.
2018-01-01
Brazil is one of the major passion fruit producers worldwide. Viral diseases are among the most important constraints for passion fruit production. Here we identify and characterize a new passion fruit infecting-virus belonging to the family Geminiviridae: passion fruit chlorotic mottle virus (PCMoV). PCMoV is a divergent geminivirus unlike previously characterized passion fruit-infecting geminiviruses that belonged to the genus Begomovirus. Among the presently known geminiviruses, it is most closely related to, and shares ~62% genome-wide identity with citrus chlorotic dwarf associated virus (CCDaV) and camelia chlorotic dwarf associated virus (CaCDaV). The 3743 nt PCMoV genome encodes a capsid protein (CP) and replication-associated protein (Rep) that respectively share 56 and 60% amino acid identity with those encoded by CaCDaV. The CPs of PCMoV, CCDaV, and CaCDaV cluster with those of begomovirus whereas their Reps with those of becurtoviruses. Hence, these viruses likely represent a lineage of recombinant begomo-like and becurto-like ancestral viruses. Furthermore, PCMoV, CCDaV, and CaCDaV genomes are ~12–30% larger than monopartite geminiviruses and this is primarily due to the encoded movement protein (MP; 891–921 nt) and this MP is most closely related to that encoded by the DNA-B component of bipartite begomoviruses. Hence, PCMoV, CCDaV, and CaCDaV lineage of viruses may represent molecules in an intermediary step in the evolution of bipartite begomoviruses (~5.3 kb) from monopartite geminiviruses (~2.7–3 kb). An infectious clone of PCMoV systemically infected Nicotiana benthamina, Arabidopsis thaliana, and Passiflora edulis. PMID:29614801
Panus, Joanne Fanelli; Smith, Craig A.; Ray, Caroline A.; Smith, Terri Davis; Patel, Dhavalkumar D.; Pickup, David J.
2002-01-01
Cowpox virus (Brighton Red strain) possesses one of the largest genomes in the Orthopoxvirus genus. Sequence analysis of a region of the genome that is type-specific for cowpox virus identified a gene, vCD30, encoding a soluble, secreted protein that is the fifth member of the tumor necrosis factor receptor family known to be encoded by cowpox virus. The vCD30 protein contains 110 aa, including a 21-residue signal peptide, a potential O-linked glycosylation site, and a 58-aa sequence sharing 51–59% identity with highly conserved extracellular segments of both mouse and human CD30. A vCD30Fc fusion protein binds CD153 (CD30 ligand) specifically, and it completely inhibits CD153/CD30 interactions. Although the functions of CD30 are not well understood, the existence of vCD30 suggests that the cellular receptor plays a significant role in normal immune responses. Viral inhibition of CD30 also lends support to the potential therapeutic value of targeting CD30 in human inflammatory and autoimmune diseases. PMID:12034885
Ectromelia virus encodes a family of Ankyrin/F-box proteins that regulate NFκB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burles, Kristin, E-mail: burles@ualberta.ca; Buuren, Nicholas van; Barry, Michele
2014-11-15
A notable feature of poxviruses is their ability to inhibit the antiviral response, including the nuclear factor kappa B (NFκB) pathway. NFκB is a transcription factor that is sequestered in the cytoplasm until cell stimulation, and relies on the SCF (Skp1, culllin-1, F-box) ubiquitin ligase to target its inhibitor, IκBα, for degradation. IκBα is recruited to the SCF by the F-box domain-containing protein βTrCP. Here, we show that ectromelia virus, the causative agent of mousepox, encodes four F-box-containing proteins, EVM002, EVM005, EVM154, and EVM165, all of which contain Ankyrin (Ank) domains. The Ank/F-box proteins inhibit NFκB nuclear translocation, and thismore » inhibition is dependent on the F-box domain. We also demonstrate that EVM002, EVM005, EVM154, and EVM165 prevent IκBα degradation, suggesting that they target the SCF. This study identifies a new mechanism by which ectromelia virus inhibits NFκB. - Highlights: • Ectromelia virus encodes four Ank/F-box proteins, EVM002, EVM005, EVM154 and EVM165. • The Ank/F-box proteins inhibit NFκB nuclear translocation, dependent on the F-box. • The Ank/F-box proteins prevent IκBα degradation, suggesting they target the SCF. • Deletion of a single Ank/F-box gene from ECTV does not prevent viral NFκB inhibition. • This study identifies a new mechanism by which ectromelia virus inhibits NFκB.« less
Identification of Strawberry vein banding virus encoded P6 as an RNA silencing suppressor.
Feng, Mingfeng; Zuo, Dengpan; Jiang, Xizi; Li, Shuai; Chen, Jing; Jiang, Lei; Zhou, Xueping; Jiang, Tong
2018-07-01
RNA silencing is a common mechanism that plays a key role in antiviral defense. To overcome host defense responses, plant viruses encode silencing-suppressor proteins to target one or several key steps in the silencing machinery. Here, we report that the P6 protein encoded by Strawberry vein banding virus (SVBV) is an RNA silencing suppressor through Agrobacterium-mediated co-infiltration assays. SVBV P6 protein can suppress green fluorescent protein (GFP) gene silencing induced by single-stranded RNA but not by double-stranded RNA. The P6 protein can also inhibit systemic silencing of GFP through interfering the systemic spread of GFP silencing signal. Subcellular localization study indicated that P6 protein formed irregular bodies and distributed in both cytoplasm and nucleus of Nicotiana benthamiana cells. Furthermore, deletion analysis indicated that a nuclear localization signal (NLS, aa 402-426) in the P6 protein is responsible for the silencing suppression efficiency. In addition, expression of the P6 protein via a Potato virus X (PVX)-based vectors induced more severe mosaic symptoms in N. benthamiana leaves, and transgenic N. benthamiana plants expressing P6 showed obvious vein yellowing as well as severe mosaic symptoms in leaves. Taken together, our results demonstrates that SVBV P6 is a suppressor of RNA silencing, possibly acting at a upstream step for dsRNA generation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Sumi, S; Tsuneyoshi, T; Furutani, H
1993-09-01
Rod-shaped flexuous viruses were partially purified from garlic plants (Allium sativum) showing typical mosaic symptoms. The genome was shown to be composed of RNA with a poly(A) tail of an estimated size of 10 kb as shown by denaturing agarose gel electrophoresis. We constructed cDNA libraries and screened four independent clones, which were designated GV-A, GV-B, GV-C and GV-D, using Northern and Southern blot hybridization. Nucleotide sequence determination of the cDNAs, two of which correspond to nearly one-third of the virus genomic RNA, shows that all of these viruses possess an identical genomic structure and that also at least four proteins are encoded in the viral cDNA, their M(r)s being estimated to be 15K, 27K, 40K and 11K. The 15K open reading frame (ORF) encodes the core-like sequence of a zinc finger protein preceded by a cluster of basic amino acid residues. The 27K ORF probably encodes the viral coat protein (CP), based on both the existence of some conserved sequences observed in many other rod-shaped or flexuous virus CPs and an overall amino acid sequence similarity to potexvirus and carlavirus CPs. The 11K ORF shows significant amino acid sequence similarities to the corresponding 12K proteins of the potexviruses and carlaviruses. On the other hand, the 40K ORF product does not resemble any other plant virus gene products reported so far. The genomic organization in the 3' region of the garlic viruses resembles, but clearly differs from, that of carlaviruses. Phylogenetic analysis based upon the amino acid sequence of the viral capsid protein also indicates that the garlic viruses have a unique and distinct domain different from those of the potexvirus and carlavirus groups. The results suggest that the garlic viruses described here belong to an unclassified and new virus group closely related to the carlaviruses.
Structural insights into the multifunctional protein VP3 of birnaviruses.
Casañas, Arnau; Navarro, Aitor; Ferrer-Orta, Cristina; González, Dolores; Rodríguez, José F; Verdaguer, Núria
2008-01-01
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is the causative agent of one of the most harmful poultry diseases. The IBDV genome encodes five mature proteins; of these, the multifunctional protein VP3 plays an essential role in virus morphogenesis. This protein, which interacts with the structural protein VP2, with the double-stranded RNA genome, and with the virus-encoded, RNA-dependent RNA polymerase, VP1, is involved not only in the formation of the viral capsid, but also in the recruitment of VP1 into the capsid and in the encapsidation of the viral genome. Here, we report the X-ray structure of the central region of VP3, residues 92-220, consisting of two alpha-helical domains connected by a long and flexible hinge that are organized as a dimer. Unexpectedly, the overall fold of the second VP3 domain shows significant structural similarities with different transcription regulation factors.
Bromovirus movement protein genes play a crucial role in host specificity.
Mise, K; Allison, R F; Janda, M; Ahlquist, P
1993-01-01
Monocot-adapted brome mosaic virus (BMV) and dicot-adapted cowpea chlorotic mottle virus (CCMV) are closely related bromoviruses with tripartite RNA genomes. Although RNAs 1 and 2 together are sufficient for RNA replication in protoplasts, systemic infection also requires RNA3, which encodes the coat protein and the nonstructural 3a movement protein. We have previously shown with bromoviral reassortants that host specificity determinants in both viruses are encoded by RNA3 as well as by RNA1 and/or RNA2. Here, to test their possible role in host specificity, the 3a movement protein genes were precisely exchanged between BMV and CCMV. The hybrid viruses, but not 3a deletion mutants, systemically infected Nicotiana benthamiana, a permissive host for both parental viruses. The hybrids thus retain basic competence for replication, packaging, cell-to-cell spread, and long-distance (vascular) spread. However, the hybrids failed to systemically infect either barley or cowpea, selective hosts for parental viruses. Thus, the 3a gene and/or its encoded 3a protein contributes to host specificity of both monocot- and dicot-adapted bromoviruses. Tests of inoculated cowpea leaves showed that the spread of the CCMV hybrid containing the BMV 3a gene was blocked at a very early stage of infection. Moreover, the BMV hybrid containing the CCMV 3a gene appeared to spread farther than wt BMV in inoculated cowpea leaves. Several pseudorevertants directing systemic infection in cowpea leaves were obtained from plants inoculated with the CCMV(BMV 3a) hybrid, suggesting that the number of mutations required to adapt the hybrid to dicots is small. Images PMID:7682628
USDA-ARS?s Scientific Manuscript database
Cucumber (Cucumis sativus) production is negatively affected by zucchini yellow mosaic virus (ZYMV). Three sources of ZYMV resistance have been commercially deployed and all three resistances are conditioned by a single recessive gene. A vacuolar protein sorting-associated protein 4-like (VPS4-like)...
Identification of giant Mimivirus protein functions using RNA interference
Sobhy, Haitham; Scola, Bernard La; Pagnier, Isabelle; Raoult, Didier; Colson, Philippe
2015-01-01
Genomic analysis of giant viruses, such as Mimivirus, has revealed that more than half of the putative genes have no known functions (ORFans). We knocked down Mimivirus genes using short interfering RNA as a proof of concept to determine the functions of giant virus ORFans. As fibers are easy to observe, we targeted a gene encoding a protein absent in a Mimivirus mutant devoid of fibers as well as three genes encoding products identified in a protein concentrate of fibers, including one ORFan and one gene of unknown function. We found that knocking down these four genes was associated with depletion or modification of the fibers. Our strategy of silencing ORFan genes in giant viruses opens a way to identify its complete gene repertoire and may clarify the role of these genes, differentiating between junk DNA and truly used genes. Using this strategy, we were able to annotate four proteins in Mimivirus and 30 homologous proteins in other giant viruses. In addition, we were able to annotate >500 proteins from cellular organisms and 100 from metagenomic databases. PMID:25972846
Giudice, Aldo; D'Arena, Giovanni; Crispo, Anna; Tecce, Mario Felice; Nocerino, Flavia; Grimaldi, Maria; Rotondo, Emanuela; D'Ursi, Anna Maria; Scrima, Mario; Galdiero, Massimiliano; Ciliberto, Gennaro; Capunzo, Mario; Franci, Gianluigi; Barbieri, Antonio; Bimonte, Sabrina; Montella, Maurizio
2016-01-01
MicroRNAs are short (21-23 nucleotides), noncoding RNAs that typically silence posttranscriptional gene expression through interaction with target messenger RNAs. Currently, miRNAs have been identified in almost all studied multicellular eukaryotes in the plant and animal kingdoms. Additionally, recent studies reported that miRNAs can also be encoded by certain single-cell eukaryotes and by viruses. The vast majority of viral miRNAs are encoded by the herpesviruses family. These DNA viruses including Epstein-Barr virus encode their own miRNAs and/or manipulate the expression of cellular miRNAs to facilitate respective infection cycles. Modulation of the control pathways of miRNAs expression is often involved in the promotion of tumorigenesis through a specific cascade of transduction signals. Notably, latent infection with Epstein-Barr virus is considered liable of causing several types of malignancies, including the majority of gastric carcinoma cases detected worldwide. In this review, we describe the role of the Epstein-Barr virus in gastric carcinogenesis, summarizing the functions of the Epstein-Barr virus-encoded viral proteins and related epigenetic alterations as well as the roles of Epstein-Barr virus-encoded and virally modulated cellular miRNAs.
Yáñez, R J; Boursnell, M; Nogal, M L; Yuste, L; Viñuela, E
1993-01-01
A random sequencing strategy applied to two large SalI restriction fragments (SB and SD) of the African swine fever virus (ASFV) genome revealed that they might encode proteins similar to the two largest RNA polymerase subunits of eukaryotes, poxviruses and Escherichia coli. After further mapping by dot-blot hybridization, two large open reading frames (ORFs) were completely sequenced. The first ORF (NP1450L) encodes a protein of 1450 amino acids with extensive similarity to the largest subunit of RNA polymerases. The second one (EP1242L) codes for a protein of 1242 amino acids similar to the second largest RNA polymerase subunit. Proteins NP1450L and EP1242L are more similar to the corresponding subunits of eukaryotic RNA polymerase II than to those of vaccinia virus, the prototype poxvirus, which shares many functional characteristics with ASFV. ORFs NP1450L and EP1242L are mainly expressed late in ASFV infection, after the onset of DNA replication. Images PMID:8506138
USDA-ARS?s Scientific Manuscript database
Cross protection or superinfection exclusion (SE) is defined as the phenomenon whereby initial infection by one virus prevents subsequent infection by closely related viruses. The mechanisms of SE are just beginning to be understood. Wheat streak mosaic virus (WSMV; genus: Tritimovirus; family: Poty...
Non-Structural Proteins of Arthropod-Borne Bunyaviruses: Roles and Functions
Eifan, Saleh; Schnettler, Esther; Dietrich, Isabelle; Kohl, Alain; Blomström, Anne-Lie
2013-01-01
Viruses within the Bunyaviridae family are tri-segmented, negative-stranded RNA viruses. The family includes several emerging and re-emerging viruses of humans, animals and plants, such as Rift Valley fever virus, Crimean-Congo hemorrhagic fever virus, La Crosse virus, Schmallenberg virus and tomato spotted wilt virus. Many bunyaviruses are arthropod-borne, so-called arboviruses. Depending on the genus, bunyaviruses encode, in addition to the RNA-dependent RNA polymerase and the different structural proteins, one or several non-structural proteins. These non-structural proteins are not always essential for virus growth and replication but can play an important role in viral pathogenesis through their interaction with the host innate immune system. In this review, we will summarize current knowledge and understanding of insect-borne bunyavirus non-structural protein function(s) in vertebrate, plant and arthropod. PMID:24100888
Ilkow, Carolina S; Goping, Ing Swie; Hobman, Tom C
2011-02-01
Apoptosis is an important mechanism by which virus-infected cells are eliminated from the host. Accordingly, many viruses have evolved strategies to prevent or delay apoptosis in order to provide a window of opportunity in which virus replication, assembly and egress can take place. Interfering with apoptosis may also be important for establishment and/or maintenance of persistent infections. Whereas large DNA viruses have the luxury of encoding accessory proteins whose primary function is to undermine programmed cell death pathways, it is generally thought that most RNA viruses do not encode these types of proteins. Here we report that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. The main mechanism of action was specific for Bax as capsid bound Bax and prevented Bax-induced apoptosis but did not bind Bak nor inhibit Bak-induced apoptosis. Intriguingly, interaction with capsid protein resulted in activation of Bax in the absence of apoptotic stimuli, however, release of cytochrome c from mitochondria and concomitant activation of caspase 3 did not occur. Accordingly, we propose that binding of capsid to Bax induces the formation of hetero-oligomers that are incompetent for pore formation. Importantly, data from reverse genetic studies are consistent with a scenario in which the anti-apoptotic activity of capsid protein is important for virus replication. If so, this would be among the first demonstrations showing that blocking apoptosis is important for replication of an RNA virus. Finally, it is tempting to speculate that other slowly replicating RNA viruses employ similar mechanisms to avoid killing infected cells.
Sakaguchi, M; Urakawa, T; Hirayama, Y; Miki, N; Yamamoto, M; Zhu, G S; Hirai, K
1993-07-01
The open reading frame (ORF) of 1206 bp within the short unique region (Us) of Marek's disease virus type 1 (MDV1) shows significant homology with the herpes simplex virus type 1 US3 gene encoding protein kinase (PK). The lacZ gene of Escherichia coli was inserted within the ORF, designated MDV1-US3, of MDV1 K544 strain DNA by homologous recombination. The plaque-purified recombinant MDV1 stably expressed the beta-galactosidase encoded by the inserted lacZ gene in infected cells and replicated well as the parental K544 strain. Antibodies against both MDV1 antigen and beta-galactosidase were detected in the sera of chickens immunized with recombinant MDV1. Chickens vaccinated with the recombinant MDV1 were protected from challenge with virulent MDV1. The MDV1 US3 gene expressed by a baculovirus vector encoded a 44-kDa protein. Mouse antisera against the 44-kDa protein reacted with two proteins of 44 and 45 kDa in extracts of cells infected with MDV1 but not with MDV types 2 or 3. The PK activity was detected in immune complexes of the anti-44-kDa sera with extracts of cells infected with MDV1 but not with the recombinant MDV1. Thus, PK encoded from the MDV1-US3 is not essential for virus replication in cell culture and vaccine-induced immunity.
Murata, Takayuki; Isomura, Hiroki; Yamashita, Yoriko; Toyama, Shigenori; Sato, Yoshitaka; Nakayama, Sanae; Kudoh, Ayumi; Iwahori, Satoko; Kanda, Teru; Tsurumi, Tatsuya
2009-06-20
The Epstein-Barr virus (EBV) BGLF4 gene product is the only protein kinase encoded by the virus genome. In order to elucidate its physiological roles in viral productive replication, we here established a BGLF4-knockout mutant and a revertant virus. While the levels of viral DNA replication of the deficient mutant were equivalent to those of the wild-type and the revertant, virus production was significantly impaired. Expression of the BGLF4 protein in trans fully complemented the low yield of the mutant virus, while expression of a kinase-dead (K102I) form of the protein failed to restore the virus titer. These results demonstrate that BGLF4 plays a significant role in production of infectious viruses and that the kinase activity is crucial.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koener, J.F.; Leong, J.A.C.
A cDNA fragment containing the gene encoding the glycoprotein of infectious hematopoietic necrosis virus was inserted into Autographa californica baculovirus vectors under the control of the polyhedrin promoter. A 66-kilodalton protein, identical in size to the glycosylated glycoprotein of infectious hematopoietic necrosis virus, was expressed at high levels in Spodoptera frugiperda cells infected with the recombinant viruses. The expressed protein reacted with antiserum to the glycoprotein on Western blots.
Redinbaugh, M G; Hogenhout, S A
2005-01-01
This chapter provides an overview of plant rhabdovirus structure and taxonomy, genome structure, protein function, and insect and plant infection. It is focused on recent research and unique aspects of rhabdovirus biology. Plant rhabdoviruses are transmitted by aphid, leafhopper or planthopper vectors, and the viruses replicate in both their insect and plant hosts. The two plant rhabdovirus genera, Nucleorhabdovirus and Cytorhabdovirus, can be distinguished on the basis of their intracellular site of morphogenesis in plant cells. All plant rhabdoviruses carry analogs of the five core genes: the nucleocapsid (N), phosphoprotein (P), matrix (M), glycoprotein (G) and large or polymerase (L). However, compared to vesiculoviruses that are composed of the five core genes, all plant rhabdoviruses encode more than these five genes, at least one of which is inserted between the P and M genes in the rhabdoviral genome. Interestingly, while these extra genes are not similar among plant rhabdoviruses, two encode proteins with similarity to the 30K superfamily of plant virus movement proteins. Analysis of nucleorhabdoviral protein sequences revealed nuclear localization signals for the N, P, M and L proteins, consistent with virus replication and morphogenesis of these viruses in the nucleus. Plant and insect factors that limit virus infection and transmission are discussed.
A Bacteriophage-Related Chimeric Marine Virus Infecting Abalone
Zhuang, Jun; Cai, Guiqin; Lin, Qiying; Wu, Zujian; Xie, Lianhui
2010-01-01
Marine viruses shape microbial communities with the most genetic diversity in the sea by multiple genetic exchanges and infect multiple marine organisms. Here we provide proof from experimental infection that abalone shriveling syndrome-associated virus (AbSV) can cause abalone shriveling syndrome. This malady produces histological necrosis and abnormally modified macromolecules (hemocyanin and ferritin). The AbSV genome is a 34.952-kilobase circular double-stranded DNA, containing putative genes with similarity to bacteriophages, eukaryotic viruses, bacteria and endosymbionts. Of the 28 predicted open reading frames (ORFs), eight ORF-encoded proteins have identifiable functional homologues. The 4 ORF products correspond to a predicted terminase large subunit and an endonuclease in bacteriophage, and both an integrase and an exonuclease from bacteria. The other four proteins are homologous to an endosymbiont-derived helicase, primase, single-stranded binding (SSB) protein, and thymidylate kinase, individually. Additionally, AbSV exhibits a common gene arrangement similar to the majority of bacteriophages. Unique to AbSV, the viral genome also contains genes associated with bacterial outer membrane proteins and may lack the structural protein-encoding ORFs. Genomic characterization of AbSV indicates that it may represent a transitional form of microbial evolution from viruses to bacteria. PMID:21079776
Zhang, Di; Tözsér, József; Waugh, David S.
2009-01-01
Alphaviruses cause serious diseases that pose a potential health threat to both humans and livestock. The nonstructural protein 2 (nsp2) encoded by alphaviruses is a multifunctional enzyme that is essential for viral replication and maturation. Its 39-kDa C-terminal domain (nsp2pro) is a cysteine protease that is responsible for cleaving a viral polyprotein at three sites to generate nonstructural proteins 1, 2, 3 and 4. In the present study, we evaluated nsp2pro domains from the following three sources as reagents for site-specific cleavage of fusion proteins: Venezuelan Equine Encephalitis Virus (VEEV), Semliki Forest Virus (SFV) and Sindbis Virus (SIN). All three alphavirus proteases cleaved model fusion protein substrates with high specificity but they were much less efficient enzymes than potyviral proteases from tobacco etch virus (TEV) and tobacco vein mottling virus (TVMV). Oligopeptide substrates were also cleaved with very low efficiency by the alphavirus proteases. We conclude that, in general, alphavirus nsp2pro proteases are not very useful tools for the removal of affinity tags from recombinant proteins although they do remain promising therapeutic targets for the treatment of a variety of diseases. PMID:19013248
Bastin, Donald; Aitken, Amelia S; Pelin, Adrian; Pikor, Larissa A; Crupi, Mathieu J F; Huh, Michael S; Bourgeois-Daigneault, Marie-Claude; Bell, John C; Ilkow, Carolina S
2018-06-19
Antiviral responses are barriers that must be overcome for efficacy of oncolytic virotherapy. In mammalian cells, antiviral responses involve the interferon pathway, a protein-signaling cascade that alerts the immune system and limits virus propagation. Tumour-specific defects in interferon signaling enhance viral infection and responses to oncolytic virotherapy, but many human cancers are still refractory to oncolytic viruses. Given that invertebrates, fungi and plants rely on RNA interference pathways for antiviral protection, we investigated the potential involvement of this alternative antiviral mechanism in cancer cells. Here, we detected viral genome-derived small RNAs, indicative of RNAi-mediated antiviral responses, in human cancer cells. As viruses may encode suppressors of the RNA interference pathways, we engineered an oncolytic vesicular stomatitis virus variant to encode the Nodamura virus protein B2, a known inhibitor of RNAi-mediated immune responses. B2-expressing oncolytic virus showed enhanced viral replication and cytotoxicity, impaired viral genome cleavage and altered microRNA processing in cancer cells. Our data establish the improved therapeutic potential of our novel virus which targets the RNAi-mediated antiviral defense of cancer cells.
Donkey Orchid Symptomless Virus: A Viral ‘Platypus’ from Australian Terrestrial Orchids
Wylie, Stephen J.; Li, Hua; Jones, Michael G. K.
2013-01-01
Complete and partial genome sequences of two isolates of an unusual new plant virus, designated Donkey orchid symptomless virus (DOSV) were identified using a high-throughput sequencing approach. The virus was identified from asymptomatic plants of Australian terrestrial orchid Diuris longifolia (Common donkey orchid) growing in a remnant forest patch near Perth, western Australia. DOSV was identified from two D. longifolia plants of 264 tested, and from at least one plant of 129 Caladenia latifolia (pink fairy orchid) plants tested. Phylogenetic analysis of the genome revealed open reading frames (ORF) encoding seven putative proteins of apparently disparate origins. A 69-kDa protein (ORF1) that overlapped the replicase shared low identity with MPs of plant tymoviruses (Tymoviridae). A 157-kDa replicase (ORF2) and 22-kDa coat protein (ORF4) shared 32% and 40% amino acid identity, respectively, with homologous proteins encoded by members of the plant virus family Alphaflexiviridae. A 44-kDa protein (ORF3) shared low identity with myosin and an autophagy protein from Squirrelpox virus. A 27-kDa protein (ORF5) shared no identity with described proteins. A 14-kDa protein (ORF6) shared limited sequence identity (26%) over a limited region of the envelope glycoprotein precursor of mammal-infecting Crimea-Congo hemorrhagic fever virus (Bunyaviridae). The putative 25-kDa movement protein (MP) (ORF7) shared limited (27%) identity with 3A-like MPs of members of the plant-infecting Tombusviridae and Virgaviridae. Transmissibility was shown when DOSV systemically infected Nicotiana benthamiana plants. Structure and organization of the domains within the putative replicase of DOSV suggests a common evolutionary origin with ‘potexvirus-like’ replicases of viruses within the Alphaflexiviridae and Tymoviridae, and the CP appears to be ancestral to CPs of allexiviruses (Alphaflexiviridae). The MP shares an evolutionary history with MPs of dianthoviruses, but the other putative proteins are distant from plant viruses. DOSV is not readily classified in current lower order virus taxa. PMID:24223974
Shukla, Avi; Chatterjee, Anirvan
2018-01-01
Abstract Curiously, in viruses, the virion volume appears to be predominantly driven by genome length rather than the number of proteins it encodes or geometric constraints. With their large genome and giant particle size, amoebal viruses (AVs) are ideally suited to study the relationship between genome and virion size and explore the role of genome plasticity in their evolutionary success. Different genomic regions of AVs exhibit distinct genealogies. Although the vertically transferred core genes and their functions are universally conserved across the nucleocytoplasmic large DNA virus (NCLDV) families and are essential for their replication, the horizontally acquired genes are variable across families and are lineage-specific. When compared with other giant virus families, we observed a near–linear increase in the number of genes encoding repeat domain-containing proteins (RDCPs) with the increase in the genome size of AVs. From what is known about the functions of RDCPs in bacteria and eukaryotes and their prevalence in the AV genomes, we envisage important roles for RDCPs in the life cycle of AVs, their genome expansion, and plasticity. This observation also supports the evolution of AVs from a smaller viral ancestor by the acquisition of diverse gene families from the environment including RDCPs that might have helped in host adaption. PMID:29308275
Samuel, Glady Hazitha; Wiley, Michael R; Badawi, Atif; Adelman, Zach N; Myles, Kevin M
2016-11-29
Mosquito-borne flaviviruses, including yellow fever virus (YFV), Zika virus (ZIKV), and West Nile virus (WNV), profoundly affect human health. The successful transmission of these viruses to a human host depends on the pathogen's ability to overcome a potentially sterilizing immune response in the vector mosquito. Similar to other invertebrate animals and plants, the mosquito's RNA silencing pathway comprises its primary antiviral defense. Although a diverse range of plant and insect viruses has been found to encode suppressors of RNA silencing, the mechanisms by which flaviviruses antagonize antiviral small RNA pathways in disease vectors are unknown. Here we describe a viral suppressor of RNA silencing (VSR) encoded by the prototype flavivirus, YFV. We show that the YFV capsid (YFC) protein inhibits RNA silencing in the mosquito Aedes aegypti by interfering with Dicer. This VSR activity appears to be broadly conserved in the C proteins of other medically important flaviviruses, including that of ZIKV. These results suggest that a molecular "arms race" between vector and pathogen underlies the continued existence of flaviviruses in nature.
Variola virus immune evasion proteins.
Dunlop, Lance R; Oehlberg, Katherine A; Reid, Jeremy J; Avci, Dilek; Rosengard, Ariella M
2003-09-01
Variola virus, the causative agent of smallpox, encodes approximately 200 proteins. Over 80 of these proteins are located in the terminal regions of the genome, where proteins associated with host immune evasion are encoded. To date, only two variola proteins have been characterized. Both are located in the terminal regions and demonstrate immunoregulatory functions. One protein, the smallpox inhibitor of complement enzymes (SPICE), is homologous to a vaccinia virus virulence factor, the vaccinia virus complement-control protein (VCP), which has been found experimentally to be expressed early in the course of vaccinia infection. Both SPICE and VCP are similar in structure and function to the family of mammalian complement regulatory proteins, which function to prevent inadvertent injury to adjacent cells and tissues during complement activation. The second variola protein is the variola virus high-affinity secreted chemokine-binding protein type II (CKBP-II, CBP-II, vCCI), which binds CC-chemokine receptors. The vaccinia homologue of CKBP-II is secreted both early and late in infection. CKBP-II proteins are highly conserved among orthopoxviruses, sharing approximately 85% homology, but are absent in eukaryotes. This characteristic sets it apart from other known virulence factors in orthopoxviruses, which share sequence homology with known mammalian immune regulatory gene products. Future studies of additional variola proteins may help illuminate factors associated with its virulence, pathogenesis and strict human tropism. In addition, these studies may also assist in the development of targeted therapies for the treatment of both smallpox and human immune-related diseases.
Tropea, Joseph E; Phan, Jason; Waugh, David S
2006-11-01
Smallpox, a highly contagious infectious disease caused by the variola major virus, has an overall mortality rate of about 30%. Because there currently is no specific treatment for smallpox, and the only prevention is vaccination, there is an urgent need for the development of effective antiviral drugs. The dual specificity protein phosphatase encoded by the smallpox virus (H1) is essential for the production of infectious viral particles, making it a promising molecular target for antiviral therapeutics. Here, we report the molecular cloning, overproduction, purification, and initial biochemical characterization of H1 phosphatase, thereby paving the way for the discovery of small molecule inhibitors.
Friendly fire: redirecting herpes simplex virus-1 for therapeutic applications.
Advani, S J; Weichselbaum, R R; Whitley, R J; Roizman, B
2002-09-01
Herpes simplex virus-1 (HSV-1) is a relatively large double-stranded DNA virus encoding at least 89 proteins with well characterized disease pathology. An understanding of the functions of viral proteins together with the ability to genetically engineer specific viral mutants has led to the development of attenuated HSV-1 for gene therapy. This review highlights the progress in creating attenuated genetically engineered HSV-1 mutants that are either replication competent (viral non-essential gene deleted) or replication defective (viral essential gene deleted). The choice between a replication-competent or -defective virus is based on the end-goal of the therapeutic intervention. Replication-competent HSV-1 mutants have primarily been employed as antitumor oncolytic viruses, with the lytic nature of the virus harnessed to destroy tumor cells selectively. In replacement gene therapy, replication-defective viruses have been utilized as delivery vectors. The advantages of HSV-1 vectors are that they infect quiescent and dividing cells efficiently and can encode for relatively large transgenes.
Creation of a Recombinant Rift Valley Fever Virus with a Two-Segmented Genome ▿ †
Brennan, Benjamin; Welch, Stephen R.; McLees, Angela; Elliott, Richard M.
2011-01-01
Rift Valley fever virus (RVFV; family Bunyaviridae) is a clinically important, mosquito-borne pathogen of both livestock and humans, which is found mainly in sub-Saharan Africa and the Arabian Peninsula. RVFV has a trisegmented single-stranded RNA (ssRNA) genome. The L and M segments are negative sense and encode the L protein (viral polymerase) on the L segment and the virion glycoproteins Gn and Gc as well as two other proteins, NSm and 78K, on the M segment. The S segment uses an ambisense coding strategy to express the nucleocapsid protein, N, and the nonstructural protein, NSs. Both the NSs and NSm proteins are dispensable for virus growth in tissue culture. Using reverse genetics, we generated a recombinant virus, designated r2segMP12, containing a two-segmented genome in which the NSs coding sequence was replaced with that for the Gn and Gc precursor. Thus, r2segMP12 lacks an M segment, and although it was attenuated in comparison to the three-segmented parental virus in both mammalian and insect cell cultures, it was genetically stable over multiple passages. We further show that the virus can stably maintain an M-like RNA segment encoding the enhanced green fluorescent protein gene. The implications of these findings for RVFV genome packaging and the potential to develop multivalent live-attenuated vaccines are discussed. PMID:21795328
Borca, Manuel V; O'Donnell, Vivian; Holinka, Lauren G; Rai, Devendra K; Sanford, Brenton; Alfano, Marialexia; Carlson, Jolene; Azzinaro, Paul A; Alonso, Covadonga; Gladue, Douglas P
2016-09-02
African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The viral genome encodes for more than 150 genes, and only a select few of these genes have been studied in some detail. Here we report the characterization of open reading frame Ep152R that has a predicted complement control module/SCR domain. This domain is found in Vaccinia virus proteins that are involved in blocking the immune response during viral infection. A recombinant ASFV harboring a HA tagged version of the Ep152R protein was developed (ASFV-G-Ep152R-HA) and used to demonstrate that Ep152R is an early virus protein. Attempts to construct recombinant viruses having a deleted Ep152R gene were consistently unsuccessful indicating that Ep152R is an essential gene. Interestingly, analysis of host-protein interactions for Ep152R using a yeast two-hybrid screen, identified BAG6, a protein previously identified as being required for ASFV replication. Furthermore, fluorescent microscopy analysis confirms that Ep152R-BAG6 interaction actually occurs in cells infected with ASFV. Published by Elsevier B.V.
The virally encoded killer proteins from Ustilago maydis
USDA-ARS?s Scientific Manuscript database
Several strains of Ustilago maydis, a causal agent of corn smut disease, exhibit a 'killer' phenotype that is due to persistent infection by double-stranded RNA Totiviruses. These viruses produce potent killer proteins that are secreted by the host. This is a rare example of virus/host symbiosis in ...
Pathogenicity evaluation of different Newcastle disease virus chimeras in 4-week-old chickens
USDA-ARS?s Scientific Manuscript database
Infection with a virulent strain of Newcastle disease virus is considered one of the most important threats to the poultry industry worldwide. The causative virus, Newcastle disease virus, belongs to the Paramyxoviridae family, genus Avulavirus, and its genome encodes for 6 structural proteins: nu...
Recombinant vaccinia/Venezuelan equine encephalitis (VEE) virus expresses VEE structural proteins.
Kinney, R M; Esposito, J J; Johnson, B J; Roehrig, J T; Mathews, J H; Barrett, A D; Trent, D W
1988-12-01
cDNA molecules encoding the structural proteins of the virulent Trinidad donkey and the TC-83 vaccine strains of Venezuelan equine encephalitis (VEE) virus were inserted under control of the vaccinia virus 7.5K promoter into the thymidine kinase gene of vaccinia virus. Synthesis of the capsid protein and glycoproteins E2 and E1 of VEE virus was demonstrated by immunoblotting of lysates of CV-1 cells infected with recombinant vaccinia/VEE viruses. VEE glycoproteins were detected in recombinant virus-infected cells by fluorescent antibody (FA) analysis performed with a panel of VEE-specific monoclonal antibodies. Seven E2-specific epitopes and two of four E1-specific epitopes were demonstrated by FA.
Nucleotide sequence and phylogenetic analysis of Cucurbit yellow stunting disorder virus RNA 2.
Livieratos, Ioannis C; Coutts, Robert H A
2002-06-01
The complete nucleotide sequence of Cucurbit yellow stunting disorder virus (CYSDV) RNA 2, a whitefly (Bemisia tabaci)-transmitted closterovirus with a bi-partite genome, is reported. CYSDV RNA 2 is 7,281 nucleotides long and contains the closterovirus hallmark gene array with a similar arrangement to the prototype member of the genus Crinivirus, Lettuce infectious yellows virus (LIYV). CYSDV RNA 2 contains open reading frames (ORFs) potentially encoding in a 5' to 3' direction for proteins of 5 kDa (ORF 1; hydrophobic protein), 62 kDa (ORF 2; heat shock protein 70 homolog, HSP70h), 59 kDa (ORF 3; protein of unknown function), 9 kDa (ORF 4; protein of unknown function), 28.5 kDa (ORF 5; coat protein, CP), 53 kDa (ORF 6; coat protein minor, CPm), and 26.5 kDa (ORF 7; protein of unknown function). Pairwise comparisons of CYSDV RNA 2-encoded proteins (HSP70h, p59 and CPm) among the closteroviruses showed that CYSDV is closely related to LIYV. Phylogenetic analysis based on the amino acid sequence of the HSP70h, indicated that CYSDV clusters with other members of the genus Crinivirus, and it is related to Little cherry virus-1 (LChV-1), but is distinct from the aphid- or mealybug-transmitted closteroviruses.
Woolford, Lucy; Rector, Annabel; Van Ranst, Marc; Ducki, Andrea; Bennett, Mark D.; Nicholls, Philip K.; Warren, Kristin S.; Swan, Ralph A.; Wilcox, Graham E.; O'Hara, Amanda J.
2007-01-01
Conservation efforts to prevent the extinction of the endangered western barred bandicoot (Perameles bougainville) are currently hindered by a progressively debilitating cutaneous and mucocutaneous papillomatosis and carcinomatosis syndrome observed in captive and wild populations. In this study, we detected a novel virus, designated the bandicoot papillomatosis carcinomatosis virus type 1 (BPCV1), in lesional tissue from affected western barred bandicoots using multiply primed rolling-circle amplification and PCR with the cutaneotropic papillomavirus primer pairs FAP59/FAP64 and AR-L1F8/AR-L1R9. Sequencing of the BPCV1 genome revealed a novel prototype virus exhibiting genomic properties of both the Papillomaviridae and the Polyomaviridae. Papillomaviral properties included a large genome size (∼7.3 kb) and the presence of open reading frames (ORFs) encoding canonical L1 and L2 structural proteins. The genomic organization in which structural and nonstructural proteins were encoded on different strands of the double-stranded genome and the presence of ORFs encoding the nonstructural proteins large T and small t antigens were, on the other hand, typical polyomaviral features. BPCV1 may represent the first member of a novel virus family, descended from a common ancestor of the papillomaviruses and polyomaviruses recognized today. Alternatively, it may represent the product of ancient recombination between members of these two virus families. The discovery of this virus could have implications for the current taxonomic classification of Papillomaviridae and Polyomaviridae and can provide further insight into the evolution of these ancient virus families. PMID:17898069
Santana, Vinicius C; Diniz, Mariana O; Cariri, Francisco A M O; Ventura, Armando M; Cunha-Neto, Edécio; Almeida, Rafael R; Campos, Marco A; Lima, Graciela K; Ferreira, Luís C S
2013-01-01
Millions of people worldwide are currently infected with human papillomavirus (HPV), herpes simplex virus (HSV) or human immunodeficiency virus (HIV). For this enormous contingent of people, the search for preventive and therapeutic immunological approaches represents a hope for the eradication of latent infection and/or virus-associated cancer. To date, attempts to develop vaccines against these viruses have been mainly based on a monovalent concept, in which one or more antigens of a virus are incorporated into a vaccine formulation. In the present report, we designed and tested an immunization strategy based on DNA vaccines that simultaneously encode antigens for HIV, HSV and HPV. With this purpose in mind, we tested two bicistronic DNA vaccines (pIRES I and pIRES II) that encode the HPV-16 oncoprotein E7 and the HIV protein p24 both genetically fused to the HSV-1 gD envelope protein. Mice i.m. immunized with the DNA vaccines mounted antigen-specific CD8⁺ T cell responses, including in vivo cytotoxic responses, against the three antigens. Under experimental conditions, the vaccines conferred protective immunity against challenges with a vaccinia virus expressing the HIV-derived protein Gag, an HSV-1 virus strain and implantation of tumor cells expressing the HPV-16 oncoproteins. Altogether, our results show that the concept of a trivalent HIV, HSV, and HPV vaccine capable to induce CD8⁺ T cell-dependent responses is feasible and may aid in the development of preventive and/or therapeutic approaches for the control of diseases associated with these viruses.
Analyses of pea necrotic yellow dwarf virus-encoded proteins.
Krenz, Björn; Schießl, Ingrid; Greiner, Eva; Krapp, Susanna
2017-06-01
Pea necrotic yellow dwarf virus (PNYDV) is a multipartite, circular, single-stranded DNA plant virus. PNYDV encodes eight proteins and the function of three of which remains unknown-U1, U2, and U4. PNYDV proteins cellular localization was analyzed by GFP tagging and bimolecular fluorescence complementation (BiFC) studies. The interactions of all eight PNYDV proteins were tested pairwise in planta (36 combinations in total). Seven interactions were identified and two (M-Rep with CP and MP with U4) were characterized further. MP and U4 complexes appeared as vesicle-like spots and were localized at the nuclear envelope and cell periphery. These vesicle-like spots were associated with the endoplasmatic reticulum. In addition, a nuclear localization signal (NLS) was mapped for U1, and a mutated U1 with NLS disrupted localized at plasmodesmata and therefore might also have a role in movement. Taken together, this study provides evidence for previously undescribed nanovirus protein-protein interactions and their cellular localization with novel findings not only for those proteins with unknown function, but also for characterized proteins such as the CP.
Shelemba-Chepurnova, A A; Omel'ianchuk, L V; Chepurnov, A A
2011-01-01
Ebola virus virulence in guinea pigs, which appears through virus adaptation to this animal host, correlates with substitutions in the gene encoding vp24 protein. In particular, the substitution His-->Tyr186 was found when obtaining strain 8 ms. An attempt was made to clarify the functional role of this substitution in a transgenic fruit fly model. Using the drosophila transformation technique provided transgenic strains that contained genomic insertions of wild-type Ebola virus vp24 gene and the mutant gene with the His-->Tyr substitution at the above position. Thus, the drosophila strains carrying the sequences encoding for the vp24 proteins of Ebola virus Zaire and 8 ms in pUAST vector were obtained. This makes it possible to study the expression of transgenic constructs in various D. melanogaster organs and tissues.
Boulila, Moncef
2010-06-01
To enhance the knowledge of recombination as an evolutionary process, 267 accessions retrieved from GenBank were investigated, all belonging to five economically important viruses infecting fruit crops (Plum pox, Apple chlorotic leaf spot, Apple mosaic, Prune dwarf, and Prunus necrotic ringspot viruses). Putative recombinational events were detected in the coat protein (CP)-encoding gene using RECCO and RDP version 3.31beta algorithms. Based on RECCO results, all five viruses were shown to contain potential recombination signals in the CP gene. Reconstructed trees with modified topologies were proposed. Furthermore, RECCO performed better than the RDP package in detecting recombination events and exhibiting their evolution rate along the sequences of the five viruses. RDP, however, provided the possible major and minor parents of the recombinants. Thus, the two methods should be considered complementary.
Sánchez-Navarro, Jesús A; Carmen Herranz, María; Pallás, Vicente
2006-03-01
RNA 3 of Alfalfa mosaic virus (AMV) encodes the movement protein (MP) and coat protein (CP). Chimeric RNA 3 with the AMV MP gene replaced by the corresponding MP gene of Prunus necrotic ringspot virus, Brome mosaic virus, Cucumber mosaic virus or Cowpea mosaic virus efficiently moved from cell-to-cell only when the expressed MP was extended at its C-terminus with the C-terminal 44 amino acids of AMV MP. MP of Tobacco mosaic virus supported the movement of the chimeric RNA 3 whether or not the MP was extended with the C-terminal AMV MP sequence. The replacement of the CP gene in RNA 3 by a mutant gene encoding a CP defective in virion formation did not affect cell-to-cell transport of the chimera's with a functional MP. A GST pull-down technique was used to demonstrate for the first time that the C-terminal 44 amino acids of the MP of a virus belonging to the family Bromoviridae interact specifically with AMV virus particles. Together, these results demonstrate that AMV RNA 3 can be transported from cell-to-cell by both tubule-forming and non-tubule-forming MPs if a specific MP-CP interaction occurs.
Polypeptide p41 of a Norwalk-Like Virus Is a Nucleic Acid-Independent Nucleoside Triphosphatase
Pfister, Thomas; Wimmer, Eckard
2001-01-01
Southampton virus (SHV) is a member of the Norwalk-like viruses (NLVs), one of four genera of the family Caliciviridae. The genome of SHV contains three open reading frames (ORFs). ORF 1 encodes a polyprotein that is autocatalytically processed into six proteins, one of which is p41. p41 shares sequence motifs with protein 2C of picornaviruses and superfamily 3 helicases. We have expressed p41 of SHV in bacteria. Purified p41 exhibited nucleoside triphosphate (NTP)-binding and NTP hydrolysis activities. The NTPase activity was not stimulated by single-stranded nucleic acids. SHV p41 had no detectable helicase activity. Protein sequence comparison between the consensus sequences of NLV p41 and enterovirus protein 2C revealed regions of high similarity. According to secondary structure prediction, the conserved regions were located within a putative central domain of alpha helices and beta strands. This study reveals for the first time an NTPase activity associated with a calicivirus-encoded protein. Based on enzymatic properties and sequence information, a functional relationship between NLV p41 and enterovirus 2C is discussed in regard to the role of 2C-like proteins in virus replication. PMID:11160659
Complete nucleotide sequence of jasmine virus H, a new member of the family Tombusviridae.
Zhuo, Tao; Zhu, Li-Juan; Lu, Cheng-Cong; Jiang, Chao-Yang; Chen, Zi-Yin; Zhang, Guangzhi; Wang, Zong-Hua; Jovel, Juan; Han, Yan-Hong
2018-03-01
Jasmine virus H (JaVH) is a novel virus associated with symptoms of yellow mosaic on jasmine. The JaVH genome is 3,867 nt in length with five open reading frames (ORFs) encoding a 27-kDa protein (ORF 1), an 87-kDa replicase protein (ORF 2), two centrally located movement proteins (ORF 3 and 4), and a 37-kDa capsid protein (ORF 5). Based on genomic and phylogenetic analysis, JaVH is predicted to be a member of the genus Pelarspovirus in the family Tombusviridae.
Sekiguchi, Satoshi; Kimura, Kiminori; Chiyo, Tomoko; Ohtsuki, Takahiro; Tobita, Yoshimi; Tokunaga, Yuko; Yasui, Fumihiko; Tsukiyama-Kohara, Kyoko; Wakita, Takaji; Tanaka, Toshiyuki; Miyasaka, Masayuki; Mizuno, Kyosuke; Hayashi, Yukiko; Hishima, Tsunekazu; Matsushima, Kouji; Kohara, Michinori
2012-01-01
Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV), is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV) that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid–polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis), liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25), which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29(+/−)/MxCre(+/−) mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor) TNF-α and (interleukin) IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine. PMID:23284733
Sekiguchi, Satoshi; Kimura, Kiminori; Chiyo, Tomoko; Ohtsuki, Takahiro; Tobita, Yoshimi; Tokunaga, Yuko; Yasui, Fumihiko; Tsukiyama-Kohara, Kyoko; Wakita, Takaji; Tanaka, Toshiyuki; Miyasaka, Masayuki; Mizuno, Kyosuke; Hayashi, Yukiko; Hishima, Tsunekazu; Matsushima, Kouji; Kohara, Michinori
2012-01-01
Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV), is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV) that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis), liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25), which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-))/MxCre((+/-)) mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor) TNF-α and (interleukin) IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.
Geisler, Christoph
2018-02-07
Adventitious viral contamination in cell substrates used for biologicals production is a major safety concern. A powerful new approach that can be used to identify adventitious viruses is a combination of bioinformatics tools with massively parallel sequencing technology. Typically, this involves mapping or BLASTN searching individual reads against viral nucleotide databases. Although extremely sensitive for known viruses, this approach can easily miss viruses that are too dissimilar to viruses in the database. Moreover, it is computationally intensive and requires reference cell genome databases. To avoid these drawbacks, we set out to develop an alternative approach. We reasoned that searching genome and transcriptome assemblies for adventitious viral contaminants using TBLASTN with a compact viral protein database covering extant viral diversity as the query could be fast and sensitive without a requirement for high performance computing hardware. We tested our approach on Spodoptera frugiperda Sf-RVN, a recently isolated insect cell line, to determine if it was contaminated with one or more adventitious viruses. We used Illumina reads to assemble the Sf-RVN genome and transcriptome and searched them for adventitious viral contaminants using TBLASTN with our viral protein database. We found no evidence of viral contamination, which was substantiated by the fact that our searches otherwise identified diverse sequences encoding virus-like proteins. These sequences included Maverick, R1 LINE, and errantivirus transposons, all of which are common in insect genomes. We also identified previously described as well as novel endogenous viral elements similar to ORFs encoded by diverse insect viruses. Our results demonstrate TBLASTN searching massively parallel sequencing (MPS) assemblies with a compact, manually curated viral protein database is more sensitive for adventitious virus detection than BLASTN, as we identified various sequences that encoded virus-like proteins, but had no similarity to viral sequences at the nucleotide level. Moreover, searches were fast without requiring high performance computing hardware. Our study also documents the enhanced biosafety profile of Sf-RVN as compared to other Sf cell lines, and supports the notion that Sf-RVN is highly suitable for the production of safe biologicals.
NASA Astrophysics Data System (ADS)
Krupovic, Mart; Koonin, Eugene V.
2014-06-01
Single-stranded (ss)DNA viruses are extremely widespread, infect diverse hosts from all three domains of life and include important pathogens. Most ssDNA viruses possess small genomes that replicate by the rolling-circle-like mechanism initiated by a distinct virus-encoded endonuclease. However, viruses of the family Bidnaviridae, instead of the endonuclease, encode a protein-primed type B DNA polymerase (PolB) and hence break this pattern. We investigated the provenance of all bidnavirus genes and uncover an unexpected turbulent evolutionary history of these unique viruses. Our analysis strongly suggests that bidnaviruses evolved from a parvovirus ancestor from which they inherit a jelly-roll capsid protein and a superfamily 3 helicase. The radiation of bidnaviruses from parvoviruses was probably triggered by integration of the ancestral parvovirus genome into a large virus-derived DNA transposon of the Polinton (polintovirus) family resulting in the acquisition of the polintovirus PolB gene along with terminal inverted repeats. Bidnavirus genes for a receptor-binding protein and a potential novel antiviral defense modulator are derived from dsRNA viruses (Reoviridae) and dsDNA viruses (Baculoviridae), respectively. The unusual evolutionary history of bidnaviruses emphasizes the key role of horizontal gene transfer, sometimes between viruses with completely different genomes but occupying the same niche, in the emergence of new viral types.
Silva, Maria C.; Yu, Qian-Chun; Enquist, Lynn; Shenk, Thomas
2003-01-01
The human cytomegalovirus UL99-encoded pp28 is a myristylated phosphoprotein that is a constituent of the virion. The pp28 protein is positioned within the tegument of the virus particle, a protein structure that resides between the capsid and envelope. In the infected cell, pp28 is found in a cytoplasmic compartment derived from the Golgi apparatus, where the virus buds into vesicles to acquire its final membrane. We have constructed two mutants of human cytomegalovirus that fail to produce the pp28 protein, a substitution mutant (BADsubUL99) and a point mutant (BADpmUL99), and we have propagated them by complementation in pp28-expressing fibroblasts. Both mutant viruses are profoundly defective for growth in normal fibroblasts; no infectious virus could be detected after infection. Whereas normal levels of viral DNA and late proteins were observed in mutant virus-infected cells, large numbers of tegument-associated capsids accumulated in the cytoplasm that failed to acquire an envelope. We conclude that pp28 is required for the final envelopment of the human cytomegalovirus virion in the cytoplasm. PMID:12970444
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Wei; Huang Youhua; Zhao Zhe
2006-12-08
The 3{beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) isoenzymes play a key role in cellular steroid hormone synthesis. Here, a 3{beta}-HSD gene homolog was cloned from Rana grylio virus (RGV), a member of family Iridoviridae. RGV 3{beta}-HSD gene has 1068 bp, encoding a 355 aa predicted protein. Transcription analyses showed that RGV 3{beta}-HSD gene was transcribed immediate-early during infection from an initiation site 19 nucleotides upstream of the translation start site. Confocal microscopy revealed that the 3{beta}-HSD-EGFP fusion protein was exclusively colocalized with the mitochondria marker (pDsRed2-Mito) in EPC cells. Upon morphological observation and MTT assay, it was revealed that overexpression of RGV 3{beta}-HSDmore » in EPC cells could apparently suppress RGV-induced cytopathic effect (CPE). The present studies indicate that the RGV immediate-early 3{beta}-HSD gene encodes a mitochondria-localized protein, which has a novel role in suppressing virus-induced CPE. All these suggest that RGV 3{beta}-HSD might be a protein involved in host-virus interaction.« less
USDA-ARS?s Scientific Manuscript database
African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The viral genome encodes for more than 150 genes, and only a select few have been studied in some detail. Here we rep...
USDA-ARS?s Scientific Manuscript database
The latency-related (LR)-RNA encoded by bovine herpes virus 1 (BoHV-1) is abundantly expressed in latently infected sensory neurons. Although the LR gene encodes several products, ORF2 appears to play a dominant role during the latency-reactivation cycle because a mutant virus containing stop codons...
USDA-ARS?s Scientific Manuscript database
African swine fever virus (ASFV) causes a contagious and frequently lethal disease of pigs that produces significant economic consequences to the swine industry. ASFV genome encodes for more than 150 genes, but only a few of them have been studied in detail. Here we report the characterization of op...
Soleimanjahi, Hoorieh; Roostaee, Mohammad Hassan; Rasaee, Mohammad Javad; Mahboudi, Fereidoon; Kazemnejad, Anooshirvan; Bamdad, Taravat; Zandi, Keivan
2006-02-01
Herpes simplex virus produces primary and latent infections with periodic recurrency. The prime-boost immunization strategies were studied using a DNA vaccine carrying the full-length glycoprotein D-1 gene and a baculovirus-derived recombinant glycoprotein D, both expressing herpes simplex virus glycoprotein D-1 protein. Immunization with recombinant DNAs encoding antigenic proteins could induce cellular and humoral responses by providing antigen expression in vivo. Higher immune response, however, occurred when the recombinant proteins followed DNA inoculation. While all groups of the immunized mice and positive control group could resist virus challenge, a higher virus neutralizing antibody level was detected in the animals receiving recombinant protein following DNA vaccination.
USDA-ARS?s Scientific Manuscript database
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) odv-e56 gene encodes an occlusion-derived virus (ODV)-specific envelope protein, ODV-E56. To determine the role of ODV-E56 in oral infectivity, we produced recombinant EGFP-expressing AcMNPV clones (Ac69GFP-e56lacZ and AcIEGFP-e56lac...
Yadav, Pragya D; Vincent, Martin J; Khristova, Marina; Kale, Charuta; Nichol, Stuart T; Mishra, Akhilesh C; Mourya, Devendra T
2011-07-01
Nairobi sheep disease (NSD) virus, the prototype tick-borne virus of the genus Nairovirus, family Bunyaviridae is associated with acute hemorrhagic gastroenteritis in sheep and goats in East and Central Africa. The closely related Ganjam virus found in India is associated with febrile illness in humans and disease in livestock. The complete S, M and L segment sequences of Ganjam and NSD virus and partial sequence analysis of Ganjam viral RNA genome S, M and L segments encoding regions (396 bp, 701 bp and 425 bp) of the viral nucleocapsid (N), glycoprotein precursor (GPC) and L polymerase (L) proteins, respectively, was carried out for multiple Ganjam virus isolates obtained from 1954 to 2002 and from various regions of India. M segments of NSD and Ganjam virus encode a large ORF for the glycoprotein precursor (GPC), (1627 and 1624 amino acids in length, respectively) and their L segments encode a very large L polymerase (3991 amino acids). The complete S, M and L segments of NSD and Ganjam viruses were more closely related to one another than to other characterized nairoviruses, and no evidence of reassortment was found. However, the NSD and Ganjam virus complete M segment differed by 22.90% and 14.70%, for nucleotide and amino acid respectively, and the complete L segment nucleotide and protein differing by 9.90% and 2.70%, respectively among themselves. Ganjam and NSD virus, complete S segment differed by 9.40-10.40% and 3.2-4.10 for nucleotide and proteins while among Ganjam viruses 0.0-6.20% and 0.0-1.4%, variation was found for nucleotide and amino acids. Ganjam virus isolates differed by up to 17% and 11% at the nucleotide level for the partial S and L gene fragments, respectively, with less variation observed at the deduced amino acid level (10.5 and 2%, S and L, respectively). However, the virus partial M gene fragment (which encodes the hypervariable mucin-like domain) of these viruses differed by as much as 56% at the nucleotide level. Phylogenetic analysis of partial sequence differences suggests considerable mixing and movement of Ganjam virus strains within India, with no clear relationship between genetic lineages and virus geographic origin or year of isolation. Surprisingly, NSD virus does not represent a distinct lineage, but appears as a variant with other Ganjam virus among NSD virus group. Copyright © 2011 Elsevier B.V. All rights reserved.
Iwanaga, Masashi; Kurihara, Masaaki; Kobayashi, Masahiko; Kang, WonKyung
2002-05-25
All lepidopteran baculovirus genomes sequenced to date encode a homolog of the Bombyx mori nucleopolyhedrovirus (BmNPV) orf68 gene, suggesting that it performs an important role in the virus life cycle. In this article we describe the characterization of BmNPV orf68 gene. Northern and Western analyses demonstrated that orf68 gene was expressed as a late gene and encoded a structural protein of budded virus (BV). Immunohistochemical analysis by confocal microscopy showed that ORF68 protein was localized mainly in the nucleus of infected cells. To examine the function of orf68 gene, we constructed orf68 deletion mutant (BmD68) and characterized it in BmN cells and larvae of B. mori. BV production was delayed in BmD68-infected cells. The larval bioassays also demonstrated that deletion of orf68 did not reduce the infectivity, but mutant virus took 70 h longer to kill the host than wild-type BmNPV. In addition, dot-blot analysis showed viral DNA accumulated more slowly in mutant infected cells. Further examination suggested that BmD68 was less efficient in entry and budding from cells, although it seemed to possess normal attachment ability. These results suggest that ORF68 is a BV-associated protein involved in secondary infection from cell-to-cell. (c) 2002 Elsevier Science (USA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrovskis, E.A.; Timmins, J.G.; Post, L.E.
1986-10-01
A library of pseudorabies virus (PRV) DNA fragments was constructed in the expression cloning vector lambdagt11. The library was screened with antisera which reacted with mixtures of PRV proteins to isolate recombinant bacteriophages expressing PRV proteins. By the nature of the lambdagt11 vector, the cloned proteins were expressed in Escherichia coli as ..beta..-galactosidase fusion proteins. The fusion proteins from 35 of these phages were purified and injected into mice to raise antisera. The antisera were screened by several different assays, including immunoprecipitation of (/sup 14/C)glucosamine-labeled PRV proteins. This method identified phages expressing three different PRV glycoproteins: the secreted glycoprotein, gX;more » gI; and a glycoprotein that had not been previously identified, which we designate gp63. The gp63 and gI genes map adjacent to each other in the small unique region of the PRV genome. The DNA sequence was determined for the region of the genome encoding gp63 and gI. It was found that gp63 has a region of homology with a herpes simplex virus type 1 (HSV-1) protein, encoded by US7, and also with varicella-zoster virus (VZV) gpIV. The gI protein sequence has a region of homology with HSV-1 gE and VZV gpI. It is concluded that PRV, HSV, and VZV all have a cluster of homologous glycoprotein genes in the small unique components of their genomes and that the organization of these genes is conserved.« less
Ortiz-Riaño, Emilio; Cheng, Benson Yee Hin
2012-01-01
Arenaviruses have a bisegmented, negative-strand RNA genome. Both the large (L) and small (S) genome segments use an ambisense coding strategy to direct the synthesis of two viral proteins. The L segment encodes the virus polymerase (L protein) and the matrix Z protein, whereas the S segment encodes the nucleoprotein (NP) and the glycoprotein precursor (GPC). NPs are the most abundant viral protein in infected cells and virions and encapsidate genomic RNA species to form an NP-RNA complex that, together with the virus L polymerase, forms the virus ribonucleoprotein (RNP) core capable of directing both replication and transcription of the viral genome. RNP formation predicts a self-association property of NPs. Here we document self-association (homotypic interaction) of the NP of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV), as well as those of the hemorrhagic fever (HF) arenaviruses Lassa virus (LASV) and Machupo virus (MACV). We also show heterotypic interaction between NPs from both closely (LCMV and LASV) and distantly (LCMV and MACV) genetically related arenaviruses. LCMV NP self-association was dependent on the presence of single-stranded RNA and mediated by an N-terminal region of the NP that did not overlap with the previously described C-terminal NP domain involved in either counteracting the host type I interferon response or interacting with LCMV Z. PMID:22258244
A cilevirus infects ornamental hibiscus in Hawaii
Melzer, Michael J.; Simbajon, Nelson; Carillo, James; Borth, Wayne B.; Freitas-Astúa, Juliana; Kitajima, Elliot W.; Neupane, Kabi R.; Hu, John S.
2013-01-01
The complete nucleotide sequence of a virus infecting ornamental hibiscus (Hibiscus sp.) in Hawaii with symptoms of green ringspots on senescing leaves was determined from double-stranded RNA isolated from symptomatic tissue. Excluding polyadenylated regions at the 3′ termini, the bipartite RNA genome was 8748 and 5019 nt in length for RNA1 and RNA2, respectively. The genome organization was typical of a cilevirus: RNA1 encoded a large replication-associated protein with methyltransferase, protease, helicase and RNA-dependent RNA polymerase domains as well as a 29-kDa protein of unknown function. RNA2 possessed five open reading frames that potentially encoded proteins with molecular masses of 15, 7, 62, 32, and 24 kDa. The 32-kDa protein is homologous to 3A movement proteins of RNA viruses; the other proteins are of unknown function. A proteome comparison revealed that this virus was 92% identical to citrus leprosis virus cytoplasmic type 2 (CiLV-C2), a recently characterized cilevirus infecting citrus with leprosis-like symptoms in Colombia. The high sequence similarity suggests that the virus described in this study could be a strain of CiLV-C2, but since the new genus Cilevirus does not have species demarcation criteria established at present, the classification of this virus infecting hibiscus is open to interpretation. This study represents the first documented case of a cilevirus established in the United States and provides insight into the diversity within the genus Cilevirus. PMID:23732930
Pérez-Cañamás, Miryam; Hernández, Carmen
2018-05-21
Despite replication of plus strand RNA viruses takes place in the cytoplasm of host cells, different proteins encoded by these infectious agents have been shown to localize in the nucleus, with high accumulation at the nucleolus. In most cases, the molecular determinants and/or biological significance of such subcellular localization remain elusive. Recently, we reported that protein p37 encoded by Pelargonium line pattern virus (family Tombusviridae) acts in both RNA packaging and RNA silencing suppression. Connsistently with these functions, p37 was detected in the cytoplasm of plant cells though it was also present in the nucleus and, particularly, in the nucleolus. Here, we have aimed to gain further insights into factors influencing p37 nucleolar localization and into its potential relevance for viral infection. Besides mapping the protein region containing the nucleolar localization signal, we have found that p37 interacts with distinct members of the importin alpha family -main cellular transporters for nucleo-cytoplasmic traffic of proteins-, and that these interactions are crucial for nucleolar targeting of p37. Impairment of p37 nucleolar localization through down-regulation of importin alpha expression resulted in a reduction of viral accumulation, suggesting that sorting of the protein to the major subnuclear compartment is advantageous for the infection process.
Interaction of Epstein-Barr virus (EBV) with human B-lymphocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, George, E-mail: Georg.Klein@ki.se; Klein, Eva; Kashuba, Elena
Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis. Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore asmore » a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions. The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program. In this short review we touch upon aspects which are the subject of our present work. We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells. The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma that depends on the presence of EBV.« less
Nipah virus sequesters inactive STAT1 in the nucleus via a P gene-encoded mechanism.
Ciancanelli, Michael J; Volchkova, Valentina A; Shaw, Megan L; Volchkov, Viktor E; Basler, Christopher F
2009-08-01
The Nipah virus (NiV) phosphoprotein (P) gene encodes the C, P, V, and W proteins. P, V, and W, have in common an amino-terminal domain sufficient to bind STAT1, inhibiting its interferon (IFN)-induced tyrosine phosphorylation. P is also essential for RNA-dependent RNA polymerase function. C is encoded by an alternate open reading frame (ORF) within the common amino-terminal domain. Mutations within residues 81 to 113 of P impaired its polymerase cofactor function, as assessed by a minireplicon assay, but these mutants retained STAT1 inhibitory function. Mutations within the residue 114 to 140 region were identified that abrogated interaction with and inhibition of STAT1 by P, V, and W without disrupting P polymerase cofactor function. Recombinant NiVs were then generated. A G121E mutation, which abrogated inhibition of STAT1, was introduced into a C protein knockout background (C(ko)) because the mutation would otherwise also alter the overlapping C ORF. In cell culture, relative to the wild-type virus, the C(ko) mutation proved attenuating but the G121E mutant virus replicated identically to the C(ko) virus. In cells infected with the wild-type and C(ko) viruses, STAT1 was nuclear despite the absence of tyrosine phosphorylation. This latter observation mirrors what has been seen in cells expressing NiV W. In the G121E mutant virus-infected cells, STAT1 was not phosphorylated and was cytoplasmic in the absence of IFN stimulation but became tyrosine phosphorylated and nuclear following IFN addition. These data demonstrate that the gene for NiV P encodes functions that sequester inactive STAT1 in the nucleus, preventing its activation and suggest that the W protein is the dominant inhibitor of STAT1 in NiV-infected cells.
The organisation and interviral homologies of genes at the 3' end of tobacco rattle virus RNA1
Boccara, Martine; Hamilton, William D. O.; Baulcombe, David C.
1986-01-01
The RNA1 of tobacco rattle virus (TRV) has been cloned as cDNA and the nucleotide sequence determined of 2 kb from the 3'-terminal region. The sequence contains three long open reading frames. One of these starts 5' of the cDNA and probably corresponds to the carboxy-terminal sequence of a 170-K protein encoded on RNA1. The deduced protein sequence from this reading frame shows homology with the putative replicases of tobacco mosaic virus (TMV) and tricornaviruses. The location of the second open reading frame, which encodes a 29-K polypeptide, was shown by Northern blot analysis to coincide with a 1.6-kb subgenomic RNA. The validity of this reading frame was confirmed by showing that the cDNA extending over this region could be transcribed and translated in vitro to produce a polypeptide of the predicted size which co-migrates in electrophoresis with a translation product of authentic viral RNA. The sequence of this 29-K polypeptide showed homology with two regions in the 30-K protein of TMV. This homology includes positions in the TMV 30-K protein where mutations have been identified which affect the transport of virus between cells. The third open reading frame encodes a potential 16-K protein and was shown by Northern blot hybridisation to be contained within the region of a 0.7-kb subgenomic RNA which is found in cellular RNA of infected cells but not virus particles. The many similarities between TRV and TMV in viral morphology, gene organisation and sequence suggest that these two viral groups may share a common viral ancestor. ImagesFig. 2.Fig. 3. PMID:16453668
Complement Evasion Strategies of Viruses: An Overview
Agrawal, Palak; Nawadkar, Renuka; Ojha, Hina; Kumar, Jitendra; Sahu, Arvind
2017-01-01
Being a major first line of immune defense, the complement system keeps a constant vigil against viruses. Its ability to recognize large panoply of viruses and virus-infected cells, and trigger the effector pathways, results in neutralization of viruses and killing of the infected cells. This selection pressure exerted by complement on viruses has made them evolve a multitude of countermeasures. These include targeting the recognition molecules for the avoidance of detection, targeting key enzymes and complexes of the complement pathways like C3 convertases and C5b-9 formation – either by encoding complement regulators or by recruiting membrane-bound and soluble host complement regulators, cleaving complement proteins by encoding protease, and inhibiting the synthesis of complement proteins. Additionally, viruses also exploit the complement system for their own benefit. For example, they use complement receptors as well as membrane regulators for cellular entry as well as their spread. Here, we provide an overview on the complement subversion mechanisms adopted by the members of various viral families including Poxviridae, Herpesviridae, Adenoviridae, Flaviviridae, Retroviridae, Picornaviridae, Astroviridae, Togaviridae, Orthomyxoviridae and Paramyxoviridae. PMID:28670306
David S. Bischoff; James M. Slavicek
1995-01-01
The Lymantria dispar multinucleocapsid nuclear polyhedrosis virus (LdMNPV) gene encoding G22 was cloned and sequenced. The G22 gene codes for a 191 amino acid protein with a predicted Mr of 22000. Expression of G22 in a rabbit reticulocyte system generated a protein with an M...
Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface.
Knodel, Markus M; Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; Targett-Adams, Paul; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel
2018-01-08
Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.
Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface
Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel
2018-01-01
Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles. PMID:29316722
Shchelkunov, S N; Taranov, O S; Tregubchak, T V; Maksyutov, R A; Silkov, A N; Nesterov, A E; Sennikov, S V
2016-07-01
Wistar rats with collagen-induced arthritis were intramuscularly injected with the recombinant plasmid pcDNA/sTNF-BD encoding the sequence of the TNF-binding protein domain of variola virus CrmB protein (VARV sTNF-BD) or the pcDNA3.1 vector. Quantitative analysis showed that the histopathological changes in the hind-limb joints of rats were most severe in the animals injected with pcDNA3.1 and much less severe in the group of rats injected with pcDNA/sTNF-BD, which indicates that gene therapy of rheumatoid arthritis is promising in the case of local administration of plasmids governing the synthesis of VARV immunomodulatory proteins.
Structure of faustovirus, a large dsDNA virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klose, Thomas; Reteno, Dorine G.; Benamar, Samia
Many viruses protect their genome with a combination of a protein shell with or without a membrane layer. In this paper, we describe the structure of faustovirus, the first DNA virus (to our knowledge) that has been found to use two protein shells to encapsidate and protect its genome. The crystal structure of the major capsid protein, in combination with cryo-electron microscopy structures of two different maturation stages of the virus, shows that the outer virus shell is composed of a double jelly-roll protein that can be found in many double-stranded DNA viruses. The structure of the repeating hexameric unitmore » of the inner shell is different from all other known capsid proteins. In addition to the unique architecture, the region of the genome that encodes the major capsid protein stretches over 17,000 bp and contains a large number of introns and exons. Finally, this complexity might help the virus to rapidly adapt to new environments or hosts.« less
Structure of faustovirus, a large dsDNA virus
Klose, Thomas; Reteno, Dorine G.; Benamar, Samia; ...
2016-05-16
Many viruses protect their genome with a combination of a protein shell with or without a membrane layer. In this paper, we describe the structure of faustovirus, the first DNA virus (to our knowledge) that has been found to use two protein shells to encapsidate and protect its genome. The crystal structure of the major capsid protein, in combination with cryo-electron microscopy structures of two different maturation stages of the virus, shows that the outer virus shell is composed of a double jelly-roll protein that can be found in many double-stranded DNA viruses. The structure of the repeating hexameric unitmore » of the inner shell is different from all other known capsid proteins. In addition to the unique architecture, the region of the genome that encodes the major capsid protein stretches over 17,000 bp and contains a large number of introns and exons. Finally, this complexity might help the virus to rapidly adapt to new environments or hosts.« less
Coat protein expression strategy of oat blue dwarf virus.
Edwards, Michael C; Weiland, John J
2014-02-01
Oat blue dwarf virus (OBDV) is a member of the genus Marafivirus whose genome encodes a 227 kDa polyprotein (p227) ostensibly processed post-translationally into its functional components. Encoded near the 3' terminus and coterminal with the p227 ORF are ORFs specifying major and minor capsid proteins (CP). Since the CP expression strategy of marafiviruses has not been thoroughly investigated, we produced a series of point mutants in the OBDV CP encoding gene and examined expression in protoplasts. Results support a model in which the 21 kDa major CP is the product of direct translation of a sgRNA, while the 24 kDa minor CP is a cleavage product derived from both the polyprotein and a larger ~26 kDa precursor translated directly from the sgRNA. Cleavage occurs at an LXG[G/A] motif conserved in many viruses that use papain-like proteases for polyprotein processing and protection against degradation via the ubiquitin-proteasome system. Published by Elsevier Inc.
Protein Interactions during the Flavivirus and Hepacivirus Life Cycle*
Bruening, Janina; Weigel, Bettina; Pietschmann, Thomas
2017-01-01
Protein–protein interactions govern biological functions in cells, in the extracellular milieu, and at the border between cells and extracellular space. Viruses are small intracellular parasites and thus rely on protein interactions to produce progeny inside host cells and to spread from cell to cell. Usage of host proteins by viruses can have severe consequences e.g. apoptosis, metabolic disequilibria, or altered cell proliferation and mobility. Understanding protein interactions during virus infection can thus educate us on viral infection and pathogenesis mechanisms. Moreover, it has led to important clinical translations, including the development of new therapeutic and vaccination strategies. Here, we will discuss protein interactions of members of the Flaviviridae family, which are small enveloped RNA viruses. Dengue virus, Zika virus and hepatitis C virus belong to the most prominent human pathogenic Flaviviridae. With a genome of roughly ten kilobases encoding only ten viral proteins, Flaviviridae display intricate mechanisms to engage the host cell machinery for their purpose. In this review, we will highlight how dengue virus, hepatitis C virus, Japanese encephalitis virus, tick-borne encephalitis virus, West Nile virus, yellow fever virus, and Zika virus proteins engage host proteins and how this knowledge helps elucidate Flaviviridae infection. We will specifically address the protein composition of the virus particle as well as the protein interactions during virus entry, replication, particle assembly, and release from the host cell. Finally, we will give a perspective on future challenges in Flaviviridae interaction proteomics and why we believe these challenges should be met. PMID:28077444
Bayer, Wibke; Tenbusch, Matthias; Lietz, Ruth; Johrden, Lena; Schimmer, Simone; Uberla, Klaus; Dittmer, Ulf; Wildner, Oliver
2010-02-01
We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4(+) T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.
Johnson, Stephen M.; Eltahla, Auda A.; Aloi, Maria; Aloia, Amanda L.; McDevitt, Christopher A.; Bull, Rowena A.
2017-01-01
ABSTRACT Dengue virus (DENV) is a major global pathogen that causes significant morbidity and mortality in tropical and subtropical areas worldwide. An improved understanding of the regions within the DENV genome and its encoded proteins that are required for the virus replication cycle will expedite the development of urgently required therapeutics and vaccines. We subjected an infectious DENV genome to unbiased insertional mutagenesis and used next-generation sequencing to identify sites that tolerate 15-nucleotide insertions during the virus replication cycle in hepatic cell culture. This revealed that the regions within capsid, NS1, and the 3′ untranslated region were the most tolerant of insertions. In contrast, prM- and NS2A-encoding regions were largely intolerant of insertions. Notably, the multifunctional NS1 protein readily tolerated insertions in regions within the Wing, connector, and β-ladder domains with minimal effects on viral RNA replication and infectious virus production. Using this information, we generated infectious reporter viruses, including a variant encoding the APEX2 electron microscopy tag in NS1 that uniquely enabled high-resolution imaging of its localization to the surface and interior of viral replication vesicles. In addition, we generated a tagged virus bearing an mScarlet fluorescent protein insertion in NS1 that, despite an impact on fitness, enabled live cell imaging of NS1 localization and traffic in infected cells. Overall, this genome-wide profile of DENV genome flexibility may be further dissected and exploited in reporter virus generation and antiviral strategies. IMPORTANCE Regions of genetic flexibility in viral genomes can be exploited in the generation of reporter virus tools and should arguably be avoided in antiviral drug and vaccine design. Here, we subjected the DENV genome to high-throughput insertional mutagenesis to identify regions of genetic flexibility and enable tagged reporter virus generation. In particular, the viral NS1 protein displayed remarkable tolerance of small insertions. This genetic flexibility enabled generation of several novel NS1-tagged reporter viruses, including an APEX2-tagged virus that we used in high-resolution imaging of NS1 localization in infected cells by electron microscopy. For the first time, this analysis revealed the localization of NS1 within viral replication factories known as “vesicle packets” (VPs), in addition to its acknowledged localization to the luminal surface of these VPs. Together, this genetic profile of DENV may be further refined and exploited in the identification of antiviral targets and the generation of reporter virus tools. PMID:28956770
Tinkering with Translation: Protein Synthesis in Virus-Infected Cells
Walsh, Derek; Mathews, Michael B.; Mohr, Ian
2013-01-01
Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus. PMID:23209131
Clark, Amelia M; Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L
2017-09-01
In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis. IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people then and up to the present. It was previously shown that the NS1 protein from the 2009 pandemic H1N1 (pH1N1) virus is not able to inhibit general gene expression. However, currently circulating pH1N1 viruses have evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) that allow the NS1 protein of contemporary pH1N1 strains to inhibit host gene expression, which correlates with its ability to interact with CPSF30. Infection with a recombinant pH1N1 virus encoding these 6 amino acid changes (pH1N1/NSs-6mut) induced lower levels of proinflammatory cytokines, resulting in viral attenuation in vivo This might represent an adaptation of pH1N1 virus to humans. Copyright © 2017 American Society for Microbiology.
Clark, Amelia M.; Nogales, Aitor; Martinez-Sobrido, Luis
2017-01-01
ABSTRACT In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis. IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people then and up to the present. It was previously shown that the NS1 protein from the 2009 pandemic H1N1 (pH1N1) virus is not able to inhibit general gene expression. However, currently circulating pH1N1 viruses have evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) that allow the NS1 protein of contemporary pH1N1 strains to inhibit host gene expression, which correlates with its ability to interact with CPSF30. Infection with a recombinant pH1N1 virus encoding these 6 amino acid changes (pH1N1/NSs-6mut) induced lower levels of proinflammatory cytokines, resulting in viral attenuation in vivo. This might represent an adaptation of pH1N1 virus to humans. PMID:28637754
Reuther, Peter; Göpfert, Kristina; Dudek, Alexandra H.; Heiner, Monika; Herold, Susanne; Schwemmle, Martin
2015-01-01
Influenza A viruses (IAV) pose a constant threat to the human population and therefore a better understanding of their fundamental biology and identification of novel therapeutics is of upmost importance. Various reporter-encoding IAV were generated to achieve these goals, however, one recurring difficulty was the genetic instability especially of larger reporter genes. We employed the viral NS segment coding for the non-structural protein 1 (NS1) and nuclear export protein (NEP) for stable expression of diverse reporter proteins. This was achieved by converting the NS segment into a single open reading frame (ORF) coding for NS1, the respective reporter and NEP. To allow expression of individual proteins, the reporter genes were flanked by two porcine Teschovirus-1 2A peptide (PTV-1 2A)-coding sequences. The resulting viruses encoding luciferases, fluorescent proteins or a Cre recombinase are characterized by a high genetic stability in vitro and in mice and can be readily employed for antiviral compound screenings, visualization of infected cells or cells that survived acute infection. PMID:26068081
Campbell, Patricia J.; Kyriakis, Constantinos S.; Marshall, Nicolle; Suppiah, Suganthi; Seladi-Schulman, Jill; Danzy, Shamika; Lowen, Anice C.
2014-01-01
ABSTRACT Position 41 of the influenza A virus matrix protein encodes a highly conserved alanine in human and avian lineages. Nonetheless, strains of the Eurasian avian-like swine (Easw) lineage contain a change at this position: position 41 of A/swine/Spain/53207/04 (H1N1) (SPN04) encodes a proline. To assess the impact of this naturally occurring polymorphism on viral fitness, we utilized reverse genetics to produce recombinant viruses encoding wild-type M1 41P (rSPN04-P) and consensus 41A (rSPN04-A) residues. Relative to rSPN04-A, rSPN04-P virus displayed reduced growth in vitro. In the guinea pig model, rSPN04-P was transmitted to fewer contact animals than rSPN04-A and failed to infect guinea pigs that received a low-dose inoculum. Moreover, the P41A change altered virion morphology, reducing the number and length of filamentous virions, as well as reducing the neuraminidase activity of virions. The lab-adapted human isolate, A/PR/8/34 (H1N1) (PR8), is nontransmissible in the guinea pig model, making it a useful background in which to identify certain viral factors that enhance transmissibility. We assessed transmission in the context of single-, double-, and triple-reassortant viruses between PR8 and SPN04; PR8/SPN04 M, PR8/SPN04 M+NA, and PR8/SPN04 M+NA+HA, encoding either matrix 41 A or P, were generated. In each case, the virus possessing 41P transmitted less well than the corresponding 41A-encoding virus. In summary, we have identified a naturally occurring mutation in the influenza A virus matrix protein that impacts transmission efficiency and can alter virion morphology and neuraminidase activity. IMPORTANCE We have developed a practical model for examining the genetics underlying transmissibility of the Eurasian avian-like swine lineage viruses, which contributed M and NA segments to the 2009 pandemic strain. Here, we use our system to investigate the impact on viral fitness of a naturally occurring polymorphism at matrix (M1) position 41 in an Easw isolate. Position 41 has been implicated previously in adaptation to laboratory substrates and to mice. Here we show that the polymorphism at M1 41 has a limited effect on growth in vitro but changes the morphology of the virus and impacts growth and transmission in the guinea pig model. PMID:24760887
Machiels, Bénédicte; Lété, Céline; de Fays, Katalin; Mast, Jan; Dewals, Benjamin; Stevenson, Philip G.; Vanderplasschen, Alain; Gillet, Laurent
2011-01-01
All gammaherpesviruses encode a glycoprotein positionally homologous to the Epstein-Barr virus gp350 and the Kaposi's sarcoma-associated herpesvirus (KSHV) K8.1. In this study, we characterized the positional homologous glycoprotein of bovine herpesvirus 4 (BoHV-4), encoded by the Bo10 gene. We identified a 180-kDa gene product, gp180, that was incorporated into the virion envelope. A Bo10 deletion virus was viable but showed a growth deficit associated with reduced binding to epithelial cells. This seemed to reflect an interaction of gp180 with glycosaminoglycans (GAGs), since compared to the wild-type virus, the Bo10 mutant virus was both less infectious for GAG-positive (GAG+) cells and more infectious for GAG-negative (GAG−) cells. However, we could not identify a direct interaction between gp180 and GAGs, implying that any direct interaction must be of low affinity. This function of gp180 was very similar to that previously identified for the murid herpesvirus 4 gp150 and also to that of the Epstein-Barr virus gp350 that promotes CD21+ cell infection and inhibits CD21− cell infection. We propose that such proteins generally regulate virion attachment both by binding to cells and by covering another receptor-binding protein until they are displaced. Thus, they regulate viral tropism both positively and negatively depending upon the presence or absence of their receptor. PMID:21068242
Rodriguez-Medina, Caren; Boissinot, Sylvaine; Chapuis, Sophie; Gereige, Dalya; Rastegar, Maryam; Erdinger, Monique; Revers, Frédéric; Ziegler-Graff, Véronique; Brault, Véronique
2015-12-01
Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RTCter) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RTCter. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Cui, Lei; Wang, Haiying; Ji, Yanxi; Yang, Jie; Xu, Shan; Huang, Xingyu; Wang, Zidao; Qin, Lei; Tien, Po; Zhou, Xi; Guo, Deyin; Chen, Yu
2015-09-01
RNA interference (RNAi) is a process of eukaryotic posttranscriptional gene silencing that functions in antiviral immunity in plants, nematodes, and insects. However, recent studies provided strong supports that RNAi also plays a role in antiviral mechanism in mammalian cells. To combat RNAi-mediated antiviral responses, many viruses encode viral suppressors of RNA silencing (VSR) to facilitate their replication. VSRs have been widely studied for plant and insect viruses, but only a few have been defined for mammalian viruses currently. We identified a novel VSR from coronaviruses, a group of medically important mammalian viruses including Severe acute respiratory syndrome coronavirus (SARS-CoV), and showed that the nucleocapsid protein (N protein) of coronaviruses suppresses RNAi triggered by either short hairpin RNAs or small interfering RNAs in mammalian cells. Mouse hepatitis virus (MHV) is closely related to SARS-CoV in the family Coronaviridae and was used as a coronavirus replication model. The replication of MHV increased when the N proteins were expressed in trans, while knockdown of Dicer1 or Ago2 transcripts facilitated the MHV replication in mammalian cells. These results support the hypothesis that RNAi is a part of the antiviral immunity responses in mammalian cells. IMPORTANCE RNAi has been well known to play important antiviral roles from plants to invertebrates. However, recent studies provided strong supports that RNAi is also involved in antiviral response in mammalian cells. An important indication for RNAi-mediated antiviral activity in mammals is the fact that a number of mammalian viruses encode potent suppressors of RNA silencing. Our results demonstrate that coronavirus N protein could function as a VSR through its double-stranded RNA binding activity. Mutational analysis of N protein allowed us to find out the critical residues for the VSR activity. Using the MHV-A59 as the coronavirus replication model, we showed that ectopic expression of SARS-CoV N protein could promote MHV replication in RNAi-active cells but not in RNAi-depleted cells. These results indicate that coronaviruses encode a VSR that functions in the replication cycle and provide further evidence to support that RNAi-mediated antiviral response exists in mammalian cells.
Guan, Su Hua; Belsham, Graham J
2017-04-01
Foot-and-mouth disease virus is a picornavirus and its RNA genome encodes a large polyprotein. The N-terminal part of this polyprotein is the leader protein, a cysteine protease, termed Lpro. The virus causes the rapid inhibition of host cell cap-dependent protein synthesis within infected cells. This results from the Lpro-dependent cleavage of the cellular translation initiation factor eIF4G. Lpro also releases itself from the virus capsid precursor by cleaving the L/P1 junction. Using site-directed mutagenesis of the Lpro coding sequence, we have investigated the role of 51 separate amino acid residues in the functions of this protein. These selected residues either are highly conserved or are charged and exposed on the protein surface. Using transient expression assays, within BHK-21 cells, it was found that residues around the active site (W52, L53 and A149) of Lpro and others located elsewhere (K38, K39, R44, H138 and W159) are involved in the induction of eIF4G cleavage but not in the processing of the L/P1 junction. Modified viruses, encoding such amino acid substitutions within Lpro, can replicate in BHK-21 cells but did not grow well in primary bovine thyroid cells. This study characterizes mutant viruses that are deficient in blocking host cell responses to infection (e.g. interferon induction) and can assist in the rational design of antiviral agents targeting this process and in the production of attenuated viruses.
Forterre, Patrick
2013-01-01
Viruses have been considered for a long time as by-products of biological evolution. This view is changing now as a result of several recent discoveries. Viral ecologists have shown that viral particles are the most abundant biological entities on our planet, whereas metagenomic analyses have revealed an unexpected abundance and diversity of viral genes in the biosphere. Comparative genomics have highlighted the uniqueness of viral sequences, in contradiction with the traditional view of viruses as pickpockets of cellular genes. On the contrary, cellular genomes, especially eukaryotic ones, turned out to be full of genes derived from viruses or related elements (plasmids, transposons, retroelements and so on). The discovery of unusual viruses infecting archaea has shown that the viral world is much more diverse than previously thought, ruining the traditional dichotomy between bacteriophages and viruses. Finally, the discovery of giant viruses has blurred the traditional image of viruses as small entities. Furthermore, essential clues on virus history have been obtained in the last ten years. In particular, structural analyses of capsid proteins have uncovered deeply rooted homologies between viruses infecting different cellular domains, suggesting that viruses originated before the last universal common ancestor (LUCA). These studies have shown that several lineages of viruses originated independently, i.e., viruses are polyphyletic. From the time of LUCA, viruses have coevolved with their hosts, and viral lineages can be viewed as lianas wrapping around the trunk, branches and leaves of the tree of life. Although viruses are very diverse, with genomes encoding from one to more than one thousand proteins, they can all be simply defined as organisms producing virions. Virions themselves can be defined as infectious particles made of at least one protein associated with the viral nucleic acid, endowed with the capability to protect the viral genome and ensure its delivery to the infected cell. These definitions, which clearly distinguish viruses from plasmids, suggest that infectious RNA molecules that only encode an RNA replicase presently classified among viruses by the ICTV (International Committee for the Taxonomy of Viruses) into families of Endornaviridae and Hypoviridae are in fact RNA plasmids. Since a viral genome should encode for at least one structural protein, these definitions also imply that viruses originated after the emergence of the ribosome in an RNA-protein cellular world. Although virions are the hallmarks of viruses, viruses and virions should not be confused. The infection transforms the ribocell (cell encoding ribosomes and dividing by binary fission) into a virocell (cell producing virions) or ribovirocell (cell that produces virions but can still divide by binary fission). In the ribovirocell, two different organisms, defined by their distinct evolutionary histories, coexist in symbiosis in the same cell. The virocells or ribovirocells are the living forms of the virus, which can be in fine considered to be a living organism. In the virocell, the metabolism is reorganized for the production of virions, while the ability to capture and store free energy is retained, as in other cellular organisms. In the virocell, viral genomes replicate, recombine and evolve, leading to the emergence of new viral proteins and potentially novel functions. Some of these new functions can be later on transferred to the cell, explaining how viruses can play a major (often underestimated) role in the evolution of cellular organisms. The virocell concept thus helps to understand recent hypotheses suggesting that viruses played a critical role in major evolutionary transitions, such as the origin of DNA genomes or else the origin of the eukaryotic nucleus. Finally, it is more and more recognized that viruses are the major source of variation and selection in living organisms (both viruses and cells), the two pillars of darwinism. One can thus conclude that the continuous interaction between viruses and cells, all along the history of life, has been, and still is, a major engine of biological evolution. © Société de Biologie, 2013.
USDA-ARS?s Scientific Manuscript database
Novel double stranded RNAs (~8 kbp) were isolated from the three cornered alfalfa hopper (Spissistilus festinus) and beet leafhopper (Circulifer tenellus), two plant-feeding hemipteran insect pests. Genome organization of the two new viruses, designated as Spissistilus festinus virus 1 (SpFV1) and ...
USDA-ARS?s Scientific Manuscript database
Novel double-stranded RNAs (~8 kbp) were isolated from three cornered alfalfa hopper (Spissistilus festinus) and beet leafhopper (Circulifer tenellus), two plant-feeding hemipteran insect pests. Genomes of the two new viruses, designated as Spissistilus festinus virus 1 (SpFV1) and Circulifer tenell...
Eichler, Robert; Strecker, Thomas; Kolesnikova, Larissa; ter Meulen, Jan; Weissenhorn, Winfried; Becker, Stephan; Klenk, Hans Dieter; Garten, Wolfgang; Lenz, Oliver
2004-03-15
Lassa virus is the causative agent of a hemorrhagic fever endemic in west Africa. The RNA genome of Lassa virus encodes the glycoprotein precursor GP-C, a nucleoprotein (NP), the viral polymerase L and a small protein Z (11 kDa). Here, we analyze the role of Z protein for virus maturation. We have recently shown that expression of Z protein in the absence of other viral proteins is sufficient for the release of enveloped Z-containing particles. In this study, we examined particles secreted into the supernatant of a stably Z protein-expressing CHO cell line by electron microscopy. The observed Z-induced virus-like particles did not significantly differ in their morphology and size from Lassa virus particles. Mutation of two proline-rich domains within Z which are known to drastically reduce the release of virus-like particles, had no effect on the cellular localization of the protein nor on its membrane-association. Furthermore, we present evidence that Z interacts with the NP. We assume that Z recruits NP to cellular membranes where virus assembly takes place. We conclude from our data that Lassa virus Z protein plays an essential role in Lassa virus maturation.
David S. Bischoff; James M. Slavicek
1994-01-01
The Lymantria dispar multinucleocapsid nuclear polyhedrosis virus (LdMNPV) gene encoding vPK has been cloned and sequenced. LdMNPV vPK shows a 24% amino acid identity to the catalytic domains of the eucaryotic protein kinases nPKC from rabbits, HSPKCE from humans, APLPKCB from Aplysia californica, and dPKC98F from ...
USDA-ARS?s Scientific Manuscript database
Molecular epidemiology and evolution of foot-and-mouth disease virus (FMDV) are widely studied using genomic sequences encoding VP1, the capsid protein containing the most relevant antigenic domains. Although sequencing of the full viral genome is not used as a routine diagnostic or surveillance too...
The ubiquitin-proteasome system is required for African swine fever replication.
Barrado-Gil, Lucía; Galindo, Inmaculada; Martínez-Alonso, Diego; Viedma, Sergio; Alonso, Covadonga
2017-01-01
Several viruses manipulate the ubiquitin-proteasome system (UPS) to initiate a productive infection. Determined viral proteins are able to change the host's ubiquitin machinery and some viruses even encode their own ubiquitinating or deubiquitinating enzymes. African swine fever virus (ASFV) encodes a gene homologous to the E2 ubiquitin conjugating (UBC) enzyme. The viral ubiquitin-conjugating enzyme (UBCv1) is expressed throughout ASFV infection and accumulates at late times post infection. UBCv is also present in the viral particle suggesting that the ubiquitin-proteasome pathway could play an important role at early ASFV infection. We determined that inhibition of the final stage of the ubiquitin-proteasome pathway blocked a post-internalization step in ASFV replication in Vero cells. Under proteasome inhibition, ASF viral genome replication, late gene expression and viral production were severely reduced. Also, ASFV enhanced proteasome activity at late times and the accumulation of polyubiquitinated proteins surrounding viral factories. Core-associated and/or viral proteins involved in DNA replication may be targets for the ubiquitin-proteasome pathway that could possibly assist virus uncoating at final core breakdown and viral DNA release. At later steps, polyubiquitinated proteins at viral factories could exert regulatory roles in cell signaling.
A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus
Alejo, Alí; Ruiz-Argüello, M. Begoña; Ho, Yin; Smith, Vincent P.; Saraiva, Margarida; Alcami, Antonio
2006-01-01
Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis. PMID:16581912
A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus.
Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio
2006-04-11
Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.
Characterization of Durham virus, a novel rhabdovirus that encodes both a C and SH protein.
Allison, A B; Palacios, G; Travassos da Rosa, A; Popov, V L; Lu, L; Xiao, S Y; DeToy, K; Briese, T; Lipkin, W I; Keel, M K; Stallknecht, D E; Bishop, G R; Tesh, R B
2011-01-01
The family Rhabdoviridae is a diverse group of non-segmented, negative-sense RNA viruses that are distributed worldwide and infect a wide range of hosts including vertebrates, invertebrates, and plants. Of the 114 currently recognized vertebrate rhabdoviruses, relatively few have been well characterized at both the antigenic and genetic level; hence, the phylogenetic relationships between many of the vertebrate rhabdoviruses remain unknown. The present report describes a novel rhabdovirus isolated from the brain of a moribund American coot (Fulica americana) that exhibited neurological signs when found in Durham County, North Carolina, in 2005. Antigenic characterization of the virus revealed that it was serologically unrelated to 68 other known vertebrate rhabdoviruses. Genomic sequencing of the virus indicated that it shared the highest identity to Tupaia rhabdovirus (TUPV), and as only previously observed in TUPV, the genome encoded a putative C protein in an overlapping open reading frame (ORF) of the phosphoprotein gene and a small hydrophobic (SH) protein located in a novel ORF between the matrix and glycoprotein genes. Phylogenetic analysis of partial amino acid sequences of the nucleoprotein and polymerase protein indicated that, in addition to TUPV, the virus was most closely related to avian and small mammal rhabdoviruses from Africa and North America. In this report, we present the morphological, pathological, antigenic, and genetic characterization of the new virus, tentatively named Durham virus (DURV), and discuss its potential evolutionary relationship to other vertebrate rhabdoviruses. Copyright © 2010 Elsevier B.V. All rights reserved.
Characterization of Durham virus, a novel rhabdovirus that encodes both a C and SH protein
Allison, A. B.; Palacios, G.; Rosa, A. Travassos da; Popov, V. L.; Lu, L.; Xiao, S. Y.; DeToy, K.; Briese, T.; Lipkin, W. Ian; Keel, M. K.; Stallknecht, D. E.; Bishop, G. R.; Tesh, R. B.
2010-01-01
The family Rhabdoviridae is a diverse group of non-segmented, negative-sense RNA viruses that are distributed worldwide and infect a wide range of hosts including vertebrates, invertebrates, and plants. Of the 114 currently recognized vertebrate rhabdoviruses, relatively few have been well characterized at both the antigenic and genetic level; hence, the phylogenetic relationships between many of the vertebrate rhabdoviruses remain unknown. The present report describes a novel rhabdovirus isolated from the brain of a moribund American coot (Fulica americana) that exhibited neurological signs when found in Durham County, North Carolina, in 2005. Antigenic characterization of the virus revealed that it was serologically unrelated to 68 other known vertebrate rhabdoviruses. Genomic sequencing of the virus indicated that it shared the highest identity to Tupaia rhabdovirus (TUPV), and as only previously observed in TUPV, the genome encoded a putative C protein in an overlapping open reading frame (ORF) of the phosphoprotein gene and a small hydrophobic protein located in a novel ORF between the matrix and glycoprotein genes. Phylogenetic analysis of partial amino acid sequences of the nucleoprotein and polymerase proteins indicated that, in addition to TUPV, the virus was most closely related to avian and small mammal rhabdoviruses from Africa and North America. In this report, we present the morphological, pathological, antigenic, and genetic characterization of the new virus, tentatively named Durham virus (DURV), and discuss its potential evolutionary relationship to other vertebrate rhabdoviruses. PMID:20863863
Polycipiviridae: a proposed new family of polycistronic picorna-like RNA viruses
USDA-ARS?s Scientific Manuscript database
Solenopsis invicta virus 2 is a single-stranded positive-sense picorna-like RNA virus with an unusual genome structure. The monopartite genome of approximately 11 kb contains four short open reading frames in its 5' one third, three of which encode proteins with homology to picornavirus-like jelly-r...
Crivelli, Giulia; Ciuffo, Marina; Genre, Andrea; Masenga, Vera; Turina, Massimo
2011-01-01
Ourmia melon virus (OuMV) is the type member of the genus Ourmiavirus. These viruses have a trisegmented genome, each part of which encodes a single protein. Ourmiaviruses share a distant similarity with other plant viruses only in their movement proteins (MP), whereas their RNA-dependent RNA polymerase (RdRP) shares features only with fungal viruses of the family Narnaviridae. Thus, ourmiaviruses are in a unique phylogenetic position among existing plant viruses. Here, we developed an agroinoculation system to launch infection in Nicotiana benthamiana plants. Using different combinations of the three segments, we demonstrated that RNA1 is necessary and sufficient for cis-acting replication in the agroinfiltrated area. RNA2 and RNA3, encoding the putative movement protein and the coat protein (CP), respectively, are both necessary for successful systemic infection of N. benthamiana. The CP is dispensable for long-distance transport of the virus through vascular tissues, but its absence prevents efficient systemic infection at the exit sites. Virion formation occurred only when the CP was translated from replication-derived RNA3. Transient expression of a green fluorescent protein-MP (GFP-MP) fusion via agroinfiltration showed that the MP is present in cytoplasmic connections across plant cell walls; in protoplasts the GFP-MP fusion stimulates the formation of tubular protrusions. Expression through agroinfiltration of a GFP-CP fusion displays most of the fluorescence inside the nucleus and within the nucleolus in particular. Nuclear localization of the CP was also confirmed through Western blot analysis of purified nuclei. The significance of several unusual properties of OuMV for replication, virion assembly, and movement is discussed in relation to other positive-strand RNA viruses. PMID:21411534
Protein Interactions during the Flavivirus and Hepacivirus Life Cycle.
Gerold, Gisa; Bruening, Janina; Weigel, Bettina; Pietschmann, Thomas
2017-04-01
Protein-protein interactions govern biological functions in cells, in the extracellular milieu, and at the border between cells and extracellular space. Viruses are small intracellular parasites and thus rely on protein interactions to produce progeny inside host cells and to spread from cell to cell. Usage of host proteins by viruses can have severe consequences e.g. apoptosis, metabolic disequilibria, or altered cell proliferation and mobility. Understanding protein interactions during virus infection can thus educate us on viral infection and pathogenesis mechanisms. Moreover, it has led to important clinical translations, including the development of new therapeutic and vaccination strategies. Here, we will discuss protein interactions of members of the Flaviviridae family, which are small enveloped RNA viruses. Dengue virus, Zika virus and hepatitis C virus belong to the most prominent human pathogenic Flaviviridae With a genome of roughly ten kilobases encoding only ten viral proteins, Flaviviridae display intricate mechanisms to engage the host cell machinery for their purpose. In this review, we will highlight how dengue virus, hepatitis C virus, Japanese encephalitis virus, tick-borne encephalitis virus, West Nile virus, yellow fever virus, and Zika virus proteins engage host proteins and how this knowledge helps elucidate Flaviviridae infection. We will specifically address the protein composition of the virus particle as well as the protein interactions during virus entry, replication, particle assembly, and release from the host cell. Finally, we will give a perspective on future challenges in Flaviviridae interaction proteomics and why we believe these challenges should be met. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Koehler, Heather; Cotsmire, Samantha; Langland, Jeffrey; Kibler, Karen V; Kalman, Daniel; Upton, Jason W; Mocarski, Edward S; Jacobs, Bertram L
2017-10-24
Vaccinia virus (VACV) encodes an innate immune evasion protein, E3, which contains an N-terminal Z-nucleic acid binding (Zα) domain that is critical for pathogenicity in mice. Here we demonstrate that the N terminus of E3 is necessary to inhibit an IFN-primed virus-induced necroptosis. VACV deleted of the Zα domain of E3 (VACV-E3LΔ83N) induced rapid RIPK3-dependent cell death in IFN-treated L929 cells. Cell death was inhibited by the RIPK3 inhibitor, GSK872, and infection with this mutant virus led to phosphorylation and aggregation of MLKL, the executioner of necroptosis. In 293T cells, induction of necroptosis depended on expression of RIPK3 as well as the host-encoded Zα domain-containing DNA sensor, DAI. VACV-E3LΔ83N is attenuated in vivo, and pathogenicity was restored in either RIPK3- or DAI-deficient mice. These data demonstrate that the N terminus of the VACV E3 protein prevents DAI-mediated induction of necroptosis.
DeDiego, Marta L.; Nogales, Aitor; Lambert-Emo, Kris; Martinez-Sobrido, Luis
2016-01-01
ABSTRACT Influenza NS1 protein is the main viral protein counteracting host innate immune responses, allowing the virus to efficiently replicate in interferon (IFN)-competent systems. In this study, we analyzed NS1 protein variability within influenza A (IAV) H3N2 viruses infecting humans during the 2012-2013 season. We also evaluated the impact of the mutations on the ability of NS1 proteins to inhibit host innate immune responses and general gene expression. Surprisingly, a previously unidentified mutation in the double-stranded RNA (dsRNA)-binding domain (I64T) decreased NS1-mediated general inhibition of host protein synthesis by decreasing its interaction with cleavage and polyadenylation specificity factor 30 (CPSF30), leading to increased innate immune responses after viral infection. Notably, a recombinant A/Puerto Rico/8/34 H1N1 virus encoding the H3N2 NS1-T64 protein was highly attenuated in mice, most likely because of its ability to induce higher antiviral IFN responses at early times after infection and because this virus is highly sensitive to the IFN-induced antiviral state. Interestingly, using peripheral blood mononuclear cells (PBMCs) collected at the acute visit (2 to 3 days after infection), we show that the subject infected with the NS1-T64 attenuated virus has diminished responses to interferon and to interferon induction, suggesting why this subject could be infected with this highly IFN-sensitive virus. These data demonstrate the importance of influenza virus surveillance in identifying new mutations in the NS1 protein, affecting its ability to inhibit innate immune responses and, as a consequence, the pathogenicity of the virus. IMPORTANCE Influenza A and B viruses are one of the most common causes of respiratory infections in humans, causing 1 billion infections and between 300,000 and 500,000 deaths annually. Influenza virus surveillance to identify new mutations in the NS1 protein affecting innate immune responses and, as a consequence, the pathogenicity of the circulating viruses is highly relevant. Here, we analyzed amino acid variability in the NS1 proteins from human seasonal viruses and the effect of the mutations in innate immune responses and virus pathogenesis. A previously unidentified mutation in the dsRNA-binding domain decreased NS1-mediated general inhibition of host protein synthesis and the interaction of the protein with CPSF30. This mutation led to increased innate immune responses after viral infection, augmented IFN sensitivity, and virus attenuation in mice. Interestingly, using PBMCs, the subject infected with the virus encoding the attenuating mutation induced decreased antiviral responses, suggesting why this subject could be infected with this virus. PMID:27535054
DeDiego, Marta L; Nogales, Aitor; Lambert-Emo, Kris; Martinez-Sobrido, Luis; Topham, David J
2016-11-01
Influenza NS1 protein is the main viral protein counteracting host innate immune responses, allowing the virus to efficiently replicate in interferon (IFN)-competent systems. In this study, we analyzed NS1 protein variability within influenza A (IAV) H3N2 viruses infecting humans during the 2012-2013 season. We also evaluated the impact of the mutations on the ability of NS1 proteins to inhibit host innate immune responses and general gene expression. Surprisingly, a previously unidentified mutation in the double-stranded RNA (dsRNA)-binding domain (I64T) decreased NS1-mediated general inhibition of host protein synthesis by decreasing its interaction with cleavage and polyadenylation specificity factor 30 (CPSF30), leading to increased innate immune responses after viral infection. Notably, a recombinant A/Puerto Rico/8/34 H1N1 virus encoding the H3N2 NS1-T64 protein was highly attenuated in mice, most likely because of its ability to induce higher antiviral IFN responses at early times after infection and because this virus is highly sensitive to the IFN-induced antiviral state. Interestingly, using peripheral blood mononuclear cells (PBMCs) collected at the acute visit (2 to 3 days after infection), we show that the subject infected with the NS1-T64 attenuated virus has diminished responses to interferon and to interferon induction, suggesting why this subject could be infected with this highly IFN-sensitive virus. These data demonstrate the importance of influenza virus surveillance in identifying new mutations in the NS1 protein, affecting its ability to inhibit innate immune responses and, as a consequence, the pathogenicity of the virus. Influenza A and B viruses are one of the most common causes of respiratory infections in humans, causing 1 billion infections and between 300,000 and 500,000 deaths annually. Influenza virus surveillance to identify new mutations in the NS1 protein affecting innate immune responses and, as a consequence, the pathogenicity of the circulating viruses is highly relevant. Here, we analyzed amino acid variability in the NS1 proteins from human seasonal viruses and the effect of the mutations in innate immune responses and virus pathogenesis. A previously unidentified mutation in the dsRNA-binding domain decreased NS1-mediated general inhibition of host protein synthesis and the interaction of the protein with CPSF30. This mutation led to increased innate immune responses after viral infection, augmented IFN sensitivity, and virus attenuation in mice. Interestingly, using PBMCs, the subject infected with the virus encoding the attenuating mutation induced decreased antiviral responses, suggesting why this subject could be infected with this virus. Copyright © 2016 DeDiego et al.
Complete genome sequence of a Watermelon silver mottle virus isolate from China.
Rao, Xueqin; Wu, Zhuyan; Li, Yuan
2013-06-01
The complete genome of a Watermelon silver mottle virus (WSMoV) (genus Tospovirus, family Bunyaviridae) isolate (WSMoV-GZ) from Guangdong province, China was sequenced. The genomes of WSMoV-GZ contained 3,603, 4,909, and 8,914 nt of small (S), medium (M), and large (L) RNA segments, respectively, and had a genomic organization characteristic of members of the genus Tospovirus. The amino acid sequence of the nucleocapsid (N) protein, S RNA-encoded nonstructural (NSs) protein, M RNA-encoded nonstructural (NSm) protein, Gn/Gc glycoprotein precursor, and RNA-dependent RNA polymerase (RdRp) protein showed 94.3-97.5 % identity with those of other WSMoV isolates. Phylogenetic analysis showed that the N protein of WSMoV-GZ was clustered together with those of the WSMoV isolates. The full sequence of WSMoV-GZ provides a reference genome for comparison with other tospoviruses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzeng, W.-P.; Frey, Teryl K.
Rubella virus (RUB) replicons are derivatives of the RUB infectious cDNA clone that retain the nonstructural open reading frame (NS-ORF) that encodes the replicase proteins but not the structural protein ORF (SP-ORF) that encodes the virion proteins. RUB defective interfering (DI) RNAs contain deletions within the SP-ORF and thus resemble replicons. DI RNAs often retain the 5' end of the capsid protein (C) gene that has been shown to modulate virus-specific RNA synthesis. However, when replicons either with or without the C gene were passaged serially in the presence of wt RUB as a source of the virion proteins, itmore » was found that neither replicon was maintained and DI RNAs were generated. The majority DI RNA species contained in-frame deletions in the SP-ORF leading to a fusion between the 5' end of the C gene and the 3' end of the E1 glycoprotein gene. DI infectious cDNA clones were constructed and transcripts from these DI infectious cDNA clones were maintained during serial passage with wt RUB. The C-E1 fusion protein encoded by the DI RNAs was synthesized and was required for maintenance of the DI RNA during serial passage. This is the first report of a functional novel gene product resulting from deletion during DI RNA generation. Thus far, the role of the C-E1 fusion protein in maintenance of DI RNAs during serial passage remained elusive as it was found that the fusion protein diminished rather than enhanced DI RNA synthesis and was not incorporated into virus particles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Min; Guangxi Center for Animal Disease Control and Prevention, Nanning 530001; College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062
Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AALmore » and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.« less
Gupta, Soham; Ylä-Anttila, Päivi; Callegari, Simone; Tsai, Ming-Han; Delecluse, Henri-Jacques; Masucci, Maria G
2018-01-01
The N-terminal domains of the herpesvirus large tegument proteins encode a conserved cysteine protease with ubiquitin- and NEDD8-specific deconjugase activity. The proteins are expressed during the productive virus cycle and are incorporated into infectious virus particles, being delivered to the target cells upon primary infection. Members of this viral enzyme family were shown to regulate different aspects of the virus life cycle and the innate anti-viral response. However, only few substrates have been identified and the mechanisms of these effects remain largely unknown. In order to gain insights on the substrates and signaling pathways targeted by the viral enzymes, we have used co-immunoprecipitation and mass spectrometry to identify cellular proteins that interact with the Epstein-Barr virus encoded homologue BPLF1. Several members of the 14-3-3-family of scaffold proteins were found amongst the top hits of the BPLF1 interactome, suggesting that, through this interaction, BPLF1 may regulate a variety of cellular signaling pathways. Analysis of the shared protein-interaction network revealed that BPLF1 promotes the assembly of a tri-molecular complex including, in addition to 14-3-3, the ubiquitin ligase TRIM25 that participates in the innate immune response via ubiquitination of cytosolic pattern recognition receptor, RIG-I. The involvement of BPLF1 in the regulation of this signaling pathway was confirmed by inhibition of the type-I IFN responses in cells transfected with a catalytically active BPLF1 N-terminal domain or expressing the endogenous protein upon reactivation of the productive virus cycle. We found that the active viral enzyme promotes the dimerization and autoubiquitination of TRIM25. Upon triggering of the IFN response, RIG-I is recruited to the complex but ubiquitination is severely impaired, which functionally inactivates the RIG-I signalosome. The capacity to bind to and functionally inactivate the RIG-I signalosome is shared by the homologues encoded by other human herpesviruses.
Gupta, Soham; Callegari, Simone; Delecluse, Henri-Jacques
2018-01-01
The N-terminal domains of the herpesvirus large tegument proteins encode a conserved cysteine protease with ubiquitin- and NEDD8-specific deconjugase activity. The proteins are expressed during the productive virus cycle and are incorporated into infectious virus particles, being delivered to the target cells upon primary infection. Members of this viral enzyme family were shown to regulate different aspects of the virus life cycle and the innate anti-viral response. However, only few substrates have been identified and the mechanisms of these effects remain largely unknown. In order to gain insights on the substrates and signaling pathways targeted by the viral enzymes, we have used co-immunoprecipitation and mass spectrometry to identify cellular proteins that interact with the Epstein-Barr virus encoded homologue BPLF1. Several members of the 14-3-3-family of scaffold proteins were found amongst the top hits of the BPLF1 interactome, suggesting that, through this interaction, BPLF1 may regulate a variety of cellular signaling pathways. Analysis of the shared protein-interaction network revealed that BPLF1 promotes the assembly of a tri-molecular complex including, in addition to 14-3-3, the ubiquitin ligase TRIM25 that participates in the innate immune response via ubiquitination of cytosolic pattern recognition receptor, RIG-I. The involvement of BPLF1 in the regulation of this signaling pathway was confirmed by inhibition of the type-I IFN responses in cells transfected with a catalytically active BPLF1 N-terminal domain or expressing the endogenous protein upon reactivation of the productive virus cycle. We found that the active viral enzyme promotes the dimerization and autoubiquitination of TRIM25. Upon triggering of the IFN response, RIG-I is recruited to the complex but ubiquitination is severely impaired, which functionally inactivates the RIG-I signalosome. The capacity to bind to and functionally inactivate the RIG-I signalosome is shared by the homologues encoded by other human herpesviruses. PMID:29357390
Molecular Characterization of Bombyx mori Cytoplasmic Polyhedrosis Virus Genome Segment 4
Ikeda, Keiko; Nagaoka, Sumiharu; Winkler, Stefan; Kotani, Kumiko; Yagi, Hiroaki; Nakanishi, Kae; Miyajima, Shigetoshi; Kobayashi, Jun; Mori, Hajime
2001-01-01
The complete nucleotide sequence of the genome segment 4 (S4) of Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) was determined. The 3,259-nucleotide sequence contains a single long open reading frame which spans nucleotides 14 to 3187 and which is predicted to encode a protein with a molecular mass of about 130 kDa. Western blot analysis showed that S4 encodes BmCPV protein VP3, which is one of the outer components of the BmCPV virion. Sequence analysis of the deduced amino acid sequence of BmCPV VP3 revealed possible sequence homology with proteins from rice ragged stunt virus (RRSV) S2, Nilaparvata lugens reovirus S4, and Fiji disease fijivirus S4. This may suggest that plant reoviruses originated from insect viruses and that RRSV emerged more recently than other plant reoviruses. A chimeric protein consisting of BmCPV VP3 and green fluorescent protein (GFP) was constructed and expressed with BmCPV polyhedrin using a baculovirus expression vector. The VP3-GFP chimera was incorporated into BmCPV polyhedra and released under alkaline conditions. The results indicate that specific interactions occur between BmCPV polyhedrin and VP3 which might facilitate BmCPV virion occlusion into the polyhedra. PMID:11134312
Belin, C; Schmitt, C; Demangeat, G; Komar, V; Pinck, L; Fuchs, M
2001-12-05
The nepovirus Grapevine fanleaf virus (GFLV) is specifically transmitted by the nematode Xiphinema index. To identify the RNA2-encoded proteins involved in X. index-mediated spread of GFLV, chimeric RNA2 constructs were engineered by replacing the 2A, 2B(MP), and/or 2C(CP) sequences of GFLV with their counterparts in Arabis mosaic virus (ArMV), a closely related nepovirus which is transmitted by Xiphinema diversicaudatum but not by X. index. Among the recombinant viruses obtained from transcripts of GFLV RNA1 and chimeric RNA2, only those which contained the 2C(CP) gene (504 aa) and 2B(MP) contiguous 9 C-terminal residues of GFLV were transmitted by X. index as efficiently as natural and synthetic wild-type GFLV, regardless of the origin of the 2A and 2B(MP) genes. As expected, ArMV was not transmitted probably because it is not retained by X. index. These results indicate that the determinants responsible for the specific spread of GFLV by X. index are located within the 513 C-terminal residues of the polyprotein encoded by RNA2. Copyright 2001 Elsevier Science.
Tu, Yu-Ching; Tsai, Wen-Shi; Wei, Jyuan-Yu; Chang, Kai-Ya; Tien, Chang-Ching; Hsiao, Hui-Yu; Fu, Shih-Feng
2017-12-01
Tomato (Solanum lycopersicum) is one of the most important crops worldwide and is severely affected by geminiviruses. Tomato leaf curl Taiwan virus (ToLCTWV), belonging to the geminiviruses, was isolated in Taiwan and causes tremendous crop loss. The geminivirus-encoded C2 proteins are crucial for a successful interaction between the virus and host plants. However, the exact functions of the viral C2 protein of ToLCTWV have not been investigated. We analyzed the molecular function(s) of the C2 protein by transient or stable expression in tomato cv. Micro-Tom and Nicotiana benthamiana. Severe stunting of tomato and N. benthamiana plants infected with ToLCTWV was observed. Expression of ToLCTWV C2-green fluorescent protein (GFP) fusion protein was predominately located in the nucleus and contributed to activation of a coat protein promoter. Notably, the C2-GFP fluorescence was distributed in nuclear aggregates. Tomato and N. benthamiana plants inoculated with potato virus X (PVX)-C2 displayed chlorotic lesions and stunted growth. PVX-C2 elicited hypersensitive responses accompanied by production of reactive oxygen species in N. benthamiana plants, which suggests that the viral C2 was a potential recognition target to induce host-defense responses. In tomato and N. benthamiana, ToLCTWV C2 was found to interfere with expression of genes encoding chromomethylases. N. benthamiana plants with suppressed NbCMT3-2 expression were more susceptible to ToLCTWV infection. Transgenic N. benthamiana plants expressing the C2 protein showed decreased expression of the NbCMT3-2 gene and pNbCMT3-2::GUS (β-glucuronidase) promoter activity. C2 protein is an important pathogenicity determinant of ToLCTWV and interferes with host components involved in DNA methylation. © 2017 Scandinavian Plant Physiology Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramalho, T.O.; Figueira, A.R.; Sotero, A.J.
2014-09-15
The emergence of viruses in Coffee (Coffea arabica and Coffea canephora), the most widely traded agricultural commodity in the world, is of critical concern. The RNA1 (6552 nt) of Coffee ringspot virus is organized into five open reading frames (ORFs) capable of encoding the viral nucleocapsid (ORF1p), phosphoprotein (ORF2p), putative cell-to-cell movement protein (ORF3p), matrix protein (ORF4p) and glycoprotein (ORF5p). Each ORF is separated by a conserved intergenic junction. RNA2 (5945 nt), which completes the bipartite genome, encodes a single protein (ORF6p) with homology to RNA-dependent RNA polymerases. Phylogenetic analysis of L protein sequences firmly establishes CoRSV as a membermore » of the recently proposed Dichorhavirus genus. Predictive algorithms, in planta protein expression, and a yeast-based nuclear import assay were used to determine the nucleophillic character of five CoRSV proteins. Finally, the temperature-dependent ability of CoRSV to establish systemic infections in an initially local lesion host was quantified. - Highlights: • We report genome sequence determination for Coffee ringspot virus (CoRSV). • CoRSV should be considered a member of the proposed Dichorhavirus genus. • We report temperature-dependent systemic infection of an initially local lesion host. • We report in planta protein and localization data for five CoRSV proteins. • In silico predictions of the CoRSV proteins were validated using in vivo assays.« less
Muraki, Yasushi; Washioka, Hiroshi; Sugawara, Kanetsu; Matsuzaki, Yoko; Takashita, Emi; Hongo, Seiji
2004-07-01
Influenza C virus-like particles (VLPs) have been generated from cloned cDNAs. A cDNA of the green fluorescent protein (GFP) gene in antisense orientation was flanked by the 5' and 3' non-coding regions of RNA segment 5 of the influenza C virus. The cDNA cassette was inserted between an RNA polymerase I promoter and terminator of the Pol I vector. This plasmid DNA was transfected into 293T cells together with plasmids encoding virus proteins of C/Ann Arbor/1/50 or C/Yamagata/1/88. Transfer of the supernatants of the transfected 293T cells to HMV-II cells resulted in GFP expression in the HMV-II cells. The quantification of the GFP-positive HMV-II cells indicated the presence of approximately 10(6) VLPs (ml supernatant)(-1). Cords 50-300 microm in length were observed on transfected 293T cells, although the cords were not observed when the plasmid for M1 protein of C/Ann Arbor/1/50 was replaced with that of C/Taylor/1233/47. A series of transfection experiments with plasmids encoding M1 mutants of C/Ann Arbor/1/50 or C/Taylor/1233/47 showed that an amino acid at residue 24 of the M1 protein is responsible for cord formation. This finding provides direct evidence for a previous hypothesis that M1 protein is involved in the formation of cord-like structures protruding from the C/Yamagata/1/88-infected cells. Evidence was obtained by electron microscopy that transfected cells bearing cords produced filamentous VLPs, suggesting the potential role of the M1 protein in determining the filamentous/spherical morphology of influenza C virus.
Complete genome sequence of keunjorong mosaic virus, a potyvirus from Cynanchum wilfordii.
Nam, Moon; Lee, Joo-Hee; Choi, Hong Soo; Lim, Hyoun-Sub; Moon, Jae Sun; Lee, Su-Heon
2013-08-01
We have determined the complete genome sequence of keunjorong mosaic virus (KjMV). The KjMV genome is composed of 9,611 nucleotides, excluding the 3'-terminal poly(A) tail. It contains two open reading frames (ORFs), with the large one encoding a polyprotein of 3,070 amino acids and the small overlapping ORF encoding a PIPO protein of 81 amino acids. The KjMV genome shared the highest nucleotide sequence identity (57.5 %) with pepper mottle virus and freesia mosaic virus, two members of the genus Potyvirus. Based on the phylogenetic relatedness to known potyviruses, KjMV appears to be a member of a new species in the genus Potyvirus.
Zhang, Y; Shi, Y; Yu, H; Li, J; Quan, Y; Shu, T; Nie, Z; Zhang, Y; Yu, W
Baculoviridae is a family of invertebrate viruses with large double-stranded DNA genomes. Proteins encoded by some late expression factor (lef ) genes are involved in the regulation of viral gene expression. Lef-9 is one of four transcription-specific Lefs, which are components of the virus-encoded RNA polymerase, and can initiate and transcribe late and very late genes. As a multifunctional protein encoded by the Bombyx mori nucleopolyhedrovirus (BmNPV), Lef-9 may be involved in the regulation of viral propagation. However, the underlying mechanism remains unclear. To determine the role of lef-9 in baculovirus infection, lef-9-knockout virus (lef-9-KO-Bacmid virus) was constructed using the Red recombination system, and the Bac-to-Bac system was used to prepare lef-9-repaired virus (lef-9-Re-Bacmid virus). The lef-9-KO virus did not produce infectious viruses or show infection activity, while the lef-9-repaired virus recovered both. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of the transcription levels in wild-type-Bacmid, lef-9-KO-Bacmid, and lef-9-Re-Bacmid viruses showed that the lef-9-KO bacmid had little effect on viral genome replication. However, the transcription levels of the early and late viral genes, lef-3, ie-1, vp39, and p10, were significantly lower in BmN cells transfected with lef-9-KO-Bacmids than in the controls. Electron microscopy showed no visible enveloped virions in cells transfected with lef-9-KO-Bacmids, while many mature virions in cells transfected with lef-9-Re-Bacmid and wt-Bacmid were present. Thus, lef-9 was not essential for viral genome replication, but significantly affected viral gene transcription and expression in all periods of cell life cycle.
Nucleotide Sequence of the Hantaan Virus S RNA Segment and Expression of Encoded Proteins
1987-11-03
human vaccinia vaccination ). A second dose of virus was given in the same ...vaccinia vector. A necessary first step in vaccine investigation woul d be to determine if animals infected with the two HTV recombinant viruses can ...vaccinia virus (Buller et al., 1985). Mice were infected by tail scarification since it is identical to the method used to vaccinate 169 humans
The VP35 and VP40 proteins of filoviruses. Homology between Marburg and Ebola viruses.
Bukreyev, A A; Volchkov, V E; Blinov, V M; Netesov, S V
1993-05-03
The fragments of genomic RNA sequences of Marburg (MBG) and Ebola (EBO) viruses are reported. These fragments were found to encode the VP35 and VP40 proteins. The canonic sequences were revealed before and after each open reading frame. It is suggested that these sequences are mRNA extremities and at the same time the regulatory elements for mRNA transcription. Homology between the MBG and EBO proteins was discovered.
USDA-ARS?s Scientific Manuscript database
Maize rayado fino virus (MRFV) possesses an open reading frame (ORF) encoding a protein with predicted mass of 43 kDa (ORF43) that has been postulated to be a viral movement protein. Using a clone of MRFV (pMRFV-US) from which infectious RNA can be produced, point mutations were introduced to eithe...
Kemenesi, Gábor; Kurucz, Kornélia; Zana, Brigitta; Földes, Fanni; Urbán, Péter; Vlaschenko, Anton; Kravchenko, Kseniia; Budinski, Ivana; Szodoray-Parádi, Farkas; Bücs, Szilárd; Jére, Csaba; Csősz, István; Szodoray-Parádi, Abigél; Estók, Péter; Görföl, Tamás; Boldogh, Sándor; Jakab, Ferenc
2018-03-01
Circular replication-associated protein encoding single-stranded DNA (CRESS DNA) viruses are increasingly recognized worldwide in a variety of samples. Representative members include well-described veterinary pathogens with worldwide distribution, such as porcine circoviruses or beak and feather disease virus. In addition, numerous novel viruses belonging to the family Circoviridae with unverified pathogenic roles have been discovered in different human samples. Viruses of the family Genomoviridae have also been described as being highly abundant in different faecal and environmental samples, with case reports showing them to be suspected pathogens in human infections. In order to investigate the genetic diversity of these viruses in European bat populations, we tested guano samples from Georgia, Hungary, Romania, Serbia and Ukraine. This resulted in the detection of six novel members of the family Circoviridae and two novel members of the family Genomoviridae. Interestingly, a gemini-like virus, namely niminivirus, which was originally found in raw sewage samples in Nigeria, was also detected in our samples. We analyzed the nucleotide composition of members of the family Circoviridae to determine the possible host origins of these viruses. This study provides the first dataset on CRESS DNA viruses of European bats, and members of several novel viral species were discovered.
James, D; Varga, A; Croft, H
2007-01-01
The entire genome of peach chlorotic mottle virus (PCMV), originally identified as Prunus persica cv. Agua virus (4N6), was sequenced and analysed. PCMV cross-reacts with antisera to diverse viruses, such as plum pox virus (PPV), genus Potyvirus, family Potyviridae; and apple stem pitting virus (ASPV), genus Foveavirus, family Flexiviridae. The PCMV genome consists of 9005 nucleotides (nts), excluding a poly(A) tail at the 3' end of the genome. Five open reading frames (ORFs) were identified with four untranslated regions (UTR) including a 5', a 3', and two intergenic UTRs. The genome organisation of PCMV is similar to that of ASPV and the two genomes share a nucleotide (nt) sequence identity of 58%. PCMV ORF1 encodes the replication-associated protein complex (Mr 241,503), ORF2-ORF4 code for the triple gene block proteins (TGBp; Mr 24,802, 12,370, and 7320, respectively), and ORF5 encodes the coat protein (CP) (Mr 42,505). Two non-AUG start codons participate in the initiation of translation: 35AUC and 7676AUA initiate translation of ORF1 and ORF5. In vitro expression with subsequent Western blot analysis confirmed ORF5 as the CP-encoding gene and confirmed that the codon AUA is able to initiate translation of the CP. Expression of a truncated CP fragment (Mr 39, 689) was demonstrated, and both proteins are expressed in vivo, since both were observed in Western blot analysis of PCMV-infected peach and Nicotiana occidentalis. The expressed proteins cross-reacted with an antiserum against ASPV. The amino acid sequences of the CPs of PCMV and ASPV CP share only 37% identity, but there are 11 shared peptides 4-8 aa residues long. These may constitute linear epitopes responsible for ASPV antiserum cross reactions. No significant common linear epitopes were associated with PPV. Extensive phylogenetic analysis indicates that PCMV is closely related to ASPV and is a new and distinct member of the genus Foveavirus.
Molecular Mechanisms of Innate Immune Inhibition by Non-Segmented Negative-Sense RNA Viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Srirupa; Basler, Christopher F.; Amarasinghe, Gaya K.
The host innate immune system serves as the first line of defense against viral infections. Germline-encoded pattern recognition receptors detect molecular patterns associated with pathogens and activate innate immune responses. Of particular relevance to viral infections are those pattern recognition receptors that activate type I interferon responses, which establish an antiviral state. The order Mononegavirales is composed of viruses that possess single-stranded, non-segmented negative-sense (NNS) RNA genomes and are important human pathogens that consistently antagonize signaling related to type I interferon responses. NNS viruses have limited encoding capacity compared to many DNA viruses, and as a likely consequence, most openmore » reading frames encode multifunctional viral proteins that interact with host factors in order to evade host cell defenses while promoting viral replication. In this review, we will discuss the molecular mechanisms of innate immune evasion by select NNS viruses. A greater understanding of these interactions will be critical in facilitating the development of effective therapeutics and viral countermeasures.« less
Genomic sequence of mandarin fish rhabdovirus with an unusual small non-transcriptional ORF.
Tao, Jian-Jun; Zhou, Guang-Zhou; Gui, Jian-Fang; Zhang, Qi-Ya
2008-03-01
The complete genome of mandarin fish Siniperca chuatsi rhabdovirus (SCRV) was cloned and sequenced. It comprises 11,545 nucleotides and contains five genes encoding the nucleoprotein N, the phosphoprotein P, the matrix protein M, the glycoprotein G, and the RNA-dependent RNA polymerase protein L. At the 3' and 5' termini of SCRV genome, leader and trailer sequences show inverse complementarity. The N, P, M and G proteins share the highest sequence identities (ranging from 14.8 to 41.5%) with the respective proteins of rhabdovirus 903/87, the L protein has the highest identity with those of vesiculoviruses, especially with Chandipura virus (44.7%). Phylogenetic analysis of L proteins showed that SCRV clustered with spring vireamia of carp virus (SVCV) and was most closely related to viruses in the genus Vesiculovirus. In addition, an overlapping open reading frame (ORF) predicted to encode a protein similar to vesicular stomatitis virus C protein is present within the P gene of SCRV. Furthermore, an unoverlapping small ORF downstream of M ORF within M gene is predicted (tentatively called orf4). Therefore, the genomic organization of SCRV can be proposed as 3' leader-N-P/C-M-(orf4)-G-L-trailer 5'. Orf4 transcription or translation products could not be detected by northern or Western blot, respectively, though one similar mRNA band to M mRNA was found. This is the first report on one small unoverlapping ORF in M gene of a fish rhabdovirus.
USDA-ARS?s Scientific Manuscript database
Rift Valley fever virus (RVFV), genus Phlebovirus, family Bunyaviridae is a zoonotic arthropod-borne virus able to transition between distant host species, causing potentially severe disease in humans and ruminants. Viral proteins are encoded by three genomic segments, with the medium M segment codi...
Caulimoviridae Tubule-Guided Transport Is Dictated by Movement Protein Properties ▿
Sánchez-Navarro, Jesús; Fajardo, Thor; Zicca, Stefania; Pallás, Vicente; Stavolone, Livia
2010-01-01
Plant viruses move through plasmodesmata (PD) either as nucleoprotein complexes (NPCs) or as tubule-guided encapsidated particles with the help of movement proteins (MPs). To explore how and why MPs specialize in one mechanism or the other, we tested the exchangeability of MPs encoded by DNA and RNA virus genomes by means of an engineered alfalfa mosaic virus (AMV) system. We show that Caulimoviridae (DNA genome virus) MPs are competent for RNA virus particle transport but are unable to mediate NPC movement, and we discuss this restriction in terms of the evolution of DNA virus MPs as a means of mediating DNA viral genome entry into the RNA-trafficking PD pathway. PMID:20130061
Ectromelia virus encodes a family of Ankyrin/F-box proteins that regulate NFκB.
Burles, Kristin; van Buuren, Nicholas; Barry, Michele
2014-11-01
A notable feature of poxviruses is their ability to inhibit the antiviral response, including the nuclear factor kappa B (NFκB) pathway. NFκB is a transcription factor that is sequestered in the cytoplasm until cell stimulation, and relies on the SCF (Skp1, culllin-1, F-box) ubiquitin ligase to target its inhibitor, IκBα, for degradation. IκBα is recruited to the SCF by the F-box domain-containing protein βTrCP. Here, we show that ectromelia virus, the causative agent of mousepox, encodes four F-box-containing proteins, EVM002, EVM005, EVM154, and EVM165, all of which contain Ankyrin (Ank) domains. The Ank/F-box proteins inhibit NFκB nuclear translocation, and this inhibition is dependent on the F-box domain. We also demonstrate that EVM002, EVM005, EVM154, and EVM165 prevent IκBα degradation, suggesting that they target the SCF. This study identifies a new mechanism by which ectromelia virus inhibits NFκB. Copyright © 2014 Elsevier Inc. All rights reserved.
Porcine parvovirus: DNA sequence and genome organization.
Ranz, A I; Manclús, J J; Díaz-Aroca, E; Casal, J I
1989-10-01
We have determined the nucleotide sequence of an almost full-length clone of porcine parvovirus (PPV). The sequence is 4973 nucleotides (nt) long. The 3' end of virion DNA shows a Y-shaped configuration homologous to rodent parvoviruses. The 5' end of virion DNA shows a repetition of 127 nt at the carboxy terminus of the capsid proteins. The overall organization of the PPV genome is similar to those of other autonomous parvoviruses. There are two large open reading frames (ORFs) that almost entirely cover the genome, both located in the same frame of the complementary strand. The left ORF encodes the non-structural protein NS1 and the right ORF encodes the capsid proteins (VP1, VP2 and VP3). Promoter analysis, location of splicing sites and putative amino acid sequences for the viral proteins show a high homology of PPV with feline panleukopenia virus and canine parvoviruses (FPV and CPV) and rodent parvovirus. Therefore we conclude that PPV is related to the Kilham rat virus (KRV) group of autonomous parvoviruses formed by KRV, minute virus of mice, Lu III, H-1, FPV and CPV.
Starodubova, E S; Kuzmenko, Y V; Latanova, A A; Preobrazhenskaya, O V; Karpov, V L
2017-01-01
The glycoprotein of rabies virus is the central antigen elicited the immune response to infection; therefore, the majority of developing anti-rabies vaccines are based on this protein. In order to increase the efficacy of DNA immunogen encoding rabies virus glycoprotein, the construction of chimeric protein with the CD63 domain has been proposed. The CD63 is a transmembrane protein localized on the cell surface and in lysosomes. The lysosome targeting motif GYEVM is located at its C-terminus. We used the domain that bears this motif (c-CD63) to generate chimeric glycoprotein in order to relocalize it into lysosomes. Here, it was shown that, in cells transfected with plasmid that encodes glycoprotein with c-CD63 motif at the C-terminus, the chimeric protein was predominantly observed in lysosomes and at the cell membrane where the unmodified glycoprotein is localized in the endoplasmic reticulum and at the cell surface. We suppose that current modification of the glycoprotein may improve the immunogenicity of anti-rabies DNA vaccines due to more efficient antibody production.
Florek, Nicholas W; Weinfurter, Jason T; Jegaskanda, Sinthujan; Brewoo, Joseph N; Powell, Tim D; Young, Ginger R; Das, Subash C; Hatta, Masato; Broman, Karl W; Hungnes, Olav; Dudman, Susanne G; Kawaoka, Yoshihiro; Kent, Stephen J; Stinchcomb, Dan T; Osorio, Jorge E; Friedrich, Thomas C
2014-11-01
Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4(+) and CD8(+) T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging pandemic viruses. Therefore, we evaluated a vaccine strategy designed to induce both antibody and T cell responses, which may provide more broadly cross-protective immunity against influenza. Here, we show in a translational primate model that vaccination with a modified vaccinia virus Ankara encoding hemagglutinin from a heterosubtypic H5N1 virus was associated with reduced shedding of a pandemic H1N1 virus challenge, while vaccination with MVA encoding nucleoprotein, an internal viral protein, was not. Unexpectedly, this reduced shedding was associated with nonneutralizing antibodies that bound H1 hemagglutinin and activated natural killer cells. Therefore, antibody-dependent cellular cytotoxicity (ADCC) may play a role in cross-protective immunity to influenza virus. Vaccines that stimulate ADCC antibodies may enhance protection against pandemic influenza virus. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Florek, Nicholas W.; Weinfurter, Jason T.; Jegaskanda, Sinthujan; Brewoo, Joseph N.; Powell, Tim D.; Young, Ginger R.; Das, Subash C.; Hatta, Masato; Broman, Karl W.; Hungnes, Olav; Dudman, Susanne G.; Kawaoka, Yoshihiro; Kent, Stephen J.; Stinchcomb, Dan T.
2014-01-01
ABSTRACT Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4+ and CD8+ T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. IMPORTANCE Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging pandemic viruses. Therefore, we evaluated a vaccine strategy designed to induce both antibody and T cell responses, which may provide more broadly cross-protective immunity against influenza. Here, we show in a translational primate model that vaccination with a modified vaccinia virus Ankara encoding hemagglutinin from a heterosubtypic H5N1 virus was associated with reduced shedding of a pandemic H1N1 virus challenge, while vaccination with MVA encoding nucleoprotein, an internal viral protein, was not. Unexpectedly, this reduced shedding was associated with nonneutralizing antibodies that bound H1 hemagglutinin and activated natural killer cells. Therefore, antibody-dependent cellular cytotoxicity (ADCC) may play a role in cross-protective immunity to influenza virus. Vaccines that stimulate ADCC antibodies may enhance protection against pandemic influenza virus. PMID:25210172
Rodríguez-Cousiño, Nieves
2016-01-01
ABSTRACT Saccharomyces cerevisiae killer strains secrete a protein toxin active on nonkiller strains of the same (or other) yeast species. Different killer toxins, K1, K2, K28, and Klus, have been described. Each toxin is encoded by a medium-size (1.5- to 2.3-kb) M double-stranded RNA (dsRNA) located in the cytoplasm. M dsRNAs require L-A helper virus for maintenance. L-A belongs to the Totiviridae family, and its dsRNA genome of 4.6 kb codes for the major capsid protein Gag and a minor Gag-Pol protein, which form the virions that separately encapsidate L-A or the M satellites. Different L-A variants exist in nature; on average, 24% of their nucleotides are different. Previously, we reported that L-A-lus was specifically associated with Mlus, suggesting coevolution, and proposed a role of the toxin-encoding M dsRNAs in the appearance of new L-A variants. Here we confirm this by analyzing the helper virus in K2 killer wine strains, which we named L-A-2. L-A-2 is required for M2 maintenance, and neither L-A nor L-A-lus shows helper activity for M2 in the same genetic background. This requirement is overcome when coat proteins are provided in large amounts by a vector or in ski mutants. The genome of another totivirus, L-BC, frequently accompanying L-A in the same cells shows a lower degree of variation than does L-A (about 10% of nucleotides are different). Although L-BC has no helper activity for M dsRNAs, distinct L-BC variants are associated with a particular killer strain. The so-called L-BC-lus (in Klus strains) and L-BC-2 (in K2 strains) are analyzed. IMPORTANCE Killer strains of S. cerevisiae secrete protein toxins that kill nonkiller yeasts. The “killer phenomenon” depends on two dsRNA viruses: L-A and M. M encodes the toxin, and L-A, the helper virus, provides the capsids for both viruses. Different killer toxins exist: K1, K2, K28, and Klus, encoded on different M viruses. Our data indicate that each M dsRNA depends on a specific helper virus; these helper viruses have nucleotide sequences that may be as much as 26% different, suggesting coevolution. In wine environments, K2 and Klus strains frequently coexist. We have previously characterized the association of Mlus and L-A-lus. Here we sequence and characterize L-A-2, the helper virus of M2, establishing the helper virus requirements of M2, which had not been completely elucidated. We also report the existence of two specific L-BC totiviruses in Klus and K2 strains with about 10% of their nucleotides different, suggesting different evolutionary histories from those of L-A viruses. PMID:27940540
CARD games between virus and host get a new player.
Johnson, Cynthia L; Gale, Michael
2006-01-01
A growing family of cellular proteins encoding the caspase activation and recruitment domain (CARD) has a crucial role in immunity by sensing virus infection and signaling antiviral immune defenses. Four independent studies have identified a novel CARD-containing protein, variously called IPS-1, MAVS, VISA and Cardif, which is an essential signaling adaptor of the host defense mediating CARD-CARD interactions with retinoic acid inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDAS), sensors of virus infection. Disruption of this novel signaling pathway by hepatitis C virus (HCV) might provide a foundation for viral persistence.
Isolation of a novel Rhabdovirus from an insectivorous bat (Pipistrellus kuhlii) in Italy.
Lelli, Davide; Prosperi, Alice; Moreno, Ana; Chiapponi, Chiara; Gibellini, Anna Maria; De Benedictis, Paola; Leopardi, Stefania; Sozzi, Enrica; Lavazza, Antonio
2018-02-17
Rhabdoviridae is one of the most ecologically diverse families of RNA viruses which can infect a wide range of vertebrates and invertebrates. Bats, among mammals, are pointed to harbor a significantly higher proportion of unknown or emerging viruses with zoonotic potential. Herein, we report the isolation of a novel rhabdovirus, detected in the framework of a virological survey on bats implemented in North Italy. Virus isolation and identification were performed on samples of 635 bats by using cell cultures, negative staining electron microscopy and PCRs for different viruses. NGS was commonly performed on cell culture supernatants showing cytopathic effect or in case of samples resulted positive by at least one of the PCRs included in the diagnostic protocol. A rhabdovirus was isolated from different organs of a Pipistrellus kuhlii. Virus identification was obtained by electron microscopy and NGS sequencing. The complete genome size was 11,774 nt comprised 5 genes, encoding the canonical rhabdovirus structural proteins, and an additional transcriptional unit (U1) encoding a hypothetical small protein (157aa) (3'-N-P-M-G-U1-L-5'). The genome organization and phylogenetic analysis suggest that the new virus, named Vaprio virus (VAPV), belongs to the recently established genus Ledantevirus (subgroup B) and it is highly divergent to its closest known relative, Le Dantec virus (LDV) (human, 1965 Senegal). A specific RT-PCR amplifying a 350 bp fragment of the ORF 6 gene, encoding for L protein, was developed and used to test retrospectively a subset of 76 bats coming from the same area and period, revealing two more VAPV positive bats. VAPV is a novel isolate of chiropteran rhabdovirus. Genome organization and phylogenetic analyses demonstrated that VAPV should be considered a novel species within the genus Ledantevirus for which viral ecology and disease associations should be investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Jae-Hwan; Howell, Gareth; Pattnaik, Asit K.
2008-08-15
Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, in common with many other positive strand RNA viruses, encodes a nucleocapsid (N) protein which can localise not only to the cytoplasm but also to the nucleolus in virus-infected cells and cells over-expressing N protein. The dynamic trafficking of positive strand RNA virus nucleocapsid proteins and PRRSV N protein in particular between the cytoplasm and nucleolus is unknown. In this study live imaging of permissive and non-permissive cell lines, in conjunction with photo-bleaching (FRAP and FLIP), was used to investigate the trafficking of fluorescent labeled (EGFP) PRRSV-N protein. The data indicatedmore » that EGFP-PRRSV-N protein was not permanently sequestered to the nucleolus and had equivalent mobility to cellular nucleolar proteins. Further the nuclear import of N protein appeared to occur faster than nuclear export, which may account for the observed relative distribution of N protein between the cytoplasm and the nucleolus.« less
Payne, G; Ahl, P; Moyer, M; Harper, A; Beck, J; Meins, F; Ryals, J
1990-01-01
Complementary DNA clones encoding two isoforms of the acidic endochitinase (chitinase, EC 3.2.1.14) from tobacco were isolated. Comparison of amino acid sequences deduced from the cDNA clones and the sequence of peptides derived from purified proteins show that these clones encode the pathogenesis-related proteins PR-P and PR-Q. The cDNA inserts were not homologous to either the bacterial form of chitinase or the form from cucumber but shared significant homology to the basic form of chitinase from tobacco and bean. The acidic isoforms of tobacco chitinase did not contain the amino-terminal, cysteine-rich "hevein" domain found in the basic isoforms, indicating that this domain, which binds chitin, is not essential for chitinolytic activity. The accumulation of mRNA for the pathogenesis-related proteins PR-1, PR-R, PR-P, and PR-Q in Xanthi.nc tobacco leaves following infection with tobacco mosaic virus was measured by primer extension. The results indicate that the induction of these proteins during the local necrotic lesion response to the virus is coordinated at the mRNA level. Images PMID:2296608
Epstein–Barr virus latent genes
Kang, Myung-Soo; Kieff, Elliott
2015-01-01
Latent Epstein–Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable. In this review, the roles of EBV latent genes are summarized. PMID:25613728
Global analysis of host-pathogen interactions that regulate early stage HIV-1 replication
König, Renate; Zhou, Yingyao; Elleder, Daniel; Diamond, Tracy L.; Bonamy, Ghislain M.C.; Irelan, Jeffrey T.; Chiang, Chih-yuan; Tu, Buu P.; De Jesus, Paul D.; Lilley, Caroline E.; Seidel, Shannon; Opaluch, Amanda M.; Caldwell, Jeremy S.; Weitzman, Matthew D.; Kuhen, Kelli L.; Bandyopadhyay, Sourav; Ideker, Trey; Orth, Anthony P.; Miraglia, Loren J.; Bushman, Frederic D.; Young, John A.; Chanda, Sumit K.
2008-01-01
Human Immunodeficiency Viruses (HIV-1 and HIV-2) rely upon host-encoded proteins to facilitate their replication. Here we combined genome-wide siRNA analyses with interrogation of human interactome databases to assemble a host-pathogen biochemical network containing 213 confirmed host cellular factors and 11 HIV-1-encoded proteins. Protein complexes that regulate ubiquitin conjugation, proteolysis, DNA damage response and RNA splicing were identified as important modulators of early stage HIV-1 infection. Additionally, over 40 new factors were shown to specifically influence initiation and/or kinetics of HIV-1 DNA synthesis, including cytoskeletal regulatory proteins, modulators of post-translational modification, and nucleic acid binding proteins. Finally, fifteen proteins with diverse functional roles, including nuclear transport, prostaglandin synthesis, ubiquitination, and transcription, were found to influence nuclear import or viral DNA integration. Taken together, the multi-scale approach described here has uncovered multiprotein virus-host interactions that likely act in concert to facilitate early steps of HIV-1 infection. PMID:18854154
Pappi, Polyxeni G; Dovas, Chrysostomos I; Efthimiou, Konstantinos E; Maliogka, Varvara I; Katis, Nikolaos I
2013-08-01
A novel strategy employing the rhabdovirus untranslated conserved intergenic regions was developed and applied successfully for the determination of the complete nucleotide sequence of Eggplant mottled dwarf virus (EMDV). The EMDV genome contains seven open reading frames with the same organization as Potato yellow dwarf virus (PYDV), the type species of the genus Nucleorhabdovirus. These two species encode five core genes [nucleocapsid (N), phosphoprotein (P), matrix (M), glycoprotein (G), and the polymerase (L)] like other viruses of the genus and an additional one (X), located between N and P, giving rise to a protein with currently unknown function. Furthermore, both EMDV and PYDV contain a gene (Y), inserted between P and M, which probably encodes the virus movement protein, in concordance with the rest of the plant-infecting rhabdoviruses. Phylogenetic analysis of the polymerase gene confirmed the classification of EMDV within the genus Nucleorhabdovirus and showed a close evolutionary relationship to PYDV. The novel sequencing strategy developed is a useful tool for the genome determination of yet uncharacterized rhabdoviruses.
Antiviral RNA silencing suppression activity of Tomato spotted wilt virus NSs protein.
Ocampo Ocampo, T; Gabriel Peralta, S M; Bacheller, N; Uiterwaal, S; Knapp, A; Hennen, A; Ochoa-Martinez, D L; Garcia-Ruiz, H
2016-06-17
In addition to regulating gene expression, RNA silencing is an essential antiviral defense system in plants. Triggered by double-stranded RNA, silencing results in degradation or translational repression of target transcripts. Viruses are inducers and targets of RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressors that interfere with this process, such as the Tomato spotted wilt virus (TSWV) NSs protein. The mechanism by which NSs suppresses RNA silencing and its role in viral infection and movement remain to be determined. We cloned NSs from the Hawaii isolate of TSWV and using two independent assays show for the first time that this protein restored pathogenicity and supported the formation of local infection foci by suppressor-deficient Turnip mosaic virus and Turnip crinkle virus. Demonstrating the suppression of RNA silencing directed against heterologous viruses establishes the foundation to determine the means used by NSs to block this antiviral process.
Sánchez-Navarro, J A; Reusken, C B; Bol, J F; Pallás, V
1997-12-01
Alfalfa mosaic virus (AMV) and Prunus necrotic ringspot virus (PNRSV) are tripartite positive-strand RNA plant viruses that encode functionally similar translation products. Although the two viruses are phylogenetically closely related, they infect a very different range of natural hosts. The coat protein (CP) gene, the movement protein (MP) gene or both genes in AMV RNA 3 were replaced by the corresponding genes of PNRSV. The chimeric viruses were tested for heterologous encapsidation, replication in protoplasts from plants transformed with AMV replicase genes P1 and P2 (P12 plants) and for cell-to-cell transport in P12 plants. The chimeric viruses exhibited basic competence for encapsidation and replication in P12 protoplasts and for a low level of cell-to-cell movement in P12 plants. The potential involvement of the MP gene in determining host specificity in ilarviruses is discussed.
Conserved and host-specific features of influenza virion architecture.
Hutchinson, Edward C; Charles, Philip D; Hester, Svenja S; Thomas, Benjamin; Trudgian, David; Martínez-Alonso, Mónica; Fodor, Ervin
2014-09-16
Viruses use virions to spread between hosts, and virion composition is therefore the primary determinant of viral transmissibility and immunogenicity. However, the virions of many viruses are complex and pleomorphic, making them difficult to analyse in detail. Here we address this by identifying and quantifying virion proteins with mass spectrometry, producing a complete and quantified model of the hundreds of host-encoded and viral proteins that make up the pleomorphic virions of influenza viruses. We show that a conserved influenza virion architecture is maintained across diverse combinations of virus and host. This 'core' architecture, which includes substantial quantities of host proteins as well as the viral protein NS1, is elaborated with abundant host-dependent features. As a result, influenza virions produced by mammalian and avian hosts have distinct protein compositions. Finally, we note that influenza virions share an underlying protein composition with exosomes, suggesting that influenza virions form by subverting microvesicle production.
Structure and assembly of a paramyxovirus matrix protein
Battisti, Anthony J.; Meng, Geng; Winkler, Dennis C.; McGinnes, Lori W.; Plevka, Pavel; Steven, Alasdair C.; Morrison, Trudy G.; Rossmann, Michael G.
2012-01-01
Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host’s cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly. PMID:22891297
Structure and assembly of a paramyxovirus matrix protein.
Battisti, Anthony J; Meng, Geng; Winkler, Dennis C; McGinnes, Lori W; Plevka, Pavel; Steven, Alasdair C; Morrison, Trudy G; Rossmann, Michael G
2012-08-28
Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host's cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly.
Yao, Yongxiu; Mingay, Louise J.; McCauley, John W.; Barclay, Wendy S.
2001-01-01
Reverse genetics was used to analyze the host range of two avian influenza viruses which differ in their ability to replicate in mouse and human cells in culture. Engineered viruses carrying sequences encoding amino acids 362 to 581 of PB2 from a host range variant productively infect mouse and human cells. PMID:11333926
Yadav, Pragya D; Shete, Anita M; Nyayanit, Dimpal A; Albarino, Cesar G; Jain, Shilpi; Guerrero, Lisa W; Kumar, Sandeep; Patil, Deepak Y; Nichol, Stuart T; Mourya, Devendra T
2018-06-25
In 1954, a virus named Wad Medani virus (WMV) was isolated from Hyalomma marginatum ticks from Maharashtra State, India. In 1963, another virus was isolated from Sturnia pagodarum birds in Tamil Nadu, India, and named Kammavanpettai virus (KVPTV) based on the site of its isolation. Originally these virus isolates could not be identified with conventional methods. Here we describe next-generation sequencing studies leading to the determination of their complete genome sequences, and identification of both virus isolates as orbiviruses (family Reoviridae). Sequencing data showed that KVPTV has an AT-rich genome, whereas the genome of WMV is GC-rich. The size of the KVPTV genome is 18 234 nucleotides encoding proteins ranging 238-1290 amino acids (aa) in length. Similarly, the size of the WMV genome is 16 941 nucleotides encoding proteins ranging 214-1305 amino acids in length. Phylogenetic analysis of the VP1 gene, along with the capsid genes VP5 and VP7, revealed that KVPTV is likely a novel mosquito-borne virus and WMV is a tick-borne orbivirus. This study focuses on the phylogenetic comparison of these newly identified orbiviruses with mosquito-, tick- and Culicoides-borne orbiviruses isolated in India and other countries.
McLaughlin, Margaret; Lockhart, Ben; Jordan, Ramon; Denton, Geoff; Mollov, Dimitre
2017-05-01
Clematis chlorotic mottle virus (ClCMV) is a previously undescribed virus associated with symptoms of yellow mottling and veining, chlorotic ring spots, line pattern mosaics, and flower distortion and discoloration on ornamental Clematis. The ClCMV genome is 3,880 nt in length with five open reading frames (ORFs) encoding a 27-kDa protein (ORF 1), an 87-kDa replicase protein (ORF 2), two centrally located movement proteins (ORF 3 and 4), and a 37-kDa capsid protein (ORF 5). Based on morphological, genomic, and phylogenetic analysis, ClCMV is predicted to be a member of the genus Pelarspovirus in the family Tombusviridae.
Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements
Dolja, Valerian V.
2014-01-01
SUMMARY Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus “self” that defines the identity of deep, ancient viral lineages. However, several other widespread viral “hallmark genes” encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host. PMID:24847023
Accelerating Biomedical Research in Designing Diagnostic Assays, Drugs, and Vaccines
2010-10-01
biodefense. For example, USAMRIID researchers are using Dovis to initiate drug discovery efforts against the ricin A-chain toxin and the Ebola virus...in host cell invasion and bacterial toxin production). Traditional experimental methods to determine the functions of proteins encoded in genomic...readily modeled. A second study involved determining the pro- tein structure of VP24, the smallest protein in the Ebola and Marburg virus genomes.9
Rabies virus matrix protein interplay with eIF3, new insights into rabies virus pathogenesis
Komarova, Anastassia V.; Real, Eléonore; Borman, Andrew M.; Brocard, Michèle; England, Patrick; Tordo, Noël; Hershey, John W.B.; Jacob, Yves
2007-01-01
Viral proteins are frequently multifunctional to accommodate the high density of information encoded in viral genomes. Matrix (M) protein of negative-stranded RNA viruses such as Rhabdoviridae is one such example. Its primary function is virus assembly/budding but it is also involved in the switch from viral transcription to replication and the concomitant down regulation of host gene expression. In this study we undertook a search for potential rabies virus (RV) M protein's cellular partners. In a yeast two-hybrid screen the eIF3h subunit was identified as an M-interacting cellular factor, and the interaction was validated by co-immunoprecipitation and surface plasmon resonance assays. Upon expression in mammalian cell cultures, RV M protein was localized in early small ribosomal subunit fractions. Further, M protein added in trans inhibited in vitro translation on mRNA encompassing classical (Kozak-like) 5′-UTRs. Interestingly, translation of hepatitis C virus IRES-containing mRNA, which recruits eIF3 via a different noncanonical mechanism, was unaffected. Together, the data suggest that, as a complement to its functions in virus assembly/budding and regulation of viral transcription, RV M protein plays a role in inhibiting translation in virus-infected cells through a protein–protein interaction with the cellular translation machinery. PMID:17287294
Puckette, Michael; Burrage, Thomas; Neilan, John G; Rasmussen, Max
2017-06-12
The Gaussia princeps luciferase is used as a stand-alone reporter of transgene expression for in vitro and in vivo expression systems due to the rapid and easy monitoring of luciferase activity. We sought to simultaneously quantitate production of other recombinant proteins by transcriptionally linking the Gaussia princeps luciferase gene to other genes of interest through the foot-and-mouth disease virus 2A translational interrupter sequence. We produced six plasmids, each encoding a single open reading frame, with the foot-and-mouth disease virus 2A sequence placed either N-terminal or C-terminal to the Gaussia princeps luciferase gene. Two plasmids included novel Gaussia princeps luciferase variants with the position 1 methionine deleted. Placing a foot-and-mouth disease virus 2A translational interrupter sequence on either the N- or C-terminus of the Gaussia princeps luciferase gene did not prevent the secretion or luminescence of resulting chimeric luciferase proteins. We also measured the ability of another polycistronic plasmid vector with a 2A-luciferase sequence placed downstream of the foot-and-mouth disease virus P1 and 3C protease genes to produce of foot-and-mouth disease virus-like particles and luciferase activity from transfected cells. Incorporation of the 2A-luciferase sequence into a transgene encoding foot-and-mouth disease virus structural proteins retained luciferase activity and the ability to form virus-like particles. We demonstrated a mechanism for the near real-time, sequential, non-destructive quantitative monitoring of transcriptionally-linked recombinant proteins and a valuable method for monitoring transgene expression in recombinant vaccine constructs.
Vaccinia Virus Encodes a Novel Inhibitor of Apoptosis That Associates with the Apoptosome
Ryerson, Melissa R.; Richards, Monique M.; Hawkins, Christine J.
2017-01-01
ABSTRACT Apoptosis is an important antiviral host defense mechanism. Here we report the identification of a novel apoptosis inhibitor encoded by the vaccinia virus (VACV) M1L gene. M1L is absent in the attenuated modified vaccinia virus Ankara (MVA) strain of VACV, a strain that stimulates apoptosis in several types of immune cells. M1 expression increased the viability of MVA-infected THP-1 and Jurkat cells and reduced several biochemical hallmarks of apoptosis, such as PARP-1 and procaspase-3 cleavage. Furthermore, ectopic M1L expression decreased staurosporine-induced (intrinsic) apoptosis in HeLa cells. We then identified the molecular basis for M1 inhibitory function. M1 allowed mitochondrial depolarization but blocked procaspase-9 processing, suggesting that M1 targeted the apoptosome. In support of this model, we found that M1 promoted survival in Saccharomyces cerevisiae overexpressing human Apaf-1 and procaspase-9, critical components of the apoptosome, or overexpressing only conformationally active caspase-9. In mammalian cells, M1 coimmunoprecipitated with Apaf-1–procaspase-9 complexes. The current model is that M1 associates with and allows the formation of the apoptosome but prevents apoptotic functions of the apoptosome. The M1 protein features 14 predicted ankyrin (ANK) repeat domains, and M1 is the first ANK-containing protein reported to use this inhibitory strategy. Since ANK-containing proteins are encoded by many large DNA viruses and found in all domains of life, studies of M1 may lead to a better understanding of the roles of ANK proteins in virus-host interactions. IMPORTANCE Apoptosis selectively eliminates dangerous cells such as virus-infected cells. Poxviruses express apoptosis antagonists to neutralize this antiviral host defense. The vaccinia virus (VACV) M1 ankyrin (ANK) protein, a protein with no previously ascribed function, inhibits apoptosis. M1 interacts with the apoptosome and prevents procaspase-9 processing as well as downstream procaspase-3 cleavage in several cell types and under multiple conditions. M1 is the first poxviral protein reported to associate with and prevent the function of the apoptosome, giving a more detailed picture of the threats VACV encounters during infection. Dysregulation of apoptosis is associated with several human diseases. One potential treatment of apoptosis-related diseases is through the use of designed ANK repeat proteins (DARPins), similar to M1, as caspase inhibitors. Thus, the study of the novel antiapoptosis effects of M1 via apoptosome association will be helpful for understanding how to control apoptosis using either natural or synthetic molecules. PMID:28904196
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feyereisen-Koener, J.M.
Double-stranded cDNA was prepared from infectious hematopoietic necrosis virus mRNA and cloned into the plasmid vector pUC8. A coprotein (G-protein) of infectious hematopoietic necrosis virus was selected by hybridization to a /sup 32/P-labeled probe. The restriction map and nucleotide sequence of the mRNA encoding the glycoprotein of infectious hematopoietic necrosis virus was determined using this full-length cDNA clone.
Martínez-Gil, Luis; Sánchez-Navarro, Jesús A; Cruz, Antonio; Pallás, Vicente; Pérez-Gil, Jesús; Mingarro, Ismael
2009-06-01
The cell-to-cell transport of plant viruses depends on one or more virus-encoded movement proteins (MPs). Some MPs are integral membrane proteins that interact with the membrane of the endoplasmic reticulum, but a detailed understanding of the interaction between MPs and biological membranes has been lacking. The cell-to-cell movement of the Prunus necrotic ringspot virus (PNRSV) is facilitated by a single MP of the 30K superfamily. Here, using a myriad of biochemical and biophysical approaches, we show that the PNRSV MP contains only one hydrophobic region (HR) that interacts with the membrane interface, as opposed to being a transmembrane protein. We also show that a proline residue located in the middle of the HR constrains the structural conformation of this region at the membrane interface, and its replacement precludes virus movement.
Naum-Onganía, Gabriela; Gago-Zachert, Selma; Peña, Eduardo; Grau, Oscar; Garcia, Maria Laura
2003-10-01
Citrus psorosis virus (CPsV), the type member of genus Ophiovirus, has three genomic RNAs. Complete sequencing of CPsV RNA 1 revealed a size of 8184 nucleotides and Northern blot hybridization with chain specific probes showed that its non-coding strand is preferentially encapsidated. The complementary strand of RNA 1 contains two open reading frames (ORFs) separated by a 109-nt intergenic region, one located near the 5'-end potentially encoding a 24K protein of unknown function, and another of 280K containing the core polymerase motifs characteristic of viral RNA-dependent RNA polymerases (RdRp). Comparison of the core RdRp motifs of negative-stranded RNA viruses, supports grouping CPsV, Ranunculus white mottle virus (RWMV) and Mirafiori lettuce virus (MiLV) within the same genus (Ophiovirus), constituting a monophyletic group separated from all other negative-stranded RNA viruses. Furthermore, RNAs 1 of MiLV, CPsV and RWMV are similar in size and those of MiLV and CPsV also in genomic organization and sequence.
Tobacco mosaic virus Movement Protein Enhances the Spread of RNA Silencing
Vogler, Hannes; Kwon, Myoung-Ok; Dang, Vy; Sambade, Adrian; Fasler, Monika; Ashby, Jamie; Heinlein, Manfred
2008-01-01
Eukaryotic cells restrain the activity of foreign genetic elements, including viruses, through RNA silencing. Although viruses encode suppressors of silencing to support their propagation, viruses may also exploit silencing to regulate host gene expression or to control the level of their accumulation and thus to reduce damage to the host. RNA silencing in plants propagates from cell to cell and systemically via a sequence-specific signal. Since the signal spreads between cells through plasmodesmata like the viruses themselves, virus-encoded plasmodesmata-manipulating movement proteins (MP) may have a central role in compatible virus:host interactions by suppressing or enhancing the spread of the signal. Here, we have addressed the propagation of GFP silencing in the presence and absence of MP and MP mutants. We show that the protein enhances the spread of silencing. Small RNA analysis indicates that MP does not enhance the silencing pathway but rather enhances the transport of the signal through plasmodesmata. The ability to enhance the spread of silencing is maintained by certain MP mutants that can move between cells but which have defects in subcellular localization and do not support the spread of viral RNA. Using MP expressing and non-expressing virus mutants with a disabled silencing suppressing function, we provide evidence indicating that viral MP contributes to anti-viral silencing during infection. Our results suggest a role of MP in controlling virus propagation in the infected host by supporting the spread of silencing signal. This activity of MP involves only a subset of its properties implicated in the spread of viral RNA. PMID:18389061
Hutajulu, Susanna Hilda; Kurnianda, Johan; Tan, I Bing; Middeldorp, Jaap M
2014-01-01
Nasopharyngeal carcinoma (NPC) is highly endemic in certain regions including the People’s Republic of China and Southeast Asia. Its etiology is unique and multifactorial, involving genetic background, epigenetic, and environment factors, including Epstein–Barr virus (EBV) infection. The presence of EBV in all tumor cells, aberrant pattern of antibodies against EBV antigens in patient sera, and elevated viral DNA in patient circulation as well as nasopharyngeal site underline the role of EBV during NPC development. In NPC tumors, EBV expresses latency type II, where three EBV-encoded proteins, Epstein–Barr nuclear antigen 1, latent membrane protein 1 and 2 (LMP1, 2), are expressed along with BamH1-A rightward reading frame 1, Epstein–Barr virus-encoded small nuclear RNAs, and BamH1-A rightward transcripts. Among all encoded proteins, LMP1 plays a central role in the propagation of NPC. Standard treatment of NPC consists of radiotherapy with or without chemotherapy for early stage, concurrent chemoradiotherapy in locally advanced tumors, and palliative systemic chemotherapy in metastatic disease. However, this standard care has limitations, allowing recurrences and disease progression in a certain proportion of cases. Although the pathophysiological link and molecular process of EBV-induced oncogenesis are not fully understood, therapeutic approaches targeting the virus may increase the cure rate and add clinical benefit. The promising results of early phase clinical trials on EBV-specific immunotherapy, epigenetic therapy, and treatment with viral lytic induction offer new options for treating NPC. PMID:25228810
Molecular Determinants of Human T-lymphotropic Virus Type 1 Transmission and Spread
Lairmore, Michael D.; Anupam, Rajaneesh; Bowden, Nadine; Haines, Robyn; Haynes, Rashade A. H.; Ratner, Lee; Green, Patrick L.
2011-01-01
Human T-lymphotrophic virus type-1 (HTLV-1) infects approximately 15 to 20 million people worldwide, with endemic areas in Japan, the Caribbean, and Africa. The virus is spread through contact with bodily fluids containing infected cells, most often from mother to child through breast milk or via blood transfusion. After prolonged latency periods, approximately 3 to 5% of HTLV-1 infected individuals will develop either adult T-cell leukemia/lymphoma (ATL), or other lymphocyte-mediated disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The genome of this complex retrovirus contains typical gag, pol, and env genes, but also unique nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo such as, p30, p12, p13 and the antisense encoded HBZ. While progress has been made in the understanding of viral determinants of cell transformation and host immune responses, host and viral determinants of HTLV-1 transmission and spread during the early phases of infection are unclear. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the early events of HTLV-1 infection. This review will focus on studies that test HTLV-1 determinants in context to full length infectious clones of the virus providing insights into the mechanisms of transmission and spread of HTLV-1. PMID:21994774
Huang, M; Jolicoeur, P
1990-01-01
Murine acquired immunodeficiency syndrome is induced by a defective retrovirus. Sequencing of this defective viral genome revealed a long open reading frame which encodes a putative gag/fusion protein, N-MA-p12-CA-NC-COOH, (D. C. Aziz, Z. Hanna, and P. Jolicoeur, Nature (London) 338:505-508, 1989). We raised a specific antibody to the unique p12 domain of this gag fusion precursor, Pr60gag. We found that Pr60gag was indeed encoded by the defective viral genome both in cell-free translation reticulocyte extracts and in infected mouse fibroblasts. Pr60gag was found to be myristylated, phosphorylated, and attached to the cell membrane, like other helper murine leukemia virus (MuLV) gag precursors. Pr60gag was not substantially cleaved within the nonproducer cells and was not released from these cells. However, in the presence of helper MuLV proteins, it formed phenotypically mixed particles. In these particles, Pr60gag was only partially cleaved. In helper MuLV-producing cells harboring the defective virus, a gag-related p40 intermediate was generated both intracellularly and extracellularly. In these cells, Pr60gag appeared to behave as a dominant negative mutant, interfering with proper cleavage of helper Pr65gag. Our data indicate that Pr60gag is a major (and possibly the only) gene product of the defective murine acquired immunodeficiency syndrome virus and is likely to harbor some determinants of pathogenicity of this virus. Images PMID:2243376
Teysset, Laure; Dang, Van-Dinh; Kim, Min Kyung; Levin, Henry L.
2003-01-01
The Tf1 element of Schizosaccharomyces pombe is a long terminal repeat-containing retrotransposon that encodes functional protease, reverse transcriptase, and integrase proteins. Although these proteins are known to be necessary for protein processing, reverse transcription, and integration, respectively, the function of the protein thought to be Gag has not been determined. We present here the first electron microscopy of Tf1 particles. We tested whether the putative Gag of Tf1 was required for particle formation, packaging of RNA, and reverse transcription. We generated deletions of 10 amino acids in each of the four hydrophilic domains of the protein and found that all four mutations reduced transposition activity. The N-terminal deletion removed a nuclear localization signal and inhibited nuclear import of the transposon. The two mutations in the center of Gag destabilized the protein and resulted in no virus-like particles. The C-terminal deletion caused a defect in RNA packaging and, as a result, low levels of cDNA. The electron microscopy of cells expressing a truncated Tf1 showed that Gag alone was sufficient for the formation of virus-like particles. Taken together, these results indicate that Tf1 encodes a Gag protein that is a functional equivalent of the Gag proteins of retroviruses. PMID:12692246
Intracellular Transport of Plant Viruses: Finding the Door out of the Cell
Schoelz, James E.; Harries, Phillip A.; Nelson, Richard S.
2011-01-01
Plant viruses are a class of plant pathogens that specialize in movement from cell to cell. As part of their arsenal for infection of plants, every virus encodes a movement protein (MP), a protein dedicated to enlarging the pore size of plasmodesmata (PD) and actively transporting the viral nucleic acid into the adjacent cell. As our knowledge of intercellular transport has increased, it has become apparent that viruses must also use an active mechanism to target the virus from their site of replication within the cell to the PD. Just as viruses are too large to fit through an unmodified plasmodesma, they are also too large to be freely diffused through the cytoplasm of the cell. Evidence has accumulated now for the involvement of other categories of viral proteins in intracellular movement in addition to the MP, including viral proteins originally associated with replication or gene expression. In this review, we will discuss the strategies that viruses use for intracellular movement from the replication site to the PD, in particular focusing on the role of host membranes for intracellular transport and the coordinated interactions between virus proteins within cells that are necessary for successful virus spread. PMID:21896501
Ishimwe, Egide; Hodgson, Jeffrey J.; Clem, Rollie J.; Passarelli, A. Lorena
2015-01-01
Baculovirus infection of a host insect involves several steps, beginning with initiation of virus infection in the midgut, followed by dissemination of infection from the midgut to other tissues in the insect, and finally culminating in “melting” or liquefaction of the host, which allows for horizontal spread of infection to other insects. While all of the viral gene products are involved in ultimately reaching this dramatic infection endpoint, this review focuses on two particular types of baculovirus-encoded proteins: degradative enzymes and protease inhibitors. Neither of these types of proteins is commonly found in other virus families, but they both play important roles in baculovirus infection. The types of degradative enzymes and protease inhibitors encoded by baculoviruses are discussed, as are the roles of these proteins in the infection process. PMID:25724418
Replication of tobacco mosaic virus RNA.
Buck, K W
1999-01-01
The replication of tobacco mosaic virus (TMV) RNA involves synthesis of a negative-strand RNA using the genomic positive-strand RNA as a template, followed by the synthesis of positive-strand RNA on the negative-strand RNA templates. Intermediates of replication isolated from infected cells include completely double-stranded RNA (replicative form) and partly double-stranded and partly single-stranded RNA (replicative intermediate), but it is not known whether these structures are double-stranded or largely single-stranded in vivo. The synthesis of negative strands ceases before that of positive strands, and positive and negative strands may be synthesized by two different polymerases. The genomic-length negative strand also serves as a template for the synthesis of subgenomic mRNAs for the virus movement and coat proteins. Both the virus-encoded 126-kDa protein, which has amino-acid sequence motifs typical of methyltransferases and helicases, and the 183-kDa protein, which has additional motifs characteristic of RNA-dependent RNA polymerases, are required for efficient TMV RNA replication. Purified TMV RNA polymerase also contains a host protein serologically related to the RNA-binding subunit of the yeast translational initiation factor, eIF3. Study of Arabidopsis mutants defective in RNA replication indicates that at least two host proteins are needed for TMV RNA replication. The tomato resistance gene Tm-1 may also encode a mutant form of a host protein component of the TMV replicase. TMV replicase complexes are located on the endoplasmic reticulum in close association with the cytoskeleton in cytoplasmic bodies called viroplasms, which mature to produce 'X bodies'. Viroplasms are sites of both RNA replication and protein synthesis, and may provide compartments in which the various stages of the virus mutiplication cycle (protein synthesis, RNA replication, virus movement, encapsidation) are localized and coordinated. Membranes may also be important for the configuration of the replicase with respect to initiation of RNA synthesis, and synthesis and release of progeny single-stranded RNA. PMID:10212941
Poppers, Jeremy; Mulvey, Matthew; Khoo, David; Mohr, Ian
2000-01-01
Upon activation by double-stranded RNA in virus-infected cells, the cellular PKR kinase phosphorylates the translation initiation factor eukaryotic initiation factor 2 (eIF2) and thereby inhibits protein synthesis. The γ34.5 and Us11 gene products encoded by herpes simplex virus type 1 (HSV-1) are dedicated to preventing the accumulation of phosphorylated eIF2. While the γ34.5 gene specifies a regulatory subunit for protein phosphatase 1α, the Us11 gene encodes an RNA binding protein that also prevents PKR activation. γ34.5 mutants fail to grow on a variety of human cells as phosphorylated eIF2 accumulates and protein synthesis ceases prior to the completion of the viral life cycle. We demonstrate that expression of a 68-amino-acid fragment of Us11 containing a novel proline-rich basic RNA binding domain allows for sustained protein synthesis and enhanced growth of γ34.5 mutants. Furthermore, this fragment is sufficient to inhibit activation of the cellular PKR kinase in a cell-free system, suggesting that the intrinsic activities of this small fragment, notably RNA binding and ribosome association, may be required to prevent PKR activation. PMID:11070019
Poppers, J; Mulvey, M; Khoo, D; Mohr, I
2000-12-01
Upon activation by double-stranded RNA in virus-infected cells, the cellular PKR kinase phosphorylates the translation initiation factor eukaryotic initiation factor 2 (eIF2) and thereby inhibits protein synthesis. The gamma 34.5 and Us11 gene products encoded by herpes simplex virus type 1 (HSV-1) are dedicated to preventing the accumulation of phosphorylated eIF2. While the gamma 34.5 gene specifies a regulatory subunit for protein phosphatase 1 alpha, the Us11 gene encodes an RNA binding protein that also prevents PKR activation. gamma 34.5 mutants fail to grow on a variety of human cells as phosphorylated eIF2 accumulates and protein synthesis ceases prior to the completion of the viral life cycle. We demonstrate that expression of a 68-amino-acid fragment of Us11 containing a novel proline-rich basic RNA binding domain allows for sustained protein synthesis and enhanced growth of gamma 34.5 mutants. Furthermore, this fragment is sufficient to inhibit activation of the cellular PKR kinase in a cell-free system, suggesting that the intrinsic activities of this small fragment, notably RNA binding and ribosome association, may be required to prevent PKR activation.
Production and pathogenicity of hepatitis C virus core gene products
Li, Hui-Chun; Ma, Hsin-Chieh; Yang, Chee-Hing; Lo, Shih-Yen
2014-01-01
Hepatitis C virus (HCV) is a major cause of chronic liver diseases, including steatosis, cirrhosis and hepatocellular carcinoma, and its infection is also associated with insulin resistance and type 2 diabetes mellitus. HCV, belonging to the Flaviviridae family, is a small enveloped virus whose positive-stranded RNA genome encoding a polyprotein. The HCV core protein is cleaved first at residue 191 by the host signal peptidase and further cleaved by the host signal peptide peptidase at about residue 177 to generate the mature core protein (a.a. 1-177) and the cleaved peptide (a.a. 178-191). Core protein could induce insulin resistance, steatosis and even hepatocellular carcinoma through various mechanisms. The peptide (a.a. 178-191) may play a role in the immune response. The polymorphism of this peptide is associated with the cellular lipid drop accumulation, contributing to steatosis development. In addition to the conventional open reading frame (ORF), in the +1 frame, an ORF overlaps with the core protein-coding sequence and encodes the alternative reading frame proteins (ARFP or core+1). ARFP/core+1/F protein could enhance hepatocyte growth and may regulate iron metabolism. In this review, we briefly summarized the current knowledge regarding the production of different core gene products and their roles in viral pathogenesis. PMID:24966583
Sun, Zhaojin; Chen, Jing; Ai, Jun; Dun, Can; Fu, Zhen F.; Niu, Xuefeng; Guo, Xiaofeng
2014-01-01
The rabies virus (RABV) glycoprotein (G) is the principal antigen responsible for the induction of virus neutralizing antibodies (VNA) and is the major modality of protective immunity in animals. A recombinant RABV HEP-Flury strain was generated by reverse genetics to encode two copies of the G-gene (referred to as HEP-dG). The biological properties of HEP-dG were compared to those of the parental virus (HEP-Flury strain). The HEP-dG recombinant virus grew 100 times more efficiently in BHK-21 cell than the parental virus, yet the virulence of the dG recombinant virus in suckling mice was lower than the parental virus. The HEP-dG virus can improve the expression of G-gene mRNA and the G protein and produce more offspring viruses in cells. The amount of G protein revealed a positive relationship with immunogenicity in mice and dogs. The inactivated HEP-dG recombinant virus induced higher levels of VNA and conferred better protection against virulent RABV in mice and dogs than the inactivated parental virus and a commercial vaccine. The protective antibody persisted for at least 12 months. These data demonstrate that the HEP-dG is stable, induces a strong VNA response and confers protective immunity more effectively than the RABV HEP-Flury strain. HEP-dG could be a potential candidate in the development of novel inactivated rabies vaccines PMID:24498294
Drug-Encoded Biomarkers for Monitoring Biological Therapies
Bedenk, Kristina; Zhang, Qian; Frentzen, Alexa; Cappello, Joseph; Fischer, Utz; Szalay, Aladar A.
2015-01-01
Blood tests are necessary, easy-to-perform and low-cost alternatives for monitoring of oncolytic virotherapy and other biological therapies in translational research. Here we assessed three candidate proteins with the potential to be used as biomarkers in biological fluids: two glucuronidases from E. coli (GusA) and Staphylococcus sp. RLH1 (GusPlus), and the luciferase from Gaussia princeps (GLuc). The three genes encoding these proteins were inserted individually into vaccinia virus GLV-1h68 genome under the control of an identical promoter. The three resulting recombinant viruses were used to infect tumor cells in cultures and human tumor xenografts in nude mice. In contrast to the actively secreted GLuc, the cytoplasmic glucuronidases GusA and GusPlus were released into the supernatants only as a result of virus-mediated oncolysis. GusPlus resulted in the most sensitive detection of enzyme activity under controlled assay conditions in samples containing as little as 1 pg/ml of GusPlus, followed by GusA (25 pg/ml) and GLuc (≥375 pg/ml). Unexpectedly, even though GusA had a lower specific activity compared to GusPlus, the substrate conversion in the serum of tumor-bearing mice injected with the GusA-encoding virus strains was substantially higher than that of GusPlus. This was attributed to a 3.2 fold and 16.2 fold longer half-life of GusA in the blood stream compared to GusPlus and GLuc respectively, thus a more sensitive monitor of virus replication than the other two enzymes. Due to the good correlation between enzymatic activity of expressed marker gene and virus titer, we conclude that the amount of the biomarker protein in the body fluid semiquantitatively represents the amount of virus in the infected tumors which was confirmed by low light imaging. We found GusA to be the most reliable biomarker for monitoring oncolytic virotherapy among the three tested markers. PMID:26348361
Verweij, Marieke C.; Horst, Daniëlle; Griffin, Bryan D.; Luteijn, Rutger D.; Davison, Andrew J.; Ressing, Maaike E.; Wiertz, Emmanuel J. H. J.
2015-01-01
Herpesviruses are large DNA viruses that are highly abundant within their host populations. Even in the presence of a healthy immune system, these viruses manage to cause lifelong infections. This persistence is partially mediated by the virus entering latency, a phase of infection characterized by limited viral protein expression. Moreover, herpesviruses have devoted a significant part of their coding capacity to immune evasion strategies. It is believed that the close coexistence of herpesviruses and their hosts has resulted in the evolution of viral proteins that specifically attack multiple arms of the host immune system. Cytotoxic T lymphocytes (CTLs) play an important role in antiviral immunity. CTLs recognize their target through viral peptides presented in the context of MHC molecules at the cell surface. Every herpesvirus studied to date encodes multiple immune evasion molecules that effectively interfere with specific steps of the MHC class I antigen presentation pathway. The transporter associated with antigen processing (TAP) plays a key role in the loading of viral peptides onto MHC class I molecules. This is reflected by the numerous ways herpesviruses have developed to block TAP function. In this review, we describe the characteristics and mechanisms of action of all known virus-encoded TAP inhibitors. Orthologs of these proteins encoded by related viruses are identified, and the conservation of TAP inhibition is discussed. A phylogenetic analysis of members of the family Herpesviridae is included to study the origin of these molecules. In addition, we discuss the characteristics of the first TAP inhibitor identified outside the herpesvirus family, namely, in cowpox virus. The strategies of TAP inhibition employed by viruses are very distinct and are likely to have been acquired independently during evolution. These findings and the recent discovery of a non-herpesvirus TAP inhibitor represent a striking example of functional convergent evolution. PMID:25880312
Effects of the HN gene c-terminal extensions on the Newcastle disease virus virulence
USDA-ARS?s Scientific Manuscript database
The hemagglutinin-neuraminidase (HN) of Newcastle disease virus (NDV) is a multifunctional protein that has receptor recognition, neuraminidase and fusion promotion activities. Sequence analysis revealed that the HN gene of many extremely low virulence NDV strains encodes a larger open reading frame...
Proteomic Analysis of Pathogenic and Attenuated Alcelaphine Herpesvirus 1▿
Dry, Inga; Haig, David M.; Inglis, Neil F.; Imrie, Lisa; Stewart, James P.; Russell, George C.
2008-01-01
The gammaherpesvirus alcelaphine herpesvirus 1 (AlHV-1) causes malignant catarrhal fever in susceptible ungulates but infects its natural host, wildebeest, without obvious clinical signs. In tissue culture, AlHV-1 is initially predominantly cell associated and virulent but on extended culture becomes cell-free and attenuated. We wanted to determine what changes in protein composition had taken place during the transition from virulent to attenuated virus in culture. Purified virus preparations were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and proteins were analyzed by liquid chromatography-electrospray ionization-tandem mass spectrometry. Peptides were identified in serial gel slices by using MASCOT software to interrogate virus-specific and nonredundant sequence databases. Twenty-three AlHV-1-encoded proteins and six cellular proteins were identified in the attenuated and virulent viruses. Two polypeptides were detected in only the virulent virus preparations, while one other protein was found in only the attenuated virus. Two of these virus-specific proteins were identified by a single peptide, suggesting that these may be low-abundance virion proteins rather than markers of attenuation or pathogenesis. The results suggest that attenuation of AlHV-1 is not the result of gross changes in the composition of the virus particle but probably due to altered viral gene expression in the infected cell. PMID:18353942
The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing
Fusaro, Adriana F.; Barton, Deborah A.; Nakasugi, Kenlee; Jackson, Craig; Kalischuk, Melanie L.; Kawchuk, Lawrence M.; Vaslin, Maite F. S.; Waterhouse, Peter M.
2017-01-01
The plant viral family Luteoviridae is divided into three genera: Luteovirus, Polerovirus and Enamovirus. Without assistance from another virus, members of the family are confined to the cells of the host plant’s vascular system. The first open reading frame (ORF) of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs) against the plant’s viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV), however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant’s silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant’s anti-viral defense. PMID:28994713
The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing.
Fusaro, Adriana F; Barton, Deborah A; Nakasugi, Kenlee; Jackson, Craig; Kalischuk, Melanie L; Kawchuk, Lawrence M; Vaslin, Maite F S; Correa, Regis L; Waterhouse, Peter M
2017-10-10
The plant viral family Luteoviridae is divided into three genera: Luteovirus , Polerovirus and Enamovirus . Without assistance from another virus, members of the family are confined to the cells of the host plant's vascular system. The first open reading frame (ORF) of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs) against the plant's viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV), however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant's silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant's anti-viral defense.
Viral Interactions with PDZ Domain-Containing Proteins-An Oncogenic Trait?
James, Claire D; Roberts, Sally
2016-01-18
Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9), encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ) interaction modules. In many cases (but not always), the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis.
Yang, Yin; Wu, Songfang; Wang, Yu; Pan, Shuang; Lan, Bei; Liu, Yaohui; Zhang, Liming; Leng, Qianli; Chen, Da; Zhang, Cuizhu; He, Bin; Cao, Youjia
2015-01-01
Herpes simplex virus 1 (HSV-1) is the most prevalent human virus and causes global morbidity because the virus is able to infect multiple cell types. Remarkably, HSV infection switches between lytic and latent cycles, where T cells play a critical role. However, the precise way of virus-host interactions is incompletely understood. Here we report that HSV-1 productively infected Jurkat T-cells and inhibited antigen-induced T cell receptor activation. We discovered that HSV-1-encoded Us3 protein interrupted TCR signaling and interleukin-2 production by inactivation of the linker for activation of T cells. This study unveils a mechanism by which HSV-1 intrudes into early events of TCR-mediated cell signaling and may provide novel insights into HSV infection, during which the virus escapes from host immune surveillance. PMID:25907557
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong Ruyi; Wu Jianxiang; Zhou Yijun
2009-04-25
Rice stripe virus (RSV) is a single-stranded (ss) RNA virus belonging to the genus Tenuivirus. RSV is present in many East Asian countries and causes severe diseases in rice fields, especially in China. In this study, we analyzed six proteins encoded by the virus for their abilities to suppress RNA silencing in plant using a green fluorescent protein (GFP)-based transient expression assay. Our results indicate that NS3 encoded by RSV RNA3, but not other five RSV encoded proteins, can strongly suppress local GFP silencing in agroinfiltrated Nicotiana benthamiana leaves. NS3 can reverse the GFP silencing, it can also prevent longmore » distance spread of silencing signals which have been reported to be necessary for inducing systemic silencing in host plants. The NS3 protein can significantly reduce the levels of small interfering RNAs (siRNAs) in silencing cells, and was found to bind 21-nucleotide ss-siRNA, siRNA duplex and long ssRNA but not long double-stranded (ds)-RNA. Both N and C terminal of the NS3 protein are critical for silencing suppression, and mutation of the putative nuclear localization signal decreases its local silencing suppression efficiency and blocks its systemic silencing suppression. The NS3-GFP fusion protein and NS3 were shown to accumulate predominantly in nuclei of onion, tobacco and rice cells through transient expression assay or immunocytochemistry and electron microscopy. In addition, transgenic rice and tobacco plants expressing the NS3 did not show any apparent alteration in plant growth and morphology, although NS3 was proven to be a pathogenicity determinant in the PVX heterogenous system. Taken together, our results demonstrate that RSV NS3 is a suppressor of RNA silencing in planta, possibly through sequestering siRNA molecules generated in cells that are undergoing gene silencing.« less
Levy, Amit
2015-01-01
Plant viruses' cell-to-cell movement requires the function of virally encoded movement proteins (MPs). The Tobamovirus, Tobacco mosaic virus (TMV) has served as the model virus to study the activities of single MPs. However, since TMV does not infect the model plant Arabidopsis thaliana I have used a related Tobamovirus, Turnip vein-clearing virus (TVCV). I recently showed that, despite belonging to the same genus, the behavior of the 2 viruses MPs differ significantly during infection. Most notably, MP(TVCV), but not MP(TMV), targets the nucleus and induces the formation of F actin-containing filaments that associate with chromatin. Mutational analyses showed that nuclear localization of MP(TVCV) was necessary for TVCV local and systemic infection in both Nicotiana benthamiana and Arabidopsis. In this addendum, I propose possible targets for the MP(TVCV) nuclear activity, and suggest viewing MPs as viral effector-like proteins, playing a role in the inhibition of plant defense.
Dixon, Linda K; Sánchez-Cordón, Pedro J; Galindo, Inmaculada; Alonso, Covadonga
2017-08-25
African swine fever virus (ASFV) is a large DNA virus that replicates predominantly in the cell cytoplasm and is the only member of the Asfarviridae family. The virus causes an acute haemorrhagic fever, African swine fever (ASF), in domestic pigs and wild boar resulting in the death of most infected animals. Apoptosis is induced at an early stage during virus entry or uncoating. However, ASFV encodes anti-apoptotic proteins which facilitate production of progeny virions. These anti-apoptotic proteins include A179L, a Bcl-2 family member; A224L, an inhibitor of apoptosis proteins (IAP) family member; EP153R a C-type lectin; and DP71L. The latter acts by inhibiting activation of the stress activated pro-apoptotic pathways pro-apoptotic pathways. The mechanisms by which these proteins act is summarised. ASF disease is characterised by massive apoptosis of uninfected lymphocytes which reduces the effectiveness of the immune response, contributing to virus pathogenesis. Mechanisms by which this apoptosis is induced are discussed.
Dixon, Linda K.; Sánchez-Cordón, Pedro J.; Galindo, Inmaculada
2017-01-01
African swine fever virus (ASFV) is a large DNA virus that replicates predominantly in the cell cytoplasm and is the only member of the Asfarviridae family. The virus causes an acute haemorrhagic fever, African swine fever (ASF), in domestic pigs and wild boar resulting in the death of most infected animals. Apoptosis is induced at an early stage during virus entry or uncoating. However, ASFV encodes anti-apoptotic proteins which facilitate production of progeny virions. These anti-apoptotic proteins include A179L, a Bcl-2 family member; A224L, an inhibitor of apoptosis proteins (IAP) family member; EP153R a C-type lectin; and DP71L. The latter acts by inhibiting activation of the stress activated pro-apoptotic pathways pro-apoptotic pathways. The mechanisms by which these proteins act is summarised. ASF disease is characterised by massive apoptosis of uninfected lymphocytes which reduces the effectiveness of the immune response, contributing to virus pathogenesis. Mechanisms by which this apoptosis is induced are discussed. PMID:28841179
Identification of a movement protein of Mirafiori lettuce big-vein ophiovirus.
Hiraguri, Akihiro; Ueki, Shoko; Kondo, Hideki; Nomiyama, Koji; Shimizu, Takumi; Ichiki-Uehara, Tamaki; Omura, Toshihiro; Sasaki, Nobumitsu; Nyunoya, Hiroshi; Sasaya, Takahide
2013-05-01
Mirafiori lettuce big-vein virus (MiLBVV) is a member of the genus Ophiovirus, which is a segmented negative-stranded RNA virus. In microprojectile bombardment experiments to identify a movement protein (MP) gene of ophioviruses that can trans-complement intercellular movement of an MP-deficient heterologous virus, a plasmid containing an infectious clone of a tomato mosaic virus (ToMV) derivative expressing the GFP was co-bombarded with plasmids containing one of three genes from MiLBVV RNAs 1, 2 and 4 onto Nicotiana benthamiana. Intercellular movement of the movement-defective ToMV was restored by co-expression of the 55 kDa protein gene, but not with the two other genes. Transient expression in epidermal cells of N. benthamiana and onion showed that the 55 kDa protein with GFP was localized on the plasmodesmata. The 55 kDa protein encoded in the MiLBVV RNA2 can function as an MP of the virus. This report is the first to describe an ophiovirus MP.
The genome organisation and taxonomy of Sugarcane striate mosaic associated virus.
Thompson, N; Randles, J W
2001-08-01
Sugarcane striate mosaic associated virus (SCSMaV) has slightly flexuous 950 nm x 15 nm filamentous particles and is associated with sugarcane striate mosaic disease in central Queensland, Australia. We report the full sequence of its RNA genome, which comprises 5 open reading frames representing the polymerase, movement function proteins encoded in a triple gene block and coat protein. Phylogenetic analyses based on either the full nucleotide sequence, the polymerase protein, or the coat protein all placed SCSMaV in an intermediate position between the genera Foveavirus and Carlavirus, but outside both genera. In addition, the absence of a sixth open reading frame excludes it from the genus Carlavirus, and the coat protein is approximately half the size of the type member for the genus Foveavirus. Although SCSMaV was most closely allied to Cherry green ring mottle virus by genome analysis, the two viruses are morphologically and biologically dissimilar. SCSMaV may therefore represent a new plant virus taxon.
A Brain Membrane Protein Similar to the Rat src Gene Product
NASA Astrophysics Data System (ADS)
Scheinberg, David A.; Strand, Mette
1981-01-01
We report the purification to homogeneity of a 20,000-dalton, transformation-related, rat cell membrane protein. This protein, p20, was originally identified in preparations of a defective woolly monkey leukemia virus pseudotype of Kirsten sarcoma virus. The chromatographically purified p20 was an acidic hydrophobic protein, capable of specifically binding GTP (dissociation constant = 15 μ M). This nucleotide binding property and other previously reported characteristics were similar to properties ascribed to the Harvey sarcoma virus src gene product. p20 also appeared similar to this src gene product when immunoprecipitates of both proteins were directly compared by one- and two-dimensional NaDodSO4 gel electrophoreses. However, the proteins were not identical, because their tryptic maps differed. Using a competition radioimmunoassay, we have measured the concentration of p20 in cells, viruses, and rat tissues: p20 was not encoded by rat sarcoma viruses because it was increased only slightly after Kirsten sarcoma virus transformation of rat cells and was not increased in nonrat cells transformed by the Kirsten or Harvey sarcoma virus. Remarkably, of 10 rat tissues examined, p20 was found predominantly in brain, specifically in the membranes.
RNA-dependent RNA polymerases of dsRNA bacteriophages.
Makeyev, Eugene V; Grimes, Jonathan M
2004-04-01
Genome replication and transcription of riboviruses are catalyzed by an RNA-dependent RNA polymerase (RdRP). RdRPs are normally associated with other virus- or/and host-encoded proteins that modulate RNA polymerization activity and template specificity. The polymerase complex of double-stranded dsRNA viruses is a large icosahedral particle (inner core) containing RdRP as a minor constituent. In phi6 and other dsRNA bacteriophages from the Cystoviridae family, the inner core is composed of four virus-specific proteins. Of these, protein P2, or Pol subunit, has been tentatively identified as RdRP by sequence comparisons, but the role of this protein in viral RNA synthesis has not been studied until recently. Here, we overview the work on the Pol subunits of phi6 and related viruses from the standpoints of function, structure and evolution.
Kramer, Martha F.; Jurak, Igor; Pesola, Jean M.; Boissel, Sandrine; Knipe, David M.; Coen, Donald M.
2013-01-01
Several herpes simplex virus 1 microRNAs are encoded within or near the latency associated transcript (LAT) locus, and are expressed abundantly during latency. Some of these microRNAs can repress the expression of important viral proteins and are hypothesized to play important roles in establishing and/or maintaining latent infections. We found that in lytically infected cells and in acutely infected mouse ganglia, expression of LAT-encoded microRNAs was weak and unaffected by a deletion that includes the LAT promoter. In mouse ganglia latently infected with wild type virus, the microRNAs accumulated to high levels, but deletions of the LAT promoter markedly reduced expression of LAT-encoded microRNAs and also miR-H6, which is encoded upstream of LAT and can repress expression of ICP4. Because these LAT deletion mutants establish and maintain latent infections, these microRNAs are not essential for latency, at least in mouse trigeminal ganglia, but may help promote it. PMID:21782205
Szécsi, Judit; Boson, Bertrand; Johnsson, Per; Dupeyrot-Lacas, Pia; Matrosovich, Mikhail; Klenk, Hans-Dieter; Klatzmann, David; Volchkov, Viktor; Cosset, François-Loïc
2006-01-01
There is an urgent need to develop novel approaches to vaccination against the emerging, highly pathogenic avian influenza viruses. Here, we engineered influenza viral-like particles (Flu-VLPs) derived from retroviral core particles that mimic the properties of the viral surface of two highly pathogenic influenza viruses of either H7N1 or H5N1 antigenic subtype. We demonstrate that, upon recovery of viral RNAs from a field strain, one can easily generate expression vectors that encode the HA, NA and M2 surface proteins of either virus and prepare high-titre Flu-VLPs. We characterise these Flu-VLPs incorporating the HA, NA and M2 proteins and we show that they induce high-titre neutralising antibodies in mice. PMID:16948862
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Medina, Caren; Boissinot, Sylvaine; Chapuis, Sophie
Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74 kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RT{sub Cter}) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase ofmore » wild-type TuYV accumulation, but not that of TuYV-∆RT{sub Cter}. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. - Highlights: • The C-terminal domain of TuYV-RT is required for long-distance movement. • CIPK7 from Arabidopsis interacts with RT{sub Cter} in yeast and in plants. • CIPK7 overexpression increases virus titer locally but not virus systemic movement. • CIPK7 localizes to plasmodesmata. • CIPK7 could be a defense protein regulating virus export.« less
Chen, S; Bacon, K B; Li, L; Garcia, G E; Xia, Y; Lo, D; Thompson, D A; Siani, M A; Yamamoto, T; Harrison, J K; Feng, L
1998-07-06
Chemokines play a central role in immune and inflammatory responses. It has been observed recently that certain viruses have evolved molecular piracy and mimicry mechanisms by encoding and synthesizing proteins that interfere with the normal host defense response. One such viral protein, vMIP-II, encoded by human herpesvirus 8, has been identified with in vitro antagonistic activities against CC and CXC chemokine receptors. We report here that vMIP-II has additional antagonistic activity against CX3CR1, the receptor for fractalkine. To investigate the potential therapeutic effect of this broad-spectrum chemokine antagonist, we studied the antiinflammatory activity of vMIP-II in a rat model of experimental glomerulonephritis induced by an antiglomerular basement membrane antibody. vMIP-II potently inhibited monocyte chemoattractant protein 1-, macrophage inflammatory protein 1beta-, RANTES (regulated on activation, normal T cell expressed and secreted)-, and fractalkine-induced chemotaxis of activated leukocytes isolated from nephritic glomeruli, significantly reduced leukocyte infiltration to the glomeruli, and markedly attenuated proteinuria. These results suggest that molecules encoded by some viruses may serve as useful templates for the development of antiinflammatory compounds.
Ahi, Yadvinder S; Zhang, Shu; Thappeta, Yashna; Denman, Audrey; Feizpour, Amin; Gummuluru, Suryaram; Reinhard, Bjoern; Muriaux, Delphine; Fivash, Matthew J; Rein, Alan
2016-11-22
Gammaretroviruses, such as murine leukemia viruses (MLVs), encode, in addition to the canonical Gag, Pol, and Env proteins that will form progeny virus particles, a protein called "glycogag" (glycosylated Gag). MLV glycogag contains the entire Gag sequence plus an 88-residue N-terminal extension. It has recently been reported that glycogag, like the Nef protein of HIV-1, counteracts the antiviral effects of the cellular protein Serinc5. We have found, in agreement with prior work, that glycogag strongly enhances the infectivity of MLVs with some Env proteins but not those with others. In contrast, however, glycogag was detrimental to MLVs carrying Ebolavirus glycoprotein. Glycogag could be replaced, with respect to viral infectivity, by the unrelated S2 protein of equine infectious anemia virus. We devised an assay for viral entry in which virus particles deliver the Cre recombinase into cells, leading to the expression of a reporter. Data from this assay showed that both the positive and the negative effects of glycogag and S2 upon MLV infectivity are exerted at the level of virus entry. Moreover, transfection of the virus-producing cells with a Serinc5 expression plasmid reduced the infectivity and entry capability of MLV carrying xenotropic MLV Env, particularly in the absence of glycogag. Conversely, Serinc5 expression abrogated the negative effects of glycogag upon the infectivity and entry capability of MLV carrying Ebolavirus glycoprotein. As Serinc5 may influence cellular phospholipid metabolism, it seems possible that all of these effects on virus entry derive from changes in the lipid composition of viral membranes. Many murine leukemia viruses (MLVs) encode a protein called "glycogag." The function of glycogag is not fully understood, but it can assist HIV-1 replication in the absence of the HIV-1 protein Nef under some circumstances. In turn, Nef counteracts the cellular protein Serinc5. Glycogag enhances the infectivity of MLVs with some but not all MLV Env proteins (which mediate viral entry into the host cell upon binding to cell surface receptors). We now report that glycogag acts by enhancing viral entry and that, like Nef, glycogag antagonizes Serinc5. Surprisingly, the effects of glycogag and Serinc5 upon the entry and infectivity of MLV particles carrying an Ebolavirus glycoprotein are the opposite of those observed with the MLV Env proteins. The unrelated S2 protein of equine infectious anemia virus (EIAV) is functionally analogous to glycogag in our experiments. Thus, three retroviruses (HIV-1, MLV, and EIAV) have independently evolved accessory proteins that counteract Serinc5. Copyright © 2016 Ahi et al.
Li, Na; Yan, Yunhuan; Zhang, Angke; Gao, Jiming; Zhang, Chong; Wang, Xue; Hou, Gaopeng; Zhang, Gaiping; Jia, Jinbu; Zhou, En-Min; Xiao, Shuqi
2016-12-13
Many viruses encode microRNAs (miRNAs) that are small non-coding single-stranded RNAs which play critical roles in virus-host interactions. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically impactful viruses in the swine industry. The present study sought to determine whether PRRSV encodes miRNAs that could regulate PRRSV replication. Four viral small RNAs (vsRNAs) were mapped to the stem-loop structures in the ORF1a, ORF1b and GP2a regions of the PRRSV genome by bioinformatics prediction and experimental verification. Of these, the structures with the lowest minimum free energy (MFE) values predicted for PRRSV-vsRNA1 corresponded to typical stem-loop, hairpin structures. Inhibition of PRRSV-vsRNA1 function led to significant increases in viral replication. Transfection with PRRSV-vsRNA1 mimics significantly inhibited PRRSV replication in primary porcine alveolar macrophages (PAMs). The time-dependent increase in the abundance of PRRSV-vsRNA1 mirrored the gradual upregulation of PRRSV RNA expression. Knockdown of proteins associated with cellular miRNA biogenesis demonstrated that Drosha and Argonaute (Ago2) are involved in PRRSV-vsRNA1 biogenesis. Moreover, PRRSV-vsRNA1 bound specifically to the nonstructural protein 2 (NSP2)-coding sequence of PRRSV genome RNA. Collectively, the results reveal that PRRSV encodes a functional PRRSV-vsRNA1 which auto-regulates PRRSV replication by directly targeting and suppressing viral NSP2 gene expression. These findings not only provide new insights into the mechanism of the pathogenesis of PRRSV, but also explore a potential avenue for controlling PRRSV infection using viral small RNAs.
Sela, Noa; Lachman, Oded; Reingold, Victoria; Dombrovsky, Aviv
2013-10-01
A novel virus was detected in watermelon plants (Citrullus lanatus Thunb.) infected with Melon necrotic spot virus (MNSV) using SOLiD next-generation sequence analysis. In addition to the expected MSNV genome, two double-stranded RNA (dsRNA) segments of 1,312 and 1,118 bp were also identified and sequenced from the purified virus preparations. These two dsRNA segments encode two putative partitivirus-related proteins, an RNA-dependent RNA polymerase (RdRP) and a capsid protein, which were sequenced. Genomic-sequence analysis and analysis of phylogenetic relationships indicate that these two dsRNAs together make up the genome of a novel Partitivirus. This virus was found to be closely related to the Pepper cryptic virus 1 and Raphanus sativus cryptic virus. It is suggested that this novel virus putatively named Citrullus lanatus cryptic virus be considered as a new member of the family Partitiviridae.
van de Ven, W J; Vermorken, A J; Onnekink, C; Bloemers, H P; Bloemendal, H
1978-01-01
A preparative method for isolating pure viral envelopes from a type-C RNA tumor virus, Rauscher murine leukemia virus, is described. Fractionation of virions of Rauscher murine leukemia virus was studied after disruption of the virions with the detergents sodium dodecyl sulfate of Nonidet P-40 in combination with ether. Fractionation was performed through flotation in a discontinuous sucrose gradient and, as appeared from electron microscopic examination, a pure viral envelope fraction was obtained in this way. By use of sensitive competition radioimmunoassays or sodium dodecyl sulfate-polyacrylamide gel electrophoresis after immunoprecipitation with polyvalent and monospecific antisera directed against Rauscher murine leukemia virus proteins, the amount of the gag and env gene-encoded structural polypeptides in the virions and the isolated envelope fraction was compared. The predominant viral structural polypeptides in the purified envelope fraction were the env gene-encoded polypeptides gp70, p15(E), and p12(E), whereas, except for p15, there was only a relatively small amount of the gag gene-encoded structural polypeptides in this fraction. Images PMID:702639
Mohamed, Mohamed R; Rahman, Masmudur M; Lanchbury, Jerry S; Shattuck, Donna; Neff, Chris; Dufford, Max; van Buuren, Nick; Fagan, Katharine; Barry, Michele; Smith, Scott; Damon, Inger; McFadden, Grant
2009-06-02
Identification of the binary interactions between viral and host proteins has become a valuable tool for investigating viral tropism and pathogenesis. Here, we present the first systematic protein interaction screening of the unique variola virus proteome by using yeast 2-hybrid screening against a variety of human cDNA libraries. Several protein-protein interactions were identified, including an interaction between variola G1R, an ankryin/F-box containing protein, and human nuclear factor kappa-B1 (NF-kappaB1)/p105. This represents the first direct interaction between a pathogen-encoded protein and NF-kappaB1/p105. Orthologs of G1R are present in a variety of pathogenic orthopoxviruses, but not in vaccinia virus, and expression of any one of these viral proteins blocks NF-kappaB signaling in human cells. Thus, proteomic screening of variola virus has the potential to uncover modulators of the human innate antiviral responses.
Fischer, Dominik; Angenvoort, Joke; Ziegler, Ute; Fast, Christine; Maier, Kristina; Chabierski, Stefan; Eiden, Martin; Ulbert, Sebastian; Groschup, Martin H; Lierz, Michael
2015-08-17
As West Nile virus (WNV) can cause lethal diseases in raptors, a vaccination prophylaxis of free-living and captive populations is desirable. In the absence of vaccines approved for birds, equine vaccines have been used in falcons, but full protection against WNV infection was not achieved. Therefore, two DNA vaccines encoding the ectodomain of the envelope protein of WNV lineages 1 and 2, respectively, were evaluated in 28 large falcons. Four different vaccination protocols were used, including electroporation and booster-injections of recombinant WNV domain III protein, before challenge with the live WNV lineage 1 strain NY99. Drug safety, plasmid shedding and antibody production were monitored during the vaccination period. Serological, virological, histological, immunohistochemical and molecular biological investigations were performed during the challenge trials. Antibody response following vaccination was low overall and lasted for a maximum of three weeks. Plasmid shedding was not detected at any time. Viremia, mortality and levels, but not duration, of oral virus shedding were reduced in all of the groups during the challenge trial compared to the non-vaccinated control group. Likewise, clinical scoring, levels of cloacal virus shedding and viral load in organs were significantly reduced in three vaccination groups. Histopathological findings associated with WNV infections (meningo-encephalitis, myocarditis, and arteritis) were present in all groups, but immunohistochemical detection of the viral antigen was reduced. In conclusion, the vaccines can be used safely in falcons to reduce mortality and clinical signs and to lower the risk of virus transmission due to decreased levels of virus shedding and viremia, but full protection was not achieved in all groups.
Donzella, George A.; Leon, Oscar; Roth, Monica J.
1998-01-01
Moloney murine leukemia virus (M-MuLV) IN-IN protein interactions important for catalysis of strand transfer and unimolecular and bimolecular disintegration reactions were investigated by using a panel of chemically modified M-MuLV IN proteins. Functional complementation of an HHCC-deleted protein (NΔ105) by an independent HHCC domain (CΔ232) was severely compromised by NEM modification of either subunit. Productive NΔ105 IN-DNA interactions with a disintegration substrate lacking a long terminal repeat 5′-single-stranded tail also required complementation by a functional HHCC domain. Virus encoding the C209A M-MuLV IN mutation exhibited delayed virion production and replication kinetics. PMID:9445080
Virus world as an evolutionary network of viruses and capsidless selfish elements.
Koonin, Eugene V; Dolja, Valerian V
2014-06-01
Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus "self" that defines the identity of deep, ancient viral lineages. However, several other widespread viral "hallmark genes" encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Komoto, Satoshi; Kanai, Yuta; Fukuda, Saori; Kugita, Masanori; Kawagishi, Takahiro; Ito, Naoto; Sugiyama, Makoto; Matsuura, Yoshiharu; Kobayashi, Takeshi; Taniguchi, Koki
2017-11-01
The use of overlapping open reading frames (ORFs) to synthesize more than one unique protein from a single mRNA has been described for several viruses. Segment 11 of the rotavirus genome encodes two nonstructural proteins, NSP5 and NSP6. The NSP6 ORF is present in the vast majority of rotavirus strains, and therefore the NSP6 protein would be expected to have a function in viral replication. However, there is no direct evidence of its function or requirement in the viral replication cycle yet. Here, taking advantage of a recently established plasmid-only-based reverse genetics system that allows rescue of recombinant rotaviruses entirely from cloned cDNAs, we generated NSP6-deficient viruses to directly address its significance in the viral replication cycle. Viable recombinant NSP6-deficient viruses could be engineered. Single-step growth curves and plaque formation of the NSP6-deficient viruses confirmed that NSP6 expression is of limited significance for RVA replication in cell culture, although the NSP6 protein seemed to promote efficient virus growth. IMPORTANCE Rotavirus is one of the most important pathogens of severe diarrhea in young children worldwide. The rotavirus genome, consisting of 11 segments of double-stranded RNA, encodes six structural proteins (VP1 to VP4, VP6, and VP7) and six nonstructural proteins (NSP1 to NSP6). Although specific functions have been ascribed to each of the 12 viral proteins, the role of NSP6 in the viral replication cycle remains unknown. In this study, we demonstrated that the NSP6 protein is not essential for viral replication in cell culture by using a recently developed plasmid-only-based reverse genetics system. This reverse genetics approach will be successfully applied to answer questions of great interest regarding the roles of rotaviral proteins in replication and pathogenicity, which can hardly be addressed by conventional approaches. Copyright © 2017 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velden, Yme U. van der; Kleibeuker, Wendy; Harwig, Alex
Conditionally replicating HIV-1 variants that can be switched on and off at will are attractive tools for HIV research. We previously developed a genetically modified HIV-1 variant that replicates exclusively when doxycycline (dox) is administered. The nef gene in this HIV-rtTA variant was replaced with the gene encoding the dox-dependent rtTA transcriptional activator. Because loss of Nef expression compromises virus replication in primary cells and precludes studies on Nef function, we tested different approaches to restore Nef production in HIV-rtTA. Strategies that involved translation via an EMCV or synthetic internal ribosome entry site (IRES) failed because these elements were incompatiblemore » with efficient virus replication. Fusion protein approaches with the FMDV 2A peptide and human ubiquitin were successful and resulted in genetically-stable Nef-expressing HIV-rtTA strains that replicate more efficiently in primary T-cells and human immune system (HIS) mice than Nef-deficient variants, thus confirming the positive effect of Nef on in vivo virus replication. - Highlights: • Different approaches to encode additional proteins in the HIV-1 genome were tested. • IRES translation elements are incompatible with efficient HIV-1 replication. • Ubiquitin and 2A fusion protein approaches allow efficient HIV-1 replication. • Doxycycline-controlled HIV-1 variants that encode all viral proteins were developed. • Nef stimulates HIV-rtTA replication in primary cells and human immune system mice.« less
Thukral, Vandana; Varshney, Bhavna; Ramly, Rimatulhana B; Ponia, Sanket S; Mishra, Sumona Karjee; Olsen, Christel M; Banerjea, Akhil C; Mukherjee, Sunil K; Zaidi, Rana; Rimstad, Espen; Lal, Sunil K
2018-04-01
The infectious salmon anaemia virus (ISAV) is a piscine virus, a member of Orthomyxoviridae family. It encodes at least 10 proteins from eight negative-strand RNA segments. Since ISAV belongs to the same virus family as Influenza A virus, with similarities in protein functions, they may hence be characterised by analogy. Like NS1 protein of Influenza A virus, s8ORF2 of ISAV is implicated in interferon antagonism and RNA-binding functions. In this study, we investigated the role of s8ORF2 in RNAi suppression in a well-established Agrobacterium transient suppression assay in stably silenced transgenic Nicotiana xanthi. In addition, s8ORF2 was identified as a novel interactor with SsMov10, a key molecule responsible for RISC assembly and maturation in the RNAi pathway. This study thus sheds light on a novel route undertaken by viral proteins in promoting viral growth, using the host RNAi machinery.
An orphan viral TNF receptor superfamily member identified in lymphocystis disease virus.
Pontejo, Sergio M; Sánchez, Carolina; Martín, Rocío; Mulero, Victoriano; Alcami, Antonio; Alejo, Alí
2013-06-07
Lymphocystis disease virus (LCDV) is a large icosahedral dsDNA-containing virus of the Lymphocystivirus genus within the Iridoviridae family that can cause disease in more than 140 marine and freshwater fish species. While several isolates have been charcaterized and classified into distinct genotypes the complete genomic sequence is currently only available from two species, the LCDV-1, isolated from flounder (Platichtys flesus) in Europe and the LCDV-C, isolated from Japanese cultured flounder (Paralichthys olivaceus) in China. Analysis of the genome of LCDV-C showed it to encode a protein named LDVICp016 with similarities to the Tumour necrosis factor receptor (TNFR) superfamily with immunomodulatory potential. We have expressed and purified the recombinant protein LDVICp016 and screened for potential interaction partners using surface plasmon resonance. Commercially available human and mouse members of the TNF superfamily (TNFSF), along with a representative set of fish-derived TNFSF were tested.We have found the LDVICp016 protein to be secreted and we have identified a second viral TNFR encoded by ORF 095 of the same virus. None of the 42 tested proteins were found to interact with LDVICp016. We show that LDVICp016 is a secreted protein belonging to the TNF receptor family that may be part of a larger gene family in Lymphocystiviruses. While the ligand of this protein remains unknown, possibly due to the species specific nature of this interaction, further investigations into the potential role of this protein in the blockade of immune responses in its fish host are required.
An orphan viral TNF receptor superfamily member identified in lymphocystis disease virus
2013-01-01
Background Lymphocystis disease virus (LCDV) is a large icosahedral dsDNA-containing virus of the Lymphocystivirus genus within the Iridoviridae family that can cause disease in more than 140 marine and freshwater fish species. While several isolates have been charcaterized and classified into distinct genotypes the complete genomic sequence is currently only available from two species, the LCDV-1, isolated from flounder (Platichtys flesus) in Europe and the LCDV-C, isolated from Japanese cultured flounder (Paralichthys olivaceus) in China. Analysis of the genome of LCDV-C showed it to encode a protein named LDVICp016 with similarities to the Tumour necrosis factor receptor (TNFR) superfamily with immunomodulatory potential. Findings We have expressed and purified the recombinant protein LDVICp016 and screened for potential interaction partners using surface plasmon resonance. Commercially available human and mouse members of the TNF superfamily (TNFSF), along with a representative set of fish-derived TNFSF were tested. We have found the LDVICp016 protein to be secreted and we have identified a second viral TNFR encoded by ORF 095 of the same virus. None of the 42 tested proteins were found to interact with LDVICp016. Conclusions We show that LDVICp016 is a secreted protein belonging to the TNF receptor family that may be part of a larger gene family in Lymphocystiviruses. While the ligand of this protein remains unknown, possibly due to the species specific nature of this interaction, further investigations into the potential role of this protein in the blockade of immune responses in its fish host are required. PMID:23758704
New Materials Based on Spider Silk
2007-11-06
encoding the honey bee secretion signal was (genetically) fused to the spider silk protein. A respective recombinant virus was used to infect high...2007). Role of individual spider silk domains during assembly. Poster at the conference on "Protein Assembly in Materials, Biology and Medicine
Immunization against Small Ruminant Lentiviruses
Reina, Ramsés; de Andrés, Damián; Amorena, Beatriz
2013-01-01
Multisystemic disease caused by Small Ruminant Lentiviruses (SRLV) in sheep and goats leads to production losses, to the detriment of animal health and welfare. This, together with the lack of treatments, has triggered interest in exploring different strategies of immunization to control the widely spread SRLV infection and, also, to provide a useful model for HIV vaccines. These strategies involve inactivated whole virus, subunit vaccines, DNA encoding viral proteins in the presence or absence of plasmids encoding immunological adjuvants and naturally or artificially attenuated viruses. In this review, we revisit, comprehensively, the immunization strategies against SRLV and analyze this double edged tool individually, as it may contribute to either controlling or enhancing virus replication and/or disease. PMID:23917352
Kumar, D; Tiwari, K; Rajala, M S
Influenza A virus undergoes frequent changes of antigenicity and contributes to seasonal epidemics or unpredictable pandemics. Nucleoprotein, encoded by gene segment 5, is an internal protein of the virus and is conserved among strains of different host origins. In the current study, we analyzed the differentially expressed proteins in A549 cells transiently transfected with the recombinant nucleoprotein of influenza A virus by 2D gel electrophoresis. The resolved protein spots on gel were identified by MALDI-TOF/Mass spectrometry analysis. The majority of the host proteins detected to be differentially abundant in recombinant nucleoprotein-expressing cells as compared to vector-transfected cells are the proteins of metabolic pathways, glycolytic enzymes, molecular chaperones and cytoskeletal proteins. We further demonstrated the interaction of virus nucleoprotein with some of the identified host cellular proteins. In vitro binding assay carried out using the purified recombinant nucleoprotein (pET29a+NP-His) and A549 cell lysate confirmed the interaction between nucleoprotein and host proteins, such as alpha enolase 1, pyruvate kinase and β-actin. The preliminary data of our study provides the information on virus nucleoprotein interaction with proteins involved in glycolysis. However, studies are ongoing to understand the significance of these interactions in modulating the host factors during virus replication.
Haugland, Øyvind; Mikalsen, Aase B.; Nilsen, Pål; Lindmo, Karine; Thu, Beate J.; Eliassen, Trygve M.; Roos, Norbert; Rode, Marit; Evensen, Øystein
2011-01-01
Cardiomyopathy syndrome (CMS) of farmed and wild Atlantic salmon (Salmo salar L.) is a disease of yet unknown etiology characterized by a necrotizing myocarditis involving the atrium and the spongious part of the heart ventricle. Here, we report the identification of a double-stranded RNA virus likely belonging to the family Totiviridae as the causative agent of the disease. The proposed name of the virus is piscine myocarditis virus (PMCV). On the basis of the RNA-dependent RNA polymerase (RdRp) sequence, PMCV grouped with Giardia lamblia virus and infectious myonecrosis virus of penaeid shrimp. The genome size of PMCV is 6,688 bp, with three open reading frames (ORFs). ORF1 likely encodes the major capsid protein, while ORF2 encodes the RdRp, possibly expressed as a fusion protein with the ORF1 product. ORF3 seems to be translated as a separate protein not described for any previous members of the family Totiviridae. Following experimental challenge with cell culture-grown virus, histopathological changes are observed in heart tissue by 6 weeks postchallenge (p.c.), with peak severity by 9 weeks p.c. Viral genome levels detected by real-time reverse transcription (RT)-PCR peak earlier at 6 to 7 weeks p.c. The virus genome is detected by in situ hybridization in degenerate cardiomyocytes from clinical cases of CMS. Virus genome levels in the hearts from clinical field cases correlate well with the severity of histopathological changes in heart tissue. The identification of the causative agent for CMS is important for improved disease surveillance and disease control and will serve as a basis for vaccine development against the disease. PMID:21411528
Isolation and identification of infectious salmon anaemia virus (ISAV) from Coho salmon in Chile.
Kibenge, F S; Gárate, O N; Johnson, G; Arriagada, R; Kibenge, M J; Wadowska, D
2001-05-04
The isolation of infectious salmon anaemia virus (ISAV) from asymptomatic wild fish species including wild salmon, sea trout and eel established that wild fish can be a reservoir of ISAV for farmed Atlantic salmon. This report characterizes the biological properties of ISAV isolated from a disease outbreak in farmed Coho salmon in Chile and compares it with ISAV isolated from farmed Atlantic salmon in Canada and Europe. The virus that was isolated from Coho salmon tissues was initially detected with ISAV-specific RT-PCR (reverse transcription-polymerase chain reaction). The ability of the virus to grow in cell culture was poor, as cytopathology was not always conspicuous and isolation required passage in the presence of trypsin. Virus replication in cell culture was detected by RT-PCR and IFAT (indirect fluorescent antibody test), and the virus morphology was confirmed by positive staining electron microscopy. Further analysis of the Chilean virus revealed similarities to Canadian ISAV isolates in their ability to grow in the CHSE-214 cell line and in viral protein profile. Sequence analysis of genome segment 2, which encodes the viral RNA polymerase PB1, and segment 8, which encodes the nonstructural proteins NS1 and NS2, showed the Chilean virus to be very similar to Canadian strains of ISAV. This high sequence similarity of ISAV strains of geographically distinct origins illustrates the highly conserved nature of ISAV proteins PB1, NS1 and NS2 of ISAV. It is noteworthy that ISAV was associated with disease outbreaks in farmed Coho salmon in Chile without corresponding clinical disease in farmed Atlantic salmon. This outbreak, which produced high mortality in Coho salmon due to ISAV, is unique and may represent the introduction of the virus to a native wild fish population or a new strain of ISAV.
van Kasteren, Puck B; Bailey-Elkin, Ben A; James, Terrence W; Ninaber, Dennis K; Beugeling, Corrine; Khajehpour, Mazdak; Snijder, Eric J; Mark, Brian L; Kikkert, Marjolein
2013-02-26
Protein ubiquitination regulates important innate immune responses. The discovery of viruses encoding deubiquitinating enzymes (DUBs) suggests they remove ubiquitin to evade ubiquitin-dependent antiviral responses; however, this has never been conclusively demonstrated in virus-infected cells. Arteriviruses are economically important positive-stranded RNA viruses that encode an ovarian tumor (OTU) domain DUB known as papain-like protease 2 (PLP2). This enzyme is essential for arterivirus replication by cleaving a site within the viral replicase polyproteins and also removes ubiquitin from cellular proteins. To dissect this dual specificity, which relies on a single catalytic site, we determined the crystal structure of equine arteritis virus PLP2 in complex with ubiquitin (1.45 Å). PLP2 binds ubiquitin using a zinc finger that is uniquely integrated into an exceptionally compact OTU-domain fold that represents a new subclass of zinc-dependent OTU DUBs. Notably, the ubiquitin-binding surface is distant from the catalytic site, which allowed us to mutate this surface to significantly reduce DUB activity without affecting polyprotein cleavage. Viruses harboring such mutations exhibited WT replication kinetics, confirming that PLP2-mediated polyprotein cleavage was intact, but the loss of DUB activity strikingly enhanced innate immune signaling. Compared with WT virus infection, IFN-β mRNA levels in equine cells infected with PLP2 mutants were increased by nearly an order of magnitude. Our findings not only establish PLP2 DUB activity as a critical factor in arteriviral innate immune evasion, but the selective inactivation of DUB activity also opens unique possibilities for developing improved live attenuated vaccines against arteriviruses and other viruses encoding similar dual-specificity proteases.
Two suppressors of RNA silencing encoded by cereal-infecting members of the family Luteoviridae.
Liu, Yan; Zhai, Hao; Zhao, Kun; Wu, Beilei; Wang, Xifeng
2012-08-01
Several members of the family Luteoviridae are important pathogens of cultivated plant species of the family Gramineae. In this study, we explored RNA-silencing suppressors (RSSs) encoded by two cereal-infecting luteoviruses: barley yellow dwarf virus and wheat yellow dwarf virus (BYDV and WYDV, respectively). The P0 protein of WYDV-GPV (P0(GPV)) and the P6 protein of BYDV-GAV (P6(GAV)) displayed RSS activities when expressed in agro-infiltrated leaves of Nicotiana benthamiana, by their local ability to inhibit post-transcriptional gene silencing of GFP. Analysis of GFP, mRNA and GFP-specific small interfering RNA indicated that both P0(GPV) and P6(GAV) are suppressors of silencing that can restrain not only local but also systemic gene silencing. This is the first report of RSS activity of the P6 protein in a member of the genus Luteovirus.
Ribaudo, Michael; Barik, Sailen
2017-11-06
Interferon (IFN) inhibits viruses by inducing several hundred cellular genes, aptly named 'interferon (IFN)-stimulated genes' (ISGs). The only two RNA viruses of the Pneumovirus genus of the Paramyxoviridae family, namely Respiratory Syncytial Virus (RSV) and Pneumonia Virus of Mice (PVM), each encode two nonstructural (NS) proteins that share no sequence similarity but yet suppress IFN. Since suppression of IFN underlies the ability of these viruses to replicate in the host cells, the mechanism of such suppression has become an important area of research. This Short Report is an important extension of our previous efforts in defining this mechanism. We show that, like their PVM counterparts, the RSV NS proteins also target multiple members of the ISG family. While significantly extending the substrate repertoire of the RSV NS proteins, these results, unexpectedly, also reveal that the target preferences of the NS proteins of the two viruses are entirely different. This is surprising since the two Pneumoviruses are phylogenetically close with similar genome organization and gene function, and the NS proteins of both also serve as suppressors of host IFN response. The finding that the NS proteins of the two highly similar viruses suppress entirely different members of the ISG family raises intriguing questions of pneumoviral NS evolution and mechanism of action.
Gulyaeva, Anastasia; Hoogendoorn, Erik; Giles, Julia; Samborskiy, Dmitry
2017-01-01
ABSTRACT In five experimentally characterized arterivirus species, the 5′-end genome coding region encodes the most divergent nonstructural proteins (nsp's), nsp1 and nsp2, which include papain-like proteases (PLPs) and other poorly characterized domains. These are involved in regulation of transcription, polyprotein processing, and virus-host interaction. Here we present results of a bioinformatics analysis of this region of 14 arterivirus species, including that of the most distantly related virus, wobbly possum disease virus (WPDV), determined by a modified 5′ rapid amplification of cDNA ends (RACE) protocol. By combining profile-profile comparisons and phylogeny reconstruction, we identified an association of the four distinct domain layouts of nsp1-nsp2 with major phylogenetic lineages, implicating domain gain, including duplication, and loss in the early nsp1 evolution. Specifically, WPDV encodes highly divergent homologs of PLP1a, PLP1b, PLP1c, and PLP2, with PLP1a lacking the catalytic Cys residue, but does not encode nsp1 Zn finger (ZnF) and “nuclease” domains, which are conserved in other arteriviruses. Unexpectedly, our analysis revealed that the only catalytically active nsp1 PLP of equine arteritis virus (EAV), known as PLP1b, is most similar to PLP1c and thus is likely to be a PLP1b paralog. In all non-WPDV arteriviruses, PLP1b/c and PLP1a show contrasting patterns of conservation, with the N- and C-terminal subdomains, respectively, being enriched with conserved residues, which is indicative of different functional specializations. The least conserved domain of nsp2, the hypervariable region (HVR), has its size varied 5-fold and includes up to four copies of a novel PxPxPR motif that is potentially recognized by SH3 domain-containing proteins. Apparently, only EAV lacks the signal that directs −2 ribosomal frameshifting in the nsp2 coding region. IMPORTANCE Arteriviruses comprise a family of mammalian enveloped positive-strand RNA viruses that include some of the most economically important pathogens of swine. Most of our knowledge about this family has been obtained through characterization of viruses from five species: Equine arteritis virus, Simian hemorrhagic fever virus, Lactate dehydrogenase-elevating virus, Porcine respiratory and reproductive syndrome virus 1, and Porcine respiratory and reproductive syndrome virus 2. Here we present the results of comparative genomics analyses of viruses from all known 14 arterivirus species, including the most distantly related virus, WPDV, whose genome sequence was completed in this study. Our analysis focused on the multifunctional 5′-end genome coding region that encodes multidomain nonstructural proteins 1 and 2. Using diverse bioinformatics techniques, we identified many patterns of evolutionary conservation that are specific to members of distinct arterivirus species, both characterized and novel, or their groups. They are likely associated with structural and functional determinants important for virus replication and virus-host interaction. PMID:28053107
Zhang, Tingting; Jiang, Yinhui; Dong, Wubei
2014-08-01
In this study, we describe a novel mycovirus isolated from Ustilaginoidea virens, which was designated Ustilaginoidea virens nonsegmented virus 1 (UvNV-1). The sequence analysis revealed that UvNV-1 has two open reading frames (ORFs). ORF1 encodes an unknown protein, which is similar to the hypothetical protein BN7_5177 of Wickerhamomyces ciferrii. ORF2 encodes a putative RNA-dependent RNA polymerase (RdRp), which is most closely related to Bryopsis mitochondria-associated dsRNA (BDRM) and is likely expressed by a +1 ribosomal frameshift within the sequence CCC_UUU_CGA. The phylogenetic analysis of the RdRp of UvNV-1 showed that UvNV-1 represents a new virus taxon of mycoviruses with a partitivirus-like lineage that is classified into the family of picorna-like viruses. Based on northern hybridization, UvNV-1 was found to be common to U. virens from different geographic locations in China. The biological comparison of virus-free and infected fungal strains revealed that UvNV-1 is likely to be cryptic to its host. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Genetic and Functional Diversification of Small RNA Pathways in Plants
Gustafson, Adam M; Kasschau, Kristin D; Lellis, Andrew D; Zilberman, Daniel; Jacobsen, Steven E
2004-01-01
Multicellular eukaryotes produce small RNA molecules (approximately 21–24 nucleotides) of two general types, microRNA (miRNA) and short interfering RNA (siRNA). They collectively function as sequence-specific guides to silence or regulate genes, transposons, and viruses and to modify chromatin and genome structure. Formation or activity of small RNAs requires factors belonging to gene families that encode DICER (or DICER-LIKE [DCL]) and ARGONAUTE proteins and, in the case of some siRNAs, RNA-dependent RNA polymerase (RDR) proteins. Unlike many animals, plants encode multiple DCL and RDR proteins. Using a series of insertion mutants of Arabidopsis thaliana, unique functions for three DCL proteins in miRNA (DCL1), endogenous siRNA (DCL3), and viral siRNA (DCL2) biogenesis were identified. One RDR protein (RDR2) was required for all endogenous siRNAs analyzed. The loss of endogenous siRNA in dcl3 and rdr2 mutants was associated with loss of heterochromatic marks and increased transcript accumulation at some loci. Defects in siRNA-generation activity in response to turnip crinkle virus in dcl2 mutant plants correlated with increased virus susceptibility. We conclude that proliferation and diversification of DCL and RDR genes during evolution of plants contributed to specialization of small RNA-directed pathways for development, chromatin structure, and defense. PMID:15024409
Identification of a maize chlorotic dwarf virus silencing suppressor protein
USDA-ARS?s Scientific Manuscript database
Maize chlorotic dwarf virus (MCDV), a member of the genus Waikavirus, family Secoviridae, has a 11784 nt (+)ssRNA genome that encodes a 389 kDa proteolytically processed polyprotein. We show that an N-terminal 78kDa polyprotein (R78) has silencing suppressor activity, that it is cleaved by the viral...
Chen, Hong-yun; Lin, Shi-ming; Chen, Qing; Zhao, Wen-jun; Liao, Fu-rong; Chen, Hong-jun; Zhu, Shui-fang
2009-01-01
The complete genomic sequence of a watermelon isolate of Cucumber green mottle mosaic virus (CGMMV-LN) in Liaoning province was determined and compared with other cucurbit-infecting tobamoviruses. The genomic RNA of CGMMV-LN comprised 6422 nt, and 5'- and 3'- noncoding regions consisted of 59 nt and 175 nt, respectively. The encoded four proteins were two replicase proteins of 186 kD and 129 kD, move protein of 29 kD and coat protein of 17.4 kD. The alignment results of complete nucleotide sequence showed that CGMMV-LN shared identities of 97.6%-99.3% with four other CGMMV isolates, but only shared identities of 61.7%-62.8% with three other tobamoviruses. Homology trees generated from replicase proteins of 186 kD and coat proteins suggested that cucurbit-infecting tobamoviruses could be separated into two subgroups: subgroup I comprising all the isolates of CGMMV and subgroup II comprising Cucumber fruit mottle mosaic virus, Kyuri green mottle mosaic virus and Zucchini green mottle mosaic virus.
A lanthipeptide library used to identify a protein-protein interaction inhibitor.
Yang, Xiao; Lennard, Katherine R; He, Chang; Walker, Mark C; Ball, Andrew T; Doigneaux, Cyrielle; Tavassoli, Ali; van der Donk, Wilfred A
2018-04-01
In this article we describe the production and screening of a genetically encoded library of 10 6 lanthipeptides in Escherichia coli using the substrate-tolerant lanthipeptide synthetase ProcM. This plasmid-encoded library was combined with a bacterial reverse two-hybrid system for the interaction of the HIV p6 protein with the UEV domain of the human TSG101 protein, which is a critical protein-protein interaction for HIV budding from infected cells. Using this approach, we identified an inhibitor of this interaction from the lanthipeptide library, whose activity was verified in vitro and in cell-based virus-like particle-budding assays. Given the variety of lanthipeptide backbone scaffolds that may be produced with ProcM, this method may be used for the generation of genetically encoded libraries of natural product-like lanthipeptides containing substantial structural diversity. Such libraries may be combined with any cell-based assay to identify lanthipeptides with new biological activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claus, Claudia; Tzeng, W.-P.; Liebert, Uwe Gerd
During serial passaging of rubella virus (RUB) in cell culture, the dominant species of defective-interfering RNA (DI) generated contains an in-frame deletion between the capsid protein (C) gene and E1 glycoprotein gene resulting in production of a C-E1 fusion protein that is necessary for the maintenance of the DI [Tzeng, W.P., Frey, T.K. (2006). C-E1 fusion protein synthesized by rubella virus DI RNAs maintained during serial passage. Virology 356 198-207.]. A BHK cell line stably expressing the RUB structural proteins was established which was used to package DIs into virus particles following transfection with in vitro transcripts from DI infectiousmore » cDNA constructs. Packaging of a DI encoding an in-frame C-GFP-E1 reporter fusion protein corresponding to the C-E1 fusion protein expressed in a native DI was only marginally more efficient than packaging of a DI encoding GFP, indicating that the C-E1 fusion protein did not function by enhancing packaging. However, infection with the DI encoding the C-GFP-E1 fusion protein (in the absence of wt RUB helper virus) resulted in formation of clusters of GFP-positive cells and the percentage of GFP-positive cells in the culture following infection remained relatively constant. In contrast, a DI encoding GFP did not form GFP-positive clusters and the percentage of GFP-positive cells declined by roughly half from 2 to 4 days post-infection. Cluster formation and sustaining the percentage of infected (GFP-positive) cells required the C part of the fusion protein, including the downstream but not the upstream of two arginine clusters (both of which are associated with RNA binding and association with mitochondrial p32 protein) and the E1 part through the transmembrane sequence, but not the C-terminal cytoplasmic tail. Among a collection of mutant DI constructs, cluster formation and sustaining infected cell percentage correlated with maintenance during serial passage with wt RUB. We hypothesize that cluster formation and sustaining infected cell percentage increase the likelihood of co-infection by a DI and wt RUB during serial passage thus enhancing maintenance of the DI. Cluster formation and sustaining infected cell percentage were found to be due to a combination of attenuated cytopathogenicity of DIs that express the C-E1 fusion protein and cell-to-cell movement of the DI. In infected cells, the C-GFP-E1 fusion protein was localized to potentially novel vesicular structures that appear to originate from ER-Golgi transport vacuoles. This species of DI expressing a C-E1 fusion protein that exhibits attenuated cytopathogenicity and the ability to increase the number of infected cells through cell-to-cell movement could be the basis for development of an attractive vaccine vector.« less
Ducasse, D A; Mushegian, A R; Shepherd, R J
1995-01-01
Gene I of peanut chlorotic streak virus (PCISV), a caulimovirus, is homologous to gene I of other caulimoviruses and may encode a protein for virus movement. To evaluate the function of gene I, several mutations were created in this gene of an infectious, partially redundant clone of PCISV. Constructs with an in-frame deletion and a single amino acid substitution in gene I were not infectious. To test for replication of these mutants in primarily infected cells, an immunosorbent PCR technique was devised. Virus particles formed by mutants in plants were recovered by binding to antivirus antibodies on a solid matrix and DNase treated to discriminate against residual inoculum, and DNA of trapped virions was subjected to PCR amplification. Gene I mutants were shown to direct formation of encapsidated DNA as revealed by a PCR product. Control gene V mutants (reverse transcriptase essential for replication) did not yield a PCR product. Quantitative PCR allowed estimation of the proportion of cells initially infected by gene I mutants and the amount of extractable virus per cell. It is concluded that PCISV gene I encodes a movement protein and that the immunoselection-PCR technique is useful in studying subliminal virus infection in plants. PMID:7543587
Identification of the gene encoding the major capsid protein of fish lymphocystis disease virus.
Schnitzler, P; Darai, G
1993-10-01
The gene encoding the major capsid protein (MCP) of fish lymphocystis disease virus (flounder isolate; FLCDV-f) has been identified by PCR using oligonucleotide primers corresponding to different regions of the MCP of Tipula iridescent virus (TIV), iridescent virus 22 (IV22) and Chilo iridescent virus (CIV). DNA fragments of 0.4 kbp, 0.5 kbp and 0.27 kbp in size were amplified using oligonucleotide primers corresponding to amino acids (aa) 146 to 153 (primer 1) and 274 to 268 (primer 6), or aa 146 to 153 (primer 1) and 313 to 304 (primer 8), or aa 304 to 312 (primer 7) and 385 to 381 (primer 9) of the MCP of TIV, respectively. The PCR products were used as hybridization probes for screening the gene library of FLCDV-f. The MCP gene of FLCDV-f(1377 bp; 459 aa; 51.4K) was identified within the DNA sequence of the EcoRI FLCDV-f DNA fragment C (11.2 kbp; 0.611 to 0.718 map units). A high degree of aa sequence identity/similarity was detected between the MCP of FLCDV-f and TIV (50.3%/33.8%), IV22 (49.1%/34.2%). CIV (53%/29.5%) and African swine fever virus (16%/38.1%).
Daum, Bertram; Quax, Tessa E F; Sachse, Martin; Mills, Deryck J; Reimann, Julia; Yildiz, Özkan; Häder, Sabine; Saveanu, Cosmin; Forterre, Patrick; Albers, Sonja-Verena; Kühlbrandt, Werner; Prangishvili, David
2014-03-11
Viruses have developed a wide range of strategies to escape from the host cells in which they replicate. For egress some archaeal viruses use a pyramidal structure with sevenfold rotational symmetry. Virus-associated pyramids (VAPs) assemble in the host cell membrane from the virus-encoded protein PVAP and open at the end of the infection cycle. We characterize this unusual supramolecular assembly using a combination of genetic, biochemical, and electron microscopic techniques. By whole-cell electron cryotomography, we monitored morphological changes in virus-infected host cells. Subtomogram averaging reveals the VAP structure. By heterologous expression of PVAP in cells from all three domains of life, we demonstrate that the protein integrates indiscriminately into virtually any biological membrane, where it forms sevenfold pyramids. We identify the protein domains essential for VAP formation in PVAP truncation mutants by their ability to remodel the cell membrane. Self-assembly of PVAP into pyramids requires at least two different, in-plane and out-of-plane, protein interactions. Our findings allow us to propose a model describing how PVAP arranges to form sevenfold pyramids and suggest how this small, robust protein may be used as a general membrane-remodeling system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinh, Phat X.; Panda, Debasis; Das, Phani B.
Using a recombinant vesicular stomatitis virus encoding eGFP fused in-frame with an essential viral replication protein, the phosphoprotein P, we show that during passage in culture, the virus mutates the nucleotide C289 within eGFP of the fusion protein PeGFP to A or T, resulting in R97S/C amino acid substitution and loss of fluorescence. The resultant non-fluorescent virus exhibits increased fitness and growth advantage over its fluorescent counterpart. The growth advantage of the non-fluorescent virus appears to be due to increased transcription and replication activities of the PeGFP protein carrying the R97S/C substitution. Further, our results show that the R97S/C mutationmore » occurs prior to accumulation of mutations that can result in loss of expression of the gene inserted at the G-L gene junction. These results suggest that fitness gain is more important for the recombinant virus than elimination of expression of the heterologous gene.« less
Martínez-Gil, Luis; Sánchez-Navarro, Jesús A.; Cruz, Antonio; Pallás, Vicente; Pérez-Gil, Jesús; Mingarro, Ismael
2009-01-01
The cell-to-cell transport of plant viruses depends on one or more virus-encoded movement proteins (MPs). Some MPs are integral membrane proteins that interact with the membrane of the endoplasmic reticulum, but a detailed understanding of the interaction between MPs and biological membranes has been lacking. The cell-to-cell movement of the Prunus necrotic ringspot virus (PNRSV) is facilitated by a single MP of the 30K superfamily. Here, using a myriad of biochemical and biophysical approaches, we show that the PNRSV MP contains only one hydrophobic region (HR) that interacts with the membrane interface, as opposed to being a transmembrane protein. We also show that a proline residue located in the middle of the HR constrains the structural conformation of this region at the membrane interface, and its replacement precludes virus movement. PMID:19321624
Phoenix, Inaia; Lokugamage, Nandadeva; Nishiyama, Shoko; Ikegami, Tetsuro
2016-01-01
The Rift Valley fever virus (RVFV) M-segment encodes the 78 kD, NSm, Gn, and Gc proteins. The 1st AUG generates the 78 kD-Gc precursor, the 2nd AUG generates the NSm-Gn-Gc precursor, and the 3rd AUG makes the NSm’-Gn-Gc precursor. To understand biological changes due to abolishment of the precursors, we quantitatively measured Gn secretion using a reporter assay, in which a Gaussia luciferase (gLuc) protein is fused to the RVFV M-segment pre-Gn region. Using the reporter assay, the relative expression of Gn/gLuc fusion proteins was analyzed among various AUG mutants. The reporter assay showed efficient secretion of Gn/gLuc protein from the precursor made from the 2nd AUG, while the removal of the untranslated region upstream of the 2nd AUG (AUG2-M) increased the secretion of the Gn/gLuc protein. Subsequently, recombinant MP-12 strains encoding mutations in the pre-Gn region were rescued, and virological phenotypes were characterized. Recombinant MP-12 encoding the AUG2-M mutation replicated slightly less efficiently than the control, indicating that viral replication is further influenced by the biological processes occurring after Gn expression, rather than the Gn abundance. This study showed that, not only the abolishment of AUG, but also the truncation of viral UTR, affects the expression of Gn protein by the RVFV M-segment. PMID:27231931
Phoenix, Inaia; Lokugamage, Nandadeva; Nishiyama, Shoko; Ikegami, Tetsuro
2016-05-24
The Rift Valley fever virus (RVFV) M-segment encodes the 78 kD, NSm, Gn, and Gc proteins. The 1st AUG generates the 78 kD-Gc precursor, the 2nd AUG generates the NSm-Gn-Gc precursor, and the 3rd AUG makes the NSm'-Gn-Gc precursor. To understand biological changes due to abolishment of the precursors, we quantitatively measured Gn secretion using a reporter assay, in which a Gaussia luciferase (gLuc) protein is fused to the RVFV M-segment pre-Gn region. Using the reporter assay, the relative expression of Gn/gLuc fusion proteins was analyzed among various AUG mutants. The reporter assay showed efficient secretion of Gn/gLuc protein from the precursor made from the 2nd AUG, while the removal of the untranslated region upstream of the 2nd AUG (AUG2-M) increased the secretion of the Gn/gLuc protein. Subsequently, recombinant MP-12 strains encoding mutations in the pre-Gn region were rescued, and virological phenotypes were characterized. Recombinant MP-12 encoding the AUG2-M mutation replicated slightly less efficiently than the control, indicating that viral replication is further influenced by the biological processes occurring after Gn expression, rather than the Gn abundance. This study showed that, not only the abolishment of AUG, but also the truncation of viral UTR, affects the expression of Gn protein by the RVFV M-segment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Li; Tanaka, Michiko; Kawaguchi, Yasushi
2004-11-10
Previous results indicated that the herpes simplex virus 1 (HSV-1) U{sub L}31 gene is necessary and sufficient for localization of the U{sub L}34 protein exclusively to the nuclear membrane of infected Hep2 cells. In the current studies, a bacterial artificial chromosome containing the entire HSV-1 strain F genome was used to construct a recombinant viral genome in which a gene encoding kanamycin resistance was inserted in place of 262 codons of the 306 codon U{sub L}31 open reading frame. The deletion virus produced virus titers approximately 10- to 50-fold lower in rabbit skin cells, more than 2000-fold lower in Veromore » cells, and more than 1500-fold lower in CV1 cells, compared to a virus bearing a restored U{sub L}31 gene. The replication of the U{sub L}31 deletion virus was restored on U{sub L}31-complementing cell lines derived either from rabbit skin cells or CV1 cells. Confocal microscopy indicated that the majority of U{sub L}34 protein localized aberrantly in the cytoplasm and nucleoplasm of Vero cells and CV1 cells, whereas U{sub L}34 protein localized at the nuclear membrane in rabbit skin cells, and U{sub L}31 complementing CV1 cells infected with the U{sub L}31 deletion virus. We conclude that rabbit skin cells encode a function that allows proper localization of U{sub L}34 protein to the nuclear membrane. We speculate that this function partially complements that of U{sub L}31 and may explain why U{sub L}31 is less critical for replication in rabbit skin cells as opposed to Vero and CV1 cells.« less
Isolation of a Novel Fusogenic Orthoreovirus from Eucampsipoda africana Bat Flies in South Africa
Jansen van Vuren, Petrus; Wiley, Michael; Palacios, Gustavo; Storm, Nadia; McCulloch, Stewart; Markotter, Wanda; Birkhead, Monica; Kemp, Alan; Paweska, Janusz T.
2016-01-01
We report on the isolation of a novel fusogenic orthoreovirus from bat flies (Eucampsipoda africana) associated with Egyptian fruit bats (Rousettus aegyptiacus) collected in South Africa. Complete sequences of the ten dsRNA genome segments of the virus, tentatively named Mahlapitsi virus (MAHLV), were determined. Phylogenetic analysis places this virus into a distinct clade with Baboon orthoreovirus, Bush viper reovirus and the bat-associated Broome virus. All genome segments of MAHLV contain a 5' terminal sequence (5'-GGUCA) that is unique to all currently described viruses of the genus. The smallest genome segment is bicistronic encoding for a 14 kDa protein similar to p14 membrane fusion protein of Bush viper reovirus and an 18 kDa protein similar to p16 non-structural protein of Baboon orthoreovirus. This is the first report on isolation of an orthoreovirus from an arthropod host associated with bats, and phylogenetic and sequence data suggests that MAHLV constitutes a new species within the Orthoreovirus genus. PMID:27011199
Li, Fangfang; Huang, Changjun; Li, Zhenghe; Zhou, Xueping
2014-01-01
In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different effector molecules in the RNA silencing pathway. Evidence has shown that plants also encode endogenous suppressors of RNA silencing (ESRs) that function in proper regulation of RNA silencing. The possibility that these cellular proteins can be subverted by viruses to thwart host defense is intriguing but has not been fully explored. Here we report that the Nicotiana benthamiana calmodulin-like protein Nbrgs-CaM is required for the functions of the VSR βC1, the sole protein encoded by the DNA satellite associated with the geminivirus Tomato yellow leaf curl China virus (TYLCCNV). Nbrgs-CaM expression is up-regulated by the βC1. Transgenic plants over-expressing Nbrgs-CaM displayed developmental abnormities reminiscent of βC1-associated morphological alterations. Nbrgs-CaM suppressed RNA silencing in an Agrobacterium infiltration assay and, when over-expressed, blocked TYLCCNV-induced gene silencing. Genetic evidence showed that Nbrgs-CaM mediated the βC1 functions in silencing suppression and symptom modulation, and was required for efficient virus infection. Moreover, the tobacco and tomato orthologs of Nbrgs-CaM also possessed ESR activity, and were induced by betasatellite to promote virus infection in these Solanaceae hosts. We further demonstrated that βC1-induced Nbrgs-CaM suppressed the production of secondary siRNAs, likely through repressing RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) expression. RDR6-deficient N. benthamiana plants were defective in antiviral response and were hypersensitive to TYLCCNV infection. More significantly, TYLCCNV could overcome host range restrictions to infect Arabidopsis thaliana when the plants carried a RDR6 mutation. These findings demonstrate a distinct mechanism of VSR for suppressing PTGS through usurpation of a host ESR, and highlight an essential role for RDR6 in RNA silencing defense response against geminivirus infection. PMID:24516387
Meseda, Clement A.; Campbell, Joseph; Kumar, Arunima; Garcia, Alonzo D.; Merchlinsky, Michael; Weir, Jerry P.
2013-01-01
Antibodies to both infectious forms of vaccinia virus, the mature virion (MV) and the enveloped virion (EV), as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model. PMID:23785523
Zhu, Mengxiao; Deng, Riqiang
2016-01-01
ABSTRACT An Autographa californica nucleopolyhedrovirus-encoded microRNA (miRNA), AcMNPV-miR-1, downregulates the ac94 gene, reducing the production of infectious budded virions and accelerating the formation of occlusion-derived virions. In the current study, four viruses that constitutively overexpress AcMNPV-miR-1 were constructed to further explore the function of the miRNA. In addition to the ac94 gene, two new viral gene targets (ac18 and ac95) of AcMNPV-miR-1 were identified, and the possible interacting proteins were verified and tested. In the context of AcMNPV-miR-1 overexpression, ac18 was slightly upregulated, and ac95 was downregulated. Several interacting proteins were identified, and a functional pathway for AcMNPV-miR-1 was deduced. AcMNPV-miR-1 overexpression decreased budded virus infectivity, reduced viral DNA replication, accelerated polyhedron formation, and promoted viral infection efficiency in Trichoplusia ni larvae, suggesting that AcMNPV-miR-1 restrains virus infection of cells but facilitates virus infection of larvae. IMPORTANCE Recently, microRNAs (miRNAs) have been widely reported as moderators or regulators of mammalian cellular processes, especially disease-related pathways in humans. However, the roles played by miRNAs encoded by baculoviruses, which infect numerous beneficial insects and agricultural pests, have rarely been described. To explore the actions of virus-encoded miRNAs, we investigated an miRNA encoded by Autographa californica nucleopolyhedrovirus (AcMNPV-miR-1). We previously identified this miRNA through the exogenous addition of AcMNPV-miR-1 mimics. In the current study, we constitutively overexpressed AcMNPV-miR-1 and analyzed the resultant effects to more comprehensively assess what is indeed the function of this miRNA during viral infection. In addition, we widely explored the target genes for the miRNA in the viral and host genomes and proposed a possible functional network for AcMNPV-miR-1, which provides a better general understanding of virus-encoded miRNAs. In brief, our study implied that AcMNPV-miR-1 constrains viral replication and cellular infection but enhances larval infection. PMID:27147751
Identification and characterization of vp7 gene in Bombyx mori cytoplasmic polyhedrosis virus.
He, Lei; Hu, Xiaolong; Zhu, Min; Liang, Zi; Chen, Fei; Zhu, Liyuan; Kuang, Sulan; Cao, Guangli; Xue, Renyu; Gong, Chengliang
2017-09-05
The genome of Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) contains 10 double stranded RNA segments (S1-S10). The segment 7 (S7) encodes 50kDa protein which is considered as a structural protein. The expression pattern and function of p50 in the virus life cycle are still unclear. In this study, the viral structural protein 7 (VP7) polyclonal antibody was prepared with immunized mouse to explore the presence of small VP7 gene-encoded proteins in Bombyx mori cytoplasmic polyhedrosis virus. The expression pattern of vp7 gene was investigated by its overexpression in BmN cells. In addition to VP7, supplementary band was identified with western blotting technique. The virion, BmCPV infected cells and midguts were also examined using western blotting technique. 4, 2 and 5 bands were detected in the corresponding samples, respectively. The replication of BmCPV genome in the cultured cells and midgut of silkworm was decreased by reducing the expression level of vp7 gene using RNA interference. In immunoprecipitation experiments, using a polyclonal antiserum directed against the VP7, one additional shorter band in BmCPV infected midguts was detected, and then the band was analyzed with mass spectrum (MS), the MS results showed thatone candidate interacted protein (VP7 voltage-dependent anion-selective channel-like isoform, VDAC) was identified from silkworm. We concluded that the novel viral product was generated with a leaky scanning mechanism and the VDAC may be an interacted protein with VP7. Copyright © 2017 Elsevier B.V. All rights reserved.
Kariithi, Henry M; Ince, Ikbal A; Boeren, Sjef; Abd-Alla, Adly M M; Parker, Andrew G; Aksoy, Serap; Vlak, Just M; Oers, Monique M van
2011-11-01
The competence of the tsetse fly Glossina pallidipes (Diptera; Glossinidae) to acquire salivary gland hypertrophy virus (SGHV), to support virus replication and successfully transmit the virus depends on complex interactions between Glossina and SGHV macromolecules. Critical requisites to SGHV transmission are its replication and secretion of mature virions into the fly's salivary gland (SG) lumen. However, secretion of host proteins is of equal importance for successful transmission and requires cataloging of G. pallidipes secretome proteins from hypertrophied and non-hypertrophied SGs. After electrophoretic profiling and in-gel trypsin digestion, saliva proteins were analyzed by nano-LC-MS/MS. MaxQuant/Andromeda search of the MS data against the non-redundant (nr) GenBank database and a G. morsitans morsitans SG EST database, yielded a total of 521 hits, 31 of which were SGHV-encoded. On a false discovery rate limit of 1% and detection threshold of least 2 unique peptides per protein, the analysis resulted in 292 Glossina and 25 SGHV MS-supported proteins. When annotated by the Blast2GO suite, at least one gene ontology (GO) term could be assigned to 89.9% (285/317) of the detected proteins. Five (∼1.8%) Glossina and three (∼12%) SGHV proteins remained without a predicted function after blast searches against the nr database. Sixty-five of the 292 detected Glossina proteins contained an N-terminal signal/secretion peptide sequence. Eight of the SGHV proteins were predicted to be non-structural (NS), and fourteen are known structural (VP) proteins. SGHV alters the protein expression pattern in Glossina. The G. pallidipes SG secretome encompasses a spectrum of proteins that may be required during the SGHV infection cycle. These detected proteins have putative interactions with at least 21 of the 25 SGHV-encoded proteins. Our findings opens venues for developing novel SGHV mitigation strategies to block SGHV infections in tsetse production facilities such as using SGHV-specific antibodies and phage display-selected gut epithelia-binding peptides.
Canonical and Non-Canonical Autophagy in HIV-1 Replication Cycle
Leymarie, Olivier; Lepont, Leslie; Berlioz-Torrent, Clarisse
2017-01-01
Autophagy is a lysosomal-dependent degradative process essential for maintaining cellular homeostasis, and is a key player in innate and adaptive immune responses to intracellular pathogens such as human immunodeficiency virus type 1 (HIV-1). In HIV-1 target cells, autophagy mechanisms can (i) selectively direct viral proteins and viruses for degradation; (ii) participate in the processing and presentation of viral-derived antigens through major histocompatibility complexes; and (iii) contribute to interferon production in response to HIV-1 infection. As a consequence, HIV-1 has evolved different strategies to finely regulate the autophagy pathway to favor its replication and dissemination. HIV-1 notably encodes accessory genes encoding Tat, Nef and Vpu proteins, which are able to perturb and hijack canonical and non-canonical autophagy mechanisms. This review outlines the current knowledge on the complex interplay between autophagy and HIV-1 replication cycle, providing an overview of the autophagy-mediated molecular processes deployed both by infected cells to combat the virus and by HIV-1 to evade antiviral response. PMID:28946621
Kuo, Rei-Lin; Chen, Chi-Jene; Tam, Ee-Hong; Huang, Chung-Guei; Li, Li-Hsin; Li, Zong-Hua; Su, Pei-Chia; Liu, Hao-Ping; Wu, Chih-Ching
2018-04-06
Influenza A virus infections can result in severe respiratory diseases. The H7N9 subtype of avian influenza A virus has been transmitted to humans and caused severe disease and death. Nonstructural protein 1 (NS1) of influenza A virus is a virulence determinant during viral infection. To elucidate the functions of the NS1 encoded by influenza A H7N9 virus (H7N9 NS1), interaction partners of H7N9 NS1 in human cells were identified with immunoprecipitation followed by SDS-PAGE coupled with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). We identified 36 cellular proteins as the interacting partners of the H7N9 NS1, and they are involved in RNA processing, mRNA splicing via spliceosome, and the mRNA surveillance pathway. Two of the interacting partners, cleavage and polyadenylation specificity factor subunit 2 (CPSF2) and CPSF7, were confirmed to interact with H7N9 NS1 using coimmunoprecipitation and immunoblotting based on the previous finding that the two proteins are involved in pre-mRNA polyadenylation machinery. Furthermore, we illustrate that overexpression of H7N9 NS1, as well as infection by the influenza A H7N9 virus, interfered with pre-mRNA polyadenylation in host cells. This study comprehensively profiled the interactome of H7N9 NS1 in host cells, and the results demonstrate a novel endotype for H7N9 NS1 in inhibiting host mRNA maturation.
Genetic Characterization of the Tick-Borne Orbiviruses
Belaganahalli, Manjunatha N.; Maan, Sushila; Maan, Narender S.; Brownlie, Joe; Tesh, Robert; Attoui, Houssam; Mertens, Peter P. C.
2015-01-01
The International Committee for Taxonomy of Viruses (ICTV) recognizes four species of tick-borne orbiviruses (TBOs): Chenuda virus, Chobar Gorge virus, Wad Medani virus and Great Island virus (genus Orbivirus, family Reoviridae). Nucleotide (nt) and amino acid (aa) sequence comparisons provide a basis for orbivirus detection and classification, however full genome sequence data were only available for the Great Island virus species. We report representative genome-sequences for the three other TBO species (virus isolates: Chenuda virus (CNUV); Chobar Gorge virus (CGV) and Wad Medani virus (WMV)). Phylogenetic comparisons show that TBOs cluster separately from insect-borne orbiviruses (IBOs). CNUV, CGV, WMV and GIV share low level aa/nt identities with other orbiviruses, in ‘conserved’ Pol, T2 and T13 proteins/genes, identifying them as four distinct virus-species. The TBO genome segment encoding cell attachment, outer capsid protein 1 (OC1), is approximately half the size of the equivalent segment from insect-borne orbiviruses, helping to explain why tick-borne orbiviruses have a ~1 kb smaller genome. PMID:25928203
Genetic characterization of the tick-borne orbiviruses.
Belaganahalli, Manjunatha N; Maan, Sushila; Maan, Narender S; Brownlie, Joe; Tesh, Robert; Attoui, Houssam; Mertens, Peter P C
2015-04-28
The International Committee for Taxonomy of Viruses (ICTV) recognizes four species of tick-borne orbiviruses (TBOs): Chenuda virus, Chobar Gorge virus, Wad Medani virus and Great Island virus (genus Orbivirus, family Reoviridae). Nucleotide (nt) and amino acid (aa) sequence comparisons provide a basis for orbivirus detection and classification, however full genome sequence data were only available for the Great Island virus species. We report representative genome-sequences for the three other TBO species (virus isolates: Chenuda virus (CNUV); Chobar Gorge virus (CGV) and Wad Medani virus (WMV)). Phylogenetic comparisons show that TBOs cluster separately from insect-borne orbiviruses (IBOs). CNUV, CGV, WMV and GIV share low level aa/nt identities with other orbiviruses, in 'conserved' Pol, T2 and T13 proteins/genes, identifying them as four distinct virus-species. The TBO genome segment encoding cell attachment, outer capsid protein 1 (OC1), is approximately half the size of the equivalent segment from insect-borne orbiviruses, helping to explain why tick-borne orbiviruses have a ~1 kb smaller genome.
Hsiang, Tien-Ying; Zhou, Ligang; Krug, Robert M
2012-10-01
We demonstrate that phosphorylation of the NS1 protein of a human influenza A virus occurs not only at the threonine (T) at position 215 but also at serines (Ss), specifically at positions 42 and 48. By generating recombinant influenza A/Udorn/72 (Ud) viruses that encode mutant NS1 proteins, we determined the roles of these phosphorylations in virus replication. At position 215 only a T-to-A substitution attenuated replication, whereas other substitutions (T to E to mimic constitutive phosphorylation, T to N, and T to P, the amino acid in avian influenza A virus NS1 proteins) had no effect. We conclude that attenuation resulting from the T-to-A substitution at position 215 is attributable to a deleterious structural change in the NS1 protein that is not caused by other amino acid substitutions and that phosphorylation of T215 does not affect virus replication. At position 48 neither an S-to-A substitution nor an S-to-D substitution that mimics constitutive phosphorylation affected virus replication. In contrast, at position 42, an S-to-D, but not an S-to-A, substitution caused attenuation. The S-to-D substitution eliminates detectable double-stranded RNA binding by the NS1 protein, accounting for attenuation of virus replication. We show that protein kinase C α (PKCα) catalyzes S42 phosphorylation. Consequently, the only phosphorylation of the NS1 protein of this human influenza A virus that regulates its replication is S42 phosphorylation catalyzed by PKCα. In contrast, phosphorylation of Ts or Ss in the NS1 protein of the 2009 H1N1 pandemic virus was not detected, indicating that NS1 phosphorylation probably does not play any role in the replication of this virus.
Role of the NSs protein in the zoonotic capacity of Orthobunyaviruses.
Hart, T J; Kohl, A; Elliott, R M
2009-08-01
The family Bunyaviridae contains over 350 named isolates, classified into five genera: Orthobunyavirus, Hantavirus, Nairovirus, Phlebovirus and Tospovirus. The Orthobunyavirus genus contains some 170 isolates that are mainly transmitted by mosquitoes and are responsible for a range of disease syndromes in humans including self-limiting febrile illness, encephalitis and haemorrhagic fever. The viruses have a tripartite, negative-sense RNA genome. Analyses of viruses in four serogroups (Bunyamwera, California, Group C and Simbu) showed that the smallest (S) RNA segment encodes the nucleocapsid protein (N) and a non-structural protein called (NSs). The NSs protein of Bunyamwera virus (BUNV) has been shown to play a role in shut-off of host cell protein synthesis in mammalian cells, but no protein shut-off is observed in BUNVinfected mosquito cells (Aedes albopictus C6/36 cells). Protein shut-off in infected mammalian cells is achieved by global inhibition of RNA polymerase II-mediated transcription and enables the virus to overcome the host innate immune response. As innate defence mechanisms constitute a significant barrier to virus infection of different hosts, NSs would appear to play a key role in determining the zoonotic capacity of orthobunyaviruses.
Functional characterization of the triple gene block 1 (TGB1) gene of Pepino mosaic virus in tomato
USDA-ARS?s Scientific Manuscript database
Pepino mosaic virus (PepMV) has caused serious economic losses to many greenhouse tomato productions around the world. This potexvirus genome contains five major open reading frames (ORFs) encoding for a 164-kDa RNA-dependent RNA polymerase (RdRp), three triple gene block (TGB) proteins of 26, 14 an...
Molecular analysis of an enhancin gene in the Lymantria dispar nuclear polyhedrosis virus
David S. Bischoff; James M. Slavicek
1997-01-01
A Lymantria dispar nuclear polyhedrosis virus (LdMNPV) gene has been identified that encodes a homolog to the granulovirus (GV) enhancin proteins that are capable of enhancing the infection of other baculoviruses. Enhancin genes have been identified and sequenced for three species of GVs but have not been found in any other nuclear...
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus (MDV), the etiologic agent of Marek’s disease, is a potent oncogenic herpesvirus. MDV is highly contagious and elicits a rapid onset of malignant T-cell lymphomas in chickens within several weeks after infection. MDV codes for an oncoprotein, Meq, which shares resemblance wit...
Henderson, Gail; Jaber, Tareq; Carpenter, Dale; Wechsler, Steven L; Jones, Clinton
2009-09-01
Expression of the first 1.5 kb of the latency-associated transcript (LAT) that is encoded by herpes simplex virus type 1 (HSV-1) is sufficient for wild-type (wt) levels of reactivation from latency in small animal models. Peptide-specific immunoglobulin G (IgG) was generated against open reading frames (ORFs) that are located within the first 1.5 kb of LAT coding sequences. Cells stably transfected with LAT or trigeminal ganglionic neurons of mice infected with a LAT expressing virus appeared to express the L2 or L8 ORF. Only L2 ORF expression was readily detected in trigeminal ganglionic neurons of latently infected mice.
Cristofari, Gaël; Ivanyi-Nagy, Roland; Gabus, Caroline; Boulant, Steeve; Lavergne, Jean-Pierre; Penin, François; Darlix, Jean-Luc
2004-01-01
The hepatitis C virus (HCV) is an important human pathogen causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV is an enveloped virus with a positive-sense, single-stranded RNA genome encoding a single polyprotein that is processed to generate viral proteins. Several hundred molecules of the structural Core protein are thought to coat the genome in the viral particle, as do nucleocapsid (NC) protein molecules in Retroviruses, another class of enveloped viruses containing a positive-sense RNA genome. Retroviral NC proteins also possess nucleic acid chaperone properties that play critical roles in the structural remodelling of the genome during retrovirus replication. This analogy between HCV Core and retroviral NC proteins prompted us to investigate the putative nucleic acid chaperoning properties of the HCV Core protein. Here we report that Core protein chaperones the annealing of complementary DNA and RNA sequences and the formation of the most stable duplex by strand exchange. These results show that the HCV Core is a nucleic acid chaperone similar to retroviral NC proteins. We also find that the Core protein directs dimerization of HCV (+) RNA 3′ untranslated region which is promoted by a conserved palindromic sequence possibly involved at several stages of virus replication. PMID:15141033
Cristofari, Gaël; Ivanyi-Nagy, Roland; Gabus, Caroline; Boulant, Steeve; Lavergne, Jean-Pierre; Penin, François; Darlix, Jean-Luc
2004-01-01
The hepatitis C virus (HCV) is an important human pathogen causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV is an enveloped virus with a positive-sense, single-stranded RNA genome encoding a single polyprotein that is processed to generate viral proteins. Several hundred molecules of the structural Core protein are thought to coat the genome in the viral particle, as do nucleocapsid (NC) protein molecules in Retroviruses, another class of enveloped viruses containing a positive-sense RNA genome. Retroviral NC proteins also possess nucleic acid chaperone properties that play critical roles in the structural remodelling of the genome during retrovirus replication. This analogy between HCV Core and retroviral NC proteins prompted us to investigate the putative nucleic acid chaperoning properties of the HCV Core protein. Here we report that Core protein chaperones the annealing of complementary DNA and RNA sequences and the formation of the most stable duplex by strand exchange. These results show that the HCV Core is a nucleic acid chaperone similar to retroviral NC proteins. We also find that the Core protein directs dimerization of HCV (+) RNA 3' untranslated region which is promoted by a conserved palindromic sequence possibly involved at several stages of virus replication.
Escape from R-peptide deletion in a {gamma}-retrovirus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Irene C.; Eckhardt, Manon; Brynza, Julia
2011-09-30
The R peptide in the cytoplasmic tail (C-tail) of {gamma}-retroviral envelope proteins (Env) prevents membrane fusion before budding. To analyse its role in the formation of replication competent, infectious particles, we developed chimeric murine leukaemia viruses (MLV) with unmodified or R-peptide deleted Env proteins of the gibbon ape leukaemia virus (GaLV). While titres of these viruses were unaffected, R-peptide deficiency led to strongly impaired spreading. Most remarkably, we isolated an escape mutant which had restored an open reading frame for a C-terminal extension of the truncated C-tail. A reconstituted virus encoding this escape C-tail replicated in cell culture. In contrastmore » to R-peptide deficient Env, particle incorporation of the escape Env was effective due to an enhanced protein expression and restored intracellular co-localisation with Gag proteins. Our data demonstrate that the R peptide not only regulates membrane fusion but also mediates efficient Env protein particle incorporation in {gamma}-retrovirus infected cells.« less
Xin, Min; Cao, Mengji; Liu, Wenwen; Ren, Yingdang; Zhou, Xueping; Wang, Xifeng
2017-01-01
Two novel negative-sense, single-stranded (ss) RNA viruses were identified in watermelon plants and named watermelon crinkle leaf-associated virus 1 and 2 (WCLaV-1 and -2), respectively. The multipartite genomes consist of three RNA molecules of ~6.8, 1.4, and 1.3 kb. The genomes and the deduced proteins of RNA1 and RNA3 show features resembling those of members in the genus Phlebovirus and Tenuivirus ; however, the predicted proteins encoded by RNA2 are related to the movement protein (MP) in the genus Ophiovirus and Emaravirus . Furthermore, these two viruses define a novel clade in the family Phenuiviridae , order Bunyavirales , which is phylogenetically related to the viruses in the above four genera. Moreover, after mechanical inoculation with WCLaV-1 seedlings of the natural host watermelon plants develop crinkling similar to those observed in the field. These findings enhance our understanding of the evolution and the classification of ssRNA viruses.
Unity in diversity: Shared mechanism of entry among paramyxoviruses
Palgen, Jean-Louis; Jurgens, Eric M.; Moscona, Anne; Palermo, Laura M.; Porotto, Matteo
2015-01-01
The Paramyxoviridae family includes many viruses that are pathogenic in humans, including parainfluenza viruses, measles virus, respiratory syncytial virus and the emerging zoonotic Henipaviruses. No effective treatments are currently available for these viruses, and there is a need for efficient antiviral therapies. Paramyxoviruses enter the target cell by binding to a cell surface receptor and then fusing the viral envelope with the target cell membrane, allowing the release of the viral genome into the cytoplasm. Blockage of these crucial steps prevents infection and disease. Binding and fusion are driven by two virus encoded glycoproteins, the receptor-binding protein and the fusion protein, that together form the viral “fusion machinery”. The development of efficient antiviral drugs requires a deeper understanding of the mechanism of action of the Paramyxoviridae fusion machinery, which is still controversial. Here we review recent structural and functional data on these proteins and the current understanding of the mechanism of the paramyxovirus cell entry process. PMID:25595799
Seo, Jun-Young; Jeon, Hyejin; Hong, Sookyung; Britt, William J
2016-10-01
Human cytomegalovirus UL99-encoded tegument protein pp28 contains a 16 aa acidic cluster that is required for pp28 trafficking to the assembly compartment (AC) and the virus assembly. However, functional signals within the acidic cluster of pp28 remain undefined. Here, we demonstrated that an acidic cluster rather than specific sorting signals was required for trafficking to the AC. Recombinant viruses with chimeric pp28 proteins expressing non-native acidic clusters exhibited delayed viral growth kinetics and decreased production of infectious virus, indicating that the native acidic cluster of pp28 was essential for wild-type virus assembly. These results suggested that the acidic cluster of pp28 has distinct functional domains required for trafficking and for efficient virus assembly. The first half (aa 44-50) of the acidic cluster was sufficient for pp28 trafficking, whereas the native acidic cluster consisting of aa 51-59 was required for the assembly of wild-type levels of infectious virus.
Characterization of Nora Virus Structural Proteins via Western Blot Analysis.
Ericson, Brad L; Carlson, Darby J; Carlson, Kimberly A
2016-01-01
Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses.
Characterization of Nora Virus Structural Proteins via Western Blot Analysis
Ericson, Brad L.; Carlson, Darby J.
2016-01-01
Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses. PMID:27298753
Schmidt, Kristina Maria; Schümann, Michael; Olejnik, Judith; Krähling, Verena
2011-01-01
The generation of recombinant enhanced green fluorescent protein (EGFP)--expressing viruses has significantly improved the study of their life cycle and opened up the possibility for the rapid screening of antiviral drugs. Here we report rescue of a recombinant Marburg virus (MARV) expressing EGFP from an additional transcription unit (ATU). The ATU was inserted between the second and third genes, encoding VP35 and VP40, respectively. Live-cell imaging was used to follow virus spread in real time. EGFP expression was detected at 32 hours postinfection (hpi), and infection of neighboring cells was monitored at 55 hpi. Compared to the parental virus, production of progeny rMARV-EGFP was reduced 4-fold and lower protein levels of VP40, but not nucleoprotein, were observed, indicating a decrease in downstream protein expression due to the insertion of an ATU. Interestingly, EGFP concentrated in viral inclusions in infected cells. This was reproduced by transient expression of both EGFP and other fluorescent proteins along with filovirus nucleocapsid proteins, and may suggest that a general increase in protein synthesis occurs at viral inclusion sites. In conclusion, the EGFP-expressing MARV will be a useful tool not only to monitor virus spread and screen for antiviral compounds, but also to investigate the biology of inclusion body formation. PMID:21987762
Shimada, Masaru; Abe, Shinya; Takahashi, Toru; Shiozaki, Kazumasa; Okuda, Mitsue; Mizukami, Hiroaki; Klinman, Dennis M.; Ozawa, Keiya; Okuda, Kenji
2013-01-01
We previously reported on a monoclonal antibody (mAb) that targeted amyloid beta (Aß) protein. Repeated injection of that mAb reduced the accumulation of Aß protein in the brain of human Aß transgenic mice (Tg2576). In the present study, cDNA encoding the heavy and light chains of this mAb were subcloned into an adeno-associated virus type 1 (AAV) vector with a 2A/furin adapter. A single intramuscular injection of 3.0×1010 viral genome of these AAV vectors into C57BL/6 mice generated serum anti-Aß Ab levels up to 0.3 mg/ml. Anti-Aß Ab levels in excess of 0.1 mg/ml were maintained for up to 64 weeks. The effect of AAV administration on Aß levels in vivo was examined. A significant decrease in Aß levels in the brain of Tg2576 mice treated at 5 months (prophylactic) or 10 months (therapeutic) of age was observed. These results support the use of AAV vector encoding anti-Aß Ab for the prevention and treatment of Alzheimer's disease. PMID:23555563
Brandimarti, Renato; Roizman, Bernard
1997-01-01
The US9 gene of herpes simplex virus 1 encodes a virion tegument protein with a predicted Mr of 10,000. Earlier studies have shown that the gene is not essential for viral replication in cells in culture. We report that (i) US9 forms in denaturing polyacrylamide gels multiple overlapping bands ranging in Mr from 12,000 to 25,000; (ii) the protein recovered from infected cells or purified virions reacts with anti-ubiquitin antibodies; (iii) autoradiographic images of US9 protein immunoprecipitated from cells infected with [35S]methionine-labeled virus indicate that the protein is stable for at least 4 h after entry into cells (the protein was also stable for at least 4 h after a 1-h labeling interval 12 h after infection); (iv) antibody to subunit 12 of proteasomes pulls down US9 protein from herpes simplex virus-infected cell lysates; and (v) the US9 gene is highly conserved among the members of the alpha subfamily of herpes viruses, and the US9 gene product lacks lysines. We conclude that US9 is a lysine-less, ubiquitinated protein that interacts with the ubiquitin-dependent pathway for degradation of proteins and that this function may be initiated at the time of entry of the virus into the cell. PMID:9391137
Jagdeo, Julienne M.; Dufour, Antoine; Klein, Theo; Solis, Nestor; Kleifeld, Oded; Kizhakkedathu, Jayachandran; Luo, Honglin; Overall, Christopher M.
2018-01-01
ABSTRACT Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed terminal amine isotopic labeling of substrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3Cpros) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3Cpro in vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3Cpro-targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3Cpro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3Cpro substrates in vivo, we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner. IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection. Although several host protein targets have been identified, the entire list of proteins that are targeted is not known. In this study, we used a novel unbiased proteomics approach to identify ∼100 novel host targets of the enterovirus 3C protease, thus providing further insights into the network of cellular pathways that are modulated to promote virus infection. PMID:29437971
Tugume, Arthur K.; Amayo, Robert; Weinheimer, Isabel; Mukasa, Settumba B.; Rubaihayo, Patrick R.; Valkonen, Jari P. T.
2013-01-01
Background The bipartite single-stranded RNA genome of Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus; Closteroviridae) encodes a Class 1 RNase III (RNase3), a putative hydrophobic protein (p7) and a 22-kDa protein (p22) from genes located in RNA1. RNase3 and p22 suppress RNA silencing, the basal antiviral defence mechanism in plants. RNase3 is sufficient to render sweetpotato (Ipomoea batatas) virus-susceptible and predisposes it to development of severe diseases following infection with unrelated virus. The incidence, strains and gene content of SPCSV infecting wild plant species have not been studied. Methodology/Principal Findings Thirty SPCSV isolates were characterized from 10 wild Ipomoea species, Hewittia sublobata or Lepistemon owariensis (family Convolvulaceae) in Uganda and compared with 34 local SPCSV isolates infecting sweetpotatoes. All isolates belonged to the East African (EA) strain of SPCSV and contained RNase3 and p7, but p22 was not detected in six isolates. The three genes showed only limited genetic variability and the proteins were under purifying selection. SPCSV isolates lacking p22 synergized with Sweet potato feathery mottle virus (SPFMV, genus potyvirus; Potyviridae) and caused severe symptoms in co-infected sweetpotato plants. One SPCSV isolate enhanced accumulation of SPFMV, but no severe symptoms developed. A new whitefly-transmitted virus (KML33b) encoding an RNase3 homolog (<56% identity to SPCSV RNase3) able to suppresses sense-mediated RNA silencing was detected in I. sinensis. Conclusions/Significance SPCSV isolates infecting wild species and sweetpotato in Uganda were genetically undifferentiated, suggesting inter-species transmission of SPCSV. Most isolates in Uganda contained p22, unlike SPCSV isolates characterized from other countries and continents. Enhanced accumulation of SPFMV and increased disease severity were found to be uncoupled phenotypic outcomes of RNase3-mediated viral synergism in sweetpotato. A second virus encoding an RNase3-like RNA silencing suppressor was detected. Overall, results provided many novel and important insights into evolutionary biology of SPCSV. PMID:24278443
Cosson, Patrick; Sofer, Luc; Schurdi-Levraud, Valérie
2010-01-01
Restriction of long distance movement of several potyviruses in Arabidopsis thaliana is controlled by at least three dominant restricted TEV movement (RTM) genes, named RTM1, RTM2 and RTM3 and acts as a non-conventional resistance. RTM1 encodes a protein belonging to the jacalin family and RTM2 encodes a protein which has similarities to small heat shock proteins. The recent cloning of RTM3 which encodes a protein belonging to an unknown protein family of 29 members that has a meprin and TRAF homology (MATH) domain in its N-terminal region and a coiled-coil (CC) domain at its C-terminal end is an important breakthrough for a better understanding of this resistance process. Not only the third gene involved in this resistance has been identified and has allowed revealing a new gene family in plant but the discovery that the RTM3 protein interacts directly with RTM1 strongly suggests that the RTM proteins form a multimeric complex. However, these data also highlight striking similarities of the RTM resistance with the well known R-gene mediated resistance. PMID:20930558
Guo, Deyin; Spetz, Carl; Saarma, Mart; Valkonen, Jari P T
2003-05-01
Potyviral helper-component proteinase (HCpro) is a multifunctional protein exerting its cellular functions in interaction with putative host proteins. In this study, cellular protein partners of the HCpro encoded by Potato virus A (PVA) (genus Potyvirus) were screened in a potato leaf cDNA library using a yeast two-hybrid system. Two cellular proteins were obtained that interact specifically with PVA HCpro in yeast and in the two in vitro binding assays used. Both proteins are encoded by single-copy genes in the potato genome. Analysis of the deduced amino acid sequences revealed that one (HIP1) of the two HCpro interactors is a novel RING finger protein. The sequence of the other protein (HIP2) showed no resemblance to the protein sequences available from databanks and has known biological functions.
Bai, Xingwen; Bao, Huifang; Li, Pinghua; Wei, Wei; Zhang, Meng; Sun, Pu; Cao, Yimei; Lu, Zengjun; Fu, Yuanfang; Xie, Baoxia; Chen, Yingli; Li, Dong; Luo, Jianxun; Liu, Zaixin
2014-07-24
Some cell-adapted strains of foot-and-mouth disease virus (FMDV) can utilize heparan sulfate (HS) as a receptor to facilitate viral infection in cultured cells. A number of independent sites on the capsid that might be involved in FMDV-HS interaction have been studied. However, the previously reported residues do not adequately explain HS-dependent infection of two cell-adapted PanAsia-1 strains (O/Tibet/CHA/6/99tc and O/Fujian/CHA/9/99tc) of FMDV serotype O. To identify the molecular determinant(s) for the interaction of O/Tibet/CHA/6/99tc and O/Fujian/CHA/9/99tc with HS receptor, several chimeric viruses and site-directed mutants were generated by using an infectious cDNA of a non-HS-utilizing rescued virus (Cathay topotype) as the genomic backbone. Phenotypic properties of these viruses were determined by plaque assays and virus adsorption and penetration assays in cultured cells. Only two of the rescued viruses encoding VP0 of O/Tibet/CHA/6/99tc or VP1 of O/Fujian/CHA/9/99tc formed plaques on wild-type Chinese hamster ovary (WT-CHO; HS+) cells, but not on HS-negative pgsD-677 cells. The formation of plaques by these two chimeric viruses on WT-CHO cells could be abolished by the introduction of single amino acid mutations Gln-2080 → Leu in VP2 of O/Tibet/CHA/6/99tc and Lys-1083 → Glu in VP1 of O/Fujian/CHA/9/99tc, respectively. Nonetheless, the introduced mutation Leu-2080 → Gln in VP2 of O/Fujian/CHA/9/99tc for the construction of expectant recombinant plasmid led to non-infectious progeny virus in baby hamster kidney 21 (BHK-21) cells, and the site-directed mutant encoding Glu-1083 → Lys in VP1 of O/Tibet/CHA/6/99tc did not acquire the ability to produce plaques on WT-CHO cells. Significant differences in the inhibition of the infectivity of four HS-utilizing viruses by heparin and RGD-containing peptide were observed in BHK-21 cells. Interestingly, the chimeric virus encoding VP0 of O/Fujian/CHA/9/99tc, and the site-directed mutant encoding Gln-2080 → Leu in VP2 of O/Tibet/CHA/6/99tc could bind to HS, but there was no expression of the 3A protein of these two viruses in WT-CHO cells. The results suggest that the cooperation of certain specific amino acid residues in the capsid proteins of these two cell-adapted PanAsia-1 strains is essential for viral infectivity, the heparin affinity and the capability on FMDV-HS interaction.
2014-01-01
Background Some cell-adapted strains of foot-and-mouth disease virus (FMDV) can utilize heparan sulfate (HS) as a receptor to facilitate viral infection in cultured cells. A number of independent sites on the capsid that might be involved in FMDV-HS interaction have been studied. However, the previously reported residues do not adequately explain HS-dependent infection of two cell-adapted PanAsia-1 strains (O/Tibet/CHA/6/99tc and O/Fujian/CHA/9/99tc) of FMDV serotype O. To identify the molecular determinant(s) for the interaction of O/Tibet/CHA/6/99tc and O/Fujian/CHA/9/99tc with HS receptor, several chimeric viruses and site-directed mutants were generated by using an infectious cDNA of a non-HS-utilizing rescued virus (Cathay topotype) as the genomic backbone. Phenotypic properties of these viruses were determined by plaque assays and virus adsorption and penetration assays in cultured cells. Results Only two of the rescued viruses encoding VP0 of O/Tibet/CHA/6/99tc or VP1 of O/Fujian/CHA/9/99tc formed plaques on wild-type Chinese hamster ovary (WT-CHO; HS+) cells, but not on HS-negative pgsD-677 cells. The formation of plaques by these two chimeric viruses on WT-CHO cells could be abolished by the introduction of single amino acid mutations Gln-2080 → Leu in VP2 of O/Tibet/CHA/6/99tc and Lys-1083 → Glu in VP1 of O/Fujian/CHA/9/99tc, respectively. Nonetheless, the introduced mutation Leu-2080 → Gln in VP2 of O/Fujian/CHA/9/99tc for the construction of expectant recombinant plasmid led to non-infectious progeny virus in baby hamster kidney 21 (BHK-21) cells, and the site-directed mutant encoding Glu-1083 → Lys in VP1 of O/Tibet/CHA/6/99tc did not acquire the ability to produce plaques on WT-CHO cells. Significant differences in the inhibition of the infectivity of four HS-utilizing viruses by heparin and RGD-containing peptide were observed in BHK-21 cells. Interestingly, the chimeric virus encoding VP0 of O/Fujian/CHA/9/99tc, and the site-directed mutant encoding Gln-2080 → Leu in VP2 of O/Tibet/CHA/6/99tc could bind to HS, but there was no expression of the 3A protein of these two viruses in WT-CHO cells. Conclusion The results suggest that the cooperation of certain specific amino acid residues in the capsid proteins of these two cell-adapted PanAsia-1 strains is essential for viral infectivity, the heparin affinity and the capability on FMDV-HS interaction. PMID:25056022
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina, V.; Sudarshana, M.R.; Tian, T.
2005-03-15
Cytological, immunological, and mutagenesis approaches were used to identify the viral factors associated with the formation of plasmalemma deposits (PLDs) in whole plants and protoplasts infected by Lettuce infectious yellows virus (LIYV). Transmission electron microscopy and immunogold labeling using polyclonal antibodies to four of the five LIYV RNA 2-encoded large proteins, capsid protein (CP), minor capsid protein (CPm), HSP70 homolog (HSP70h), and P59, showed specific labeling of LIYV virions or virion aggregates around the vesiculated membranous inclusions, but not PLDs in LIYV-infected Nicotiana benthamiana, Nicotiana clevelandii, Lactuca sativa, and Chenopodium murale plants, and Nicotiana tabacum protoplasts. In contrast, antibodies tomore » the RNA 2-encoded P26 showed specific labeling of PLDs but not virions in both LIYV-infected plants and protoplasts. Virion-like particles (VLPs) were seen in protoplasts infected by all LIYV RNA 2 mutants except for the CP (major capsid protein) mutant. PLDs were more difficult to find in protoplasts, but were seen in protoplasts infected by the CP and CPm mutants, but not in protoplasts infected by the P26, HSP70h, or P59 mutants. Interestingly, although the CPm mutant showed VLPs and PLDs, the PLDs did not show associated virions/virion-like particles as was always observed for PLDs seen in protoplasts infected by wild-type LIYV. Immunoblot analyses performed on purified LIYV virions showed that P26 was not detected with purified virions, but was detected in the cell wall, 1000 g and 30,000 g pellet fractions of LIYV-infected plants. These data suggest that P26 is associated with the LIYV-induced PLDs, and in contrast to the other RNA 2-encoded large proteins, P26 is not a virion protein.« less
Reverse genetics studies on the filamentous morphology of influenza A virus.
Bourmakina, Svetlana V; García-Sastre, Adolfo
2003-03-01
We have investigated the genetic determinants responsible for the filamentous morphology of influenza A viruses, a property characteristic of primary virus isolates. A plasmid-based reverse genetics system was used to transfer the M segment of influenza A/Udorn/72 (H3N2) virus into influenza A/WSN/33 (H1N1) virus. While WSN virions display spherical morphology, recombinant WSN-Mud virus acquired the ability of the parental Udorn strain to form filamentous virus particles. This was determined by immunofluorescence studies in infected MDCK cells and by electron microscopy of purified virus particles. To determine the gene product within the M segment responsible for filamentous virus morphology, we generated four recombinant viruses carrying different sets of M1 and M2 genes from WSN or Udorn strains in a WSN background. These studies revealed that the M1 gene of Udorn, independently of the origin of the M2 gene, conferred filamentous budding properties and filamentous virus morphology to the recombinant viruses. We also constructed two WSN viruses encoding chimeric M1 proteins containing the amino-terminal 1-162 amino acids or the carboxy-terminal 163-252 amino acids of the Udorn M1 protein. Neither of these two viruses acquired filamentous phenotypes, indicating that both amino- and carboxy-terminal domains of the M1 protein contribute to filamentous virus morphology. We next rescued seven mutant WSN-M1ud viruses containing Udorn M1 proteins carrying single amino acid substitutions corresponding to the seven amino acid differences with the M1 protein of WSN virus. Characterization of these recombinant viruses revealed that amino acid residues 95 and 204 are critical in determining filamentous virus particle formation.
African Swine Fever Virus pB119L Protein Is a Flavin Adenine Dinucleotide-Linked Sulfhydryl Oxidase
Rodríguez, Irene; Redrejo-Rodríguez, Modesto; Rodríguez, Javier M.; Alejo, Alí; Salas, José; Salas, María L.
2006-01-01
Protein pB119L of African swine fever virus belongs to the Erv1p/Alrp family of sulfhydryl oxidases and has been described as a late nonstructural protein required for correct virus assembly. To further our knowledge of the function of protein pB119L during the virus life cycle, we have investigated whether this protein possesses sulfhydryl oxidase activity, using a purified recombinant protein. We show that the purified protein contains bound flavin adenine dinucleotide and is capable of catalyzing the formation of disulfide bonds both in a protein substrate and in the small molecule dithiothreitol, the catalytic activity being comparable to that of the Erv1p protein. Furthermore, protein pB119L contains the cysteines of its active-site motif CXXC, predominantly in an oxidized state, and forms noncovalently bound dimers in infected cells. We also show in coimmunoprecipitation experiments that protein pB119L interacts with the viral protein pA151R, which contains a CXXC motif similar to that present in thioredoxins. Protein pA151R, in turn, was found to interact with the viral structural protein pE248R, which contains disulfide bridges and belongs to a class of myristoylated proteins related to vaccinia virus L1R, one of the substrates of the redox pathway encoded by this virus. These results suggest the existence in African swine fever virus of a system for the formation of disulfide bonds constituted at least by proteins pB119L and pA151R and identify protein pE248R as a possible final substrate of this pathway. PMID:16537584
African swine fever virus pB119L protein is a flavin adenine dinucleotide-linked sulfhydryl oxidase.
Rodríguez, Irene; Redrejo-Rodríguez, Modesto; Rodríguez, Javier M; Alejo, Alí; Salas, José; Salas, María L
2006-04-01
Protein pB119L of African swine fever virus belongs to the Erv1p/Alrp family of sulfhydryl oxidases and has been described as a late nonstructural protein required for correct virus assembly. To further our knowledge of the function of protein pB119L during the virus life cycle, we have investigated whether this protein possesses sulfhydryl oxidase activity, using a purified recombinant protein. We show that the purified protein contains bound flavin adenine dinucleotide and is capable of catalyzing the formation of disulfide bonds both in a protein substrate and in the small molecule dithiothreitol, the catalytic activity being comparable to that of the Erv1p protein. Furthermore, protein pB119L contains the cysteines of its active-site motif CXXC, predominantly in an oxidized state, and forms noncovalently bound dimers in infected cells. We also show in coimmunoprecipitation experiments that protein pB119L interacts with the viral protein pA151R, which contains a CXXC motif similar to that present in thioredoxins. Protein pA151R, in turn, was found to interact with the viral structural protein pE248R, which contains disulfide bridges and belongs to a class of myristoylated proteins related to vaccinia virus L1R, one of the substrates of the redox pathway encoded by this virus. These results suggest the existence in African swine fever virus of a system for the formation of disulfide bonds constituted at least by proteins pB119L and pA151R and identify protein pE248R as a possible final substrate of this pathway.
Deep sequencing of foot-and-mouth disease virus reveals RNA sequences involved in genome packaging.
Logan, Grace; Newman, Joseph; Wright, Caroline F; Lasecka-Dykes, Lidia; Haydon, Daniel T; Cottam, Eleanor M; Tuthill, Tobias J
2017-10-18
Non-enveloped viruses protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. Packaging and capsid assembly in RNA viruses can involve interactions between capsid proteins and secondary structures in the viral genome as exemplified by the RNA bacteriophage MS2 and as proposed for other RNA viruses of plants, animals and human. In the picornavirus family of non-enveloped RNA viruses, the requirements for genome packaging remain poorly understood. Here we show a novel and simple approach to identify predicted RNA secondary structures involved in genome packaging in the picornavirus foot-and-mouth disease virus (FMDV). By interrogating deep sequencing data generated from both packaged and unpackaged populations of RNA we have determined multiple regions of the genome with constrained variation in the packaged population. Predicted secondary structures of these regions revealed stem loops with conservation of structure and a common motif at the loop. Disruption of these features resulted in attenuation of virus growth in cell culture due to a reduction in assembly of mature virions. This study provides evidence for the involvement of predicted RNA structures in picornavirus packaging and offers a readily transferable methodology for identifying packaging requirements in many other viruses. Importance In order to transmit their genetic material to a new host, non-enveloped viruses must protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. For many non-enveloped RNA viruses the requirements for this critical part of the viral life cycle remain poorly understood. We have identified RNA sequences involved in genome packaging of the picornavirus foot-and-mouth disease virus. This virus causes an economically devastating disease of livestock affecting both the developed and developing world. The experimental methods developed to carry out this work are novel, simple and transferable to the study of packaging signals in other RNA viruses. Improved understanding of RNA packaging may lead to novel vaccine approaches or targets for antiviral drugs with broad spectrum activity. Copyright © 2017 Logan et al.
Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome
NASA Astrophysics Data System (ADS)
Lu, Rui; Folimonov, Alexey; Shintaku, Michael; Li, Wan-Xiang; Falk, Bryce W.; Dawson, William O.; Ding, Shou-Wei
2004-11-01
Viral infection in both plant and invertebrate hosts requires a virus-encoded function to block the RNA silencing antiviral defense. Here, we report the identification and characterization of three distinct suppressors of RNA silencing encoded by the 20-kb plus-strand RNA genome of citrus tristeza virus (CTV). When introduced by genetic crosses into plants carrying a silencing transgene, both p20 and p23, but not coat protein (CP), restored expression of the transgene. Although none of the CTV proteins prevented DNA methylation of the transgene, export of the silencing signal (capable of mediating intercellular silencing spread) was detected only from the F1 plants expressing p23 and not from the CP- or p20-expressing F1 plants, demonstrating suppression of intercellular silencing by CP and p20 but not by p23. Thus, intracellular and intercellular silencing are each targeted by a CTV protein, whereas the third, p20, inhibits silencing at both levels. Notably, CP suppresses intercellular silencing without interfering with intracellular silencing. The novel property of CP suggests a mechanism distinct to p20 and all of the other viral suppressors known to interfere with intercellular silencing and that this class of viral suppressors may not be consistently identified by Agrobacterium coinfiltration because it also induces RNA silencing against the infiltrated suppressor transgene. Our analyses reveal a sophisticated viral counter-defense strategy that targets the silencing antiviral pathway at multiple steps and may be essential for protecting CTV with such a large RNA genome from antiviral silencing in the perennial tree host. RNA interference | citrus tristeza virus | virus synergy | antiviral immunity
[The development of therapeutic vaccine for hepatitis C virus].
Kimura, Kiminori; Kohara, Michinori
2012-10-01
Chronic hepatitis C caused by infection with the hepatitis C virus(HCV)is a global health problem. HCV causes persistent infection that can lead to chronic liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The therapeutic efficacy of antiviral drugs is not optimal in patients with chronic infection; furthermore, an effective vaccine has not yet been developed. To design an effective HCV vaccine, generation of a convenient animal model of HCV infection is necessary. Recently, we used the Cre/loxP switching system to generate an immunocompetent mouse model of HCV expression, thereby enabling the study of host immune responses against HCV proteins. At present vaccine has not yet been shown to be therapeutically effective against chronic HCV infection. We examined the therapeutic effects of a recombinant vaccinia virus(rVV)encoding HCV protein in a mouse model. we generated rVVs for 3 different HCV proteins and found that one of the recombinant viruses encoding a nonstructural protein(rVV-N25)resolved pathological chronic hepatitis C symptoms in the liver. We propose the possibility that rVV-N25 immunization has the potential for development of an effective therapeutic vaccine for HCV induced chronic hepatitis. The utilization of the therapeutic vaccine can protect progress to chronic hepatitis, and as a consequence, leads to eradication of hepatocellular carcinoma. In this paper, we summarized our current study for HCV therapeutic vaccine and review the vaccine development to date.
Goh, C J; Park, D; Lee, J S; Sebastiani, F; Hahn, Y
2018-01-01
Amalgaviridae is a family of double-stranded, monosegmented RNA viruses that are associated with plants, fungi, microsporidians, and animals. A sequence contig derived from the transcriptome of a eudicot, Cistus incanus (the family Cistaceae; commonly known as hoary rockrose), was identified as the genome sequence of a novel plant RNA virus and named Cistus incanus RNA virus 1 (CiRV1). Sequence comparison and phylogenetic analysis indicated that CiRV1 is a novel species of the genus Amalgavirus in the family Amalgaviridae. The CiRV1 genome contig has two overlapping open reading frames (ORFs). ORF1 encodes a putative replication factory matrix-like protein, while ORF2 encodes a RNA-dependent RNA polymerase (RdRp) domain. An ORF1+2 fusion protein, which functions in viral RNA replication, is produced by a +1 programmed ribosomal frameshifting (PRF) mechanism. A +1 PRF motif UUU_CGU, which matches the conserved amalgavirus +1 PRF consensus sequence UUU_CGN, was found at the boundary of CiRV1 ORF1 and ORF2. Comparison of 25 amalgavirus ORF1+2 fusion proteins revealed that only three different positions within a 13-amino acid segment were recurrently used at the boundary, possibly being selected so as not to interfere with correct folding and function of the fusion protein. CiRV1 is the first virus found to be associated with the Cistus species and may be useful for studying amalgaviruses.
Nikkels, A F; Debrus, S; Sadzot-Delvaux, C; Piette, J; Rentier, B; Piérard, G E
1995-12-01
Early and specific recognition of varicella zoster virus (VZV) infection is of vital concern in immunocompromised patients. The aim of this study was to compare the diagnostic accuracy of histochemical and immunohistochemical identification of the VZV ORF63 encoded protein (IE63) and of the VZV late protein gE on smears and formalin-fixed paraffin-embedded skin sections taken from lesions clinically diagnosed as varicella (n = 15) and herpes zoster (n = 51). Microscopic examinations of Tzanck smears and skin sections yielded a diagnostic accuracy of Herpesviridae infections in 66.7% (10/15) and 92.3% (12/13) of varicella, and 74.4% (29/39) and 87.8% (43/49) of herpes zoster, respectively. Immunohistochemistry applied to varicella provided a type-specific virus diagnostic accuracy of 86.7% (13/15; IE63) and 100% (15/15; gE) on smears, and of 92.3% for both VZV proteins on skin sections. In herpes zoster, the diagnostic accuracy of immunohistochemistry reached 92.3% (36/39; IE63) and 94.9% (37/39; gE) on smears, and 91.7% (44/48; IE63) and 91.8% (45/49; gE) on skin sections. These findings indicate that the immunohistochemical detection of IE63 and gE on both smears and skin sections yields a higher specificity and sensitivity than standard microscopic assessments.
Goz, Eli; Zafrir, Zohar; Tuller, Tamir
2018-04-30
Understanding how viruses co-evolve with their hosts and adapt various genomic level strategies in order to ensure their fitness may have essential implications in unveiling the secrets of viral evolution, and in developing new vaccines and therapeutic approaches. Here, based on a novel genomic analysis of 2,625 different viruses and 439 corresponding host organisms, we provide evidence of universal evolutionary selection for high dimensional 'silent' patterns of information hidden in the redundancy of viral genetic code. Our model suggests that long substrings of nucleotides in the coding regions of viruses from all classes, often also repeat in the corresponding viral hosts from all domains of life. Selection for these substrings cannot be explained only by such phenomena as codon usage bias, horizontal gene transfer, and the encoded proteins. Genes encoding structural proteins responsible for building the core of the viral particles were found to include more host-repeating substrings, and these substrings tend to appear in the middle parts of the viral coding regions. In addition, in human viruses these substrings tend to be enriched with motives related to transcription factors and RNA binding proteins. The host-repeating substrings are possibly related to the evolutionary pressure on the viruses to effectively interact with host's intracellular factors and to efficiently escape from the host's immune system. tamirtul@post.tau.ac.il (TT). Supplementary data are available at Bioinformatics online.
Johnson, Karyn N.; Zeddam, Jean-Louis; Ball, L. Andrew
2000-01-01
Pariacoto virus (PaV) was recently isolated in Peru from the Southern armyworm (Spodoptera eridania). PaV particles are isometric, nonenveloped, and about 30 nm in diameter. The virus has a bipartite RNA genome and a single major capsid protein with a molecular mass of 39.0 kDa, features that support its classification as a Nodavirus. As such, PaV is the first Alphanodavirus to have been isolated from outside Australasia. Here we report that PaV replicates in wax moth larvae and that PaV genomic RNAs replicate when transfected into cultured baby hamster kidney cells. The complete nucleotide sequences of both segments of the bipartite RNA genome were determined. The larger genome segment, RNA1, is 3,011 nucleotides long and contains a 973-amino-acid open reading frame (ORF) encoding protein A, the viral contribution to the RNA replicase. During replication, a 414-nucleotide long subgenomic RNA (RNA3) is synthesized which is coterminal with the 3′ end of RNA1. RNA3 contains a small ORF which could encode a protein of 90 amino acids similar to the B2 protein of other alphanodaviruses. RNA2 contains 1,311 nucleotides and encodes the 401 amino acids of the capsid protein precursor α. The amino acid sequences of the PaV capsid protein and the replicase subunit share 41 and 26% identity with homologous proteins of Flock house virus, the best characterized of the alphanodaviruses. These and other sequence comparisons indicate that PaV is evolutionarily the most distant of the alphanodaviruses described to date, consistent with its novel geographic origin. Although the PaV capsid precursor is cleaved into the two mature capsid proteins β and γ, the amino acid sequence at the cleavage site, which is Asn/Ala in all other alphanodaviruses, is Asn/Ser in PaV. To facilitate the investigation of PaV replication in cultured cells, we constructed plasmids that transcribed full-length PaV RNAs with authentic 5′ and 3′ termini. Transcription of these plasmids in cells recreated the replication of PaV RNA1 and RNA2, synthesis of subgenomic RNA3, and translation of viral proteins A and α. PMID:10799587
Johnson, K N; Zeddam, J L; Ball, L A
2000-06-01
Pariacoto virus (PaV) was recently isolated in Peru from the Southern armyworm (Spodoptera eridania). PaV particles are isometric, nonenveloped, and about 30 nm in diameter. The virus has a bipartite RNA genome and a single major capsid protein with a molecular mass of 39.0 kDa, features that support its classification as a Nodavirus. As such, PaV is the first Alphanodavirus to have been isolated from outside Australasia. Here we report that PaV replicates in wax moth larvae and that PaV genomic RNAs replicate when transfected into cultured baby hamster kidney cells. The complete nucleotide sequences of both segments of the bipartite RNA genome were determined. The larger genome segment, RNA1, is 3,011 nucleotides long and contains a 973-amino-acid open reading frame (ORF) encoding protein A, the viral contribution to the RNA replicase. During replication, a 414-nucleotide long subgenomic RNA (RNA3) is synthesized which is coterminal with the 3' end of RNA1. RNA3 contains a small ORF which could encode a protein of 90 amino acids similar to the B2 protein of other alphanodaviruses. RNA2 contains 1,311 nucleotides and encodes the 401 amino acids of the capsid protein precursor alpha. The amino acid sequences of the PaV capsid protein and the replicase subunit share 41 and 26% identity with homologous proteins of Flock house virus, the best characterized of the alphanodaviruses. These and other sequence comparisons indicate that PaV is evolutionarily the most distant of the alphanodaviruses described to date, consistent with its novel geographic origin. Although the PaV capsid precursor is cleaved into the two mature capsid proteins beta and gamma, the amino acid sequence at the cleavage site, which is Asn/Ala in all other alphanodaviruses, is Asn/Ser in PaV. To facilitate the investigation of PaV replication in cultured cells, we constructed plasmids that transcribed full-length PaV RNAs with authentic 5' and 3' termini. Transcription of these plasmids in cells recreated the replication of PaV RNA1 and RNA2, synthesis of subgenomic RNA3, and translation of viral proteins A and alpha.
Sattler, Ursula; Khosravi, Mojtaba; Avila, Mislay; Pilo, Paola; Langedijk, Johannes P; Ader-Ebert, Nadine; Alves, Lisa A; Plattet, Philippe; Origgi, Francesco C
2014-07-01
The hemagglutinin (H) gene of canine distemper virus (CDV) encodes the receptor-binding protein. This protein, together with the fusion (F) protein, is pivotal for infectivity since it contributes to the fusion of the viral envelope with the host cell membrane. Of the two receptors currently known for CDV (nectin-4 and the signaling lymphocyte activation molecule [SLAM]), SLAM is considered the most relevant for host susceptibility. To investigate how evolution might have impacted the host-CDV interaction, we examined the functional properties of a series of missense single nucleotide polymorphisms (SNPs) naturally accumulating within the H-gene sequences during the transition between two distinct but related strains. The two strains, a wild-type strain and a consensus strain, were part of a single continental outbreak in European wildlife and occurred in distinct geographical areas 2 years apart. The deduced amino acid sequence of the two H genes differed at 5 residues. A panel of mutants carrying all the combinations of the SNPs was obtained by site-directed mutagenesis. The selected mutant, wild type, and consensus H proteins were functionally evaluated according to their surface expression, SLAM binding, fusion protein interaction, and cell fusion efficiencies. The results highlight that the most detrimental functional effects are associated with specific sets of SNPs. Strikingly, an efficient compensational system driven by additional SNPs appears to come into play, virtually neutralizing the negative functional effects. This system seems to contribute to the maintenance of the tightly regulated function of the H-gene-encoded attachment protein. Importance: To investigate how evolution might have impacted the host-canine distemper virus (CDV) interaction, we examined the functional properties of naturally occurring single nucleotide polymorphisms (SNPs) in the hemagglutinin gene of two related but distinct strains of CDV. The hemagglutinin gene encodes the attachment protein, which is pivotal for infection. Our results show that few SNPs have a relevant detrimental impact and they generally appear in specific combinations (molecular signatures). These drastic negative changes are neutralized by compensatory mutations, which contribute to maintenance of an overall constant bioactivity of the attachment protein. This compensational mechanism might reflect the reaction of the CDV machinery to the changes occurring in the virus following antigenic variations critical for virulence. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Rearrangement of Influenza Virus Spliced Segments for the Development of Live-Attenuated Vaccines
Nogales, Aitor; DeDiego, Marta L.; Topham, David J.
2016-01-01
ABSTRACT Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease which is most effectively prevented through vaccination. Segments 7 (M) and 8 (NS) of the influenza virus genome encode mRNA transcripts that are alternatively spliced to express two different viral proteins. This study describes the generation, using reverse genetics, of three different recombinant influenza A/Puerto Rico/8/1934 (PR8) H1N1 viruses containing M or NS viral segments individually or modified M or NS viral segments combined in which the overlapping open reading frames of matrix 1 (M1)/M2 for the modified M segment and the open reading frames of nonstructural protein 1 (NS1)/nuclear export protein (NEP) for the modified NS segment were split by using the porcine teschovirus 1 (PTV-1) 2A autoproteolytic cleavage site. Viruses with an M split segment were impaired in replication at nonpermissive high temperatures, whereas high viral titers could be obtained at permissive low temperatures (33°C). Furthermore, viruses containing the M split segment were highly attenuated in vivo, while they retained their immunogenicity and provided protection against a lethal challenge with wild-type PR8. These results indicate that influenza viruses can be effectively attenuated by the rearrangement of spliced segments and that such attenuated viruses represent an excellent option as safe, immunogenic, and protective live-attenuated vaccines. Moreover, this is the first time in which an influenza virus containing a restructured M segment has been described. Reorganization of the M segment to encode M1 and M2 from two separate, nonoverlapping, independent open reading frames represents a useful tool to independently study mutations in the M1 and M2 viral proteins without affecting the other viral M product. IMPORTANCE Vaccination represents our best therapeutic option against influenza viral infections. However, the efficacy of current influenza vaccines is suboptimal, and novel approaches are necessary for the prevention of disease caused by this important human respiratory pathogen. In this work, we describe a novel approach to generate safer and more efficient live-attenuated influenza virus vaccines (LAIVs) based on recombinant viruses whose genomes encode nonoverlapping and independent M1/M2 (split M segment [Ms]) or both M1/M2 and NS1/NEP (Ms and split NS segment [NSs]) open reading frames. Viruses containing a modified M segment were highly attenuated in mice but were able to confer, upon a single intranasal immunization, complete protection against a lethal homologous challenge with wild-type virus. Notably, the protection efficacy conferred by our viruses with split M segments was better than that conferred by the current temperature-sensitive LAIV. Altogether, these results open a new avenue for the development of safer and more protective LAIVs on the basis of the reorganization of spliced viral RNA segments in the genome. PMID:27122587
Molecular characterization of two prunus necrotic ringspot virus isolates from Canada.
Cui, Hongguang; Hong, Ni; Wang, Guoping; Wang, Aiming
2012-05-01
We determined the entire RNA1, 2 and 3 sequences of two prunus necrotic ringspot virus (PNRSV) isolates, Chr3 from cherry and Pch12 from peach, obtained from an orchard in the Niagara Fruit Belt, Canada. The RNA1, 2 and 3 of the two isolates share nucleotide sequence identities of 98.6%, 98.4% and 94.5%, respectively. Their RNA1- and 2-encoded amino acid sequences are about 98% identical to the corresponding sequences of a cherry isolate, CH57, the only other PNRSV isolate with complete RNA1 and 2 sequences available. Phylogenetic analysis of the coat protein and movement protein encoded by RNA3 of Pch12 and Chr3 and published PNRSV isolates indicated that Chr3 belongs to the PV96 group and Pch12 belongs to the PV32 group.
Bridgeman, Anne; Stevenson, Philip G.; Simas, J. Pedro; Efstathiou, Stacey
2001-01-01
Herpesviruses encode a variety of proteins with the potential to disrupt chemokine signaling, and hence immune organization. However, little is known of how these might function in vivo. The B cell–tropic murine gammaherpesvirus-68 (MHV-68) is related to the Kaposi's sarcoma–associated herpesvirus (KSHV), but whereas KSHV expresses small chemokine homologues, MHV-68 encodes a broad spectrum chemokine binding protein (M3). Here we have analyzed the effect on viral pathogenesis of a targeted disruption of the M3 gene. After intranasal infection, an M3 deficiency had surprisingly little effect on lytic cycle replication in the respiratory tract or the initial spread of virus to lymphoid tissues. However, the amplification of latently infected B cells in the spleen that normally drives MHV-68–induced infectious mononucleosis failed to occur. Thus, there was a marked reduction in latent virus recoverable by in vitro reactivation, latency-associated viral tRNA transcripts detectable by in situ hybridization, total viral DNA load, and virus-driven B cell activation. In vivo CD8+ T cell depletion largely reversed this deficiency, suggesting that the chemokine neutralization afforded by M3 may function to block effective CD8+ T cell recruitment into lymphoid tissue during the expansion of latently infected B cell numbers. In the absence of M3, MHV-68 was unable to establish a normal latent load. PMID:11489949
Pritham, Ellen J; Putliwala, Tasneem; Feschotte, Cédric
2007-04-01
We previously identified a group of atypical mobile elements designated Mavericks from the nematodes Caenorhabditis elegans and C. briggsae and the zebrafish Danio rerio. Here we present the results of comprehensive database searches of the genome sequences available, which reveal that Mavericks are widespread in invertebrates and non-mammalian vertebrates but show a patchy distribution in non-animal species, being present in the fungi Glomus intraradices and Phakopsora pachyrhizi and in several single-celled eukaryotes such as the ciliate Tetrahymena thermophila, the stramenopile Phytophthora infestans and the trichomonad Trichomonas vaginalis, but not detectable in plants. This distribution, together with comparative and phylogenetic analyses of Maverick-encoded proteins, is suggestive of an ancient origin of these elements in eukaryotes followed by lineage-specific losses and/or recurrent episodes of horizontal transmission. In addition, we report that Maverick elements have amplified recently to high copy numbers in T. vaginalis where they now occupy as much as 30% of the genome. Sequence analysis confirms that most Mavericks encode a retroviral-like integrase, but lack other open reading frames typically found in retroelements. Nevertheless, the length and conservation of the target site duplication created upon Maverick insertion (5- or 6-bp) is consistent with a role of the integrase-like protein in the integration of a double-stranded DNA transposition intermediate. Mavericks also display long terminal-inverted repeats but do not contain ORFs similar to proteins encoded by DNA transposons. Instead, Mavericks encode a conserved set of 5 to 9 genes (in addition to the integrase) that are predicted to encode proteins with homology to replication and packaging proteins of some bacteriophages and diverse eukaryotic double-stranded DNA viruses, including a DNA polymerase B homolog and putative capsid proteins. Based on these and other structural similarities, we speculate that Mavericks represent an evolutionary missing link between seemingly disparate invasive DNA elements that include bacteriophages, adenoviruses and eukaryotic linear plasmids.
RNA binding properties of the US11 protein from four primate simplexviruses.
Tohme, Sarah; Cukier, Cyprian D; Severini, Alberto
2011-11-03
The protein encoded by the Us11 gene of herpes simplex viruses is a dsRNA binding protein which inhibits protein kinase R activity, thereby preventing the interferon-induced shut down of protein synthesis following viral infection. Us11 protein is not essential for infectivity in vitro and in mice in herpes simplex virus type 1 (HSV1), however this virus has a second, and apparently more important, inhibitor of PKR activity, the γ134.5 protein. Recently sequenced simian simplexviruses SA8, HVP2 and B virus do not have an ORF corresponding to the γ134.5 protein, yet they have similar, or greater, infectivity as HSV1 and HSV2. We have expressed the US11 proteins of the simplexviruses HSV1, HSV2, HVP2 and B virus and measured their abilities to bind dsRNA, in order to investigate possible differences that could complement the absence of the γ134.5 protein. We employed a filter binding technique that allows binding of the Us11 protein under condition of excess dsRNA substrate and therefore a measurement of the true Kd value of Us11-dsRNA binding. The results show a Kd of binding in the range of 0.89 nM to 1.82 nM, with no significant difference among the four Us11 proteins.
RNA binding properties of the US11 protein from four primate simplexviruses
2011-01-01
Background The protein encoded by the Us11 gene of herpes simplex viruses is a dsRNA binding protein which inhibits protein kinase R activity, thereby preventing the interferon-induced shut down of protein synthesis following viral infection. Us11 protein is not essential for infectivity in vitro and in mice in herpes simplex virus type 1 (HSV1), however this virus has a second, and apparently more important, inhibitor of PKR activity, the γ134.5 protein. Recently sequenced simian simplexviruses SA8, HVP2 and B virus do not have an ORF corresponding to the γ134.5 protein, yet they have similar, or greater, infectivity as HSV1 and HSV2. Methods We have expressed the US11 proteins of the simplexviruses HSV1, HSV2, HVP2 and B virus and measured their abilities to bind dsRNA, in order to investigate possible differences that could complement the absence of the γ134.5 protein. We employed a filter binding technique that allows binding of the Us11 protein under condition of excess dsRNA substrate and therefore a measurement of the true Kd value of Us11-dsRNA binding. Results and Conclusions The results show a Kd of binding in the range of 0.89 nM to 1.82 nM, with no significant difference among the four Us11 proteins. PMID:22054255
Generation of henipavirus nucleocapsid proteins in yeast Saccharomyces cerevisiae.
Juozapaitis, Mindaugas; Serva, Andrius; Zvirbliene, Aurelija; Slibinskas, Rimantas; Staniulis, Juozas; Sasnauskas, Kestutis; Shiell, Brian J; Wang, Lin-Fa; Michalski, Wojtek P
2007-03-01
Hendra and Nipah viruses are newly emerged, zoonotic viruses and their genomes have nucleotide and predicted amino acid homologies placing them in the family Paramyxoviridae. Currently these viruses are classified in the new genus Henipavirus, within the subfamily Paramyxovirinae, family Paramyxoviridae. The genes encoding HeV and NiV nucleocapsid proteins were cloned into the yeast Saccharomyces cerevisiae expression vector pFGG3 under control of GAL7 promoter. A high level of expression of these proteins (18-20 mg l(-1) of yeast culture) was obtained. Mass spectrometric analysis confirmed the primary structure of both proteins with 92% sequence coverage obtained using MS/MS analysis. Electron microscopy demonstrated the assembly of typical herring-bone structures of purified recombinant nucleocapsid proteins, characteristic for other paramyxoviruses. The nucleocapsid proteins revealed stability in yeast and can be easily purified by cesium chloride gradient ultracentrifugation. HeV nucleocapsid protein was detected by sera derived from fruit bats, humans, horses infected with HeV, and NiV nucleocapsid protein was immunodetected with sera from, fruit bats, humans and pigs. The development of an efficient and cost-effective system for generation of henipavirus nucleocapsid proteins might help to improve reagents for diagnosis of viruses.
Various plus unique: Viral protein U as a plurifunctional protein for HIV-1 replication.
Soper, Andrew; Juarez-Fernandez, Guillermo; Aso, Hirofumi; Moriwaki, Miyu; Yamada, Eri; Nakano, Yusuke; Koyanagi, Yoshio; Sato, Kei
2017-04-01
Human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome, encodes four accessory genes, one of which is viral protein U (Vpu). Recently, the study of Vpu has been of great interest. For instance, various cellular proteins are degraded (e.g. CD4) and down-modulated (e.g. tetherin) by Vpu. Vpu also antagonizes the function of tetherin and inhibits NF-κB. Moreover, Vpu is a viroporin forming ion channels and may represent a promising target for anti-HIV-1 drugs. In this review, we summarize the domains/residues that are responsible for Vpu's functions, describe the current understanding of the role of Vpu in HIV-1-infected cells, and review the effect of Vpu on HIV-1 in replication and pathogenesis. Future investigations that simultaneously assess a combination of Vpu functions are required to clearly delineate the most important functions for viral replication. Impact statement Viral protein U (Vpu) is a unique protein encoded by human immunodeficiency virus type 1 (HIV-1) and related lentiviruses, playing multiple roles in viral replication and pathogenesis. In this review, we briefly summarize the most up-to-date knowledge of HIV-1 Vpu.
Impact of enhancin genes on potency of LdNPV in gypsy moth
Kelli Hoover; Jim McNeil; Alyssa Gendron; James. Slavicek
2011-01-01
Lymantria dispar nucleopolyhedrovirus (LdNPV) contains two enhancin genes (E1 and E2) encoding proteases that degrade key peritrophic matrix (PM) proteins, thereby promoting infection and mortality by the virus. In a previous study, gypsy moth larvae inoculated with LdNPV in which both E1 and E2 were deleted (double deletion virus) resulted in a non-...
Modeling of the Ebola Virus Delta Peptide Reveals a Potential Lytic Sequence Motif
Gallaher, William R.; Garry, Robert F.
2015-01-01
Filoviruses, such as Ebola and Marburg viruses, cause severe outbreaks of human infection, including the extensive epidemic of Ebola virus disease (EVD) in West Africa in 2014. In the course of examining mutations in the glycoprotein gene associated with 2014 Ebola virus (EBOV) sequences, a differential level of conservation was noted between the soluble form of glycoprotein (sGP) and the full length glycoprotein (GP), which are both encoded by the GP gene via RNA editing. In the region of the proteins encoded after the RNA editing site sGP was more conserved than the overlapping region of GP when compared to a distant outlier species, Tai Forest ebolavirus. Half of the amino acids comprising the “delta peptide”, a 40 amino acid carboxy-terminal fragment of sGP, were identical between otherwise widely divergent species. A lysine-rich amphipathic peptide motif was noted at the carboxyl terminus of delta peptide with high structural relatedness to the cytolytic peptide of the non-structural protein 4 (NSP4) of rotavirus. EBOV delta peptide is a candidate viroporin, a cationic pore-forming peptide, and may contribute to EBOV pathogenesis. PMID:25609303
Jurak, Igor; Silverstein, Leah B.; Sharma, Mayuri
2012-01-01
Intrinsic immunity is a first-line intracellular defense against virus infection, and viruses have evolved mechanisms to counteract it. During herpes simplex virus (HSV) infection, nuclear domain 10 (ND10) components localize adjacent to incoming viral genomes and generate a repressive environment for viral gene expression. Here, we found that the ND10 component, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) protein, is predicted to be a target of HSV-1 miR-H1 and HSV-2 miR-H6. These microRNAs (miRNAs) share a seed sequence and are abundant during lytic infection. Mimics of both miRNAs could deplete endogenous ATRX, and an miR-H1 mimic could repress the expression of a reporter linked to the 3′ untranslated region of ATRX mRNA, identifying a cellular mRNA targeted by an HSV miRNA. Interestingly, ATRX protein and its mRNA were depleted in cells lytically infected with HSV, and ATRX protein was also depleted in cells infected with human cytomegalovirus. However, infection with an HSV-1 mutant lacking miR-H1 still resulted in ATRX depletion. This depletion was sensitive to a proteasome inhibitor and was largely ablated by a deletion of the gene encoding the immediate-early ICP0 protein. Additionally, a deletion of the gene encoding the tegument protein Vhs ablated most of the depletion of ATRX mRNA. Thus, HSV is equipped with multiple mechanisms to limit the expression of ATRX. As ATRX is implicated in repression of lytic viral gene expression, our results suggest roles for these different mechanisms during various phases of HSV infection. PMID:22787211
Jurak, Igor; Silverstein, Leah B; Sharma, Mayuri; Coen, Donald M
2012-09-01
Intrinsic immunity is a first-line intracellular defense against virus infection, and viruses have evolved mechanisms to counteract it. During herpes simplex virus (HSV) infection, nuclear domain 10 (ND10) components localize adjacent to incoming viral genomes and generate a repressive environment for viral gene expression. Here, we found that the ND10 component, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) protein, is predicted to be a target of HSV-1 miR-H1 and HSV-2 miR-H6. These microRNAs (miRNAs) share a seed sequence and are abundant during lytic infection. Mimics of both miRNAs could deplete endogenous ATRX, and an miR-H1 mimic could repress the expression of a reporter linked to the 3' untranslated region of ATRX mRNA, identifying a cellular mRNA targeted by an HSV miRNA. Interestingly, ATRX protein and its mRNA were depleted in cells lytically infected with HSV, and ATRX protein was also depleted in cells infected with human cytomegalovirus. However, infection with an HSV-1 mutant lacking miR-H1 still resulted in ATRX depletion. This depletion was sensitive to a proteasome inhibitor and was largely ablated by a deletion of the gene encoding the immediate-early ICP0 protein. Additionally, a deletion of the gene encoding the tegument protein Vhs ablated most of the depletion of ATRX mRNA. Thus, HSV is equipped with multiple mechanisms to limit the expression of ATRX. As ATRX is implicated in repression of lytic viral gene expression, our results suggest roles for these different mechanisms during various phases of HSV infection.
Bharati, Kaushik; Appaiahgari, Mohan Babu; Vrati, Sudhanshu
2005-01-01
We have previously shown that immunization of mice with plasmid pMEa synthesizing Japanese encephalitis virus (JEV) envelope protein induced anti-JEV humoral and cellular immune responses. We now show that intra-muscular co-administration of mice with pMEa and pGM-CSF, encoding murine granulocyte-macrophage colony-stimulating factor or pIL-2, encoding murine interleukin-2 given 4 days after pMEa, augmented anti-JEV antibody titers. This did not enhance the level of protection in immunized mice against JEV. However, intra-dermal co-administration of pMEa and pGM-CSF in mice using the gene gun, enhanced anti-JEV antibody titers resulting in an increased level of protection in mice against lethal JEV challenge.
Rajsbaum, Ricardo; Albrecht, Randy A.; Wang, May K.; Maharaj, Natalya P.; Versteeg, Gijs A.; Nistal-Villán, Estanislao; García-Sastre, Adolfo; Gack, Michaela U.
2012-01-01
Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production. PMID:23209422
Rajsbaum, Ricardo; Albrecht, Randy A; Wang, May K; Maharaj, Natalya P; Versteeg, Gijs A; Nistal-Villán, Estanislao; García-Sastre, Adolfo; Gack, Michaela U
2012-01-01
Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.
Fu, Xiao-Zhe; Shi, Cun-Bin; Li, Ning-Qiu; Pan, Hou-Jun; Chang, Ou-Qin; Wu, Shu-Qin
2007-09-01
The major capsid protein of lymphocystis disease virus isolated from Rachycentron canadum (LCDV-rc) was amplified and analysed. The 457bp DNA core fragment was amplified with the degenerate primers designed according to the conserved sequences of MCP gene of iridoviruses, then the flaking sequences adjacent to the core region were amplified by inverse PCR, and the complete sequence was obtained by combining all of them. The open reading frame of the gene is 1380bp in length, encoding a putative protein of 459 aa with molecular weight 51.12 kD and pI 6.87. Constructing the phylogenetic tree for comparing the MCP amino acid of iridoviruses, the results indicated that LCDV-rc is most homologous to the other Lymphocystis viruses and all of them constitute a branch. Accordingly LCDV-rc is identified as Lymphocystivirus.
Recombinant soluble adenovirus receptor
Freimuth, Paul I.
2002-01-01
Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.
Herzog, Etienne; Guerra-Peraza, Orlene; Hohn, Thomas
2000-01-01
Rice tungro bacilliform virus (RTBV) is a plant pararetrovirus whose DNA genome contains four genes encoding three proteins and a large polyprotein. The function of most of the viral proteins is still unknown. To investigate the role of the gene II product (P2), we searched for interactions between this protein and other RTBV proteins. P2 was shown to interact with the coat protein (CP) domain of the viral gene III polyprotein (P3) both in the yeast two-hybrid system and in vitro. Domains involved in the P2-CP association have been identified and mapped on both proteins. To determine the importance of this interaction for viral multiplication, the infectivity of RTBV gene II mutants was investigated by agroinoculation of rice plants. The results showed that virus viability correlates with the ability of P2 to interact with the CP domain of P3. This study suggests that P2 could participate in RTBV capsid assembly. PMID:10666237
Millar, E L; Rennick, L J; Weissbrich, B; Schneider-Schaulies, J; Duprex, W P; Rima, B K
2016-01-04
Products expressed from the second (P/V/C) gene are important in replication and abrogating innate immune responses during acute measles virus (MV) infection. Thirteen clone sets were derived from the P/V/C genes of measles virus (MV) RNA extracted from brains of a unique collection of seven cases of subacute sclerosing panencephalitis (SSPE) caused by persistent MV in the central nervous system (CNS). Whether these functions are fully maintained when MV replicates in the CNS has not been previously determined. Co-transcriptional editing of the P mRNAs by non-template insertion of guanine (G) nucleotides, which generates mRNAs encoding the viral V protein, occurs much less frequently (9%) in the SSPE derived samples than during the acute infection (30-50%). Thus it is likely that less V protein, which is involved in combatting the innate immune response, is produced. The P genes in MV from SSPE cases were not altered by biased hypermutation but exhibited a high degree of variation within each case. Most but not all SSPE derived phospho-(P) proteins were functional in mini genome replication/transcription assays. An eight amino acid truncation of the carboxyl-terminus made the P protein non-functional while the insertion of an additional glycine residue by insertion of G nucleotides at the editing site had no effect on protein function. Copyright © 2015 Elsevier B.V. All rights reserved.
Tang, Qiannan; Wang, Xinlu; Gao, Guangxia
2017-01-15
Zinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses. There are two ZAP isoforms arising from alternative splicing, which differ only at the C termini. It was recently reported that the long isoform (ZAPL) promotes proteasomal degradation of influenza A virus (IAV) proteins PA and PB2 through the C-terminal poly(ADP-ribose) polymerase (PARP) domain, which is missing in the short form (ZAPS), and that this antiviral activity is antagonized by the viral protein PB1. Here, we report that ZAP inhibits IAV protein expression in a PARP domain-independent manner. Overexpression of ZAPS inhibited the expression of PA, PB2, and neuraminidase (NA), and downregulation of the endogenous ZAPS enhanced their expression. We show that ZAPS inhibited PB2 protein expression by reducing the encoding viral mRNA levels and repressing its translation. However, downregulation of ZAPS only modestly enhanced the early stage of viral replication. We provide evidence showing that the antiviral activity of ZAPS is antagonized by the viral protein NS1. A recombinant IAV carrying an NS1 mutant that lost the ZAPS-antagonizing activity replicated better in ZAPS-deficient cells. We further provide evidence suggesting that NS1 antagonizes ZAPS by inhibiting its binding to target mRNA. These results uncover a distinct mechanism underlying the interactions between ZAP and IAV. ZAP is a host antiviral factor that has been extensively reported to inhibit the replication of certain viruses by repressing the translation and promoting the degradation of the viral mRNAs. There are two ZAP isoforms, ZAPL and ZAPS. ZAPL was recently reported to promote IAV protein degradation through the PARP domain. Whether ZAPS, which lacks the PARP domain, inhibits IAV and the underlying mechanisms remained to be determined. Here, we show that ZAPS posttranscriptionally inhibits IAV protein expression. This antiviral activity of ZAP is antagonized by the viral protein NS1. The fact that ZAP uses two distinct mechanisms to inhibit IAV infection and that the virus evolved different antagonists suggests an important role of ZAP in the host effort to control IAV infection and the importance of the threat of ZAP to the virus. The results reported here help us to comprehensively understand the interactions between ZAP and IAV. Copyright © 2017 American Society for Microbiology.
Hepatitis E virus persists in the presence of a type III interferon response.
Yin, Xin; Li, Xinlei; Ambardekar, Charuta; Hu, Zhimin; Lhomme, Sébastien; Feng, Zongdi
2017-05-01
The RIG-I-like RNA helicase (RLR)-mediated interferon (IFN) response plays a pivotal role in the hepatic antiviral immunity. The hepatitis A virus (HAV) and the hepatitis C virus (HCV) counter this response by encoding a viral protease that cleaves the mitochondria antiviral signaling protein (MAVS), a common signaling adaptor for RLRs. However, a third hepatotropic RNA virus, the hepatitis E virus (HEV), does not appear to encode a functional protease yet persists in infected cells. We investigated HEV-induced IFN responses in human hepatoma cells and primary human hepatocytes. HEV infection resulted in persistent virus replication despite poor spread. This was companied by a type III IFN response that upregulated multiple IFN-stimulated genes (ISGs), but type I IFNs were barely detected. Blocking type III IFN production or signaling resulted in reduced ISG expression and enhanced HEV replication. Unlike HAV and HCV, HEV did not cleave MAVS; MAVS protein size, mitochondrial localization, and function remained unaltered in HEV-replicating cells. Depletion of MAVS or MDA5, and to a less extent RIG-I, also diminished IFN production and increased HEV replication. Furthermore, persistent activation of the JAK/STAT signaling rendered infected cells refractory to exogenous IFN treatment, and depletion of MAVS or the receptor for type III IFNs restored the IFN responsiveness. Collectively, these results indicate that unlike other hepatotropic RNA viruses, HEV does not target MAVS and its persistence is associated with continuous production of type III IFNs.
Structure and function of the Zika virus full-length NS5 protein
Zhao, Baoyu; Yi, Guanghui; Du, Fenglei; ...
2017-03-27
The recent outbreak of Zika virus (ZIKV) has infected over 1 million people in over 30 countries. ZIKV replicates its RNA genome using virally encoded replication proteins. Nonstructural protein 5 (NS5) contains a methyltransferase for RNA capping and a polymerase for viral RNA synthesis. Here we report the crystal structures of full-length NS5 and its polymerase domain at 3.0 Å resolution. The NS5 structure has striking similarities to the NS5 protein of the related Japanese encephalitis virus. The methyltransferase contains in-line pockets for substrate binding and the active site. Key residues in the polymerase are located in similar positions tomore » those of the initiation complex for the hepatitis C virus polymerase. The polymerase conformation is affected by the methyltransferase, which enables a more efficiently elongation of RNA synthesis in vitro. Altogether, our results will contribute to future studies on ZIKV infection and the development of inhibitors of ZIKV replication.« less
Yoneyama, T; Akatsuka, T; Miyamura, T
1988-08-01
The large BglII fragment (2.8 kilobases) of hepatitis B virus DNA including the transcription unit for the hepatitis B surface antigen (HBsAg) was inserted into a bovine papillomavirus vector containing the neomycin resistance gene. The recombinant DNA was transfected into mouse C127 cells. A stable transformed cell line (MS128) secreting a large amount of 22 nm HBsAg particles containing pre-S2 protein was established. The secreted HBsAg particles had the receptor for polymerized human serum albumin. Immunoprecipitation and Western blot analyses showed that HBsAg particles consisted of two major proteins of 22K and 26K encoded by the S gene and a minor protein of 35K encoded by the pre-S2 and S genes. Southern blot analysis revealed that the transfected plasmid was integrated into the host chromosomal DNA and that most of the plasmid sequences were present. These results suggest that the stable expression of the HBsAg in MS128 cells is related to the integrated state of the recombinant DNA.
Hirata, Hisae; Yamaji, Yasuyuki; Komatsu, Ken; Kagiwada, Satoshi; Oshima, Kenro; Okano, Yukari; Takahashi, Shuichiro; Ugaki, Masashi; Namba, Shigetou
2010-09-01
The first open-reading frame (ORF) of the genus Capillovirus encodes an apparently chimeric polyprotein containing conserved regions for replicase (Rep) and coat protein (CP), while other viruses in the family Flexiviridae have separate ORFs encoding these proteins. To investigate the role of the full-length ORF1 polyprotein of capillovirus, we generated truncation mutants of ORF1 of apple stem grooving virus by inserting a termination codon into the variable region located between the putative Rep- and CP-coding regions. These mutants were capable of systemic infection, although their pathogenicity was attenuated. In vitro translation of ORF1 produced both the full-length polyprotein and the smaller Rep protein. The results of in vivo reporter assays suggested that the mechanism of this early termination is a ribosomal -1 frame-shift occurring downstream from the conserved Rep domains. The mechanism of capillovirus gene expression and the very close evolutionary relationship between the genera Capillovirus and Trichovirus are discussed. Copyright (c) 2010. Published by Elsevier B.V.
Smirnova, Ekaterina; Firth, Andrew E; Miller, W Allen; Scheidecker, Danièle; Brault, Véronique; Reinbold, Catherine; Rakotondrafara, Aurélie M; Chung, Betty Y-W; Ziegler-Graff, Véronique
2015-05-01
Viruses in the family Luteoviridae have positive-sense RNA genomes of around 5.2 to 6.3 kb, and they are limited to the phloem in infected plants. The Luteovirus and Polerovirus genera include all but one virus in the Luteoviridae. They share a common gene block, which encodes the coat protein (ORF3), a movement protein (ORF4), and a carboxy-terminal extension to the coat protein (ORF5). These three proteins all have been reported to participate in the phloem-specific movement of the virus in plants. All three are translated from one subgenomic RNA, sgRNA1. Here, we report the discovery of a novel short ORF, termed ORF3a, encoded near the 5' end of sgRNA1. Initially, this ORF was predicted by statistical analysis of sequence variation in large sets of aligned viral sequences. ORF3a is positioned upstream of ORF3 and its translation initiates at a non-AUG codon. Functional analysis of the ORF3a protein, P3a, was conducted with Turnip yellows virus (TuYV), a polerovirus, for which translation of ORF3a begins at an ACG codon. ORF3a was translated from a transcript corresponding to sgRNA1 in vitro, and immunodetection assays confirmed expression of P3a in infected protoplasts and in agroinoculated plants. Mutations that prevent expression of P3a, or which overexpress P3a, did not affect TuYV replication in protoplasts or inoculated Arabidopsis thaliana leaves, but prevented virus systemic infection (long-distance movement) in plants. Expression of P3a from a separate viral or plasmid vector complemented movement of a TuYV mutant lacking ORF3a. Subcellular localization studies with fluorescent protein fusions revealed that P3a is targeted to the Golgi apparatus and plasmodesmata, supporting an essential role for P3a in viral movement.
Smirnova, Ekaterina; Firth, Andrew E.; Miller, W. Allen; Scheidecker, Danièle; Brault, Véronique; Reinbold, Catherine; Rakotondrafara, Aurélie M.; Chung, Betty Y.-W.; Ziegler-Graff, Véronique
2015-01-01
Viruses in the family Luteoviridae have positive-sense RNA genomes of around 5.2 to 6.3 kb, and they are limited to the phloem in infected plants. The Luteovirus and Polerovirus genera include all but one virus in the Luteoviridae. They share a common gene block, which encodes the coat protein (ORF3), a movement protein (ORF4), and a carboxy-terminal extension to the coat protein (ORF5). These three proteins all have been reported to participate in the phloem-specific movement of the virus in plants. All three are translated from one subgenomic RNA, sgRNA1. Here, we report the discovery of a novel short ORF, termed ORF3a, encoded near the 5’ end of sgRNA1. Initially, this ORF was predicted by statistical analysis of sequence variation in large sets of aligned viral sequences. ORF3a is positioned upstream of ORF3 and its translation initiates at a non-AUG codon. Functional analysis of the ORF3a protein, P3a, was conducted with Turnip yellows virus (TuYV), a polerovirus, for which translation of ORF3a begins at an ACG codon. ORF3a was translated from a transcript corresponding to sgRNA1 in vitro, and immunodetection assays confirmed expression of P3a in infected protoplasts and in agroinoculated plants. Mutations that prevent expression of P3a, or which overexpress P3a, did not affect TuYV replication in protoplasts or inoculated Arabidopsis thaliana leaves, but prevented virus systemic infection (long-distance movement) in plants. Expression of P3a from a separate viral or plasmid vector complemented movement of a TuYV mutant lacking ORF3a. Subcellular localization studies with fluorescent protein fusions revealed that P3a is targeted to the Golgi apparatus and plasmodesmata, supporting an essential role for P3a in viral movement. PMID:25946037
How Does Vaccinia Virus Interfere With Interferon?
Smith, Geoffrey L; Talbot-Cooper, Callum; Lu, Yongxu
2018-01-01
Interferons (IFNs) are secreted glycoproteins that are produced by cells in response to virus infection and other stimuli and induce an antiviral state in cells bearing IFN receptors. In this way, IFNs restrict virus replication and spread before an adaptive immune response is developed. Viruses are very sensitive to the effects of IFNs and consequently have evolved many strategies to interfere with interferon. This is particularly well illustrated by poxviruses, which have large dsDNA genomes and encode hundreds of proteins. Vaccinia virus is the prototypic poxvirus and expresses many proteins that interfere with IFN and are considered in this review. These proteins act either inside or outside the cell and within the cytoplasm or nucleus. They function by restricting the production of IFN by blocking the signaling pathways leading to transcription of IFN genes, stopping IFNs binding to their receptors, blocking IFN-induced signal transduction leading to expression of interferon-stimulated genes (ISGs), or inhibiting the antiviral activity of ISG products. © 2018 Elsevier Inc. All rights reserved.
Antigenic characterisation of yeast-expressed lyssavirus nucleoproteins.
Kucinskaite, Indre; Juozapaitis, Mindaugas; Serva, Andrius; Zvirbliene, Aurelija; Johnson, Nicholas; Staniulis, Juozas; Fooks, Anthony R; Müller, Thomas; Sasnauskas, Kestutis; Ulrich, Rainer G
2007-12-01
In Europe, three genotypes of the genus Lyssavirus, family Rhabdoviridae, are present, classical rabies virus (RABV, genotype 1), European bat lyssavirus type 1 (EBLV-1, genotype 5) and European bat lyssavirus type 2 (EBLV-2, genotype 6). The entire authentic nucleoprotein (N protein) encoding sequences of RABV (challenge virus standard, CVS, strain), EBLV-1 and EBLV-2 were expressed in yeast Saccharomyces cerevisiae at high level. Purification of recombinant N proteins by caesium chloride gradient centrifugation resulted in yields between 14-17, 25-29 and 18-20 mg/l of induced yeast culture for RABV-CVS, EBLV-1 and EBLV-2, respectively. The purified N proteins were evaluated by negative staining electron microscopy, which revealed the formation of nucleocapsid-like structures. The antigenic conformation of the N proteins was investigated for their reactivity with monoclonal antibodies (mAbs) directed against different lyssaviruses. The reactivity pattern of each mAb was virtually identical between immunofluorescence assay with virus-infected cells, and ELISA and dot blot assay using the corresponding recombinant N proteins. These observations lead us to conclude that yeast-expressed lyssavirus N proteins share antigenic properties with naturally expressed virus protein. These recombinant proteins have the potential for use as components of serological assays for lyssaviruses.
Dhar, Jayeeta; Barik, Sailen
2016-12-01
Pneumonia Virus of Mice (PVM) is the only virus that shares the Pneumovirus genus of the Paramyxoviridae family with Respiratory Syncytial Virus (RSV). A deadly mouse pathogen, PVM has the potential to serve as a robust animal model of RSV infection, since human RSV does not fully replicate the human pathology in mice. Like RSV, PVM also encodes two nonstructural proteins that have been implicated to suppress the IFN pathway, but surprisingly, they exhibit no sequence similarity with their RSV equivalents. The molecular mechanism of PVM NS function, therefore, remains unknown. Here, we show that recombinant PVM NS proteins degrade the mouse counterparts of the IFN pathway components. Proteasomal degradation appears to be mediated by ubiquitination promoted by PVM NS proteins. Interestingly, NS proteins of PVM lowered the levels of several ISG (IFN-stimulated gene) proteins as well. These results provide a molecular foundation for the mechanisms by which PVM efficiently subverts the IFN response of the murine cell. They also reveal that in spite of their high sequence dissimilarity, the two pneumoviral NS proteins are functionally and mechanistically similar.
[The true story and advantages of the famous Hepatitis B virus core particles: Outlook 2016].
Pumpens, P; Grens, E
2016-01-01
This review article is a continuation of the paper "Hepatitis B core particles as a universal display model: a structure-function basis for development" written by Pumpens P. and Grens E., ordered by Professor Lev Kisselev and published in FEBS Letters, 1999, 442, 1-6. The past 17 years have strengthened the paper's finding that the human hepatitis B virus core protein, along with other Hepadnaviridae family member core proteins, is a mysterious, multifunctional protein. The core gene of the Hepadnaviridae genome encodes five partially collinear proteins. The most important of these is the HBV core protein p21, or HBc. It can self-assemble by forming viral HBc particles, but also plays a crucial role in the regulation of viral replication. Since 1986, the HBc protein has been one of the first and the most successful tools of the virus-like particle (VLP) technology. Later, the woodchuck hepatitis virus core protein (WHc) was also used as a VLP carrier. The Hepadnaviridae core proteins remain favourite VLP candidates for the knowledge-based design of future vaccines, gene therapy vectors, specifically targeted nanocontainers, and other modern nanotechnological tools for prospective medical use.
Zhang, Jie; Pekosz, Andrew; Lamb, Robert A.
2000-01-01
Influenza viruses encoding hemagglutinin (HA) and neuraminidase (NA) glycoproteins with deletions in one or both cytoplasmic tails (HAt− or NAt−) have a reduced association with detergent-insoluble glycolipids (DIGs). Mutations which eliminated various combinations of the three palmitoylation sites in HA exhibited reduced amounts of DIG-associated HA in virus-infected cells. The influenza virus matrix (M1) protein was also found to be associated with DIGs, but this association was decreased in cells infected with HAt− or NAt− virus. Regardless of the amount of DIG-associated protein, the HA and NA glycoproteins were targeted primarily to the apical surface of virus-infected, polarized cells. The uncoupling of DIG association and apical transport was augmented by the observation that the influenza A virus M2 protein as well as the influenza C virus HA-esterase-fusion glycoprotein were not associated with DIGs but were apically targeted. The reduced DIG association of HAt− and NAt− is an intrinsic property of the glycoproteins, as similar reductions in DIG association were observed when the proteins were expressed from cDNA. Examination of purified virions indicated reduced amounts of DIG-associated lipids in the envelope of HAt− and NAt− viruses. The data indicate that deletion of both the HA and NA cytoplasmic tails results in reduced DIG association and changes in both virus polypeptide and lipid composition. PMID:10775599
2010-01-01
Background Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. Findings De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Conclusions Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein. PMID:20979600
Antonets, Denis V; Nepomnyashchikh, Tatyana S; Shchelkunov, Sergei N
2010-10-27
Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valles, Steven M., E-mail: Steven.Valles@ars.usda.go; Hashimoto, Yoshifumi
2009-06-05
We report the discovery of a new virus from the red imported fire ant, Solenopsis invicta. Solenopsis invicta virus 3 (SINV-3) represents the third virus discovered from this ant species using the metagenomics approach. The single (positive)-strand RNA, monopartite, bicistronic genome of SINV-3 was sequenced in entirety (GenBank accession number (FJ528584)), comprised of 10,386 nucleotides, and polyadenylated at the 3' terminus. This genome size was confirmed by Northern analysis. The genome revealed 2 large open reading frames (ORFs) in the sense orientation with an untranslated region (UTR) at each end and between the two ORFs. The 5' proximal ORF (ORFmore » 1) encoded a predicted protein of 299.1 kDa (2580 amino acids). The 3' proximal ORF (ORF 2) encoded a predicted protein of 73.2 kDa (651 amino acids). RNA-dependent RNA polymerase (RdRp), helicase, and protease domains were recognized in ORF 1. SDS-PAGE separation of purified SINV-3 particles yielded 2 bands (ostensibly capsid proteins) with a combined molecular mass of 77.3 kDa which was similar to the mass predicted by ORF 2 (73.2 kDa). Phylogenetic analysis of the conserved amino acid sequences containing domains I to VIII of the RdRp from dicistroviruses, iflaviruses, plant small RNA viruses, picornaviruses, and 4 unassigned positive-strand RNA viruses revealed a trichotomous phenogram with SINV-3 and Kelp fly virus comprising a unique cluster. Electron microscopic examination of negatively stained samples of SINV-3 revealed isometric particles with apparent projections and a diameter of 27.3 +- 1.3 nm. SINV-3 was successfully transmitted to uninfected workers by feeding. The minus (replicative) strand of SINV-3 was detected in worker ants indicating replication of the virus. The possibility of using SINV-3 as a microbial control agent for fire ants is discussed.« less
Ma, Dzwokai; George, Cyril X; Nomburg, Jason; Pfaller, Christian K; Cattaneo, Roberto; Samuel, Charles E
2017-12-13
Replication of negative-strand RNA viruses occurs in association with discrete cytoplasmic foci called inclusion bodies. Whereas inclusion bodies represent a prominent subcellular structure induced by viral infection, our knowledge of the cellular protein components involved in inclusion body formation and function is limited. Using measles virus-infected HeLa cells, we found that the WD repeat-containing protein 5 (WDR5), a subunit of histone H3 lysine 4 methyltransferases, was selectively recruited to virus-induced inclusion bodies. Furthermore, WDR5 was found in complexes containing viral proteins associated with RNA replication. WDR5 was not detected with mitochondria, stress granules, or other known secretory or endocytic compartments of infected cells. WDR5 deficiency decreased both viral protein production and infectious virus yields. Interferon production was modestly increased in WDR5 deficient cells. Thus, our study identifies WDR5 as a novel viral inclusion body-associated cellular protein and suggests a role for WDR5 in promoting viral replication. IMPORTANCE Measles virus is a human pathogen that remains a global concern with more than 100,000 measles-related deaths annually despite the availability of an effective vaccine. As measles continues to cause significant morbidity and mortality, understanding the virus-host interactions at the molecular level that affect virus replication efficiency is important for development and optimization of treatment procedures. Measles virus is an RNA virus that encodes six genes and replicates in the cytoplasm of infected cells in discrete cytoplasmic replication bodies, though little is known of the biochemical nature of these structures. Here we show that the cellular protein WDR5 is enriched in the cytoplasmic viral replication factories and enhances virus growth. WDR5-containing protein complex includes viral proteins responsible for viral RNA replication. Thus, we have identified WDR5 as a host factor that enhances the replication of measles virus. Copyright © 2017 American Society for Microbiology.
Canetta, Elisabetta; Kim, Sang Hyon; Kalinina, Natalia O; Shaw, Jane; Adya, Ashok K; Gillespie, Trudi; Brown, John W S; Taliansky, Michael
2008-02-29
Fibrillarin, one of the major proteins of the nucleolus, has methyltransferase activity directing 2'-O-ribose methylation of rRNA and snRNAs and is required for rRNA processing. The ability of the plant umbravirus, groundnut rosette virus, to move long distances through the phloem, the specialized plant vascular system, has been shown to strictly depend on the interaction of one of its proteins, the ORF3 protein (protein encoded by open reading frame 3), with fibrillarin. This interaction is essential for several stages in the groundnut rosette virus life cycle such as nucleolar import of the ORF3 protein via Cajal bodies, relocalization of some fibrillarin from the nucleolus to cytoplasm, and assembly of cytoplasmic umbraviral ribonucleoprotein particles that are themselves required for the long-distance spread of the virus and systemic infection. Here, using atomic force microscopy, we determine the architecture of these complexes as single-layered ringlike structures with a diameter of 18-22 nm and a height of 2.0+/-0.4 nm, which consist of several (n=6-8) distinct protein granules. We also estimate the molar ratio of fibrillarin to ORF3 protein in the complexes as approximately 1:1. Based on these data, we propose a model of the structural organization of fibrillarin-ORF3 protein complexes and discuss potential mechanistic and functional implications that may also apply to other viruses.
Ankyrin-repeat containing proteins of microbes: a conserved structure with functional diversity
Al-Khodor, Souhaila; Price, Christopher T.; Kalia, Awdhesh; Kwaik, Yousef Abu
2009-01-01
Summary The ankyrin repeat (ANK) is the most common protein-protein interaction motif in nature and predominantly found in eukaryotic proteins. The genome sequencing of various pathogenic or symbiotic bacteria and eukaryotic viruses identified numerous genes encoding ANK-containing proteins that were proposed to have been acquired from eukaryotes by horizontal gene transfer. However, the recent discovery of additional ANK-containing proteins encoded in the genomes of archaea and free-living bacteria suggests either a more ancient origin of the ANK motif or multiple convergent evolution events. Many bacterial pathogens employ various types of secretion systems to deliver ANK-containing proteins into eukaryotic cells where they mimic or manipulate various host functions. Understanding the molecular and biochemical functions of this family of proteins will enhance our understanding of important host-microbe interactions. PMID:19962898
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mushegian, Arcady R., E-mail: mushegian2@gmail.com; Elena, Santiago F., E-mail: sfelena@ibmcp.upv.es; The Santa Fe Institute, Santa Fe, NM 87501
Homologs of Tobacco mosaic virus 30K cell-to-cell movement protein are encoded by diverse plant viruses. Mechanisms of action and evolutionary origins of these proteins remain obscure. We expand the picture of conservation and evolution of the 30K proteins, producing sequence alignment of the 30K superfamily with the broadest phylogenetic coverage thus far and illuminating structural features of the core all-beta fold of these proteins. Integrated copies of pararetrovirus 30K movement genes are prevalent in euphyllophytes, with at least one copy intact in nearly every examined species, and mRNAs detected for most of them. Sequence analysis suggests repeated integrations, pseudogenizations, andmore » positive selection in those provirus genes. An unannotated 30K-superfamily gene in Arabidopsis thaliana genome is likely expressed as a fusion with the At1g37113 transcript. This molecular background of endopararetrovirus gene products in plants may change our view of virus infection and pathogenesis, and perhaps of cellular homeostasis in the hosts. - Highlights: • Sequence region shared by plant virus “30K” movement proteins has an all-beta fold. • Most euphyllophyte genomes contain integrated copies of pararetroviruses. • These integrated virus genomes often include intact movement protein genes. • Molecular evidence suggests that these “30K” genes may be selected for function.« less
Wang, Xianmiao; Li, Ying; Mao, Aiping; Li, Chao; Li, Yongkui; Tien, Po
2010-09-01
Viral RNAs produced during viral infection are recognized by the cytoplasmic RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). A central adapter protein downstream of RIG-I and MDA5 is the mitochondrial membrane protein virus-induced signaling adaptor (VISA), which mediates the induction of type I interferons (IFNs) through the activation of transcription factors such as nuclear factor-kappaB (NF-kappaB) and IFN-regulatory factor-3 (IRF3). Here we found that hepatitis B virus (HBV)-encoded X protein (HBx) acts as an inhibitor of virus-triggered IRF3 activation and IFN-beta induction. Reporter and plaque assays indicate that HBx inhibits signaling by components upstream but not downstream of VISA. Immunoprecipitation experiments indicate that HBx interacts with VISA and disrupts the association of VISA with its upstream and downstream components. These findings suggest that HBx acts as a suppressor of virus-triggered induction of type I IFNs, which explains the observation that HBV causes transient and chronic infection in hepatocytes but fails to activate the pattern recognition receptor-mediated IFN induction pathways.
Jimenez-Guardeño, Jose M; Regla-Nava, Jose A; Nieto-Torres, Jose L; DeDiego, Marta L; Castaño-Rodriguez, Carlos; Fernandez-Delgado, Raul; Perlman, Stanley; Enjuanes, Luis
2015-10-01
A SARS-CoV lacking the full-length E gene (SARS-CoV-∆E) was attenuated and an effective vaccine. Here, we show that this mutant virus regained fitness after serial passages in cell culture or in vivo, resulting in the partial duplication of the membrane gene or in the insertion of a new sequence in gene 8a, respectively. The chimeric proteins generated in cell culture increased virus fitness in vitro but remained attenuated in mice. In contrast, during SARS-CoV-∆E passage in mice, the virus incorporated a mutated variant of 8a protein, resulting in reversion to a virulent phenotype. When the full-length E protein was deleted or its PDZ-binding motif (PBM) was mutated, the revertant viruses either incorporated a novel chimeric protein with a PBM or restored the sequence of the PBM on the E protein, respectively. Similarly, after passage in mice, SARS-CoV-∆E protein 8a mutated, to now encode a PBM, and also regained virulence. These data indicated that the virus requires a PBM on a transmembrane protein to compensate for removal of this motif from the E protein. To increase the genetic stability of the vaccine candidate, we introduced small attenuating deletions in E gene that did not affect the endogenous PBM, preventing the incorporation of novel chimeric proteins in the virus genome. In addition, to increase vaccine biosafety, we introduced additional attenuating mutations into the nsp1 protein. Deletions in the carboxy-terminal region of nsp1 protein led to higher host interferon responses and virus attenuation. Recombinant viruses including attenuating mutations in E and nsp1 genes maintained their attenuation after passage in vitro and in vivo. Further, these viruses fully protected mice against challenge with the lethal parental virus, and are therefore safe and stable vaccine candidates for protection against SARS-CoV.
Nieto-Torres, Jose L.; DeDiego, Marta L.; Castaño-Rodriguez, Carlos; Fernandez-Delgado, Raul; Perlman, Stanley; Enjuanes, Luis
2015-01-01
A SARS-CoV lacking the full-length E gene (SARS-CoV-∆E) was attenuated and an effective vaccine. Here, we show that this mutant virus regained fitness after serial passages in cell culture or in vivo, resulting in the partial duplication of the membrane gene or in the insertion of a new sequence in gene 8a, respectively. The chimeric proteins generated in cell culture increased virus fitness in vitro but remained attenuated in mice. In contrast, during SARS-CoV-∆E passage in mice, the virus incorporated a mutated variant of 8a protein, resulting in reversion to a virulent phenotype. When the full-length E protein was deleted or its PDZ-binding motif (PBM) was mutated, the revertant viruses either incorporated a novel chimeric protein with a PBM or restored the sequence of the PBM on the E protein, respectively. Similarly, after passage in mice, SARS-CoV-∆E protein 8a mutated, to now encode a PBM, and also regained virulence. These data indicated that the virus requires a PBM on a transmembrane protein to compensate for removal of this motif from the E protein. To increase the genetic stability of the vaccine candidate, we introduced small attenuating deletions in E gene that did not affect the endogenous PBM, preventing the incorporation of novel chimeric proteins in the virus genome. In addition, to increase vaccine biosafety, we introduced additional attenuating mutations into the nsp1 protein. Deletions in the carboxy-terminal region of nsp1 protein led to higher host interferon responses and virus attenuation. Recombinant viruses including attenuating mutations in E and nsp1 genes maintained their attenuation after passage in vitro and in vivo. Further, these viruses fully protected mice against challenge with the lethal parental virus, and are therefore safe and stable vaccine candidates for protection against SARS-CoV. PMID:26513244
Hepatitis C virus core protein induces hepatic steatosis via Sirt1-dependent pathway.
Zhang, Chuanhai; Wang, Jingjing; Zhang, Hanlin; Liu, Shunai; Lee, Hyuek Jong; Jin, Wanzhu; Cheng, Jun
2018-05-01
Hepatic steatosis is a common feature of patients with chronic hepatitis C. Previous reports have shown that the overexpression of hepatitis C virus core-encoding sequences (hepatitis C virus genotypes 3a and 1b) significantly induces intracellular triglyceride accumulation. However, the underlying mechanism has not yet been revealed. To investigate whether Sirt1 is involved in hepatitis C virus-mediated hepatic steatosis, the overexpression of hepatitis C virus core 1b protein and Sirt1 and the knockdown of Sirt1 in HepG2 cells were performed. To confirm the results of the cellular experiment liver-specific Sirt1 KO mice with lentivirus-mediated hepatitis C virus core 1b overexpression were studied. Our results show that hepatitis C virus core 1b protein overexpression led to the accumulation of triglycerides in HepG2 cells. Notably the expression of PPARγ2 was dramatically increased at both the mRNA and protein levels by hepatitis C virus core 1b overexpression. The protein expression of Sirt1 is an upstream regulator of PPARγ2 and was also significantly increased after core 1b overexpression. In addition, the overexpression or knockdown of Sirt1 expression alone was sufficient to modulate p300-mediated PPARγ2 deacetylation. In vivo studies showed that hepatitis C virus core protein 1b-induced hepatic steatosis was attenuated in liver-specific Sirt1 KO mice by downregulation of PPARγ2 expression. Sirt1 mediates hepatitis C virus core protein 1b-induced hepatic steatosis by regulation of PPARγ2 expression. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Molecular Characterization of a Novel Species of Capillovirus from Japanese Apricot (Prunus mume)
Faure, Chantal; Theil, Sébastien; Candresse, Thierry
2018-01-01
With the increased use of high-throughput sequencing methods, new viruses infecting Prunus spp. are being discovered and characterized, especially in the family Betaflexiviridae. Double-stranded RNAs from symptomatic leaves of a Japanese apricot (Prunus mume) tree from Japan were purified and analyzed by Illumina sequencing. Blast comparisons of reconstructed contigs showed that the P. mume sample was infected by a putative novel virus with homologies to Cherry virus A (CVA) and to the newly described Currant virus A (CuVA), both members of genus Capillovirus. Completion of the genome showed the new agent to have a genomic organization typical of capilloviruses, with two overlapping open reading frames encoding a large replication-associated protein fused to the coat protein (CP), and a putative movement protein (MP). This virus shares only, respectively, 63.2% and 62.7% CP amino acid identity with the most closely related viruses, CVA and CuVA. Considering the species demarcation criteria in the family and phylogenetic analyses, this virus should be considered as representing a new viral species in the genus Capillovirus, for which the name of Mume virus A is proposed. PMID:29570605
Morrison, T; McQuain, C; McGinnes, L
1991-01-01
The cDNA derived from the fusion gene of the virulent AV strain of Newcastle disease virus (NDV) was expressed in chicken embryo cells by using a retrovirus vector. The fusion protein expressed in this system was transported to the cell surface and was efficiently cleaved into the disulfide-linked F1-F2 form found in infectious virions. The cells expressing the fusion gene grew normally and could be passaged many times. Monolayers of these cells would plaque, in the absence of trypsin, avirulent NDV strains (strains which encode a fusion protein which is not cleaved in tissue culture). Fusion protein-expressing cells would not fuse if mixed with uninfected cells or uninfected cells expressing the hemagglutinin-neuraminidase (HN) protein. However, the fusion protein-expressing cells, if infected with avirulent strains of NDV, would fuse with uninfected cells, suggesting that fusion requires both the fusion protein and another viral protein expressed in the same cell. Fusion was also seen after transfection of the HN protein gene into fusion protein-expressing cells. Thus, the expressed fusion protein gene is capable of complementing the virus infection, providing an active cleaved fusion protein required for the spread of infection. However, the fusion protein does not mediate cell fusion unless the cell also expresses the HN protein. Fusion protein-expressing cells would not plaque influenza virus in the absence of trypsin, nor would influenza virus-infected fusion protein-expressing cells fuse with uninfected cells. Thus, the influenza virus HA protein will not substitute for the NDV HN protein in cell-to-cell fusion. Images PMID:1987376
Cultivating Insect Cells To Produce Recombinant Proteins
NASA Technical Reports Server (NTRS)
Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim
1996-01-01
Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).
Zhu, Hongwei; Li, Huixin; Han, Zongxi; Shao, Yuhao; Wang, Yu; Kong, Xiangang
2011-04-06
In herpesviruses, UL15 homologue is a subunit of terminase complex responsible for cleavage and packaging of the viral genome into pre-assembled capsids. However, for duck enteritis virus (DEV), the causative agent of duck viral enteritis (DVE), the genomic sequence was not completely determined until most recently. There is limited information of this putative spliced gene and its encoding protein. DEV UL15 consists of two exons with a 3.5 kilobases (kb) inron and transcribes into two transcripts: the full-length UL15 and an N-terminally truncated UL15.5. The 2.9 kb UL15 transcript encodes a protein of 739 amino acids with an approximate molecular mass of 82 kiloDaltons (kDa), whereas the UL15.5 transcript is 1.3 kb in length, containing a putative 888 base pairs (bp) ORF that encodes a 32 kDa product. We also demonstrated that UL15 gene belonged to the late kinetic class as its expression was sensitive to cycloheximide and phosphonoacetic acid. UL15 is highly conserved within the Herpesviridae, and contains Walker A and B motifs homologous to the catalytic subunit of the bacteriophage terminase as revealed by sequence analysis. Phylogenetic tree constructed with the amino acid sequences of 23 herpesvirus UL15 homologues suggests a close relationship of DEV to the Mardivirus genus within the Alphaherpesvirinae. Further, the UL15 and UL15.5 proteins can be detected in the infected cell lysate but not in the sucrose density gradient-purified virion when reacting with the antiserum against UL15. Within the CEF cells, the UL15 and/or UL15.5 localize(s) in the cytoplasm at 6 h post infection (h p. i.) and mainly in the nucleus at 12 h p. i. and at 24 h p. i., while accumulate(s) in the cytoplasm in the absence of any other viral protein. DEV UL15 is a spliced gene that encodes two products encoded by 2.9 and 1.3 kb transcripts respectively. The UL15 is expressed late during infection. The coding sequences of DEV UL15 are very similar to those of alphaherpesviruses and most similar to the genus Mardivirus. The UL15 and/or UL15.5 accumulate(s) in the cytoplasm during early times post-infection and then are translocated to the nucleus at late times.
African Swine Fever Virus Isolate, Georgia, 2007
Rowlands, Rebecca J.; Michaud, Vincent; Heath, Livio; Hutchings, Geoff; Oura, Chris; Vosloo, Wilna; Dwarka, Rahana; Onashvili, Tinatin; Albina, Emmanuel
2008-01-01
African swine fever (ASF) is widespread in Africa but is rarely introduced to other continents. In June 2007, ASF was confirmed in the Caucasus region of Georgia, and it has since spread to neighboring countries. DNA fragments amplified from the genome of the isolates from domestic pigs in Georgia in 2007 were sequenced and compared with other ASF virus (ASFV) isolates to establish the genotype of the virus. Sequences were obtained from 4 genome regions, including part of the gene B646L that encodes the p72 capsid protein, the complete E183L and CP204L genes, which encode the p54 and p30 proteins and the variable region of the B602L gene. Analysis of these sequences indicated that the Georgia 2007 isolate is closely related to isolates belonging to genotype II, which is circulating in Mozambique, Madagascar, and Zambia. One possibility for the spread of disease to Georgia is that pigs were fed ASFV-contaminated pork brought in on ships and, subsequently, the disease was disseminated throughout the region. PMID:19046509
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, Robert A.; Maegley, Karen A.; Yu, Xiu
Human rhinoviruses (HRV), the predominant members of the Picornaviridae family of positive-strand RNA viruses, are the major causative agents of the common cold. Given the lack of effective treatments for rhinoviral infections, virally encoded proteins have become attractive therapeutic targets. The HRV genome encodes an RNA-dependent RNA polymerase (RdRp) denoted 3D{sup pol}, which is responsible for replicating the viral genome and for synthesizing a protein primer used in the replication. Here the crystal structures for three viral serotypes (1B, 14, and 16) of HRV 3D{sup pol} have been determined. The three structures are very similar to one another, and tomore » the closely related poliovirus (PV) 3D{sup pol} enzyme. Because the reported PV crystal structure shows significant disorder, HRV 3D{sup pol} provides the first complete view of a picornaviral RdRp. The folding topology of HRV 3D{sup pol} also resembles that of RdRps from hepatitis C virus (HCV) and rabbit hemorrhagic disease virus (RHDV) despite very low sequence homology.« less
Ozers, M S; Friesen, P D
1996-12-15
TED is a 7.5-kbp member of the gypsy family of retrotransposons that was first identified by its integration within the baculovirus DNA genome. This lepidopteran (moth) transposon contains three retrovirus-like genes, including functional gag and pol that yield reverse transcriptase-containing virus-like particles. To identify and characterize the product(s) of the third env-like open reading frame, TED ORF3 was expressed in homologous lepidopteran cells by using a baculovirus vector, vENV. Immunoblots and immunoprecipitations with antiserum raised against a bacterial ORF3-fusion protein detected two ORF3-encoded proteins, p68env and gp75env. On the basis of selective incorporation of [3H]mannose and inhibition of modification by tunicamycin which blocks N-linked glycosylation, gp75env is a glycoprotein derived from core precursor p68env. As predicted by the presence of a transmembrane domain near the carboxyl terminus, both p68env and gp75env were associated with heavy membranes of vENV-infected cells. Thus, TED ORF3 encodes a membrane glycoprotein with properties characteristic of retroviral env proteins. These data are consistent with the hypothesis that TED is an invertebrate retrovirus. Moreover, TED integration within the baculovirus genome provides an example of retroelement-mediated acquisition of host genes that may contribute to virus evolution.
Antigen processing in vivo and the elicitation of primary CTL responses.
Restifo, N P; Bacík, I; Irvine, K R; Yewdell, J W; McCabe, B J; Anderson, R W; Eisenlohr, L C; Rosenberg, S A; Bennink, J R
1995-05-01
CD8+ T lymphocytes (TCD8+) play an important role in cellular immune responses. TCD8+ recognize MHC class I molecules complexed to peptides of 8 to 10 residues derived largely from cytosolic proteins. Proteins are generally thought to be fragmented in the cytoplasm and delivered to nascent class I molecules in the endoplasmic reticulum (ER) by a peptide transporter encoded by the MHC. To explore the extent to which TCD8+ induction in vivo is limited by proteolysis or peptide transport into the ER, mice were immunized with recombinant vaccinia viruses containing mini-genes encoding antigenic peptides (bypassing the need for proteolysis), or these peptides with a NH2-terminal ER insertion sequence (bypassing the requirements for both proteolysis and transport). Additionally, mice were immunized with recombinant vaccinia viruses encoding rapidly degraded fragments of proteins. We report that limitations in induction of TCD8+ responses vary among Ags: for some, full length proteins are as immunogenic as other forms tested; for others, maximal responses are induced by peptides or by peptides targeted to the ER. Most importantly, in every circumstance examined, targeting peptides to the ER never diminished, and in some cases greatly enhanced, the TCD8+ immune response and provide an important alternative strategy in the design of live viral or naked DNA vaccines for the treatment of cancer and infectious diseases.
The microviridae: Diversity, assembly, and experimental evolution.
Doore, Sarah M; Fane, Bentley A
2016-04-01
The Microviridae, comprised of ssDNA, icosahedral bacteriophages, are a model system for studying morphogenesis and the evolution of assembly. Historically limited to the φX174-like viruses, recent results demonstrate that this richly diverse family is broadly divided into two groups. The defining feature appears to be whether one or two scaffolding proteins are required for assembly. The single-scaffolding systems contain an internal scaffolding protein, similar to many dsDNA viruses, and have a more complex coat protein fold. The two-scaffolding protein systems (φX174-like) encode an internal and external species, as well as an additional structural protein: a spike on the icosahedral vertices. Here, we discuss recent in silico and in vivo evolutionary analyses conducted with chimeric viruses and/or chimeric proteins. The results suggest 1) how double scaffolding systems can evolve into single and triple scaffolding systems; and 2) how assembly is the critical factor governing adaptation and the maintenance of species boundaries. Copyright © 2016 Elsevier Inc. All rights reserved.
F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function
Pazhouhandeh, Maghsoud; Dieterle, Monika; Marrocco, Katia; Lechner, Esther; Berry, Bassam; Brault, Véronique; Hemmer, Odile; Kretsch, Thomas; Richards, Kenneth E.; Genschik, Pascal; Ziegler-Graff, Véronique
2006-01-01
Plants employ small RNA-mediated posttranscriptional gene silencing as a virus defense mechanism. In response, plant viruses encode proteins that can suppress RNA silencing, but the mode of action of most such proteins is poorly understood. Here, we show that the silencing suppressor protein P0 of two Arabidopsis-infecting poleroviruses interacts by means of a conserved minimal F-box motif with Arabidopsis thaliana orthologs of S-phase kinase-related protein 1 (SKP1), a component of the SCF family of ubiquitin E3 ligases. Point mutations in the F-box-like motif abolished the P0–SKP1 ortholog interaction, diminished virus pathogenicity, and inhibited the silencing suppressor activity of P0. Knockdown of expression of a SKP1 ortholog in Nicotiana benthamiana rendered the plants resistant to polerovirus infection. Together, the results support a model in which P0 acts as an F-box protein that targets an essential component of the host posttranscriptional gene silencing machinery. PMID:16446454
USDA-ARS?s Scientific Manuscript database
The genome sequence of the constricta strain of Potato yellow dwarf virus (CYDV) was determined to be 12,792 nucleotides long and organized into seven open reading frames with the gene order 3’-N-X-P-Y-M-G-L-5’, which encodes the nucleocapsid, phosphoprotein, movement, matrix, glycoprotein and RNA-d...
Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae
Arslan, Defne; Legendre, Matthieu; Seltzer, Virginie; Abergel, Chantal; Claverie, Jean-Michel
2011-01-01
Mimivirus, a DNA virus infecting acanthamoeba, was for a long time the largest known virus both in terms of particle size and gene content. Its genome encodes 979 proteins, including the first four aminoacyl tRNA synthetases (ArgRS, CysRS, MetRS, and TyrRS) ever found outside of cellular organisms. The discovery that Mimivirus encoded trademark cellular functions prompted a wealth of theoretical studies revisiting the concept of virus and associated large DNA viruses with the emergence of early eukaryotes. However, the evolutionary significance of these unique features remained impossible to assess in absence of a Mimivirus relative exhibiting a suitable evolutionary divergence. Here, we present Megavirus chilensis, a giant virus isolated off the coast of Chile, but capable of replicating in fresh water acanthamoeba. Its 1,259,197-bp genome is the largest viral genome fully sequenced so far. It encodes 1,120 putative proteins, of which 258 (23%) have no Mimivirus homologs. The 594 Megavirus/Mimivirus orthologs share an average of 50% of identical residues. Despite this divergence, Megavirus retained all of the genomic features characteristic of Mimivirus, including its cellular-like genes. Moreover, Megavirus exhibits three additional aminoacyl-tRNA synthetase genes (IleRS, TrpRS, and AsnRS) adding strong support to the previous suggestion that the Mimivirus/Megavirus lineage evolved from an ancestral cellular genome by reductive evolution. The main differences in gene content between Mimivirus and Megavirus genomes are due to (i) lineages specific gains or losses of genes, (ii) lineage specific gene family expansion or deletion, and (iii) the insertion/migration of mobile elements (intron, intein). PMID:21987820
Rezelj, Veronica V.; Elliott, Richard M.
2017-01-01
ABSTRACT SFTS phlebovirus (SFTSV) is an emerging tick-borne bunyavirus that was first reported in China in 2009. Here we report the generation of a recombinant SFTSV (rHB29NSsKO) that cannot express the viral nonstructural protein (NSs) upon infection of cells in culture. We show that rHB29NSsKO replication kinetics are greater in interferon (IFN)-incompetent cells and that the virus is unable to suppress IFN induced in response to viral replication. The data confirm for the first time in the context of virus infection that NSs acts as a virally encoded IFN antagonist and that NSs is dispensable for virus replication. Using 3′ rapid amplification of cDNA ends (RACE), we mapped the 3′ end of the N and NSs mRNAs, showing that the mRNAs terminate within the coding region of the opposite open reading frame. We show that the 3′ end of the N mRNA terminates upstream of a 5′-GCCAGCC-3′ motif present in the viral genomic RNA. With this knowledge, and using virus-like particles, we could demonstrate that the last 36 nucleotides of the NSs open reading frame (ORF) were needed to ensure the efficient termination of the N mRNA and were required for recombinant virus rescue. We demonstrate that it is possible to recover viruses lacking NSs (expressing just a 12-amino-acid NSs peptide or encoding enhanced green fluorescent protein [eGFP]) or an NSs-eGFP fusion protein in the NSs locus. This opens the possibility for further studies of NSs and potentially the design of attenuated viruses for vaccination studies. IMPORTANCE SFTS phlebovirus (SFTSV) and related tick-borne viruses have emerged globally since 2009. SFTSV has been shown to cause severe disease in humans. For bunyaviruses, it has been well documented that the nonstructural protein (NSs) enables the virus to counteract the human innate antiviral defenses and that NSs is one of the major determinants of virulence in infection. Therefore, the use of reverse genetics systems to engineer viruses lacking NSs is an attractive strategy to rationally attenuate bunyaviruses. Here we report the generation of several recombinant SFTS viruses that cannot express the NSs protein or have the NSs open reading frame replaced with a reporter gene. These viruses cannot antagonize the mammalian interferon (IFN) response mounted to virus infection. The generation of NSs-lacking viruses was achieved by mapping the transcriptional termination of two S-segment-derived subgenomic mRNAs, which revealed that transcription termination occurs upstream of a 5′-GCCAGCC-3′ motif present in the virus genomic S RNA. PMID:28592543
Brennan, Benjamin; Rezelj, Veronica V; Elliott, Richard M
2017-08-15
SFTS phlebovirus (SFTSV) is an emerging tick-borne bunyavirus that was first reported in China in 2009. Here we report the generation of a recombinant SFTSV (rHB29NSsKO) that cannot express the viral nonstructural protein (NSs) upon infection of cells in culture. We show that rHB29NSsKO replication kinetics are greater in interferon (IFN)-incompetent cells and that the virus is unable to suppress IFN induced in response to viral replication. The data confirm for the first time in the context of virus infection that NSs acts as a virally encoded IFN antagonist and that NSs is dispensable for virus replication. Using 3' rapid amplification of cDNA ends (RACE), we mapped the 3' end of the N and NSs mRNAs, showing that the mRNAs terminate within the coding region of the opposite open reading frame. We show that the 3' end of the N mRNA terminates upstream of a 5'-GCCAGCC-3' motif present in the viral genomic RNA. With this knowledge, and using virus-like particles, we could demonstrate that the last 36 nucleotides of the NSs open reading frame (ORF) were needed to ensure the efficient termination of the N mRNA and were required for recombinant virus rescue. We demonstrate that it is possible to recover viruses lacking NSs (expressing just a 12-amino-acid NSs peptide or encoding enhanced green fluorescent protein [eGFP]) or an NSs-eGFP fusion protein in the NSs locus. This opens the possibility for further studies of NSs and potentially the design of attenuated viruses for vaccination studies. IMPORTANCE SFTS phlebovirus (SFTSV) and related tick-borne viruses have emerged globally since 2009. SFTSV has been shown to cause severe disease in humans. For bunyaviruses, it has been well documented that the nonstructural protein (NSs) enables the virus to counteract the human innate antiviral defenses and that NSs is one of the major determinants of virulence in infection. Therefore, the use of reverse genetics systems to engineer viruses lacking NSs is an attractive strategy to rationally attenuate bunyaviruses. Here we report the generation of several recombinant SFTS viruses that cannot express the NSs protein or have the NSs open reading frame replaced with a reporter gene. These viruses cannot antagonize the mammalian interferon (IFN) response mounted to virus infection. The generation of NSs-lacking viruses was achieved by mapping the transcriptional termination of two S-segment-derived subgenomic mRNAs, which revealed that transcription termination occurs upstream of a 5'-GCCAGCC-3' motif present in the virus genomic S RNA. Copyright © 2017 Brennan et al.
Galvan, Veronica; Brandimarti, Renato; Munger, Joshua; Roizman, Bernard
2000-01-01
Earlier reports have shown that herpes simplex virus 1 (HSV-1) mutants induce programmed cell death and that wild-type virus blocks the execution of the cell death program triggered by expression of viral genes, by the Fas and tumor necrosis factor pathways, or by nonspecific stress agents. In particular, an earlier report from this laboratory showed that the mutant virus d120 lacking the genes encoding infected cell protein 4 (ICP4), the major regulatory protein of the virus, induces a caspase-3-independent pathway of apoptosis in human SK-N-SH cells. Here we report that the pathway of apoptosis induced by the d120 mutant in human HEp-2 cells is caspase dependent. Specifically, in HEp-2 cells infected with d120, (i) a broad-range inhibitor of caspase activity, z-vad-FMK, efficiently blocked DNA fragmentation, (ii) cytochrome c was released into the cytoplasm, (iii) caspase-3 was activated inasmuch as poly(ADP-ribose) polymerase was cleaved, and (iv) chromatin condensation and fragmentation of cellular DNA were observed. In parallel studies, HEp-2 cells were transfected with a plasmid encoding human Bcl-2 and a clone (VAX-3) expressing high levels of Bcl-2 was selected. This report shows that Bcl-2 blocked all of the manifestations associated with programmed cell death caused by infection with the d120 mutant. Consistent with their resistance to programmed cell death, VAX-3 cells overproduced infected cell protein 0 (ICP0). An unexpected observation was that ICP0 encoded by the d120 mutant accumulated late in infection in small, quasi-uniform vesicle-like structures in all cell lines tested. Immunofluorescence-based colocalization studies indicated that these structures were not mitochondria or components of the endoplasmic reticulum or the late endosomal compartment. These studies affirm the conclusion that HSV can induce programmed cell death at multiple steps in the course of its replication, that the d120 mutant can induce both caspase-dependent and -independent pathways of programmed cell death, and that virus-induced stimuli of programmed cell death may differ with respect to the pathway that they activate. PMID:10644366
A novel totivirus-like virus isolated from bat guano.
Yang, Xinglou; Zhang, Yunzhi; Ge, Xingyi; Yuan, Junfa; Shi, Zhengli
2012-06-01
Previous metagenomic analysis indicated that numerous insect viruses exist in bat guano. In this study, we isolated a novel double-stranded RNA virus, a tentative member of the family Totiviridae, designated Tianjin totivirus (ToV-TJ), from bat feces. The virus is an icosahedral particle with a diameter of 40-43 nm, and it causes cytopathic effect in Sf9, Hz, and C6/36 cell lines. Full-length genomic sequence analysis showed that ToV-TJ shares high similarity with the totivirus OMRV-AK4, which was recently isolated from mosquitoes in Japan. The full-length genome of the ToV-TJ was 7611 bp and contained two predicted non-overlapping open reading frames (ORFs): ORF1, encoding the capsid protein (CP), and ORF2, encoding an RNA-dependent RNA polymerase. Bioassay of ToV-TJ by feeding on the larvae of Spodoptera exigua and Helicoverpa armigera (Hubner) suggests that this virus is not infectious for these two larvae in vivo. Sequences similar to that of ToV-TJ have been detected in bat feces sampled in Yunnan and Hainan Provinces, suggesting that this virus is widely distributed.
Virus inhibition of RIP3-dependent necrosis.
Upton, Jason W; Kaiser, William J; Mocarski, Edward S
2010-04-22
Viral infection activates cytokine expression and triggers cell death, the modulation of which is important for successful pathogenesis. Necroptosis is a form of programmed necrosis dependent on two related RIP homotypic interaction motif (RHIM)-containing signaling adaptors, receptor-interacting protein kinases (RIP) 1 and 3. We find that murine cytomegalovirus infection induces RIP3-dependent necrosis. Whereas RIP3 kinase activity and RHIM-dependent interactions control virus-associated necrosis, virus-induced death proceeds independently of RIP1 and is therefore distinct from TNFalpha-dependent necroptosis. Viral M45-encoded inhibitor of RIP activation (vIRA) targets RIP3 during infection and disrupts RIP3-RIP1 interactions characteristic of TNFalpha-induced necroptosis, thereby suppressing both death pathways. Importantly, attenuation of vIRA mutant virus in wild-type mice is normalized in RIP3-deficient mice. Thus, vIRA function validates necrosis as central to host defense against viral infections and highlights the benefit of multiple virus-encoded cell-death suppressors that inhibit not only apoptotic, but also necrotic mechanisms of virus clearance. Copyright 2010 Elsevier Inc. All rights reserved.
Kariithi, Henry M.; Ince, Ikbal A.; Boeren, Sjef; Abd-Alla, Adly M. M.; Parker, Andrew G.; Aksoy, Serap; Vlak, Just M.; van Oers, Monique M.
2011-01-01
Background The competence of the tsetse fly Glossina pallidipes (Diptera; Glossinidae) to acquire salivary gland hypertrophy virus (SGHV), to support virus replication and successfully transmit the virus depends on complex interactions between Glossina and SGHV macromolecules. Critical requisites to SGHV transmission are its replication and secretion of mature virions into the fly's salivary gland (SG) lumen. However, secretion of host proteins is of equal importance for successful transmission and requires cataloging of G. pallidipes secretome proteins from hypertrophied and non-hypertrophied SGs. Methodology/Principal Findings After electrophoretic profiling and in-gel trypsin digestion, saliva proteins were analyzed by nano-LC-MS/MS. MaxQuant/Andromeda search of the MS data against the non-redundant (nr) GenBank database and a G. morsitans morsitans SG EST database, yielded a total of 521 hits, 31 of which were SGHV-encoded. On a false discovery rate limit of 1% and detection threshold of least 2 unique peptides per protein, the analysis resulted in 292 Glossina and 25 SGHV MS-supported proteins. When annotated by the Blast2GO suite, at least one gene ontology (GO) term could be assigned to 89.9% (285/317) of the detected proteins. Five (∼1.8%) Glossina and three (∼12%) SGHV proteins remained without a predicted function after blast searches against the nr database. Sixty-five of the 292 detected Glossina proteins contained an N-terminal signal/secretion peptide sequence. Eight of the SGHV proteins were predicted to be non-structural (NS), and fourteen are known structural (VP) proteins. Conclusions/Significance SGHV alters the protein expression pattern in Glossina. The G. pallidipes SG secretome encompasses a spectrum of proteins that may be required during the SGHV infection cycle. These detected proteins have putative interactions with at least 21 of the 25 SGHV-encoded proteins. Our findings opens venues for developing novel SGHV mitigation strategies to block SGHV infections in tsetse production facilities such as using SGHV-specific antibodies and phage display-selected gut epithelia-binding peptides. PMID:22132244
Dohi, Koji; Mise, Kazuyuki; Furusawa, Iwao; Okuno, Tetsuro
2002-11-01
Viral RNA-dependent RNA polymerase (RdRp) plays crucial roles in the genomic replication and subgenomic transcription of Brome mosaic virus (BMV), a positive-stranded RNA plant virus. BMV RdRp is a complex of virus-encoded 1a and 2a proteins and some cellular factors, and associates with the endoplasmic reticulum at an infection-specific structure in the cytoplasm of host cells. In this study, we investigate the gross structure of the active BMV RdRp complex using monoclonal antibodies raised against the 1a and 2a proteins. Immunoprecipitation experiments showed that the intermediate region between the N-terminal methyltransferase-like domain and the C-terminal helicase-like domain of 1a protein, and the N terminus region of 2a protein are exposed on the surface of the solubilized RdRp complex. Inhibition assays for membrane-bound RdRp suggested that the intermediate region between the methyltransferase-like and the helicase-like domains of 1a protein is located at the border of the region buried within a membrane structure or with membrane-associated material.
Schaeffer, E; Sninsky, J J
1984-01-01
Proteins that are related evolutionarily may have diverged at the level of primary amino acid sequence while maintaining similar secondary structures. Computer analysis has been used to compare the open reading frames of the hepatitis B virus to those of the woodchuck hepatitis virus at the level of amino acid sequence, and to predict the relative hydrophilic character and the secondary structure of putative polypeptides. Similarity is seen at the levels of relative hydrophilicity and secondary structure, in the absence of sequence homology. These data reinforce the proposal that these open reading frames encode viral proteins. Computer analysis of this type can be more generally used to establish structural similarities between proteins that do not share obvious sequence homology as well as to assess whether an open reading frame is fortuitous or codes for a protein. PMID:6585835
Hoffmann, Bernd; Schütze, Heike; Mettenleiter, Thomas C
2002-03-20
The complete genome of spring viremia of carp virus (SVCV) was cloned and the sequence of 11019 nucleotides was determined. It contains five open reading frames (ORF's) encoding for the nucleoprotein N; phosphoprotein P; matrix protein M; glycoprotein G; and the viral RNA dependent RNA polymerase L. Genes are organised in the order typical for rhabdoviruses: 3'-N-P-M-G-L-5'. The short leader and trailer regions of SVCV exhibit inverse complementarity and are similar to the respective 3' and 5' ends of the genome of vesicular stomatitis virus. To verify the predicted open reading frames proteins were expressed in bacteria and analysed with a polyclonal anti-SVCV serum. Furthermore, monospecific antisera against the distinct viral proteins were generated. Comparison of genome and protein confirm the assignment of SVCV to the genus Vesiculovirus.
Liu, Cunbao; Yang, Xu; Yao, Yufeng; Huang, Weiwei; Sun, Wenjia; Ma, Yanbing
2014-05-01
Two versions of an optimized gene that encodes human papilloma virus type 16 major protein L1 were designed according to the codon usage frequency of Pichia pastoris. Y16 was highly expressed in both P. pastoris and Hansenula polymorpha. M16 expression was as efficient as that of Y16 in P. pastoris, but merely detectable in H. polymorpha even though transcription levels of M16 and Y16 were similar. H. polymorpha had a unique codon usage frequency that contains many more rare codons than Saccharomyces cerevisiae or P. pastoris. These findings indicate that even codon-optimized genes that are expressed well in S. cerevisiae and P. pastoris may be inefficiently expressed in H. polymorpha; thus rare codons must be avoided when universal optimized gene versions are designed to facilitate expression in a variety of yeast expression systems, especially H. polymorpha is involved.
Brome mosaic virus, good for an RNA virologist's basic needs.
Kao, C C; Sivakumaran, K
2000-03-01
Abstract Taxonomic relationship: Type member of the Bromovirus genus, family Bromoviridae. A member of the alphavirus-like supergroup of positive-sense single-stranded RNA viruses. Physical properties: Virions are nonenveloped icosahedrals made up of 180 coat protein subunits (Fig. 1). The particles are 26 nm in diameter and contain 22% nucleic acid and 78% protein. The BMV genome is composed of three positive-sense, capped RNAs: RNA1 (3.2 kb), RNA2 (2.9 kb), RNA3 (2.1 kb) (Fig. 2). Viral proteins: RNA1 encodes protein 1a, containing capping and putative RNA helicase activities. RNA2 encodes protein 2a, a putative RNA-dependent RNA polymerase. RNA3 codes for two proteins: 3a, which is required for cell-to-cell movement, and the capsid protein. The capsid is translated from a subgenomic RNA, RNA4 (1.2 kb). Hosts: Monocots in the Poacea family, including Bromus inermis, Zea mays and Hordeum vulgare, in which BMV causes brown streaks. BMV can also infect the dicots Nicotiana benthamiana and several Chenopodium species. In N. benthamiana, the infection is asymptomatic while infection of Chenopodium can cause either necrotic or chlorotic lesions. Useful website:http://www4.ncbi.nlm.nih.gov/ICTVdb/ICTVdB/10030001.htm.
Kelloniemi, Jani; Mäkinen, Kristiina; Valkonen, Jari P T
2006-05-01
Potato virus A (PVA), a potyvirus with a (+)ssRNA genome translated to a large polyprotein, was engineered and used as a gene vector for expression of heterologous proteins in plants. Foreign genes including jellyfish GFP (Aequorea victoria) encoding the green fluorescent protein (GFP, 27 kDa) and the genes of human origin (Homo sapiens) encoding a soluble resistance-related calcium-binding protein (sorcin, 22 kDa) and the catechol-O-methyltransferase (S-COMT; 25 kDa) were cloned between the cistrons for the viral replicase and coat protein (CP). The inserts caused no adverse effects on viral infectivity and virulence, and the inserted sequences remained intact in progeny viruses in the systemically infected leaves. The heterologous proteins were released from the viral polyprotein following cleavage by the main viral proteinase, NIa, at engineered proteolytic processing sites flanking the insert. Active GFP, as indicated by green fluorescence, and S-COMT with high levels of enzymatic activity were produced. In contrast, no sorcin was detected despite the expected equimolar amounts of the foreign and viral proteins being expressed as a polyprotein. These data reveal inherent differences between heterologous proteins in their suitability for production in plants.
The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation.
Baumberger, Nicolas; Tsai, Ching-Hsui; Lie, Miranda; Havecker, Ericka; Baulcombe, David C
2007-09-18
Plant and animal viruses encode suppressor proteins of an adaptive immunity mechanism in which viral double-stranded RNA is processed into 21-25 nt short interfering (si)RNAs. The siRNAs guide ARGONAUTE (AGO) proteins so that they target viral RNA. Most viral suppressors bind long dsRNA or siRNAs and thereby prevent production of siRNA or binding of siRNA to AGO. The one exception is the 2b suppressor of Cucumoviruses that binds to and inhibits AGO1. Here we describe a novel suppressor mechanism in which a Polerovirus-encoded F box protein (P0) targets the PAZ motif and its adjacent upstream sequence in AGO1 and mediates its degradation. F box proteins are components of E3 ubiquitin ligase complexes that add polyubiquitin tracts on selected lysine residues and thereby mark a protein for proteasome-mediated degradation. With P0, however, the targeted degradation of AGO is insensitive to inhibition of the proteasome, indicating that the proteasome is not involved. We also show that P0 does not block a mobile signal of silencing, indicating that the signal molecule does not have AGO protein components. The ability of P0 to block silencing without affecting signal movement may contribute to the phloem restriction of viruses in the Polerovirus group.
Proteomic composition of Nipah virus-like particles.
Vera-Velasco, Natalia Mara; García-Murria, Maria Jesús; Sánchez Del Pino, Manuel M; Mingarro, Ismael; Martinez-Gil, Luis
2018-02-10
Virions are often described as virus-only entities with no cellular components with the exception of the lipids in their membranes. However, advances in proteomics are revealing substantial amounts of host proteins in the viral particles. In the case of Nipah virus (NiV), the viral components in the virion have been known for some time. Nonetheless, no information has been obtained regarding the cellular proteins in the viral particles. To address this question, we produced Virus-Like Particles (VLPs) for NiV by expressing the F, G and M proteins in human-derived cells. Next, the proteomic content in these VLPs was analyzed by LC-MS/MS. We identified 67 human proteins including soluble and membrane-bound proteins involved in vesicle sorting and transport. Interestingly, many of them have been reported to interact with other viruses. Finally, thanks to the semi-quantitative nature of our data we were able to estimate the ratio among F, G and M proteins and also the ratio between cellular and viral proteins in the VLPs. We believe our data contribute to the better understanding of NiV life cycle and might facilitate future attempts for developing antiviral agents and the design of further experimental studies for this deadly infection. Traditionally viral particles have been described as pure entities carrying only viral-derived proteins. Advances in proteomics are changing this simplified view. Host proteins have been identified in many viruses (especially in enveloped viruses). These cell-derived proteins participate in multiple steps in the viral life cycle and might be as important for the survival of the virus as any other viral-encoded protein. In this work, we analyze utilizing LC-MS/MS the cellular proteins incorporated or bound to the virions of Nipah virus (NiV), an emerging, highly pathogenic, zoonotic virus from the Paramyxoviridiae family. Furthermore, we analyzed the ratio between cellular and viral proteins and among the viral F, G and M proteins in the viral particles. The characterization of the Nipah virus-human interactions occurring in the virion might facilitate the development of new therapeutic and prophylactic therapies for this viral illness. Copyright © 2017 Elsevier B.V. All rights reserved.
The virophage as a unique parasite of the giant mimivirus.
La Scola, Bernard; Desnues, Christelle; Pagnier, Isabelle; Robert, Catherine; Barrassi, Lina; Fournous, Ghislain; Merchat, Michèle; Suzan-Monti, Marie; Forterre, Patrick; Koonin, Eugene; Raoult, Didier
2008-09-04
Viruses are obligate parasites of Eukarya, Archaea and Bacteria. Acanthamoeba polyphaga mimivirus (APMV) is the largest known virus; it grows only in amoeba and is visible under the optical microscope. Mimivirus possesses a 1,185-kilobase double-stranded linear chromosome whose coding capacity is greater than that of numerous bacteria and archaea1, 2, 3. Here we describe an icosahedral small virus, Sputnik, 50 nm in size, found associated with a new strain of APMV. Sputnik cannot multiply in Acanthamoeba castellanii but grows rapidly, after an eclipse phase, in the giant virus factory found in amoebae co-infected with APMV4. Sputnik growth is deleterious to APMV and results in the production of abortive forms and abnormal capsid assembly of the host virus. The Sputnik genome is an 18.343-kilobase circular double-stranded DNA and contains genes that are linked to viruses infecting each of the three domains of life Eukarya, Archaea and Bacteria. Of the 21 predicted protein-coding genes, eight encode proteins with detectable homologues, including three proteins apparently derived from APMV, a homologue of an archaeal virus integrase, a predicted primase-helicase, a packaging ATPase with homologues in bacteriophages and eukaryotic viruses, a distant homologue of bacterial insertion sequence transposase DNA-binding subunit, and a Zn-ribbon protein. The closest homologues of the last four of these proteins were detected in the Global Ocean Survey environmental data set5, suggesting that Sputnik represents a currently unknown family of viruses. Considering its functional analogy with bacteriophages, we classify this virus as a virophage. The virophage could be a vehicle mediating lateral gene transfer between giant viruses.
Li, Ao; Zhao, Haizhou; Lai, Qingying; Huang, Zhihong; Yuan, Meijin
2015-01-01
ABSTRACT Many viruses utilize viral or cellular chromatin machinery for efficient infection. Baculoviruses encode a conserved protamine-like protein, P6.9. This protein plays essential roles in various viral physiological processes during infection. However, the mechanism by which P6.9 regulates transcription remains unknown. In this study, 7 phosphorylated species of P6.9 were resolved in Sf9 cells infected with the baculovirus type species Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Mass spectrometry identified 22 phosphorylation and 10 methylation sites but no acetylation sites in P6.9. Immunofluorescence demonstrated that the P6.9 and virus-encoded serine/threonine kinase PK1 exhibited similar distribution patterns in infected cells, and coimmunoprecipitation confirmed the interaction between them. Upon pk1 deletion, nucleocapsid assembly and polyhedron formation were interrupted and the transcription of viral very late genes was downregulated. Interestingly, we found that the 3 most phosphorylated P6.9 species vanished from Sf9 cells transfected with the pk1 deletion mutant, suggesting that PK1 is involved in the hyperphosphorylation of P6.9. Mass spectrometry suggested that the phosphorylation of the 7 Ser/Thr and 5 Arg residues in P6.9 was PK1 dependent. Replacement of the 7 Ser/Thr residues with Ala resulted in a P6.9 phosphorylation pattern similar to that of the pk1 deletion mutant. Importantly, the decreases in the transcription level of viral very late genes and viral infectivity were consistent. Our findings reveal that P6.9 hyperphosphorylation is a precondition for the maximal hyperexpression of baculovirus very late genes and provide the first experimental insights into the function of the baculovirus protamine-like protein and the related protein kinase in epigenetics. IMPORTANCE Diverse posttranslational modifications (PTMs) of histones constitute a code that creates binding platforms that recruit transcription factors to regulate gene expression. Many viruses also utilize host- or virus-induced chromatin machinery to promote efficient infections. Baculoviruses encode a protamine-like protein, P6.9, which is required for a variety of processes in the infection cycle. Currently, P6.9's PTM sites and its regulating factors remain unknown. Here, we found that P6.9 could be categorized as unphosphorylated, hypophosphorylated, and hyperphosphorylated species and that a virus-encoded serine/threonine kinase, PK1, was essential for P6.9 hyperphosphorylation. Abundant PTM sites on P6.9 were identified, among which 7 Ser/Thr phosphorylated sites were PK1 dependent. Mutation of these Ser/Thr sites reduced very late viral gene transcription and viral infectivity, indicating that the PK1-mediated P6.9 hyperphosphorylation contributes to viral proliferation. These data suggest that a code exists in the sophisticated PTM of viral protamine-like proteins and participates in viral gene transcription. PMID:25972542
Okamoto, Toru; Campbell, Stephanie; Mehta, Ninad; Thibault, John; Colman, Peter M; Barry, Michele; Huang, David C S; Kvansakul, Marc
2012-11-01
Many viruses express inhibitors of programmed cell death (apoptosis), thereby countering host defenses that would otherwise rapidly clear infected cells. To counter this, viruses such as adenoviruses and herpesviruses express recognizable homologs of the mammalian prosurvival protein Bcl-2. In contrast, the majority of poxviruses lack viral Bcl-2 (vBcl-2) homologs that are readily identified by sequence similarities. One such virus, myxoma virus, which is the causative agent of myxomatosis, expresses a virulence factor that is a potent inhibitor of apoptosis. In spite of the scant sequence similarity to Bcl-2, myxoma virus M11L adopts an almost identical 3-dimensional fold. We used M11L as bait in a sequence similarity search for other Bcl-2-like proteins and identified six putative vBcl-2 proteins from poxviruses. Some are potent inhibitors of apoptosis, in particular sheeppox virus SPPV14, which inhibited cell death induced by multiple agents. Importantly, SPPV14 compensated for the loss of antiapoptotic F1L in vaccinia virus and acts to directly counter the cell death mediators Bax and Bak. SPPV14 also engages a unique subset of the death-promoting BH3-only ligands, including Bim, Puma, Bmf, and Hrk. This suggests that SPPV14 may have been selected for specific biological roles as a virulence factor for sheeppox virus.
Dayaram, Anisha; Galatowitsch, Mark L; Argüello-Astorga, Gerardo R; van Bysterveldt, Katherine; Kraberger, Simona; Stainton, Daisy; Harding, Jon S; Roumagnac, Philippe; Martin, Darren P; Lefeuvre, Pierre; Varsani, Arvind
2016-04-01
Over the last five years next-generation sequencing has become a cost effective and efficient method for identifying known and unknown microorganisms. Access to this technique has dramatically changed the field of virology, enabling a wide range of environmental viral metagenome studies to be undertaken of organisms and environmental samples from polar to tropical regions. These studies have led to the discovery of hundreds of highly divergent single stranded DNA (ssDNA) virus-like sequences encoding replication-associated proteins. Yet, few studies have explored how viruses might be shared in an ecosystem through feeding relationships. Here we identify 169 circular molecules (160 CRESS DNA molecules, nine circular molecules) recovered from a New Zealand freshwater lake, that we have tentatively classified into 51 putatively novel species and five previously described species (DflaCV-3, -5, -6, -8, -10). The CRESS DNA viruses identified in this study were recovered from molluscs (Echyridella menzeisii, Musculium novaezelandiae, Potamopyrgus antipodarum and Physella acuta) and insect larvae (Procordulia grayi, Xanthocnemis zealandica, and Chironomus zealandicus) collected from Lake Sarah, as well as from the lake water and benthic sediments. Extensive diversity was observed across most CRESS DNA molecules recovered. The putative capsid protein of one viral species was found to be most similar to those of members of the Tombusviridae family, thus expanding the number of known RNA-DNA hybrid viruses in nature. We noted a strong association between the CRESS DNA viruses and circular molecules identified in the water and browser organisms (C. zealandicus, P. antipodarum and P. acuta), and between water sediments and undefended prey species (C. zealandicus). However, we were unable to find any significant correlation of viral assemblages to the potential feeding relationships of the host aquatic invertebrates. Copyright © 2016 Elsevier B.V. All rights reserved.
Vaquero, C; Turner, A P; Demangeat, G; Sanz, A; Serra, M T; Roberts, K; García-Luque, I
1994-11-01
The 3a protein, encoded by RNA 3 of cucumber mosaic virus (CMV), is the putative movement protein of viral progeny in infected plants. An analysis of transgenic tobacco plants constitutively expressing the CMV 3a protein showed that the protein is accumulated in leaves at every stage of development. In fully expanded leaves the protein is immunodetectable mostly in a cell-wall-enriched fraction. Dye-coupling experiments using fluorescent-dextran probes were performed on fully expanded leaves to study the modifying effect of CMV 3a protein on the gating capacity of plasmodesmata. Movement of fluorescein-isothiocyanate-labelled dextran with a mean molecular mass of 10,000 Da, and an approximate Stokes' radius of 2.3 nm, was detected between cells of the 3a protein transgenic plants, but not in the control plants. These results are consistent with the idea that the CMV 3a protein is involved in the modification of plasmodesmata and, therefore, in the cell-to-cell spread of the virus.
Proteomic Analysis of Virus-Host Interactions in an Infectious Context Using Recombinant Viruses*
Komarova, Anastassia V.; Combredet, Chantal; Meyniel-Schicklin, Laurène; Chapelle, Manuel; Caignard, Grégory; Camadro, Jean-Michel; Lotteau, Vincent; Vidalain, Pierre-Olivier; Tangy, Frédéric
2011-01-01
RNA viruses exhibit small-sized genomes encoding few proteins, but still establish complex networks of interactions with host cell components to achieve replication and spreading. Ideally, these virus-host protein interactions should be mapped directly in infected cell culture, but such a high standard is often difficult to reach when using conventional approaches. We thus developed a new strategy based on recombinant viruses expressing tagged viral proteins to capture both direct and indirect physical binding partners during infection. As a proof of concept, we engineered a recombinant measles virus (MV) expressing one of its virulence factors, the MV-V protein, with a One-STrEP amino-terminal tag. This allowed virus-host protein complex analysis directly from infected cells by combining modified tandem affinity chromatography and mass spectrometry analysis. Using this approach, we established a prosperous list of 245 cellular proteins interacting either directly or indirectly with MV-V, and including four of the nine already known partners of this viral factor. These interactions were highly specific of MV-V because they were not recovered when the nucleoprotein MV-N, instead of MV-V, was tagged. Besides key components of the antiviral response, cellular proteins from mitochondria, ribosomes, endoplasmic reticulum, protein phosphatase 2A, and histone deacetylase complex were identified for the first time as prominent targets of MV-V and the critical role of the later protein family in MV replication was addressed. Most interestingly, MV-V showed some preferential attachment to essential proteins in the human interactome network, as assessed by centrality and interconnectivity measures. Furthermore, the list of MV-V interactors also showed a massive enrichment for well-known targets of other viruses. Altogether, this clearly supports our approach based on reverse genetics of viruses combined with high-throughput proteomics to probe the interaction network that viruses establish in infected cells. PMID:21911578
Maurer, B; Bannert, H; Darai, G; Flügel, R M
1988-01-01
The nucleotide sequence of the human spumaretrovirus (HSRV) genome was determined. The 5' long terminal repeat region was analyzed by strong stop cDNA synthesis and S1 nuclease mapping. The length of the RU5 region was determined and found to be 346 nucleotides long. The 5' long terminal repeat is 1,123 base pairs long and is bound by an 18-base-pair primer-binding site complementary to the 3' end of mammalian lysine-1,2-specific tRNA. Open reading frames for gag and pol genes were identified. Surprisingly, the HSRV gag protein does not contain the cysteine motif of the nucleic acid-binding proteins found in and typical of all other retroviral gag proteins; instead the HSRV gag gene encodes a strongly basic protein reminiscent of those of hepatitis B virus and retrotransposons. The carboxy-terminal part of the HSRV gag gene products encodes a protease domain. The pol gene overlaps the gag gene and is postulated to be synthesized as a gag/pol precursor via translational frameshifting analogous to that of Rous sarcoma virus, with 7 nucleotides immediately upstream of the termination codons of gag conserved between the two viral genomes. The HSRV pol gene is 2,730 nucleotides long, and its deduced protein sequence is readily subdivided into three well-conserved domains, the reverse transcriptase, the RNase H, and the integrase. Although the degree of homology of the HSRV reverse transcriptase domain is highest to that of murine leukemia virus, the HSRV genomic organization is more similar to that of human and simian immunodeficiency viruses. The data justify classifying the spumaretroviruses as a third subfamily of Retroviridae. Images PMID:2451755
Taupin, J L; Acres, B; Dott, K; Schmitt, D; Kieny, M P; Gualde, N; Moreau, J F
1993-09-01
Insertion of various cDNAs in the genome of the vaccinia virus (VV) enables the in vivo and in vitro study of the functional role and/or the immunogenicity of the virally encoded recombinant proteins. We have prepared a recombinant VV expressing the cDNA of the human cytokine HILDA/LIF (human interleukin for DA cells/leukaemia inhibitory factor), and used this virus to immunize mice against this protein, which is very homologous to its murine counterpart (approximately 80% homology). We also constructed and expressed by the same system a chimeric gene encoding the HILDA/LIF protein fused to the 37 COOH-terminal amino-acids of the human decay accelerating factor (DAF). This sequence proved to be sufficient for the targeting of the fusion protein to the cell membrane, where it is linked to the phosphatidylinositols. Both recombinant VVs induced cytokine-specific antibodies in mice as analysed with an ELISA where the recombinant HILDA/LIF was plastic-coated and a cytofluorometric assay where the LIF-DAF molecule was present at the cell surface of stably transfected P815. In the latter case HILDA/LIF remained biologically active suggesting that it was expressed in its native form. The LIF-DAF fusion protein was found to exhibit a better capacity to elicit an antibody response against the native form of the cytokine as detected in cytofluorometric assays. Whatever the recombinant virus used to immunize the mice, the MoAbs obtained were positive either in the ELISA or in the cytofluorometric assays but one, which suggested that the plastic coating induced a conformational change of HILDA/LIF.
Kastenmayer, Robin J; Maruri-Avidal, Liliana; Americo, Jeffrey L; Earl, Patricia L; Weisberg, Andrea S; Moss, Bernard
2014-03-01
Some orthopoxviruses including cowpox virus embed virus particles in dense bodies, comprised of the A-type inclusion (ATI) protein, which may provide long-term environmental protection. This strategy could be beneficial if the host population is sparse or spread is inefficient or indirect. However, the formation of ATI may be neutral or disadvantageous for orthopoxviruses that rely on direct respiratory spread. Disrupted ATI open reading frames in orthopoxviruses such as variola virus, the agent of smallpox, and monkeypox virus suggests that loss of this feature provided positive selection. To test this hypothesis, we constructed cowpox virus mutants with deletion of the ATI gene or another gene required for embedding virions. The ATI deletion mutant caused greater weight loss and higher replication in the respiratory tract than control viruses, supporting our hypothesis. Deletion of the gene for embedding virions had a lesser effect, possibly due to known additional functions of the encoded protein. Published by Elsevier Inc.
Subcellular targeting and interactions among the Potato virus X TGB proteins.
Samuels, Timmy D; Ju, Ho-Jong; Ye, Chang-Ming; Motes, Christy M; Blancaflor, Elison B; Verchot-Lubicz, Jeanmarie
2007-10-25
Potato virus X (PVX) encodes three proteins named TGBp1, TGBp2, and TGBp3 which are required for virus cell-to-cell movement. To determine whether PVX TGB proteins interact during virus cell-cell movement, GFP was fused to each TGB coding sequence within the viral genome. Confocal microscopy was used to study subcellular accumulation of each protein in virus-infected plants and protoplasts. GFP:TGBp2 and TGBp3:GFP were both seen in the ER, ER-associated granular vesicles, and perinuclear X-bodies suggesting that these proteins interact in the same subdomains of the endomembrane network. When plasmids expressing CFP:TGBp2 and TGBp3:GFP were co-delivered to tobacco leaf epidermal cells, the fluorescent signals overlapped in ER-associated granular vesicles indicating that these proteins colocalize in this subcellular compartment. GFP:TGBp1 was seen in the nucleus, cytoplasm, rod-like inclusion bodies, and in punctate sites embedded in the cell wall. The puncta were reminiscent of previous reports showing viral proteins in plasmodesmata. Experiments using CFP:TGBp1 and YFP:TGBp2 or TGBp3:GFP showed CFP:TGBp1 remained in the cytoplasm surrounding the endomembrane network. There was no evidence that the granular vesicles contained TGBp1. Yeast two hybrid experiments showed TGBp1 self associates but failed to detect interactions between TGBp1 and TGBp2 or TGBp3. These experiments indicate that the PVX TGB proteins have complex subcellular accumulation patterns and likely cooperate across subcellular compartments to promote virus infection.
Epstein-Barr virus-encoded EBNA-5 binds to Epstein-Barr virus-induced Fte1/S3a protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashuba, Elena; Yurchenko, Mariya; Szirak, Krisztina
Epstein-Barr virus (EBV) transforms resting human B cells into immortalized immunoblasts. EBV-encoded nuclear antigens EBNA-5 (also called EBNA-LP) is one of the earliest viral proteins expressed in freshly infected B cells. We have recently shown that EBNA-5 binds p14ARF, a nucleolar protein that regulates the p53 pathway. Here, we report the identification of another protein with partially nucleolar localization, the v-fos transformation effector Fte-1 (Fte-1/S3a), as an EBNA-5 binding partner. In transfected cells, Fte-1/S3a and EBNA-5 proteins showed high levels of colocalization in extranucleolar inclusions. Fte-1/S3a has multiple biological functions. It enhances v-fos-mediated cellular transformation and is part of themore » small ribosomal subunit. It also interacts with the transcriptional factor CHOP and apoptosis regulator poly(ADP-ribose) polymerase (PARP). Fte-1/S3a is regularly expressed at high levels in both tumors and cancer cell lines. Its high expression favors the maintenance of malignant phenotype and undifferentiated state, whereas its down-regulation is associated with cellular differentiation and growth arrest. Here, we show that EBV-induced B cell transformation leads to the up-regulation of Fte-1/S3a. We suggest that EBNA-5 through binding may influence the growth promoting, differentiation inhibiting, or apoptosis regulating functions of Fte-1/S3a.« less
Anang, Saumya; Subramani, Chandru; Nair, Vidya P.; Kaul, Sheetal; Kaushik, Nidhi; Sharma, Chandresh; Tiwari, Ashutosh; Ranjith-Kumar, CT; Surjit, Milan
2016-01-01
Hepatitis E virus (HEV) is a major cause of hepatitis in normal and organ transplant individuals. HEV open reading frame-1 encodes a polypeptide comprising of the viral nonstructural proteins as well as domains of unknown function such as the macro domain (X-domain), V, DUF3729 and Y. The macro domain proteins are ubiquitously present from prokaryotes to human and in many positive-strand RNA viruses, playing important roles in multiple cellular processes. Towards understanding the function of the HEV macro domain, we characterized its interaction partners among other HEV encoded proteins. Here, we report that the HEV X-domain directly interacts with the viral methyltransferase and the ORF3 proteins. ORF3 association with the X-domain was mediated through two independent motifs, located within its N-terminal 35aa (amino acids) and C-terminal 63-123aa. Methyltransferase interaction domain was mapped to N-terminal 30-90aa. The X-domain interacted with both ORF3 and methyltransferase through its C-terminal region, involving 66th,67th isoleucine and 101st,102nd leucine, conserved across HEV genotypes. Furthermore, ORF3 and methyltransferase competed with each other for associating with the X-domain. These findings provide molecular understanding of the interaction between the HEV macro domain, methyltransferase and ORF3, suggesting an important role of the macro domain in the life cycle of HEV. PMID:27113483
NASA Astrophysics Data System (ADS)
Himmah, Karimatul; Dluha, Nurul; Anyndita, Nadya V. M.; Rifa'i, Muhaimin; Widodo
2017-05-01
The Epstein - Barr virus (EBV) causes severe infections that may lead to cancers such as nasopharyngeal carcinoma. Development of effective EBV vaccines is necessary to prevent the virus spreading throughout the community. TheEBV has a surface protein gp 350/220, which serves as an antigen to help interact with host cells. Epitopes of the protein can potentially serve as bases for a vaccine. In a previous study, we have found a conserved epitope of gp 350/220 from all strains EBV through an in silico approach. The aim of this study is to design and overproduce a recombinant peptide of epitope gp 350/220 in E. coli. DNA encoding the conserved epitope was synthesized and cloned into plasmid pET-22b(+); the recombinant plasmid was transformed into E. coli strains DH5α and BL21. The transformed plasmid DNA was isolated and confirmed by restriction using XbaI and PstI enzymes followed by DNA sequencing. Protein expression was induced by isopropyl-D-thiogalactopyranoside (IPTG) with final concentrations of 0.1, 0.2, 1, and 2 mM in consecutive times. An osmotic shock method was used to isolate protein from periplasmic fraction of E. coli DH5α and BL21. The SDS-PAGE analysis was carried out to detect peptide target (3.4 kDa). Based on this result, the induction process did not work properly, and thus needs further investigation.
The p14 FAST Protein of Reptilian Reovirus Increases Vesicular Stomatitis Virus Neuropathogenesis▿
Brown, Christopher W.; Stephenson, Kyle B.; Hanson, Stephen; Kucharczyk, Michael; Duncan, Roy; Bell, John C.; Lichty, Brian D.
2009-01-01
The fusogenic orthoreoviruses express nonstructural fusion-associated small transmembrane (FAST) proteins that induce cell-cell fusion and syncytium formation. It has been speculated that the FAST proteins may serve as virulence factors by promoting virus dissemination and increased or altered cytopathology. To directly test this hypothesis, the gene encoding the p14 FAST protein of reptilian reovirus was inserted into the genome of a heterologous virus that does not naturally form syncytia, vesicular stomatitis virus (VSV). Expression of the p14 FAST protein by the VSV/FAST recombinant gave the virus a highly fusogenic phenotype in cell culture. The growth of this recombinant fusogenic VSV strain was unaltered in vitro but was significantly enhanced in vivo. The VSV/FAST recombinant consistently generated higher titers of virus in the brains of BALB/c mice after intranasal or intravenous infection compared to the parental VSV/green fluorescent protein (GFP) strain that expresses GFP in place of p14. The VSV/FAST recombinant also resulted in an increased incidence of hind-limb paralysis, it infected a larger volume of brain tissue, and it induced more extensive neuropathology, thus leading to a lower maximum tolerable dose than that for the VSV/GFP parental virus. In contrast, an interferon-inducing mutant of VSV expressing p14 was still attenuated, indicating that this interferon-inducing phenotype is dominant to the fusogenic properties conveyed by the FAST protein. Based on this evidence, we conclude that the reovirus p14 FAST protein can function as a bona fide virulence factor. PMID:18971262
Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export
Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.
2013-01-01
Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491
Kozlowska-Makulska, Anna; Hasiow-Jaroszewska, Beata; Szyndel, Marek S; Herrbach, Etienne; Bouzoubaa, Salah; Lemaire, Olivier; Beuve, Monique
2015-02-01
Samples containing two viruses belonging to the genus Polerovirus, beet chlorosis virus (BChV) and beet mild yellowing virus (BMYV), were collected from French and Polish sugar beet fields. The molecular properties of 24 isolates of BChV and BMYV were investigated, and their genetic diversity was examined in the coat protein (CP)- and P0-encoding genes. For the first time, we have demonstrated that beet polerovirus populations include recombinants between BChV and BMYV containing breakpoints within the CP gene. Moreover, a partial correlation between geographic origin and phylogenetic clustering was observed for BMYV isolates.
Sequence analysis and expression of the M1 and M2 matrix protein genes of hirame rhabdovirus (HIRRV)
Nishizawa, T.; Kurath, G.; Winton, J.R.
1997-01-01
We have cloned and sequenced a 2318 nucleotide region of the genomic RNA of hirame rhabdovirus (HIRRV), an important viral pathogen of Japanese flounder Paralichthys olivaceus. This region comprises approximately two-thirds of the 3' end of the nucleocapsid protein (N) gene and the complete matrix protein (M1 and M2) genes with the associated intergenic regions. The partial N gene sequence was 812 nucleotides in length with an open reading frame (ORF) that encoded the carboxyl-terminal 250 amino acids of the N protein. The M1 and M2 genes were 771 and 700 nucleotides in length, respectively, with ORFs encoding proteins of 227 and 193 amino acids. The M1 gene sequence contained an additional small ORF that could encode a highly basic, arginine-rich protein of 25 amino acids. Comparisons of the N, M1, and M2 gene sequences of HIRRV with the corresponding sequences of the fish rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) or viral hemorrhagic septicemia virus (VHSV) indicated that HIRRV was more closely related to IHNV than to VHSV, but was clearly distinct from either. The putative consensus gene termination sequence for IHNV and VHSV, AGAYAG(A)(7), was present in the N-M1, M1-M2, and M2-G intergenic regions of HIRRV as were the putative transcription initiation sequences YGGCAC and AACA. An Escherichia coli expression system was used to produce recombinant proteins from the M1 and M2 genes of HIRRV. These were the same size as the authentic M1 and M2 proteins and reacted with anti-HIRRV rabbit serum in western blots. These reagents can be used for further study of the fish immune response and to test novel control methods.
Cherpillod, P; Tipold, A; Griot-Wenk, M; Cardozo, C; Schmid, I; Fatzer, R; Schobesberger, M; Zurbriggen, R; Bruckner, L; Roch, F; Vandevelde, M; Wittek, R; Zurbriggen, A
2000-07-01
Canine distemper virus (CDV), a member of the genus Morbillivirus induces a highly infectious, frequently lethal disease in dogs and other carnivores. Current vaccines against canine distemper consisting of attenuated viruses have been in use for many years and have greatly reduced the incidence of distemper in the dog population. However, certain strains may not guarantee adequate protection and others can induce post vaccinal encephalitis. We tested a DNA vaccine for its ability to protect dogs, the natural host of CDV, against distemper. We constructed plasmids containing the nucleocapsid, the fusion, and the attachment protein genes of a virulent canine distemper virus strain. Mice inoculated with these plasmids developed humoral and cellular immune responses against CDV antigens. Dogs immunized with the expression plasmids developed virus-neutralizing antibodies. Significantly, vaccinated dogs were protected against challenge with virulent CDV, whereas unvaccinated animals succumbed to distemper.
Canitano, Andrea; Venturi, Giulietta; Borghi, Martina; Ammendolia, Maria Grazia; Fais, Stefano
2013-09-01
EBV is a human herpesvirus associated with a number of malignancies. Both lymphoblastoid cell lines (LCLs), and EBV-infected nasopharyngeal carcinoma (NPC) cells have been demonstrated to release exosomes containing the EBV-encoded latent membrane protein 1 (LMP1), and mature micro-RNAs (EBV-miRNAs). Here we analyze the EBV protein and nucleic acid content of exosomes from different EBV-infected cells (LCL, 721 and Daudi) and we show for the first time that exosomes released from LCLs and 721 also contain EBV-encoded latent phase mRNAs. This confirms and strengthens exosomes pathogenetic potential, and might provide insights for development of novel diagnostic and therapeutic strategies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton
Chambouvet, Aurélie; Milner, David S.; Attah, Victoria; Terrado, Ramón; Lovejoy, Connie; Moreau, Hervé; Derelle, Évelyne; Richards, Thomas A.
2017-01-01
Phytoplankton community structure is shaped by both bottom–up factors, such as nutrient availability, and top–down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer. PMID:28827361
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, Sushil Kumar; Mohanty, Suchitra; Kumar, Amit
The p73 protein has structural and functional homology with the tumor suppressor p53, which plays an important role in cell cycle regulation, apoptosis, and DNA repair. The p73 locus encodes both a tumor suppressor (TAp73) and a putative oncogene (ΔNp73). p73 May play a significant role in p53-deficient lymphomas infected with Epstein–Barr virus (EBV). EBV produces an asymptomatic infection in the majority of the global population, but it is associated with several human B-cell malignancies. The EBV-encoded Epstein–Barr virus nuclear antigen 3C (EBNA3C) is thought to disrupt the cell cycle checkpoint by interacting directly with p53 family proteins. Doxorubicin, amore » commonly used chemotherapeutic agent, induces apoptosis through p53 and p73 signaling such that the lowΔNp73 level promotes the p73-mediated intrinsic pathway of apoptosis. In this report, we investigated the mechanism by which EBV infection counters p73α-induced apoptosis through EBNA3C. - Highlights: • EBV-encoded EBNA3C suppresses doxorubicin-induced apoptosis in B-cell lymphomas. • EBNA3C binds to p73 to suppress its apoptotic effect. • EBNA3C maintains latency by regulating downstream mitochondrial pathways.« less
Michael, Bindhu; Nair, Amithraj; Lairmore, Michael D.
2010-01-01
Human T-cell lymphotropic virus type 1 (HTLV-1), causes adult T cell leukemia/lymphoma (ATLL), and initiates a variety of immune mediated disorders. The viral genome encodes common structural and enzymatic proteins characteristic of all retroviruses and utilizes alternative splicing and alternate codon usage to make several regulatory and accessory proteins encoded in the pX region (pX ORF I to IV). Recent studies indicate that the accessory proteins p12I, p27I, p13II, and p30II, encoded by pX ORF I and II, contribute to viral replication and the ability of the virus to maintain typical in vivo expression levels. Proviral clones that are mutated in either pX ORF I or II, while fully competent in cell culture, are severely limited in their replicative capacity in a rabbit model. These HTLV-1 accessory proteins are critical for establishment of viral infectivity, enhance T- lymphocyte activation and potentially alter gene transcription and mitochondrial function. HTLV-1 pX ORF I expression is critical to the viral infectivity in resting primary lymphocytes suggesting a role for the calcineurin-binding protein p12I in lymphocyte activation. The endoplasmic reticulum and cis-Golgi localizing p12I activates NFAT, a key T cell transcription factor, through calcium-mediated signaling pathways and may lower the threshold of lymphocyte activation via the JAK/STAT pathway. In contrast p30II localizes to the nucleus and represses viral promoter activity, but may regulate cellular gene expression through p300/CBP or related co-activators of transcription. The mitochondrial localizing p13II induces morphologic changes in the organelle and may influence energy metabolism infected cells. Future studies of the molecular details HTLV-1 “accessory” proteins interactions will provide important new directions for investigations of HTLV-1 and related viruses associated with lymphoproliferative diseases. Thus, the accessory proteins of HTLV-1, once thought to be dispensable for viral replication, have proven to be directly involved in viral spread in vivo and represent potential targets for therapeutic intervention against HTLV-1 infection and disease. PMID:15358581
Lai, Qingying; Wu, Wenbi; Li, Ao; Wang, Wei; Yuan, Meijin; Yang, Kai
2018-05-01
Encapsidation of the viral genomes, leading to the assembly of the nucleocapsids to form infectious progeny virions, is a key step in many virus life cycles. Baculovirus nucleocapsid assembly is a complex process that involves many proteins. Our previous studies showed that the deletion of the core gene 38K ( ac98 ) interrupted the nucleocapsid assembly by producing capsid sheaths devoid of viral genomes by an unknown mechanism. All homologs of 38K contain conserved motifs of the haloacid dehalogenase superfamily, which are involved in phosphoryl transfer. The requirements of these motifs for nucleocapsid assembly, confirmed in the present study, suggest that 38K may be a functioning haloacid dehalogenase. P6.9 is also encoded by a core gene ( ac100 ) and is required for viral genome encapsidation. It has been reported that multiple phosphorylated species of P6.9 are present in virus-infected cells, while only an unphosphorylated species is detected in the budded virus. Therefore, whether 38K mediates the dephosphorylation of P6.9 was investigated. An additional phosphorylated species of P6.9 in 38K -deleted or -mutated virus-transfected cells was detected, and the dephosphorylated sites mediated by 38K were determined by mass spectrometry. To assess the effects of dephosphorylation of P6.9 mediated by 38K on virus replication, these sites were mutated to glutamic acids (phosphorylation-mimic mutant) or to alanines (phosphorylation-deficient mutant). Studies showed that the nucleocapsid assembly was interrupted in phosphorylation-mimic mutant virus-transfected cells. Taken together, our findings demonstrate that 38K mediates the dephosphorylation of specific sites at the C terminus of P6.9, which is essential for viral genome encapsidation. IMPORTANCE Genome packaging is a fundamental process in the virus life cycle, and viruses have different strategies to perform this step. For several double-stranded DNA (dsDNA) viruses, the procapsid is formed before genome encapsidation, which may require basic proteins that help to neutralize the nucleic acid charge repulsion to facilitate the compaction of the genome within the confined capsid space. Baculovirus encodes a small basic protein, P6.9, which is required for a variety of processes in the virus infection cycle. The phosphorylation of P6.9 is thought to result in nucleocapsid uncoating, while the dephosphorylation of P6.9 is involved in viral DNA encapsidation during nucleocapsid assembly. Here, we demonstrate that a haloacid dehalogenase homolog encoded by baculovirus core gene 38K is involved in nucleocapsid assembly by mediating the dephosphorylation of 5 specific sites at the C terminus of P6.9. This finding contributes to the understanding of the mechanisms of virus nucleocapsid assembly. Copyright © 2018 Lai et al.
Lai, Qingying; Li, Ao; Wang, Wei; Yuan, Meijin
2018-01-01
ABSTRACT Encapsidation of the viral genomes, leading to the assembly of the nucleocapsids to form infectious progeny virions, is a key step in many virus life cycles. Baculovirus nucleocapsid assembly is a complex process that involves many proteins. Our previous studies showed that the deletion of the core gene 38K (ac98) interrupted the nucleocapsid assembly by producing capsid sheaths devoid of viral genomes by an unknown mechanism. All homologs of 38K contain conserved motifs of the haloacid dehalogenase superfamily, which are involved in phosphoryl transfer. The requirements of these motifs for nucleocapsid assembly, confirmed in the present study, suggest that 38K may be a functioning haloacid dehalogenase. P6.9 is also encoded by a core gene (ac100) and is required for viral genome encapsidation. It has been reported that multiple phosphorylated species of P6.9 are present in virus-infected cells, while only an unphosphorylated species is detected in the budded virus. Therefore, whether 38K mediates the dephosphorylation of P6.9 was investigated. An additional phosphorylated species of P6.9 in 38K-deleted or -mutated virus-transfected cells was detected, and the dephosphorylated sites mediated by 38K were determined by mass spectrometry. To assess the effects of dephosphorylation of P6.9 mediated by 38K on virus replication, these sites were mutated to glutamic acids (phosphorylation-mimic mutant) or to alanines (phosphorylation-deficient mutant). Studies showed that the nucleocapsid assembly was interrupted in phosphorylation-mimic mutant virus-transfected cells. Taken together, our findings demonstrate that 38K mediates the dephosphorylation of specific sites at the C terminus of P6.9, which is essential for viral genome encapsidation. IMPORTANCE Genome packaging is a fundamental process in the virus life cycle, and viruses have different strategies to perform this step. For several double-stranded DNA (dsDNA) viruses, the procapsid is formed before genome encapsidation, which may require basic proteins that help to neutralize the nucleic acid charge repulsion to facilitate the compaction of the genome within the confined capsid space. Baculovirus encodes a small basic protein, P6.9, which is required for a variety of processes in the virus infection cycle. The phosphorylation of P6.9 is thought to result in nucleocapsid uncoating, while the dephosphorylation of P6.9 is involved in viral DNA encapsidation during nucleocapsid assembly. Here, we demonstrate that a haloacid dehalogenase homolog encoded by baculovirus core gene 38K is involved in nucleocapsid assembly by mediating the dephosphorylation of 5 specific sites at the C terminus of P6.9. This finding contributes to the understanding of the mechanisms of virus nucleocapsid assembly. PMID:29444944
Suomalainen, Maarit; Zheng, Yueting; Boucke, Karin
2017-01-01
The Adenovirus (Ad) genome within the capsid is tightly associated with a virus-encoded, histone-like core protein—protein VII. Two other Ad core proteins, V and X/μ, also are located within the virion and are loosely associated with viral DNA. Core protein VII remains associated with the Ad genome during the early phase of infection. It is not known if naked Ad DNA is packaged into the capsid, as with dsDNA bacteriophage and herpesviruses, followed by the encapsidation of viral core proteins, or if a unique packaging mechanism exists with Ad where a DNA-protein complex is simultaneously packaged into the virion. The latter model would require an entirely new molecular mechanism for packaging compared to known viral packaging motors. We characterized a virus with a conditional knockout of core protein VII. Remarkably, virus particles were assembled efficiently in the absence of protein VII. No changes in protein composition were evident with VII−virus particles, including the abundance of core protein V, but changes in the proteolytic processing of some capsid proteins were evident. Virus particles that lack protein VII enter the cell, but incoming virions did not escape efficiently from endosomes. This greatly diminished all subsequent aspects of the infectious cycle. These results reveal that the Ad major core protein VII is not required to condense viral DNA within the capsid, but rather plays an unexpected role during virus maturation and the early stages of infection. These results establish a new paradigm pertaining to the Ad assembly mechanism and reveal a new and important role of protein VII in early stages of infection. PMID:28628648
Kiraga, Joanna; Mackiewicz, Pawel; Mackiewicz, Dorota; Kowalczuk, Maria; Biecek, Przemysław; Polak, Natalia; Smolarczyk, Kamila; Dudek, Miroslaw R; Cebrat, Stanislaw
2007-01-01
Background The distribution of isoelectric point (pI) of proteins in a proteome is universal for all organisms. It is bimodal dividing the proteome into two sets of acidic and basic proteins. Different species however have different abundance of acidic and basic proteins that may be correlated with taxonomy, subcellular localization, ecological niche of organisms and proteome size. Results We have analysed 1784 proteomes encoded by chromosomes of Archaea, Bacteria, Eukaryota, and also mitochondria, plastids, prokaryotic plasmids, phages and viruses. We have found significant correlation in more than 95% of proteomes between the protein length and pI in proteomes – positive for acidic proteins and negative for the basic ones. Plastids, viruses and plasmids encode more basic proteomes while chromosomes of Archaea, Bacteria, Eukaryota, mitochondria and phages more acidic ones. Mitochondrial proteomes of Viridiplantae, Protista and Fungi are more basic than Metazoa. It results from the presence of basic proteins in the former proteomes and their absence from the latter ones and is related with reduction of metazoan genomes. Significant correlation was found between the pI bias of proteomes encoded by prokaryotic chromosomes and proteomes encoded by plasmids but there is no correlation between eukaryotic nuclear-coded proteomes and proteomes encoded by organelles. Detailed analyses of prokaryotic proteomes showed significant relationships between pI distribution and habitat, relation to the host cell and salinity of the environment, but no significant correlation with oxygen and temperature requirements. The salinity is positively correlated with acidicity of proteomes. Host-associated organisms and especially intracellular species have more basic proteomes than free-living ones. The higher rate of mutations accumulation in the intracellular parasites and endosymbionts is responsible for the basicity of their tiny proteomes that explains the observed positive correlation between the decrease of genome size and the increase of basicity of proteomes. The results indicate that even conserved proteins subjected to strong selectional constraints follow the global trend in the pI distribution. Conclusion The distribution of pI of proteins in proteomes shows clear relationships with length of proteins, subcellular localization, taxonomy and ecology of organisms. The distribution is also strongly affected by mutational pressure especially in intracellular organisms. PMID:17565672
Influenza A Virus NS1 Protein Promotes Efficient Nuclear Export of Unspliced Viral M1 mRNA.
Pereira, Carina F; Read, Eliot K C; Wise, Helen M; Amorim, Maria J; Digard, Paul
2017-08-01
Influenza A virus mRNAs are transcribed by the viral RNA-dependent RNA polymerase in the cell nucleus before being exported to the cytoplasm for translation. Segment 7 produces two major transcripts: an unspliced mRNA that encodes the M1 matrix protein and a spliced transcript that encodes the M2 ion channel. Export of both mRNAs is dependent on the cellular NXF1/TAP pathway, but it is unclear how they are recruited to the export machinery or how the intron-containing but unspliced M1 mRNA bypasses the normal quality-control checkpoints. Using fluorescent in situ hybridization to monitor segment 7 mRNA localization, we found that cytoplasmic accumulation of unspliced M1 mRNA was inefficient in the absence of NS1, both in the context of segment 7 RNPs reconstituted by plasmid transfection and in mutant virus-infected cells. This effect was independent of any major effect on steady-state levels of segment 7 mRNA or splicing but corresponded to a ∼5-fold reduction in the accumulation of M1. A similar defect in intronless hemagglutinin (HA) mRNA nuclear export was seen with an NS1 mutant virus. Efficient export of M1 mRNA required both an intact NS1 RNA-binding domain and effector domain. Furthermore, while wild-type NS1 interacted with cellular NXF1 and also increased the interaction of segment 7 mRNA with NXF1, mutant NS1 polypeptides unable to promote mRNA export did neither. Thus, we propose that NS1 facilitates late viral gene expression by acting as an adaptor between viral mRNAs and the cellular nuclear export machinery to promote their nuclear export. IMPORTANCE Influenza A virus is a major pathogen of a wide variety of mammalian and avian species that threatens public health and food security. A fuller understanding of the virus life cycle is important to aid control strategies. The virus has a small genome that encodes relatively few proteins that are often multifunctional. Here, we characterize a new function for the NS1 protein, showing that, as well as previously identified roles in antagonizing the innate immune defenses of the cell and directly upregulating translation of viral mRNAs, it also promotes the nuclear export of the viral late gene mRNAs by acting as an adaptor between the viral mRNAs and the cellular mRNA nuclear export machinery. Copyright © 2017 Pereira et al.
Molecular Basis of Latency in Pathogenic Human Viruses
NASA Astrophysics Data System (ADS)
Garcia-Blanco, Mariano A.; Cullen, Bryan R.
1991-11-01
Several human viruses are able to latently infect specific target cell populations in vivo. Analysis of the replication cycles of herpes simplex virus, Epstein-Barr virus, and human immunodeficiency virus suggests that the latent infections established by these human pathogens primarily result from a lack of host factors critical for the expression of viral early gene products. The subsequent activation of specific cellular transcription factors in response to extracellular stimuli can induce the expression of these viral regulatory proteins and lead to a burst of lytic viral replication. Latency in these eukaryotic viruses therefore contrasts with latency in bacteriophage, which is maintained primarily by the expression of virally encoded repressors of lytic replication.
Prangishvili, David; Vestergaard, Gisle; Häring, Monika; Aramayo, Ricardo; Basta, Tamara; Rachel, Reinhard; Garrett, Roger A
2006-06-23
A novel virus, ATV, of the hyperthermophilic archaeal genus Acidianus has the unique property of undergoing a major morphological development outside of, and independently of, the host cell. Virions are extruded from host cells as lemon-shaped tail-less particles, after which they develop long tails at each pointed end, at temperatures close to that of the natural habitat, 85 degrees C. The extracellularly developed tails constitute tubes, which terminate in an anchor-like structure that is not observed in the tail-less particles. A thin filament is located within the tube, which exhibits a periodic structure. Tail development produces a one half reduction in the volume of the virion, concurrent with a slight expansion of the virion surface. The circular, double-stranded DNA genome contains 62,730 bp and is exceptional for a crenarchaeal virus in that it carries four putative transposable elements as well as genes, which previously have been associated only with archaeal self-transmissable plasmids. In total, it encodes 72 predicted proteins, including 11 structural proteins with molecular masses in the range of 12 to 90 kDa. Several of the larger proteins are rich in coiled coil and/or low complexity sequence domains, which are unusual for archaea. One protein, in particular P800, resembles an intermediate filament protein in its structural properties. It is modified in the two-tailed, but not in the tail-less, virion particles and it may contribute to viral tail development. Exceptionally for a crenarchaeal virus, infection with ATV results either in viral replication and subsequent cell lysis or in conversion of the infected cell to a lysogen. The lysogenic cycle involves integration of the viral genome into the host chromosome, probably facilitated by the virus-encoded integrase and this process can be interrupted by different stress factors.
Reynolds, Sara E; Earl, Patricia L; Minai, Mahnaz; Moore, Ian; Moss, Bernard
2017-01-15
Most poxviruses encode a homolog of a ~200,000-kDa membrane protein originally identified in variola virus. We investigated the importance of the ectromelia virus (ECTV) homolog C15 in a natural infection model. In cultured mouse cells, the replication of a mutant virus with stop codons near the N-terminus (ECTV-C15Stop) was indistinguishable from a control virus (ECTV-C15Rev). However, for a range of doses injected into the footpads of BALB/c mice there was less mortality with the mutant. Similar virus loads were present at the site of infection with mutant or control virus whereas there was less ECTV-C15Stop in popliteal and inguinal lymph nodes, spleen and liver indicating decreased virus spread and replication. The latter results were supported by immunohistochemical analyses. Decreased spread was evidently due to immune modulatory activity of C15, rather than to an intrinsic viral function, as the survival of infected mice depended on CD4+ and CD8+ T cells. Published by Elsevier Inc.
Bejerman, Nicolás; de Breuil, Soledad; Nome, Claudia
2018-06-06
A single-stranded DNA (ssDNA) virus was detected in Yerba mate samples showing chlorotic linear patterns, chlorotic rings and vein yellowing. The full-genome sequences of six different isolates of this ssDNA circular virus were obtained, which share > 99% sequence identity with each other. The newly identified virus has been tentatively named as yerba mate-associated circular DNA virus (YMaCV). The 2707 nt-long viral genome has two and three open reading frame on its complementary and virion-sense strands, respectively. The coat protein is more similar to that of mastreviruses (44% identity), whereas the replication-associated protein of YMaCV is more similar (49% identity) to that encoded by a recently described, unclassified ssDNA virus isolated on trees in Brazil. This is the first report of a circular DNA virus associated with yerba mate. Its unique genome organization and phylogenetic relationships indicates that YMaCV represents a distinct evolutionary lineage within the ssDNA viruses and therefore this virus should be classified as a member of a new species within an unassigned genus or family.
Dynamic Virus-Dependent Subnuclear Localization of the Capsid Protein from a Geminivirus
Wang, Liping; Tan, Huang; Wu, Mengshi; Jimenez-Gongora, Tamara; Tan, Li; Lozano-Duran, Rosa
2017-01-01
Viruses are intracellular parasites with a nucleic acid genome and a proteinaceous capsid. Viral capsids are formed of at least one virus-encoded capsid protein (CP), which is often multifunctional, playing additional non-structural roles during the infection cycle. In animal viruses, there are examples of differential localization of CPs associated to the progression of the infection and/or enabled by other viral proteins; these changes in the distribution of CPs may ultimately regulate the involvement of these proteins in different viral functions. In this work, we analyze the subcellular localization of a GFP- or RFP-fused CP from the plant virus Tomato yellow leaf curl virus (TYLCV; Fam. Geminiviridae) in the presence or absence of the virus upon transient expression in the host plants Nicotiana benthamiana and tomato. Our findings show that, in agreement with previous reports, when the CP is expressed alone it localizes mainly in the nucleolus and weakly in the nucleoplasm. Interestingly, the presence of the virus causes the sequential re-localization of the CP outside of the nucleolus and into discrete nuclear foci and, eventually, into an uneven distribution in the nucleoplasm. Expression of the viral replication-associated protein, Rep, is sufficient to exclude the CP from the nucleolus, but the localization of the CP in the characteristic patterns induced by the virus cannot be recapitulated by co-expression with any individual viral protein. Our results demonstrate that the subcellular distribution of the CP is a dynamic process, temporally regulated throughout the progression of the infection. The regulation of the localization of the CP is determined by the presence of other viral components or changes in the cellular environment induced by the virus, and is likely to contribute to the multifunctionality of this protein. Bearing in mind these observations, we suggest that viral proteins should be studied in the context of the infection and considering the temporal dimension in order to comprehensively understand their roles and effects in the interaction between virus and host. PMID:29312406
Jagdeo, Julienne M; Dufour, Antoine; Klein, Theo; Solis, Nestor; Kleifeld, Oded; Kizhakkedathu, Jayachandran; Luo, Honglin; Overall, Christopher M; Jan, Eric
2018-04-15
Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed t erminal a mine i sotopic l abeling of s ubstrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3C pro s) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3C pro in vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3C pro -targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3C pro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3C pro substrates in vivo , we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner. IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection. Although several host protein targets have been identified, the entire list of proteins that are targeted is not known. In this study, we used a novel unbiased proteomics approach to identify ∼100 novel host targets of the enterovirus 3C protease, thus providing further insights into the network of cellular pathways that are modulated to promote virus infection. Copyright © 2018 Jagdeo et al.
Bird, Brian H.; Albariño, César G.; Hartman, Amy L.; Erickson, Bobbie Rae; Ksiazek, Thomas G.; Nichol, Stuart T.
2008-01-01
Rift Valley fever (RVF) virus is a mosquito-borne human and veterinary pathogen associated with large outbreaks of severe disease throughout Africa and more recently the Arabian peninsula. Infection of livestock can result in sweeping “abortion storms” and high mortality among young animals. Human infection results in self-limiting febrile disease that in ∼1 to 2% of patients progresses to more serious complications including hepatitis, encephalitis, and retinitis or a hemorrhagic syndrome with high fatality. The virus S segment-encoded NSs and the M segment-encoded NSm proteins are important virulence factors. The development of safe, effective vaccines and tools to screen and evaluate antiviral compounds is critical for future control strategies. Here, we report the successful reverse genetics generation of multiple recombinant enhanced green fluorescent protein-tagged RVF viruses containing either the full-length, complete virus genome or precise deletions of the NSs gene alone or the NSs/NSm genes in combination, thus creating attenuating deletions on multiple virus genome segments. These viruses were highly attenuated, with no detectable viremia or clinical illness observed with high challenge dosages (1.0 × 104 PFU) in the rat lethal disease model. A single-dose immunization regimen induced robust anti-RVF virus immunoglobulin G antibodies (titer, ∼1:6,400) by day 26 postvaccination. All vaccinated animals that were subsequently challenged with a high dose of virulent RVF virus survived infection and could be serologically differentiated from naïve, experimentally infected animals by the lack of NSs antibodies. These rationally designed marker RVF vaccine viruses will be useful tools for in vitro screening of therapeutic compounds and will provide a basis for further development of RVF virus marker vaccines for use in endemic regions or following the natural or intentional introduction of the virus into previously unaffected areas. PMID:18199647
Rennick, Linda J; Duprex, W Paul; Rima, Bert K
2007-10-01
Transcription from morbillivirus genomes commences at a single promoter in the 3' non-coding terminus, with the six genes being transcribed sequentially. The 3' and 5' untranslated regions (UTRs) of the genes (mRNA sense), together with the intergenic trinucleotide spacer, comprise the non-coding sequences (NCS) of the virus and contain the conserved gene end and gene start signals, respectively. Bicistronic minigenomes containing transcription units (TUs) encoding autofluorescent reporter proteins separated by measles virus (MV) NCS were used to give a direct estimation of gene expression in single, living cells by assessing the relative amounts of each fluorescent protein in each cell. Initially, five minigenomes containing each of the MV NCS were generated. Assays were developed to determine the amount of each fluorescent protein in cells at both cell population and single-cell levels. This revealed significant variations in gene expression between cells expressing the same NCS-containing minigenome. The minigenome containing the M/F NCS produced significantly lower amounts of fluorescent protein from the second TU (TU2), compared with the other minigenomes. A minigenome with a truncated F 5' UTR had increased expression from TU2. This UTR is 524 nt longer than the other MV 5' UTRs. Insertions into the 5' UTR of the enhanced green fluorescent protein gene in the minigenome containing the N/P NCS showed that specific sequences, rather than just the additional length of F 5' UTR, govern this decreased expression from TU2.
Soni, Smita P; Stahelin, Robert V
2014-11-28
Ebola virus is from the Filoviridae family of viruses and is one of the most virulent pathogens known with ∼ 60% clinical fatality. The Ebola virus negative sense RNA genome encodes seven proteins including viral matrix protein 40 (VP40), which is the most abundant protein found in the virions. Within infected cells VP40 localizes at the inner leaflet of the plasma membrane (PM), binds lipids, and regulates formation of new virus particles. Expression of VP40 in mammalian cells is sufficient to form virus-like particles that are nearly indistinguishable from the authentic virions. However, how VP40 interacts with the PM and forms virus-like particles is for the most part unknown. To investigate VP40 lipid specificity in a model of viral egress we employed giant unilamellar vesicles with different lipid compositions. The results demonstrate VP40 selectively induces vesiculation from membranes containing phosphatidylserine (PS) at concentrations of PS that are representative of the PM inner leaflet content. The formation of intraluminal vesicles was not significantly detected in the presence of other important PM lipids including cholesterol and polyvalent phosphoinositides, further demonstrating PS selectivity. Taken together, these studies suggest that PM phosphatidylserine may be an important component of Ebola virus budding and that VP40 may be able to mediate PM scission. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Molecular Genetic Analysis of Orf Virus: A Poxvirus That Has Adapted to Skin
Fleming, Stephen B.; Wise, Lyn M.; Mercer, Andrew A.
2015-01-01
Orf virus is the type species of the Parapoxvirus genus of the family Poxviridae. It induces acute pustular skin lesions in sheep and goats and is transmissible to humans. The genome is G+C rich, 138 kbp and encodes 132 genes. It shares many essential genes with vaccinia virus that are required for survival but encodes a number of unique factors that allow it to replicate in the highly specific immune environment of skin. Phylogenetic analysis suggests that both viral interleukin-10 and vascular endothelial growth factor genes have been “captured” from their host during the evolution of the parapoxviruses. Genes such as a chemokine binding protein and a protein that binds granulocyte-macrophage colony-stimulating factor and interleukin-2 appear to have evolved from a common poxvirus ancestral gene while three parapoxvirus nuclear factor (NF)-κB signalling pathway inhibitors have no homology to other known NF-κB inhibitors. A homologue of an anaphase-promoting complex subunit that is believed to manipulate the cell cycle and enhance viral DNA synthesis appears to be a specific adaptation for viral-replication in keratinocytes. The review focuses on the unique genes of orf virus, discusses their evolutionary origins and their role in allowing viral-replication in the skin epidermis. PMID:25807056
Production of pseudoinfectious yellow fever virus with a two-component genome.
Shustov, Alexandr V; Mason, Peter W; Frolov, Ilya
2007-11-01
Application of genetically modified, deficient-in-replication flaviviruses that are incapable of developing productive, spreading infection is a promising means of designing safe and effective vaccines. Here we describe a two-component genome yellow fever virus (YFV) replication system in which each of the genomes encodes complete sets of nonstructural proteins that form the replication complex but expresses either only capsid or prM/E instead of the entire structural polyprotein. Upon delivery to the same cell, these genomes produce together all of the viral structural proteins, and cells release a combination of virions with both types of genomes packaged into separate particles. In tissue culture, this modified YFV can be further passaged at an escalating scale by using a high multiplicity of infection (MOI). However, at a low MOI, only one of the genomes is delivered into the cells, and infection cannot spread. The replicating prM/E-encoding genome produces extracellular E protein in the form of secreted subviral particles that are known to be an effective immunogen. The presented strategy of developing viruses defective in replication might be applied to other flaviviruses, and these two-component genome viruses can be useful for diagnostic or vaccine applications, including the delivery and expression of heterologous genes. In addition, the achieved separation of the capsid-coding sequence and the cyclization signal in the YFV genome provides a new means for studying the mechanism of the flavivirus packaging process.
Nieto-Torres, Jose L.; DeDiego, Marta L.; Verdiá-Báguena, Carmina; Jimenez-Guardeño, Jose M.; Regla-Nava, Jose A.; Fernandez-Delgado, Raul; Castaño-Rodriguez, Carlos; Alcaraz, Antonio; Torres, Jaume; Aguilella, Vicente M.; Enjuanes, Luis
2014-01-01
Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) envelope (E) gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC) activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS) leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1β were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1β was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS-CoV virulence. PMID:24788150
Dreyfus, David H.
2009-01-01
Background The RAG encoded proteins, RAG-1 and RAG-2 regulate site-specific recombination events in somatic immune B- and T-lymphocytes to generate the acquired immune repertoire. Catalytic activities of the RAG proteins are related to the recombinase functions of a pre-existing mobile DNA element in the DDE recombinase/RNAse H family, sometimes termed the “RAG transposon”. Methodology/Principal Findings Novel to this work is the suggestion that the DDE recombinase responsible for the origins of acquired immunity was encoded by a primordial herpes virus, rather than a “RAG transposon.” A subsequent “arms race” between immunity to herpes infection and the immune system obscured primary amino acid similarities between herpes and immune system proteins but preserved regulatory, structural and functional similarities between the respective recombinase proteins. In support of this hypothesis, evidence is reviewed from previous published data that a modern herpes virus protein family with properties of a viral recombinase is co-regulated with both RAG-1 and RAG-2 by closely linked cis-acting co-regulatory sequences. Structural and functional similarity is also reviewed between the putative herpes recombinase and both DDE site of the RAG-1 protein and another DDE/RNAse H family nuclease, the Argonaute protein component of RISC (RNA induced silencing complex). Conclusions/Significance A “co-regulatory” model of the origins of V(D)J recombination and the acquired immune system can account for the observed linked genomic structure of RAG-1 and RAG-2 in non-vertebrate organisms such as the sea urchin that lack an acquired immune system and V(D)J recombination. Initially the regulated expression of a viral recombinase in immune cells may have been positively selected by its ability to stimulate innate immunity to herpes virus infection rather than V(D)J recombination Unlike the “RAG-transposon” hypothesis, the proposed model can be readily tested by comparative functional analysis of herpes virus replication and V(D)J recombination. PMID:19492059
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hipp, Katharina; Rau, Peter; Schäfer, Benjamin
Geminiviruses, single-stranded DNA plant viruses, encode a replication-initiator protein (Rep) that is indispensable for virus replication. A potential cyclin interaction motif (RXL) in the sequence of African cassava mosaic virus Rep may be an alternative link to cell cycle controls to the known interaction with plant homologs of retinoblastoma protein (pRBR). Mutation of this motif abrogated rereplication in fission yeast induced by expression of wildtype Rep suggesting that Rep interacts via its RXL motif with one or several yeast proteins. The RXL motif is essential for viral infection of Nicotiana benthamiana plants, since mutation of this motif in infectious clonesmore » prevented any symptomatic infection. The cell-cycle link (Clink) protein of a nanovirus (faba bean necrotic yellows virus) was investigated that activates the cell cycle by binding via its LXCXE motif to pRBR. Expression of wildtype Clink and a Clink mutant deficient in pRBR-binding did not trigger rereplication in fission yeast. - Highlights: • A potential cyclin interaction motif is conserved in geminivirus Rep proteins. • In ACMV Rep, this motif (RXL) is essential for rereplication of fission yeast DNA. • Mutating RXL abrogated viral infection completely in Nicotiana benthamiana. • Expression of a nanovirus Clink protein in yeast did not induce rereplication. • Plant viruses may have evolved multiple routes to exploit host DNA synthesis.« less
Smith, A R; Boursnell, M E; Binns, M M; Brown, T D; Inglis, S C
1990-01-01
Nucleotide sequences from the third open reading frame of mRNA D (D3) of infectious bronchitis virus (IBV) were expressed in bacteria as part of a fusion protein with beta-galactosidase. Antiserum raised in rabbits against this fusion protein immunoprecipitated from IBV-infected chick kidney or Vero cells a polypeptide of 12.4K, the size expected for a D3-encoded product. The D3 polypeptide is apparently non-glycosylated, and appears to be associated with the membrane fraction of infected cells, as judged by cell fractionation and immunofluorescence.
In planta expression of HIV-1 p24 protein using an RNA plant virus-based expression vector.
Zhang, G; Leung, C; Murdin, L; Rovinski, B; White, K A
2000-02-01
Plant viruses show significant potential as expression vectors for the production of foreign proteins (e.g., antigens) in plants. The HIV-1 p24 nucleocapsid protein is an important early marker of HIV infection and has been used as an antigen in the development of HIV vaccines. Toward developing a plant-based expression system for the production of p24, we have investigated the use of a (positive)-strand RNA plant virus, tomato bushy stunt virus (TBSV), as an expression vector. The HIV p24 open reading frame (ORF) was introduced into a cloned cDNA copy of the TBSV genome as an in-frame fusion with a 5'-terminal portion of the TBSV coat protein ORF. In vitro-generated RNA transcripts corresponding to the engineered virus vector were infectious when inoculated into plant protoplasts; Northern and Western blot analyses verified the accumulation of a predicted p24-encoding viral subgenomic mRNA and the production of p24 fusion product. Whole-plant infections with the viral vector led to the accumulation of p24 fusion protein in inoculated leaves, which cross-reacted with p24-specific antibodies, thus confirming the maintenance of key antigenic determinants. This study is the first to demonstrate that TBSV can be engineered to express a complete foreign protein of clinical importance. Strategies for optimizing protein yield from this viral vector are discussed.
Beissert, Tim; Koste, Lars; Perkovic, Mario; Walzer, Kerstin C.; Erbar, Stephanie; Selmi, Abderraouf; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur
2017-01-01
Among nucleic acid–based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdown. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation, this study co-delivered non-replicating mRNA encoding vaccinia virus immune evasion proteins E3, K3, and B18. It was shown that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of interferon (IFN)-β upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, the study achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, and reduce the effective dose and correspondingly the cost of goods of manufacture in the various fields where saRNA utilization is envisioned. PMID:28877647
Beissert, Tim; Koste, Lars; Perkovic, Mario; Walzer, Kerstin C; Erbar, Stephanie; Selmi, Abderraouf; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur
2017-12-01
Among nucleic acid-based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdown. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation, this study co-delivered non-replicating mRNA encoding vaccinia virus immune evasion proteins E3, K3, and B18. It was shown that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of interferon (IFN)-β upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, the study achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, and reduce the effective dose and correspondingly the cost of goods of manufacture in the various fields where saRNA utilization is envisioned.
Spehner, D; De Carlo, S; Drillien, R; Weiland, F; Mildner, K; Hanau, D; Rziha, H-J
2004-08-01
Parapoxviruses can be morphologically distinguished from other poxviruses in conventional negative staining electron microscopy (EM) by their ovoid appearance and the spiral tubule surrounding the virion's surface. However, this technique may introduce artifacts. We have examined Orf virus (ORFV; the prototype species of the Parapoxvirus genus) by cryoelectron microscopy (cryo-EM) and cryo-negative staining EM. From these studies we suggest that the shape and unique spiral tubule are authentic features of the parapoxviruses. We also constructed an ORFV mutant deleted of a gene encoding a 10-kDa protein, which is an orthologue of the vaccinia virus (VACV) 14-kDa fusion protein, and investigated its ultrastructure. This mutant virus multiplied slowly in permissive cells and produced infectious but morphologically aberrant particles. Mutant virions lacked the spiral tubule but displayed short disorganized tubules similar to those observed on the surface of VACV. In addition, thin extensions or loop-like structures were appended to the ORFV mutant particles. We suggest that these appended structures arise from a failure of the mutant virus particles to properly seal and that the sealing activity is dependent on the 10-kDa protein.
Estevez, Carlos; Villegas, Pedro
2006-06-01
Recombinant avian adeno-associated viruses coding for the LacZ gene were used to inoculate embryonating chicken eggs, to assess the usefulness of the system for the expression of a transgene in vivo. The results obtained indicate significantly higher levels of expression of the reporter gene at various time intervals in the embryos inoculated with the recombinant virus in comparison with the mock-inoculated controls. At the embryo level, significant differences were evident at 120 hr postinoculation; hatched chicks showed transgene expression up to 14 days of age. In a second experiment, different cell-line cultures were transfected with plasmids encoding for a reporter gene flanked by the avian adeno-associated virus inverted terminal repeats (ITR), either alone or in the presence of the major nonstructural proteins of the virus (Rep 78/68) to assess the ability of these proteins and DNA elements to enhance gene expression. Results indicate that the inclusion of the viral ITR alone or during coexpression of the Rep proteins significantly enhances the expression of the transgene in all cell lines tested, as evidenced by the detection of the beta-galacrosidase protein through chemiluminescence reactions and staining of transfected monolayers.
Matrix proteins of Nipah and Hendra viruses interact with beta subunits of AP-3 complexes.
Sun, Weina; McCrory, Thomas S; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell; Schmitt, Anthony P
2014-11-01
Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people, and smaller outbreaks have since occurred in Bangladesh and India. In this study, we have defined, for the first time, host factors that interact with henipavirus M proteins and contribute to viral particle assembly. We have also defined a new host protein-viral protein binding interface that can potentially be targeted for the inhibition of paramyxovirus infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Matrix Proteins of Nipah and Hendra Viruses Interact with Beta Subunits of AP-3 Complexes
Sun, Weina; McCrory, Thomas S.; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell
2014-01-01
ABSTRACT Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. IMPORTANCE Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people, and smaller outbreaks have since occurred in Bangladesh and India. In this study, we have defined, for the first time, host factors that interact with henipavirus M proteins and contribute to viral particle assembly. We have also defined a new host protein-viral protein binding interface that can potentially be targeted for the inhibition of paramyxovirus infections. PMID:25210190
Scholte, Florine E M; Zivcec, Marko; Dzimianski, John V; Deaton, Michelle K; Spengler, Jessica R; Welch, Stephen R; Nichol, Stuart T; Pegan, Scott D; Spiropoulou, Christina F; Bergeron, Éric
2017-09-05
Antiviral responses are regulated by conjugation of ubiquitin (Ub) and interferon-stimulated gene 15 (ISG15) to proteins. Certain classes of viruses encode Ub- or ISG15-specific proteases belonging to the ovarian tumor (OTU) superfamily. Their activity is thought to suppress cellular immune responses, but studies demonstrating the function of viral OTU proteases during infection are lacking. Crimean-Congo hemorrhagic fever virus (CCHFV, family Nairoviridae) is a highly pathogenic human virus that encodes an OTU with both deubiquitinase and deISGylase activity as part of the viral RNA polymerase. We investigated CCHFV OTU function by inactivating protease catalytic activity or by selectively disrupting its deubiquitinase and deISGylase activity using reverse genetics. CCHFV OTU inactivation blocked viral replication independently of its RNA polymerase activity, while deubiquitinase activity proved critical for suppressing the interferon responses. Our findings provide insights into viral OTU functions and support the development of therapeutics and vaccines. Published by Elsevier Inc.
Saraiva, Margarida; Smith, Philip; Fallon, Padraic G.; Alcami, Antonio
2002-01-01
CD30 is up-regulated in several human diseases and viral infections but its role in immune regulation is poorly understood. Here, we report the expression of a functional soluble CD30 homologue, viral CD30 (vCD30), encoded by ectromelia (mousepox) virus, a poxvirus that causes a severe disease related to human smallpox. We show that vCD30 is a 12-kD secreted protein that not only binds CD30L with high affinity and prevents its interaction with CD30, but it also induces reverse signaling in cells expressing CD30L. vCD30 blocked the generation of interferon γ–producing cells in vitro and was a potent inhibitor of T helper cell (Th)1- but not Th2-mediated inflammation in vivo. The finding of a CD30 homologue encoded by ectromelia virus suggests a role for CD30 in antiviral defense. Characterization of the immunological properties of vCD30 has uncovered a role of CD30–CD30L interactions in the generation of inflammatory responses. PMID:12235215
van de Water, Sandra G. P.; Potgieter, Christiaan A.; van Rijn, Piet A.
2016-01-01
ABSTRACT The Reoviridae family consists of nonenveloped multilayered viruses with a double-stranded RNA genome consisting of 9 to 12 genome segments. The Orbivirus genus of the Reoviridae family contains African horse sickness virus (AHSV), bluetongue virus, and epizootic hemorrhagic disease virus, which cause notifiable diseases and are spread by biting Culicoides species. Here, we used reverse genetics for AHSV to study the role of outer capsid protein VP2, encoded by genome segment 2 (Seg-2). Expansion of a previously found deletion in Seg-2 indicates that structural protein VP2 of AHSV is not essential for virus replication in vitro. In addition, in-frame replacement of RNA sequences in Seg-2 by that of green fluorescence protein (GFP) resulted in AHSV expressing GFP, which further confirmed that VP2 is not essential for virus replication. In contrast to virus replication without VP2 expression in mammalian cells, virus replication in insect cells was strongly reduced, and virus release from insect cells was completely abolished. Further, the other outer capsid protein, VP5, was not copurified with virions for virus mutants without VP2 expression. AHSV without VP5 expression, however, could not be recovered, indicating that outer capsid protein VP5 is essential for virus replication in vitro. Our results demonstrate for the first time that a structural viral protein is not essential for orbivirus replication in vitro, which opens new possibilities for research on other members of the Reoviridae family. IMPORTANCE Members of the Reoviridae family cause major health problems worldwide, ranging from lethal diarrhea caused by rotavirus in humans to economic losses in livestock production caused by different orbiviruses. The Orbivirus genus contains many virus species, of which bluetongue virus, epizootic hemorrhagic disease virus, and African horse sickness virus (AHSV) cause notifiable diseases according to the World Organization of Animal Health. Recently, it has been shown that nonstructural proteins NS3/NS3a and NS4 are not essential for virus replication in vitro, whereas it is generally assumed that structural proteins VP1 to -7 of these nonenveloped, architecturally complex virus particles are essential. Here we demonstrate for the first time that structural protein VP2 of AHSV is not essential for virus replication in vitro. Our findings are very important for virologists working in the field of nonenveloped viruses, in particular reoviruses. PMID:27903804
The N-terminus of Bunyamwera orthobunyavirus NSs protein is essential for interferon antagonism.
van Knippenberg, Ingeborg; Carlton-Smith, Charlie; Elliott, Richard M
2010-08-01
Bunyamwera virus NSs protein is involved in the inhibition of cellular transcription and the interferon (IFN) response, and it interacts with the Med8 component of Mediator. A spontaneous mutant of a recombinant NSs-deleted Bunyamwera virus (rBUNdelNSs2) was identified and characterized. This mutant virus, termed mBUNNSs22, expresses a 21 aa N-terminally truncated form of NSs. Like rBUNdelNSs2, mBUNNSs22 is attenuated in IFN-deficient cells, and to a greater extent in IFN-competent cells. Both rBUNdelNSs2 and mBUNNSs22 are potent IFN inducers and their growth can be rescued by depleting cellular IRF3. Strikingly, despite encoding an NSs protein that contains the Med8 interaction domain, mBUNNSs22 fails to block RNA polymerase II activity during infection. Overall, our data suggest that both the interaction of NSs with Med8 and a novel unidentified function of the NSs N-terminus, seem necessary for Bunyamwera virus to counteract host antiviral responses.
Steel, Olivia; Kraberger, Simona; Sikorski, Alyssa; Young, Laura M; Catchpole, Ryan J; Stevens, Aaron J; Ladley, Jenny J; Coray, Dorien S; Stainton, Daisy; Dayaram, Anisha; Julian, Laurel; van Bysterveldt, Katherine; Varsani, Arvind
2016-09-01
In recent years, innovations in molecular techniques and sequencing technologies have resulted in a rapid expansion in the number of known viral sequences, in particular those with circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA genomes. CRESS DNA viruses are present in the virome of many ecosystems and are known to infect a wide range of organisms. A large number of the recently identified CRESS DNA viruses cannot be classified into any known viral families, indicating that the current view of CRESS DNA viral sequence space is greatly underestimated. Animal faecal matter has proven to be a particularly useful source for sampling CRESS DNA viruses in an ecosystem, as it is cost-effective and non-invasive. In this study a viral metagenomic approach was used to explore the diversity of CRESS DNA viruses present in the faeces of domesticated and wild animals in New Zealand. Thirty-eight complete CRESS DNA viral genomes and two circular molecules (that may be defective molecules or single components of multicomponent genomes) were identified from forty-nine individual animal faecal samples. Based on shared genome organisations and sequence similarities, eighteen of the isolates were classified as gemycircularviruses and twelve isolates were classified as smacoviruses. The remaining eight isolates lack significant sequence similarity with any members of known CRESS DNA virus groups. This research adds significantly to our knowledge of CRESS DNA viral diversity in New Zealand, emphasising the prevalence of CRESS DNA viruses in nature, and reinforcing the suggestion that a large proportion of CRESS DNA viruses are yet to be identified. Copyright © 2016 Elsevier B.V. All rights reserved.
Legendre, Matthieu; Bartoli, Julia; Shmakova, Lyubov; Jeudy, Sandra; Labadie, Karine; Adrait, Annie; Lescot, Magali; Poirot, Olivier; Bertaux, Lionel; Bruley, Christophe; Couté, Yohann; Rivkina, Elizaveta; Abergel, Chantal; Claverie, Jean-Michel
2014-01-01
The largest known DNA viruses infect Acanthamoeba and belong to two markedly different families. The Megaviridae exhibit pseudo-icosahedral virions up to 0.7 μm in diameter and adenine–thymine (AT)-rich genomes of up to 1.25 Mb encoding a thousand proteins. Like their Mimivirus prototype discovered 10 y ago, they entirely replicate within cytoplasmic virion factories. In contrast, the recently discovered Pandoraviruses exhibit larger amphora-shaped virions 1 μm in length and guanine–cytosine-rich genomes up to 2.8 Mb long encoding up to 2,500 proteins. Their replication involves the host nucleus. Whereas the Megaviridae share some general features with the previously described icosahedral large DNA viruses, the Pandoraviruses appear unrelated to them. Here we report the discovery of a third type of giant virus combining an even larger pandoravirus-like particle 1.5 μm in length with a surprisingly smaller 600 kb AT-rich genome, a gene content more similar to Iridoviruses and Marseillevirus, and a fully cytoplasmic replication reminiscent of the Megaviridae. This suggests that pandoravirus-like particles may be associated with a variety of virus families more diverse than previously envisioned. This giant virus, named Pithovirus sibericum, was isolated from a >30,000-y-old radiocarbon-dated sample when we initiated a survey of the virome of Siberian permafrost. The revival of such an ancestral amoeba-infecting virus used as a safe indicator of the possible presence of pathogenic DNA viruses, suggests that the thawing of permafrost either from global warming or industrial exploitation of circumpolar regions might not be exempt from future threats to human or animal health. PMID:24591590
Legendre, Matthieu; Bartoli, Julia; Shmakova, Lyubov; Jeudy, Sandra; Labadie, Karine; Adrait, Annie; Lescot, Magali; Poirot, Olivier; Bertaux, Lionel; Bruley, Christophe; Couté, Yohann; Rivkina, Elizaveta; Abergel, Chantal; Claverie, Jean-Michel
2014-03-18
The largest known DNA viruses infect Acanthamoeba and belong to two markedly different families. The Megaviridae exhibit pseudo-icosahedral virions up to 0.7 μm in diameter and adenine-thymine (AT)-rich genomes of up to 1.25 Mb encoding a thousand proteins. Like their Mimivirus prototype discovered 10 y ago, they entirely replicate within cytoplasmic virion factories. In contrast, the recently discovered Pandoraviruses exhibit larger amphora-shaped virions 1 μm in length and guanine-cytosine-rich genomes up to 2.8 Mb long encoding up to 2,500 proteins. Their replication involves the host nucleus. Whereas the Megaviridae share some general features with the previously described icosahedral large DNA viruses, the Pandoraviruses appear unrelated to them. Here we report the discovery of a third type of giant virus combining an even larger pandoravirus-like particle 1.5 μm in length with a surprisingly smaller 600 kb AT-rich genome, a gene content more similar to Iridoviruses and Marseillevirus, and a fully cytoplasmic replication reminiscent of the Megaviridae. This suggests that pandoravirus-like particles may be associated with a variety of virus families more diverse than previously envisioned. This giant virus, named Pithovirus sibericum, was isolated from a >30,000-y-old radiocarbon-dated sample when we initiated a survey of the virome of Siberian permafrost. The revival of such an ancestral amoeba-infecting virus used as a safe indicator of the possible presence of pathogenic DNA viruses, suggests that the thawing of permafrost either from global warming or industrial exploitation of circumpolar regions might not be exempt from future threats to human or animal health.
Ramp, Kristina; Skiba, Martin; Karger, Axel; Mettenleiter, Thomas C; Römer-Oberdörfer, Angela
2011-02-01
Members of the order Mononegavirales express their genes in a transcription gradient from 3' to 5'. To assess how this impacts on expression of a foreign transgene, the haemagglutinin (HA) of highly pathogenic avian influenza virus (HPAIV) A/chicken/Vietnam/P41/05 (subtype H5N1) was inserted between the phosphoprotein (P) and matrix protein (M), M and fusion protein (F), or F and haemagglutinin-neuraminidase protein (HN) genes of attenuated Newcastle disease virus (NDV) Clone 30. In addition, the gene encoding the neuraminidase of HPAIV A/duck/Vietnam/TG24-01/05 (subtype H5N1) was inserted into the NDV genome either alone or in combination with the HA gene. All recombinants replicated well in embryonated chicken eggs. The expression levels of HA-specific mRNA and protein were quantified by Northern blot analysis and mass spectrometry, with good correlation. HA expression levels differed only moderately and were highest in the recombinant carrying the HA insertion between the F and HN genes of NDV.
Sasaya, Takahide; Ishikawa, Koichi; Koganezawa, Hiroki
2002-06-05
The complete nucleotide sequence of RNA1 from Lettuce big-vein virus (LBVV), the type member of the genus Varicosavirus, was determined. LBVV RNA1 consists of 6797 nucleotides and contains one large ORF that encodes a large (L) protein of 2040 amino acids with a predicted M(r) of 232,092. Northern blot hybridization analysis indicated that the LBVV RNA1 is a negative-sense RNA. Database searches showed that the amino acid sequence of L protein is homologous to those of L polymerases of nonsegmented negative-strand RNA viruses. A cluster dendrogram derived from alignments of the LBVV L protein and the L polymerases indicated that the L protein is most closely related to the L polymerases of plant rhabdoviruses. Transcription termination/polyadenylation signal-like poly(U) tracts that resemble those in rhabdovirus and paramyxovirus RNAs were present upstream and downstream of the coding region. Although LBVV is related to rhabdoviruses, a key distinguishing feature is that the genome of LBVV is segmented. The results reemphasize the need to reconsider the taxonomic position of varicosaviruses.
Nougairede, Antoine; De Fabritus, Lauriane; Aubry, Fabien; Gould, Ernest A; Holmes, Edward C; de Lamballerie, Xavier
2013-02-01
Large-scale codon re-encoding represents a powerful method of attenuating viruses to generate safe and cost-effective vaccines. In contrast to specific approaches of codon re-encoding which modify genome-scale properties, we evaluated the effects of random codon re-encoding on the re-emerging human pathogen Chikungunya virus (CHIKV), and assessed the stability of the resultant viruses during serial in cellulo passage. Using different combinations of three 1.4 kb randomly re-encoded regions located throughout the CHIKV genome six codon re-encoded viruses were obtained. Introducing a large number of slightly deleterious synonymous mutations reduced the replicative fitness of CHIKV in both primate and arthropod cells, demonstrating the impact of synonymous mutations on fitness. Decrease of replicative fitness correlated with the extent of re-encoding, an observation that may assist in the modulation of viral attenuation. The wild-type and two re-encoded viruses were passaged 50 times either in primate or insect cells, or in each cell line alternately. These viruses were analyzed using detailed fitness assays, complete genome sequences and the analysis of intra-population genetic diversity. The response to codon re-encoding and adaptation to culture conditions occurred simultaneously, resulting in significant replicative fitness increases for both re-encoded and wild type viruses. Importantly, however, the most re-encoded virus failed to recover its replicative fitness. Evolution of these viruses in response to codon re-encoding was largely characterized by the emergence of both synonymous and non-synonymous mutations, sometimes located in genomic regions other than those involving re-encoding, and multiple convergent and compensatory mutations. However, there was a striking absence of codon reversion (<0.4%). Finally, multiple mutations were rapidly fixed in primate cells, whereas mosquito cells acted as a brake on evolution. In conclusion, random codon re-encoding provides important information on the evolution and genetic stability of CHIKV viruses and could be exploited to develop a safe, live attenuated CHIKV vaccine.
Lobas, Anna A; Solovyeva, Elizaveta M; Sidorenko, Alena S; Gorshkov, Vladimir; Kjeldsen, Frank; Bubis, Julia A; Ivanov, Mark V; Ilina, Irina Y; Moshkovskii, Sergei A; Chumakov, Peter M; Gorshkov, Mikhail V
2018-01-01
An acquisition of increased sensitivity of cancer cells to viruses is a common outcome of malignant progression that justifies the development of oncolytic viruses as anticancer therapeutics. Studying molecular changes that underlie the sensitivity to viruses would help to identify cases where oncolytic virus therapy would be most effective. We quantified changes in protein abundances in two glioblastoma multiforme (GBM) cell lines that differ in the ability to induce resistance to vesicular stomatitis virus (VSV) infection in response to type I interferon (IFN) treatment. In IFN-treated samples we observed an up-regulation of protein products of some IFN-regulated genes (IRGs). In total, the proteome analysis revealed up to 20% more proteins encoded by IRGs in the glioblastoma cell line, which develops resistance to VSV infection after pre-treatment with IFN. In both cell lines protein-protein interaction and signaling pathway analyses have revealed a significant stimulation of processes related to type I IFN signaling and defense responses to viruses. However, we observed a deficiency in STAT2 protein in the VSV-sensitive cell line that suggests a de-regulation of the JAK/STAT/IRF9 signaling. The study has shown that the up-regulation of IRG proteins induced by the IFNα treatment of GBM cells can be detected at the proteome level. Similar analyses could be applied for revealing functional alterations within the antiviral mechanisms in glioblastoma samples, accompanying by acquisition of sensitivity to oncolytic viruses. The approach can be useful for discovering the biomarkers that predict a potential sensitivity of individual glioblastoma tumors to oncolytic virus therapy. PMID:29416731
Hurtado, Carolina; Granja, Aitor G; Bustos, María J; Nogal, María L; González de Buitrago, Gonzalo; de Yébenes, Virginia G; Salas, María L; Revilla, Yolanda; Carrascosa, Angel L
2004-08-15
The open reading frame EP153R of African swine fever virus (ASFV) encodes a nonessential protein that has been involved in the hemadsorption process induced in virus-infected cells. By the use of a virus deletion mutant lacking the EP153R gene, we have detected, in several virus-sensitive cells, increased levels of caspase-3 and cell death as compared with those obtained after infection with the parental BA71V strain. Both transient and stable expression of the EP153R gene in Vero or COS cells resulted in a partial protection of the transfected lines from the apoptosis induced in response to virus infection or external stimuli. The presence of gene EP153R resulted in a reduction of the transactivating activity of the cellular protein p53 in Vero cell cultures in which apoptosis was induced by virus infection or staurosporine treatment. This is to our knowledge the first description of a viral C-type lectin with anti-apoptotic properties.
In silico design of a DNA-based HIV-1 multi-epitope vaccine for Chinese populations
Yang, Yi; Sun, Weilai; Guo, Jingjing; Zhao, Guangyu; Sun, Shihui; Yu, Hong; Guo, Yan; Li, Jungfeng; Jin, Xia; Du, Lanying; Jiang, Shibo; Kou, Zhihua; Zhou, Yusen
2015-01-01
The development of an HIV-1 vaccine that is capable of inducing effective and broadly cross-reactive humoral and cellular immune responses remains a challenging task because of the extensive diversity of HIV-1, the difference of virus subtypes (clades) in different geographical regions, and the polymorphism of human leukocyte antigens (HLA). We performed an in silico design of 3 DNA vaccines, designated pJW4303-MEG1, pJW4303-MEG2 and pJW4303-MEG3, encoding multi-epitopes that are highly conserved within the HIV-1 subtypes most prevalent in China and can be recognized through HLA alleles dominant in China. The pJW4303-MEG1-encoded protein consisted of one Th epitope in Env, and one, 2, and 6 epitopes in Pol, Env, and Gag proteins, respectively, with a GGGS linker sequence between epitopes. The pJW4303-MEG2-encoded protein contained similar epitopes in a different order, but with the same linker as pJW4303-MEG1. The pJW4303-MEG3-encoded protein contained the same epitopes in the same order as that of pJW4303-MEG2, but with a different linker sequence (AAY). To evaluate immunogenicity, mice were immunized intramuscularly with these DNA vaccines. Both pJW4303-MEG1 and pJW4303-MEG2 vaccines induced equally potent humoral and cellular immune responses in the vaccinated mice, while pJW4303-MEG3 did not induce immune responses. These results indicate that both epitope and linker sequences are important in designing effective epitope-based vaccines against HIV-1 and other viruses. PMID:25839222
Nikolin, Veljko M; Olarte-Castillo, Ximena A; Osterrieder, Nikolaus; Hofer, Heribert; Dubovi, Edward; Mazzoni, Camila J; Brunner, Edgar; Goller, Katja V; Fyumagwa, Robert D; Moehlman, Patricia D; Thierer, Dagmar; East, Marion L
2017-04-01
Was the 1993/1994 fatal canine distemper virus (CDV) epidemic in lions and spotted hyaenas in the Serengeti ecosystem caused by the recent spillover of a virulent domestic dog strain or one well adapted to these noncanids? We examine this question using sequence data from 13 'Serengeti' strains including five complete genomes obtained between 1993 and 2011. Phylogenetic and haplotype network analyses reveal that strains from noncanids during the epidemic were more closely related to each other than to those from domestic or wild canids. All noncanid 'Serengeti' strains during the epidemic encoded: (1) one novel substitution G134S in the CDV-V protein; and (2) the rare amino acid combination 519I/549H at two sites under positive selection in the region of the CDV-H protein that binds to SLAM (CD 150) host cell receptors. Worldwide, only a few noncanid strains in the America II lineage encode CDV-H 519I/549H. All canid 'Serengeti' strains during the epidemic coded CDV-V 134G, and CDV-H 519R/549Y, or 519R/549H. A functional assay of cell entry revealed the highest performance by CDV-H proteins encoding 519I/549H in cells expressing lion SLAM receptors, and the highest performance by proteins encoding 519R/549Y, typical of dog strains worldwide, in cells expressing dog SLAM receptors. Our findings are consistent with an epidemic in lions and hyaenas caused by CDV variants better adapted to noncanids than canids, but not with the recent spillover of a dog strain. Our study reveals a greater complexity of CDV molecular epidemiology in multihost environments than previously thought. © 2016 John Wiley & Sons Ltd.
Fuchs, W; Ziemann, K; Teifke, J P; Werner, O; Mettenleiter, T C
2000-03-01
The DNA sequence of the infectious laryngotracheitis virus (ILTV) UL50, UL51 and UL52 gene homologues was determined. Although the deduced UL50 protein lacks the first of five conserved domains of the corresponding proteins of mammalian alphaherpesviruses, the ILTV gene product was also shown to possess dUTPase activity. The generation of UL50-negative ILTV mutants was facilitated by recombination plasmids encoding green fluorescent protein (GFP), and expression constructs of predicted transactivator proteins of ILTV (alphaTIF, ICP4) were successfully used to increase the infectivity of viral genomic DNA. A GFP-expressing UL50-deletion mutant of ILTV showed reduced cell-to-cell spread in vitro, and was attenuated in vivo. A similar deletion mutant without the foreign gene, however, propagated like wild-type ILTV in cell culture and was pathogenic in chickens. We conclude that the viral dUTPase is not required for efficient replication of ILTV in the respiratory tract of infected animals. The replication defect of the GFP-expressing ILTV recombinant is most likely caused by toxic effects of the reporter gene product, since spontaneously occurring inactivation mutants exhibited wild-type-like growth.
Knowles, D P; Cheevers, W P; McGuire, T C; Brassfield, A L; Harwood, W G; Stem, T A
1991-11-01
To define the structure of the caprine arthritis-encephalitis virus (CAEV) env gene and characterize genetic changes which occur during antigenic variation, we sequenced the env genes of CAEV-63 and CAEV-Co, two antigenic variants of CAEV defined by serum neutralization. The deduced primary translation product of the CAEV env gene consists of a 60- to 80-amino-acid signal peptide followed by an amino-terminal surface protein (SU) and a carboxy-terminal transmembrane protein (TM) separated by an Arg-Lys-Lys-Arg cleavage site. The signal peptide cleavage site was verified by amino-terminal amino acid sequencing of native CAEV-63 SU. In addition, immunoprecipitation of [35S]methionine-labeled CAEV-63 proteins by sera from goats immunized with recombinant vaccinia virus expressing the CAEV-63 env gene confirmed that antibodies induced by env-encoded recombinant proteins react specifically with native virion SU and TM. The env genes of CAEV-63 and CAEV-Co encode 28 conserved cysteines and 25 conserved potential N-linked glycosylation sites. Nucleotide sequence variability results in 62 amino acid changes and one deletion within the SU and 34 amino acid changes within the TM.
Knowles, D P; Cheevers, W P; McGuire, T C; Brassfield, A L; Harwood, W G; Stem, T A
1991-01-01
To define the structure of the caprine arthritis-encephalitis virus (CAEV) env gene and characterize genetic changes which occur during antigenic variation, we sequenced the env genes of CAEV-63 and CAEV-Co, two antigenic variants of CAEV defined by serum neutralization. The deduced primary translation product of the CAEV env gene consists of a 60- to 80-amino-acid signal peptide followed by an amino-terminal surface protein (SU) and a carboxy-terminal transmembrane protein (TM) separated by an Arg-Lys-Lys-Arg cleavage site. The signal peptide cleavage site was verified by amino-terminal amino acid sequencing of native CAEV-63 SU. In addition, immunoprecipitation of [35S]methionine-labeled CAEV-63 proteins by sera from goats immunized with recombinant vaccinia virus expressing the CAEV-63 env gene confirmed that antibodies induced by env-encoded recombinant proteins react specifically with native virion SU and TM. The env genes of CAEV-63 and CAEV-Co encode 28 conserved cysteines and 25 conserved potential N-linked glycosylation sites. Nucleotide sequence variability results in 62 amino acid changes and one deletion within the SU and 34 amino acid changes within the TM. Images PMID:1656067
Ahi, Yadvinder S.; Zhang, Shu; Thappeta, Yashna; Denman, Audrey; Feizpour, Amin; Reinhard, Bjoern; Muriaux, Delphine; Fivash, Matthew J.
2016-01-01
ABSTRACT Gammaretroviruses, such as murine leukemia viruses (MLVs), encode, in addition to the canonical Gag, Pol, and Env proteins that will form progeny virus particles, a protein called “glycogag” (glycosylated Gag). MLV glycogag contains the entire Gag sequence plus an 88-residue N-terminal extension. It has recently been reported that glycogag, like the Nef protein of HIV-1, counteracts the antiviral effects of the cellular protein Serinc5. We have found, in agreement with prior work, that glycogag strongly enhances the infectivity of MLVs with some Env proteins but not those with others. In contrast, however, glycogag was detrimental to MLVs carrying Ebolavirus glycoprotein. Glycogag could be replaced, with respect to viral infectivity, by the unrelated S2 protein of equine infectious anemia virus. We devised an assay for viral entry in which virus particles deliver the Cre recombinase into cells, leading to the expression of a reporter. Data from this assay showed that both the positive and the negative effects of glycogag and S2 upon MLV infectivity are exerted at the level of virus entry. Moreover, transfection of the virus-producing cells with a Serinc5 expression plasmid reduced the infectivity and entry capability of MLV carrying xenotropic MLV Env, particularly in the absence of glycogag. Conversely, Serinc5 expression abrogated the negative effects of glycogag upon the infectivity and entry capability of MLV carrying Ebolavirus glycoprotein. As Serinc5 may influence cellular phospholipid metabolism, it seems possible that all of these effects on virus entry derive from changes in the lipid composition of viral membranes. PMID:27879338
Complementation for an essential ancillary nonstructural protein function across parvovirus genera
Mihaylov, Ivailo S.; Cotmore, Susan F.; Tattersall, Peter
2014-01-01
Parvoviruses encode a small number of ancillary proteins that differ substantially between genera. Within the genus Protoparvovirus, minute virus of mice (MVM) encodes three isoforms of its ancillary protein NS2, while human bocavirus 1 (HBoV1), in the genus Bocaparvovirus, encodes an NP1 protein that is unrelated in primary sequence to MVM NS2. To search for functional overlap between NS2 and NP1, we generated murine A9 cell populations that inducibly express HBoV1 NP1. These were used to test whether NP1 expression could complement specific defects resulting from depletion of MVM NS2 isoforms. NP1 induction had little impact on cell viability or cell cycle progression in uninfected cells, and was unable to complement late defects in MVM virion production associated with low NS2 levels. However, NP1 did relocate to MVM replication centers, and supports both the normal expansion of these foci and overcomes the early paralysis of DNA replication in NS2-null infections. PMID:25194919
Generation of a Recombinant Akabane Virus Expressing Enhanced Green Fluorescent Protein
Takenaka-Uema, Akiko; Murata, Yousuke; Gen, Fumihiro; Ishihara-Saeki, Yukari; Watanabe, Ken-ichi; Uchida, Kazuyuki; Kato, Kentaro; Murakami, Shin; Haga, Takeshi
2015-01-01
ABSTRACT We generated a recombinant Akabane virus (AKAV) expressing enhanced green fluorescence protein (eGFP-AKAV) by using reverse genetics. We artificially constructed an ambisense AKAV S genome encoding N/NSs on the negative-sense strand, and eGFP on the positive-sense strand with an intergenic region (IGR) derived from the Rift Valley fever virus (RVFV) S genome. The recombinant virus exhibited eGFP fluorescence and had a cytopathic effect in cell cultures, even after several passages. These results indicate that the gene encoding eGFP in the ambisense RNA could be stably maintained. Transcription of N/NSs and eGFP mRNAs of eGFP-AKAV was terminated within the IGR. The mechanism responsible for this appears to be different from that in RVFV, where the termination sites for N and NSs are determined by a defined signal sequence. We inoculated suckling mice intraperitoneally with eGFP-AKAV, which resulted in neurological signs and lethality equivalent to those seen for the parent AKAV. Fluorescence from eGFP in frozen brain slices from the eGFP-AKAV-infected mice was localized to the cerebellum, pons, and medulla oblongata. Our approach to producing a fluorescent virus, using an ambisense genome, helped obtain eGFP-AKAV, a fluorescent bunyavirus whose viral genes are intact and which can be easily visualized. IMPORTANCE AKAV is the etiological agent of arthrogryposis-hydranencephaly syndrome in ruminants, which causes considerable economic loss to the livestock industry. We successfully generated a recombinant enhanced green fluorescent protein-tagged AKAV containing an artificial ambisense S genome. This virus could become a useful tool for analyzing AKAV pathogenesis in host animals. In addition, our approach of using an ambisense genome to generate an orthobunyavirus stably expressing a foreign gene could contribute to establishing alternative vaccine strategies, such as bivalent vaccine virus constructs, for veterinary use against infectious diseases. PMID:26157127
Lerch, R A; Friesen, P D
1992-01-01
TED is a lepidopteran retrotransposon found inserted within the DNA genome of the Autographa californica nuclear polyhedrosis virus mutant, FP-D. To examine the proteins and functions encoded by this representative of the gypsy family of retrotransposons, the gag- and pol-like open reading frames (ORFs 1 and 2) were expressed in homologous lepidopteran cells by using recombinant baculovirus vectors. Expression of ORF 1 resulted in synthesis of an abundant TED-specific protein (Pr55gag) that assembled into viruslike particles with a diameter of 55 to 60 nm. Expression of ORF 2, requiring a -1 translational frameshift, resulted in synthesis of a protease that mediated cleavage of Pr55gag to generate p37, the major protein component of the resulting particles. Expression of ORF 2 also produced reverse transcriptase that associated with these particles. Both protease and reverse transcriptase activities mapped to domains within ORF 2 that contain sequence similarities with the corresponding functional domains of the pol gene of the vertebrate retroviruses. These results indicated that TED ORFs 1 and 2 functionally resemble the retrovirus gag and pol genes and demonstrated for the first time that an invertebrate member of the gypsy family of elements encodes active forms of the structural and enzymatic functions necessary for transposition via an RNA intermediate. TED integration within the baculovirus genome thus represents one of the first examples of transposon-mediated transfer of host-derived genes to an eukaryotic virus. Images PMID:1371168
Contreras, Maria Angelica; Eastwood, Gillian; Guzman, Hilda; Popov, Vsevolod; Savit, Chelsea; Uribe, Sandra; Kramer, Laura D; Wood, Thomas G; Widen, Steven G; Fish, Durland; Tesh, Robert B; Vasilakis, Nikos; Walker, Peter J
2017-01-11
The Rhabdoviridae is a diverse family of negative-sense single-stranded RNA viruses, many of which infect vertebrate hosts and are transmitted by hematophagous arthropods. Others appear to be arthropod specific, circulating only within arthropod populations. Herein, we report the isolation and characterization of three novel viruses from mosquitoes collected from the Americas. Coot Bay virus was isolated from Anopheles quadrimaculatus mosquitoes collected in the Everglades National Park, Florida; Rio Chico virus was isolated from Anopheles triannulatus mosquitoes collected in Panama; and Balsa virus was isolated from two pools of Culex erraticus mosquitoes collected in Colombia. Sequence analysis indicated that the viruses share a similar genome organization to Arboretum virus and Puerto Almendras virus that had previously been isolated from mosquitoes collected in Peru. Each genome features the five canonical rhabdovirus structural protein genes as well as a gene encoding a class 1A viroporin-like protein (U1) located between the G and L genes (3'-N-P-M-G-U1-L-5'). Phylogenetic analysis of complete L protein sequences indicated that all five viruses cluster in a unique clade that is relatively deeply rooted in the ancestry of animal rhabdoviruses. The failure of all viruses in this clade to grow in newborn mice or vertebrate cells in culture suggests that they may be poorly adapted to replication in vertebrates. © The American Society of Tropical Medicine and Hygiene.
Contreras, Maria Angelica; Eastwood, Gillian; Guzman, Hilda; Popov, Vsevolod; Savit, Chelsea; Uribe, Sandra; Kramer, Laura D.; Wood, Thomas G.; Widen, Steven G.; Fish, Durland; Tesh, Robert B.; Vasilakis, Nikos; Walker, Peter J.
2017-01-01
The Rhabdoviridae is a diverse family of negative-sense single-stranded RNA viruses, many of which infect vertebrate hosts and are transmitted by hematophagous arthropods. Others appear to be arthropod specific, circulating only within arthropod populations. Herein, we report the isolation and characterization of three novel viruses from mosquitoes collected from the Americas. Coot Bay virus was isolated from Anopheles quadrimaculatus mosquitoes collected in the Everglades National Park, Florida; Rio Chico virus was isolated from Anopheles triannulatus mosquitoes collected in Panama; and Balsa virus was isolated from two pools of Culex erraticus mosquitoes collected in Colombia. Sequence analysis indicated that the viruses share a similar genome organization to Arboretum virus and Puerto Almendras virus that had previously been isolated from mosquitoes collected in Peru. Each genome features the five canonical rhabdovirus structural protein genes as well as a gene encoding a class 1A viroporin-like protein (U1) located between the G and L genes (3′-N-P-M-G-U1-L-5′). Phylogenetic analysis of complete L protein sequences indicated that all five viruses cluster in a unique clade that is relatively deeply rooted in the ancestry of animal rhabdoviruses. The failure of all viruses in this clade to grow in newborn mice or vertebrate cells in culture suggests that they may be poorly adapted to replication in vertebrates. PMID:27799634
Gouzil, Julie; Fablet, Aurore; Lara, Estelle; Caignard, Grégory; Cochet, Marielle; Kundlacz, Cindy; Palmarini, Massimo; Varela, Mariana; Breard, Emmanuel; Sailleau, Corinne; Viarouge, Cyril; Coulpier, Muriel; Zientara, Stéphan
2016-01-01
ABSTRACT Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. IMPORTANCE Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To our knowledge, this is the first report of nucleolar functions for NSs within the Bunyaviridae family. PMID:27795408
Gouzil, Julie; Fablet, Aurore; Lara, Estelle; Caignard, Grégory; Cochet, Marielle; Kundlacz, Cindy; Palmarini, Massimo; Varela, Mariana; Breard, Emmanuel; Sailleau, Corinne; Viarouge, Cyril; Coulpier, Muriel; Zientara, Stéphan; Vitour, Damien
2017-01-01
Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To our knowledge, this is the first report of nucleolar functions for NSs within the Bunyaviridae family. Copyright © 2016 Gouzil et al.
Tempo and Mode in the Molecular Evolution of Influenza C
Gatherer, Derek
2010-01-01
Abstract: Influenza C contributes to economic damage caused by working days lost through absence or inefficiency and may occasionally cause an acute respiratory illness in a paediatric setting. All Influenza C sequences from the NCBI Influenza Virus Resource were examined to determine the date of the most recent common ancestor (t-MRCA), the average nucleotide substitution rate, and the location of residues under positive selection, for each of the seven genome segments of this virus. The segment with the deepest phylogeny was found to be segment 4, encoding the haemagglutinin-esterase protein (HE) with mean t-MRCA at 1890 of the common era (AD), at a 95% highest posterior density (HPD) of 1857-1924 AD. Other genome segments have slightly more recent common ancestors, ranging from mean t-MRCAs of 1916 AD (HPD 1891-1937) for segment 7, encoding the two non-structural proteins (NS) to 1944 AD (HPD 1940-1948) for segment 2 encoding the type 1 basic polymerase (PB1). On the basis of the Bayesian analysis a reclassification of lineages within genome segments is proposed. Some evidence for positive selection was found in the receptor-binding domain of the haemagglutinin-esterase protein. However, average ω (omega) values ranged from 0.05 for polymerase basic protein 2 (PB2) to 0.38 for non-structural protein 2 (NS2), suggesting that strong to moderate purifying selection is the main trend. Characteristic combinations of segment lineages were identified (genome constellations) and shown to have a relatively short life-span before being broken up by reassortment. PMID:21127722
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grassmann, R.; Dengler, C.; Mueller-Fleckenstein, I.
1989-05-01
The role of the X region of the genome of the human T-cell leukemia virus type I (HTLV-I) in the immortalization of lymphocytes has been difficult to distinguish from its role in viral replication as this region encodes at least two genes, tax and rex, required for replication and the expression of viral proteins. To determine whether the X region does encode immortalizing functions, a fragment of the HTLV-I provirus capable of expressing known X-region proteins was inserted into the genome of a transformation-defective, replication-competent Herpesvirus saimiri. Infection of fresh mitogen-activated human cord blood and thymocytes yielded immortal T-cell linesmore » that had the same phenotype (CD4{sup +}, Cd5{sup +}, HLA class II{sup +}, interleukin 2 receptor {alpha}-chain +) as lymphocytes transformed by cocultivation with HTLV-I. These experiments demonstrate that the X region encodes the functions of HTLV-I that immortalize a distinct subpopulation of human T cells. The experiments also demonstrate the utility of the H. saimiri vector for the transduction of heterologous genes into human T cells.« less
Polpitiya Arachchige, Sachith; Henke, Wyatt; Pramanik, Ankita; Kalamvoki, Maria; Stephens, Edward B
2018-01-15
Virus-encoded proteins that impair or shut down specific host cell functions during replication can be used as probes to identify potential proteins/pathways used in the replication of viruses from other families. We screened nine proteins from herpes simplex virus 1 (HSV-1) for the ability to enhance or restrict human immunodeficiency virus type 1 (HIV-1) replication. We show that several HSV-1 proteins (glycoprotein M [gM], US3, and UL24) potently restricted the replication of HIV-1. Unlike UL24 and US3, which reduced viral protein synthesis, we observed that gM restriction of HIV-1 occurred through interference with the processing and transport of gp160, resulting in a significantly reduced level of mature gp120/gp41 released from cells. Finally, we show that an HSV-1 gM mutant lacking the majority of the C-terminal domain (HA-gM[Δ345-473]) restricted neither gp160 processing nor the release of infectious virus. These studies identify proteins from heterologous viruses that can restrict viruses through novel pathways. IMPORTANCE HIV-1 infection of humans results in AIDS, characterized by the loss of CD4 + T cells and increased susceptibility to opportunistic infections. Both HIV-1 and HSV-1 can infect astrocytes and microglia of the central nervous system (CNS). Thus, the identification of HSV-1 proteins that directly restrict HIV-1 or interfere with pathways required for HIV-1 replication could lead to novel antiretroviral strategies. The results of this study show that select viral proteins from HSV-1 can potently restrict HIV-1. Further, our results indicate that the gM protein of HSV-1 restricts HIV-1 through a novel pathway by interfering with the processing of gp160 and its incorporation into virus maturing from the cell. Copyright © 2018 American Society for Microbiology.
Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi
2016-01-01
We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.
Contreras-Gutiérrez, María Angélica; Nunes, Marcio R.T.; Guzman, Hilda; Uribe, Sandra; Gómez, Juan Carlos Gallego; Vasco, Juan David Suaza; Cardoso, Jedson F.; Popov, Vsevolod L.; Widen, Steven G.; Wood, Thomas G.; Vasilakis, Nikos; Tesh, Robert B.
2016-01-01
The genome and structural organization of a novel insect-specific orthomyxovirus, designated Sinu virus, is described. Sinu virus (SINUV) was isolated in cultures of C6/36 cells from a pool of mosquitoes collected in northwestern Colombia. The virus has six negative-sense ssRNA segments. Genetic analysis of each segment demonstrated the presence of six distinct ORFs encoding the following genes: PB2 (Segment 1), PB1, (Segment 2), PA protein (Segment 3), envelope GP gene (Segment 4), the NP (Segment 5), and M-like gene (Segment 6). Phylogenetically, SINUV appears to be most closed related to viruses in the genus Thogotovirus. PMID:27936462
Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution
Krupovic, Mart; Koonin, Eugene V.
2018-01-01
Polintons (also known as Mavericks) are large DNA transposons that are widespread in the genomes of eukaryotes. We have recently shown that Polintons encode virus capsid proteins, which suggests that these transposons might form virions, at least under some conditions. In this Opinion article, we delineate the evolutionary relationships among bacterial tectiviruses, Polintons, adenoviruses, virophages, large and giant DNA viruses of eukaryotes of the proposed order ‘Megavirales’, and linear mitochondrial and cytoplasmic plasmids. We hypothesize that Polintons were the first group of eukaryotic double-stranded DNA viruses to evolve from bacteriophages and that they gave rise to most large DNA viruses of eukaryotes and various other selfish genetic elements. PMID:25534808
Azevedo, Jacinthe; Garcia, Damien; Pontier, Dominique; Ohnesorge, Stephanie; Yu, Agnes; Garcia, Shahinez; Braun, Laurence; Bergdoll, Marc; Hakimi, Mohamed Ali; Lagrange, Thierry; Voinnet, Olivier
2010-01-01
In plants and invertebrates, viral-derived siRNAs processed by the RNaseIII Dicer guide Argonaute (AGO) proteins as part of antiviral RNA-induced silencing complexes (RISC). As a counterdefense, viruses produce suppressor proteins (VSRs) that inhibit the host silencing machinery, but their mechanisms of action and cellular targets remain largely unknown. Here, we show that the Turnip crinckle virus (TCV) capsid, the P38 protein, acts as a homodimer, or multiples thereof, to mimic host-encoded glycine/tryptophane (GW)-containing proteins normally required for RISC assembly/function in diverse organisms. The P38 GW residues bind directly and specifically to Arabidopsis AGO1, which, in addition to its role in endogenous microRNA-mediated silencing, is identified as a major effector of TCV-derived siRNAs. Point mutations in the P38 GW residues are sufficient to abolish TCV virulence, which is restored in Arabidopsis ago1 hypomorphic mutants, uncovering both physical and genetic interactions between the two proteins. We further show how AGO1 quenching by P38 profoundly impacts the cellular availability of the four Arabidopsis Dicers, uncovering an AGO1-dependent, homeostatic network that functionally connects these factors together. The likely widespread occurrence and expected consequences of GW protein mimicry on host silencing pathways are discussed in the context of innate and adaptive immunity in plants and metazoans. PMID:20439431
Drappier, Melissa; Elliott, Ruth; Zhang, Rong; Weiss, Susan R.; Silverman, Robert H.
2018-01-01
The OAS/RNase L pathway is one of the best-characterized effector pathways of the IFN antiviral response. It inhibits the replication of many viruses and ultimately promotes apoptosis of infected cells, contributing to the control of virus spread. However, viruses have evolved a range of escape strategies that act against different steps in the pathway. Here we unraveled a novel escape strategy involving Theiler’s murine encephalomyelitis virus (TMEV) L* protein. Previously we found that L* was the first viral protein binding directly RNase L. Our current data show that L* binds the ankyrin repeats R1 and R2 of RNase L and inhibits 2’-5’ oligoadenylates (2-5A) binding to RNase L. Thereby, L* prevents dimerization and oligomerization of RNase L in response to 2-5A. Using chimeric mouse hepatitis virus (MHV) expressing TMEV L*, we showed that L* efficiently inhibits RNase L in vivo. Interestingly, those data show that L* can functionally substitute for the MHV-encoded phosphodiesterase ns2, which acts upstream of L* in the OAS/RNase L pathway, by degrading 2-5A. PMID:29652922
Xiang, Xingwei; Chen, Lin; Guo, Aiqin; Yu, Shaofang; Yang, Rui; Wu, Xiaofeng
2011-01-01
The Bombyx mori nucleopolyhedrovirus (BmNPV) odv-e56 gene is a late gene and encodes an occlusion-derived virus (ODV)-specific envelope protein, ODV-E56. To determine its role in the BmNPV life cycle, an odv-e56 null virus, BmE56D, was constructed through homologous recombination. A repaired virus was also constructed, named BmE56DR. The production of budded virion (BV) and polyhedra, the replication of viral DNA, and the morphological of infected BmN cells were analyzed, revealing no significant difference among the BmE56D, the wild-type (WT), and the BmE56DR virus. Larval bioassays demonstrated that injection of BmE56D BV into the hemocoel could kill B. mori larvae as efficiently as repaired and WT viruses, however BmE56D was unable to infect the B. mori larvae when inoculated per os. Thus, these results indicated that ODV-E56 envelope protein of BmNPV is also a per os infectivity factor (PIF), but is not essential for virus replication. Copyright © 2010 Elsevier B.V. All rights reserved.
The primary structure of the thymidine kinase gene of fish lymphocystis disease virus.
Schnitzler, P; Handermann, M; Szépe, O; Darai, G
1991-06-01
The DNA nucleotide sequence of the thymidine kinase (TK) gene of fish lymphocystis disease virus (FLDV) which has been localized between the coordinates 0.678 to 0.688 of the viral genome was determined. The analysis of the DNA nucleotide sequence located between the recognition sites of HindIII (0.669 map unit; nucleotide position 1) and AccI (nucleotide position 2032) revealed the presence of an open reading frame of 954 bp on the lower strand of this region between nucleotide positions 1868 (ATG) and 915 (TAA). It encodes for a protein of 318 amino acid residues. The evolutionary relationships of the TK gene of FLDV to the other known TK genes was investigated using the method of progressive sequence alignment. These analyses revealed a high degree of diversity between the protein sequence of FLDV TK gene and the amino acid composition of other TKs tested. However, significant conservations were detected at several regions of amino acid residues of the FLDV TK protein when compared to the amino acid sequence of TKs of African swine fever virus, fowlpox virus, shope fibroma virus, and vaccinia virus and to the amino acid sequences of the cellular cytoplasmic TK of chicken, mouse, and man.
Zhu, Min; Chen, Yuting; Ding, Xin Shun; Webb, Stephen L; Zhou, Tao; Nelson, Richard S; Fan, Zaifeng
2014-01-01
The viral genome-linked protein, VPg, of potyviruses is involved in viral genome replication and translation. To determine host proteins that interact with Sugarcane mosaic virus (SCMV) VPg, a yeast two-hybrid screen was used and a maize (Zea mays) Elongin C (ZmElc) protein was identified. ZmELC transcript was observed in all maize organs, but most highly in leaves and pistil extracts, and ZmElc was present in the cytoplasm and nucleus of maize cells in the presence or absence of SCMV. ZmELC expression was increased in maize tissue at 4 and 6 d post SCMV inoculation. When ZmELC was transiently overexpressed in maize protoplasts the accumulation of SCMV RNA was approximately doubled compared with the amount of virus in control protoplasts. Silencing ZmELC expression using a Brome mosaic virus-based gene silencing vector (virus-induced gene silencing) did not influence maize plant growth and development, but did decrease RNA accumulation of two isolates of SCMV and host transcript encoding ZmeIF4E during SCMV infection. Interestingly, Maize chlorotic mottle virus, from outside the Potyviridae, was increased in accumulation after silencing ZmELC expression. Our results describe both the location of ZmElc expression in maize and a new activity associated with an Elc: support of potyvirus accumulation. PMID:24954157
Zhu, Min; Chen, Yuting; Ding, Xin Shun; Webb, Stephen L; Zhou, Tao; Nelson, Richard S; Fan, Zaifeng
2014-09-01
The viral genome-linked protein, VPg, of potyviruses is involved in viral genome replication and translation. To determine host proteins that interact with Sugarcane mosaic virus (SCMV) VPg, a yeast two-hybrid screen was used and a maize (Zea mays) Elongin C (ZmElc) protein was identified. ZmELC transcript was observed in all maize organs, but most highly in leaves and pistil extracts, and ZmElc was present in the cytoplasm and nucleus of maize cells in the presence or absence of SCMV. ZmELC expression was increased in maize tissue at 4 and 6 d post SCMV inoculation. When ZmELC was transiently overexpressed in maize protoplasts the accumulation of SCMV RNA was approximately doubled compared with the amount of virus in control protoplasts. Silencing ZmELC expression using a Brome mosaic virus-based gene silencing vector (virus-induced gene silencing) did not influence maize plant growth and development, but did decrease RNA accumulation of two isolates of SCMV and host transcript encoding ZmeIF4E during SCMV infection. Interestingly, Maize chlorotic mottle virus, from outside the Potyviridae, was increased in accumulation after silencing ZmELC expression. Our results describe both the location of ZmElc expression in maize and a new activity associated with an Elc: support of potyvirus accumulation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Visualizing Herpesvirus Procapsids in Living Cells.
Maier, Oana; Sollars, Patricia J; Pickard, Gary E; Smith, Gregory A
2016-11-15
A complete understanding of herpesvirus morphogenesis requires studies of capsid assembly dynamics in living cells. Although fluorescent tags fused to the VP26 and pUL25 capsid proteins are available, neither of these components is present on the initial capsid assembly, the procapsid. To make procapsids accessible to live-cell imaging, we made a series of recombinant pseudorabies viruses that encoded green fluorescent protein (GFP) fused in frame to the internal capsid scaffold and maturation protease. One recombinant, a GFP-VP24 fusion, maintained wild-type propagation kinetics in vitro and approximated wild-type virulence in vivo The fusion also proved to be well tolerated in herpes simplex virus. Viruses encoding GFP-VP24, along with a traditional capsid reporter fusion (pUL25/mCherry), demonstrated that GFP-VP24 was a reliable capsid marker and revealed that the protein remained capsid associated following entry into cells and upon nuclear docking. These dual-fluorescent viruses made possible the discrimination of procapsids during infection and monitoring of capsid shell maturation kinetics. The results demonstrate the feasibility of imaging herpesvirus procapsids and their morphogenesis in living cells and indicate that the encapsidation machinery does not substantially help coordinate capsid shell maturation. The family Herpesviridae consists of human and veterinary pathogens that cause a wide range of diseases in their respective hosts. These viruses share structurally related icosahedral capsids that encase the double-stranded DNA (dsDNA) viral genome. The dynamics of capsid assembly and maturation have been inaccessible to examination in living cells. This study has overcome this technical hurdle and provides new insights into this fundamental stage of herpesvirus infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlegel, Elisabeth F.M.; Blaho, John A., E-mail: john.blaho@mssm.ed
2009-05-10
Recombinant virus HSV-1(RF177) was previously generated to examine tegument protein VP22 function by inserting the GFP gene into the gene encoding VP22. During a detailed analysis of this virus, we discovered that RF177 produces a novel fusion protein between the last 15 amino acids of VP22 and GFP, termed GCT-VP22. Thus, the VP22 carboxy-terminal specific antibody 22-3 and two anti-GFP antibodies reacted with an approximately 28 kDa protein from RF177-infected Vero cells. GCT-VP22 was detected at 1 and 3 hpi. Examination of purified virions indicated that GCT-VP22 was incorporated into RF177 virus particles. These observations imply that at least amore » portion of the information required for virion targeting is located in this domain of VP22. Indirect immunofluorescence analyses showed that GCT-VP22 also localized to areas of marginalized chromatin during RF177 infection. These results indicate that the last fifteen amino acids of VP22 participate in virion targeting during HSV-1 infection.« less
Elliott, Richard M.
2014-01-01
Rift Valley fever virus (RVFV, family Bunyaviridae) is a mosquito-borne pathogen of both livestock and humans, found primarily in Sub-Saharan Africa and the Arabian Peninsula. The viral genome comprises two negative-sense (L and M segments) and one ambisense (S segment) RNAs that encode seven proteins. The S segment encodes the nucleocapsid (N) protein in the negative-sense and a nonstructural (NSs) protein in the positive-sense, though NSs cannot be translated directly from the S segment but rather from a specific subgenomic mRNA. Using reverse genetics we generated a virus, designated rMP12:S-Swap, in which the N protein is expressed from the NSs locus and NSs from the N locus within the genomic S RNA. In cells infected with rMP12:S-Swap NSs is expressed at higher levels with respect to N than in cells infected with the parental rMP12 virus. Despite NSs being the main interferon antagonist and determinant of virulence, growth of rMP12:S-Swap was attenuated in mammalian cells and gave a small plaque phenotype. The increased abundance of the NSs protein did not lead to faster inhibition of host cell protein synthesis or host cell transcription in infected mammalian cells. In cultured mosquito cells, however, infection with rMP12:S-Swap resulted in cell death rather than establishment of persistence as seen with rMP12. Finally, altering the composition of the S segment led to a differential packaging ratio of genomic to antigenomic RNA into rMP12:S-Swap virions. Our results highlight the plasticity of the RVFV genome and provide a useful experimental tool to investigate further the packaging mechanism of the segmented genome. PMID:24550727
Shimizu, Takumi; Nakazono-Nagaoka, Eiko; Akita, Fusamichi; Uehara-Ichiki, Tamaki; Omura, Toshihiro; Sasaya, Takahide
2011-09-01
The nonstructural protein P9-1 of Rice black streaked dwarf virus has been confirmed to accumulate in viroplasms, the putative sites of viral replication, in infected plants and insects. We transformed rice plants by introducing an RNA interference construct against the P9-1-encoding gene. The resultant transgenic plants accumulated short interfering RNAs specific to the construct. All progenies produced by self-fertilization of these transgenic plants with induced RNA interference against the gene for P9-1 were resistant to infection by the virus. Our results demonstrated that interfering with the expression of a viroplasm component protein of plant reoviruses, which plays an important role in viral proliferation, might be a practical and effective way to control plant reovirus infection in crop plants. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Baoyu; Yi, Guanghui; Du, Fenglei
The recent outbreak of Zika virus (ZIKV) has infected over 1 million people in over 30 countries. ZIKV replicates its RNA genome using virally encoded replication proteins. Nonstructural protein 5 (NS5) contains a methyltransferase for RNA capping and a polymerase for viral RNA synthesis. Here we report the crystal structures of full-length NS5 and its polymerase domain at 3.0 Å resolution. The NS5 structure has striking similarities to the NS5 protein of the related Japanese encephalitis virus. The methyltransferase contains in-line pockets for substrate binding and the active site. Key residues in the polymerase are located in similar positions tomore » those of the initiation complex for the hepatitis C virus polymerase. The polymerase conformation is affected by the methyltransferase, which enables a more efficiently elongation of RNA synthesis in vitro. Altogether, our results will contribute to future studies on ZIKV infection and the development of inhibitors of ZIKV replication.« less
T Cell Inactivation by Poxviral B22 Family Proteins Increases Viral Virulence
Alzhanova, Dina; Hammarlund, Erika; Reed, Jason; Meermeier, Erin; Rawlings, Stephanie; Ray, Caroline A.; Edwards, David M.; Bimber, Ben; Legasse, Alfred; Planer, Shannon; Sprague, Jerald; Axthelm, Michael K.; Pickup, David J.; Lewinsohn, David M.; Gold, Marielle C.; Wong, Scott W.; Sacha, Jonah B.; Slifka, Mark K.; Früh, Klaus
2014-01-01
Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination. PMID:24832205
T cell inactivation by poxviral B22 family proteins increases viral virulence.
Alzhanova, Dina; Hammarlund, Erika; Reed, Jason; Meermeier, Erin; Rawlings, Stephanie; Ray, Caroline A; Edwards, David M; Bimber, Ben; Legasse, Alfred; Planer, Shannon; Sprague, Jerald; Axthelm, Michael K; Pickup, David J; Lewinsohn, David M; Gold, Marielle C; Wong, Scott W; Sacha, Jonah B; Slifka, Mark K; Früh, Klaus
2014-05-01
Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination.
Landeo-Ríos, Yazmín; Navas-Castillo, Jesús; Moriones, Enrique; Cañizares, M. Carmen
2017-11-24
To counteract host antiviral RNA silencing, plant viruses express suppressor proteins that function as pathogenicity enhancers. The genome of the Tomato chlorosis virus (ToCV) (genus Crinivirus , family Closteroviridae ) encodes an RNA silencing suppressor, the protein p22, that has been described as having one of the longest lasting local suppressor activities when assayed in Nicotiana benthamiana . Since suppression of RNA silencing and the ability to enhance disease severity are closely associated, we analyzed the effect of expressing p22 in heterologous viral contexts. Thus, we studied the effect of the expression of ToCV p22 from viral vectors Tobacco rattle virus (TRV) and Potato virus X (PVX), and from attenuated suppressor mutants in N. benthamiana plants. Our results show that although an exacerbation of disease symptoms leading to plant death was observed in the heterologous expression of ToCV p22 from both viruses, only in the case of TRV did increased viral accumulation occur. The heterologous expression of ToCV p22 could not complement suppressor-defective mutant viruses.
Leary, T P; Gao, Y; Splitter, G A
1992-07-01
The desire to obtain authentically glycosylated viral protein products in sufficient quantity for immunological study has led to the use of eucaryotic expression vectors for protein production. An additional advantage is that these protein products can be studied individually in the absence of their native viral environment. We have cloned a complementary DNA (cDNA) encoding bovine herpes virus-1 (BHV-1) glycoprotein 1 (gpI) into the eucaryotic expression vector, pZipNeo SVX1. Since this protein is normally embedded within the membrane of BHV-1 infected cells, we removed sequences encoding the transmembrane domain of the native protein. After transfection of the plasmid construct into the canine osteosarcoma cell line, D17, or Madin-Darby bovine kidney (MDBK) cells, a truncated BHV-1 (gpI) was secreted into the culture medium as demonstrated by radioimmunoprecipitation and SDS-PAGE. Both a CD4+ T-lymphocyte line specific for BHV-1 and freshly isolated T lymphocytes could recognize and respond to the secreted recombinant gpI. Further, recombinant gpI could elicit both antibody and cellular responses in cattle when used as an immunogen. Having established constitutively glycoprotein producing cell lines, future studies in vaccine evaluation of gpI will be facilitated.
Human parainfluenza virus type 2 V protein inhibits caspase-1.
Ohta, Keisuke; Matsumoto, Yusuke; Nishio, Machiko
2018-04-01
The multifunctional V protein of human parainfluenza virus type 2 (hPIV2) plays important roles in controlling viral genome replication, inhibiting the host interferon response and promoting virus growth. We screened a yeast two-hybrid library using V protein as bait to identify host factors that are important for other functions of V. One of several positive clones isolated from HeLa cell-derived cDNA library encodes caspase-1. We found that the C-terminal region of V interacts with the C-terminal region of caspase-1 in mammalian cells. Moreover, the V protein repressed caspase-1 activity and the formation of interleukin-1β (IL-1β) in a dose-dependent manner. IL-1β secretion induced by wild-type hPIV2 infection in human monocytic THP-1 cells was significantly lower than that induced by recombinant hPIV2 lacking V protein or having a mutant V. These data suggest that hPIV2 V protein inhibits caspase-1-mediated maturation of IL-1β via its interaction with caspase-1.
Park, Dongbin; Goh, Chul Jun; Kim, Hyein; Hahn, Yoonsoo
2018-04-01
The genome sequences of two novel monopartite RNA viruses were identified in a common eelgrass ( Zostera marina ) transcriptome dataset. Sequence comparison and phylogenetic analyses revealed that these two novel viruses belong to the genus Amalgavirus in the family Amalgaviridae . They were named Zostera marina amalgavirus 1 (ZmAV1) and Zostera marina amalgavirus 2 (ZmAV2). Genomes of both ZmAV1 and ZmAV2 contain two overlapping open reading frames (ORFs). ORF1 encodes a putative replication factory matrix-like protein, while ORF2 encodes a RNA-dependent RNA polymerase (RdRp) domain. The fusion protein (ORF1+2) of ORF1 and ORF2, which mediates RNA replication, was produced using the +1 programmed ribosomal frameshifting (PRF) mechanism. The +1 PRF motif sequence, UUU_CGN, which is highly conserved among known amalgaviruses, was also found in ZmAV1 and ZmAV2. Multiple sequence alignment of the ORF1+2 fusion proteins from 24 amalgaviruses revealed that +1 PRF occurred only at three different positions within the 13-amino acid-long segment, which was surrounded by highly conserved regions on both sides. This suggested that the +1 PRF may be constrained by the structure of fusion proteins. Genome sequences of ZmAV1 and ZmAV2, which are the first viruses to be identified in common eelgrass, will serve as useful resources for studying evolution and diversity of amalgaviruses.
Park, Dongbin; Goh, Chul Jun; Kim, Hyein; Hahn, Yoonsoo
2018-01-01
The genome sequences of two novel monopartite RNA viruses were identified in a common eelgrass (Zostera marina) transcriptome dataset. Sequence comparison and phylogenetic analyses revealed that these two novel viruses belong to the genus Amalgavirus in the family Amalgaviridae. They were named Zostera marina amalgavirus 1 (ZmAV1) and Zostera marina amalgavirus 2 (ZmAV2). Genomes of both ZmAV1 and ZmAV2 contain two overlapping open reading frames (ORFs). ORF1 encodes a putative replication factory matrix-like protein, while ORF2 encodes a RNA-dependent RNA polymerase (RdRp) domain. The fusion protein (ORF1+2) of ORF1 and ORF2, which mediates RNA replication, was produced using the +1 programmed ribosomal frameshifting (PRF) mechanism. The +1 PRF motif sequence, UUU_CGN, which is highly conserved among known amalgaviruses, was also found in ZmAV1 and ZmAV2. Multiple sequence alignment of the ORF1+2 fusion proteins from 24 amalgaviruses revealed that +1 PRF occurred only at three different positions within the 13-amino acid-long segment, which was surrounded by highly conserved regions on both sides. This suggested that the +1 PRF may be constrained by the structure of fusion proteins. Genome sequences of ZmAV1 and ZmAV2, which are the first viruses to be identified in common eelgrass, will serve as useful resources for studying evolution and diversity of amalgaviruses. PMID:29628822